Eucalyptus camaldulensis (river red gum) Biogeochemistry: An Innovative Tool for Mineral Exploration in the Curnamona Province and Adjacent Regions

Karen A. Hulme, B.Env.Sc (Hons)

Geology and Geophysics

School of Earth and Environmental Sciences

The University of Adelaide

April 2008

E. camaldulensis (leaves) Biogeochemistry Racecourse Creek Tibooburra W/NSW - (Sr)

mΕ

Figure 4.18: Raw data and spatial distribution of detectable Sr in cumulative frequency plot and summary statistics.

<u>GSr_ppm</u> <u>DP1Sr_ppm</u> <u>MSr_ppm</u> <u>DP2Sr_ppm</u> Figure 4.19: Sr concentrations within *E. camaldulensis* leaves flanking different landform settings along Racecourse Creek, G (granodiorite), DP1 (depositional 1), M (metasediment) and DP2 (depositional 2). Green region denotes 'values below the mean' and the dashed line indicates the 90th percentile.

Element	Parameters	Total data set	Setting				Data set comparison
(ppm)			Granodiorite	Upper	Metasediment	Lower	_
[detection		(C)	(SSer)	catchment	(SSer)	catchment	
limit]			(C)	depositional	(C)	depositional	
Analytical		n=98	n=38	(CHpd and	n=25	(CHpd, Aap,	
Method				Apd)		ISps and Apd)	
				(C)		(C)	
				n=16		n=19	
Sr	Concentration range	40-192	50-192	40-152	46-166	42-107	Regolith-landform units
[0.05]	(Mean)	(81)	(87)	(79)	(81)	(74)	associated with the
ICP-MS							granodiorite, upper catchment
	25th - 75th percentile	63-96	65-104.	65-93	75-82	65-79	depositional regolith-landform
							units & metasediment have
	95% confidence	5	10	12	12	8	similarities at the 5 % Sig level
	level						in their median conc".
			100				
	>90th percentile	156-192	192	No outliers'	117-166	99-107	
	(outliers), # of	(3)	(1)		(1)	(3)	377 1 d l
	samples						While the lower catchment
	E 111 ·	. Recent to both	and the second sec	and the second sec	1		depositional regolith-landform
	E. camalaulensis	adjacent to both	northern margin	northern margin	down stream of	northern &	units are similar at the 5 % Sig
	position with the	the granodiorite	or the	& down stream	intersecting Aed	southern margin	level, with the granodiorite but
	greatest	and	granoulonite	of intersecting	umi	or lower	different between the other
	concentration.	metasediment	Clind2 %	Aed unit		damonitional	regolith-landforms.
			CHpd2 &			depositional	
			Cripuo				

Table 4.23: Variation of Sr concentrations within *E. camaldulensis* s (river red gums), flanking different land-form settings along Racecourse Creek. Initial values concentration range, $25^{th} - 75^{th}$ percentile concentration range, 95 % confidence level, >90th percentile (outliers) C= composite sample.

E. camaldulensis (leaves) Biogeochemistry Racecourse Creek Tibooburra W/NSW - (Sm)

mΕ

Figure 4.22: Raw data and spatial distribution of detectable Sm in cumulative frequency plot and summary statistics.

Figure 4.21: Sm concentrations within *E. camaldulensis* leaves flanking different landform settings along Racecourse Creek, G (granodiorite), DP1 (depositional 1), M (metasediment) and DP2 (depositional 2). Green region denotes 'values below the mean' and the dashed line indicates the 90^{th} percentile.

Element	Parameters	Total data	Setting				Data set comparison
(ppm)		set	Granodiorite	Upper catchment	Metasediment	Lower	
[detection		10	(SSer)	depositional (CHpd	(SSer)	catchment	
limit		(C)	(C)	and Apd)	(C)	depositional	
Analytical		- 09	n=38	(C)	n=25	(CHpd, Aap,	
Method		n=98		n=16		ISps and Apd)	
						(C) n=10	
Sm	Concentration range	0.018-0.046	0.018-0.032	0.018-0.035	0.021-0.039	0.026-0.046	Regolith-landforms associated
[0.01]	(Mean)	(0.03)	(0.03)	(0.02)	(0.03)	(0.03)	with granodiorite upper
INAA	(wear)	(0.05)	(0.05)	(0.02)	(0.05)	(0.05)	catchment depositional
	25 th - 75 th percentile	0.024-0.032	0.022-0.027	0.020-0.027	0.030-0.032	0.033-0.035	regolith-landforms are similar
	1						at the 5 % Sig level in their
	95% confidence level	0.001)	0.001	0.002	0.002	0.001	median conc ⁿ .
	>90th percentile	0.046	No outliers'	No outliers'	0.034-0.039	0.039-0.046	
	(outliers), # of	(1)			(6)	(3)	
	samples						While the metasediment &
							lower catchment depositional
	E. camaldulensis	northern	northern &	northern & southern	northern & southern	central &	regolith-landform units have
	position with the	part of	southern	margin of upper	margin of	adjacent to	major difference between each
	greatest concentration.	Racecourse	margin of	catchment	metasediment &	Hanking ISps1 &	other and other associated
		Ск	granodiorite	depositional & down	down stream of	15ps2	regolith-landforms at the 5 %
				And upit	intersecting Aed unit		Sig level
	position with the greatest concentration.	part of Racecourse Ck	southern margin of granodiorite	margin of upper catchment depositional & down stream of intersecting Aed unit	margin of metasediment & down stream of intersecting Aed unit	adjacent to flanking ISps1 & ISps2	major difference between each other and other associated regolith-landforms at the 5 % Sig level

Table 4.24: Variation of Sm concentrations within *E. camaldulensis* s (river red gums), flanking different land-form settings along Racecourse Creek. Initial values concentration range, 25^{th} - 75^{th} percentile concentration range, 95 % confidence level, >90th percentile (outliers) C= composite sample.

E. camaldulensis (leaves) Biogeochemistry Racecourse Creek Tibooburra W/NSW - (Ca)

<u>GCa-ppm</u> <u>DP1Ca_ppm</u> <u>MCa_ppm</u> <u>DP2Ca_ppm</u> Figure 4.23: Ca concentrations within *E. camaldulensis* leaves flanking different landform settings along Racecourse Creek, G (granodiorite), DP1 (depositional 1), M (metasediment) and DP2 (depositional 2). Green region denotes 'values below the mean' and the dashed line indicates the 90th percentile.

Element	Parameters	Parameters Total data set Setting					Data set comparison
(ppm)			Granodiorite	Upper	Metasediment	Lower	
[detection		(C)	(SSer)	catchment	(SSer)	catchment	
limit			(C)	depositional	(C)	depositional	
Analytical		n=98	n=38	(CHpd and	n=25	(CHpd, Aap,	
Method				Apd)		ISps and Apd)	
				(C)		(C)	
0	0	(0.(0.0000	0110 00000	n=16	2220 21100	n=19	D 151 1 16 5 5 1 1
Ca	Concentration range	6860-22000	8110-22000	6860-17300	/3/0-21100	6950-16900	Regolith-landforms units associated
[500] INAA	(Mean)	(11912)	(11996)	(11361)	(12577)	(11551)	with granodiorite, upper catchment
	asth asth	10000 22000	0/00 14000	0205 12000	11100 10577	10200 11551	depositional and lower catchment
	25 ^m - 75 ^m percentue	10000-22000	9690-14000	9205-12900	11100-12577	10500-11551	depositional regolith-landforms all
	050/	(0)(1016	1514	1(5)	1057	have similarities at the 5% Sig Level,
	95% confidence	000	1016	1514	1052	1057	compared to the regolith-landform
	level						units associated with the
	>00th paraantila	21100 22000	22000	No outliers'	17200 21100	10600	metaseument.
	(optliane) # of	21100-22000	(1)	No outliers	(2)	(1)	
	(outliers), # of	(2)	(1)		(3)	(1)	
	samples						
	F camaldulansis	northern &	northern	down stream of	southern margin &	northern margin	
	position with the	southern parts	margin of	intersecting Aed	down stream of	& down stream	
	greatest	of Pacecourse	granodiorite	unit	intersecting Aed	of intersecting	
	concentration	Ck	flanked by	unit	units	Aed unit	
	concentration.	Ск	CHpd2 &		units	Acu unit	
			CHpd2 &				
			Cripus				

Table 4.25: Variation of Ca concentrations within *E. canaldulensis* s (river red gums), flanking different land-form settings along Racecourse Creek. Initial values concentration range, $25^{th} - 75^{th}$ percentile concentration range, 95 % confidence level, >90th percentile (outliers) C= composite sample.

4.4 PINE CREEK

4.4.1 Setting

Pine Creek catchment is about 10 km southwest of Broken Hill, western New South Wales, approximately 500 km north of Adelaide (Figure 4.24). The study area is approximately 6 km by 8.5 km. It is on the Broken Hill 1:250 000 topographic mapsheet (SH54-15).

Figure 4.24: Location of the Pinnacles (Barrier Pinnacles Mine), western New South Wales.

The area presently experiences a semi-arid to arid climate, with an average annual rainfall of 253 mm, mainly falling in the summer. Temperatures range from an average summer maximum of 32.1°C to an average winter minimum of 5.9°C (Bureau of Meteorology, 2005c). Pine Creek generally flows from north to south, from the Barrier Ranges, past the eastern margins of the Pinnacles Mine, and then into the Murray-Darling drainage basin, where it terminates within a series of ephemeral floodout fans and swamps. The northern parts of the study area are within the Barrier-Pinnacles Mine lease, whereas the southern parts are within 'Balaclava' station. The northern area is currently host to Pb-Zn-Ag mineralisation/lodes. Wilkinson (1883-4 cited in Andrews, 1922) initially described the mineralised outcrop as a large black craggy mass (porous gossan), originally thought to extend from Round Hill to the north-east of Broken Hill Lode. The lodes have since been shown to be discrete. The discovery of the Pinnacles mineralisation has been attributed to Maiden and Pretty in 1884 (Andrews, 1922 and Dickson, 1972) and derived from recognition of mineralised subcrop.

4.4.2 Geology

The Pinnacles mineralisation is set within the Early to Middle Proterozoic Willyama Supergroup (Stevens, 1971; Brown, 1978; Parr, 1994; Leyh, 2003), which includes composite gneisses, and migmatites, quartzo-feldspathic gneisses, amphibolite, and mafic granulites and mafic and ultramafic intrusives.

Figure 4.25: A section of the Willyama Supergroup stratigraphy, interpretative geology and known geology and associated mineralisation within the Thackaringa and Broken Hill Group. (Compiled from Brown, 1984; Rugless & Govett, 1984; and Parr, 1994) including upper Pine Creek catchment and Barrier Pinnacles mine area.

The exposed rock sequence at the Pinnacles is interpreted as being within the Cues Formation (stratiform Pb-Zn-Ag mineralisation) in the Thackaringa Group (Ruggless & Govett, 1984; Barnes, 1988; Parr, 1994), which is stratigraphically overlain by the Himalaya Formation (Ruggless & Govett, 1984; Lehy, 2003). The bedrock lithologies in the Pinnacles area (Figure 4.25) include psammitic to pelitic metasediments, composite quartzo-feldspathic and leucocratic quartzo-feldspathic gneiss and rocks, pegmatites, basic granulites and amphibolites, basic to ultrabasic intrusive, calc-silicates and numerous lode rocks (quartz gahnite, garnet sandstone, garnet quartzite and banded iron formation) with minor occurrences of quartz magnetite (Stevens, 1971; Brown, 1978 and Brown, 1984).

4.4.3 Mineralisation

The Barrier-Pinnacles mineralisation is the largest known Broken Hill Type deposit in the region, other than the Broken Hill line of lode. Since 1885, the deposit has been worked sporadically with approximately 0.2 Mt of ore extracted.

The Pinnacles deposit includes both Pb and Zn lodes, which are identified based on their metal grades (Barnes, 1988). Ayres (1962) describes the ores as:

- Lead lode: galena is the most abundant mineral of the lead lode horizon; however pyrite is typically also a major mineral. Minor minerals are arsenopyrite, sphalerite, ilmenite, pyrrhotite, chalcopyrite and jamesonite.
- Zinc lode: major minerals in these horizons are sphalerite and pyrite, with minor arsenopyrite, galena, pyrrhotite, chalcopyrite and ilmenite.

Average ore grades are 6-11 % Pb, 2.5 % Zn and 300-500 g/t Ag from the main strata Pb lodes, and 1 % Pb, 10-15 % Zn and 30 g/t Ag from the less persistent Zn lode (King, 1953; Barnes, 1988; Parr, 1994). The Pinnacles Mine also has a substantial Au content of 1-7 g/t (Williams, pers comm., 2005). Recent drilling by Pinnacles Mines resulted in the intersection of mineralisation with an apparent width of 6.4 m which revealed 11.6% Zn, 1.38 % Pb and 0.63 g/t Au, and 2.5 m at 12.58 g/t Au.

The Pinnacles deposit is similar to the Broken Hill ore, except that contains larger proportions of Fe, As Sb (Barnes, 1988) and with less Mn, Ca, F and P (Plimer, 1994). The Pinnacles deposit is associated with rocks of interpreted exhalative origin formed as chemical precipitates in the silicate, oxide, carbonate and sulphide facies (Ruggless & Govett, 1984; Parr, 1994). The deposit is characterised by a series of stacked, strata-bound Pb-rich and Zn-rich lenses (Rugless & Govett, 1984; Barnes, 1988; Parr, 1994), hosted in a thick succession of clastic and chemical sedimentary rock, which have undergone multiphase deformation and metamorphism.

Most of the prospective bedrock in the Pinnacles region is concealed by transported colluvial, alluvial and/or aeolian regolith material, which has been a major impediment for exploration in the region. In order to optimise future mineral exploration programs within the region it is important to understand the regolith materials and processes.

4.5 REGOLITH-LANDFORM UNITS

The regolith and landforms of the Pinnacles area have been mapped and characterised at both the regional (Gibson & Wilford, 1996; Hill, 2001) and local (Senior *et al.*, 2002; Senior & Hill, 2002) scales. To aid in the understanding of *E. camaldulensis* biogeochemistry within the Pine Creek catchment, further, more detailed (1:10 000) regolith-landform mapping was undertaken across the catchment, focussing on the context and associated surficial dispersion processes and pathways for the biogeochemical sampling sites.

The Pinnacles catchment broadly consists of a series of erosional hills, rises and plains consisting of variably weathered (mostly slightly weathered) bedrock surrounded by depositional plains consisting of transported regolith derived from alluvial, colluvial, sheetwash and aeolian processes. The transported regolith thickness is variable and ranges up to 10 m, particularly towards the south of the catchment. A total of 26 regolith-landform units

have been identified within the 1:10 000 map area. The accompanying regolith-landform map (Figure 4.26) and the following section provide a description of the attributes of each regolith-landform unit.

PINNACLES (PINE CREEK) REGOLITH-LANDFORM MAP (1:10 000)

Figure 4.26: Pinnacles (Pine Creek) Regolith-landform 1:10 000 map and legend.

regolith carbonate accumulations on a slight relief (9-30 m) land surface, with red-brown sands and minor clays.

FIELD SITE LOCATIONS