Eucalyptus camaldulensis (river red gum) Biogeochemistry: An Innovative Tool for Mineral Exploration in the Curnamona Province and Adjacent Regions

Karen A. Hulme, B.Env.Sc (Hons)

Geology and Geophysics

School of Earth and Environmental Sciences

The University of Adelaide

April 2008

E. camaldulensis (leaves) Biogeochemistry Racecourse Creek Tibooburra W/NSW - (Mn)

HORIZONTAL DATUM: WGS84, UTM ZONE 54S

Figure 4.11: Mn concentrations within *E. camaldulensis* leaves flanking different landform settings along Racecourse Creek, G (granodiorite), DP1 (depositional 1), M (metasediment) and DP2 (depositional 2). Green region denotes 'values below the mean' and the dashed line indicates the 90^{th} percentile.

Element	Parameters	Total data			Data set comparison		
(ppm)		set	Granodiorite	Upper	Metasediment	Lower	
[detection			(SSer)	catchment	(SSer)	catchment	
limit]		(C)	(C)	depositional	(C)	depositional	
Analytical			n=38	(CHpd and	n=25	(CHpd, Aap,	
Method		n=98		Apd)		ISps and Apd)	
				(C)		(C)	
				n=16		n=19	
Mn	Concentration range	70-600	73-344	70-246	87-600	71-389	Regolith-landforms units
[1]	(Mean)	(171)	(160)	(141)	(221)	(166)	associated with granodiorite,
ICP-OES	at at						upper catchment depositional and
	25 th - 75 th percentile	115-200	120-186	96-202	188-221.04	51-169	lower catchment depositional
							regolith-landforms all have
	95% confidence level	17	21	34	56	29)	similarities at the 5% Sig Level,
							compared to the metasediment.
	>90th percentile	344-600	290-344	228-246	280-600	229-389	
	(outliers), # of	(5)	(2)	(4)	(6)	(3)	
	samples						
	E. camaldulensis	adjacent to	central &	southern margin	evenly scattered	southern margin	
	position with the	metasediment	adjacent to	& down stream	adjacent to ISps1	& down stream	
	greatest		flanking	of intersecting	regolith-landform	of intersecting	
	concentration.		CHpd3	Aed unit	unit flanking the	Aed unit	
			&CHpd4		metasediment		

Table 4.19: Variation of Mn concentrations within *E. camaldulensis* s (river red gums), flanking different land-form settings along Racecourse Creek. Initial values concentration range, $25^{\text{th}} - 75^{\text{th}}$ percentile concentration range, 95 % confidence level, >90th percentile (outliers) C= composite sample.

E. camaldulensis (leaves) Biogeochemistry Racecourse Creek Tibooburra W/NSW - (Nd)

HORIZONTAL DATUM: WGS84, UTM ZONE 54S

camaldulensis (leaves) down Racecourse Creek with accompanying boxplots, histogram EFigure 4.12: Raw data and spatial distribution of detectable Nd in cumulative frequency plot and summary statistics.

Figure 4.13: Nd concentrations within *E. camaldulensis* leaves flanking different landform settings along Racecourse Creek, G (granodiorite), DP1 (depositional 1), M (metasediment) and DP2 (depositional 2). Green region denotes 'values below the mean' and the dashed line indicates the 90^{th} percentile.

Element Parameters Total data Setting	Data set comparison
(ppm) set Granodiorite Upper Metasediment Lower	
[detection (SSer) catchment (SSer) catchment	
limit] (C) (C) depositional (C) depositional	
Analytical n=38 (CHpd and n=25 (CHpd, Aap	
Method n=98 Apd) ISps and Apd)
	D Pill R L
Nd Concentration range $0.05-0.20$ $0.05-0.13$ $0.05-0.11$ $0.05-0.15$ $0.08-0.20$	Regolith-landforms associated
$\begin{bmatrix} [0,01] \\ (0,08) \\ (0,08) \\ (0,07) \\ (0,07) \\ (0,11) \\ (0,13) \\$	with granodiorite upper
25^{th} 75^{th} percentile 0.07.0.12 0.07.0.10 0.055.0.10 0.00.0.12 0.12 0.12	landforms are similar at the 5 %
25 - 75 percente 0.07-0.12 0.05-0.10 0.05-0.12 0.12-0.13	Sig level in their median conc ⁿ
95% confidence level 0.006 0.006 0.01) 0.01 0.01	big is for in their meanin cone :
>90th percentile 0.20 No outliers' No outliers' 0.13-0.15 0.15-0.20	
(outlies), # of (1) (6) (5)	While the metasediment & lower
samples	catchment depositional regolith-
	landform units have major
<i>E. camaldulensis</i> southern northern margin northern margin southern margin & central & adjac	nt difference between each other
position with the part of of the & down stream of to flanking ISp	1 and other associated regolith-
greatest concentration. Racecourse granodiorite of intersecting intersecting Aed & ISps2	landforms at the 5 % Sig level.
Ck flanked by Aed unit unit	
CHpd2 &	
CHnd5	
cripa	

Table 4.20: Variation of Nd concentrations within *E. camaldulensis* s (river red gums), flanking different land-form settings along Racecourse Creek. Initial values concentration range, $25^{th} - 75^{th}$ percentile concentration range, 95 % confidence level, >90th percentile (outliers) C= composite sample.

E. camaldulensis (leaves) Biogeochemistry Racecourse Creek Tibooburra W/NSW - (P)

Creek with accompanying boxplots, histogram camaldulensis (leaves) down Racecourse E. Figure 4.14: Raw data and spatial distribution of detectable P in cumulative frequency plot and summary statistics.

Figure 4.15: P concentrations within *E. camaldulensis* leaves flanking different landform settings along Racecourse Creek, G (granodiorite), DP1 (depositional 1), M (metasediment) and DP2 (depositional 2). Green region denotes 'values below the mean' and the dashed line indicates the 90th percentile.

Element	Parameters	Total data	Setting				Data set comparison
(ppm) [detection limit] Analytical Method		set (C) n=98	Granodiorite (SSer) (C) n=38	Upper catchment depositional (CHpd and Apd) (C) n=16	Metasediment (SSer) (C) n=25	Lower catchment depositional (CHpd, Aap, ISps and Apd)	
						n=19	
P [20] ICP-OES	Concentration range (Mean)	654-3166 (1193)	924-3166 (1448)	669-1268 (949)	710-1574 (1006)	654-1840 (1114)	Regolith-landforms units associated with the metasediment upper catchment
	25 th - 75 th percentile	920-1452	1123-1612	804.5-1078.5	905-1006	1081-1114	depositional & lower catchment depositional have slight
	95% confidence level	80	146	101	121	135	differences at the 5% Sig Level in their median conc ⁿ .
	>90th percentile (outliers), # of samples	2297-3166 (2)	3166 (1)	No outliers'	1342-1574 (4)	1525-1840 (4)	
	<i>E. camaldulensis</i> position with the greatest concentration.	northern part of Racecourse Ck	adjacent to granodiorite & at a point were Racecourse Ck is quite narrow	at the interface between the granodiorite and northern margin of the upper catchment depositional	southern margin, flanked by ISps1 & CHpd6	down stream of intersecting Aed unit	However regolith-landforms associated with the granodiorite has major differences with all other land-forms at the 5% Sig Level.

Table 4.21: Variation of P concentrations within *E. canaldulensis* s (river red gums), flanking different land-form settings along Racecourse Creek. Initial values concentration range, $25^{th} - 75^{th}$ percentile concentration range, 95% confidence level, $>90^{th}$ percentile (outliers) C= composite sample.

E. camaldulensis (leaves) Biogeochemistry Racecourse Creek Tibooburra W/NSW - (S)

Figure 4.17: S concentrations within *E. camaldulensis* leaves flanking different landform settings along Racecourse Creek, G (granodiorite), DP1 (depositional 1), M (metasediment) and DP2 (depositional 2). Green region denotes 'values below the mean' and the dashed line indicates the 90^{th} percentile.

Element	Parameters	Total data set	Setting				Data set comparison
(ppm)			Granodiorite	Upper	Metasediment	Lower catchment	_
[detection		(C)	(SSer)	catchment	(SSer)	depositional (CHpd,	
limit]			(C)	depositional	(C)	Aap, ISps and Apd)	
Analytical		n=98	n=38	(CHpd and	n=25	(C)	
Method				Apd)		n=19	
				(C)			
				n=16			
S	Concentration range	805-1550	857-1291	805-1270	958-1145	869-1550	Regolith-landforms units
[10]	(Mean)	(1099)	(1045)	(1061)	(1144)	(1173)	associated with the
ICP-OES	ah ah						granodiorite & upper
	25 th - 75 th percentile	1002-1176	993-1103	982.5-1154.5	1093-1144	1143-1176	catchment depositional
							similar at the 5% Sig
	95% confidence	27	33	65	60	64	Level in their median
	level						conc".
	. 004	1201	1201	M	1214 1445	1000 1550	
	>90th percentile	(1)	(1)	No outners	1314-1445	1282-1550	Depolith londforms
	(outliers), # of	(1)	(1)		(5)	(3)	Regolitin-fandronnis
	samples						associated with the
	E agmaldulancis	down stream of	couthern margin	down stream of	conthern margin	at the interface	antehment depositional
	Desition with the	metasediment &	of granodiorite	intersecting	& flanked by	between the	similar at the 5% Sig
	greatest	intersecting Aed	& down stream	NE/SW And	Aan1 &CHnd6	metasediment and	I evel in their median
	concentration	units	of intersecting	units	ларт астрио	northern margin of the	conc ⁿ
	concentration.	units	Aed unit	units		upper catchment	cone .
			rica anne			depositional	
						depositional	However both groups
							display differences at the
							5% Sig Level.

Table 4.22: Variation of S concentrations within *E. camaldulensis* s (river red gums), flanking different land-form settings along Racecourse Creek. Initial values concentration range, $25^{\text{th}} - 75^{\text{th}}$ percentile concentration range, 95 % confidence level, >90th percentile (outliers) C= composite sample.