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APPENDIX A. The Nios System-on-Chip 

 

In this research thesis, the software application level verification methodology (SALVEM) was 

implemented and applied to the Nios system-on-chip (SoC) [Alt03] from Alterna Inc. This SoC was 

chosen for establishing the feasibility of SALVEM because it provides reconfiguration features and 

can be used for different applications. The SoC can be configured with different Altera or user-

provided peripherals. Application specific or more general purpose SoCs can be easily configured. The 

Nios SoC design was also provided in application specific integrated circuit (ASIC) synthesisable and 

field programmable gate array (FPGA) compliable Verilog behavioural code, which is suitable for 

simulation. 

The Nios SoC has been used in different applications. It was used in Alcatel network platforms, 

Artesyn Technologies telecommunication network cards and various transmission control 

protocol/internet protocol (TCP/IP) based servers. Compared to Freescale networking SoCs, the Nios 

SoC can be used in similar applications and executes similar on-chip transactions. The Nios SoC is 

ideal for prototyping the SALVEM system, and was expected to provide the same benefits as previous 

Freescale verification projects. 

Additionally, the size and complexity of the Nios SoC can be controlled using configuration options. 

The SALVEM system is established using a smaller SoC that still provides sufficient application 

transactions to verify. After proving feasibility of the SALVEM technique, the Nios SoC is expanded 

with additional peripherals and complexity. Eventually, the SoC can be configured to mimic other 

common-off-the-shelf vendor SoCs. 

For our SALVEM investigations, the SoC was configured as multi-application to reflect common 

SoCs today. This enables a greater variety of use-cases and associated snippets to be developed. The 

Nios SoC is configured with SoC devices and settings in Table A.1.  

Figure A.1 shows the layout of the Nios SoC. On-chip devices and external memories communicate 

and transfer data using the Altera Avalon bus. The SALVEM system controls test simulation loading 

of test programs and other data directly into memories. Universal asynchronous receive/transmit 

(UART) and parallel input/output (PIO) data transactions are initiated across the SALVEM 

environment and Nios SoC interface during test execution.  
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Table A.1 Nios SoC specifications summary 

Nios processor 32 bit architecture; 16 bit instructions; Harvard architecture 4KByte
data and instruction caches; 256 windowing registers; 5 stage pipeline 

Avalon bus Byte, halfword, word transfers; single or multiple identical masters and 
slaves arbitration 

ROM  64KByte; 32 bit data size 

RAM  2KByte; 32 bit data size 

SRAM 1MByte; 4-way; 32 bit data size 

Flash  8MByte; 8 bit data size 

DMA Streaming transfer; Fixed length or variable end-of-packet terminated 
transfers; byte, halfword, word transactions; interruptible 

UART 8bit port; RS-232; transmit/receive/duplex transfers; end-of-packet 
termination; interruptible 

PIO 8 pins port; R/W/RW direction configurable pins; interruptible; 

Timer 32 bit interval timer; internal counter; snapshot based and interruptible 
 

 

Figure A.1 Nios SoC architecture 
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APPENDIX B. Additional Literature Survey 

This appendix is a supplement to the literature survey of the thesis in Chapter 2. It provides additional 

information regarding research in other areas that are not directly related to the research thesis, but are 

still relevant and applicable to our research in some way. 

 

B.1 Other design verification methodologies 

B.1.1 Formal verification 

Formal verification (FV) techniques certify the correctness of a design by using formal mathematical 

methods and proofs [CW96]. FV examines the states in an abstracted model of the design to deduce, 

prove and disprove various circuit properties. A formally verified hardware design is deemed 

functionally correct for all conditions (i.e. for all possible execution sequences, all possible 

combinations of inputs and internal states, and all combinations of outputs). Hence, FV is considered a 

complete verification technique. A correctness guarantee from a formally verified design makes FV is 

invaluable. However, adoption of FV has been hindered by a number of issues.  

In order to verify all hardware operating conditions, the FV tool must be supplied with an abstracted 

model of the design that is of appropriate size. Despite various abstraction techniques available, usage 

of FV is often hindered by the size of the designs. Binary decision diagrams (BDD) [Bry86] are 

commonly used to represent the abstracted design. But when evaluating the design through all possible 

states, computational resources may not be sufficient. Subsequently, FV is mainly used for small, 

modular, and specially identified sub-portions of a design only. Simulation is still the primary solution 

for verifying the overall hardware design. At this stage, FV is still unable to tackle large scale 

industrial designs in its entirety. Some FV techniques are also considered highly theoretical and 

difficult to use, especially for users without any prior domain background of the formal methods 

employed.  

Despite design size limitations and usage complexities, research into FV has continued at a steady rate. 

FV techniques such as symbolic model checking [BCRZ99, McM93, McM99], equivalence checking 

[HWA99, KK97, Mat96] and symbolic trajectory evaluation [BBS91, BS90, HS97, Jai97, Mar00, 

SB95, Seg00, YS02] have all been successfully used on industry design projects to verify sub-portions 

of a chip design.  
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B.1.2 Semi-formal verification 

Semi-formal techniques combine methods from simulation and FV methods. Historically, design 

verification has been carried out using either simulation or FV. In the last two decades, semi-formal 

verification has become more common and many proposals for intermixing techniques from one 

domain to the other have been presented by academia. The aim of semi-formal verification is to 

compensate for the weaknesses and bring together the strengths of both techniques; by exploiting the 

design scaling capability in simulation and the abstraction methods that enable complete verification 

approach in FV.  

Usually, semi-formal techniques incorporate FV concepts into a simulation based approach. For 

example, in [RSU02, RUW01], symbolic model checking is used in coverability analysis to determine 

what portions of a design can be covered by the test suite and simulation setup. Formal methods are 

also employed to generate tests for simulation. Banerjee et al. presents an automated test generation 

method using formally extracted properties and specifications of the design [BPD+06]. Model 

checkers, path enumerations, formally specified constraints and constraint solvers are also popular for 

test generation. This is described in Section 2.2.1 Chapter 2 and Section B.4.2. 

In fact, our verification research does not operate solely within the simulation domain. For our 

application driven verification methodology, as far as we are aware, no suitable semi-formal 

abstraction method has been applied to constrain the size of coverage models and reduce coverage 

measuring complexities. In this thesis, we apply methods from the FV field of symbolic trajectory 

evaluation (STE) to represent and facilitate our coverage measuring technique under the software 

application level verification methodology.  We exploit the abstraction mechanisms and trajectory 

graph checking methods from STE to provide a coverable coverage metric. The size of our coverage 

model is contained to prevent the state-explosion phenomenon and facilitate more efficient coverage 

measuring.   

 

B.2 Unit, block, and system based testing 

Unit testing 

Unit testing concerns verification of small partitions of the design. Each unit is highly modularised and 

performs specific and well-defined functions. Testing is usually conducted individually in an ad-hoc 

fashion by designers of the unit. Tests are usually short, directed, and signal pin stimulus based; and 

are created manually by designers to verify only the basic logical functions and simple operations of 
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the unit. The aim is to simply produce a working unit that can be combined with other units to perform 

more thorough testing at the block level. Hence, unit verification effort minimal and involves simple 

checks of the design. 

 

Block testing 

Block testing is the verification of standalone design blocks to ensure they are functionally correct 

before being integrated with other intellectual property (IP) blocks to form the complete hardware chip 

design. Given the high levels of reuse in the design process, a chip design can be made up of numerous 

IP blocks, including IP blocks supplied by external vendors or legacy designs from previous projects. 

The diversity of these IP blocks makes block testing a critical phase in design verification. However, 

the focus in block testing is highly individualistic, additional methods are needed to further verify the 

overall hardware design. 

 

System testing 

System testing targets the entire design, which consists of all the separate design modules, on-chip 

peripherals, and other IP blocks. Given that the internal behaviours of these design blocks should have 

been validated previously, system testing examines the external response and control signals of these 

design blocks instead. Assumptions are often made about external interfaces when individual design 

blocks are tested; system tests ensure any incorrect assumptions are caught. 

System tests can be created in different ways, but they must all initiate functional operations 

throughout the entire chip design, including transactions with the external design environment. The 

design will be put through a range of operational scenarios including error conditions involving 

multiple design blocks. 

The prerequisite for system testing is that all design blocks making up the system have each undergone 

prior verification. Otherwise, design bugs uncovered will predominately be those internal to these 

design blocks, and system testing simply reverts to block or unit testing. Likewise, the post-requisite 

for unit and block testing is for system testing to follow. In system testing, the greater size and 

complexities from taking on verification of the entire chip design implies more difficulties in 

uncovering bugs and attaining high coverage at this level. Much effort and technical resources are 
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needed in developing and setting up thee testbench simulation platform, test generator, and coverage 

measuring. Our research focuses on the system test level.  

 

B.3 Coverage driven verification by construction 

CDV by construction verifies specific areas of a design based on pre-determined coverage information 

before any testing is conducted. The coverage information is usually extracted from an abstract model 

of the design, and specifies the tests needed to cover the design in order to satisfy the coverage goals. 

This approach guarantees coverage beforehand as tests are directly constructed for coverage of the 

abstract model. 

The model employed under this method is largely based on an extracted state machine or graph 

description of the design. Abstraction is necessary to condense the model into a manageable size for 

verification. It removes design information irrelevant to coverage and test generation. To satisfy 

coverage, the states and transitions of the abstract model must be covered. Abstract tests are 

constructed beforehand to traverse through this design model. The set of abstract tests are then 

transformed actual tests that can be simulated on the actual hardware design. 

Design modelling, abstraction, and formal verification methods are prominent in CDV by construction. 

Ho et al. [HYHD95] employed CDV by construction to verify pipelined processor designs in 

behavioural Verilog. They extracted a finite state machine (FSM) description of the microprocessor 

and abstracted the FSM to retain only control logic behaviours. Given the abstract state machine 

model, a transition tour is conducted using FV methods to fully enumerate the design model. Tests are 

then created to exercise all reachable states and transitions from reset, hence ensuring coverage of the 

design model. Despite employing abstraction, the scalability of their approach is unknown, even for 

superscalar processors. 

Another CDV by construction technique involves the use of binary decision diagrams to capture the 

design’s functionalities [GFL+96]. In their technique, Geist et al. employs a symbolic model checker as 

a counter example engine to generate tests. To construct tests that cover the model, false assertions are 

supplied to the model checker to trigger counter example traces that are concretised into test vectors. 

The constructed tests ensure coverage as these false assertions cover the functionalities of the model. 

The Geneieve methodology [DBG01] also creates tests that cover specific coverage events by falsely 

supplying unreachable behavioural transitions to the model checker.  
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In [UY99], a similar approach was adopted for verifying pipelining mechanisms in processors. This 

technique differs slightly where counter example traces are converted to constraints first. These 

constraints are then resolved by the Genesys [FAL99] external test generator tool adding 

randomisation as well to create assembler instruction test programs. Despite attaining excellent 

coverage results, the drawback with these techniques is the limited design sizes can be handled, which 

is an inherent limitation from applying FV methods such as model checkers. Furthermore, experience 

and expert knowledge is often needed to model the hardware designs into abstracted representation, 

derive false assertions, and apply the counter example engine correctly. 

Verifying a design using CDV by construction ensures coverage upfront. Simulation is more efficient 

as testing targets only the required design functions demanded from coverage specific to the design 

model. The proviso with this approach is to ensure the extraction of the design model represents the 

actual design appropriately and accurately. Abstraction removes design details and may also conceal 

bugs by removing them from the model completely. Such hidden bugs would not be detected under 

this verification scheme. The risks involved with hidden bugs in CDV by construction often make 

CDV by feedback the more favourable CDV strategy. Furthermore, CDV by construction assumes that 

all coverage events that need testing will be correctly covered by appropriate tests beforehand. CDV 

by feedback does not rely on any such assumptions and creates tests for any coverage events when 

necessary. 

 

B.4 Test generation techniques 

B.4.1 Random test generations research domains 

Model based 

After IBM’s RTPG tool [ABD+91], the next generation of random testers were model based [LMA94]. 

Whilst certain elements of RTPG can be considered model-based, the Genesys [AGL+95, FAL99] and 

Genesys-Pro [AAF+04] tools derived from RTPG are true implementations of the model-based 

approach. These tools operate on a model of the chip design under verification. In this way, the tool is 

not tied to any one particular implementation of a design, and can be reused to verify other designs. 

Devising a model of the design along with some other configuration information takes less effort than 

redeveloping a test generator. The beneficial side effect of having a model of the design is that it can 

be used for results-checking against actual test simulation as well.  
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Like the model based approach, our initial random test generation for the software application 

verification level is also highly reusable. The strength of its reusability comes from the library of code 

segment building blocks for creating tests. The library of building blocks provide generic functions 

that simulate the hardware design, which can be reused for different tests and designs of similar 

applications. The model based approach however, requires a new model of each hardware design to be 

created for verification each time. 

 

Biasing 

In biasing, test generation parameters that shape the random test set are supplied with various values to 

steer testing toward desired design scenarios. Such user input enables interesting interactions, corner 

cases, and any pre-identified design areas of concern to be tested earlier and more often; reducing the 

occurrence of untested design holes. Biasing enhances testing by incorporating additional knowledge 

of design functionalities and hardware architecture details from the user’s perspective (i.e. design or 

verification engineers). The Genesys [AGL+95, FAL99] and Genesys-Pro [AAF+04] tools are biasing 

test generators that allow user influence on instruction selections into test programs. It enables various 

sequences of instructions that target interesting corner cases to be inserted into the generated tests 

more often. 

Our test generations take biasing to another level by controlling both the parameters within test 

programs internally (i.e. within the domain of individual code segment building blocks), and the 

overall test suite during the entire verification process. Furthermore, in our algorithmic (i.e. genetic 

evolutionary) test generation, we extend such equivalent form of biasing from a user manually based 

approach to an automated scheme; whereby test generation parameters are automatically adjusted to 

maintain best effective test creations and efficient verifications. 

 

Templates 

Template enhanced testing also provides an inlet for users to influence randomly generated tests. In 

this approach, tool users lay down the basic and minimal framework of a test, specifying only various 

elements of the test that ensure certain types of interactions or scenarios are exercised. The remaining 

characteristics of the test will be supplemented by random values from the test generator. These user 

devised templates outline the types of tests that will be created. With templates, corner cases, 
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previously identified design holes, or specific design functions that need special attention can be 

formally specified in a convenient manner.  

In our test generations, our application code segment building blocks function as templates to provide 

equivalent expressive features for the test creation process. The code segments are in terms of high 

level software descriptions such as ANSI-C. Such software language descriptors are already powerful 

mechanisms for laying out the types of SoC functionalities run by eventual software controlling the 

hardware design. Our code segment building blocks templates are more effective because they are 

devised and comprise of test elements from a verification engineer’s input, and also from actual 

application software for the SoC.  

The other benefit of templates is their reusability for regressions, to verify derivatives of a chip design 

or even for other verification projects with similar design characteristics. For example, the random test 

generator in [FUZ04] injects design specification information into templates, and then conducts 

probabilistic analysis to create regression suites.  

The Genesys-Pro [AAF+04] and XGEN [EJN+02] test generators are derivatives of the Genesys tool 

[AGL+95], and are examples of template based test creations. Each test generator defines their own 

language to specify test templates, enabling much greater control over the range of test interactions 

tested. The templates are highly expressive, and can cater for full user directed testing, complete 

randomisation, or any mixture of both. In [AEM02], the test generator uses templates and pseudo 

randomness to cater for unexpected operational conditions. They introduce the concept of adaptive test 

generation that simulate unanticipated test specifications, by incorporating additional test events such 

as unexpected interrupts, illegal data access, or other unimplemented features in the templates.  

Other examples of template-based test generations are described in [WBA05], whereby Markov 

modelling and randomisation are combined into a test generator called StressTest. User specified 

templates are supplied to StressTest to generate instruction test programs that targets corner cases. The 

Raptor and Petra test generators are also examples of user template and biased random test generators 

for microprocessor and SoC testing [Kah01]. In fact, the successes of these internally developed test 

generators at Freescale Semiconductor were partially responsible for motivating further test generation 

research in this thesis.  

In our test generations, we do not define our own unique language for equivalent template based test 

creations. Instead, our equivalent test creation templates are based on common high level software 
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languages which is the same language used to describe the tests. Hence, our approach can be 

considered more portable for other designs and verifications as well.  

 

Constraints 

Increasingly, random test generators are being enhanced with techniques from formal verification. A 

common example of semi-formal random test generation is to adopt constraint solving capabilities. By 

encoding the random test generation process, and design and test parameters as constraints, certain test 

generation decisions can be made more effectively by solving these constraints; whilst the remaining 

test creation process will still rely on randomisation.  

The Genesys-Pro [AAF+04], Piparazzi [ABPZ03], and FPGen [AAF+03] test generators are 

derivatives of the Gensys tool [AGL+95] employing constraint solving methods. Using test templates 

as inputs, the test generation process is converted into a constraint satisfaction problem. Pseudo 

random tests are created by resolving the constraint using a dedicated constraint solver from 

[BESZ02]. For more directed testing, user requests can also be represented as constraints. Solving the 

constraint, sub-portions of the test are created to exercise user specified test events. The remaining test 

creation process is completed by employing randomisation. Behm et al. compares the Genesys and 

Genesys-Pro for processor verification, and demonstrates the benefits of templates and constraint 

solving for test generation [BLL+04].  

In [CGW+95, CIJ+94], Chandra et al. formalises the use of constraint solving for random test 

generation by introducing a symbolic instruction graph language. Their AVPGEN test generator also 

represents test parameters using symbolic values. Users can then create test templates using symbolic 

parameters and instruction graphs. The graphical templates specify instruction sequences that must 

satisfy various constraints over the test parameters. A constraint solver is employed on the symbolic 

instruction graphs to create actual instructions that comply with constraints. Any unconstrained test 

parameters are chosen randomly. This approach interleaves random decisions with user defined 

choices given from the constraints and symbolic graph templates.  

Yuan et al. [YSP+99] employs input biasing and binary decision diagrams to handle constraints 

imposed on the types of tests that can be created. In [NZE+06], a system-level SoC random test 

generator, SoCVer is employed to verify multimedia SoCs. The test generation process is described as 
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a scheduling problem, whereby various tasks must be allocated to the cores on the SoC appropriately. 

SoCVer uses randomisation and solves scheduling constraints imposed by the SoC to create software 

test programs. These test programs run from the SoC’s main processor to manage overall execution of 

test operations carried out throughout the system. 

Whilst our test generation process also employs constraints, they function primarily to ensure 

correctness of the created tests is sound for simulation on the hardware design. For enhancing 

randomisation, rather than constraint solving, we employ genetic evolutionary techniques as part of the 

eventual automated and algorithmic test generation procedure. Therefore, our test creation techniques 

do not require any formal methods, tools, or explicit constraints to be created each time for a new 

verification project; reducing any complexities associated with complicated formal techniques.  

 

B.4.2 Algorithmic test generators 

Semi-formal test generators 

A common strategy for enhancing the effectiveness of automated test generators is to adopt formal 

verification (FV) methods. Like random test generators in Section 2.2.1 Chapter 2 that adopt constraint 

solving, these semi-formal test generators exploit formalised methods to create tests that can cover 

specific design functions more effectively.  

In [HSH+00], the Ketchum test generator tool is based on both randomisation and multiple FV 

techniques such as symbolic fixpoint computation, symbolic simulation [Bry91], abstraction, and 

bounded model checking using satisfiability (SAT) engines [SS96]. At the beginning, Ketchum 

employs randomisation to create tests that exercises the design through many behavioural states. Once 

randomisation cannot uncover any new states, formal methods are used to perform unreachability 

analysis and more exhaustive examinations on the design under verification. Ketchum was 

successfully applied to industrial designs and attained improved coverage performance compared to 

randomised tests only. The issue with employing formal search methods together with simulation is 

the time and computational resources needed to maintain verification performance as the design size 

increases. 

Another popular semi-formal test creation technique is to use model-checkers to derive tests that will 

exercise specified design behaviours completely. The test generators by Dushina et al. [DBG01] and 

Geist et al. [GFL+96] are such examples. Design behaviours of interest that need testing are falsely 
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asserted to be unreachable. A model checker is then used to automatically generate counter example 

state sequences, which act as tests, to exercise these behaviours. This method can successfully verify a 

range of design behaviours efficiently, including corner cases. However, it is dependant on the design 

handling capacity of the model checker. It suffers the same limitations as traditional FV methods.  

Another semi-formal test generation method involves using formal symbolic techniques to create test 

sequences to exercise the design control path, whilst using genetic algorithms to evolve data 

assignments for the generated tests [FBYR01]. The combination of adopting symbolic BDDs 

representation and genetic methods is highly novel, but this method is restricted by the common BDD 

blow-out phenomenon and large search space spanned by GA methods. As design size increases, the 

BDDs needed to represent control logic grows beyond computational capabilities, and the GA search 

space becomes too large severely reducing the generator’s efficiency.  

 

Finite state machine and state based test generators 

Another class of automated test generators involves extracting test vector sequences or mapping 

assembler instructions from a finite state machine (FSM) representation of the design. Tests are 

created by traversing the states and transitions of the FSM. This traversal is equivalent to exercising 

the design behaviours of the actual design when tests are simulated. Design behaviours that require 

testing correspond strongly to nodes and edges of the FSM. Given the size of chip designs today, the 

challenge with this method is to create an accurate and compact FSM within the handling capacity of 

the test generator and simulator. 

A number of techniques have been devised for FSM based test generation. In [MAH96, MAH98], 

Moundanos et al. applies abstraction techniques [Mel87] from FV to create their extracted control flow 

machine (ECFM). The ECFM is a generalisation of a design’s FSM, but uses much smaller state space 

to encode control flow behaviours only. Test vectors are created to fully enumerate and exercise 

transitions on the ECFM. The ECFM is smaller than a typical FSM because it focuses solely on the 

design’s control behaviours. Moundanos et al. asserts that covering the control path regardless of data 

flow is sufficient to detect majority of design errors. Despite abstraction, the ECFM was only 

demonstrated for small circuits. It fails for larger real-life designs, even when the design circuitry is 

flattened to reduce complexity. 

Shen et al. [SA00, SA98, SA99] extended abstraction methods to handle full microprocessor 

validation. The novelty of their abstracted FSM is that it can be extracted directly from a design’s HDL 
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description automatically.  Their FSM also incorporates mechanisms to preserve cycle accurate 

behaviours from the design. Test generation algorithms to traverse FSM states and analyse temporal 

events are applied to create assembler instruction sequences as tests. The effectiveness of this method 

has been proven on industrial processors from Intel and ARM. Liu and Jou [LJ99] also abstract a 

design’s FSM from the design HDL. To contain the state explosion problem, the size of their FSM is 

reduced by identifying and grouping states that display the same behaviour into one semantic state. 

However, their semantic finite state machine (SFSM) was only applied to small to medium size circuit 

designs. It is unclear from [LJ99] how well the SFSM would scale for larger industrial designs.  

Other similar FSM abstraction based test generators by Ho [HYHD95], Ur [UY99] and Vemuri and 

Kalyanaraman [VK95] have also been proposed. In [HYHD95], control flow paths are identified from 

the design code description. Each path is translated into constraint equations. By solving constraints, 

tests are created to complete transition tours of all control paths in the FSM. Any unresolved constraint 

implies the path is unrealisable and cannot be tested under this technique. Despite the excellent 

mathematical foundations for their methods, the applicability of these techniques on real world designs 

was not discussed.  

In [IKNH94], Iwashita et al. devised a method whereby processors are modelled as FSMs using binary 

decision diagrams BDDs. Tests are created by conducting formal reachability analysis, enumerating 

through all reachable states of the FSM, and then mapping instruction sequences to every traversed 

BDD node. Regardless of the abstraction, path enumeration, or other FV techniques adopted, the 

fundamental limitation in FSM based test generation is that the size of designs will eventually exceed 

the test generator’s representative and algorithmic capacity to manage large designs. 

 

Other types of algorithmic test generators 

Other algorithmic based methods have been proposed to tackle the test generation problem. 

Campenhout et al. [CMH98] uses a three phase test generation algorithm. The algorithm consists of 

searching through a model of a design’s control space, employing datapath information to guide 

further control space searching, and concretizing the tests derived from earlier control space traversal. 

Their approach was still not yet fully developed, however preliminary experiments shows promising 

results. Hosseini et al. [HMK96] combines a number of test code generation tools for functional 

verification of microprocessors. Their set of tools incorporates many of the above methods including 

heuristic methods, constraint solving, user templates, and randomisation. These tools however, are 
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designed specifically for testing specific functional features and units of a microprocessor only. It 

would be useful to assess how these integrated generators perform at testing other designs. 

 

B.4.3 Genetic evolutionary test generators for automatic test pattern generation 
and other verification test domains 

GEA was first proposed and studied extensively as a possible solution for automatic test pattern 

generation (ATPG) to detect physical hardware faults. Given the extensive vector test space of designs 

today, the need for generating effective test patterns quickly and effectively makes GEA an ideal 

optimisation solution [CPRR96a, CPRR96b, CRR98, PR97, PRR94, PRRV94, RPGN94, RPGN97]. 

Test vectors, patterns and circuit design state elements can be easily mapped to equivalent biological 

populations, chromosomes, and genome representation to realise an evolutionary pattern generation 

process [RPGN97]. Results have shown ATPG can be significantly enhanced to stress test large 

sequential designs when GEA methods are used [CPRR96a, CPRR96b, PR97]. Benefits include better 

test coverage, more efficient test execution times [PRR94, PRRV94], compact test patterns 

[CPRR96b], more extensive reachability depths in sequential circuits, and parallel test generation and 

executions [HT04, KHS+97, LYMT97, She99]. GEA can also be applied for build-in-self-test (BIST) 

[CCRS01a, CRS01, SRSV05] and software based self-test [SRSV05]. Post-production fault diagnosis 

of microprocessor devices employing evolutionary refinement techniques have also provided some 

limited success [BSS+06]. 

The early successes of GEA for ATPG led to the proposal of adopting genetic evolutionary techniques 

for formal verification (FV). GEA was first suggested as a possible solution to speed up FV methods 

during early stages of the design verification cycle. For example, Habibi et al. applied genetic 

algorithms to improve assertion checking and coverage of designs described in a mixed SystemC and 

property specification language (PSL) [HT04]. In [SDG00], GEA is applied during property checking 

and derivation of false counter example states in gate level designs. 

 

 

 

 



APPENDIX B.       333 

B.5 Additional coverage methods surveyed 

B.5.1 Other variants of code coverage 

In [FFS+01], Ferandi et al. introduces bit coverage which targets both statement and conditional branch 

coverage. Using stuck-at fault modelling principles from the physical test domain, design variables 

(e.g. signals or ports) are forced to a stuck-at zero or one value, and branch conditions are stuck-at at 

true or false. Tests are then created to oppose these stuck-at scenarios. This approach is highly novel as 

the metric accounts for both statement and conditional coverage, and also employs physical testing and 

formal techniques for test generation. However, it suffers the same fundamental shortcomings as 

statement and conditional coverage described above. 

Zhang and Harris [ZH00] propose a coverage metric which is a compromise between statement and 

path coverage. Their method calls for the identification of data flow paths that can trigger erroneous 

behaviours. By targeting only this subset of data flow paths and their associated statements, 

coverability can be satisfied. This approach requires further research on how to accurately identify the 

critical data paths to traverse. 

 

B.5.2 Assertion coverage 

 
Assertion coverage [Piz04, Syn03] measures the number of satisfied assertions out of all assertions 

devised for the design under test. Assertions are now commonly used for design verification, and can 

be specified with a number of standardised languages such as SystemVerilog [Haq07, IEEE05, 

SVWG] and OpenVera [Syn03]. Assertions declare various structural, logical or temporal properties 

regarding the behaviours and functionalities of the design. For example, in a divide operation, an 

assertion declares the divisor must never be zero. Like functional coverage in Section 2.3.5 Chapter 2, 

assertions ensure critical properties or events of the design are exercised. High assertion coverage is to 

conduct test simulations that trigger a high proportion of these assertions. Despite various tools from 

EDA vendors that automatically reason assertions for a design, additional design and verification 

knowledge from engineers is needed to create a complete set of assertions. Otherwise, high assertion 

coverability would be an inaccurate measure of verification completeness. In order to monitor 

assertions, simulation overhead is incurred reducing overall verification efficiency. 
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APPENDIX C. Snippets Test Program Building Blocks 

This appendix is a supplement to Chapter 3. The first section summarises comparisons of our 

SALVEM test creation methods using snippets against instructions based microprocessor test 

generations. Section C.2 outlines the formalisation technique to describe snippets implementation. 

Following snippet formalisation details, an example snippet implementation based on this formalised 

description is provided for initialisation of the direct memory access (DMA) device. Other snippets are 

formalised, described and implemented in similar manner. The extended Appendix C on the CD-ROM 

version of this thesis contains examples of formalisation of other snippets after Appendix C.3.1 

onwards; such as the parallel input output (PIO), and universal asynchronous receive transmit (UART) 

devices snippets. 

 

C.1 Comparisons to assembler instruction testing 

Our SALVEM snippets based test creation method (Section 3.6 Chapter 3) bears some similarities to 

test generation of assembler instruction test programs for microprocessor testing. SALVEM test 

programs are composed of dynamic sequences of snippet code segments whereby snippets perform 

differently depending on their input parameters. Like our test programs, randomised sequences of 

assembler instructions and their operand values are employed to test processor cores. From a test 

creation perspective, the intentions of our snippets and snippet parameters are closely coupled to that 

of assembler instructions and operands respectively.  

In terms of design verification, our test programs are at a higher programming level, invoking system-

wide operations that collectively exercise many device functions throughout the SoC. Additionally, 

snippets are carefully crafted to invoke a range of SoC operations. Snippets must allow for diverse but 

concise parameterisation to initiate different device functions that can integrate seamlessly into snippet 

sequences. In contrast, an assembler test generator simply uses whatever instructions are available 

from the processor’s instruction set architecture. 
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C.2 Formalisation of snippets 

This section provides a template for describing snippets in a formalised manner. The remainder of this 

section outlines the main headings, and snippet description and implementation details required for 

each heading, which is needed to formally specify and implement a snippet. 

 

C.2.1 Snippet formalisation and specification elements 

A. Description 

A1. Designation and label 

The snippet’s designation should be a name that summarises the goal and main SoC operations 

conducted by the snippet for verification purposes. The context in which SoC applications perform the 

snippet operations must also be encapsulated concisely by its designation. So that when it is referred to, 

the snippet can be recognised and understood immediately for use in different SoC testing. The snippet 

label is simply a shortened and abbreviated form of the snippet designation, which is easier to use for 

snippet implementation, documentation and communication purposes between verification engineers. 

 

A2. Purpose 

The goals and intentions of the snippets are detailed here. Specifically, a description of what the 

snippet does, what SoC functionalities in particular does the snippet test, and the verification problems 

it tackles must be addressed. The types and coverage of SoC testing tasks the snippet is responsible for 

may also be outlined here. Finally, the priority of the snippet for inclusion into test programs, and its 

relative importance to other snippets in the snippets library may be discussed and quantified. In this 

thesis, we use a numerical ranking between one to five, where five is considered highest priority and 

most important. 

 

A3. Example applications and usage 

SoC application use-case scenarios in which this snippet was identified and derived from is presented. 

These example scenarios will show the context in which the snippet operates within in order to 
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demonstrate the real-life applicability of testing SoC functions from this snippet. A discussion on how 

to identify other scenarios which may apply to this snippet may also be given. By presenting example 

application usages where the snippet originated from, the motivation, rationale, and reasons for 

creating the snippet (i.e. from A2. Purpose) will be reinforced and better understood. In particular, how 

the snippet tackles specific SoC verification problems posed by these application use-cases. 

 

B. Implementation 

B1. Operations 

The main operations, tasks and processes conducted by the snippet in order to test pre-stated SoC 

functions (i.e. from A2. Purpose) are described in this section. The execution of snippet actions and 

various control flow processes invoked by the snippet are summarised here with reference to 

representative, flow-chart and interactive diagrams in B5. Diagrammatic representations. The primary 

snippet operations should be outlined sequentially in bullet form, stating for each operation, the inputs, 

outputs and tasks to perform. Appendix C.3.1’s B1 sub section shows how to specify snippet 

operations required by B1 using the InitDMA snippet as an example.  

 

B2. Hardware devices and registers 

The SoC hardware devices and configuration registers that are involved in the SoC operations initiated 

by the snippet are listed here; along with a short description for each device and register concerning 

how they participate (and their responsibilities) within the SoC operations conducted. An accurate 

listing is essential because these devices are the principle hardware design elements that the snippet is 

testing, and registers are the facilitator for initiating SoC functions for verification purposes (Section 

3.4 Chapter 3). 

 

B3. Drivers 

The set of device drivers needed to access registers or perform low-level hardware operations by the 

snippet is given here. Identifying the necessary drivers beforehand assists in identification of what 

drivers are available for use or which drivers can be modified for use when the snippet tackles new 
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SoCs. Otherwise, a plan must be put in place to develop the required drivers. The device drivers are to 

be listed in ANSI-C API library function call header style. 

 

B4. Snippet relationships 

The relationships with other relevant snippets in the snippet library and any interactions with these 

snippets are described in this section. For example, before snippets can invoke certain operations on a 

SoC device, the device often needs to be reset and configured appropriately. The collaborations 

between the snippet and other snippets must be given. For the purposes of snippet composition into the 

test program, and its reusability for other SoC verification, this information shows what other snippets 

are needed for inclusion and their roles with respect to the SoC operations invoked. Other snippets 

closely related to the types of operations invoked by this snippet are also listed here, comparing their 

similarities and differences. This provides alternatives when choosing and reapplying snippets for 

other SoCs. For example, other snippets more appropriate for another SoC that perform similar testing 

can be reused and modified as needed instead. 

 

B5.  Diagrammatic representations 

This section provides the diagrammatic representations of the snippet to aid the specification 

information already provided. The three common diagrams employed for our snippet are (1) snippet 

control and register access flowchart, (2) snippet and devices collaboration diagram, and (3) test 

composition snippet usage diagram.  

The snippet control and register access flowchart shows the control flow of SoC tasks initiated by the 

snippet in terms of device driver calls and register accesses. This flowchart captures the snippet 

internal processes and forms the template from which the snippet implementation code will be based 

upon.  

The snippet and devices collaboration diagram outlines the other snippets, SoC devices, or external 

units that are required during operations invoked by the snippet. It shows the requests and interactions 

initiated by the snippet in the SoC hardware domain to perform testing. Such a diagram is useful when 

identifying if the snippet can be reusable on other SoCs; by checking whether other SoCs or 

verification platforms contain similar devices needed for this snippet to operate with.  
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The test composition snippet usage diagram shows the various patterns and sequences in which the 

snippet can be chosen into a test program. Such a diagram is useful to SALVEM test program creation 

and applying test generation algorithms as it outlines the ways in which the snippet can be used (or 

restricted) within test programs. The structure of test programs is largely affected by these diagrams 

for each snippet from the snippet library. 

 

B6. Return variables 

The outputs returned as a result of performing the snippet must be specified. Any result, status or 

control variables are listed so their values can be examined. The return variables may be essential to 

check for correct operation of the snippet, or may be required for subsequent snippets invoked later on 

in the test program. The set of return variables, its possible return values, and their meanings are given 

in this section 

 

B7. Parameters 

Parameters are one of the most important specifications for any snippet because it controls the internal 

snippet operations conducted and the types of SoC functions tested. The complete set of snippet 

parameters must be specified, detailing for each parameter, its name, value type, range of possible 

values, any restricted values, and the critical or important values that should be given higher priority. 

For each parameter, a short statement should also be given discussing how that parameter affects the 

snippet internal operations conducted, or the types of variation in SoC functions executed.  

 

B8. Constraints 

Constraints are an essential element of any snippet because there are certain snippet conditions or 

settings that need to be maintained or restricted in order for snippet operation and SoC functions to be 

conducted. Constraints are specified formally using boolean expressions and operators that combine 

various snippet or test program identifiers together (e.g. snippet label, parameter or variable names, 

return variables, etc). For example, if a snippet is to initiate DMA transfers from an I/O device, then 

the source address incrementing mode must be set to non-increment. The address to read data from is 

fixed to an I/O port. In this case, the constraint might be, 
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(source_address =  I/O device) ∧ (incrementing_mode = false) 

where ∧ is the conjunctive and operator. 

Any constraint involving the snippet, whether internally or in relation to other snippets or the test 

program must be specified. 

 

B9. Dependencies 

Dependencies specify which other snippets that the snippet currently being specified is dependant 

upon. Before a snippet can be chosen into a test program, other snippets may need to be executed 

beforehand or afterwards. For example, before a snippet can initiate operations on a UART device, the 

reset UART snippet must be selected into and executed by the test program beforehand. Dependencies 

information must describe what the dependant snippets are, and in what way the snippet is dependant 

upon them.  

Dependency rules ensure only legal snippet sequences are generated. The notation for specifying 

snippet dependencies are shown in Table C.1. The targ_snippet refers to the target snippet that 

dependency information is being specified for (i.e. the snippet currently being specified). The 

dep_snippet is the snippet that must be executed before or after targ_snippet to support its inclusion 

into the test. SALVEM defines two types of dependencies. A strict dependency requires a dependent 

snippet (dep_snippet) to be executed immediately before (or after) the target snippet. A non-strict 

dependency implies the dep_snippet can be generated amongst other snippets before (or after) the 

targ_snippet. 

Table C.1 Snippet dependencies specification notation 

Strict dependency 

targ_snip→Sdep_snip Dependent snippet required immediately after target snippet 

dep_snipS←targ_snip  Dependent snippet required immediately before target snippet 

Non-strict dependency 

targ_snip→NSdep_snip Dependent snippet required after target snippet 

dep_snipNS←targ_snip Dependent snippet required before target snippet 
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For example, in DMA transfers using blocking execution mode, 

DEP(ExecDMA→STermDMA→SCheckDMA) require the DMA termination and check snippets to 

execute immediately after a DMA transfer execution snippet. This implies dependencies between 

snippets can also be cascaded.  

Similarly, DEP(ResetUartNS←TxUart|RxUart|RxTxUart) imply the UART device can be initialised in 

between other snippets before it is used to transmit or receive data. A comprehensive set of 

dependencies specified for each snippet governs the types of snippet sequences that can be composed 

by our test generator. Figure 3.9 Chapter 3 showed examples of strict and non-strict dependencies. 

The snippet dependency information provided here is a subset of the information from B4. Snippet 

relationships specifications. The test composition snippet usage diagram from B5. Diagrammatic 

representations, illustrates the snippet dependency information as well. 

 

B10. Pre and post conditions 

Pre and post conditions specify requirements that must be satisfied before and after the snippet is 

executed during test execution. For example, to perform a simple memory data transfer, the pre 

condition requires that data be available for transfer beforehand. If non-sharing devices are used by the 

snippet operation, then the post condition must check that these devices are freed for usage by other 

snippets afterwards. 

 

B11.  External requirements 

The off-chip requirements needed for snippet operation are specified here. These requirements refer 

primarily to devices or software external to the SoC, in particular, requirements relating specifically to 

the testbench or verification platform.  For example, snippets involving I/O devices on the SoC usually 

require some testbench module that can handle the data output by the SoC or provide appropriate 

stimulus to the I/O ports. External checker modules may also be implemented to check for correct 

operation of the SoC functions invoked by snippets. 
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B12. Restrictions 

Restrictions refer to the SoC design functionalities that are not tested by the snippet and are not 

explicitly obvious. It addresses the question of “What is not covered by the snippet?” or “What doesn’t 

the snippet do?” For example, there may be certain modes of operations not tested explicitly by 

snippets. Restriction information is useful for keeping track of unimplemented features of a snippet 

and what SoC test functions are not handled yet, especially during snippet development. 

 

B13. Checking mechanisms 

Checking mechanisms outlines what procedures are undertaken to check that the SoC functions 

invoked by snippets are carried out correctly. It details the results checking features employed by the 

snippet. For example, is checking operations performed after the SoC operations and snippet execution 

has completed, or are checks performed on-the-fly whilst the SoC functions are being carried out, or a 

combination of both? Also, does the snippet perform self-checking procedures or are the checks 

performed externally by an interfacing checking module from the testbench. 

 

B14. Example test program usage  

An example of how the snippet is inserted within the structure of the test is shown. Specifically, the 

snippet ANSI-C function call that will be used within the test program, including function parameters 

and return values, must be given. 

 

B15. Snippet pseudo/implementation sample code 

The snippet implementation code shows how the snippet is put into practice for SALVEM. Generally, 

the implementation code is in ANSI-C and should be applicable for verifying the SoC under SALVEM, 

as long as the appropriate snippet drivers are available. Otherwise, the snippet sample code may be 

implemented as pseudo code abstracting the SoC specific details until the snippet is to be implemented 

for verification. The sample code provided may either be code fragments of the important operations 

encapsulated by the snippet, or complete code implementation of the entire snippet operations. 
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C. Discussion 

C1. Variation possibilities 

The manner in which the snippet can be varied, and the types and range of variation in the SoC 

functions that can be tested are outlined here. For each variation possibility, the outcome from the 

variation, and the inputs (e.g. parameter settings) and conditions needed in order to produce the 

variation must be specified. 

 

C2. Attributes 

This section lists some of the quantitative attributes of the snippets, for example, the size of the snippet 

and execution performance times when it is simulated on the SoC. Depending on the available 

executable program memory size on the SoC under test, the number of lines of code or memory 

footprint of the snippet affects how many different snippets in total can be composed within a test 

program. Similarly, certain variation options and SoC functions initiated by the snippet may require 

different execution times – influencing the types of variation and way in which the snippet is 

configured in the test program. 

 

C3. Advantages and disadvantages 

The benefits and shortcomings from applying the snippet must be discussed. Any potential trade-offs 

or issues from implementing the snippet must also be listed. These factors are important considerations 

when deciding whether to use the snippet for verifying the SoC or how often the snippet should be 

chosen for inclusion into the test program. For example, whilst a snippet may be able to invoke many 

variations to test a particular SoC function, the resultant size of the snippet needed to implement such 

variation range may be too large. A compromise between reducing variation (or test effectiveness) and 

snippet size is required, and the snippet implementation may differ from the standard specification 

given. The snippet may even be broken down into multiple but smaller snippets. 
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C4.  Other considerations 

Any other remaining characteristics or issues regarding the snippet are supplemented in this last 

section. The information to be given here is optional, but may include aspects such as the snippet’s 

level of reusability, portability, extensibility or flexibility. Specific recommendations on how to 

implement the snippet, or hints regarding how the snippet should be used by the test creation process 

may also be given. 

 

C.3 Example snippets formalisation, specification and implementation 

details 

C.3.1 InitDMA snippet 

A. Description 

A1. Designation and label 

Name : DMA initialisation 

Label : InitDMA 

 

A2. Purpose 

Intention : The InitDMA snippet configures the DMA device in readiness for executing DMA 

transfers. It accesses DMA control registers to set up the DMA device such that different DMA data 

transfers can be conducted later depending on the values written to the registers. If the DMA transfer 

involves read or write destination devices that require configuration as well, the InitDMA snippet is 

also responsible for setting up those devices.  

Test goals : This snippet tests the DMA transfer configuration possibilities that can be realised 

throughout the entire hardware system. It also tests if illegal types of data transfers are allowed to be 

configured on the DMA device, and how it handles such error settings.  

Priority : 5  
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A3. Example applications and usage 

Scenario : The SoC can be used for DSP purposes. This requires the DMA to be configured so that 

DMA transfers can be initiated immediately in the background whilst the main CPU (or DSP engine) 

is performing high intensive DSP mathematical calculations. The configuration of DMA transfers is 

important for transferring large amounts of input, output and temporary signal data needed by various 

DSP operations. Configuring non-blocking DMA transfers frees the rest of the system so that DSP 

tasks are the primary processes conducted on the SoC. The configuration of various memories to act as 

DMA read and write devices is particularly useful for this scenario. Figure 3.2 Chapter 3 represented 

this scenario diagrammatically.  

Generally, configuration of DMA transfers by this snippet is particularly applicable in scenarios where 

data transfers are required to be conducted independently of other operations. 

 

B. Implementation 

B1. Operations 

The main operations conducted by the InitDMA snippet are, to perform various sanity checks on the 

configurations selected for the DMA transfer, use device drivers to access DMA configuration 

registers to set up the DMA transfer, and prepare the DMA device or any other relevant device in 

readiness for transfer execution.  

The steps taken to perform snippet operations are as follows. 

Step 1 :  

Input : DMA transfer status register value. 

Task : Check that it is appropriate to configure the DMA device for transfers, i.e. the non-
sharing hardware devices required are not reserved. 

Output : True or false indicating if a DMA transfer is in progress. 

Step 2 :  

Input : All DMA registers. 

Task : Clear and reset all settings on the DMA. 

Output : None. 
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Step 3 :  

Input : DMA read and write address values chosen. 

Task : Check that the DMA read and write address is assigned to an I/O device port, or within 
a valid memory device address range. 

Output : True or false indicating if addresses are valid. 

Step 4 :  

Input : DMA transfer size, and read and write address values chosen. 

Task : If the DMA transfer involves memories, check that the data transfer will not overwrite 
the same address range or exceed memory device boundaries. 

Output : True or false indicating if addresses are valid. 

Step 5 :  

Input : DMA transactional unit size, read and write address values chosen, SoC data bus 
specifications.  

Task : Check that the transactional unit size chosen for each transfer cycle is appropriate for 
the source and destination devices involved, and the available data bus bandwidth.  

Output : True or false indicating if the transactional unit size is valid. 

Step 6 :  

Input : DMA transfer size and transactional unit size chosen. 

Task : Check that the total amount of data to transfer is a multiple of the transactional unit size 
chosen, particularly if the DMA device cannot handle data that need to be broken down into 
halfword or byte size units. 

Output : True or false indicating if the transfer size and transactional unit size is valid. 

Step 7 :  

Input : DMA address incrementing modes chosen.  

Task : Check that the address increment mode is enabled only for reading or writing between 
memory devices. 

Output : True or false indicating if address incrementing modes are valid. 

Step 8 :  

Input : The chosen check DMA error handling mode, and checking results from steps 3 to 7.  

Task : If any of the DMA configuration checks are violated, flag an error and recommence 
snippet selections. However, if the intention of testing is to explicitly test SoC error handling, 
then proceed with the tasks in this snippet to set up illegal hardware conditions. 

Output : Error flag settings. 

Step 9 :  

Input : DMA end-of-packet register value chosen, and driver to access the register.  

Task : Write to the end-of-packet register to configure streaming DMA transferring or a fixed 
data amount transfer. 

Output : None. 
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Step 10 :  

Input : DMA transfer size register value chosen, and driver to access the register.  

Task : Write to the transfer size register to specify how much data to transfer. 

Output : None. 

Step 11 :  

Input : DMA read and write incrementing mode control register values chosen, and drivers to 
access the registers. 

Task : Write to the read and write incrementing mode register to enable or disable 
incrementing of the read and write address after every transfer cycle. 

Output : None. 

Step 12 :  

Input : DMA transactional size control register value chosen, and driver to access the register.  

Task : Write to the transactional size register to configure the DMA to execute data transfer in 
terms of byte, halfword, word, or other appropriate sized units. 

Output :  None. 

Step 13 :  

Input : DMA read and write address register values chosen, and drivers to access the registers. 

Task : Write to the read and write address register to set up the starting addresses to read and 
write data between. 

Output : None. 

Step 14 :  

Input : Snippets or drivers to configure DMA read and write destination devices chosen.  

Task : Call other snippets or device drivers to set up source or destination devices if such 
configuration is required by these devices to participate in DMA transfers. 

Output : None. 

Step 15 :  

Input : DMA transfer termination mode control register value chosen, and driver to access the 
register. 

Task : Write to the transfer termination mode register to establish how the DMA will terminate 
data transferring. 

Output : None. 

Step 16 :  

Input : DMA execution transfer mode chosen, DMA interrupt service routine, and driver to 
install the routine. 

Task : Set up the DMA transfer operation to be blocking or non-blocking (interruptible). If 
non-blocking, set up interrupt routines and priorities to handle DMA termination notification. 

Output : None. 

 

 



APPENDIX C.   348 

Step 17 :  

Input : None. 

Task : Save and queue up the configuration of DMA transfer for execution. 

Output : None. 

Step 18 :  

Input : None. 

Task : Return status of snippet operation. 

Output : Numerical value indicating the outcome from executing this snippet. 

 

B2. Hardware devices and registers 

Device Purpose 

DMA To be configured to perform DMA transfers. 
Memories To act as read or write devices for the DMA data transfers. 
UART To act as read or write devices for the DMA data transfers. 
PIO To act as read or write devices for the DMA data transfers. 

Registers Purpose 

DMA status register To check for any ongoing DMA transfers. 

DMA control register 
To configure the transactional unit size, address incrementing 
mode, termination mode, and block or non-blocking DMA 
transfer execution mode. 

DMA length register To specify the amount of data to transfer. 
DMA read address register To specify the start address to read data from. 
DMA write address register To specify the start address to write data to. 

UART status register To check if the UART device is free to participate in DMA 
transfer. 

 

B3. Drivers 

Device driver functions and purpose 

// Checks if the DMA is idle to perform new DMA transfers. 
statusEnumType CheckDMAStatus (int DMAdeviceID); 

// Clears all existing settings on the DMA. 
int ResetDMA (int DMAdeviceID, int mode); 

// Sets the amount of data to transfer. 
int SetTransferSize (int DMAdeviceID, int size); 

// Sets the end-of-packet byte character for streaming transfer. 
int SetEOP (char EOP, int size); 
// Sets the address incrementing mode during transfer. 
int SetRWIncrementingMode (int DMAdeviceID, int readIncMode,    
         int writeIncMode); 
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// Sets the transactional unit size for transferred in each cycle. 
int SetTransactionSize (int DMAdeviceID, int unitSize); 

// Sets the starting read and write addresses. 
int SetRWAddresses (int DMAdeviceID, int readAddr, int writeAddr); 

// Specifies the conditions for termination of DMA transfers. 
int SetTerminationMode (int DMAdeviceID, int termMode); 

// Installs the DMA interrupt handling routine. 
void nr_installuserisr (int DMAinterruptID, void (*ISR)(), int DMAdeviceID); 

// Sets the block or non-block (interrupt) transfer mode. 
int SetTransferInterrupt (int DMAdeviceID, int transferMode); 

// Stores the DMA configuration settings for DMA transfer execution. 
void SaveDMAState (DMAconfigEnumType DMAconfig, int DMAdeviceID); 
// Store the other device settings involved in DMA transfer execution. 
void SaveExtDeviceSettings (int DMAdeviceID,  
     external device setting parameters, …etc…); 

 

B4. Snippet relationships 

Collaborative snippets : ResetUart, SetupPIO, ExecDMA 

 

Related snippets : None. 

 

B5.  Diagrammatic representations 

Snippet control and register access flowchart :  

This diagram was shown previously in Figure 3.7 Chapter 3. 
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interactive call interactive call 



APPENDIX C.   350 

Snippet and devices collaboration diagram : 

 

Test composition snippet usage diagram :  

 

 

B6. Return variables 

Variable Value Meaning 

> 0 
DMA configuration successful, the positive integer returned 
corresponds to the ID of the DMA transfer that is being queued for 
execution. dmaId 

< 0 
DMA configuration unsuccessful, the negative integer returned 
corresponds to one of the errors that caused the configuration to 
fail. 
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B7. Parameters 

Parameters 
Name dma 
Type enumerated SoC device type 
Range list of SoC devices 
Critical values Not applicable 
Restricted values Not applicable 

Description Identifies the type of device this snippet is primarily responsible 
for, in this case, the DMA device. 

Name dmaId 
Type integer 
Range Identify numbers of available DMA devices 
Critical values Not applicable 
Restricted values Not applicable 
Description Identifies which DMA this snippet operates on. 
Name rAddr 
Type integer 
Range 0 to maximum readable memory address 
Critical values boundary values of memory devices 
Restricted values None 
Description Specifies the start address to read data from during DMA transfers 
Name wAddr 
Type Integer 
Range 0 to maximum writeable memory address 
Critical values boundary values of memory devices 
Restricted values None 
Description Specifies the start address to write data to during DMA transfers 
Name length 
Type integer 
Range 0 to (2^11)-1 
Critical values 0, 1, 2, 4, (2^11)-1 
Restricted values None 
Description Specifies the amount of data bytes to transfer 
Name termMode 
Type integer 
Range 0 (length), 1 (read end-of-packet), 2 (write end-of-packet) 
Critical values Not applicable 
Restricted values None 

Description Specifies the termination mode for DMA transfers (e.g. length, 
read end-of-packet, write end-of-packet, etc termination) 

Name rAddrCon 
Type integer 
Range 0 (increment), 1 (constant) 
Critical values Not applicable 
Restricted values None 

Description Specifies whether the read address will increment or remain 
constant during DMA transfers. 

Name wAddrCon 
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Type integer 
Range 0 (increment), 1 (constant) 
Critical values Not applicable 
Restricted values None 

Description Specifies whether the write address will increment or remain 
constant during DMA transfers. 

Name checkError 
Type short 
Range 0 or 1 
Critical values 0 and 1 
Restricted values None 

Description Specifies whether to check for errors operations during DMA 
transfers (1: check, 0: do not check). 

Name uartEOPValue 
Type short 
Range 0 to (2^8)-1 
Critical values 0, 0xFF, 0xAA, 0x55, 0xF0, 0x0F 
Restricted values None 

Description Specifies the end-of-packet byte character to trigger DMA 
transfers involving the UART. 

Name uartDivisor 
Type short 
Range 3 to 10 
Critical values None 
Restricted values None 
Description Specifies a UART divisor value if UART configuration is needed. 
Name pioDir 
Type short 
Range 0 to (2^8)-1 
Critical values 0, 0xFF, 0xAA, 0x55, 0xF0, 0x0F 
Restricted values None 

Description Specifies the PIO directional pin settings for DMA transfers 
involving the PIO device. 

Name pioIntMask 
Type short 
Range 0 to (2^8)-1 
Critical values 0, 0xFF, 0xAA, 0x55, 0xF0, 0x0F 
Restricted values None 

Description Specifies the PIO pin interrupt mask settings for DMA transfers 
involving the PIO device. 

Name pioEdgeCap 
Type short 
Range 0 to (2^8)-1 
Critical values 0, 0xFF, 0xAA, 0x55, 0xF0, 0x0F 
Restricted values None 

Description Specifies the PIO pin edge capture settings for DMA transfers 
involving the PIO device. 
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B8. Constraints 

Constraints and meaning 

(rAddrCon = 0) ∧ (rAddr ≤ ROM_end_addr ∧ rAddr ≥ ROM_start_addr) ∧  

((rAddr + length) ≤ ROM_end_addr) 

 If the read address accesses the ROM memory, and the address is to be 
 incremented, ensure the transfer does not exceed the boundary of the ROM. 
(rAddrCon = 0) ∧ (rAddr ≤ RAM_end_addr ∧ rAddr ≥ RAM_start_addr) ∧  

((rAddr + length) ≤ RAM_end_addr) 

 If the read address accesses the RAM memory, and the address is to be 
 incremented, ensure the transfer does not exceed the boundary of the RAM. 
(wAddrCon = 0) ∧ (wAddr ≤ RAM_end_addr ∧ wAddr ≥ RAM_start_addr) ∧  

((wAddr + length) ≤ RAM_end_addr) 

 If the write address accesses the RAM memory, and the address is to be  incremented 
 ensure the transfer does not exceed the boundary of the RAM. 
(rAddrCon = 0) ∧ (rAddr ≤ SRAM_end_addr ∧ rAddr ≥ SRAM_start_addr) ∧  

((rAddr + length) ≤ SRAM_end_addr) 

 If the read address accesses the SRAM memory, and the address is to be 
 incremented, ensure the transfer does not exceed the boundary of the SRAM. 
(wAddrCon = 0) ∧ (wAddr ≤ SRAM_end_addr ∧ wAddr ≥ SRAM_start_addr) ∧  

((wAddr + length) ≤ SRAM_end_addr) 

 If the write address accesses the SRAM memory, and the address is to be 
 incremented ensure the transfer does not exceed the boundary of the SRAM. 
(rAddrCon = 0) ∧ (rAddr ≤ Flash_end_addr ∧ rAddr ≥ Flash_start_addr) ∧  

((rAddr + length) ≤ Flash_end_addr) 

 If the read address accesses the Flash memory, and the address is to be 
 incremented, ensure the transfer does not exceed the boundary of the Flash. 
(wAddrCon = 0) ∧ (wAddr ≤ Flash_end_addr ∧ wAddr ≥ Flash_start_addr) ∧  

((wAddr + length) ≤ Flash_end_addr) 

 If the write address accesses the Flash memory, and the address is to be 
 incremented, ensure the transfer does not exceed the boundary of the Flash. 
(transSize = halfword) ∧ (length % 2) = 0 

 If halfword transaction unit size is chosen, ensure the number of bytes to  ransfer is a 
 multiple of two. 
(transSize = word) ∧ (length % 4) = 0 

 If word transaction unit size is chosen, ensure the number of bytes to transfer  is a 
multiple of four. 
(rAddr = PIO ∨ rAddr = UART) ∧ (rAddrCon = 1) 

 If the read address is an I/O device port, ensure that the read address is not 
 incremented. 
(wAddr = PIO ∨ wAddr = UART) ∧ (wAddrCon = 1) 

 If the write address is an I/O device port, ensure that the write address is not 
 incremented. 
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(rAddr = PIO ∨ rAddr = UART ∨ wAddr = PIO ∨ wAddr = UART) ∧ (transSize = byte) 

 If the read or write address is an I/O device port, ensure that the transaction  
 unit is byte sized. 

 

B9. Dependencies 

 

B10. Pre and post conditions 

Pre-conditions 

DMA is idle. 
DMA transfer queue is not full. 

Post-conditions 

DMA is idle but ready to perform transfer. 
DMA transfer queue capacity reduced by one. 

 

B11.  External requirements 

None. 

 

B12. Restrictions 

None. 

 

B13. Checking mechanisms 

None. The correct operation of this snippet is checked implicitly by performing the DMA transfer 

when the dependant snippet, ExecDMA, is executed later in the test program. 

 

DEP(InitDMA →NS ExecDMA) 

InitDMA 

ExecDMA 
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B14. Example test program usage  

ok = InitDMA  (na_DMA_1,  // DMA device 
  1,  // DMA Id 
  0x00008000,  // read address 
  na_UART_1,  // write address 
  0x00000100,  // length 
  1,  // transaction size (byte) 
  2,  // termination mode 
  0,  // read address incrementing mode 
  1,  // write address incrementing mode 
  0,  // block or non-blocking mode 
  1,  // check error mode 
  0x1b,  // end-of-packet character 
  3,  // UART divisor 
  0x0,  // PIO port direction 
  0x0, // PIO mask 
  0x0, // PIO edge capture 
 ); 
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B15. Snippet pseudo/implementation sample code 

 

1 //////////////////////////////////////////////////////////////// 
2 // InitDma snippet  
3 // 
4 // Initialises a DMA peripheral ready for transferring data. 
5 // 
6 // These parameters will vary the functional operations 
7 // performed by this snippet. 
8 // 
9 // dma : dma identifier (to identify the dma device) 
10 // dmaId : An allocated DMA transfer operation id. 
11 // rAddr : Source address to read data from. 
12 // wAddr : Destination address to write data to. 
13 // length : The number of data units (bytes/halfwords/words) to transfer. 
14 // transSize : The size of a data unit (byte, halfword, or word). 
15 // termMode : The data transfer termination mode. 
16 // rAddrCon : 0 - Increment read addr during transfer, 1 - otherwise 
17 // wAddrCon : 0 - Increment write addr during transfer, 1 - otherwise 
18 // intEnable : Enable DMA interrupts handling (for non-blocking transfer) 
19 // checkError : 1 - do not allow DMA error conditions to be 
20 //                   exercised, 
21 //            0 - allow DMA error conditions to test error handling mechanisms 
22 // uartEOPValue : end-of-packet character value for DMA induced Uart transfers. 
23 // uartDivisor : Uart Divisor value to use for DMA induced Uart transfers. 
24 // pioDir : PIO directional pin settings to use for DMA induced PIO transfers. 
25 // pioIntMask : PIO Interrupt Mask pin settings to use for DMA induced PIO transfers.  
26 // pioEdgeCap : PIO Edge Capture pin settings to use for DMA induced PIO transfers. 
27 // 
28 // Returns  >0 - if the DMA was successfully initialized; 
29 //              <0 - if essential DMA settings cannot be made, and 
30 //                       transfer cannot proceed. The negative integer returned  
31 //                       corresponds to specific errors. 
32 //////////////////////////////////////////////////////////////// 
33 
34 
35 
36 #include <stdlib.h> 
37 #include <excalibur.h> 
38 #include "DMA_drivers.h" 
39 #include "mutex.h" 
40 #include "uart.h" 
41 #include "testbench.h" 
42 
43 int  InitDMA  (np_dma *dma, int dmaId, int rAddr, int wAddr,  
44          int length, short transSize, short termMode,  
45          short rAddrCon, short wAddrCon,  
46          short intEnable, short checkError, 
47          int uartEOPValue, int uartDivisor,  
48          int pioDir, int pioIntMask, int pioEdgeCap 
49         ) {   
50 
51     int notOk; 
52 
53     // Check some pre-conditions : 
54     // Transfer in progress? If so, unable to make changes to DMA device. 
55     // Wait for any previous transfers to complete. 
56     while (CheckDMAStatus(dma) == DMA_TRANSFER_IN_PROGRESS) {} 
57 
58     // Call device driver to reset DMA. 
59     notOk = ResetDMA(dma, 0);  
60     if (notOk) { 
70         return -1; 
71     } 
72 
73     // Constraints checking :  
74 
75     // Perform checks of the length, address incrementing modes, transaction 
76     // size, and addresses, before setting them in registers 
77 
78     // If non-fixed addresses to read/write, check for overflow, 
79     // (rAddr+length) <= max_peripheral_rAddr_range 
80     // (wAddr+length) <= max_peripheral_wAddr_range 
81     // and check for Overwriting, 
82     // (rAddr+length) < wAddr, if rAddr and wAddr are in the
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83     //                                         same memory range. 
84     if (checkError) { 
85         if (rAddrCon==0) { 
86             if (rAddr>=(int)na_Ext_Flash && rAddr<(int)na_Ext_Flash_end && 
87     (rAddr+length)>(int)na_Ext_Flash_end) { 
88                 return -2; 
89             } 
90             if (rAddr>=(int)na_Ext_SRAM && rAddr<(int)na_Ext_SRAM_end && 
91     (rAddr+length)>(int)na_Ext_SRAM_end) { 
92     return -3; 
93             } 
94             if (rAddr>=(int)na_on_chip_ROM && rAddr<(int)na_on_chip_ROM_end && 
95     (rAddr+length)>(int)na_on_chip_ROM_end) { 
96     return -4; 
97             } 
98             if (rAddr>=(int)na_on_chip_RAM && rAddr<(int)na_on_chip_RAM_end && 
99     (rAddr+length)>(int)na_on_chip_RAM_end) { 
100     return -5; 
101             } 
102             if (rAddr<wAddr && (rAddr+length)>wAddr) { // Overflow? 
103     return -6;   
104             } 
105         } 
106         if (wAddrCon==0) { 
107             if (wAddr>=(int)na_Ext_Flash && wAddr<(int)na_Ext_Flash_end && 
108     (wAddr+length)>(int)na_Ext_Flash_end) { 
109     return -7; 
110             } 
111             if (wAddr>=(int)na_Ext_SRAM && wAddr<(int)na_Ext_SRAM_end && 
112     (wAddr+length)>(int)na_Ext_SRAM_end) { 
113     return -8; 
114             } 
115             if (wAddr>=(int)na_on_chip_RAM && wAddr<(int)na_on_chip_RAM_end && 
116     (wAddr+length)>(int)na_on_chip_RAM_end) { 
117     return -9; 
118             } 
119         } 
120     } 
121 
122     // Check that correct transaction length and unit size is chosen, 
123     // hw transaction size, (length mod 2 == 0) 
124     // word transaction size, (length mod 4 == 0) 
125     if (checkError) { 
126         if (transSize==2 && (length & 1)!=0) { 
127             return -10; 
128         } 
128         if (transSize==4 && (length & 3)!=0) { 
130            return -11; 
131         } 
132     } 
133 
134     // Call device driver to set the transaction size  
135     notOk = SetTransferSize(dma, length); 
136     if (notOk) { 
137         return -12; 
138     } 
139 
140     // For streaming transfer, call the device driver to set the end of packet register 
141     notOk = SetEOP(uartEOPValue, length); 
142     if (notOk) { 
143         return -13; 
144     } 
145 
146     // Check that address is not incrementing for UART or PIO peripheral. 
147     if (checkError) { 
148         if (rAddrCon==0 && (rAddr==(int)&(na_PIO_1->np_piodata) || 
149             rAddr==(int)&(na_Uart_1->np_uartrxdata))) { 
150             return -14; 
151         } 
152         if (wAddrCon==0 && (wAddr==(int)&(na_PIO_1->np_piodata) || 
153             wAddr==(int)&(na_Uart_1->np_uarttxdata))) { 
154               return -15; 
155         } 
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156     } 
157     // Call device driver to set read/write address incrementing modes 
158     notOk = SetRWIncrementingMode(dma, rAddrCon, wAddrCon); 
159     if (notOk) { 
160            return -16; 
161     } 
162 
163      // Check that the data transaction size is appropriate for the  
164      // peripherals bus width involved n the transfer. 
165      if (checkError && transSize!=1 &&  
166          (rAddr==(int)&(na_PIO_1->np_piodata) || 
167            rAddr==(int)&(na_Uart_1->np_uartrxdata) || 
168          wAddr==(int)&(na_PIO_1->np_piodata) || 
169           wAddr==(int)&(na_Uart_1->np_uartrxdata))) { 
170             return -17; 
171      } 
172 
173       // Call device driver to set the transaction size 
174      notOk = SetTransactionSize(dma, transSize); 
175     if (notOk) { 
176         return -18; 
177     } 
178 
179     // Call device driver to set read/write DMA addresses 
180     notOk = SetRWAddresses(dma, rAddr, wAddr); 
181     if (notOk) { 
182         return -19; 
183     } 
184 
185     // Set up source or destination devices if needed 
186     if (rAddr==(int)&(na_Uart_1->np_uartrxdata) || 
187         wAddr==(int)&(na_Uart_1->np_uarttxdata)) { 
188             if (notOk) { 
189                 return -20; 
190             } 
191     } 
192     if (rAddr==(int)&(na_PIO_1->np_piodata) || 
193         wAddr==(int)&(na_PIO_1->np_piodata)) { 
194             notOk = SetupPIO(pioDir); 
195             if (notOk) { 
196                 return -21; 
197             } 
198     } 
199 
200 
201     // Call device driver to set the DMA transfer termination mode 
202     if (termMode!=0) { 
203         notOk = SetTerminationMode(dma, termMode); 
204         if (notOk) { 
205             return -22; 
206         } 
207     } 
208 
209     // If interrupt is enabled for the DMA, must register 
210     // an ISR. The ISR will call the 'TermDma() and CheckDMA()' snippets 
211     if (intEnable==1) { 
212         nr_installuserisr(na_DMA_1_irq, DMAISR, (int)dma);  
213            // Call device driver to set the DMA block or non-blocking (interrupt) execution mode 
214             SetTransferInterrupt(dma, intEnable); 
215     } 
216 
217     // Save the DMA transfer info. so they can be executed by execDMA snippets later. 
218     SaveDMAState(dma, dmaId); 
219      SaveExtDeviceSettings(dmaId, uartEOPValue, uartDivisor, pioDir,  
220                pioIntMask, pioEdgeCap); 
221 
222     return dmaId; 
223 } 
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C. Discussion 

C1. Variation possibilities 

The main source of variation in the InitDMA snippet comes from the snippet parameters. The different 

values supplied for these parameters every time the snippet is chosen into the test program results in 

various types of DMA transfers to be configured on the DMA. In particular, the outcome of variation 

is to configure DMA transfers, 

• between different source and destination devices, 

• of different data transfer amounts, 

• transferring byte, halfword, or word data units per transaction, 

• reading from and writing to addresses that increment across memory ranges, 

• that terminate depending on the amount of data transferred or when a specific byte character 

has been transferred (allowing for streaming mode transfers), 

• where transfer execution can be conducted in blocking or non-blocking (interruptible) modes, 

and 

• diverse types of erroneous DMA transfer settings can be tested. 

Additionally, different combinations of the InitDMA snippet can be chained together with other I/O 

device or similar DMA snippets to test the device sharing, resource allocation, and concurrent process 

executions capability of the SoC.  

 

C2. Attributes 

Size :  

ANSI-C code : 223 total lines of code (LOC), 148 effective LOC (excluding comments/line 

breaks) 

 

C3. Advantages and disadvantages 

The main benefit of applying the InitDMA snippet is the large range of DMA transfer configurations 

afforded by its parameters. Such large variation allows for many different forms of transfers to be set 

up and conducted on the DMA device. Whilst large variation is useful to provide wider coverage of 

DMA testing, the downside is that it is sometimes difficult to test all permutations of test conditions 
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possible. The trade-off is to apply variation for the snippet in conjunction with some user-biasing on 

the parameters to invoke critical corner-case scenarios and discover interesting conditions for DMA 

transferring. 

Using parameter biasing is also important to prevent the snippet from configuring DMA transfers that 

execute too many transactions. For example, overly long DMA transfers with blocking mode selected 

can result in bottlenecks during testing whereby the snippet takes up SoC resources and requires many 

simulation cycles to complete before other snippets can be invoked. Similarly, if DMA read and write 

addresses often selects non-sharing devices such as the UART or PIO, then many blocking loops may 

result waiting for these devices to be available again if they happen to be currently in use by other 

snippets. If so, the InitDMA snippet may have to wait for long periods. Such conditions do not add 

value to testing and are unnecessary.  

It is worthwhile to point out that the InitDMA snippet is highly dependant on the ExecDMA snippet. 

The InitDMA snippet is responsible for configuring different DMA transfers only. Without the 

ExecDMA snippet, the actual data transactions are not executed. We designed the DMA testing 

functions separately into individual snippets because the set up procedure of the DMA is not simple. 

There are many checks that are needed for the various set up conditions and procedures to adhere to 

for performing the configuration. Separating the InitDMA and ExecDMA snippets independently also 

provides more diverse execution of DMA transfers. The transfers can be conducted at any given stage 

after the InitDMA snippet in either blocking or interruptible modes, and can be intermixed with other 

configurations of the DMA being queued up.  

Finally, note that the launch of an InitDMA snippet is useless if the DMA device is not free to accept 

new configurations. To perform the InitDMA snippet, the DMA must be idle and have completed prior 

transferring. Therefore, it is important that the InitDMA snippet be strategically placed relative to other 

DMA snippets in the test program. The mechanisms to do this were described via algorithmic test 

generation in Chapters 4 and 6.  

 

C4.  Other considerations 

There are no other limitations on how the InitDMA snippet can be used. In fact, the structure of the 

snippet can be easily modified to cater for transferring of new devices if the SoC system is enhanced. 

It is easy to identify where to add in the appropriate checks and settings for these devices within the 

snippet. This makes the snippet extensible and reusable. 
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APPENDIX D. SALVEM Random Test Generation 

Appendix D focuses on automated test generation of software test programs for design verifications. 

The automated test generation uses randomisation to inject diversification into the types of tests 

created and the range of SoC application functions tested. The test generation method is employed to 

create test suites for verification of the Nios system-on-chip design, and to demonstrate manually 

directed coverage driven verification using our verification methodology. 

 

D.1 Introduction 

The development of the automated test generation method in this appendix was our first attempt at 

verifying the Nios system-on-chip (SoC) using the software application level verification methodology 

(SALVEM) devised in Chapter 3. Our test generator enables a diverse range of tests to be created in 

order to evaluate the effectiveness of SALVEM. Like other verification schemes, randomisation is the 

intuitive strategy employed for our test generator. Randomisation is often the initial technique that is 

applied for automating test creation because it is not difficult to implement, and is able to produce tests 

quickly.  

In addition, randomised test generation can create many variations of tests that are usually unexpected. 

Such test cases are especially useful because they exercise complex sequences of design functions and 

represent SoC scenarios that are unlikely to have been devised by engineers manually. The major 

drawback with employing randomisation is that it is often loosely defined and applied ad-hoc within 

the test generation process. Therefore, subsequent set of tests created can be mis-directed away from 

verifying certain important corner cases. Randomised test generation must be partially guided, as is the 

case in the SALVEM test generator in this appendix.  

In SALVEM, randomisation is highly applicable because the SALVEM software test creation process 

consists of several elements that can be varied effectively by randomisation. The opportunities for 

applying randomisation are available both during the test creation process and within the resultant test 

program itself. For example, randomisation can be applied to the types of snippets chosen into the test 

program or the parameters chosen for each snippet. Under certain randomisation conditions, test 

generation restrictions and user influences, our goal is to develop a stochastic test generator tool to 

automate SALVEM test creation; and provide many effective test cases for SoC verification.  
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The next section describes our automated test generation strategy, employing randomisation and other 

associated test creation elements. Section D.3 discusses issues with the random automation approach, 

and outlines benefits and shortcomings of our methods. This is followed by experiments and analysis 

concerning the practicality and effectiveness of the random test technique in Section D.4. Before 

concluding, Section D.5 describes a coverage driven verification case study using the test generation 

scheme of this appendix. 

 

D.2 Automated random test generation for SALVEM 

In this section, the SALVEM verification concepts from Chapter 3 are extended with automated test 

program generation. The resultant test generator tool will be developed and integrated within the 

SALVEM verification platform to create many different test programs for testing the Nios SoC. We 

begin with a description of the high level test generation procedure. 

 

D.2.1 Overall test generation process 

An overview of the random based test creating automation process is shown in Figure D.1.  

 

Test configuration 

The first stage of our test generation flow is to configure global settings for the overall test generation 

process, and the parameters that apply to every test program. For example, using randomisation and 

user guidance, the number of tests that will be created for the test suite is chosen. The sizes and types 

of external modules (and their internal set up) are selected in order to perform hardware configuration 

and prepare the SoC test environment for simulation. These randomised test creation decisions apply 

throughout the test generation and verification phase. For the test program, the randomised variables 

asserted for the creation of each test includes the number of snippets test building blocks (Section 3.4 

Chapter 3), the miscellaneous memory and input/output (I/O) data used by snippets, and other 

parameters that are applied for the creation of the test.  
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Figure D.1 Test generation flow 

 

Control flow 

Can snippet  
dependencies be resolved?

Randomise all inserted snippet 
parameters

Parameters 
legal? 

Write snippet to   
test program 

Any strict  
dependent snippets? 

Required  
number of snippets 

generated? 

Any non-strict  
dependent snippets? 

END

NO 

YES 

NO 

YES 

YES 

YES 

NO 

Insert dependent 
snippet

Configure 
global test generation 

settings randomly 

To hardware 
configuration 

NO 

Randomly choose a snippet

Required  
number of tests 

generated? 

NO 

Create a test template 
for snippet insertion 

YES 

START 

Snippets 
library 

  // test.c 
int main ( ) { 
    snippet1( ); 
    snippet2( ); 
    // …. etc 
} 

NO YES 

Data flow 

Test configuration 

Test program creation 

Test finalisation 



APPENDIX D.   364 

Test program creation 

Once global test creation parameters are randomised and chosen, the software test creation process to 

create a test program begins. A test program template is provided based on the global settings. The 

template shall be populated with test program specific elements such as the test building block snippets 

and their configurations. The test creation flow iterates, randomly selecting various snippet 

combinations to compose the sequences of snippets within the test program.  

During test generation, use of SoC resources is monitored. A simplistic model of the SoC was 

developed, and used by the test generator to mimic how the SoC would behave as if each snippet were 

executed on the actual SoC. Essentially, the test generator maintains a partial SoC state based on the 

history of snippets chosen. Each chosen snippet must be compatible with the current SoC state, 

satisfying various dependencies and conditions. For example, if the chosen snippet is dependant on 

another snippet, then the test generator generates that snippet before selecting another.  

If all dependencies can be resolved by inserting dependant snippets into the test, and other snippet 

conditions are satisfied, the chosen snippet can then be composed into the test. Otherwise another 

snippet is randomly chosen again. These snippet dependencies and constraint conditions were 

described in Section 3.4 Chapter 3.  

If the randomly chosen snippet is to be included in the test, parameters specific to that snippet are 

randomised according to various constraints. The parameters and constraints for each snippet were also 

listed in Section 3.4 Chapter 3 and Appendix C.3. Again, the SoC model maintained by the test 

generator is consulted to ensure parameter selections are legal.  

 

Test finalisation 

Once all configurations for the chosen snippet are established, the snippet function header is then 

written to the main function routine of the ANSI-C test program file (i.e. test.c). If the test program is 

still not filled with the required number of snippets randomly chosen previously, then the snippet 

selection cycle repeats again to add another snippet into the test. 

Before creation of the test program completes, the test generator checks if any remaining non-strict 

dependent snippets (Section 3.4, Chapter 3) are required, and inserts them into the test if needed. Non-

strict dependent snippets are snippets that do not need to be inserted immediately before or after a 

specific snippet, but must be inserted into the test at some point earlier or later to ensure the test is 
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executable. Finally, if another test program is to be generated for the test suite, the randomised test 

creation cycle is repeated again. 

 

Test creation considerations 

Whilst our goal is for all test generator choices to be fully randomised throughout the test program 

creation process, in fact, the test generator adopts a constrained-random-biased approach. In order to 

realise executable test programs, the types and range of selection choices that are available for various 

test generation variables must be restricted. For example, we must restrict the maximum number of 

snippets in a test so that the number of snippets randomly chosen into the test does not exceed the 

capacity of the SoC executable memory. Also, if a universal asynchronous receive transmit (UART) 

device snippet is selected to execute in blocking mode, the transfer parameters must be randomly 

chosen from a restricted range to ensure serial transfers do not run for overly long periods; taking over 

SoC resources and causing simulation to hang.  

Internally, the aim of test generation and snippet constraint and dependency rules are to ensure a legal 

executable test program that can be simulated by the SoC is created, under a randomisation 

environment. Additionally, the random decisions undertaken by the test generator may also be 

explicitly influenced by external users to target certain corner cases. We discuss this aspect in greater 

detail in Section D.5 later.  

Finally, note that the availability of a lightweight SoC model for dependency and constraint checking 

is also highly beneficial for validation of SoC operations conducted by snippets.  The SoC model is 

considered lightweight because it does not implement the full functionality of the entire SoC design. 

Instead, it only imitates and keeps track of the SoC operations of devices which the snippets control. 

The SoC model acts as a reference model for snippet operations simulated on the SoC design. 

Whenever a snippet is selected for the test, the expected outcomes of operations from that snippet can 

be predicted by the SoC model, and compared against real snippet run-time outputs during actual 

simulation. Given the range of test creation elements that can be randomised, checking the correct 

outcome of testing is essential.  
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Randomisation possibilities 

Before describing the verification system employing the test generator tool, we list the software test 

creation elements that can be varied by randomisation as follows: 

• Types of snippets chosen from the snippets library. 

• Snippet insertion position in the test program. 

• Snippet parameter values. 

• Size of each test (i.e. number of snippets in each test program). 

• Number of tests to make up the test suite. 

• Types of error checks and operations performed. 

• Memory and I/O data creation (i.e. type and size of data used by snippets). 

 

D.2.2 Implementation of automated random based verification system  

The SALVEM verification system for automated test generation consists of three main areas of work: 

(i) snippets library development, (ii) test generator development, and (iii) test simulation environment.  

 

Snippets library development 

Developing the test generator concurrently and independent of the snippets library reduced test 

development time and allowed ongoing addition of new snippets whenever possible. The snippets 

library was discussed previously in Section 3.5 Chapter 3.  

 

Test generation development 

This sub-section describes in greater detail the implementation of the test generator which implements 

the flow of the test generation process shown in Figure D.1. We also discuss the practical issues and 

solutions to realise the automated random approach. In particular, our approach in adopting an object-

orientated (OO) strategy to create all test generation elements including snippets composition and rules, 

and the partial state model of the SoC employed for test creation. The OO method enhances re-

usability of the test generator tool for application to other SoCs, the details of which we shall discuss 

in the remainder of this sub-section. 
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Our test generator implements randomisation mechanisms to automatically create many different 

snippets based software test programs. The randomisation mechanisms employed by the test generator 

is facilitated by an underlying random number generation engine. The test generator pseudo algorithm 

(based on a C++ object orientated approach) is summarised in Figure D.2. It implements a sub flow of 

the test generator process shown in Figure D.1, after the initial global test configuration stage. The 

main test generation functions are highlighted in bold. 

 

Figure D.2 Test generator pseudo code 

Our pseudo test generator code begins by randomly selecting a snippet from the snippet library. 

Snippet dependency rules are checked to ensure the selected snippet comply, otherwise a new snippet 

is selected. At least one complying snippet in the snippet library is always available for selection. Next, 

the snippet object is created.  Snippet parameter values are randomly chosen within the limitations 

enforced on their allowable range. These chosen values are then checked against parameter constraints. 

If any constraint is violated, parameters are re-selected. The snippet sequence in the main function of 

the test program is then updated with this new snippet. This test generation routine is called recursively 

until the desired snippet test length is attained. 

The case whereby snippets or snippet parameter values require re-selection raises the issue, what 

happens if there are no suitable snippet or parameter values available? In our test generation set up, 

we prevent this scenario from occurring as a pre-condition when specifying dependencies or constraint 

1 snippet_library s_lib = {InitDMA, ExecDMA,  … etc …}; 
2 
3 Gen_Snippets_Test (constraint cons, dependency deps, bias biases, snippet_history s_hist) { 
4 
5  // Add a snippet into the test 
6  snippet_type s_type = Select_Snippet(s_lib, biases); 
7  while (Illegal(s_type, deps, s_hist))  
8         s_type = Select_Snippet(s_lib, biases); 
9 
10  // Instantiate snippet object and parameterise 
11  snippet snip = s_type(); 
12  snip.Parameterise(biases); 
13  while (Illegal(snip, cons)) 
14   snip.Parameterise(biases); 
15  
16  num_snippet++; 
17  Add_to_Snippet_Sequence(snip); 
18  Add_to_Snippet_History(snip, s_hist); 
19  Update_SoC_State(snip); 
20  // Add another snippet into the test 
21  if (num_snippet < snippet_test_length) 
22   Gen_Snippets_Test(cons, deps, biases, s_hist); 
23 } 
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rules. This averts any deadlocks during test generation. At any stage during snippet composition, there 

will always be at least one snippet and parameter value appropriate for the test generator to select from. 

During test generation, the history of the snippet sequence composed thus far, and the state of the SoC 

is monitored by our SoC model. This enables the test generator to identify which devices are in use at 

any stage. Dependency rules can then be checked, and snippets are also chosen based on available SoC 

resources that will be released by prior snippets in the test during actual test simulation. For example, a 

DMA snippet cannot initiate streaming UART to memory transfers unless previous UART snippets 

complete and release the UART device. The expected outcomes and resultant device state predicted by 

the SoC model are recorded into each snippet object for comparison to actual simulation behaviours 

during verification runs.  

The SALVEM randomised test generator (and snippets library) is implemented using the Python 

scripting language and object-orientated (OO) techniques. The OO features employed reduces 

development time and effort, to facilitate fast development and prototyping of automated random 

testing. Under the OO approach, a class is defined for each snippet. Whenever a new snippet is 

selected into the test sequence, a snippet object is instantiated by the test generator based on the 

specifications from the snippets library. The test generator’s snippet object is self-contained, and 

executes internal methods to randomly select parameters and self-checks against constraint rules. The 

snippet object also creates the ANSI-C function interface code for the main test program to call.  

Snippet dependency and constraint rule specifications are also implemented as objects in the test 

generator. Similarly, the test generator implements the lightweight reference SoC model by defining 

OO classes for each SoC device. An object is instantiated to represent and maintain the state of each 

device. Collectively, these objects make up the overall SoC state that is monitored during test 

generation. As snippets are composed into the test program, each on-chip device object that will be 

manipulated by the snippet updates its internal set of resources. This ensures illegal conflicts amongst 

SoC resources caused by snippets are avoided during actual test simulation of SoC operations.  

An OO implementation of the test generator is also highly beneficial for future expansion of the 

snippets library or SoC (and when the test generator is applied to other SoCs). Whenever a new snippet 

is devised, or other devices are integrated into the SoC, a new class can simply be developed and its 

object instantiated into the test generator, independent of existing test generator classes.  Only the 

additional specifications of these snippets or devices, and their randomisation variables for test 

creation need to be implemented.  
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The randomisation engine employed by the test generator is based on the random number generator 

module of the implementation code. The various test creation variables available for random selections 

are all performed using random numbers to choose from their available range of options. With this 

approach, all randomise selections can be traced back to the seed value used by the random number 

generator module.  Using this seed value, the same random decisions and test creation process can be 

reproduced if needed to recreate the test (e.g., to perform debugging activities). The seed value chosen 

for each test generation process is taken from the operating system’s current time, thus ensuring that 

different randomise selections eventuate every time to produce diverse test programs. 

The next section focuses on the verification system and the environment for facilitating SALVEM 

verification and automated test generation.  

 

Test simulation environment 

The test generator is supported by various tools and scripts to automate the entire SALVEM 

verification process. These tools automate the overall SALVEM verification flow by integrating (i) the 

snippets based test program generation and compilation to executable binaries, (ii) test simulation, and 

(iii) verification results checking and coverage measure. Figure D.3 shows the complete SALVEM 

verification architecture and flow, employing the Nios SoC as the target SoC design under test for 

verification research in this thesis.  

The automating test creation components are captured within the large shaded region. In addition to 

the test generator and snippets library, the SAVLEM verification platform encapsulates the Nios 

software compilation tool-chain, the Verilog testbench, and miscellaneous Perl scripts to automatically 

generate batch runs of software tests. 

In Figure D.3, the test generator generates the main test program file (test.c) containing the chosen 

sequence of snippet function calls. The test generator also generates randomised data (Verilog .dat) 

files to populate various SoC memories and supply the stream of I/O data to the SoC. The test.c file is 

then compiled and linked by the Nios compile tool-chain to produce the executable binary. To control 

and monitor test execution, the Verilog testbench.v file interacts with specific testbench 

administrative snippet functions. These functions execute concurrently with the main software test 

execution in the background.  

The SALVEM verification system uses Synopsys VCS Verilog simulator to execute our software tests 

and simulate SoC behaviours. The Verilog SoC RTL design and testbench are compiled into a VCS 

simulation executable, independent from the test generation and build flow in the software domain.  
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Figure D.3 SALVEM verification architecture and flow 

To perform test simulation, the main software test.c binary file is loaded into the on-chip read-only 

memory (ROM). Immediately after SoC boot-up, the software application test executes from ROM 

calling the random sequences of snippet functions to initiate SoC device interactions.  
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During simulation, the snippet sequence is monitored and status messages are logged. Each snippet 

performs self-checking operations to determine the success or failure of SoC operations it invoked. 

When test simulation concludes, the results and SoC coverage achieved by the software test are 

collated. A new software test is then generated and run.  

Developing the snippets and the test generator required the most effort for the SALVEM system. The 

SALVEM implementation with the random test generator required the equivalent of 9 working months 

of a single engineer. However, once implemented, SALVEM is able to automatically generate many 

varieties of tests to verify the SoC; including unplanned or unknown corner cases. The effort to 

manually create directed test cases and achieve the same level of coverage would still exceed the 

SALVEM development effort. 

Currently, the implemented verification system is limited to single processor core SoCs. For other 

multiprocessor SoCs, more complex multitasking snippets will be required. The verification and 

coverage effectiveness of the SALVEM prototype is only limited by our set of snippets and the 

randomised test generator. We discuss this issue in Section D.5, elaborating on how we can overcome 

this shortcoming and to enhance verification further with other algorithmic test creation methods 

(Chapter 4). 

 

D.3 Randomisation considerations and test generation issues 

This section considers various issues associated with random test generation in SALVEM. We begin 

by discussing practical considerations that must be accounted for with randomisation, before 

summarising the benefits and shortcomings of such test generations. 

In randomisation, the range of possible test creation selection choices or values must be restricted to 

only acceptable ranges that yield executable test programs. Identifying these restrictions is not 

straightforward, requiring in-depth analysis of the design and consultation with designers. In some 

cases, these selection ranges cannot be determined before-hand, requiring preliminary test runs to 

narrow down the legally allowed values. 

For example, in order to determine the divisor register ranges of the UART, one cannot simply rely on 

the datasheet information. The divisor value that will be randomly chosen affects the UART’s baud 

rate and transfer speeds. The I/O transferring rate must consider the simulation speed and capabilities 

of the verification system, and must be configured to be compatible within both the UART and the 
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verification system’s operating range. Therefore, preliminary test simulations are needed to find proper 

divisor values to randomise from. Despite the effort needed to calibrate these randomisation ranges, it 

is an important phase in the implementation of automated random test generators, even for SALVEM. 

Besides identifying legal randomisation values, there is often a trade-off associated with the size of 

these randomisation values (i.e. the number of available selection choices), and the diversity of test 

programs created (and thus the extent of SoC functions tested). Whilst using the maximal range of 

selection choices produces greater variety of tests, larger selection ranges are harder to manage. The 

randomisation process is more complex having to accommodate many more possible values, and at the 

same time, ensure these larger combinations of random choices still provide legal and executable tests. 

On the other hand, using a smaller selection of values for randomisation facilitates faster and less 

complex test creation process, with less burden on the test generator. However, the variety of tests 

generated will be low, and previously available selection choices will be eliminated from test creation; 

possibly preventing crucial SoC functions or corner cases from being verified. In addition, the number 

of repeatedly tested SoC functions increases.  

The desired strategy with randomisation is that neither too large nor small selection ranges should be 

used. Furthermore, as described in Section D.5, the types and values of selection choices available 

should be managed from a user verification perspective. For example, steering random decisions 

towards important values such as memory boundaries when direct memory access (DMA) device 

snippets configure data transfer operations. 

Another criticism of using randomisation in SALVEM is that there is no assurance whether the 

random selections made will consistently produce effective test programs. Randomisation can be 

considered a greedy approach, whereby the effectiveness of testing improves only if the number of 

tests generated increases. But how many random tests are sufficient? For larger designs to verify, this 

is an ineffective strategy. In Chapter 4, we describe how to expand upon the randomisation approach 

with algorithmic methods to provide more effective and efficient test generations. 

The design of our lightweight SoC reference model for use during test generation poses other 

questions as well. Our SoC model is maintained by the test generation during the test creation process, 

therefore it should only impose minimal requirements so as not to slow down the test creation process. 

Given this, it is not always straightforward to identify what SoC design elements must be monitored 

whilst ensuring that sufficient SoC state information and predicted behavioural results from snippet 
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operations are provided. Otherwise, parts of the test creation process (i.e. constraint and dependency 

checks) and results checking during simulation cannot be carried out.  

For our test generator, we monitored the snippets creation history and critical SoC state registers only. 

This was sufficient for our current test creation needs. However, other SoC operations are difficult to 

keep track of, especially runtime characteristics such as interrupt occurrences, priorities or handling. 

Whilst an independent and full SoC reference model can be employed, our partial SoC model was 

adequate. Also, developing an SoC model was not the focus of this appendix or the research thesis. 

Finally, integrating the snippet test program constraint solver and dependency checker can also be 

problematic with a randomised test generator. The random test creation decisions are often in conflict 

with constraint and dependency rules, and performing post-selection constraint and dependency checks 

is inefficient. Also, illegal random selections only become apparent after the SoC model is consulted. 

If so, the random test creation decisions need to be undertaken again. Next, we discuss benefits and 

shortcomings of our method in relation to SALVEM. 

 

Advantages 

Using randomisation for test generation provides a number of benefits for SALVEM. First, the 

randomised test generator is relatively easy to implement and can generate many tests quickly. 

Applying the SALVEM random test generator for other SoCs or enhancing the verification system 

with new snippets is also not difficult. For example, the test generator can be easily configured to 

output the test program in other test program language formats other than ANSI-C if desired. The OO 

implementation of the test generator and graph based representation of the test case internally (Figure 

3.9 Chapter 3) makes it straightforward for the test generator to satisfy the syntax or semantics of the 

target SoC operating software language. Snippets are simply designated as nodes and vertices connect 

snippets together to form snippet sequences as graphs to represent the test program conceptually. 

Second, randomised tests can be applied to the SoC to cover a significant portion of the design, 

achieving up to 85% coverage easily [Ber03]. This provides a solid basis from which to conduct 

further verification and attain the remaining coverage using more advanced algorithmic test generation 

techniques. From a test case perspective, the numerous combinations and lengths of snippet sequences 

that can be created by randomisation is extremely valuable. In order to exercise corner cases and 

difficult to realise scenarios, the complex series of SoC behavioural states can only be induced if 

extensive and highly intermixed SoC operations are conducted, which is the goal of randomising 

snippet sequences.  
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Disadvantages 

The downside with our SALVEM test generator is that it doesn’t employ a true randomisation engine. 

It relies on the inbuilt random number module, and we use different randomisation seed values based 

on the current operating system time stamp when the test generator is invoked. Such a pseudo random 

set up requires the test generator to create tests constantly throughout as many different periods as 

possible. This is so that diverse seed values are applied to enforce varied pseudo random selections for 

our tests. The randomisation method of our test generator is limited by the range of seed values that are 

employed. Despite this, the randomisation scheme and range of tests created are still sufficient for our 

prototyping purposes in SALVEM verification research in this appendix.  

Another drawback concerns the extent of randomisation that is permissible for SALVEM test creation. 

In our approach, the capability and usefulness of randomisation is largely dependent on the possible 

test creation elements that can be put under randomisation. The main test creation variables available 

were described in Section D.2.1. Whilst these test creation variables are effective for producing diverse 

tests, other avenues for enhancing random test generation further would be to provide more test 

creation options to randomise. 

 

D.4 Experiments, results and discussions 

D.4.1 Experimental goals and configuration 

The randomised automated test generator described in Section D.2 was employed to generate 

SALVEM test suites to verify the Nios SoC (Appendix A). The experimental goals in this section are 

to demonstrate the feasibility and effectiveness of SALVEM with automated test generation; for 

verifying a typical industrial SoC design. The experimental results will allow for identification of 

deficiencies in our current verification set up, and enable further enhancements of the SALVEM 

methodology as described in Chapters 4 to 7 of this thesis.  

Our experiments focus on the design coverage attained by the randomly generated SALVEM tests. We 

employ standardised line, toggle and conditional coverage measures that are used for simulation based 

design verification. These coverage methods are conducive for designs described by hardware 

behavioural code, which captures the target Nios SoC. But verification-wise, in Chapter 7, we devised 

functional coverage methods more suited for SALVEM.  
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Regardless, line, toggle and conditional coverage are still considered highly useful for design 

verifications. In many industrial verification projects, attaining high percentages for these coverage 

measures is usually a prerequisite for conducting further testing and analysis. In addition to coverage, 

we also recorded other experimental measures such as test execution times to assess the performance 

of SALVEM.  

 

D.4.2 Experimental procedure 

The SALVEM tests were generated and executed on the Nios SoC by the Synopsys VCS simulator 

using a Linux Redhat 7 platform, powered by an Intel Pentium 4 3GHz CPU and 2GB RAM. The 

verification system from Figure D.1 and Figure D.3 was implemented but only a subset of snippets 

from the snippets library in Section 3.5 Chapter 3 were used as the test building blocks for our 

SALVEM test programs. Specifically, the snippets employed were InitDMA, ExecDMA, TermDMA, 

CheckDMA, SetupPIO, WritePIO, ResetUart, RxUart, TxUart, and RxTxUart.  

We used this basic set of snippets only because we wanted to focus on the SoC devices that are most 

likely to participate in system wide application functions of the SoC first. Specifically, these snippets 

are sufficient to explore the practicality of employing SALVEM with automated test generation for 

large-scale mass production of verification tests suites; before refining the snippets library and test 

generator later to fully stress test the Nios SoC (in Chapters 4 and 6). 

 

D.4.3 Experimental results and discussion 

Coverage results 

The test generator was used to create a test suite of randomised SALVEM test programs for verifying 

the Nios SoC. In total, 100 tests and 21,969 snippets were simulated. Line, toggle and conditional 

coverage data were collected and the results are shown in Table D.1. Even with a subset of snippets, 

the SALVEM software tests achieved reasonable coverage results implying a sufficient portion of SoC 

behaviours was verified.  

The number of snippets executed is also broken down for each SoC device. Snippets for the CPU, 

memories and DMA were the highest because many snippets use at least one of these devices when 

executing an application function. Table D.1 also shows the individual coverage attained for each 
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device. The DMA attained the best overall coverage as their snippets were most comprehensive. The 

full functionality of the DMA were analysed, and snippets were developed to cover their range of 

possible applications. The additional complexities in the CPU, UART, memories and Nios Avalon data 

buses imply more extensive snippets for these devices could improve coverage of the SoC.  

Table D.1 Coverage and snippets usage results  

 SoC CPU Memories DMA UART PIO 

Line coverage (%) 84.6 97.9 67.4 100 94.0 89.6 

Toggle coverage (%) 76.1 83.3 57.4 74.8 71.0 59.7 

Conditional coverage (%) 66.5 66.8 26.4 94.0 72.6 60.0 

Number of snippets 21,969 19,477 12,214 12,051 9,317 5,176 
 

Despite composing many snippets that may exercise devices such as the CPU or memories, many of 

these snippets were not specifically targeted for these devices. For example, the DMA or UART 

snippets are counted toward exercising the CPU, buses, and memories because these devices are 

needed for DMA or UART operations. However, they contribute primarily to DMA or UART 

verification only. To verify the CPU, buses, or memories fully, detailed analysis of these devices and 

specific snippets to exercise their functions would be provided by CPU or memory snippets. 

Nevertheless, the results here indicate an important characteristic of SALVEM testing. That is, the 

quality of the snippet in terms of the types and range of SoC design functions exercised outweighs the 

quantity of the snippets employed in our test programs. 

Figure D.4 plots the SoC coverage against the number of snippets (and implicitly, tests). We plot 

against number of snippets instead of the number of tests because under the randomisation method, the 

number of snippets in each test is random each time. The size of each test is only constrained by the 

maximum number of snippets that can be held by executable SoC memory. Overall, the average 

number of snippets in a test was approximately 220, which will initiate various intricate SoC processes 

but do not require overly long simulation times. The number of snippets is plotted on a logarithmic 

scale to show coverage improvement as more snippets are executed and increased rapidly. Note that 

reasonable SoC coverage is attained immediately using a small number of snippets.  
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Figure D.4 Coverage progress versus number of snippets 

The immediate coverage attained by a single snippet test is due to SoC initialisation. For every 

software snippet test, the SoC boot-up process performs a sequence of device reset, configuration and 

self-checking operations. These initialisation tasks perform various SoC operations before snippet test 

applications are run. Initialisation code provides an existing level of default coverage. We executed a 

software test without any snippets, and confirmed with Figure D.4 the default coverage to be 80.7%, 

60.9% and 54.9% for line, toggle and conditional coverage respectively. This implies our snippets test 

suite contributed an additional 3.9% line, 15.2% toggle and 11.6% conditional SoC coverage from the 

default initial coverage attainment. 

Figure D.4 shows SoC coverage increases marginally after executing an initial set of snippets. Line 

coverage begins to level out after 30 snippets whilst toggle and conditional coverage do not increase 

significantly after 200 snippets. The satisfaction criteria for line coverage require each design code 

statement to be exercised at least once only. Hence, maximum achievable line coverage can be 

obtained using a simple sequence of snippets. Toggle and conditional coverage involves simulating 

many execution paths and states. Hence, a larger set of snippets and a wider range of the types of 

snippets in the snippets library are required. 

Analysing further, the snippets employed are unable to exercise the complete range of Nios SoC 

functions. The aim of the automated test generator and this experiment was to establish a working 

system for prototyping and feasibility analysis as early as possible. At that stage during our research, 

given restricted engineering resources, a decision was made to employ snippets for the core set of SoC 
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functionalities and specific devices only.  The initial snippet library would not model overly 

complicated or uncommon application test scenarios.  

In particular, our snippets only handle a subset of applications for the UART and memory devices. The 

snippet library accounts for approximately 75% and 60% of the complete UART and memory 

functionalities only. The current snippet library does not exhaustively test all possible types of serial 

transfers (e.g., full duplex transfers) or Avalon bus transactions between memory devices. Furthermore, 

this basic snippet library only targets a small number of SoC exceptions. For example, the current 

UART snippets do not implement various frame error, parity error checking or break character 

transmissions.  

Verifying all error conditions on the SoC is necessary for full coverage. However, developing snippets 

to test error conditions requires much effort. From our personal experiences, during verification of 

industrial SoCs such as Freescale networking SoCs, many error conditions were extremely 

complicated to verify. It was difficult to develop application test code to invoke the SoC into an 

exception state and recover. Similarly, the Nios SoC consists of many error conditions that must be 

tested. Designing snippets to initiate erroneous states and recover correctly so test program execution 

can continue is essential. However, the Nios SoC does not provide explicit or robust error recovery 

mechanisms. Verifying all SoC error scenarios would require extensive analysis of the SoC and 

complex snippets. Snippet development for many SoC exceptions was postponed until Chapter 4 in 

our research thesis. Complete error testing is beyond the scope of the SALVEM snippet library in this 

appendix.  

Whilst our experiments only employed a subset of the eventual full snippets library, the work carried 

out and subsequent results provided valuable insight into the usage and characteristics of snippets and 

large scale SALVEM tests execution. This formed the basis for further development of other snippets 

to enhance the snippets library, and to conduct more effective SALVEM verification on the Nios SoC 

in Chapter 4. In Chapters 4 and 6, we conduct randomised SALVEM testing again, but with the full set 

of snippets from the snippets library, showing improved results compared to our experiments here.  

 

Performance results 

On average, the CPU time to execute a typical software test of 220 randomised snippets required 856 

CPU seconds. When collecting line and toggle coverage, execution time increased to 1,550 and 1,571 

seconds respectively. Conditional coverage however, required 10,185 seconds. These test execution 
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speeds are comparable to previous Freescale SoC verification projects in industry. Without coverage 

measurement, a typical test suite of many test programs and sufficient snippets length can be run 

efficiently on the RTL design.  

 

D.4.4 Uncovering design errors 

During randomised testing of the Nios SoC, a number of our randomised tests failed. Upon closer 

analysis, we discovered a design error in the SoC. From test debugging, we were able to recreate the 

test failure condition from each of the tests. In addition to the SoC design, we examined the test 

program itself, the simulator, and the SALVEM verification system to ensure the failure wasn’t due to 

other factors; and that the error was solely from the design.  

Essentially, the design error occurs in the UART module, and is an incorrect configuration register 

declaration and incorrect register assignment of its control values. The erroneous code and the 

correctly intended design code are shown in Figure D.5. 

 Verilog design file: UART _1.v (incorrect original design code) 

 
 Verilog design file: UART _1.v (corrected design code) 

 

Figure D.5 Design error in the Nios SoC 

This error is likely due to the designer incorrectly interpreting the register’s width specification or 

miscommunication of updated specifications between designers. Hence, resulting in the register size 

being mistakenly truncated by 3 bits. There are 13 control bits in the UART control registers that 

manage serial transferring in the UART device. The subsequent effect of the register width truncation 

is that certain error control bits and the end-of-packet transfer termination triggers could not be 

configured for serial transfers. Whilst the mechanisms to handle these error and end-of-packet 

In module Uart_1_regs : 
 
800 reg     [12: 0] control_reg;  // UART control register declaration 
… 
…  and later in the design code  when the control register is used  … 
… 
873 else if (control_wr_strobe) 
874     control_reg <= writedata[12 : 0]; 

In module Uart_1_regs : 
 
800 reg     [9: 0] control_reg;  // UART control register declaration 
… 
…  and later in the design code  when the control register is used  … 
… 
873 else if (control_wr_strobe) 
874     control_reg <= writedata[9 : 0]; 
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functionalities were still designed into the UART module, this design bug prevented the UART from 

using these functionalities as they were not configured properly for usage. 

This error was detected by our UART snippets that were to perform serial transfers terminated by a 

specific end-of-packet byte character. Because the end-of-packet termination could not be configured 

as expected by the snippet, the transfer could not terminate and a greater number of data than expected 

were transferred. Hence, test failure was triggered when the number of data bytes processed by the 

UART was not correct; and also, the last byte transferred did not match the end-of-packet character as 

required.  

We identified this design bug and informed Altera Inc. and they acknowledged this was an actual error 

which would be rectified in their next release of the Nios SoC. The error support request logged by us 

and subsequent correspondence are shown in Figure D.6. Figure D.6 also describes other issues with 

the Nios SOC uncovered by our SALVEM verifications. The detection of this design bug reinforces 

the practicality and usefulness of our SALVEM method by employing tests that exercise a range of 

SoC functions commonly requested by typical applications.  

Furthermore, another two design bugs involving interrupt priority detection and handling were also 

uncovered by our SALVEM test programs. When a series of snippets that invoke basic interrupt based 

operations are composed into a test, it was found that the order of interrupt handling when these 

operations concluded were not processed correctly. In some cases, the interrupts were not even 

handled at all, and the simulation would suspend. Common examples include five or more sequential 

DMA, UART, or PIO snippets that employ interrupts.  

Usually, the release of an SoC implies the design would have undergone extensive testing beforehand. 

Despite the Nios SoC being a certified design released by Altera Inc, the goal of any verification is to 

uncover bugs. Therefore, while we did not expect to detect any design bugs, the fact that our 

experiments was able to uncover design bugs using simple randomisation to automate test generation 

shows SALVEM verification as highly promising, and can be deployed for testing other real-life SoC 

designs. In verification and test, it is widely accepted that any test method which is unable to detect 

bugs does not imply the absence of bugs in the design, it is simply that such bugs have not been 

uncovered. Hence, as a verification methodology, SALVEM’s goal to detect SoC design errors is 

proven. 
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Figure D.6 Nios SoC bug report correspondence with Altera Inc. 

 

D.4.5 Summary 

Our coverage results demonstrate SAVLEM is feasible and effective for system verification of SoCs, 

including uncovering actual design bugs. To improve coverage results further and enhance randomised 

SALVEM test generation, user directed biasing techniques could be used to focus on specific SoC 

devices and corner cases. Whilst an obvious and expected enhancement to our SALVEM system 

involves identification of other SoC applications and development of new snippets, we feel the current 

subset of snippets can also be further utilised by focusing on these corner cases. The use of user 

directed feedback and biasing is described in the next section.  
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D.5 Coverage directed test generation manually – a case study 

This section describes a coverage directed SALVEM verification process that is conducted manually. 

Our goal is to evaluate the possibility and effectiveness of adopting a coverage driven verification (by 

feedback) flow into SALVEM. The manual coverage feedback tasks are carried out in conjunction 

with the test generator from Section D.2.  Using a coverage directed method, we conduct a case study 

aiming to enhance Nios SoC verification coverage. The case study forms the basis from which 

automated coverage driven verification for SALVEM is developed in Chapter 4.  

Another goal of the case study is to improve upon the randomised verification conducted in Section 

D.4. We demonstrate that further coverage improvements are possible with some fine-tuning during 

verification, despite using a subset of the snippets library. 

Figure D.7 shows the flow adopted for our coverage directed process. During test generation and 

execution, coverage and other test execution statistics are collected to characterise the types of test 

programs generated; and identify what SoC devices and functionalities were insufficiently exercised. 

Using this information, we direct the test generator to create tests for previously untested functions and 

improve coverage. 

 

Figure D.7 Coverage directed verification flow 

The primary mechanism by which we employ coverage directed verification is manual biasing. 

Biasing is a form of user control in addition to existing test generator input such as selecting the types 

of test creation variables to randomise or restricting the range of randomisation. With biasing, a test 
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generator can be influenced to perform certain forms of test configuration or select particular test 

creation choices with greater likelihood. Even though randomisation is still employed, the random 

decisions will lean towards these specified bias settings. Biasing enables a user to exert some control 

over the randomisation process during test generation. It provides the balance between manually 

devising all test creation components to generate a test, and using randomisation to fully automate the 

test generation process. 

In our case, the SALVEM test generator allows external user influences to direct verification toward 

certain SoC devices and important test scenarios. In particular, test generator biases enhance the 

generation likelihood of certain snippet sequences and parameter values to be composed into our 

randomised test programs. Biasing generates new tests to target functional corner cases 

SALVEM implements two kinds of biasing, weight and range biases. A weight bias assigns relative 

probabilities to a particular snippet or parameter choice. The choice with the higher weight value is 

more likely to be selected. For example, weights can be assigned to particular snippets to influence the 

snippets chosen in the test sequence. Similarly, weights can be used for manipulating the likelihood of 

byte, halfword, or word transaction sizes in DMA transfers. Weight biases are useful for constrained 

discrete choices.  

Other test generator choices such as UART end-of-packet characters or DMA transfer lengths span a 

larger range to select from; and each value cannot be specified with a weight. Instead, a range bias is 

used to specify a sub-range of values. The range bias is specified using minimum and maximum 

selection values that confine this sub-range.  For example, a range bias can specify DMA transfer 

lengths towards the maximal memory block or segment sizes. The test generator will then select values 

from these bias sub-ranges with greater probability than other values. Such biasing mechanisms enable 

testing of particular application scenarios to focus on specific SoC devices and operations. Armed with 

these test generation biasing controls, in the next section, we demonstrate SALVEM when it is adopted 

into a coverage feedback verification flow. 

 

D.5.1 Experiments for manual coverage directed verification 

Experimental goals and configuration 

The experiments conducted in this section are to prove coverage driven testing in SALVEM, and 

improve upon the verification from Section D.4. Based upon the experimental setup and snippets from 
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Section D.4, we shall exhaust the usage of these snippets to demonstrate that SALVEM verification 

can be improved using coverage feedback; and also, show the importance and need for further snippets 

to aid SALVEM verification. 

For experiments in this section, multiple verification runs are conducted using coverage and test 

information from previous verification to direct new generation of tests. The verification statistics and 

coverage information that are recorded are manually examined to analyse for deficiencies in our test 

programs. Based on this analysis, once the types of test cases desired are identified, the test generator 

is configured to realise these test cases. 

Compared to Section D.4, the test generation and verification process here requires additional pre-

configuration. Specifically, relative weighting values are specified for snippets and their parameter 

values to control their likelihood of usage. Other biasing can also be applied, for example, error 

checking set up, number of snippets, snippet sequence combinations, etc. Currently, these external 

influences are all statically defined and apply throughout each test generation process. Note that not all 

test creation choices need to be externally influenced. If no biasing is specified for any test generation 

parameter, then the selection process for those parameters reverts back to full randomisation as before.  

Despite conducting multiple test runs, in order to attain fair improvement results over the verification 

in Section D.4, we configure our verification to execute less tests and snippets overall. Otherwise, it 

can be argued that our improvements here are due to executing more tests and functionalities. 

Achieving enhanced verification results with fewer tests also shows efficiency in our approach. 

Therefore, we configure our test generator to create test suites of 25 tests and software test programs 

with approximately 125 snippets each. 

Another reason for this configuration is because our experiences from Section D.4 indicated that the 

number of snippets per tests caused simulation with conditional coverage to be quite slow. Given that 

we will be conducting multiple test generation and verification runs based on prior testing, long test 

executions are undesirable. We require faster test generate, simulate, and coverage test analysis turn-

around times, so test execution does not cause bottlenecks. Hence, the number of tests and snippets 

composed into tests are reduced. 
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Initial test generation results and analysis 

We applied SALVEM verification on the same platform as Section D.4. On average, a typical test 

generation and execution required 0.3 and 642 CPU seconds respectively. When collecting coverage 

information however, execution times increased to 1221, 1321 and 7605 seconds for line, toggle and 

conditional coverage. This is an improvement from Section D.4; even with coverage measurement, a 

comprehensive test suite can be created and run within acceptable time frames. 

To initiate the SALVEM coverage feedback verification flow, the randomised test generator was used 

to generate and execute an initial test suite on the Nios SoC. This is followed by an analysis of the 

coverage attained from this initial verification. Table D.2 shows the initial and analysed coverage 

statistics. The analysed coverage is considered the true coverage result, and is used as the basis for 

evaluating against enhanced coverage arising from sequent coverage driven verification. It is obtained 

by examining coverage data against the SoC design for dead code and other un-testable error 

conditions.  

For example, unused timer peripherals and several redundant Nios CPU arithmetic units cannot be 

exercised in our current SoC hardware verification set up, and are considered dead code. The Nios SoC 

was intended for many general applications and is applicable for various usages. Hence, many re-

configurable features exist in the SoC, and not all design blocks or functions can be used in the system. 

Furthermore, some error conditions cannot be tested because the Nios SoC cannot recover from certain 

illegal operations. For example, the SoC enters a deadlock state when executing DMA transfers 

between UARTs using data unit sizes larger than the UART ports – although this may be classified as 

a design bug, and is under investigation by Altera Inc. as part of our design bug report from Section 

D.4.4. 

Table D.2 Initial and analysed coverage results for non-biased test suite 

Initial coverage SoC CPU Memories DMA UART PIO 

Line coverage (%) 84.6 97.9 67.4 100 94.0 89.6 

Toggle coverage (%) 76.1 83.3 57.4 74.8 71.0 59.7 

Conditional coverage (%) 66.5 66.8 26.4 94.0 72.6 60.0 

Analysed coverage  SoC CPU Memories DMA UART PIO 

Line coverage (%) 91.0 98.0 68.9 100 98.2 89.6 

Toggle coverage (%) 78.0 85.0 58.1 77.1 74.1 63.6 

Conditional coverage (%) 66.5 66.8 26.4 94.0 72.6 60.0 
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Testing and coverage analysis for feedback verification 

After accounting for dead code and error conditions, testing and coverage of the Nios SoC can then be 

conducted using the feedback verification prescribed in Figure D.7. Figure D.8 and Figure D.9 show a 

subset of the test generation statistics collated from the test suite of Table D.2. The histogram in Figure 

D.8 identifies which particular snippets were deficient in the test programs. For example, compared to 

other snippets, DMA and WritePIO snippets were not generated and executed as often. The histogram 

shows more snippets initialised the parallel input/output (PIO) device instead of using it. Indeed, the 

coverage results for the PIO support this. Additional analysis of the PIO device and what operations 

were logged during testing shows PIO port accesses and I/O operations were lacking. Therefore, 

additional WritePIO snippets would improve the current PIO coverage of the unbiased test suite. 

Despite low DMA snippets and inadequate parameterised test configurations (Figure D.9), the 

unbiased test suite achieved full line coverage for the DMA device (Table D.2). This result is 

misleading because line coverage satisfaction criteria require statements in the design code be 

exercised once only. The structure of the DMA hardware design code requires only a few transfer 

scenarios to exercise each line of the DMA device. Lower DMA toggle and conditional coverage 

confirms other transfers scenarios were untested and the DMA was insufficiently tested. Similarly, 

higher PIO and UART line coverage may not imply these devices were sufficiently verified. In general, 

line coverage is always greater than toggle or conditional coverage. However, line coverage alone is 

not sufficient and other metrics such as toggle and conditional coverage must be considered as well.  

Figure D.9 shows the DMA snippet parameter selections. Examining this histogram, the UART, PIO 

and ROM devices were chosen insufficiently as DMA source and destination transfer devices. 

Subsequently, this resulted in unsatisfactory coverage for these devices (Table D.2). The ROM was 

selected once, partly because the ROM can only be chosen by the DMA as a read-only source device. 

Parameter selections for DMA execution modes also favours non-interrupt (blocking) mode heavily, 

suggesting insufficient simultaneous SoC operations were executed. 

Similarly, for the UART, the uncovered serial transfer functionalities are predominately due to error 

conditions that were not exercised by existing UART snippets. New or improvements in UART 

snippets, rather than feedback verification would be more valuable for verification purposes. In fact, 

our revised results as shown later in Table D.4 show no coverage improvement at all from the 

feedback processes. 
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Figure D.8 Snippets usage 
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Figure D.9 DMA snippets transfer device and execution mode selections 

Based on our analysis, a revised test suite is created by the test generator according to biases in Table 

D.3. For the DMA parameters, UART, PIO and ROM devices are selected more often as transfer 
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devices; and we increase the number of DMA interrupt executions. DMA and WritePIO snippets are 

also weighted with greater selection likelihood. DMA snippets are assigned a greater weight because 

the DMA exercises other source and destination transfer devices concurrently.  

Table D.3 Recommended biases 

Snippets Bias  DMA parameters Bias 

InitDMA 3 ROM 2 

ExecDMA 3 RAM 1 

TermDMA 3 SRAM 1 

CheckDMA 3 Flash 1 

SetupPIO 1 PIO 3 

WritePIO 2 

 Transfer devices 

UART 3 

ResetUart 1 Blocking 1 

TxUart 1 
 Execution modes 

Interrupt 2 

RxUart 1 

RxTxUart 1 
 (Note : A weight bias greater than 1 indicates    
  greater selection likelihood.) 

 

Table D.4 Coverage results for non-biased initial test suite and final biased test suite 

Initial coverage SoC CPU Memories DMA UART PIO 

Line coverage (%) 91.0 98.0 68.9 100 98.2 89.6 

Toggle coverage (%) 78.0 85.0 58.1 77.1 74.1 63.6 

Conditional coverage (%) 66.5 66.8 26.4 94.0 72.6 60.0 

Final coverage SoC CPU Memories DMA UART PIO 

Line coverage (%) 91.4 98.0 69.0 100 98.2 98.3 

Toggle coverage (%) 80.8 86.4 63.7 82.4 74.4 83.1 

Conditional coverage (%) 69.4 69.7 29.1 95.0 72.6 83.3 

Coverage gain SoC CPU Memories DMA UART PIO 

Line coverage (%) 0.4 0 0.1 0 0 8.7 

Toggle coverage (%) 2.8 1.6 5.6 5.3 0.3 19.5 

Conditional coverage (%) 2.9 2.9 2.7 1.0 0 23.3 
 

The effect of these bias recommendations is an increase in coverage for most of the on-chip devices 

and overall SoC. Based on this new verification test suite, we conducted further test and coverage 

analysis to feedback new biasing settings to create further new tests. We performed this coverage 

directed feedback verification cycle up to five times to improve coverage results until we were certain 

that additional feedback verification would not enhance verification any further. The final coverage 

results attained are shown in Table D.4. The PIO coverage gain was best because we biased the PIO 
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snippet to execute twice as many parallel I/O access operations. In total, we achieved an increase of 

0.4%, 2.8%, and 2.9% for line, toggle and conditional coverage respectively.  

 

D.5.2 Summary 

The experimental results and our case study demonstrate SALVEM to be feasible as a coverage 

feedback verification technique. The initial test feedback iterations provided valuable coverage and 

verification enhancements. Note that even a seemingly small addition to coverage is significant, and 

one must put this coverage gain into appropriate context. In design verification, when coverage levels 

exceed 80% to 85%, any improvement is considered extremely beneficial. The remaining 20% of 

coverage test events are usually hidden deep within the logic of the chip design and cannot be easily 

exercised, especially in the case of toggle and conditional coverage. In design verification test 

executions and coverage measuring, it is often a case of diminishing returns whereby the application of 

more tests results in lower rate of coverage gain as overall coverage levels increase. Therefore, the 

coverage gain attained in this section is considered highly beneficial. 

For these experiments, we chose to focus on the DMA and PIO devices. However, similar analysis and 

biasing feedback can be applied to the CPU, UART, and memory devices when new or enhanced 

snippets are included in the verification set up. Given a set of further enhanced snippets, additional 

coverage feedback iterations will improve verification toward higher coverage. In Chapters 4 and 6, 

we continued to pursue coverage driven verification in SALVEM, but from an automated perspective 

– using an algorithmic test generator and the full snippets library. 

 

D.6 Conclusions 

This appendix described the development of a randomised test generator to create many SALVEM test 

programs automatically. The randomisation strategy facilitates many different permutations of long 

snippets sequences in tests, so as to invoke the SoC into complex and difficult to reach operating states. 

The favourable coverage results and design bugs uncovered in the Nios SoC prompted further 

investigations; to conduct a manual coverage directed verification case study with SALVEM. Whilst 

the subsequent results demonstrated the practicality and improvements in SALVEM verification, it is 

clear that the method was limited by a lack of automation. In addition, a more suitable form of 

coverage measuring that is catered for SALVEM would be beneficial for coverage information 

feedback and directed test creation purposes. In Chapter 7, we described a coverage solution satisfying 

the needs of SALVEM. 
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APPENDIX E. Single Objective Genetic Evolutionary 

Test Generation 

This appendix contains supplemental material for Chapter 4, supporting the single objective SALVEM 

test generation research using genetic evolutionary algorithms (GEA). 

 

E.1 Genetic evolutionary pseudo code 

The five main GEA phases: representation, variation, fitness evaluation, population selection, and 

termination, which are critical to the GEA process, were described in Chapter 4 previously. They form 

the execution flow of the GEA pseudo code in Figure E.1, which is summarised as follows. Initially, 

the objective function must be defined. The objective function states the problem to be tackled, and 

evaluates the quality of each proposed individual solution by assigning a fitness value to each 

individual. Specifically, for test generation and SALVEM verification, our objective function is to 

assess how well the test individual exercises and verifies the SoC design (quantified by test coverage). 

Following this, the evolution process begins with the creation of an initial population of solutions (line 

12), usually attained via some form of stochastic method. Fitness is evaluated for each initial 

individual in the population.  

Next, the evolutionary cycle begins (lines 15 to 25). New individuals are created with variation using 

mutation or recombination of existing parents from Pµ(z) to form child solutions (line 17). The types of 

mutation and how many individuals are mutated depend on the particular GEA method. Similarly, 

which parents are chosen, how many children are created, and how parent genes are used to create new 

children depends on the specific GEA method chosen. The entire population of λ new individuals is 

then evaluated to assess their fitness (line 19).  

Following this, the next generation of best individuals is selected to establish the population for the 

next evolutionary cycle (line 21). The selection technique – how many individuals are selected and 

which individuals from parents or children (or both) to select from – is again unique to the GEA 

approach taken.  

The evolution process is repeated by varying individuals, evaluating fitness, and selecting new 

individual solutions for the next population until the termination condition is met (line 15). The 

termination condition can be specified in a number of ways. The most common stop condition is when 
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the target fitness value has been attained by any of the best individuals the population. Alternatively, 

the process may terminate if there is no improvement in fitness for a pre-selected number of 

consecutive evolutions. Ideally, at the end of the evolution process, the population provided will 

contain the best set of solutions for the objective problem. 

 

Figure E.1 Generalised GEA pseudo code 

 

E.2 µGP integration in SALVEM for genetic evolutionary test 
generation – a feasibility study 

Introduction 

Given our conceptual strategy for deploying GEA within SALVEM test generation, a feasibility study 

was first conducted to establish the usefulness and potential of such GEA test creation for SALVEM; 

before committing fully down this research path. For the genetic evolutionary feasibility study, our 

aims were to prototype GEA methods into SALVEM test generation and assess the viability of 

adopting such a technique.  

1   // Let Pµ(z)  represent a population of µ parent individuals at  
2   //      evolution time index z, 
3   //   Q   represent a special set of individuals that may be considered for selection, 
4   //      Q = Pµ(z) or ∅, depending on the selection strategy employed. 
5   //   Pλ(z)  represent the set of λ newly created children offspring  
6   //      individuals,  
7   //   Pµ(z+1)  represent the next generation of successful  
8   //       individuals that survived. 
9 
10  // Begin GEA Process 
11  z = 0 
12  Initialise [Pµ(z)]  // Randomly search for initial solutions 
13  Fitness_Evaluate [Pµ(z)]  // Determine fitness of initial solutions 
14 
15  while [Terminate is false] { 
16 
17    Pλ(z) = Variation [Pµ(z)]  // Create new solutions 
18 
19    Fitness_Evaluate [Pλ(z)] 
20 
21    Pµ(z+1) = Select [Pλ(z) ∪ Q]  // Retain best solutions 
22 
23    z = z + 1; 
24 
25  } 
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For this purpose, rather than design and develop an inbuilt GEA test generation engine for SALVEM 

immediately, we reused the µGP [CCS03] tool and modified certain components of the SALVEM 

platform to facilitate basic ad-hoc GEA test creation. When adequate viability of SALVEM GEA had 

been demonstrated, a fully dedicated GEA test generator was then devised to investigate and analyse 

different applications of GEA techniques for SALVEM, and fully exploit the SoC coverage that can be 

achieved. 

µGP employs mixed genetic algorithm and evolutionary strategy techniques to test microprocessor 

designs exclusively. The verification operates at the assembler instructions machine code level. The 

sequences of GEA influenced test instructions from µGP are effective at stressing a processor core, 

and verifying various microprocessor arithmetic or pipelining units. However, these instructions at 

present cannot initiate system wide transactions to test SoCs under SALVEM. For example, to test 

basic system level operations, the SoC and other on-chip devices must be configured with correct 

sequence of configuration registers accesses and values – a GEA stream of assembler instructions from 

µGP itself is unable to facilitate this.  

To employ some form of SALVEM GEA test generation with µGP, the snippets had to be transformed 

and mapped into equivalent assembler machine code based test building blocks. The mapping of 

ANSI-C based snippets to equivalent but simplistic assembler instruction building blocks facilitates 

some basic SoC functions to be exercised; but additional overhead is introduced into the test creation 

process. In addition, some supplementary modules and integration code had to be created to use µGP 

for SALVEM testing. Nevertheless, despite these limitations and complications, restricted forms of 

SALVEM test programs could be created in a basic and artificial GEA manner for experimentation. 

Given this was only a preliminary feasibility study, the entire snippets library was not mapped into 

equivalent assembler building blocks. Mapping is an extremely costly exercise. Only a small subset of 

snippets from the snippets library was adapted. The list of snippets employed, snippets mapping, and 

µGP to SALVEM integration process are described further next. 

 

Adopting µGP for GEA test generation with SALVEM 

The integration work required careful pre-analysis and modification of SALVEM platform 

components to interface with the µGP. In addition, to overcome incompatibilities between SALVEM 

system level components and low level µGP modules, various integration units and mappings were 

created. This ensures communication of test information would remain transparent throughout the 



APPENDIX E.       394 

modified verification platform, and the test generation flow can be executed efficiently as before in 

[CPL05b]. 

Figure E.2 shows the overall GEA SALVEM platform. The µGP generates SALVEM test programs 

using mixed SALVEM and µGP snippet macros from the instruction library. These snippet macros 

were originally mapped from the SALVEM snippets library. The test programs are then compiled and 

linked with snippets API and device drivers to form the executable test binary for SoC simulation. 

Coverage data gathered during simulation is then fed back as fitness results to drive the test generator 

during future test evolutions. 

 

Figure E.2 µGP in SALVEM integrated platform 

In µGP, macros are used to specify the types of assembler instructions that make up a test program. 

µGP macros are very short assembler instruction routines that perform low level operations but are 

unable to execute SoC functionality. In contrast, SALVEM uses snippets implemented in terms of 

ANSI-C functions to initial system-wide SoC transactions. In SALVEM test programs, the sequence of 

snippets is realised by ANSI-C function calls to the snippet library and API. Therefore, in order to 

facilitate SALVEM GEA using the µGP, new macros were created and mapped to each snippet in the 

snippets library. µGP can then produce different test programs in terms of these snippet based macro 

sequences, similar to snippet sequences. 

An example of a snippet to macro mapping is shown in Figure E.3. We define macros for selected 

snippets in the SALVEM snippet library. These macros act as test building blocks and perform the 

same snippet function call to the snippet library, but are implemented using assembler instructions 

instead. The actual functional test operations performed by the snippets are still interfaced through the 

snippet API. The macro invokes these snippet functions at a lower level using assembler jump or 
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branch instructions equivalent to ANSI-C function calls. Using snippet macros, µGP simply chooses 

which snippets to call and assigns parameter settings for the snippet macro. After mapping, all snippets 

macros are captured in the instruction library. 

 

Figure E.3 Example of snippet to µGP macro implementation mapping for Nios SoC 

The actual SoC test functions stimulated are still implemented using SALVEM snippet library, API 

routines and device drivers. The snippet macros simply transfer control to the appropriate snippet API 

library function. Using the snippet to macro mapping, system wide functionalities can now be tested as 

the correct sequences of SoC register accesses to invoke these operations are preserved. Previously, the 

random sequences of instructions from µGP could not do this at all. A subset of the snippets was 

specially mapped for the feasibility study in this section. Table E.1 lists these snippets. 

Table E.1 Snippets mapped for µGP to SALVEM feasibility study 

Snippet Function 

InitDMA Configures direct memory access (DMA) device transfers 

ExecDMA Executes DMA transfers 

TermDMA Terminates DMA transfers 

CheckDMA Validate DMA transfers 

ResetUart Initialise universal asynchronous receive transmit (UART) serial device 

TxUart Transmit serial data 

RxUart Receives serial data 

RxTxUart Duplex serial data transfer 

SetupPIO Initialise or clears input/output (PIO) device pins 

WritePIO Transfers parallel data 

MiscCPU Miscellaneous CPU instructions 
 

 

Software ANSI-C snippet library level: 
ok = ExecDMA (dma_id, transfer_id, blocking_mode); 

Assembler instruction macro level: 
movia %o0,dma_id ;; store parameters in registers 
movi %o1,transfer_id ;; parameter symbols pre-defined  
movi %o2,blocking_mode  
movia %g1,ExecDma@h 
jmp %g1 ;; Call ExecDmaSnippet(...) 
cmpi %o0,0x0 ;; return value stored in register %o0 
skps cc_lt  ;; check if snippet succeeded 
br SnipeetErrorRoutine@h ;; Handle snippet unsuccessful 
;; snippet successful, continue next snippet call 

Snippet API library: 
 

…… 
…… 
 

SnippetLib::ExecDMA 
 

…… 
…… Map 

Call/Return
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Feasibility study experimental results 

In this feasibility study, experiments were conducted applying GEA tests on the Nios SoC (Appendix 

A). The test simulations were conducted on a Linux platform the same as that for experiments of our 

dedicated SALVEM GEA test generation in Section 4.11 Chapter 4. The GEA test generation 

employed test population sizes of 30 and 20 test individuals for the parent and children populations 

respectively. This allows sufficiently large populations and test individuals to mutate and procreate 

into diverse test suite, but avoid overly long or runaway GEA test processes. The initial number of 

snippets in tests for the first population was chosen to be small, between 0 to 3. This allows tests to 

evolve as needed to exercise other SoC behaviours under the guidance of the GEA process.  

Line, toggle and conditional coverage were measured to serve as fitness evaluators for the GEA tests. 

Individual GEA test generation processes were conducted for each of the coverage fitness metric to 

maximise. On average, this produced 805 tests and approximately 15,300 snippets that were executed 

within 35 evolutionary cycles. For comparison, a SALVEM randomised test generation run (based on 

the test generation in Appendix D) was also conducted. Unlike GEA, this random test creation process 

was not explicitly driven by coverage, hence one randomised test generation was executed measuring 

all three coverage metric concurrently.  

Table E.2 summarises the coverage results. It is clear GEA based test generation achieves greater 

overall coverage requiring less snippets resources. For conditional coverage however, GEA test 

creation is slightly below that of random method. This could be due to the nature of conditional 

coverage measuring whereby many more different kinds and sequences of snippets are required to 

traverse conditional paths. The GEA method is more conservative in its usage of snippets, and 

sequences of snippets selection are only retained and expanded if they were previously beneficial. 

Perhaps the GEA method required more generous composition of snippets for conditional coverage, 

but maintained judicious usage under GEA guidance instead. For the purpose of this feasibility study, 

no further refinement to seek higher conditional coverage was conducted. The refinement would be 

conducted for our dedicated SALVEM GEA test generation investigations instead. 

In Table E.2, we show the number of snippets instead of the number of tests for comparison because 

test sizes between the GEA and the random approach differ considerably. The number of snippets (and 

tests) created by GEA test generation varies each time because each evolutionary process performs 

variation differently. Different number of snippets will be added, removed, replaced or recombined 

during evolution. Therefore, one GEA test is not equivalent to one random-only test. 
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Table E.2 Feasibility study coverage results 

Number of snippets Coverage % 
Method 

Line Toggle Conditional Line Toggle Conditional

Random-only 17,900 17,900 17,900 91.4 82.0 72.0 

GEA 15,000 15,100 15,900 97.4 86.4 69.7 
 

In addition to the coverage results above, Figure E.4, Figure E.5, and Figure E.6 shows the coverage 

progress trends for both GEA and random methods. The coverage graph is plotted along a logarithmic 

x-axis to show coverage improvement as execution of snippets test increases rapidly, as can be the 

case during test generations. Comparing coverage progress trend lines, the GEA method outperforms 

random scheme for line and toggle coverage. The coverage driven process from previous test 

evolutions in the GEA strategy maintains a higher level of coverage throughout the test generations, 

whilst coverage improvement rates are relatively similar to the random method in general.  
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Figure E.4 Feasibility study line coverage versus snippets 
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Figure E.5 Feasibility study toggle coverage versus snippets 
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Figure E.6 Feasibility study conditional coverage versus snippets 
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The line coverage rates are not comparable because line coverage is usually an easy to achieve metric 

(for the initial 80%), and this was easily achieved by both methods already from the initial single 

snippet test coverage. The differences in initial coverage attainment from a single snippet test between 

GEA and random methods are due to the type of snippets used at the beginning of the test process. The 

initial test program for GEA contain snippet that was simply superior at attaining higher coverage to 

begin with. As is the case with any GEA process, the success of evolutionary tests depends on the 

initial test population. For these experiments, both GEA and random testing use randomisation to 

select their starting tests. 

Cumulative coverage trends lines for both GEA and random testing represents the coverage 

accumulated for all previous and current tests. The raw coverage GEA trend lines represent the 

coverage value for each test. The oscillating peaks and troughs spikes of the raw coverage are 

characteristic of any GEA process. Reduction in these spikes indicates the GEA process is close to 

attaining the optimised population and maximal coverage possible.  

For conditional coverage (Figure E.6), large variation spikes still occur at the end of the evolutionary 

process. This suggests a longer test generation process is required, and further test generate evolutions 

are needed to stabilise the coverage line and attain the coverage optimum. This is not surprising given 

that exercising SoC design conditional paths demands much larger number of SoC operations and 

hence tests. Conducting simulation with conditional coverage is more computationally intensive and 

requires longer simulation runs, which we did not pursue further given this was simply a feasibility 

study. The experiments and results were already sufficient for our purposes. We refer the reader to 

Section 4.11.3 Chapter 4 for full discussion of these coverage spikes, which also occur in the proper 

experimentation of our SALVEM GEA test generator.  

In terms of test generation performance, the test creation time for both GEA and random-only test 

generators were measured. The results showed not much difference between the two. Compared to test 

execution time, test creation time from both test generators are negligible. The main overhead of the 

verification process is test simulation. Table E.3 shows the test execution times per snippet for GEA 

and random-only methods. The time for conditional coverage is much greater than line or toggle 

because conditional coverage is difficult to measure. Again, the reason is the number of branch paths 

in a design is exponential requiring much more computational resource to track. Comparing GEA and 

random-only methods, it is clear the GEA method is more efficient. GEA provides 2, 1.4, and 1.7 

times improvement for line, toggle and conditional coverage testing. 
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Table E.3 Feasibility study test execution performance times 

CPU-sec per snippet Line Toggle Conditional 

Random-only 7.0 7.1 46.3 

GEA 3.6 5.1 26.6 
 

These basic set of experiments for the feasibility study demonstrates GEA test generation for 

SALVEM is indeed viable and can provide better test performance. Results here show GEA test 

generation can be considered more optimal with respect to coverage and test sizes. These 

enhancements are considerable, demonstrating GEA’s ability to explore larger untested test regions on 

the SoC economically.  

However, the µGP based test generation displays lower coverage attainment rate than expected. As 

compared to our GEA test generator (described in Section 4.11 Chapter 4), it was required to undergo 

more test evolutions and greater tests before its maximum coverage was attained. This was primarily 

due to the overhead introduced that facilitate µGP to create SALVEM tests from the mapped snippets. 

The µGP was never intended to create system level SoC tests, and cannot be considered a solution for 

GEA test generation for SALVEM. 

Despite the incompatibility of µGP for SALVEM, improvements over random methods from this 

feasibility study confirmed there was potential for the research and design of our own dedicated GEA 

test generator specifically for SALVEM. The sole purpose of our GEA test generator will be to create 

SoC test programs composed of snippets directly under GEA, overcoming the limitations and avoiding 

the unnecessary modifications required for µGP. Our GEA test generator will be fully compatible with 

snippets test building block characteristics and create tests without any overhead unlike µGP. It will 

also allow for much more GEA features and options to be researched, so we can refine the test 

generation for snippets characteristics and maximise coverage over µGP and random methods.  

 

Feasibility study conclusion 

The feasibility study demonstrates a GEA test generation process for SALVEM is viable and could 

return substantial benefits. The feasibility study and integration work conducted formed the basis from 

which our customised SALVEM GEA test generator was prototyped. Additionally, the deficiencies 

identified with GEA test generation from this preliminary study was also tackled with our own 

specially devised GEA test generator. 
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E.3 SAGETEG variation operators 

Figure E.7 shows the diagrammatical representation of GEA variation operators employed by 

SAGETEG. Replacement variation is a composition of the addition and subtraction variation, hence is 

not shown. 

 

Figure E.7 Variation operations 
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E.4 Variation constraint checking 

The function g defined to check legality of a test which is created by genetic evolutionary variation, 

employs the following definitions to check constraints of a snippet inserted into the test. 

Definition E.1 : Explicit and implicit constraint checking 

(i) Explicit constraint 

Let gexp : S → {true, false} be the function to check explicit constraints, and CT be the set of explicit 

constraints for the snippet s, 

 gexp(s) = true if ∀ ct ∈ CT, constraint ct is satisfied, or false otherwise. 

For the Nios SoC, the set of constraints for each snippet is defined in Appendix C.3. 

(ii) Implicit constraint 

Let gimp : S → {true, false} be the function to check implicit constraints, and V  be the set of 

parameters for the snippet s, 

gimp(s) = true  if ∀ vi ∈ V, xi ∈ Di for i = 0, 1, …, |V| , or false otherwise, 

where  vi  is the i-th parameter from the set V of parameters for the snippet s, 
xi  is the value of the parameter held by parameter vi, 
Di  is the domain set of values that should be held by parameter vi to satisfy implicit 

constraints. 

 

E.5 Dependency snippet insertion for addition variation 

The pseudo code implementation of the function d to insert additional dependent snippets into a test 

varied by GEA addition variation is shown in Figure E.8. 

The snippet dependency insertion implementation checks for each of the dependency types one after 

another. If a dependency snippet is to be inserted into the test, the addition variation operator is 

employed (lines 9, 16, 24 and 33). This results in a recursive operation of the dependency snippet 

addition and subsequent dependency checks, given that the insertion of a dependency snippet itself 

could have unresolved dependencies in the test. Once all dependencies of the original snippet addition 

variation and any subsequent dependencies of dependent snippets are resolved, the function d called 

for the initial addition variation will terminate. For non-strict dependencies, the dependency snippet 
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addition can be called multiple times for every non-strict dependency that is not satisfied (Lines 23 to 

25 and 32 to 34). The rand function selects a random position to insert the dependency snippet from an 

interval delimited by two given bounds. 

 

Figure E.8 Dependency snippet insertion pseudo code implementation 

1   d [t, sadd, i] {  
2     //   t   is the test that has under gone addition variation, 
3     //   sadd   is the snippet added into the test,  
4     //   i   is the position at which the snippet is added into the test 
5  
6     // Check for pre-strict dependency using the dependency check function in  
7     //  Definition 4.5, Chapter 4.  
8     if [ gpre-strict(t, sadd, i) = false ] { 
9       t = Add[t, spre-strict, i−1]  // Add is the addition variation operator which  
10                   // is re-used to insert the dependency snippet. 
11    }   
12 
13    // Check for post-strict dependency using the dependency check function in  
14    //  Definition 4.6, Chapter 4 
15    if [ gpost-strict(t, sadd, i) = false ] {  
16      t = Add[t, spost-strict, i+1] 
17    } 
18 
19    // Check for pre-non-strict dependency using the dependency check function in  
20    //  Definition 4.7, Chapter 4. 
21    if [ gpre-non-strict(t, sadd, i) = false ] {  
22      // Conduct addition for each unresolved dependency snippet 
23      foreach [ spre-non-strict ∈ Spre-non-strict ∧ spre-non-strict ∉ t ] {     
24        t = Add[t, spre-non-strict, rand(1, i−1)] 
25      } 
26    } 
27 
28    // Check for post-non-strict dependency using the dependency check function in  
29    //  Definition 4.8, Chapter 4. 
30    if [ gpost-non-strict(t, sadd, i) = false ] {  
31      // Conduct addition for each unresolved dependency snippet 
32      foreach [ spost-non-strict ∈ Spost-non-strict ∧ spost-non-strict ∉ t ] {     
33        t = Add[t, spost-non-strict, rand(i+1, n+1)] 
34      } 
35    } 
36 
37  } 
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E.6 Variation self-adaptation analysis 

E.6.1 Self-adaptation with Rechenberg’s rule 

The aim of GEA variation operators is to continually revise test programs to attain as high coverage as 

possible. During the evolution process, a test program may grow, shrink, mutate internally, combine 

with other test programs to reproduce new tests, or be replaced by other higher coverage yielding tests. 

The aim of variation is to construct and maintain the best possible group of test programs. However, 

overuse of variation operators can lead to poor search of the test space. If test programs are altered too 

greatly, important test functionalities within local search regions may be overlooked. Therefore, 

variation should be applied diligently based on how test programs react to their modifications and their 

influence on test suite fitness. 

In our test evolutionary process, each variation operator is assigned a probability weight variable that 

determines their likelihood of usage. Under normal GEA operating environments, all variation 

weightings are initially equal. However, for test generation, our initial tests are very small in size with 

only a few or even no snippets, relying instead on the evolution process to cultivate the test population 

into a useful test suite. Initially, only addition and mutate variation can be assigned high usage 

weightings. During the evolution process, these variation weights are then continually monitored and 

adjusted. The mechanism that facilitates this is a called self-adaptation. Self adaptive schemes are 

commonly used in GEA and are successful techniques for ensuring appropriate GEA parameters 

values are used during the test generation process to create and retain the best test individuals. In GEA, 

the values chosen for various test strategy parameters, such as variation weights, have impact 

significantly on the effectiveness of the algorithm and the test coverage performance of the test 

generation process [HME97]. For test generation, the GEA self-adaptive method employed is 

commonly based on Rechenberg’s rule [Mic96, Rec73]. 

Rechenberg’s rule was originally intended for optimising both linear and non-linear mathematical 

functions. It was first used in (1+1) evolutionary strategy methods involving one parent and one child 

populations using mutation only.  However, in test generation, it can be extended for a general (µ+λ) 

multi member population using other GEA variation operators as well. 

Rechenberg’s rule provides ‘rule of thumb’ guidance in relation to the selection and use of various 

GEA parameters throughout the evolutionary process.  Specifically, for test generation, Rechenberg’s 

rule was employed to control the selection probability weightings of variation operators. By doing so, 

Rechenberg’s rule guides the test generator to create tests based on the relative success or failure of 
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variation operators applied in previous test evolutions. This ensures usage of more effective variation 

operators is maintained for future test evolutions, to continue creating successful test populations. 

Specifically, Rechenberg’s rule states the ratio of successful variation to non-successful variation 

operations should be approximately 1/5; whereby the variation is deem successful if it creates a test 

program that yields a higher coverage fitness compared to the original unmodified test individual 

chosen for variation. If the ratio exceeds 1/5, the variation probability weighting is increased for the 

next evolution of test creation, to carry on building upon the successes of applying that particular 

variation. If the ratio is less than 1/5, the variation probability is lowered as current usage of variation 

is already deemed unsuccessful. Based on Rechenberg’s recommendations, before the start of each 

evolution, the probability weightings of applying each variation operator are adjusted as follows. 

 

Classical Rechenberg’s rule 

Let ω(z) be the probability weighting of applying a variation operation at evolution z.  

For z = 0, 

 ω(z) ≥ 0.5 

For z ≠ 0, 
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where γ  is the variation success ratio of the population, and 
σ  is the variation weight change factor that controls how much the variation weight value is 

increased or reduced. 

 

Test space conceptualisation for self-adaptation 

Before discussing the effects and implications in applying Rechenberg’s rule, a description of the 

abstract SoC test space concerning GEA test generation is presented first. Since test generation is 

essentially a search and optimisation process over the testable SoC design space, it is natural to 

visualise and explain the use of GEA for test generation using a test space concept. Specifically, the 

test space shall be referred to when explaining how Rechenberg’s rule and test variation influence test 
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generator search and coverage of the test space. The test space diagram is shown in Figure E.9 and is 

described as follows. 

Assume all possible SoC test scenarios can be captured in an enclosed rectangular area which we 

denote as the test space. Each point in the test space represents a specific test scenario that can be 

tested. Test scenarios that exercise similar kinds of SoC functionality are grouped together to establish 

test regions, as represented by the circles in Figure E.9. For example, within the DMA test region, each 

point corresponds to a particular form of DMA transfer that must be tested. Each of these DMA points 

may represent a transfer scenario between one specific source device and a specific destination device 

involving a particular amount of data units.  Many other (possibly overlapping) test regions also can be 

identified for other related types of SoC test conditions. In Figure E.9, the UART test region overlaps 

the DMA test region. DMA transfers using the UART as either source or destination device are 

represented by test points within this overlap region. The GEA test generator will create tests to seek 

out these test regions and cover a maximal portion of test points within each region before moving on 

to other regions.  

To facilitate this process, large addition and mutate variation is generally used to seek out and identify 

new and wide-ranging test regions (solid arrows in Figure E.9). Subsequently, subtract, replace and 

recombination variation are then applied to investigate and maximise coverage of each of these test 

regions more thoroughly (dashed arrows in Figure E.9). 

Using variation under the guidance of Rechenberg’s rule, the goal of test generation is to maximise 

coverage of the entire test space using a minimal test set. Whilst the µ test population size remains 

constant over successive evolutions, the goal is for each test to contribute as much as possible to 

coverage, using fewer snippets before the snippet sequence grows too large in future evolutionary 

stages. This is considered one of the test optimum condition which GEA test generators must pursue. 

 

Figure E.9 SoC test space diagram for GEA test generation 
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Intention of Rechenberg’s rule 

Based upon the test space representation in Figure E.9, intuitively, Rechenberg’s rule implies variation 

operators should be widely used at the start of the evolutionary process to seek out wide ranging and 

extensive regions of the test space. To facilitate this, during early evolutions large amounts of variation 

should be applied to create new tests that are vastly different from previous existing tests. Early 

evolutionary tests should search for many different test regions in the beginning using minimal 

snippets before tests become larger in later test evolutions.  

After many successive evolutions, when the test creation process is close to the desired test optimum, 

variation is then reduced according to Rechenberg’s rule. This enables the generator to focus within 

local test regions more thoroughly, to ensure the actual test optimum is achieved. The coverage already 

attained from local test regions under current investigation must be maximised, by ensuring all test 

scenarios within those regions are covered. Therefore, at this stage of the evolutionary process, the 

amount of variation applied will be significantly lower in order to allow for minute fine tuning of the 

tests covering those test regions. 

Employing a success ratio of 1/5 throughout evolutions implies for each variation operator that creates 

a new test, one out of five tests should be successful in enhancing SoC coverage compared to the 

previous unvaried test. By maintaining such a ratio, the test generator maintains balance between (1) 

extensive exploration of new test space to aid potential coverage improvement (solid arrows in Figure 

E.9), and (2) continual examination to comprehensively cover current local test regions and maximise 

coverage from those regions (dashed arrows in Figure E.9). 

Extensive exploration of new test regions is important to identify new test scenarios that increase 

coverage. However, over exploration can often lead to tests that do not add to the overall test coverage 

at all. This is because the variation operators that conduct random exploration may return to test 

regions where SoC test scenarios were already verified previously at a much earlier evolutionary stage. 

Hence, the resultant coverage will not exceed what was already attained previously during earlier 

testing. Additionally, over exploration can cause previously identified test regions to be inadequately 

examined. Before an existing test region is fully investigated and all test scenarios from that local test 

space tested, applying large variation too early can force the test generator to move on to other regions 

of the test space prematurely. Any potential coverage improvements from test scenarios from the 

current test region will be overlooked, eliminating any opportunities to improve test coverage further.  
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Similarly, continual examination of a test region should not be over excessive. After a reasonable 

number of tests have been varied from within a test region, the test generator must be able to move on 

to investigate other new portions of the test space. Otherwise, the test creation process will generate 

too many overly similar tests causing coverage test enhancement to stagnate. If such repetitive tests are 

allowed to dominate and fill the test suite population, the entire test generation process would stall 

because variation of similar tests restricts further exploration of the test space. Rather, the test 

generator would end up examining the same test regions repeatedly as a result of varying these similar 

tests to create further similar tests.  

The aim of Rechenberg’s rule is to maintain balance between extensive explorations of the test space 

using stronger variation, versus sufficiently thorough examination of currently traversed local test 

regions; in order to efficiently find the test space optimum. The 1/5 ratio ensures that at least more than 

one in five varied tests from a test region must be successful in improving test coverage. If so, larger 

variation will applied to search further test regions and hopefully seek out more fruitful coverage 

yielding regions compared to the current search location. The aim is to speed up searching of the 

optimum, and improve efficiency of the evolutionary process by steering it towards convergence. 

However, if these test regions do not provide improved coverage, this implies variation and 

exploration of other test regions may have become too excessive. The success ratio would then 

decrease falling below 1/5 causing the test generator to revert to lower variation probabilities. This 

implies that the previous test region was closer to the optimum, hence test space exploration is 

withdrawn to a smaller search area and the current local test region is thoroughly examined instead.  

By adhering to the above rule of thumb, the test generator should be more confident in seeking out 

new test space and ensure all possible test variants from that space are covered. The maximum 

attainable coverage from each test region will also be achieved more efficiently using least number of 

evolutions. 

Implementation-wise, applying Rechenberg’s rule required a success-to-failure ratio for each variation 

type. Each ratio is calculated at the end of every evolution and is used by the test generator to adjust 

variation weights according to Rechenberg’s rule. However, for ease of analysis, the averaged ratio 

amongst all variation operators was used to measure how successful the test generation process was at 

maintaining the 1/5 ratio during evolution. The aim of Rechenberg’s rule is to preserve one in five 

successful coverage improving test throughout evolution, regardless of how much or which particular 

variation operator is applied. 
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E.6.2 Fine tunning and observations of Rechenberg’s rule 

Preliminary test generations were conducted to check the implementation and evaluate effectiveness of 

applying Rechenberg’s rule in SALVEM GEA test generation. In addition, the various GEA strategic 

and operational parameter values were also reviewed to ensure they are assigned appropriate values to 

provide best performance. For example, the initial variation operator probability weights, change 

factor σ, and other parameters can affect the effectiveness and efficiency of the process in seeking best 

tests. The process of conducting preliminary runs to fine tune GEA parameters is part of calibrating the 

genetic evolutionary algorithm for the test generation target application; and is common practice when 

GEA techniques are employed [HME97]. 

The initial results from these preliminary test runs showed that a number of modifications were 

needed. These modifications included minor refinements in various usage parameters and the manner 

in which Rechenberg’s rule was applied during test generation. Additionally, our observations on how 

test population fitness reacted to Rechenberg’s rule led us to revamp the criteria in which variation 

weightings are adjusted. This sub section discusses the minor refinements carried out, Sections 4.5.10 

in Chapter 4 described the changes made to variation weight adjustments. 

Traditional Rechenberg’s rule assumes all initial variation weights to be equal. However, for 

SALVEM GEA test generation, subtract, replace and recombination variation should not be applied 

too often during early evolutionary stages due to the effects of snippet dependency rules. Subtract, 

replace and recombination variation cannot be properly employed until the snippet sequences in tests 

have grown to sufficiently large sizes. Given that tests are initially created with very few or no snippets 

at the first evolution, the initial subtract, replace and recombination variation weights are assigned low 

values. Instead, addition and mutate variation weights are initially allocated higher values by ratio of 

up to three to one against subtract, replace and recombination variation.  

An initially high addition and mutate weight also supports Rechenberg’s recommendation for larger 

variation to be applied early, so extensive regions of the test space can be found. Afterwards, subtract, 

replace and recombination weights are then increased according to Rechenberg’s rule to examine these 

discovered test regions more thoroughly. The test generation relies on addition and mutate variation to 

grow a wide range of different snippet sequences in tests, so remaining variation can be applied more 

regularly in later evolutionary stages. 

The results of preliminary testing also showed variation weights adjustments conducted by 

Rechenberg’s rule can be overly excessive. In some cases, variation weights were increased or 

decreased to extremely high or very low values. Furthermore, these excessive weight values were 
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occurring during early evolutionary stages due to a high rate of weight adjustment and large change 

factor σ from Rechenberg’s rule. The test suite during initial testing may not always present a true 

representation of the population success ratio, as these tests are too small and contains only very short 

snippet sequences. Therefore, no variation weights should be allowed to over dominate, eliminating 

opportunities for other variation to be applied. Similarly, variation weights should not be too low as 

well. Such conditions would drive the test generation into various run-away conditions, whereby 

generated tests become overly large or small, but cover the same test regions as previous tests and do 

not add value to coverage. 

Furthermore, if variation weights are allowed to reach excessive values, it will require many evolutions 

before they recover back to appropriate levels and balance out again. By then, the test generation may 

have already terminated. Therefore, to prevent such conditions, a minimum and maximum weight limit 

of 10 and 100 respectively should be imposed. This ensures all variation will at least be given some 

opportunity to be applied throughout test generation. 

As discussed above, the test suite during initial evolutionary stages may not always provide an 

accurate representation of the success ratio. Therefore, immediately applying Rechenberg’s rule to 

adjust variation weights may in fact be premature, and reduce the effectiveness of future weight 

variations. Instead, application of any self-adaptation should be delayed until a minimum number of 

test generate evolutions have been conducted. The initial test evolutions will calibrate the test 

generator first before self-adaptation is enforced. Otherwise blindly adjusting variation weights based 

on the success or failure of immature tests would be detrimental. In our case, a mature test is one that 

has undergone sufficient variation during initial test evolutions, to be of sufficient size and considered 

typical of SALVEM test programs. Applying Rechenberg’s rule on such tests will then provide more 

accurate coverage results to truly reflect the success ratio of the test suite. For SALVEM GEA test 

generation, application of any self-adaptation can be delayed up to ten initial test evolutions have been 

conducted. 

 

E.6.3 Motivations for revising variation self-adaptation 

Besides refinements from the previous section, the most significant modification to our 

implementation of self-adaptation was the manner in which variation weights are adjusted. The need 

for such modification was due to a number of observations and subsequent analysis of the test 

population response from classical Rechenberg’s rule. Specifically, it was not uncommon for the test 
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suite success ratio to diverge from the 1/5 target, and eventually stagnate at an undesired ratio. There 

are two types of run away conditions that may cause Rechenberg’s ratio divergence.  

Whenever the test suite ratio is less than 1/5, Rechenberg’s rule decreases variation weights to reduce 

variation, with the intention of seeking new tests successes again and increasing the overall ratio. 

Below 1/5, the assumption is that the optimum is more likely to be within the local test space region. 

Hence, lowering variation will direct the test generator to search within the current test region, and 

creation of new tests locally would improve test coverage and subsequently drive the ratio back toward 

1/5.  

However, in some cases, less varied tests may not increase overall success ratio rise at all. If current 

test regions discovered by previous evolutions were already thoroughly examined, continuing to 

employ less varied tests from these test regions may in fact decrease or maintain current ratio levels. 

The test generator will either create similar tests, or seek out remaining variants of SoC test functions 

from current test regions that were already tested; hence preserving or decreasing coverage instead.  

Additionally, by restricting variation, the test generator is prevented from creating tests from other 

different areas of test space. In certain cases, the identification of other test regions can increase 

success ratio, especially if these varied tests originates from previously unexplored test regions. By 

lowering variation, such potential higher coverage yielding tests would not be realised to drive overall 

test suite ratio up. Under such circumstances above, employing less varied tests will maintain the 

current ratio levels or even pull it away from the desired 1/5 target. In a number of evolutions during 

preliminary testing, lowering variation weights and test suite diversity caused stagnant ratio levels 

initially, which also eventually decreased further. It was obvious that lowering variation slows down 

the rate of change in success ratio rather than increase it as was expected. 

Secondly, Rechenberg’s rule demands variation weights be increased whenever the test suite ratio is 

above 1/5. The intention is to introduce greater variation to continue producing tests from other wide 

ranging and new test regions. Hence, tests coverage increases and other test regions where the 

optimum may lie are uncovered; until eventually, the variation applied becomes too excessive and 

exploration too extensive causing the test suite ratio to fall back toward 1/5. However, the risk for such 

an approach is that tests from other test regions may not provide improvements in coverage or success 

ratio compared to previous evolutions.  

Because the test generator inherently employs random choices, the new test region may not guarantee 

better coverage; especially if some portion of that test region overlaps with previously tested test 
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space. Moreover, by increasing variation weights to shift test generation focus to other regions, the test 

generator may overlook other fruitful coverage enhancing tests from current test regions. In reality, to 

increase coverage success test ratio, the current test regions previously under examination should have 

been thoroughly investigated further, using less varied tests first. Once again, if the above conditions 

were realised, increasing variation weights according to classical Rechenberg’s rule would produce the 

opposite desired intention. 

Furthermore, whenever the test suite ratio is close to 1/5, and either the above two conditions occur, 

blindly increasing or decreasing the variation weights by the same amount each time will result in 

significant deviation away from the desired ratio. Because variation weights are linearly adjusted by 

the same constant change factor σ over successive evolutions, the weight values can reach extremely 

high or low values quickly; prompting over use of various variations and restricting the diversity of the 

test suite.  

Regardless how close the test suite ratio is to 1/5, adjusting weights by the same amount constantly can 

be detrimental because a test suite ratio close to 1/5 should not be varied by the same amount as a test 

suite that is significantly different from 1/5. A ratio close to 1/5 represents a test suite close to the 

desired goal, and only small variation should be needed to modify tests to achieve that goal. In 

contrast, a test suite ratio considerably different from 1/5 requires larger change in variation 

probabilities, to create new and different tests that can provide the desired balance between number of 

test successes and failures. Recklessly adjusting variation weights by the same amount without 

considering the relative difference between current test suite and target ratio reduces the likelihood of 

actually achieving the target ratio.  

The occurrence of such above conditions may not be frequent but is highly possible during any stage 

of the test generation process. Once the test generator enters any of these conditions, a repetitive cycle 

of continual increase or decrease of variation weights would be initiated. Subsequent evolutions from 

that point onwards will result in the test suite drifting further away from 1/5. This effectively renders 

classical Rechenberg’s rule useless, causing the remaining test creation process to generate non-

coverage optimised test suites. The aim of Rechenberg’s rule is to speed up convergence and facilitate 

more efficient search of the test space optimum. However, whenever such conditions above arise, pre-

mature convergence occur, which is not uncommon and a significant shortcoming of Rechenberg’s 

rule. Therefore, it became clear that Rechenberg’s rule in its original form was too simplistic for the 

various types of SALVEM test population and evolutionary test conditions. Instead, we devised our 

self-adaptation strategy which was described in Section 4.5.10, Chapter 4. 
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E.7 Population selection formalisation 

The population selection is defined in Definition E.2. 

Definition E.2 : Population selection 

Let Select : P(P) × Z → P(P) be the population selection function to select the next population 

Pµ(z+1), 

 Pµ(z+1) = Select(Pµ+λ(z), µ) = Retain(Sort(Pµ+λ(z)), µ) 

where µ  is the number of parent tests, 
λ  is the number of children tests, 
Pµ+λ(z)  is the combined parent and children tests in the current evolution z, 
P(P) is the power set of a population P which represents all possible subsets of the test 

population and all possible selections of tests from the population, 
Sort is a function that sorts the population of tests according to their fitness, and 
Retain is a function that retains the selected tests that qualify for use in the next evolutions. 

The functions Sort and Retain are defined as follows. 

(i) The function Sort : P(P) → P(µ+λ)-ξ sorts a population of tests, to produce a tuple T of tests ordered 

by their fitness values as, 

 T = Sort(Pµ+λ(z)) = 〈t1, …, tµ, tµ+1, …, t(µ+λ)-ξ〉  such that ∀ ti ∈ Pµ+λ(z), f(ti) ≥ f(ti+1) ∧ lifespan of ti is 

less than allowable lifespan limit, for i = 1, …, µ+λ  

where ξ  is the number of tests that are excluded from T because they exceed the allowed        
  lifespan and, 
f(t) is the objective function from that evaluates the coverage of a test t. 

(ii) The function Retain : P(µ+λ)-ξ × Z → P(P) retains the appropriate number of tests from the 

combined population Pµ+λ(z) of the current evolution, to produce the selected population Pµ(z+1) of 

tests for the next evolution as,  

 Pµ(z+1) = Retain(T, µ) = { ti | ti = T[i] for i = 1, .., ρ } 

where T[i] is the ith test ordered in the sorted tuple of tests T, 
ρ is the number of tests to retain. It is determined as follows,  

  
 excluded.  were testsexceededlifespan many   toootherwise,     

                                                            ξ)λµ(µ if
    
ξ)λµ(

    µ         −+≤
−+

=ρ  
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In the beginning, the selection process is to sort the population of combined parent and children test 

individuals, excluding any tests that have exceeded the allowed number of evolutions lifespan. Such 

tests are considered extinct from future evolutions. Depending on the number of tests excluded, the 

sorted tuple of tests T may contain than µ tests. If this occurs, then all the remaining (µ+λ)−ξ tests in T 

are selected for the next evolutionary population. However, the likelihood of T with less than µ tests is 

extremely low. During each evolution, there are sufficient new tests with superior fitness to replace 

existing tests, thus preventing tests from surviving many evolutions to begin with. Usually, most tests 

do not reach its allowed lifespan and will be eliminated much earlier. If a test suite is dominated by 

tests that have survived many evolutions, this implies the test generation process is about to be 

terminated regardless due to stagnation of the population. 

 

E.8 Implementing SAGETEG 

This section describes the implementation of our single-objective genetic evolutionary test generator 

for SALVEM. Given the GEA operations defined for our test generation flow in Figure 4.11 Chapter 

4, test generation with SAGETEG is summarised in Figure E.10. Figure E.10 shows the pseudo code 

implementation of our GEA test generation process. The CreateInitialTest function (line 10) creates 

test individuals to fill the initial population of µ tests. The initial test created may contain any number 

of random snippets, including an empty set of snippets, relying instead on the evolution process to add 

and vary different types of snippets into the test individual over time. 

During each test evolution, the variation stage iterates λ times in order to create at least λ new tests 

(lines 19 to 81). In each λ iteration, a selected parent test tnew may undergo multiple variations to 

produce a new and different test which is assigned back to tnew (lines 26 to 76). Each variation is 

applied repeatedly on the same tnew test and inserted into Pλ(z). However, if recombination is chosen, 

unlike other variation operators, two new test children are created each time.  In this case, both 

children tests will be retained in Pλ(z). If further variation is to be applied, one of the children tests will 

be selected, and a new copy of this child test will be duplicated to undergo such variation. In this case, 

three new tests are added into Pλ(z) – the two children tests, and the duplicated child test that was 

selected to undergo further variation. If no further variation is to be applied after a recombination 

variation, then only two additional children tests are inserted into Pλ(z). After variation, fitness 

evaluation of new tests, population selection, and self-adaptation of variation weights is performed as 

described in Chapter 4. This evolutionary cycle repeats until the termination condition is triggered. 
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1   //  V = {Add, Sub, Rep, Mut, Recomb}  is the set of variation operators, 
2   //  W = {ωAdd, ωSub, ωRep, ωMut, ωRecomb}  is the set of variation operator weightings,  
3   //  M  is the maximum number of variation operations that can be applied to a test 
4   //  (All other symbols, variables or definitions are as per Chapter 4) 
5 
6   z = 0  // Initialise evolution index 
7 
8   // Create the initial population of tests 
9   for [ x in 1, …, µ ] { 
10    tx = CreateInitialTest  // Randomly create the initial test 
11    f(tx)            // Evaluate the fitness of the test 
12    Pµ(z) = Pµ(z) ∪ {tx}   // Add test to the initial µ population of tests 
13  }   
14 
15  // Begin the evolutionary cycles 
16  while [ Terminate = false ] {  
17 
18    // Vary current Pµ(z) population to create at least λ new tests 
19    for [ x in 1, …, λ ] { 
20 
21      // Select a test tnew from current Pµ(z) population to undergo variation, using k 
22      // member tournament selection, where the participants of the tournament 
23      // are randomly chosen from Pµ(z) 
24      tnew = TourSelk[ rand(Pµ(z))1, …, rand(Pµ(z))k ] 
25 
26      // Apply random number of variation operations on tnew, at most M number of 
27      // variations are allowed 
28      n = rand(1, …, M)  // Select random number of variations y to conduct 
29 
30      // Perform n variations 
31      while [ y ≠ 0 ] {     
32        y = y − 1 
33 
34        // Select which variation operation v from the set of operators V  
35        // to conduct, based on variation weights in W 
36        v = SelectVariation[V, W] 
37 
38        // Handle recombination variation specially because it creates two new tests 
39        if [ v = Recomb ] { 
40          tA = tnew  // Use tnew as the first parent test 
41          // Tournament elect the parent test in addition to tnew for recombination 
42          tB = TourSelk[ rand(Pµ(z))1, …, rand(Pµ(z))k ] 
43     
44          // Perform recombination as defined in Chapter 4 
45          (tAB1, tAB2) = Recomb(tA, tB, Ax, Bx) 
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Figure E.10 SAGETEG generalised pseudo code implementation 

46          // Randomly select one children test to be added into the new  
47          // child population Pλ(z), whilst the other children test will be used  
48          // to conduct further variations if y variations has not been carried out 
49          tnew = rand(tAB1, tAB2)   // Assign one children test to tnew for more  
50                       // variations 
51          if [ tnew = tAB1 ] { 
52            f(tAB2)  // Evaluate the fitness of tAB2 
53            Pλ(z) = Pλ(z) ∪ { tAB2}   // Add tAB2 to Pλ(z)  
54          } else { 
55            f(tAB1)  // Evaluate the fitness of tAB1 
56            Pλ(z) = Pλ(z) ∪ { tAB1}   // Add tAB1 to Pλ(z)  
57          } 
58 
59        } else { 
60          // Conduct other Add, Sub, Rep, or Mut variation held by v on tnew  
61          // as per usual, and assign newly varied test back to tnew,  
62          // for further variation if y ≠ 0 
63 
64          // Select position of snippet in test to undergo variation, where n is the 
65          // number of snippets in tnew 
66          i = rand(1, …, n) 
67 
68          if [v = Sub ∨ v = Mut ] { 
69            // Only i is needed for subtraction and mutate variation 
70            tnew = v(tnew, i) 
71          } else { 
72            // Require the snippet to insert for addition and mutation variation 
73            s = rand(S)  // Randomly select snippet from snippet library S 
74            tnew = v(tnew, s, i) 
75          } 
76        } 
77 
78        // Insert varied test tnew into children population 
79        f(tnew)   // Evaluate the fitness of tnew 
80        Pλ(z) = Pλ(z) ∪ { tnew}   // Add tnew to Pλ(z)  
81     } 
82 
83     // Variation complete, conduct population selection and adjust variation weights 
84     // according to self-adaptation 
85     Pµ(z+1) = Select(Pµ+λ(z), µ)  // Select from the combined parent and children 
86                     // test population Pµ+λ(z) 
87     SelfAdaptation[V, W] 
88 
89     // Increment evolution index and repeat evolution if termination condition not  
90     // satisfied 
91     z = z + 1 
92    } 
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E.8.1 Overview of SAGETEG implementation 

The complete SALVEM GEA test generation platform is shown in Figure E.11. As before, SALVEM 

GEA testing begins by establishing the snippets library to provide test building blocks to create test 

programs. To do this, the applications and use-cases of the target SoC are first identified. Common 

SoC operations including multi device and concurrent interacting SoC functions are extracted from 

these use-cases, and modularised into individual ANSI-C functions each representing a snippet. Next, 

the test generator tool SAGETEG, uses a combination of randomisation and GEA variation operators 

to create test programs in terms of snippets functions via the genetic evolutionary approach.  

The resultant test programs are accompanied by a set of Verilog ‘.dat’ files that provide the necessary 

memory data and I/O device stimulus during test execution. The test programs are then compiled and 

linked with the SoC device drivers, producing the executable test binary that is loaded into executable 

memory for simulation on the SoC. During test program simulation, coverage and other SoC test 

statistics are gathered. In particular, coverage data is fed back to SAGETEG as fitness results to the 

test generator to create the next evolution of tests. The verification cycle stops when the GEA test 

generation in terminated as described in Section 4.8 Chapter 4. 

In SALVEM, snippets act as genes that make up the characteristics of each test individual. SAGETEG 

creates and output different test programs in terms of these snippet sequences. In SALVEM test 

programs, the sequence of snippets is realised by ANSI-C function calls to the snippet library 

implementation. Essentially, the actual functional test operations performed by the snippets are 

interfaced through the snippet library API. This enables more compact and faster test programs 

whereby short snippet function calls are chained together using GEA methods. SAGETEG simply 

chooses which snippet to call and the parameter settings for these snippets. The actual SoC test 

functions stimulated are implemented using SALVEM snippet library routines and their size remains 

the same. Therefore, the actual SALVEM test program itself grows and shrinks in terms of snippet 

function calls only, and can freely vary in size according to the GEA test generator as long as it does 

not exceed the SoC executable memory limits.  

During test execution, fitness values are directly calculated from simulation coverage measurements. 

Simulation is carried out using the Synopsys VCS simulator. The simulator outputs raw coverage data 

at the conclusion of every test execution. A separate coverage metric tool, Synopsys cmView, is then 

used to collate and interpret the raw coverage data into sensible and human readable form. The 

coverage usually employed are line, toggle and conditional coverage. These coverage data are then 

transformed into a suitable format for input into SAGETEG, to influence the next evolution of test 
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creation. The fitness measurement process is automated by wrapper software that ties all the coverage 

measure and raw data interpretation operations together. 

The main development effort focused on the GEA test generation tool SAGETEG. Once this was 

completed, SAGETEG was integrated into the existing SALVEM test platform for the Nios SoC. Our 

efforts were limited to modifying certain SALVEM platform components only and interfacing the new 

test generator. The SALVEM test platform was previously established to conduct verification of the 

Nios SoC using the random snippets test generator initially (Appendix D), and subsequently for 

prototyping genetic evolutionary test generation using the semi-adapted µGP tool (Appendix E.2). 

Integration simply involved replacing the previous random-only test generator tool with our GEA 

engine; and managing the interfaces to the rest of the platform as needed. Besides the SAGETEG test 

generation engine, test generation also requires the snippet library specification file and the external 

snippet creation functions’ application programmers interface (API) library, which is described further 

below. These files are used to configure each test generation process.  

The entire SAGETEG tool was implemented in approximately 20,000 lines of C++ code, 1000 lines of 

lex and yacc code for the snippets library parser, and around 600 lines of code for miscellaneous 

scripts such as the fitness evaluation and feedback scripts. The main GEA test generator engine was 

developed via C++ objected-oriented design. Dividing the design of the GEA engine into separate 

classes enables different forms of genetic evolutionary methods to be introduced and evaluated 

quickly. For example, new recombination techniques and test success evaluation can be easily 

implemented into the GEA engine by modifying the variation and fitness evaluation classes only, 

without affecting the remainder of the test generator.  Thus, expanding and fine tuning the GEA engine 

with new and different genetic evolutionary techniques or components can be conducted more 

efficiently. 

For manipulation with snippets, SAGETEG reads in the snippets library specification file, which 

details the available snippets for usage, using an internal lexical scanner and parser. Hence, the snippet 

library specification file must be set out in a particular format described in Section E.8.2. The external 

snippet configuration routines API (Section E.8.3) is provided in terms of a C++ object-oriented class 

file, and is created specifically for whichever library of snippets are utilised. The snippet configuration 

routine API library is compiled and linked with the test generator either statically or dynamically. If 

the test generator uses different snippet library versions often, then each different external API library 

is linked dynamically so the test generator can swap between different snippet libraries and call the 

corresponding API library easily at run time. Otherwise, the external snippet configuration routine API 

library is compiled and linked statically with the test generator binary.  
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Therefore, the snippets library along with its external snippet configuration classes can be created 

independently from the main test generator code base. Separating the library specification and 

implementation of the external snippet configuration class from the test generator, different snippet 

libraries for different SoCs can be developed in parallel independently. As long as the relevant snippet 

library specification file and external snippet configuration API classes are provided to SAGETEG, 

different sets of GEA created tests for different SoCs can be produced easily. 

The entire test generator was developed and tested on a Linux RedHat platform, the same as the rest of 

the SALVEM architecture. In total, the test generator required 2 months of effort (of a single engineer) 

for development, and another month for testing and fine tuning. However, once completed, the test 

generator can be integrated into various verification platforms and create tests for different SoCs in a 

GEA manner. The SALVEM platform was previously developed as described in [CPL05a, CPL05b] 

but required more effort and resources which culminated in approximately 9 months of effort. 
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Figure E.11 Single-objective GEA SALVEM platform with SAGETEG 
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E.8.2 Snippets library specification file 

The snippet library specification file specifies the snippets that are available to SAGETEG. In addition, 

for each snippet listed, additional snippet configuration is provided. Figure E.12 shows an example of 

a snippet specification for the RxTxUart snippet. The RxTxUart snippet invokes UART operations to 

test serial data transmit and receive functionalities. All snippets in the snippet library must be specified 

in a similar format to Figure E.12. The first portion of the snippet specification provides various 

snippet configuration and usage information for the test generator. The second part of the specification 

between keywords ‘snippet_vc:’ and ‘end_snippet’ specifies the actual ANSI-C snippet function call 

code, which will be inserted into the test program (lines 30 to 38). In some cases, such as the 

RxTxUart snippet, the function call code uses parameters which are resolved later by SAGETEG. 

In the snippet specification, any parameter that needs to be resolve are pre-pended with a ‘$’ sign. The 

upper portion of the snippet specification (lines 17 to 26) states how that corresponding parameter is to 

be resolved using the ‘def_param’ parameter definition keyword. These parameter definitions specifies 

whether a parameter will be assigned a constant value, random value within a lower and upper range, 

value chosen from a set of discrete values, act as a counter, etc. Alternatively, the parameter may be 

assigned a value from the user-provided external snippet API function associated with the snippet. 

These external snippet configuration API functions are described in Section E.8.3 next. The external 

API functions are required for more complex snippets that require global data declarations, external 

I/O data streams, or parameters that need to be assigned with specific values depending on other 

selection decisions made for the snippet.  

Prior to insertion into the test program, the test generator will look up the parameter specification and 

replace the corresponding parameter name with appropriate values. For example, in Figure E.12, the 

first parameter, ‘RxTxUart_mode’ (line 32) is resolved by the test generator choosing values from a 

discrete set of 0 or 1 (line 18). The remaining parameters are resolved using values chosen by the 

external snippet function. Using the ‘ext_snippet_fn’ keyword (line 15), an external snippet 

configuration routine is specified to assist the test generator to configure the RxTxUart snippet for 

inclusion in the test programs. The purpose and usage of the snippet configuration routine is described 

in greater detail in Section E.8.3. 
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Figure E.12 Example of a snippet definition in the snippets library specification file 

In Figure E.12 at lines 31 and 38, the ‘TestBegin’ and ‘TestEnd’ function call is used to signal the start 

and end of a snippet operation, in this case, a RxTxSnippet snippet. These functions are used purely for 

logging and test statistical purposes. The ‘testBegin_id’ and ‘testEnd_id’ (lines 31 and 38) are global 

test program parameters defined at the beginning of the specification file to keep track of the snippets 

executed.  

1  snippet RxTxUart 
2     # Tests the Transmit and Receive functions of UART device transfers 
3 
4      snippet_weight 20 
5 
6      dependency RxTxUart pre_non_strict ResetUart 
7 
8     # RxTxUart uses an external snippet function to assist the test generator to  
9     # configure the snippet, 
10    # e.g. 1) resolve snippet parameters,  
11    #        2) declare global data structures (i.e. the TxUart_Buffer data to transmit) 
12    #        3) generate external data stream (i.e. the external data stream the UART  
13    #            receives) 
14    # External snippet function pointers table index : 1 
15    ext_snippet_fn 1 
16 
17    # RxTxUart snippet function call parameters to be resolved by the test generator 
18    def_param discrete RxTxUart_mode 0 1 
19    # RxTxUart snippet function call parameters to be resolved with assistance 
20    # from external snippet function 
21    # (All parameter values are returned by external snippet function as type string 
22    #  corresponding to their given index in the table of returned parameter values) 
23    def_param ext_param RxTxUart_length string 0  
24    def_param ext_param RxTxUart_useEop string 1 
25    def_param ext_param RxTxUart_Eop string 2 
26    def_param ext_param TxUart_buffer string 3 
27 
28    snippet_vc: 
29 
30       // UART RxTx Snippet 
31       TestBegin($testBegin_id); 
32       RxTxUart($RxTxUart_mode,  // Transfer mode (interruptible?) 
33             $RxTxUart_length,     // Transfer size 
34             $RxTxUart_useEop,  //  Transfer terminate by end-of-packet? 
35             $RxTxUart_Eop,        //  end-of-packet byte, if used 
36             $TxUart_buffer  // buffer of data stream to transmit 
37            ); 
38       TestEnd($testEnd_id, 1); 
39 
40  end_snippet 
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Each snippet specification may also include dependency and constraint rules that must be adhered to 

by the snippet. For example, the RxTxUart snippet has a pre non-strict dependency on the ResetUart 

snippet (line 6). This dependency states that the UART must be initialised at least once prior to any 

UART transfers conducted by the RxTxUart snippet. These dependencies were formally described in 

Section 4.5.2 at Chapter 4. 

Another feature of the snippet specification library file is the use of selection probability weightings 

for each snippet. During test generation, when the GEA process creates initial test individuals or 

snippets are added using variation, selection weights influence which snippets are more or less likely 

to be chosen for inclusion into the test program. This enables user-directed testing initially, to drive the 

test generator to create tests that focus on specific SoC devices or operations. For example, at line 4, 

the RxTxUart snippet is assigned an initial snippet weight of 20 using the ‘snippet_weight’ keyword. 

All snippets in the snippet library specification file are assigned an initial snippet weight. During test 

generation, snippet selection weights are then automatically adjusted according to the self-adaptation 

strategy from Section 4.5.10 Chapter 4. 

A similar biasing capability was also provided in the random-only SALVEM test generator to 

influence what snippets are chosen. However, providing selection probability weights in conjunction 

with a GEA process implements a guided random search technique. The test programs created will 

eventually evolve to an optimised state under the initial direction of user specified snippets and re-use 

of high coverage tests fed back from previous test generations. 

The complete set of snippets in our snippets library for GEA testing of the Nios SoC is the same as that 

from Table E.4. Higher probabilities values are given to snippets that invoke SoC device transactions; 

in particular, snippets that perform operations concurrently with multiple devices such as the DMA 

snippets. Our snippets library includes the discrete Fourier transform (DFT) and inverse discrete 

Fourier transform (IDFT) snippets that perform DSP related operations to test the CPU core. These 

snippets were in fact created to test a digital signal processing (DSP) SoC previously [CLS+08], but 

could be reused for testing the Nios SoC here. Similarly, snippets such as the DMA snippets developed 

for the Nios SoC can also be used for DSP SoC testing as the DSP contains a DMA device as well 

(Section 4.12 Chapter 4 describes SALVEM testing of this DSP SoC). Despite being created to target 

specific SoCs, existing snippets can often be reused to help build up the snippet library for other 

different SoC testing. Thus, providing significant benefits for reducing engineering effort, whilst 

ensuring comprehensive snippets libraries can still be created. 
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Finally, besides the list of snippets and their configuration data, the snippets library specification file 

also contain global test program configuration information. Any parameter definitions, dependencies, 

or constraints not enclosed within a snippet specification (i.e., within keywords ‘snippet’ and 

‘end_snippet’) is considered global, and applies to the entire test program during test creation. The 

specification file also specifies setup and cleanup code that must be inserted verbatim at the beginning 

and end of each test program. The setup code is needed to provide various device driver ‘include’ 

header file statements, the top-level test program ‘int main (...)‘ routine opening, and other global 

declarations needed in the ANSI-C based SALVEM test program. Before the test program concludes, 

any remaining snippet checking code, and SoC device reset or termination code will be placed in the 

cleanup section. 

 

E.8.3 External snippets API and snippets configuration routines 

In the snippet library specification file, a snippet can specify its association to an external snippet 

configuration routine using the ‘ext_snippet_fn’ keyword followed by an integer index (line 15 in 

Figure E.12). The integer index is used to select from a list of pointers, the corresponding C++ snippet 

configuration routine function in the external snippet configuration class. The external snippet 

configuration class is a C++ class file that can be compiled into an API library and externally linked to 

the main test generator code. This enables the SAGETEG to call upon a snippet’s associated external 

function when that snippet is selected for insertion into the test program. 

The aim of external snippet configuration routines is to supplement the setup information of snippets 

listed in the snippet library specification file. A snippet’s configuration routine will (1) select 

appropriate snippet parameter values, (2) create any additional test program data structures, and (3) 

generate external simulation data streams to be used by the snippet function during SoC operation. 

For simple snippets, the snippet function call code can be simply inserted into the test program 

selecting various random parameter values independently on-the-fly. However, for more complex 

snippets, the snippet operation carried out requires the snippet function call parameters to be chosen 

carefully. The snippet could be restricted to operate under certain conditions only. If so, selection of 

snippet parameters may be constrained or depend on other snippet operation options chosen by the test 

generator earlier. Specifically, a snippet parameter value may depend on other previously chosen 

parameter values. For example, for UART snippets, if UART end-of-packet termination is chosen for 

the transfer termination parameter, the test generator must ensure the end-of-packet byte character is 
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assigned to the end-of-packet parameter. SAGETEG calls the snippet configuration routine to ensure 

these dependent parameters are assigned appropriate values.  

Besides parameters, certain snippet operations may require additional configuration data to be 

generated. These may include global data structures at the start of the test program or external streams 

of byte data fed to the SoC I/O devices via Verilog ‘.dat’ files. For example, many CPU matrix based 

snippets require array data structures in order to perform their required matrix operations. These array 

data structures are generated by the external snippet routine. They are usually declared at the global 

level at the start of the test program and used by the matrix snippets functions. The global arrays 

provide the inputs to the matrix snippets, and also the expected results to check against outputs from 

the matrix operations. For UART snippets, the receive and transmit data byte stream are also generated 

by the configuration routine. These data streams are also used as inputs and for expected results 

checking of UART snippets; to demonstrate serial transfers were conducted correctly. 

Figure E.13 shows the relationships between the external snippet configuration routines class, snippet 

library specification file, test generator engine (SAGETEG), and the test program when a UART 

snippet is configured into the snippet sequence of a test. The dotted arrows indicate which modules in 

the test generation stage are responsible for certain components of the test. As described above, the 

actual UART snippet function call (excluding parameters that need to be resolved) is copied verbatim 

from the RxTxUart specification in the snippet library specification file, indicated by dotted arrow A.  

To resolve parameters, the UART snippet function parameter values are provided by its corresponding 

configuration routine in the external snippet configuration routines class (dotted arrow B). The external 

snippet routine also defines the global data structure declaration as indicated by dotted arrow C. In this 

case, the global data declaration is an array of byte characters that the UART snippet function will 

transmit. Finally, dotted arrow D shows the external data stream of characters that will be used during 

SoC simulation for testing the UART receive function. Again, the external UART snippet routine is 

responsible for generating the data stream file. 

In Figure E.13, the generation of global test program data structures and external data streams must 

also take into consideration various dependencies and constraints with the chosen snippet parameters, 

and vice versa. For example, if UART end-of-packet termination is to be used, the selected end-of-

packet data byte assigned to the end-of-packet parameter must be generated as part of the global test 

program transmit array and UART receive external data stream. The aim of the external snippet 

configuration is to select a range of different snippet operations for the test programs each time; whilst 
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ensuring that the appropriate parameters, global test program data structures, and external data streams 

are generated by the test generator to satisfy any constraints or dependencies. 

 

Figure E.13 Test generation outputs to facilitate test creation and simulation 

The advantage in supplementing the test generator with external user-defined routines, is that any 

complexities in the configuration of snippets into test programs can be handled separately and 

specifically for each snippet; and independent of the test generator as well. The test generator can 

focus solely on the test program creation process itself. For verification of other SoCs, whenever more 

complex or different snippets for other SoCs are added into the library, the test generator does not need 

to be modified. Once the snippet API library functions and SoC device drivers are updated, only the 

snippet library specification file and a new external snippet configuration routine needs to be provided. 

This enables more straightforward upgrades of the snippets library with new snippets, and the test 

generator can be easily applied for different SoCs using different snippets library. 

 

E.8.4 Other features of SAGETEG implementation  

In addition to the test generation features above, other amendments were introduced into the genetic 

evolutionary process. These modifications are considered minor and can be controlled by the user 

before execution of the test generator. The aim is to try and enhance test generation by introducing 

slight deviations into traditional GEA flows and conventional parameter options.  Firstly, the number 
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of variations applied to create a new test during each evolution is not fixed. SAGETEG may apply one 

or more different types of variation on an existing test from the current population to create the new 

test for the next evolutionary population. Prior to test generator execution, an upper limit is placed on 

the number of variations each test can undergo. Then during test evolution, each new test will undergo 

random variations each time as long as the number of variation operators applied does not exceed this 

limit. This mimics real-life evolutionary processes more closely, as new individuals from each 

evolutionary stage experiences far more complex interactions and modifications, rather than a single 

variation as was previously applied in earlier test generators [CCRS03a, CCRS03b, CCS03, CL07, 

CLS+08]. 

Furthermore, like proper evolutionary processes, individuals have a limited life span. Therefore, our 

test generator can be configured to impose limited life spans on tests. Previously, as long as any test 

does not fall into the bottom group of low coverage fitness, the test will be retained and continue to 

survive through future evolutions regardless. Hence, it is possible for tests to be created during the 

initial evolution and live till the end of the test generation process. Imposing a limited life span into 

test generation, any test regardless of its high fitness quality, will be removed from the test population 

whenever it has survived through a number of evolutions that exceeds its allowed life span. Imposing 

limited test life spans allows the test population to be refreshed with completely new tests from time to 

time. Otherwise after many evolutions, the test population may simply be over dominated with certain 

types of tests. Whilst these tests may provide the best coverage, no further improvement may be 

possible, and their unlimited life spans would prevent any significantly different tests from being 

introduced. New tests in future evolutions would simply be created by some small variant of these 

immortal tests. 

There is one exception to enforcing limited lifespan. During test generation, if the best test that attains 

the highest coverage fitness thus far has outlived its life span, despite eliminating that test from the 

population, the test generator will still keep a copy of that test for future testing purposes. These best 

tests can then be analysed to identify what kind of SoC operations yielded the best coverage, and can 

even be reused in initial test population for future test generations. The test generation can be 

configured to keep track of the best x number of tests, for example, the top three tests. 

For recombination variation, another modification introduced was the use of variable tournament 

selection sizes. Rather than be limited to rigid two individuals tournament selection previously 

[CCRS03a, CCRS03b], SAGETEG uses fluctuating number of individuals in our tournament 

selections. This provides more variation in the range of parents selected for recombination. Note that 
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the number of individuals used in tournament selection is also adjusted using the self-adaptation 

method from Section 4.5.10 Chapter 4. This allows automatic self-adjustment by the test generator to 

seek the best tournament selection size over the course of the test evolutionary process. In contrast, the 

original µGP approach was restricted to a fixed two member tournament selection scheme. Although, 

this was later extended by Sanchez [SSR+05] to incorporate an adaptive size similar to our approach 

above. 

Finally, for the initial first evolution test population, SAGETEG can be specified to create these tests 

with different initial population sizes. Usually, the initial tests are created to contain a very low number 

of snippets, possibly even no snippets to represent an empty initial test. This allows the test generator 

to fully control the evolution of these tests. The test population will be grown entirely by variation to 

attain the maximum coverage efficiently, without using tests that are larger than necessary and 

wastefully taking up simulation time. 

 

E.9 SAGETEG implementation comparisons with µGP 

Given our implementation of GEA test creation techniques in SALVEM, a review of test generation 

features and comparison to other test generator such as µGP was conducted to highlight differences 

and identify any improvements that could be built into SAGETEG in the future. Firstly, the µGP uses 

instructions from a microprocessor’s instruction set architecture as building blocks to create assembler 

instruction test programs. The µGP’s instruction library is fixed and limited by the types of 

instructions that are defined for a processor. Each of their test building block instructions exercises 

units on the processor only. In our case, we employ a library of carefully crafted snippet functions. 

Despite having to create these snippet functions, our library of snippets is expandable and can invoke 

operations to test standalone devices or multiple system-wide interactions amongst different modules 

on the SoC. New snippets can be created or re-used from other similar SoC verification platforms for 

inclusion into the snippets library. The snippet library can be enhanced when needed and is not fixed.  

Moreover, to add new snippets into our snippets library, each new snippet can be associated with an 

external snippet function that assists in the configuration and insertion of that snippet into test 

programs (Section E.8.3). This external snippet configuration routine is simply defined as part of an 

external C++ class that is complied and externally linked into the test or as an API library. For the 

µGP, any change in the instruction library would be limited to creating different shorter length sub-

sequences of existing instructions that are captured in their macros. However, these macros are still 
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reliant on to the processor instruction set. If the processor architecture is not revised or the associated 

instruction set not updated, then the test capabilities of these macros are not modified at all. This is not 

surprising given the much simpler nature of the instruction test building blocks compared to our 

SALVEM snippets. Given the types of lower level processor operations conducted, the µGP only 

requires variation in instruction operands. Unlike SALVEM GEA test generation, other external data 

or complex parameter assignments are neither possible nor necessary. 

In SAGETEG, well-defined dependency and constraint rules are specified to ensure test programs are 

created properly by variation. For the µGP, no clear dependency rules are defined. However, it is clear 

that under certain conditions, certain sequences of instructions must be executed. To enforce this, the 

µGP uses macros in their instruction library to define these instruction sequences and inserts them into 

tests. These macros facilitate similar pre and post strict dependencies in an ad-hoc manner. Like 

snippets, it is also obvious that some instructions do not need to be executed immediately before or 

after certain instructions. In SAGETEG, pre and post non-strict dependencies were used to 

complement existing strict dependencies whenever required snippets can be executed anywhere before 

or after the current dependent snippet in the test program. However, in the µGP, only strict 

dependencies can be enforced. 

Similarly, in the µGP, no constraint rules are formally defined. The only constraint placed on µGP test 

creation is the prevention of critical branch or jump based loops being broken, or the formation of 

infinite loops by variation operators. In contrast, SAGETEG must follow a list of stringent rules when 

using variation or choosing snippet parameters. The lack of properly defined dependency and 

constraints rules in µGP is due to the simplistic nature of their instructions building blocks. The 

snippets and eventual SALVEM test programs are much more complex in the types of SoC processes 

it initiates. The operations invoked must be able to test a range of legal, unexpected and erroneous 

scenarios, whilst ensuring the test program can be executable and do not result in simulation dead-

locks. 

Both SAGETEG and µGP employ self-adaptation for various test creation parameters such as selection 

of variation operators during the test creation process. In both test generators, the self-adaptation 

technique was initially based on Rechenberg’s rule. However, unlike µGP, in addition to variation 

operators, SAGETEG also applies automatic self-adaptation to other test creation parameters such as 

snippet selection probabilities and recombination variation tournament selection sizes. In addition, for 

SALVEM GEA test generation, we revised our own self-adaptation method specifically to match the 

types of test population and test creation processes that provide better adaptation of test parameters. 
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For the µGP, their self-adaptation method also differs slightly. µGP employs ‘inertia’ in its test 

variable adjustment scheme. Even if test variable changes are suggested by Rechenberg’s rule, µGP 

will not modify any variable too greatly due to their inertia factor.  

In terms of test variation, both test generators employ similar operators as per any conventional GEA 

process. However, SAGETEG allows for greater flexibility in the way the variation operations are 

carried out internally. For example, recombination variation uses parents selected from tournament 

selection with changing sample sizes. Also, instead of single variation, a SALVEM test may undergo 

multiple variations during each evolutionary stage. And finally, unlike µGP, SAGETEG can be 

configured to select which individual variations are more or less likely to be employed initially. In 

µGP, only a single probability weighting can be selected, and all variation operators will be assigned 

this same value. As explained in Section 4.5.8 Chapter 4, to ensure the test population evolves in the 

best manner, the initial selection probability weightings of each variation operators must be specified. 

In fitness evaluation, both µGP and SAGETEG may use multiple fitness measures for evaluation of 

test effectiveness during the GEA process. Specifically for test generation, both methods use various 

coverage metrics such as line, toggle or conditional coverage as test fitness quantifiers. In the µGP, 

multiple coverage fitness values can also be used simultaneously for the same single test generation. 

The µGP uses a ranking system whereby certain coverage metrics are given higher priority. When 

evaluating and comparing fitness amongst tests, higher priority coverage metric will be used first 

before examining lower priority ones. For SAGETEG, each of these coverage metrics can be used 

independently to drive each test generation process, and this is the approach taken for experimental 

purposes in Chapter 4. Our aim was to maximise each coverage metric. This is best achieved by using 

a single coverage metric as the sole fitness quantifier and running the test generation independently. A 

test generator that is driven by a single coverage metric is much more effective at maximising that 

metric compared to creating tests that needs meet multiple coverage criteria. To assess the quality of 

the test suite, µGP also uses methods based on De Jong’s on and off line performance measuring. In 

SAGETEG, a more simplistic averaging technique is used to calculate test suite quality instead. Rather 

than simple ranking, to truly consider multiple fitness for driving test generation, a proper multi-

objective GEA process such as that described in Chapter 6 is much more effective. 

For test evolutionary termination, SAGETEG implements an additional termination criterion compared 

with µGP. Whenever the resultant fitness in the test population does not improve for certain 

consecutive number of evolutions, the test generator process will end. This additional termination 

check helps ensure the test generation process does not continue needlessly without the test population 
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actually enhancing test coverage. The termination condition indicates when the test population must be 

refreshed again and the test generation process should be restarted. Using a new initial test suite, the 

test generator may be led to other unverified portions of the test space previously not possible with 

current stagnated test populations. 

Other significant differences between the µGP and SAGETEG are as follows. µGP provides a test 

population save and restore feature, which allows the test population from any evolutionary stage to be 

saved. Then later, test populations can be restored and used as the initial population for future test 

generation runs. The main advantage from this is when µGP employs a test suite assimilation tool as 

well. Sanchez et al. uses the save and restore feature to propose a method whereby old tests from 

previous design and verifications phases can be reused to refine and create new tests for future design 

and verification phases [SRS05]. Alternatively, the save and restore feature can be used to merge new 

tests with regression tests. When new tests are created for newly implemented hardware design 

features, these new tests can be assimilated into the previous test suite population. The combined test 

population can then be used as the initial population to begin verification of the new hardware feature. 

In this way, new design features can be tested better with regression testing. In our case, such save and 

restore features or assimilation of test suite between verification phases is beyond the scope of this 

thesis currently. However, a save and restore capability can be easily implemented as each test is 

internally represented using a simple data structure; which can be simply transferred via simple text 

files.   

µGP also enables parallel test generation of evolving test suites using multiple simultaneous fitness 

evaluation and test population save and restore capabilities. However, for SAGETEG, such parallel 

test runs was not deem important given the sufficiently fast simulation speeds that is available, even 

from moderately powerful computers today. Additionally, snippets tests are not overly large and can 

be simulated quickly. At this stage, adding parallel test generation capabilities would not add much 

value into our test generator. 

Finally, unlike the µGP, SAGETEG is able to revert back solely to a pseudo random test generator 

similar to many other random test creation tools proposed previously. In this configuration, all test 

creation decisions are purely random without any influence from GEA. No tests are retained or 

discarded, and the test generator simply creates all tests randomly to make up the specified number of 

tests needed to fill the test suite. The aim of providing pure random-only test generation capability is to 

gauge the original SoC coverage using a basic test suite without any GEA influence. Once an initial 

estimate of SoC coverage is obtained, the effectiveness of SAGETEG and coverage improvement 
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attained from the GEA process can be better measured. This also assists in the fine tuning process to 

check whether GEA enhancements add value to the test creation strategy, which also allows for more 

complete comparisons for experimental purposes.  

The aim of the above SAGETEG usage and operational features are to provide greater control in how 

the GEA test generation process is conducted for SALVEM. This enables a wider range of fine tuning 

options to maximise verification effectiveness of SAGETEG to suit different SoCs. 

 

E.10 Snippets employed for SAGETEG test generation for the Nios SoC 

Table E.4 lists the snippets and their selection weightings for verification of the Nios SoC using 

SAGETEG. Selection weightings influence which snippets are chosen into test programs. Higher 

weights are given to snippets that invoke concurrent SoC operations or execute intensive SoC 

functions, such as CPU or DMA device snippets. Lower weights are given to reconfiguration or 

monitor snippets that setup devices for functional executions or check expected results. The snippets in 

Table E.4 represent an adequate set of SoC functions for stressing the Nios SoC. Each snippet can be 

mutated with many different input parameters to invoke a wide range of SoC functions to test. Indeed, 

the benefit of the snippets approach is that the number and types of snippets that make up the snippets 

library should not be more than necessary. This enables optimal test program sizes and efficient test 

simulations. Note that unlike the µGP feasibility study test generation in Appendix E.2, SAGETEG is 

able to use the entire set of snippets as is, without any needless modification or mapping of the 

snippets library. 
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Table E.4 Snippets employed for SAGETEG test generation 

Snippet Weight Function 
InitDMA 15 Configures DMA for transfer 
ExecDMA 20 Executes and monitors DMA transfer 
TermDMA 10 Terminates DMA transfer 
CheckDMA 10 Validate DMA transfer success 
ResetUart 10 Initialise UART device 
TxUart 20 Transmit serial data 
RxUart 20 Receives serial data 
RxTxUart 20 Duplex serial data transfer 
RxTxNDupUart 20 Non-duplex serial data transfer 
GenRandNumSeq 20 Generates random number sequences on CPU 
MatrixMultiply 20 Performs fast matrix multiply on CPU 
MatrixInverse 20 Performs matrix inverse on CPU 
Search 20 Performs large intensive search algorithms on CPU 
Sort 20 Performs fast binary, bubble, etc sorts on CPU 
Convolve 20 Performs DSP signal convolution function 
DFT 20 Performs DSP discrete Fourier transforms 
InvDFT 20 Performs DSP inverse discrete Fourier transforms 
WriteMemory 20 Executes data units writing to on/off chip memories 
ReadMemory 20 Executes data units reads from on/off chip memories 
WriteReadMemory 20 Executes writes/reads of on/off chip memories 
TestMemoryLogic 20 Checks correct operations of memories control logic 
WriteROM 20 Specialised on-chip ROM testing 
MissAlignedAddr 20 Invokes misc. memory error conditions handling 
RestartTimer 20 Initialises the timer  
ReadTimer 20 Checks correct timer operation and accuracy  
SetTimerPeriodAutoRestart 20 Reconfigures timer parameters to restart timer ops 
SetTimerPeriodNoAuto-
Restart 20 Reconfigures timer parameters and delay timer ops 

StopTimer 20 Terminates timer operations 
SetupPIO 10 Initialise or clears PIO pins 
ConfigPIODir 10 Re-configures PIO data directional pins 
WritePIO 10 Transfers parallel data 
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E.11 Coverage results for Nios SoC devices 

Table E.5 reports the coverage results for individual devices on the Nios SoC from experimentations in Section 4.11 Chapter 4. 

Table E.5 Coverage result for individual devices on Nios SoC 

Line coverage % CPU DMA Memory Misc. SoC units PIO Timer UART SoC 

SAGETEG 99.8 100.0 100.0 96.7 96.2 100.0 96.7 98.9 

µGP 98.2 100.0 100.0 93.0 98.7 79.2 94.9 97.5 

Randomised 98.6 99.4 67.6 50.5 98.3 97.6 96.0 89.9 

Manual application 61.4 98.5 35.8 75.4 82.0 100.0 95.0 66.6 

Toggle coverage % CPU DMA Memory Misc. SoC units PIO Timer UART SoC 

SAGETEG 96.3 97.5 96.1 92.3 89.5 54.6 71.3 93.7 

µGP 89.6 95.6 94.2 86.6 89.5 14.6 58.6 87.1 

Randomised 75.6 97.0 82.3 90.5 89.5 61.7 58.4 79.2 

Manual application 49.2 78.9 21.8 77.5 49.5 14.6 57.6 48.8 

Conditional coverage % CPU DMA Memory Misc. SoC units PIO Timer UART SoC 

SAGETEG 82.5 98.5 N/A 89.2 75.0 88.5 85.3 83.0 

µGP 72.1 93.9 N/A 88.6 75.0 28.8 72.3 72.4 

Randomised 68.5 87.9 N/A 90.8 75.0 88.5 74.5 69.3 

Manual application 65.3 80.3 N/A 77.3 37.5 82.7 66.3 65.6 
Note : Memory units do not contain any conditional design code descriptors, hence are not applicable for conditional coverage measurement.. 
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E.12 Coverage attainment above 80% 

In Chapter 4, Section 4.11.2 described experimental results for SAGETEG whereby full coverage was 

not achieved. Whilst the SAGETEG gain over other test generation methods may not appear 

outstanding, especially for line coverage, one must consider these coverage results from a general 

verification perspective, taking into account the coverage levels already achieved. 

To put results into proper context, for verification in general, attaining the final 5 to 10% coverage is 

exponentially difficult for any hardware design, let alone SoCs. Therefore, even a small percentage 

coverage gain above 85 to 90% is considered extremely valuable when compared to other methods. 

The fundamental impediment against coverage gain is that coverage increase is non-linear. It becomes 

exponentially difficult and displays a exponential or saturation characteristics as the coverage gets 

closer to 100%. Therefore, the coverage gain by SAGETEG over other methods is in fact highly 

beneficial. 

From a genetic evolutionary algorithm perspective, SAGETEG GEA variation seeks out a range of 

different test regions, some of which are usually disjoint and independent. Some test regions may yield 

higher or lower coverage, hence account for variation spikes in the raw coverage progress graphs 

(Figures 4.12 to 4.14, Chapter 4). But the goal is to seek out unexplored test regions to creep closer 

toward full coverage. Therefore, the GEA process explores one region to another trying to seek out 

local maximums; if any are uncovered, variation weights still allow for test generation to seek out 

other regions. Over the GEA process, the aim is to sort out and only examine the more fruitful regions, 

to search for those local maximum and eventually attain the overall maximum for the current GEA 

process. At this point, the coverage is likely to saturate, and a new GEA process (test generation) must 

be restarted. The purpose of SAGETEG (and the GEA process) is allow for repeated executions so that 

further gains toward full coverage can be facilitated; even if each execution may yield low or non-

existent gains because of the exponential difficulty with conquering the remaining 5 to 10% coverage.  

Eventually, with new snippets libraries and initial test populations, full coverage should be possible. 

Also, our use of GEA is slightly different from conventional usages of GEA in problem solving or 

optimisation problems. Even though we define a definitive function or problem formulated objective 

equation to solve, our aim is not solely restricted to finding the one best solution that optimises or 

solves the particular function problem. We also make use of the GEA process to help enhance and seek 

out best coverage of the overall test suite (i.e., seek out as many fruitful high coverage yielding test 

regions). By targeting such a goal as well, at the end of test generation, the test suite will contain 

greater majority of high coverage tests that collectively provides greater overall cumulative coverage 

of the SoC. 
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E.13 Supplemental coverage progress graphs for SAGETEG 
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Figure E.14 Line coverage versus snippets 

50%

55%

60%

65%

70%

75%

80%

85%

90%

95%

100%

0 5000 10000 15000 20000 25000 30000
Snippets

Toggle coverage
SAGETEG (cumulative)

SAGETEG (raw)

µGP (cumulative)

µGP (raw)

randomised (cumulative)

randomised (raw)

 
Figure E.15 Toggle coverage versus snippets 
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Figure E.16 Conditional coverage versus snippets 

 

E.14 Genetic evolutionary effects on test generation efficiency 

Despite obvious advantages using a genetic evolutionary method for test generation by SAGETEG, 

some penalty is incurred for conducting GEA operations. Attaining a higher (or equivalent) coverage 

using an optimised or smaller set of tests enables efficient test execution, but this is offset partly by 

resources required to carry out more complex evolutionary test create operations. In Appendix D, a 

random-only test approach simply selects random snippets and snippet parameters to form test 

programs. An evolutionary scheme however, requires consideration of preceding test generations and 

the types of tests created previously. Previous test programs are analysed to influence the types of 

snippets chosen for composing new tests. For example, snippet sequences from previous higher 

coverage yielding test programs are reused more often. Managing the population of prior tests and 

conducting snippet sequence analysis requires greater compute resource requirements. 

Furthermore, besides simple random and mutating operations, other more complex variations such as 

snippet addition, removal or recombination are employed by SAGETEG. To form test programs using 

these operators, the test generator must ensure any modifications to existing snippet sequences do not 

violate any constraints or dependencies, i.e., the new test must still be executable. For instance, 
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recombination of two parent tests to form child test programs is complex. A suitable cross over point 

must be selected from both parents and checked for validity to ensure legal child test programs are 

created. Additionally, snippet variation dependency and self-adaptation considerations must be 

processed (Sections 4.5.8 to 4.5.10, Chapter 4). The processing time and resources needed to conduct 

these operations are greater than simply choosing test entities randomly. Maintaining and manipulating 

the population of tests including fitness values, and performing more complex variation and population 

selection operations implies the overall GEA test generation would take longer. However, these 

perceived shortcomings are considered acceptable trade-offs given the enhanced coverage that can be 

achieved. 

 

E.15 Test generation effectiveness factor 

To objectively demonstrate the usefulness of SAGETEG, we consider its coverage, time and memory 

usage results together by defining and evaluating an effectiveness factor metric. The goal of evaluating 

this effectiveness factor is to examine how much coverage improvement a test generation technique 

achieves, taking into consideration time and size factors. The factor is defined in Definition E.3. It 

considers the number of tests that achieved coverage improvement, and for each such test, the factor is 

directly proportional to coverage gain but inversely proportional to time and size usage.  

Definition E.3 : Test generation effectiveness factor 

Let n be the number of tests that achieved coverage improvement from the particular test generation 

method, the effectiveness factor is given by, 

 ∑
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where gi  is the gain achieved by the ith test, 
 ti    is the test execution and test generation time required by the ith test, and 

si  is the memory size usage of the ith test. 

 

The effectiveness factor examines the coverage gain achieved by each test, and weighs up this 

enhancement against the time and size trade-offs required to attain such gain. 



APPENDIX E.       439 

The effectiveness factor calculated for all results from SAGETEG, µGP, and randomised testing are 

0.31, 0.06, and 0.01 respectively. This supports the notion that SAGETEG performs most effectively 

to achieve best coverage given trade-offs in time requirements and memory size usage. The low 

effectiveness of µGP and randomised is largely attributed to their lower coverage results, and the 

excessive number of tests and snippets employed to gain this coverage. 

 

E.16 Applying SAGETEG to a DSP SoC – supplementary details of the 
case study 

This appendix provides additional details for the case study in Section 4.12 Chapter 4, whereby the 

SAGETEG test generator is employed for verifying a DSP SoC. 

 

E.16.1 Introduction 

A digital signal processor (DSP) system-on-chip (SoC) can be designed using a variety of architectures 

and techniques. This often presents different verification challenges compared to conventional SoC or 

processor designs. Verification of such designs should take into account the goals and applications of 

the DSP, and how they are eventually used. The case study proposes an application based verification 

methodology (SALVEM) along with a genetic evolutionary test generator (SAGETEG) to demonstrate 

this technique on a real-life DSP SoC design. 

Designing digital signal processor (DSP) SoCs also create other verification complexities given the 

range of applications and end products DSPs are employed within. In order to test a DSP design more 

effectively, consideration must be given to how the DSP will be used and their intended applications. 

The eventual real-life usages of a DSP determine the particular design features and functions that are 

needed in the DSP. It is these design functionalities and their complexities that must be verified in-

depth. Therefore, any effective verification strategy must incorporate extensive testing with application 

functions.  

To demonstrate this, the software application level verification methodology (SALVEM) is employed 

to test the Tsinghua University Application Specific DSP (THUASDSP2004) [ZHZ+06]. The 

SALVEM technique was successfully used on the Nios SoC previously. The aim of this case study 

was to describe the application of SALVEM on a real world DSP SoC; thus demonstrate its feasibility 
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and usefulness for DSP testing. Furthermore, for verification of the DSP, SALVEM is enhanced by an 

automated test generator (SAGETEG) that uses genetic evolutionary methods to create tests. 

The THUASDSP2004 DSP is an ideal candidate for SALVEM. It was designed specifically for 

multimedia applications and contains common DSP function blocks such as high performance 

mathematical and fast data transfer units, along with other specialised modules. These DSP 

architectural features are to be tested by SALVEM to enhance the design and verification quality of the 

DSP SoC. 

Previously, certain DSP design and modelling environments like Matlab or Simulink do not describe 

the true hardware design implementation that will be eventually tape-out. They focus on high level 

DSP algorithmic validation, but the actual hardware design is not tested directly [Dau05]. Another 

DSP verification solution from Coware [CoW] allows for hardware design testing. However, to use 

Coware, designs described in Matlab must be synthesised to an equivalent hardware description using 

the AccelChip synthesis tool. These DSP test solutions are not suitable for all designs. Our 

THUASDSP2004 SoC contains different architectural features from conventional DSPs, and does not 

use the AccelChip synthesis flow. 

Our approach is to employ the SALVEM technique with an inbuilt genetic evolutionary test generator. 

The aim of SALVEM is to create tests based on the application use cases of the SoC. Hence, important 

functionalities critical to the real-life operations of the SoC are guaranteed to be tested and verified. 

 

E.16.2 Description of the DSP SoC 

The Tsinghua University Application Specific DSP (THUASDSP2004) SoC [DHZ+05, ZHZ+06] is 

made up of a clustered very-long-instruction-word (VLIW) processor core for conducting DSP 

operations, memories, I/O modules such as interrupt and memory controllers, and a DMA for 

transferring large signal data. Figure E.17 shows the SoC architecture. 
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Figure E.17 THUASDSP2004 DSP SoC architecture 

The THUASDSP2004 is designed to be configurable for use in various multimedia applications 

similar to a field programmable gate array (FPGA) based design, whilst delivering high performance 

matching that of an application-specific integrated circuit (ASIC) DSP [DHZ+05, ZHZ+06]. To 

achieve this, the DSP is built upon a clustered VLIW platform whereby different SoC functions can be 

grouped into different clusters or sub-divided into different function units. Adopting such an approach 

enables scalability and flexibility. Depending on the intended usages and requirements of the DSP, the 

design can cater for different numbers and configurations of clusters or function units [ZHZ+06]. 

Hence, resources such as instructions and register usage can be distributed across function units or 

register files. Instruction level parallelism and optimal performance is also achieved for the range of 

intensive multimedia applications. 

Different clustered architectures will require different test conditions; therefore, any viable DSP 

verification approach must be able to accommodate these configurations. The SALVEM approach uses 

parameterisation in the snippet test building blocks to cater for various configurations, and adds new 

snippet test building blocks when clusters or function units are added or modified. Different snippet 

blocks and different snippet parameters creates new test programs each time the DSP architecture 

changes. 

Signal processing requires intensive numerical calculations and large data array storage and transfers. 

Therefore, the THUASDSP2004 DSP contains specialised arithmetic logic (AL), multiply (ML), 

address branch (AB), and load/store (LS) function units specially designed for such DSP operations.  
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Furthermore, the THUASDSP2004 DSP also implements a unique register file based inter-cluster 

communication system [ZHZ+06]. In the DSP, a global register file is used to network clusters, and 

facilitate data transfers between function units. Whenever data produced by one cluster is needed by 

another, the data will be duplicated in the global register file and can be gathered by the other cluster. 

The advantage from such an implementation is that all data transfer delays and conventional bus cycle 

latencies are eliminated. Using this communication scheme amongst function units speeds up software 

pipelining, removes loop anti-dependencies, and enhances instruction level parallelism [ZHZ+06]. 

Furthermore, different configurations of clusters are connected easily with this register file. 

Given these unique DSP features, SALVEM makes use of individual snippet building blocks to test 

specific operations of the DSP’s function units, and also the global register file inter-cluster bus 

system. 

 

E.16.3 Snippets library for DSP SoC verification 

Snippets test building blocks must be carefully designed keeping in mind the type of SoC under 

verification. A DSP SoC must perform high intensive arithmetic operations at sufficiently precise fix 

or floating point level. Data handling mechanisms such as address generation, array handling and data 

transfers are also important given the large amounts of signal data that must be manipulated efficiently. 

For example, a DSP often requires many registers to hold temporary or intermediate data during 

processing. To ensure correctness of these DSP functions, a library of snippets for the SoC was 

created. Most of these snippets are self-checking, flagging test failure if snippet operations did not 

perform as expected. We describe the main snippets in the remainder of this section. 

The THUASDSP2004 DSP consists of a DMA to handle high throughput transfers of signal data 

between various SoC on-chip and external memories. Hence, to test the DMA functionality, snippets 

were created to initialise, execute and check for correctness of DMA transfers. Furthermore, DMA 

snippets provide parameters to control transfer of different transaction amounts between different 

memory addresses each time the snippet is selected in a test program.  

To initiate SoC operations, snippets rely on low level device drivers to access various SoC 

configuration registers. For example, reusing the Nios SoC DMA snippets from Chapter 3, to initialise 

a DMA transfer requires the DMA source and destination address registers, and transfer size registers 

to be configured. The InitDMA snippet uses device drivers to initialise these registers and other 



APPENDIX E.       443 

snippet parameters to test the DMA differently each time. Other DMA snippets also access various on-

chip registers to configure, monitor and validate DMA transfers, e.g. ExecDMA, TermDMA snippets.  

In order to test various arithmetic processing capabilities of the SoC, common DSP operations such as 

discrete Fourier or cosine transforms, and filter functions should be applied. These are the types of 

applications that use DSP mathematical units and are best suited for testing them. Hence, snippet 

functions were created for the discrete Fast Fourier Transform (FFT), making use of snippet 

parameters to vary the type, range, precision and error tolerance of signal data operations carried out. 

The FFT snippets also employ cosine, sine and factorial functions to calculate a range of n point FFTs 

that mimic stress-testing of repetitive and high intensive signal processing operations.  

Other specific features of the THUASDSP2004 DSP are also verified by SALVEM snippets. For 

example, the DSP implements a unique global register file to facilitate inter cluster communication. 

Each local register in a cluster has a corresponding associate register in the global register file, and 

vice versa. Whenever data from one cluster is needed by another cluster, the result from one cluster is 

written to both the local and associate global register. In this way, an external cluster may gather the 

desired data from the global register file. Using this double associate register writing scheme, 

communication between clusters is achieved. 

The snippets employed to test this specialised register bus system should invoke repetitive data 

transfers and resolve numerous register address selections. To this end, the TestRegBus snippet we 

developed is based on a token ring transfer operation (Figure E.18). Initially, data from any arbitrary 

cluster is written to both its local and global registers. The data is then consumed by another cluster 

before it is passed back onto the global register bus and transferred to other clusters; until finally, the 

data is checked at the termination cluster. Figure E.18 shows the first three data transfers. The non-

circle enclosed numbers show the global register file read/writes, while the circle enclosed numbers 

indicate the sequence of inter-cluster transfers.  

The parameters of the TestRegBus snippet are the type and size of data to be transferred, the type and 

number of clusters involved in the transfers, and the transfer start and termination points.  

The TestInt interrupt snippet tests the DSP’s interrupt handling and priority mechanism. The 

parameters to this snippet specify which interrupts are enabled and their priorities. Each time the 

snippet is called into a test program, different interrupts and priorities will be chosen to test the 

interrupt unit differently. 
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Figure E.18 TestRegBus snippet operation 

 

E.16.4 SAGETEG test generation for DSP SoC verification – an overview 

During test generation, SAGETEG selects a sequence of snippets and snippet parameters to form test 

programs in a genetic evolutionary influenced manner. Depending on the sequence of snippets chosen, 

a variety of sequential and concurrent operations on the SoC will be executed as was the case with 

Nios SoC verification. For example, if DMA and FFT snippets are chosen one after another, Fourier 

transforms of signal data can be concurrently tested whilst data is being shifted between memories. 

To create effective and efficient tests, SALVEM employs genetic algorithms and evolutionary 

strategies to select the snippet sequence and parameters according to previous tests and their coverage 

information. This facilitates our coverage driven strategy. The GEA process, SAGETEG 

implementation, and application for DSP SoC verification was described previously in Chapter 4, and 

is employed in the same manner for this case study. 

The GEA SALVEM test generation process was summarised in Figure 4.11 Chapter 4. In the 

beginning, test individuals are created to fill an initial population of µ number of tests. These initial 

tests may contain any number of snippets and relies on the evolution process to vary the test 

individuals further. 

The experiments and results for the DSP SoC verification case study were described previously in 

Section 4.12.2 Chapter 4.  
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APPENDIX F. Markov Modelling for Test Parameter 

Selections 

This appendix provides supplemental information for the analytical Markov based test generation 

parameter selection research in Chapter 5. 

 

F.1 Transition probabilities for Markov modelling variation weight 
characteristics 

This appendix section describes the derivation of Markov chain transition probabilities for modelling 

of GEA variation weight characteristics from Section 5.5 Chapter 5. Using information from the 

Markov chain from Section 5.4 Chapter 5, the assumptions, observations, and deductions justifying the 

transition probabilities of this Markov chain are as follows. 

(i) For transitions between E→E or H→H : 

These transitions are possible whenever variation usage undergoes either incrementation or 

decrementation, so that variation weights are adjusted but remains with the same E or H intermediate 

states. The variation usage changes correspond to any of the A→A and A→D, and, D→D and D→A 

transitions from the Markov chain of Section 5.4 Chapter 5 to maintain variation within intermediate 

states. Based on the transition mappings between A and D using c (variation continual change) and s 

(variation change switching) from Section 5.5 Chapter 5, the E→E and H→H transition probabilities is 

2(c + s). 

(ii) For transitions between E→H or H→E : 

These transitions occur when there is a continual change of variation usage such that increment or 

decrement of variation is followed on in consecutive evolutions; so that variation weights are increased 

from lower valued intermediate state E to higher intermediate state H , and vice versa. These changes 

are equivalent to A→A and D→D transitions, thus the E→H or H→E transitions have probability c 

each. 

(iii) For transitions between E→L or H→U : 

Regardless of prior variation usage adjustment, the transition from E to the low limit L state requires 

next variation change to be a decrement, which corresponds to D→D and A→D transitions. Hence, the 



APPENDIX F.       446 

E→L transition probability is (c + s). Similarly, a transition from H to the upper limit U state requires 

increment variation adjustments A→A and D→A, which results in (c + s) as well. 

(iv) For transitions between E→G or H→G : 

To fine tune variation variable to achieve desired goal state G requires a change in variation usage that 

is opposite to what was applied in previously. This fine tunning goal attainment is possible when 

variation adjustment switching changes between A and D, which is different to the prior type change. 

This corresponds to A→D or D→A transitions and so the transition probabilities for E→G or H→G is 

s. If variation usage adjustment continued to apply the same increment or decrement change, then 

overshooting past the goal state G would occur. 

The remaining transitions are either not possible or reflect the absorptive state transitions within G, U 

and L. For example, non-realisable transitions such as L→G are not possible because a transition to 

intermediate state E is required before absorption into G. Variation weight values cannot simply skip 

states because large jump in values are not possible. 

 

F.2 Derivation of test program composition Markov model and 
transition probabilities 

Recall from Section 5.6 Chapter 5 that individual snippets from the snippets library could not be 

employed as Markov states for modelling the composition of test programs. Modelling genetic 

evolutionary algorithm (GEA) snippets usage with a Markov chain whereby each state element 

represents a snippet would result in unmanageable Markov chain. For instance, the Nios SoC’s snippet 

library currently contain up to 30 snippets. Therefore, we group snippets into subsets. Our first phase 

of condensing snippets into groups is based on the SoC devices for which snippets cater for. For 

example, snippet groups for the DMA, UART, CPU, timer, and etc snippets that were created to test 

these devices explicitly. This reduces the number of state elements to model for a Markov chain from 

30 down to 7. 

The equivalent transition probability matrix for a Markov chain with such a set of 7 snippet type state 

elements is shown in Figure F.1. The rows and columns each represent snippets testing the DMA, 

UART, PIO, Timer, CPU, and memories devices; including a state in the Markov chain that represents 

when no snippets are included into the test program for the current evolution (i.e., first row and column 

of the matrix in Figure F.1). 
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Figure F.1 Test composition Markov transition matrix based on SoC devices and types of device 

snippets 

From Sections 5.4 to 5.6 in Chapter 5, the variables used in the transition probabilities of various 

Markov chain were explained. Some of these variables are GEA test parameters for which we are 

designing and analysing Markov chains to select values for. For instance, p is the probability (weight 

value) of a type of snippet selection. σ is the probability change factor of the variations usage 

adjustments applied to vary tests and include different types of snippets. And c and s are the amount of 

increment and decrement variation change adjustments.  

The transition probability values are assigned based on certain observations and justifications similar 

to those given Section 5.6 Chapter 5 already. Briefly, they are as follow. If the current state was such 

that no snippet was added, it is not possible for no snippet to be included into the test because this 

would imply stagnation which the test generation is designed to avoid. Hence, the ‘No snippet’→’No 

snippet’ transition has probability zero. Instead, the snippets that can be chosen next are all given equal 

probability of selection. Amongst the remaining six types of snippets, the state transitions from ‘No 

snippet’ state to snippet inclusion each contain probability 1/6. For transition probabilities from one 

snippet type to another snippet type, these transitions contain at least the probability p representing 

snippet selection. For transitions whereby consecutive selections of the same snippets are conducted 

(i.e., p(1/σ)c), an additional factor (1/σ)c is included. This is to take into account the greater likelihood 

of selecting the same type of snippets to continue further testing of the same devices catered by the 

currently selected snippet. This is indicated by the increase in variation usage and weight adjustments. 
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Except the non snippet selection to non snippet selection transition, the diagonal elements of the matrix 

whereby the same snippets are selected in both the current and next state, contain this transition 

probability. 

For transition between current state of snippet selection to ‘No snippet’ selection state, the transition 

probability is (1−p)(1/σ)s because (1−p) implies no snippet selection, given p is the probability of 

selection. The factor (1/σ)s is included to represent the increased effect of variation adjustment that 

reduces snippet inclusion likelihood when the variation switches between increment or decrement 

states and vice versa (to indicate the variation will no longer continue in a state of increment or 

decrement, and hence variation is less likely to select snippets).  

Snippet dependencies also play a role in the transition probabilities. If in the current state a snippet is 

included into the test such that it depends on other dependent snippets, then these dependent snippets 

will be included as well in the next state with greater probability. For example, I/O interacting snippets 

usually have dependencies amongst one another. A DMA snippet may need to be followed up with 

UART or PIO snippets if the DMA transactions invoked by the DMA snippet involve transfers 

between UART or PIO devices. In this case, a factor of (1/σ) representing higher variation usage for 

snippet inclusion is employed to represent the greater likelihood of such snippet selection in the next 

state. This effect is most pronounced especially for addition variation which recursively adds 

dependent snippets and further dependent snippets of dependent snippets (Section 4.5.8 Chapter 4). 

Based on the probability matrix in Figure F.1, a smaller Markov chain with smaller number of 

elements transition matrix is created by grouping together common snippets and reducing down these 

snippets further into smaller number of snippet types to represent as states in the eventual final Markov 

chain used for analysis. The final grouping of snippets are indicated by the dashed lines in Figure F.1. 

For actual GEA parameter selection analysis, transition probabilities of the smaller final Markov chain 

in Section 5.6 Chapter 5 are derived from the more detailed and lower level transition probability 

matrix in Figure F.1 (i.e., the smaller 3×3 matrix that can be extracted by grouping snippets partitioned 

by dashed lines in Figure F.1). This smaller matrix (and Markov chain) uses less state elements to 

represent the types of snippets based on what devices they explicitly test for and what kinds of 

operations are used for testing. For instance, snippets from DMA and UART can be further grouped 

together into a common type of snippets: concurrency type snippets that invoke or involve other SoC 

devices and snippets. Based on the dependencies of these types of snippets, one can observe that their 

transition probabilities in Figure F.1 is identical, and hence they can be grouped together. For the other 

remaining snippet state that can be transitioned to (i.e., snippets that invoke single threaded functions), 
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these snippets can be grouped together by their identical transition probabilities again to form the 

snippet state transition probability for single threaded snippets. In most cases, grouping snippets 

together further simply involves combining their transition probabilities. The transition probabilities 

for no snippet inclusion remain as before. 

Therefore, the three type of snippets state elements used for the Markov chain in Section 5.6 Chapter 5 

are the C state representing concurrency snippets that invoke multiple threads of SoC executions, O 

state representing snippets that invoke one single threaded type of SoC executions, and the F state 

representing no further snippet inclusions and a fixed snippet composition in tests. The transition 

probabilities for this final Markov chain and smaller transition matrix were discussed previously in 

Section 5.6 Chapter 5. 

 

F.3 Transition probabilities for Markov modelling test population 
compositions 

The transition probabilities from Section 5.7 Chapter 5 for Markov modelling the test population 

composition are summarised as follows. 

(i) For transitions V → V and X → V : (2λ/µ)(0.9u)(3wF +2wC +2wO ) : 

 The test population selects only children tests, hence the transition probability is proportional to a 

population ratio of 2λ/µ. As the transition is to a destination state of V whereby more children tests are 

selected, this implies greater variation to create these higher coverage yielding children tests as well. 

Many new tests are varied that are successful for SoC testing. This accounts for the 0.9u factor where 

0.9 is the highest possible variation usage weight assumed, and u = 0.54 was the probability of 

attaining that value (from (5.5.4) in Section 5.5 Chapter 5), and assuming the initial state was E. For 

snippet selection, the wC and wO factor (Section 5.6 Chapter 5) is multiplied by two for each of the 

addition and recombination variation that inserts concurrent and single threaded SoC operation 

snippets. The wF factor is multiplied by three for each sub, replace and mutate variations, which do not 

change the snippet compositions within tests in any way.  

(ii) For transitions V → X, X → X and Y → X : (2λ/µ)(0.5g)(3wF +wC +wO ) : 

Like the previous probability transitions, greater children tests are selected, hence the 2λ/µ ratio is 

included. Whilst greater children than parent tests are selected in the destination state X, the variation 

variable is within range of the 1/5 variation success and stability goal state, and further from the 

boundary U or L states. Hence, the 0.5g factor (from (5.5.4) in Section 5.5 Chapter 5) is included, 
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where g = 0.31 and 0.5 is taken as the median variation usage weight between minimum and maximum 

range of 0.1 to 0.9 respectively. Because not all children tests are selected, the snippet selection factors 

wF, wC and wO are lower.  

(iii) For transitions X → Y and Y → Y : (λ/µ)(0.5g)(3wF + 2wO ) : 

Since more parents tests are selected compared with children tests, the population ratio is reduced to 

λ/µ. Less parent tests selection implies less successful variation, so the influence of the wF, wC and wO 

factors are reduced further. Lower success variation implies less effective snippets such that 

concurrency snippets governed by wC are eliminated from the transition probability. The Y state 

includes the 0.5g factor like the previous probability transitions because some variation under self-

adaptation influence still applies. 

(iv) For transitions Y → J : (λ/µ)(0.1l)(3wF) : 

Much greater parents tests are selected and little or no children tests are included in the test population, 

hence the population ratio is λ/µ again. The J state also implies mostly unsuccessful variation, 

therefore the variation factor is 0.1l from (from (5.5.4) in Section 5.5 Chapter 5) whereby 0.1 is the 

minimum variation weight and l = 0.15 is the corresponding low probability of 0.1 being applied. Also, 

the snippet selection only includes the wF factor for subtract, replace and mutate variation because the 

snippet composition does not change significantly, resulting in largely unsuccessful variation and 

subsequently little or no new children tests are selected. 

Note that the J → J transition is an absorptive state transition whereby the GEA process only selects 

parent tests for the entire test population, before terminating. 
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APPENDIX G. Multi-Objective Genetic Evolutionary 

Test Generation 

This appendix provides supplemental information for the multi-objective test generation research in 

Chapter 6. 

 

G.1 Impartial remainder selection policy 

Recall from Section 6.5.2 Chapter 6, multi-objective GEA test selection employs a round robin scheme 

between objective bins so that an even distribution of tests that cover all conflicting objective subsets 

is retained. Ideally, the test population for subsequent evolutions should contain equal number of tests 

from each bin. However, depending on the number of objective subset bins and the predefined test 

population size, this fairness criteria is not always possible. Specifically, if the predefined test 

population size is not a multiple of the number of bins, equal number of tests from each bin cannot be 

chosen.  

The maximum number of tests that can be selected evenly from all bins is the highest common 

multiple of the number of bins that can fit within the test population size. The remaining tests for the 

population will be chosen by performing tournament selections, based on the impartial remainder 

selection policy in this section.  

For each tournament, a test from each of bin will be chosen to be participants. The chosen test from 

each bin will be the highest Pareto and Aggregate ranked test each time. After a test has participated in 

a tournament, it is removed from the originating bin it was chosen from. For the first remaining test, 

the tournament selection choses the highest ranked test immediately after the round robin selections 

stage from Section 6.5.2 Chapter 6.  

The tournament selection is conducted using a combined fitness metric similar to that used in Section 

6.5.2 of Chapter 6 for Aggregate ranking. This merged metric combines all the objectives of the GEA 

application domain, not just conflicting objectives from each objective subset only. The winner of the 

tournament according to the merged metric is then inserted into the next population. The tournament 

selection for choosing remaining tests corresponds to step (9) in Figure 6.6 of Section 6.5.2 Chapter 6, 

and is defined as follows.  
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Definition  G.1 : Impartial remainder test selection 

 (i) Let µ be the number of tests to be selected into the test population, b is the number of object subset 

bins, and r is the number of remaining tests that cannot be selected evenly from each of the bins, such 

that r = µ mod b.  

Each of the remaining tests yi are selected as follows, 

yi = TourSel(x1, x2, …, xb)  for i = 1, …, r 

where TourSel is the tournament selection function defined in (ii) below, and x1, x2, …, xb are the best 

aggregate ranked tests selected from the current highest Pareto front of each objective subset bin.  

Like the round robin test selection of steps (2) to (7) in Phase 3 of Section 6.5.2 Chapter 6, the tests x1, 

x2, …, xb are also removed from their respective bins after they are chosen as participants in the 

tournament selection.  

(ii) Let TourSel : Xb → X be the tournament selection function that takes in a test from each bin, and 

returns the test with highest aggregated fitness, where X is the set of possible tests capturing the current 

test population. TourSel is defined as follows, 

 yi = TourSel(x1, x2, …, xb) 

such that ∀ xj,  fm(yi) > fm(xj) ∧ xi ≠ yj   for i = 1, …, r and  j = 1, 2, …, b  

fm is the fitness merging function that combines the fitness of all the multiple objectives of a test 

together. fm is defined next in (iii). 

(iii) The fitness merge function fm : X → X takes in a test and combines all the objective fitness 

functions to produce an overall fitness measure. fm is defined as, 
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where fmax and f min are objective fitness functions that are to be maximised and minimised respectively, 

u and v are the number of maximising and minimising objective functions respectively, and Mv is the 

maximum fitness values possible for the ith minimising objective function fi
min. 
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For multi-objective GEA test generation, fm is defined as follows. 
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where fl, ft,  fc, and fs are the fitness functions for the line, toggle, conditional coverage, and test size 

objectives respectively, and M is the maximum test size for the test platform.  

Whilst round robin selection inserts equivalent number of tests from each bin into the new test 

population, this method is not always applicable. For the remaining number of tests that cannot be 

chosen equally from these bins, the test selection strategy in Definition  G.1 ensures all multiple 

objectives are given equal priority. This prevents the GEA process from favouring optimisation of 

certain objectives over others as more evolutions are conducted. It is essential the remaining tests that 

make up the rest of the population are selected based on how they optimise all objectives overall. 

 

G.2 Diversity and fitness distance of multi-objective GEA test selection 

Our GEA process aims to promote test diversity by selecting tests that display fitness variation 

amongst each other. The concept of fitness distances in the objective test space is to measure the 

difference in fitness of tests for particular objectives; and use this information for selecting tests. The 

selected tests must be widely separated from each other, and for each objective, the fitness distance 

should be as large as possible.  

The aim is to avoid selection of tests within the same crowded region of the objectives’ test space. In 

this way, the tests will be highly diverse and more effective in terms of the objectives it optimises. The 

resulting fitness attained from the population for each objective will be wide-ranging, but there will be 

at least one test in the population that achieves best optimal fitness for each objective. The overall goal 

is to make use of these diverse tests for further evolutions and optimise all objectives concurrently. 

 

G.3 Pareto front drifting 

This appendix section explains further the reasons for Pareto front drifting during multi-objective 

GEA. First, whilst the GEA variation process tries to search for new objective test space, it may in fact 

produce tests that achieve similar or lower coverage. This is due to the inherently random nature of 
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GEA variation and because most beneficial test space have been uncovered already at later stages of 

the GEA process.  

Second, by employing a divide and conquer approach to partition objectives into subsets (Section 6.5.1 

Chapter 6), certain undesired behaviours in the GEA process could occur. The selection and 

intermixing of tests from different objective subsets imply certain tests were chosen because they 

perform better for certain objectives, but they may perform worst for other objective subsets. If so, the 

Pareto front will begin to flatten and coverage increase in y-axis will decrease noticeably for other 

objective subsets.  

At the same time, despite not gaining coverage improvement, the addition and recombination variation 

will continue to increase test size. Therefore, the Pareto front will flatten out and stretch along the 

direction of the positive test size x-axis. Eventually, when the test population achieves the maximum 

possible coverage given its range of snippet genome, no further coverage improvement will be 

possible.  

The Pareto front will then hone in to a fixed coverage level given by the best tests in the current 

population. The front will flatten out at this level for the range of test sizes in the population, which 

determines the extent of the front drifting. 

 

G.4 Multi-objective GEA termination according to test selection 
duplication 

Besides Pareto fronts, another possible GEA termination method is to examine the test population 

directly. Such a method monitors the number of duplicated tests in the test population at every 

evolution. When more than 75% of the population contains identical tests, the GEA process is 

terminated. The test duplication rate can also be used as a guide to how fast the test population is 

converging toward optimality for all the objectives. Greater test duplication with test population more 

than 75% identical tests indicates insufficient diversity of snippet genome to improve the GEA process 

further. Hence, termination should be invoked. In general, a duplication rate of around 50% is useful 

for promoting higher fitness performing tests whilst maintaining adequate test population diversity. 
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G.5 Comparison with less diverse population of GEA test generations 

The significance of diversity for multi-objective GEA can be demonstrated by comparing against a 

GEA process without any test duplication prevention and selection mechanisms employed in our test 

generator in Chapter 6. Figure  G.1 to Figure  G.6 shows the Pareto front plots and results for such a test 

generation. 

Compared to Figures 6.11 to 6.16 in Chapter 6, in Figure  G.1 to Figure  G.6, without duplication 

containment, the selection of tests for each subsequent evolution is not sufficiently diverse. Hence 

overall, the best Pareto fronts from each evolution do not expand as much, are shorter and is more 

levelled in curvature compared with those in Figures 6.11 to 6.13 (Chapter 6). Additionally, the Pareto 

fronts stray significantly away from the desired upper-left region of maximal coverage and minimal 

test size on the Pareto plot, even at early evolutions. 

Similarly, Figure  G.4 to Figure  G.6 also show the equivalent Pareto front plots to Figures 6.14 to 6.16 

(Chapter 6) previously, but without diversity enhancing measures. In Figure  G.4 to Figure  G.6, the 

span between the best and worst Pareto fronts are in general closer together than the equivalent plots at 

corresponding evolutions in Figures 6.14 to 6.16 (Chapter 6). This indicates the test population in 

Figure  G.4 to Figure  G.6 are less diverse. They are all too similar to effectively optimise all objectives, 

thus accounting for slightly lower coverage and higher test sizes compared to the test run of Figures 

6.11 to 6.16 (Chapter 6). 

 
Figure  G.1 Less diverse best Pareto front of each evolution (line coverage vs. test size) 
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Figure  G.2 Less diverse best Pareto front of each evolution (toggle coverage vs. test size) 

 
Figure  G.3 Less diverse best Pareto front of each evolution (conditional coverage vs. test size) 
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Figure  G.4 Less diverse Pareto fronts at selected evolutions during GEA (line coverage vs. test 

size) 
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Figure  G.5 Less diverse Pareto fronts at selected evolutions during GEA (toggle coverage vs. test 

size) 
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Figure  G.6 Less diverse Pareto fronts at selected evolutions during GEA (conditional coverage 

vs. test size) 
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G.6 Multi-objective tri-axial plot characteristics 

This appendix section expands on the tri-axial plot characteristics of the multi-objective GEA test 

generation process. The tri-axial plot from Figure 6.18 Section 6.9.3 of Chapter 6 is reproduced in 

Figure  G.7 for discussions here. 

 

Figure  G.7 Multiple objective GEA tri-axial graph 

 

G.6.1 Test diversity and duplication with respect to tri-axial plot 

Examining diversity on multi-objective tri-axial graph 

Diversity affects the location of tests in the tri-axial graph, and their proximity to the target area. A less 

diverse test population reduces the range of tests to optimise all objectives. Hence, during variation (in 

particular, recombination), the GEA process is unable to intermix these limited tests as effectively. 

Newly created tests will contain less variety of snippet genome to simultaneously optimise objectives. 

The selection strategy employed from Section 6.5 Chapter 6 specifically addresses this issue, by 

selecting tests that cater for different objectives (i.e., tests from different objective subsets).  

Without such a selection method, tests that are highly effective for specific objectives only but with 

low fitness for the multiple objectives overall, would not be retained. The evolution of these higher 
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performing tests for individual objectives would be lost. Instead, such high performing individual 

objective tests should be amalgamated with other tests that catered for other different objectives. This 

would result in much superior tests that provide higher fitness for all objectives simultaneously.  

In Figure  G.7, the tests are plotted within the vicinity of the ideal target test area due to the diversity 

and our multi-objective GEA selection policy. 

 

Examining test duplication on multi-objective tri-axial graph 

Test duplication affects how wide-spread tests are plotted across the target area. Greater test 

duplication causes tests to concentrate within a smaller area. Therefore, the GEA process controls the 

rate of duplication to ensure the test population are not too alike. Otherwise, the variation process 

would be restricted to using the same tests repeatedly, reducing objective fitness improvements. 

Besides explicitly measuring duplication rates in Figure 6.17 Chapter 6, the extent of duplication 

during the GEA process can be assessed by examining the distribution of tests on the tri-axial graph. In 

Figure  G.7, rather than a concentration of tests, tests are spread across various regions of the ideal 

target test area. This confirms test duplication is not excessively high as was quantitatively revealed in 

Figure 6.17 Chapter 6. 

 

G.6.2 Test generation effectiveness and characteristics from the tri-axial plot 

In Section 6.9.3 Chapter 6, the notion of test tails plotted in the tri-axial graph were observed and 

described. A test tail can be mapped to one of the line, toggle, or conditional coverage versus test size 

objectives subset. The GEA process focuses on each of these objectives to gain fitness improvements, 

and at the same time, optimises all the objectives concurrently; by combining useful tests for each of 

the objective subsets together. As the tests from each objective subset tail are intermixed further, the 

test tails come closer together until the test population is fully combined with snippet genome 

specifically for optimisation of all the objective subsets.  

At this point, using the intermixed test population, the GEA process continues to enhance all the 

objective fitness further by evolving the test population. Eventually, the combined test tails form a 

thicker plot line that increases outward from the target region in the direction of best fitness for all 

objectives, toward the ideal target test point. 
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Note that the width of the test tails lines and dispersion of tests across the target region depends on the 

diversity of the test population during GEA. The greater the diversity, the wider the test tails and more 

spread out the converged tests are throughout the test region. As described above, a greater diversity 

tests population implies better evolution and optimisation for each of the objective subsets. This is 

because a larger variety of tests are provided to seek out further improvements in the objective fitness 

space more effectively.  

If the combined test population from convergence of test tails are more diverse and scattered, the GEA 

process would also be able to simultaneously enhance all the objectives further. The converged tests 

plot line will increase further away from the origin of the test tails toward the desired ideal target test 

point, gaining greater objective fitness. Also, the more optimised the test population is, the sharper the 

peak arises from the combined test tails plot. 

 

G.6.3 Comparisons with tri-axial graphs of other test generations 

In order to examine further the effectiveness our multi-objective GEA process using tri-axial graphs, 

we compare against other test generation variants and their tri-axial graphs in this section.  

Figure  G.8 shows an equivalent three dimensional tri-axial graph of tests for a GEA process with non 

diverse test populations. These tests were generated without the objective subset based selection and 

variation methods in Sections 6.5 and 6.6 Chapter 6. The tests plotted do not develop multiple test tails 

or originate from different regions. Instead, a single thickened test plot line concentrated along the 

same test region is shown; and increases outwards away from the ideal target test area.  

The lack of multiple tails is because objectives subsets are no longer given higher priority for 

optimisation. Rather, the GEA process defaults to a selection scheme whereby tests are chosen based 

on the overall objectives fitness only. By doing so, it is difficult to manage and take on all objectives at 

the same time, especially if conflicting objectives exists. Hence, the level of objective fitness gained 

for the overall objectives set is lower compared to Figure  G.7.  

Unlike the GEA process in Figure  G.8, by segregating the optimisation of objectives and recombining 

tests afterwards, the likelihood of successfully optimising the entire objectives set is higher in our GEA 

test generation. Also, compared to Figure  G.7, the thickness of the combined test plot line is narrower 

in Figure  G.8. This is directly attributed to lower test population diversity in the non diverse GEA 

process; which results in smaller range of coverage and test size fitness. 
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Figure  G.8 Less diverse multiple objective GEA tri-axial graph 

For another comparison, Figure  G.9 shows the resultant tri-axial plot for a non multi-objective GEA 

test generation process. The tests plotted in Figure  G.9 are obtained from individual and independent 

single objective GEA test runs; whereby each of the line, toggle and conditional coverage objectives 

are optimised separately by different GEA processes. These independently evolved tests are plotted at 

three distinct and separated regions. Each region reflects high objective fitness for one of the line, 

toggle or conditional coverage only.  

Compared to Figure  G.7, these tests do not lie close to the target region at all because none of the tests 

are evolved to concurrently enhance more than one objective. The three clusters of tests each reside 

closer toward the origin of two of the three axis for which their corresponding objectives are not 

optimised for. For example, the left-most cluster in Figure  G.9 was optimised for line coverage only. 

Hence, it is located where fitness for line coverage is high but is below the midpoint of the toggle and 

condition coverage axial range. Similarly, the right-most cluster caters for toggle coverage and top 

cluster cater for conditional coverage only. 

Unlike multi-objective GEA in Figure  G.7, the best possible tests that can be attained must be chosen 

from one of the three clusters in Figure  G.9. It is not possible to select a test that is favourable for all 

the objectives; a trade-off must be made based on which objective is deemed higher priority. 
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Essentially, the single objective GEA test generation are only focused on one objective. Greater time 

and resource are also needed to run each objective test run independently multiple times. 

 

Figure  G.9 Non multiple objective GEA tri-axial graph 

 

G.7 Pareto front based GEA termination details 

G.7.1 Identification and selection of Pareto front GEA termination threshold 
values 

By repeatedly conducting preliminary multi-objective GEA test generation runs for a fixed number of 

evolutions, well beyond the point at which the Pareto front terminations would have been triggered, 

various values for the slope and gap distance threshold can be sampled.  

Based on these empirical results, proper values for the slope and gap distance threshold values are 

chosen for retuning the test generation. These calibrated threshold values should trigger termination 

when it is clear further improvements in objective fitness are unlikely or extremely low. For example, 

examining similar Pareto front graphs to those in Figures 6.11 to 6.16 Chapter 6, the slope and gap 

distance values at which objective fitness optimisations has stalled can be identified at corresponding 

evolutions from graphs similar to Figures 6.19 and 6.20 in Chapter 6.  
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This process of threshold values identification are conducted at least ten times for the current GEA test 

generation configurations in Section 6.9 Chapter 6, and averaged out to provide a calibrated slope and 

gap distance threshold of 0.2 and 0.5 respectively, which was applied for actual test generation runs. 

 

G.7.2 Narrowing of Pareto fronts at an evolution cycle 

In Figures 6.14 to 6.16 in Chapter 6, from evolutions 10 to 30, the best and worst Pareto fronts 

gradually become closer compared to their proximity with each other at the start of the GEA process. 

This indicates test diversity is lowering and the best Pareto front does not expand as much as before. 

The reduced proximity is caused by the worst Pareto front simply closing in on the best Pareto front as 

the GEA process eliminates low performing tests from the population. Note that the best Pareto front 

and best attainable objective fitness does not actually improve as much as before. Rather, the best front 

is increasing at a lower rate whilst the worst front continues to increase and shift closer toward the best 

front. When this occurs, given the slowdown in coverage increments and enlargement of test sizes, this 

indicates the GEA process is proceeding toward termination conditions.  

The reduced proximity and the closing in of the worst front toward the best front during evolutions is 

an expected behaviour of the test generation process. During GEA, low fitness performing tests are 

progressively removed from one evolution to the next. In Figures 6.14 to 6.16 in Chapter 6, this is 

clearly demonstrated by the elimination of outlier tests in the evolution 10 plot, that are no longer 

present in the corresponding plot at evolution 15 in Figures 6.14 to 6.16 Chapter 6. The outlier tests are 

shown as single dot points or straight lined Pareto fronts. By evolution 20 onwards, they are fully 

eliminated and the Pareto fronts shift towards the best Pareto front.  

The removal of these under performing tests and replacement with higher fitness enhanced tests shows 

the GEA process optimising the population as expected. In fact, the changes in Pareto fronts from one 

evolution to another indicate fitness objective improvements. When the best tests reflected by the best 

Pareto front does not improve any further, and the tests of the worst Pareto front are simply allowed to 

close in on the best front, this indicates the GEA process has converged and the test population has 

stagnated. Further optimisations of the current test population would be extremely difficult and 

unlikely. The test population is no longer diverse to create further different tests, and hence 

termination can be invoked. 
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G.8 Test execution times during multi-objective GEA test generation 

Figure  G.10 plots the test execution time against each individual test as they are generated and 

executed during multi-objective GEA. Three distinct phases are apparent. At the start of GEA test 

generation between tests 1 to 200, the test executions times do not increase significantly, hovering 

around 200 seconds. This corresponds to initial stages of multi-objective GEA when test coverage is 

actively sought whilst maintaining test sizes at current levels. Hence, test execution times do not 

increase.  

From approximately tests 200 to 400, test execution times begin to grow. This reflects the period when 

the GEA process deemed the previous pool of snippet genome to have achieved maximum coverage 

possible. Therefore, more intensive forms of GEA variation and many more snippets are added from 

the snippet genome pool to gain further coverage. The resultant tests induce more complex test 

functions and their size slowly increases, adding to test execution times as well.  

Finally, toward the end of the GEA process from tests 400 onwards, the coverage levels begin to 

saturate. Any GEA variation using the existing snippet genome pool from the snippet library does not 

enhance the tests in any way, and test times do not vary much. 

 

Figure  G.10 Multi-objective GEA test execution time for each test 
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G.9 Summary review of multi-objective GEA test generation 
experimental analysis 

Optimisation of multiple objectives examined by Pareto front plots 

An important criteria for our test generation is to create tests that cater for multiple test objectives 

simultaneously. Specifically, one must ensure the test generator does not favour any one or more 

objectives over another. Otherwise this produces greater fitness for some objectives whilst other 

objectives fitness becomes extremely poor. A number of measures described in Section 6.5 Chapter 6 

for our GEA population selection were put in place to ensure proper multi optimisation of all 

objectives. The capability of our GEA test generation method for multiple objectives was 

demonstrated by examining the Pareto fronts and other statistics gathered during the test generation. 

One of the strategies to achieve desired multi-objective optimisation is to employ our test population 

selection policy (Section 6.5 Chapter 6) and recombination method (Section 6.6 Chapter 6). The effect 

of applying this selection and recombination method can be exposed from the objective fitness results. 

Figures 6.11 to 6.16 in Chapter 6 showed using this selection method within a typical GEA test 

generation provides higher coverage fitness for lower test size. In contrast, without proper selection, 

there is greater likelihood for the GEA process to favour certain objective subsets, and the overall 

objective fitness results can be lower (Figure  G.1 to Figure  G.6).  

 

Inter Pareto front plots comparison 

To attain additional evidence our multi-objective GEA process optimises all objectives concurrently, 

one can compare each of best Pareto front plots in Figures 6.11 to 6.13 in Chapter 6 with one another. 

The Pareto front plots for each of the line, toggle and conditional coverage versus test size objective 

subsets display similar characteristics and trends. For any one Pareto front plot, as coverage increases 

whilst containing test size, a similar pattern is shown by the Pareto front plots of the other two 

objectives subset. This shows that the GEA test generation is optimising all objectives simultaneously 

as required.  

Despite objectives being optimised at different rates and the Pareto fronts saturating at different levels 

in Figures 6.11 to 6.13 in Chapter 6, the test generation process assigns equivalent priority to enhance 

each of the objectives. The scenario whereby some objectives are optimised at the expense and 

degradation of other objectives do not occur.  This shows the GEA test generator is creating tests to 

find the best trade-off optimality amongst all the objectives. 
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Test generation performance from multi-objective tri-axial graph 

The ability to optimise for multiple objectives was also demonstrated by examining the three 

dimensional tri-axial objective subset plot in Figure  G.7. With our selection method, the GEA process 

aims to optimise all objective subsets. In Figure  G.7, the tests are plotted originating from three 

different regions as the GEA process tries to optimise for three objectives subsets concurrently. 

Eventually, using on-going recombination variation, these tests are intermixed into a diverse test 

population that optimises all objectives. The converged tests plot in Figure  G.7 demonstrates the GEA 

process allocates even priority to each objective and all objectives were optimised concurrently. 

Additionally, recombination ensures mating takes place with tests from different objective subset bins. 

Hence, the diversity of the snippet genome is preserved to tackle genetic drift. 

 

Test population diversity and test duplication 

An important facet of attaining high fitness for all objectives is to provide and maintain snippet 

genome diversity within the test population. Diversity depends on a number of factors, one of which is 

the level of test duplication in the test population. As outlined in Section 6.5 Chapter 6, whilst the 

selection policy employed aims to maintain fair optimisation amongst objectives, it also ensures tests 

that perform extremely well for any particular objectives are selected often. This enriches the 

population with greater snippet genome from these duplicated tests, in order to enhance fitness of these 

particular objectives.  

However, the downside is too many duplication of these same tests may reduce diversity and degrade 

the overall fitness of all objectives. Therefore, during GEA, the level and rate of test duplication must 

be managed carefully using the mechanisms described in Section 6.5.3 Chapter 6. 

In Figure 6.17 Chapter 6, the percentage of test duplication is shown during the entire GEA process. 

The amount of test duplication is maintained around 50%, with only certain evolutions exceeding this 

level significantly. However, such occurrences are brief. And if the duplication level could not be 

contained at a particular evolution, then within another few subsequent evolutions, the duplication rate 

is returned back toward 50%. 
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Elitism in GEA test generation 

Another success indicator of multi-objective GEA is to observe the number of high fitness performing 

tests that must be added via elitism. Elitism is the process in GEA by which the best tests for an 

individual objective are ensured for selection to the next generation. If the test selection process did 

not select such tests explicitly, but had to rely on elitism to include these tests, this implies these tests 

performed extremely well for certain objectives but achieve low fitness for other objectives.  

The greater the number of elitist tests that must be inserted independently via elitism, the higher 

likelihood that certain objectives are given preferential optimisation. Therefore, to determine if the 

GEA process is optimising multiple objectives fairly, one can examine the number of elitists test that 

are added every evolution; to monitor and check if it is kept low.  

Throughout our multi-objective GEA testing, only two elitist tests required insertion into the next 

population explicitly. In contrast, the lower performing non-diverse GEA test generation in Appendix 

 G.5 required 38 elitist tests to be added. This shows our multi-objective GEA selection process from 

Section 6.5 Chapter 6 is more effective at populating the next evolution with tests that can optimise all 

objectives simultaneously. 

 

G.10 Individual SoC device coverage comparisons 

Table  G.1 breaks down the coverage results for prominent devices of the SoC design, attained from 

multi-objective GEA test generations and other comparative methods. For toggle coverage, using 

multi-objective GEA, the timer, PIO and UART devices have sub 90% coverage. This is because these 

devices have large range of data and counter state elements that demand many different signal values 

for propagation. In addition, the extent of exercising these values for all operating device conditions 

requires longer run length times, which is contrary to the test size minimisation objective.  

A similar case could be put forth for the DMA device as well. However, DMA coverage is much 

higher because the DMA handles many more transactions from all other devices. Hence, a greater span 

of operations and associated signal values transit through the DMA device, pulling up its coverage. 

Regardless, the different coverage metric for many of the devices achieves improvement with the 

multi-objective GEA method.  

For example, comparing against the individual device coverage of other methods, Table  G.1 shows for 

all devices, multi-objective GEA testing exceeds or at least matches the best coverage attained by other 
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test generation methods. In general, multi-objective GEA performs better for at least two of the three 

coverage types, and achieves similar coverage for the remaining coverage metric.  

Table  G.1 Individual SoC device coverage results 

Line 
coverage 
tests % 

Multi-
objective 

GEA 

Single 
objective GEA 
(SAGETEG) 

µGP 
Random 

test 
generation 

Manual 
application 
based tests 

CPU 99.8 99.8 98.2 98.6 61.4 

DMA 100 100 100 99.4 98.5 

Memories 100 100 100 67.6 35.8 

Misc. SoC 
units 99.2 96.7 93.0 50.5 75.4 

PIO 96.2 96.2 98.7 98.3 82.0 

Timer 100 100 79.2 97.6 100 

UART 98.3 96.7 94.9 95.0 95.0 

Toggle 
coverage 
tests % 

Multi-
objective 

GEA 

Single 
objective GEA 
(SAGETEG) 

µGP 
Random 

test 
generation 

Manual 
application 
based tests 

CPU 96.5 96.3 89.6 75.6 49.2 

DMA 97.5 97.5 95.6 97.0 78.9 

Memories 97.1 96.1 94.1 82.3 21.8 

Misc. SoC 
units 97.2 92.3 86.6 90.5 77.5 

PIO 89.5 89.5 89.5 89.5 49.5 

Timer 75.4 54.6 14.6 61.7 14.6 

UART 78.9 71.3 58.6 58.4 57.6 

Conditional 
coverage 
tests % 

Multi-
objective 

GEA 

Single 
objective GEA 
(SAGETEG) 

µGP 
Random 

test 
generation 

Manual 
application 
based tests 

CPU 82.6 82.5 72.1 68.5 65.3 

DMA 98.5 98.5 93.9 87.9 80.3 

Memories N/A† N/A† N/A† N/A† N/A† 

Misc. SoC 
units 91.3 89.2 88.6 90.8 77.3 

PIO 75.0 75.0 75.0 75.0 37.5 

Timer 94.2 88.5 28.8 88.5 82.7 

UART 86.4 85.3 72.3 74.5 66.3 
† – No explicit conditions are present in the SoC memory units. 
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Specifically, the CPU, timer, UART, and miscellaneous portions of the SoC are covered more 

comprehensively using multi-objective GEA. For certain devices, like the memories, there is no 

applicable branching logic paths, hence conditional coverage measuring is not relevant. Other SoC 

design test space classified under the ‘Misc. SoC units’ category can be difficult to exercise because 

they do not fall under any well-defined types of test functionalities. Such examples include various 

SoC bus transactions and their conflict resolutions, or system wide error conditions. Rather than rely 

on individual SoC device oriented snippets, dedicated snippets interacting with other library snippets 

are employed. This demonstrates the versatility of multi-objective GEA – to combine useful snippet 

genome from multiple objectives driven tests in order to enhance overall coverage.  

 



APPENDIX G.       472 

G.11 Complete time comparison results 

Table  G.2 shows the entire time comparison results for all test generation methods, including the 

individual line, toggle and conditional coverage test run times of single objective test generations that 

make up their combined times in the second and third rows. 

Table  G.2 Complete test time results 

Total tests time 
Multi-

objective 
GEA 

Single 
objective GEA 
(SAGETEG) 

µGP 
Random 

test 
generation

Manual 
application 
based tests 

Test execution 
CPU time (s) 307,336 752,884# 751,023# 600,455# 22,554* 

Elapsed time 
(days) 3.6 8.8# 9.4# 8.1# 4*†§ 

Line coverage 
tests time 

Multi-
objective 

GEA 

Single 
objective GEA 
(SAGETEG) 

µGP 
Random 

test 
generation

Manual 
application 
based tests 

Test execution 
CPU time (s) N/A‡ 232,223 96,309 158,382 3,745* 

Elapsed time 
(days) N/A‡ 2.7 1.3 2.0 4*† 

Toggle 
coverage tests 

time 

Multi-
objective 

GEA 

Single 
objective GEA 
(SAGETEG) 

µGP 
Random 

test 
generation

Manual 
application 
based tests 

Test execution 
CPU time (s) N/A‡ 320,951 416,957 222,411 5,652* 

Elapsed time 
(days) N/A‡ 3.8 5.2 2.8 4*† 

Conditional 
coverage tests 

time 

Multi-
objective 

GEA 

Single 
objective GEA 
(SAGETEG) 

µGP 
Random 

test 
generation

Manual 
application 
based tests 

Test execution 
CPU time (s) N/A‡ 199,710 237,757 219,662 13,157* 

Elapsed time 
(days) N/A‡ 2.3 2.9 3.3 4*† 

# – For fair comparisons with multi-objective GEA testing, the combined total time for these automated methods are 
summed together from their corresponding individual line, toggle and conditional coverage test runs. 
* – Note that the number of manual tests executed is much less than the other automated test methods. 
† – Includes time to manually create the application test cases, which is equivalent to automated test generation time. 
§ – Unlike automated methods, the same manually created tests were used for line, toggle and conditional coverage test 
runs, hence the combined total time remains the same as the individual test runs time. 
‡ – Multi-objective GEA testing maximises line, toggle and conditional coverage in a single test run, not individually. 



APPENDIX G.       473 

G.12 Effectiveness factor comparison 

Another evaluation of multi-objective GEA testing against other methods is to measure the 

effectiveness factor. The effectiveness factor is a specially devised metric associated with coverage 

gains and was used and defined in Chapter 4 and Appendix E.15. It indicates the usefulness of an 

automated test generation technique, taking into account factors such as the test coverage achieved, 

and the time and test simulation resources required.  

Given that the multi-objective GEA methods actively optimises for coverage and test size 

concurrently, the effectiveness factor was calculated to be 0.8, which is greater than average 

effectiveness factors of 0.3 for SAGETEG, 0.1 for µGP, and 0.01 for random methods. These lower 

efficiency factors are directly due to coverage being the only test goal of these previous test generation 

methods. 

 

G.13 Additional coverage attainment progress graphs 

To supplement the experimental coverage attainment and progress graph results of multi-objective 

GEA test generation (Section 6.10.5, Chapter 6) for comparison with other methods, this section 

provides further graph results in the form of coverage versus number of snippets, and coverage versus 

number of evolutions graphs (Figure  G.11 to Figure  G.16). 

Note that the x-axis in Figure  G.11 to Figure  G.13 indicate the cumulative number of snippets that has 

been employed to exercise the SoC. Also, the random test method does not conform to any GEA 

related technique, hence cannot be plotted against the number of evolutions in Figure  G.14 to Figure 

 G.16.  

The existing coverage progress graphs from Section 6.10.5 Chapter 6 are also reproduced in Figure 

 G.17 to Figure  G.22 here for further discussion and comparisons in Appendix  G.13.1. 
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Figure  G.11 Line coverage vs. number of snippets 

 

Figure  G.12 Toggle coverage vs. number of snippets 
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Figure  G.13 Conditional coverage vs. number of snippets 

 

Figure  G.14 Line coverage vs. number of evolutions 
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Figure  G.15 Toggle coverage vs. number of evolutions 

 

Figure  G.16 Conditional coverage vs. number of evolutions 
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Figure  G.17 Line coverage vs. number of tests 

 

Figure  G.18 Toggle coverage vs. number of tests 
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Figure  G.19 Conditional coverage vs. number of tests 

 

Figure  G.20 Line coverage vs. time 
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Figure  G.21 Toggle coverage vs. time 

 

Figure  G.22 Conditional coverage vs. time 

 

G.13.1  Additional coverage progress graph observations and comparisons  

This subsection describes further observations and comparisons of the multi-objective GEA test 

generation with other methods, it is a supplement to the discussions on coverage attainment graphs in 

Section 6.10.5 Chapter 6. 
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Oscillating raw coverage graph characteristics 

The coverage graph lines in Figure  G.17 to Figure  G.19 reveals interesting characteristics for multi-

objective GEA. First, we examine multi-objective GEA raw coverage lines in Figure  G.17 to Figure 

 G.19. Multi-objective GEA shows less variation in the range of raw coverage levels. The upper peaks 

and lower troughs of coverage levels from individual test data points on the graphs are smaller and 

closer together, compared to the raw coverage graphs lines of other test generations. One reason for 

this could be due to the more stringent round-robin multi-objective orientated GEA selection process.  

For each objective, the number of available test slots for test selection into the next evolution 

population is less. The tests to be selected are spread across a number of objectives. This implies the 

number of tests selected specifically for each coverage objective is lower, and hence, only the higher 

coverage performing tests for a particular objective are selected. Low coverage performing tests will 

not be chosen at all. Therefore, the gap between coverage levels from consecutive tests and evolutions 

will be smaller. This accounts for the smaller variation in raw multi-objective GEA coverage graphs.  

In contrast, for single objective GEA methods, the entire population for the next evolution is dedicated 

to tests selected by a single coverage objective only. Hence, there are more test slots, and greater 

number of low coverage performing tests will be included into the population; after the best 

performing tests have been chosen. This translates into a raw coverage graph line that displays larger 

coverage variation in coverage levels.  

Next, we observe that multi-objective GEA relies heavily on the re-use and recombination variation of 

snippet genome from tests that were optimised for multiple coverage objectives. With this approach, 

there is a possibility for the current population snippet diversity to become overly focused on these set 

of snippet genome only. Hence, during the GEA process, exploration of test space may be limited if 

insufficient addition or mutation variation is applied. For example, the multi-objective GEA employs 

324 recombination operations compared to 206, 181, 201 and 170 operations for add, subtract, 

mutation, and replace operations respectively. Also, SAGETEG only employs an average of 257 

recombinations throughout its GEA process.  

Another observation from the multi-objective graph lines is the occurrence of more low coverage 

troughs (low coverage downward spikes) toward the end of test evolutions; when compared to 

SAGETEG. The reason for this is because there may be remaining tests toward the end of the multi-

objective GEA process that were selected due to its high fitness for one particular coverage objective 

type, but lower coverage for other objectives. Despite such tests being unable to provide high fitness 
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for all objectives overall, they were still selected because of their usefulness for other objectives. For 

graphs whose coverage objective fitness attained by tests were low, these tests appear as spikes in 

those graphs. 

A fully successful multi-objective GEA process would be able to prevent such lower spikes and return 

tests that are completely optimal. This is an area in which the multi-objective test generation could be 

researched further and improved upon. 

 

Conditional coverage test runs and their coverage progress comparison 

We also comment on the shorter test runs for conditional coverage by the other test generation 

methods. As can be observed in Figure  G.19, Figure  G.13 and Figure  G.16, a number of previous 

conditional coverage test generations were conducted for only 20 evolutions, or approximately 420 

tests and 6500 snippets, which is much less than the multi-objective test run. The conditional coverage 

run was terminated because conditional coverage requires significant amount of CPU simulation and 

memory resources, and can be exponentially longer to run as individual test size grows.  

Unlike multi-objective GEA, the individual test sizes are not constrained and cannot be handled by the 

memory and processing capabilities of the simulation platform. Due to this, the larger complexity in 

measuring conditional coverage prompted these previous test generation runs to be halted earlier. 

Regardless, it can be seen the conditional coverage is well and truly saturated by evolution 20, when 

similar number of tests and snippets are executed at this evolutionary stage. Furthermore, extending 

the test run length simply adds to the test execution time without any coverage gain. 

For multi-objective GEA however, conditional coverage has only just saturated at evolution 20. 

Therefore, given that test sizes will be actively constrained where possible, the multi-objective run is 

extended longer. This ensures the coverage is fully saturated and that any further possible coverage 

improvements are given opportunity to be realised.  

 

Other comparisons and observations 

Besides accounting for shorter conditional coverage test runs, other observations regarding the line and 

toggle coverage test runs of previous methods can be made. For line coverage, in Figure  G.20, given 

all test generation methods execute similar number of tests, snippets and evolutions, the longer 
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execution time of multi-objective GEA is directly due to the additional processing required to 

simultaneously optimise multiple objectives.  

In Figure  G.21, for toggle coverage test runs, the longer test run times of SAGETEG and µGP is due to 

the greater number of snippets being executed by these two test generation methods to achieve their 

coverage levels. Whilst random toggle coverage test runs also executes greater number of snippets, it 

is peculiar that the test execution time is less. This could be because the snippets are simply chained 

together randomly, and hence their interactions with one another are not as complicated compared with 

composing snippets tests via GEA variation and driven by coverage goals. This behaviour requires 

further investigation.  

In Figure  G.20 to Figure  G.22, note that the first data point for all test generation graph lines represents 

the time taken to create the initial population of tests. The first data point is further along the time axis 

for multi-objective GEA because this test population must cater for multiple objectives. Hence, the 

generation and execution times of multi-objective GEA tests is longer. Because previous test 

generation methods only require creation and execution with regards to one coverage objective, their 

initial test population is created and runs much quicker. For example, their first data points in Figure 

 G.20 to Figure  G.22 are much earlier closer to zero. 

The above argument also applies to the completion of GEA evolutions during testing. In Figure  G.20 

to Figure  G.22, the data points of SAGETEG and µGP graph lines are closer together during early to 

middle stages of testing. This indicates each of their evolutions complete in shorter durations. As 

testing continues toward later stages, the data point gaps start to widen, indicating later evolutions 

require longer time to complete. This is expected because tests will become more complex and larger 

with more evolutions, in an attempt to gain further coverage. Hence, require longer test execution and 

evolution completion times. 

For multi-objective GEA, the data point gaps and duration for each evolution are not as close together 

at the start of testing, and slowly increases as testing continues. The change in evolution times and data 

point gaps do not vary as significantly. This is because multi-objective GEA testing optimises and 

measures multiple objectives at one time, for all the tests. Hence, the effect of longer and more 

complicated tests as evolution proceeds further is not as significant. The complexity and additional 

processes by multi-objective optimisation negates this effect to some extent. Whereas for previous 

GEA based test generations, early evolutions can be performed quickly for earlier GEA simplistic tests 

because only one coverage goal needs to be maximised and measured. The effect of large or more 

complex tests in single-objective based GEA is much greater as evolutions proceed further. 
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APPENDIX H. Attribute Combinations Coverage 

This appendix provides supplemental data for attribute combinations coverage research in Chapter 7. 

 

H.1 Attributes and domains of the Nios SoC attribute combinations 
coverage 

Table H.1 lists the domains employed for attribute combinatorial coverage measuring of the Nios SoC. 

Table H.2 list the attributes and subset of certain domains and their example domain values for these 

attributes. Table H.2 shows only a partial list of the example attributes and domain values for example 

demonstrative purposes for this thesis. The entire list is too large for inclusion into this thesis, and is 

specified fully in the implementation code of the coverage measuring tool. The T and X domains are 

not shown in Table H.2. These domains are similar for all attributes, with identical meanings to 

capture specific or a wide set of common values for the attribute. The domains are used to build up the 

targ_comb attribute combinatorial set specification goals for each snippet in the control graph. 

Table H.1 Domains employed for Nios SoC coverage measuring 

Domains Symbol Intention 

Top level terminal T 
Indicates the attribute contains a single specific value, which can be any attribute 
value from any domains beneath the T domain. The T domain completes the 
partial order structure. 

Boundary B 
Captures attributes values that are at the boundaries of legal ranges of values for 
the attribute. Values greater or less than legal ranges are considered to belong to 
the Illegal domain. 

Non-boundary NB 
Refers to attribute values that are within legal operating ranges of an attribute, 
but is not part of the Boundary domain. Examples include reset or default register 
attribute values, or specific source or destination I/O port addresses. 

Intentional error InE Represents attribute values that are asserted due to erroneous SoC conditions, 
which are explicitly triggered by testing or can occur during normal operation. 

Unintentional error UnE 

Represents erroneous, undefined, or unknown attribute values that occur 
unexpectedly without explicit initiation from testing; or cannot be easily 
triggered during normal SoC operation. Examples include attribute values that 
are strictly not allowed by the SoC, or meaningless values that do not correspond 
to any settings or status of the SoC. 

Legal L Encapsulates attribute values during normal and error-free SoC operation. 

Illegal IL Indicates any attribute values when an error or other unknown abnormal illegal 
condition occurs during SoC operation. 

Don’t-care ignore X 

Represents multiple attribute domain values concurrently, it covers all attribute 
values of other domains. This implies such attribute values can be ignored 
because they are already exercised and covered by higher domains; or they are 
irrelevant to an attribute combinatorial set and do not contribute to coverage. 
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Table H.2 Attributes and example domain values for coverage measuring of Nios SoC 

Attributes Boundary Non-boundary Intentional error Unintentional error Legal Illegal 

DMA status register 
3’b000: idle 3’b101: transferring, 

3’b001: transfer just 
started 

 3’b110, 3’b111: 
undefined behaviour 

3’b011: transfer 
completed 

 

DMA trigger transfer 
register 

 0: idle, 
1: trigger transfer 

    

DMA termination 
status register 

3’b000: no 
termination 

3’b001: number of 
packets transferred 
3’b010: read end-of-
packet  
3’b100: write end-of-
packet 

 3’b111, 3’b011, 
3’b101, 3’b110: 
multiple termination 
triggered 

  

DMA incrementation 
mode register 

2’00: no address 
increment, 
2’11: read and write 
address increment 

2’01: read address 
increment,  
2’b10: write address 
increment 

    

DMA termination 
mode register 

3’b000: no 
termination, 3’b111: 
all termination 
 
 

3’b001: number of 
packets transferred 
3’b010: read end-of-
packet  
3’b100: write end-of-
packet 

  3’b011, 3’b101, 
3’b110: multiple 
termination 

 

DMA read/receive 
address register 

Max and min RAM, 
ROM, SRAM, Flash 
memory boundary 
addresses, odd valued 
memory address 

8’h00940800: UART 
receive port address,  
8’h0094086: PIO port 
address, 
Max memory boundary 
sizes to  min memory 
boundary sizes  
inclusive address 

Max RAM, ROM, 
SRAM, Flash 
memory boundary 
addresses + 2, Min 
RAM, ROM, 
SRAM, Flash 
memory boundary 
addresses − 2, 
UART transmit 
port address, 

Max memory 
boundary size + 1 
address, 
Min memory boundary 
size − 1 address 
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UART receive port 
and PIO port 
address ± 1 

DMA write/transmit 
address register 

Max and min RAM, 
SRAM, Flash 
memory boundary 
addresses, odd 
memory address 

8’h00940804: UART 
transmit port  address, 
8’h0094086: PIO port 
address, 
Max memory boundary 
sizes to  min memory 
boundary sizes  
inclusive address 

Max RAM, ROM, 
SRAM, Flash 
memory boundary 
addresses + 2, Min 
RAM, ROM, 
SRAM, Flash 
memory boundary 
addresses − 2, 
UART transmit 
port address, 
UART receive port 
and PIO port 
address ± 1 

Max memory 
boundary size + 1 
address, 
Min memory boundary 
size − 1 address 

  

DMA length transfer 
size register 

Zero transfer size, 
Large transfer size 
(e.g., 2^8 bytes) 

Byte, halfword, word 
multiple size (eg. 8, 16, 
32, 64) 

 Negative size value Single value between 
zero and max DMA 
length register size 

 

DMA interrupt 
enable/disable pin 

 0: enable 
1: disable 

    

UART receive data 
register 

8’h0: all zeros byte 
8’hff: all ones byte 

8’h55, 8’hAA: 
alternating ones and 
zeros bytes 
8’h0F, 8’hF0: lower and 
upper ones byte 

    

UART transmit data 
register 

8’h0: all zeros byte 
8’hFF: all ones byte 

8’h55, 8’hAA: 
alternating ones and 
zeros bytes 
8’h0F, 8’hF0: lower and 
upper ones byte 

    

UART end-of-packet 
register 

8’h0: all zeros byte 
8’hff: all ones byte 

8’h55, 8’hAA: 
alternating ones and 
zeros bytes 
8’h0F, 8’hF0: lower and 
upper ones byte 
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UART transfer divisor 
rate register 

3: min rate 
10: max rate 

 0, 1, 2: below min 
rate 

11, 12: above max rate 4, 5, 6, 7, 8, 9: normal 
rate 

 

UART transfer 
complete interrupt 
register 

0: no interrupt 
5: receive and 
transmit interrupt 

1: receive interrupt 
4: transmit interrupt 

    

UART end-of-packet 
interrupt pin 

    0: enable 
1: disable 

 

UART error interrupt 
pin 

    0: enable 
1: disable 

 

UART transfer 
interrupt pin 

    0: enable 
1: disable 

 

UART transmit on 
error interrupt pin 

    0: enable 
1: disable 

 

UART receive on 
error interrupt pin 

    0: enable 
1: disable 

 

UART transfer status 
register 

0: idle 
5: receive and 
transmit 

1: receive 
4: transmit 
 

    

UART end-of-packet 
setting register 

    0: no end-of-packet 
1: end-of-packet 

 

UART error setting 
register 

    0: no error 1: error triggered 

UART transmit on 
error register 

    0: no error 1: error triggered 

UART receive on 
error register 

    0: no error 1: error triggered 

PIO data register 

8’h0: all zeros byte 
8’hff: all ones byte 

8’h55, 8’hAA: 
alternating ones and 
zeros bytes 
8’h0F, 8’hF0: lower and 
upper ones byte 
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PIO direction setting 
register 

8’h0: all zeros byte 
8’hff: all ones byte 

8’h55, 8’hAA: 
alternating ones and 
zeros bytes 
8’h0F, 8’hF0: lower and 
upper ones byte 

    

PIO interrupt mask 
setting pins 

8’h0: all zeros byte 
8’hff: all ones byte 

     

PIO edge capture 
signals  

8’h0: all zeros byte 
8’hff: all ones byte 

     

CPU global/local 
registers 

Largest positive and 
negative value, 
Smallest positive and 
negative value 

   Binary multiples of 
bytes value 

 

CPU interrupt setting 
and priority signals 

No priority and 
interrupts set. 
All priority and 
interrupts set at same 
level, 
No maskable 
interrupts, 
All interrupts 
maskable 

   Individual priority for 
each interrupt, 
Same priority for 
multiple interrupts  

Conflicting priority 
and interrupt at 
same level 

CPU overflow error 
condition register 

No overflow, 
all overflow triggered 

  Non-recoverable 
overflow error 

Single overflow: 
Arithmetic overflow, 
register window 
overflow 

 

CPU registers/stack 
depth status 

Zero depth, 
maximum depth 

   Single non-zero depth 
above maximum 

 

Memory 
configuration register 

Memory address 
range cascaded 
sequentially 

Non sequential memory 
address range 

Overlapping 
memory address 
range 

 SRAM row/column 
maximum and 
minimum setting 

 

Memory access 
address register 

Write/read to multiple 
memories, parallel 
access of multiple 
memories 

 Write access to 
ROM or illegal 
program space 

 Write/read to RAM, 
SRAM, Flash memory 
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Memory access size 
pin signal 

  Non even, byte, 
halfword, word  

 Byte, halfword, word 
size 

 

Timer control register 

4’b0000: idle, 
4’b0111: interrupt 
enabled, continuous 
mode and start timer 

 4’b0011: 
conflicting start and 
stop timer 

4’b0001: enable 
interrupt without 
running, 
4’b0010: continuous 
mode without running 

4’b0101: interrupt 
enabled and start 
timer, 
4’b0110: continuous 
mode and start timer 

 

Time status register 2’b00: Idle,  
2’b10: Running 

  2’b11: timed out and 
running state 

 2’b01: Timed out 

Timer upper period 
setting 

8’h0: all zeros byte 
8’hff: all ones byte 

8’h55, 8’hAA: 
alternating ones and 
zeros bytes 
8’h0F, 8’hF0: lower and 
upper ones byte 

  Single value between 
0 and 256 

 

Timer lower period 
setting 

8’h0: all zeros byte 
8’hff: all ones byte 

8’h55, 8’hAA: 
alternating ones and 
zeros bytes 
8’h0F, 8’hF0: lower and 
upper ones byte 

    

Timer snapshot 
counter register 

0: minimum counter 
value 
2^32: maximum 
counter value 

   Single binary byte 
multiple value 

 

Attribute values are provided either quantitatively with associated meanings (e.g., 3’b000: idle), or qualitatively with descriptive meanings (e.g., Max memory 
sizes). 
Quantitative attribute value entry format : S’T〈value〉 : meaning of value  

                       S is the size and number of digits of the value 
                       T is the type of the value, b for binary, h for hexadecimal 

<value> is the attribute value in binary or hexadecimal digits. 
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H.2 Control graph definitions for coverage measuring 

In addition to partially ordered domains and its hierarchical structure, the degree of coverage attributes 

measuring can be managed further by employing control graphs like those from symbolic trajectory 

evaluation (STE). The control graphs capture all possible snippet execute sequences that can make up 

a SALVEM test. Using such a graph based coverage model, additional efficiency is provided because 

coverage measuring is only performed on those attribute combinations that are realisable from these 

snippet sequences. Other attribute combinations that are not possible from SALVEM testing are not  

captured by the control graph and do not need to be measured, thus reducing coverage effort.  

The control graph is constructed as follows. First, the control graph maps each snippet to a graph node. 

By doing so, each node represent a major function or operation that the SoC can perform. This allows 

the coverage method to identify and measure these primary SoC functionalities according to the 

different attribute combinatorial set at each snippet node.  The certification or lack of SoC 

functionalities exercised by snippets can then be easily measured and examined. Each snippet node 

specifies a coverage goal, outlining the SoC operations to perform for testing, and the associated 

attributes combinations to exercise. 

Graph edges designate the flow of snippets that can be composed within SALVEM tests. Edges 

capture the possible sequences of snippets that can be composed under SALVEM test generation. The 

outgoing edges from each graph node point to the next possible snippet and associated SoC operations 

that can be initiated during the course of SALVEM testing. Hence, coverage measuring can narrow 

down the possible attribute combinatorial set of attribute domain values which can be measured at 

each next snippet node. This allows exercised attribute combinations during testing to be processed 

more efficiently as the expected attribute combinatorial set can be used immediately for the 

measurement. The traversal of the control graph during coverage measuring is also facilitated by these 

edges.  

For SALVEM testing, the control graph is defined as follows.  

Definition H.1 : Control graph definition 

A control graph g is defined as a tuple of the form, 

g = 〈N, E, S, F, A, C〉 , where  

N is the set of nodes in the control graph, as defined in Definition H.2, and each node corresponds 
to a snippet in the snippet library; 

E  is the set of unidirectional and unlabelled edges in the control graph; 
E = {〈n1, n2〉 : snippet node n2 is executed by the SoC after snippet node n1; n1, n2 ∈ N}; 
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S   is the set of snippet nodes that are at the beginning of a SALVEM test, at which graph traversal 
can start, S ⊂ N; 

F   is the set of snippet nodes at the end of a SALVEM test, at which graph  traversal finishes,     
   F ⊂ N; 

A  is the set of antecedent attribute specifications that can be assigned to a node, and is described in 
Appendix H.4; 

C  is the set of consequent attribute specifications that can be assigned to a node, and is described in 
Appendix H.4; 

 

Except the set S of start and F of final snippet nodes, any node can have any number of incoming and 

outgoing edges, allowing for divergent coverage graph measuring. For a control graph, the set of 

antecedents A and consequents C are building block predicates that formally describe what attribute 

domain values are to be exercised by testing, and measured for coverage. They are employed to 

construct formalisations of the attribute combinatorial specifications at each snippet node in Appendix 

H.4. This restricts the possible attribute combinations and domain values that need to be measured at 

each node. 

The definition of the control graph node is given in Definition H.2. 

Definition H.2 : Control graph node definition 

A control graph node n is defined as a tuple of the form, 

n = 〈s, I, O, an, cq, cmb〉 , where  

s  is the designated snippet of the node, s ∈ snippet library; 
I  is the set of incoming edges into the node,  

I = {〈i, n〉 : snippet node n is executed by the SoC after snippet node i; i, n ∈ N}; 
O is the set of outgoing edges from the node, 

O = {〈n, o〉 : snippet node o is executed by the SoC after snippet node n; n, o ∈ N}; 
an  is the antecedent attribute specification for the node, an ∈ A;  
cq  is the consequent attribute specification for the node, cq ∈ C;  
cmb  is the informal attribute combinatorial set specification of relevant attributes, it specifies 

attribute domain values that must be exercised and measured in combination with  each other 
for coverage purposes. The cmb is also equivalent to the target combinatorial set (targ_comb) 
at a snippet node, and is described in Appendix H.7. 
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Diagrammatically, an example of the control graph node is shown in Figure H.1. 

 

Figure H.1 Control graph node 

The attribute combinatorial set cmb at each node describes the relevant attributes and desired 

combinations of partially ordered domain values to evaluate the coverage metric. This was described 

in greater detail in Section 7.9 Chapter 7. Even though the focus for coverage is to measure the amount 

of attribute combinatorial values exercised by testing, complementary measure of test coverage 

effectiveness could also be deduced from how widespread the control graph has been exercised. The 

control graph implicitly captures all possible SoC behaviours that can be exercised by SALVEM 

testing, hence indicates how effective the tests has been exploited to test the SoC. Currently, this 

avenue of investigation is beyond the scope of the coverage research.  

Using the test execution trace of attribute values and by matching these exercised attribute 

combinations against the information described at each snippet node, the coverage graph is traversed 

according to the operations of the SALVEM test program. For the Nios SoC, the coverage attribute 

control graph employed is shown in Appendix H.3. 

From Figure H.1 (and the Nios SoC control graphs of Appendix H.3), a snippet node in the control 

graph can be traversed from any number of prior nodes, and can traverse to other multiple nodes 

(including itself). The multiple input and outgoing graph edges imply graph traversal can follow 

numerous paths, which must be resolved effectively. By formally specifying antecedents and 

consequents, the graph traversal can be conducted using techniques from STE to only check and match 

minimal attributes that are required by the snippet node to determine if the node is to be traversed. 

Such a process in STE is termed trajectory checking, and is adapted for use along with other 

abstraction mechanisms for our coverage process as described in Section 7.8 of Chapter 7.  

 

 

 

s 

cmb = 〈…, X, B, X, IL, E, X, … 〉 

an → cq
o1∈ O
o2 ∈ O

i1 ∈ I
i2 ∈ I
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H.3 Control graphs used for attribute combinations coverage 

Figure H.2, Figure H.3, Figure H.4, Figure H.5, Figure H.6, and Figure H.7 show the snippets based 

control graphs used for attribute combinatorial coverage measuring. Whilst the figures are shown 

individually, in fact, they are combined together to form the entire overall control graph for coverage 

measuring as a whole. 

Given the size and makeup of the control graph, for simplicity and better representation, the graph and 

snippet nodes are divided and grouped into individual dashed boxes according to the type of device the 

snippet is primarily intended for. Each dashed box of snippets shows the traversal of snippet nodes 

possible within each group of snippets. For example, for DMA snippets, if the current traversed 

snippet node is the CheckDMA, then the next possible snippets that can be traversed to within the 

DMA snippet group are the InitDMA and ExecDMA snippet nodes. Alternatively, the traversal can 

proceed to a snippet of another snippet group. 

There are incoming IN and outgoing OUT arrows for each group of snippets, which represents the 

traversal of snippets from and to other groups of snippets.  That is, a snippet with a connection from 

the IN incoming arrow can be traversed into from another snippet of some other group of snippets. 

Similarly, a snippet with a connection to the OUT outgoing arrow can traversed to another snippet of 

some other group of snippets. Via the IN and OUT arrow connections, applicable snippets from any 

group can traverse to applicable snippets of other groups. All snippet groups are connected bi-

directionally with one another. If the graph connection of the snippet groups was created, the snippet 

groups would be connected in a mesh configuration.  

The traversal of the control graph can begin at any of the snippets connected to the IN arrow of any 

group of snippets. Graph traversal can terminate after any snippet node whenever the next exercised 

combinations do not match any of the possible next nodes that can be traversed to, or when all 

exercised combinations have been processed. 

Note that in some snippet group’s control graph, a snippet that initialises or resets the particular device 

for the snippet group is not required to perform any operations immediately on the device. Therefore, 

the control graph reflects this by allowing for a direct connection leading out from the 

reset/initialisation snippet to the OUT arrow of the snippet group’s control graph. At a later stage, 

when operations are tested on the device, the control graph allows for direct connection into the 

snippet group’s control graph again to the relevant snippet. 
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Finally, the design and usage of the control graph could have been implemented at a lower level than 

currently employed. The control graph hierarchy of nodes can go beyond the snippet node level to 

examine the attribute combinations exercised by operations conducted by the snippet. This was the 

original intention of the control graph design and coverage measuring, and would have provided for 

greater control and fine-grained measuring of the functional coverage information that can be 

extracted. However, conducting coverage measurements at such lower level would result in too 

complex and more resource intensive processing. The current level of control graph and function 

coverage measure data that can be extracted is deemed adequate, and does not overly exert the 

processing required. 

 

Figure H.2 Control graph portion for group of DMA snippets 

 

 

Figure H.3 Control graph portion for group of UART snippets 

 

ResetUart

TxUart

RxUart

RxTxUart

RxTxNDupUart 

IN OUT 

From : DMA, CPU, 
Memory PIO, 
Timer groups 
of snippets, 
or start of 
graph 
traversal  

To : DMA, CPU,  
Memory PIO, 
Timer groups 
of snippets  

InitDMA CheckDMAExecDMA TermDMA

IN 

OUT 

To : UART, CPU, 
Memory, 
PIO, Timer 
groups of 
snippets 

From : 
UART, CPU, 
Memory,  
PIO, Timer 
groups of 
snippets, or 
start of graph 
traversal 
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Figure H.4 Control graph portion for group of CPU snippets 

 

 

Figure H.5 Control graph portion for group of Memory snippets 

 

 

Figure H.6 Control graph portion for group of PIO snippets 

 

SetupPIO

ConfigPIODir 

WritePIO IN OUT

From : DMA, UART, CPU, 
Memory, Timer 
groups of snippets, 
or start of graph 
traversal 

To : DMA, UART, 
CPU, Memory, 
Timer groups of 
snippets 

GenRandNumSeq 

MatrixMultiply 

MatrixInverse 

DFT 

Search 

Convolve

InvDFT

Mesh connection, all nodes can traverse to one another

IN OUT 

From : DMA, UART, 
Memory, PIO, 
Timer groups 
of snippets, or 
start of graph 
traversal 

To : DMA, UART, 
Memory, PIO, 
Timer groups 
of snippets 

WriteMemory 

ReadMemory 

WriteReadMemory 

TestMemoryLogic 

WriteROM 

MissAlignedAddr 

OUTIN
To : DMA, UART,  
  CPU,  PIO   
  Timer groups of  
  snippets  

From : DMA,  UART  
    CPU,  PIO,   
    Timer  groups  
    of snippets, or  
    start of graph 
    traversal 
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Figure H.7 Control graph portion for group of Timers snippets 

 

H.4 Coverage goal specifications with antecedents and consequents 

Antecedents and consequents are formalised specifications of attributes and partially ordered domain 

value combinations; which are realised at each snippet node during test and coverage measuring. They 

allow STE based methods to perform control graph traversal for coverage measuring. First, a brief 

background of the rationale behind STE antecedent and consequent specifications for describing 

attributes is presented. 

The adaptation of STE for coverage measuring, specifically its control graphs and antecedent 

consequent specifications, was motivated by similarities between STE circuit checking states and 

coverage attribute combinations. An attribute combination exercised by a snippet is similar to a circuit 

state exercised by the hardware circuit in STE. As tests are executed, the coverage attributes advances 

from one combination to the next, not unlike the transition of circuit states during hardware operation.  

In classical STE, antecedents set up desired circuit states that correspond to some function of the 

circuit. Subsequently, at the next node, consequents specify the expected circuit response to this 

function. This set up - check response pattern is made possible by specifying inputs and storage 

elements in antecedents, and outputs and storage elements in consequents.  

In the coverage domain, a snippet set up – check response pattern can also be established. This enables 

modified STE algorithms to check for realisation of desired and expected coverage combinations. 

Antecedents predominately specify attributes of write and read-write registers, whilst consequent 

denote read and read-write registers. 

StopTimer RestartTimer ReadTimer 

SetTimerPeriodAutoRestart 

SetTimerPeriodNoAutoRestart 

IN OUT 
From :  
DMA, UART, 
CPU, Memory, 
PIO groups of 
snippets, or start 
of graph 
traversal 

To : DMA, UART, 
CPU, Memory, 
PIO groups of 
snippets 
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The attribute antecedent and consequent specifications are composed of two basic elements, which are 

used recursively to describe the attribute combinatorial domains to exercise. Definition H.3 defines the 

simple predicate and conjunction elements used within antecedent consequent specifications. 

Definition H.3 : Simple predicate and conjunction elements 

Let f be the antecedent or consequent specification, which can be expressed using the following simple 

predicate and conjunction elements defined as follows. 

(i) Simple predicate :  f = (a is p) where p ∈ P and P = {T, B, NB, InE, UnE, L, IL, X} 

A simple predicate f expresses an attribute a must exercise a specific partially ordered domain value.   

(ii) Conjunction :  f = (f1 ∧ f2) where f1 and f2 are either simple predicates or further conjunctions of 

simple predicates. 

The conjunction element allows multiple simple predicates to be recursively specified and chained 

together. For example, the conjunction components f1 and f2 can themselves be conjunctions of other 

conjunction components, which eventually are broken down to single simple predicates. 

 

The notations in Definition H.3 are reused primarily to maintain consistency with traditional STE 

circuit checking antecedent and consequent descriptors. The use of simple predicates and conjunctions 

ensure only the desired and expected attribute partially ordered domain combinations need to be 

exercised by testing, and measured as part of coverage. Employing these building block elements for 

antecedents and consequents allows for the minimal set of attributes to be processed; to check for 

consistency with snippet behaviours according to the control graph. This reduces the amount of 

coverage measuring. Definition H.4 defines the antecedent and consequent specifications. 

Definition H.4 : Antecedent and consequent specification 

Let an be the antecedent, composed recursively of simple predicate and conjunction elements from 

Definition H.3. 

an = (a is p) ∧ f    

where  f contains further simple predicates and conjunction of predicates, or is an empty function 
otherwise. 

 a and attributes in f are SoC configuration registers that assert and initiate SoC operations, for 
example write access control registers. 
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Let cq be the consequent, composed recursively of simple predicate and conjunction elements from 

Definition H.3. 

cq = (a is p) ∧ f    

where  f contains further simple predicates and conjunction of predicates, or is an empty function 
otherwise. 

 a and attributes in f are SoC configuration registers that indicate and monitors SoC operations, 
for example read access status registers. 

 
 

H.4.1 Least upper bound (LUB) operation for specified domains 

This section describes the specific outcomes of least upper bound operations between domains 

specified in Figure 7.3 of Chapter 7. In addition to Definition H.3, note that a special case of the LUB 

exists whereby the least upper bound of two domains are also given as a disjunction ∪ if a legal 

domain or legally derived domains (i.e. B or NB) is LUB’ed with domains from the illegal derived 

domains, or vice versa. Given that the boundary and non-boundary, and intentional and unintentional 

error domains are derived from the disjoint legal and illegal domains, it is important to ensure that the 

attribute values of these disjoint domains are exercised and measured individually rather than being 

assigned the X domain immediately. 

The LUB operation for domains in the partially ordered structure of Figure 7.3 Chapter 7 is best 

expressed in the format of a truth table in Table H.3. 

Table H.3 LUB operation truth table 

LUB T B NB InE UnE L IL X 

T T B NB InE UnE L IL X 

B B B L B ∪ InE B ∪ UnE L B ∪ IL X 

NB NB L NB NB ∪ InE NB ∪ UnE L NB ∪ IL X 

InE InE B ∪ InE NB ∪ InE InE IL L ∪ InE IL X 

UnE UnE B ∪ UnE NB ∪ UnE IL UnE L ∪ UnE IL X 

L L L L L ∪ InE L ∪ UnE L X X 

IL IL B ∪ IL NB ∪ IL IL IL X IL X 

X X X X X X X X X 
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The least upper bound operation is similar to that employed for STE circuit checking between the 

signal logical states of {0, 1, X}. Taking the LUB between these states allows for the don’t-care state 

X to be employed more often during circuit evaluation; and hence reduces the amount of states that 

need to be explicitly checked. The LUB operation and its benefits in STE are shown in the example in 

[BBS91, Che03]. Similarly, taking LUB of attribute domains to produce lower level domains for use in 

coverage measuring reduces the coverage effort required.  

 

H.4.2 Conversion of antecedent and consequent specifications to attribute 
combinatorial set 

Given the definition of LUB, the conversion of formalised antecedent consequent specifications to an 

informal attribute combinatorial set is described in Definition H.5. 

Definition H.5 : Converting antecedent and consequent specifications to attribute combinatorial 

set 

Let δ : f → CMB be a function that takes in an antecedent or consequent specification and converts it 

to an equivalent attribute combinatorial set; where f is the antecedent or consequent composition of 

simple predicates and conjunction from Definition H.3, and CMB is the attribute combinatorial set 

from Definition 7.2 of Chapter 7. 

The function δ can be recursively applied to the simple predicates or conjunctions within antecedents 

and consequents to form the overall attribute combinatorial set.  

(i)  

For a simple predicate (ai is p), from  Definition H.3 (i), let Z be the set of attributes for the snippet 

node. 

δ(ai is p) = 〈X, …, X, P, X, …, X〉 , ∀aj ∈ Z and j ≠ i, Dj = X 

where attribute ai is the ith attribute in the combinatorial set tuple that holds partial domain p, and 
all other attributes are assigned the X domain. 

The δ function constrains only the attribute in the simple predicate to the specified partial order 

domain. All other attributes are assigned X so that they can assume any value and do not need to be 

explicitly examined for coverage purposes. 
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(ii)  

For conjunctions (f1 ∧ f2), from Definition H.3 (ii), 

δ(f1 ∧ f2) = δ(f1) LUB δ(f2)  where LUB is the least upper bound operator, operating on the partially 
ordered domain structure in Figure 7.3 of Chapter 7. 

The δ function recursively breaks down conjunctions to eventually operate on simple predicates 

producing the appropriate attribute combinatorial set in (i). Using the LUB operator, the attribute 

combinatorial set of these conjuncted simple predicates are combined together to form the overall 

attribute combinatorial set from the antecedent or consequent. 

The use of δ as the antecedent consequent conversion function symbol is to maintain consistency 

with the corresponding trajectory state building operation in STE. 

 

The antecedent and consequent, along with the converted attribute combinatorial set describes the 

coverage goals at each snippet node, and collectively the verification goals of SALVEM testing. The 

antecedents and consequents at a node capture the range of application behaviours each snippet must 

verify. The antecedent specifies domains for attributes that are being driven by SALVEM test 

programs and the SoC. The consequent specifies attribute domains to ensure correct and required 

attribute values are exercised by the test programs.  

From antecedents and consequents, the adaptation of attribute combination merging in Definition H.5 

is similar to STE’s process of evaluating defining trajectory sequences of circuit states during each 

time step of circuit operation. STE builds up minimal circuit states to assert and check using 

antecedents and consequents. Similarly, our coverage method constructs attribute combinatorial sets 

that prescribe only the necessary attributes and domain values to exercise by testing and coverage 

measure. The antecedents and consequents define the minimal sequence of attribute values that must 

be realised, in order to capture the range of attribute combinations and associated SoC functionalities 

at each node. By doing so, adapted STE techniques can be reused to allow efficient node matching. 

 

H.5 Coverage measuring graph traversal 

Based on the control graph definitions in Definition H.1 and Definition H.4, the graph traversal 

method is depicted with pseudo code in Figure H.8. Given a graph g, the graph traversal is initiated by 

executing Traverse[g, S] where S is the set of snippet nodes from where graph traversal may 
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commence. The traversal function is called recursively, and can be terminated when either the entire 

trace of exercised attributes combinations is processed or a terminating snippet of the control graph is 

encountered (i.e. a snippet from the set F of snippet nodes at the end of SALVEM tests). 

 
     Note : comments are pre-pended by ‘//’ 

Figure H.8 Control graph traversal method pseudo code 

1   Traverse [g, N] { 
2 
3     foreach n in N { 
4 
5       // From Definition H.5, attain the simplified attribute combinatorial set cmb from 
6       // the antecedent an and consequent cq specification fan and fcq respectively. 
7       cmb = δ(fan) LUB δ(fcq) 
8 
9       // Determine if the test exercised attribute combination ex matches node n 
10      if [Node_Match(ex, cmb) = true] { 
11 
12        // Further evaluate the coverage metric, Section 7.9 Chapter 7 
13         Evaluate_Coverage_Metric(n, ex)   
14 
15         // Attain the next exercised attribute combination during testing of test t 
16         ex = Get_Next_Exercise_Combination(t) 
17 
18         // Terminate graph traversal if there is no exercised combination 
19         if [ex = ∅] { 
20          exit_Traverse_function 
21        } 
22 
23        // Terminate graph traversal if n is part of the set F which are the last 
24        // nodes in the control graph and at which traversal terminates 
25        if [n ∈ F] { 
26          exit_Traverse_function 
27        } 
28 
29        // Attain the set of next potential nodes that can be traversed to from 
30        // the current node n, from the set of outgoing edges O of n 
31        N = Next_Outgoing_Nodes(O) 
32 
33        // Recursively invoke Traverse function to continue graph traversal 
34        Traverse [g, N]   
35 
36        // Only one node is guaranteed to match the exercised attribute  
37        // combination, 
38        exit_loop 
39 
40      } 
41    } 
42  } 
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In Figure H.8, whenever the snippet node matches, the coverage evaluation carried out at line 13 

involves updating the coverage metric. Briefly, the quantitative coverage metric is increased if the 

exercised attribute combination has not been triggered previously, and the snippet exposes new test 

space that contributes to test coverage. To ensure efficient and manageable attribute combinatorial 

processing, this coverage metric evaluation operation performs other attribute domain and 

combinatorial manipulation; Section 7.9 in Chapter 7 outlined this process in detail. 

 

H.6 Control graph traversal snippet node matching pseudo code 
implementation 

The pseudo code implementation of the snippet node matching operation conducted for control graph 

traversal is given in Figure H.9. The formalised definition of the snippet node matching was given in 

Definition 7.5 in Chapter 7. 

 

Figure H.9 Pseudo code implementation for snippet node matching operation 

 

 

1  Node_Match [ex, cmb] { 
2   
3   // For the current snippet node under examination for graph traversal,  
4   // ex : is the set of exercised combination of attribute values from testing. 
5   // cmb : is the set of domains specified for the targ_comb attribute combinatorial set of 
6   //    the current snippet node. 
7 
8   i = 0 
9   foreach [ei ∈  ex] ∧ [di ∈  cmb]  { 
10    if [ei ≤ di] { 
11      i = i + 1 // increment until i is the last index in the tuple of attributes in the  
12           // combinatorial set for the current snippet 
13    } else { 
14      return false  // snippet node does not match 
15    } 
16  } 
17  return true   // all exercised attribute values are covered by the snippet node  
18          // targ_comb, snippet node matches 
19 
20 } 
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H.7 Target combinatorial set (targ_comb) 

Motivations of the target combination 

The need for target combinations arises from graph traversal and coverage metric evaluation. Referring 

to Figure H.8 again, during graph traversal, the snippet node matching operation, Node_Match at line 

10 is the primary facilitator for advancing through the control graph. The goal of the node matching 

process is to match the exercised attribute combination to the relevant snippet for which the attribute 

combination was triggered by; thus measuring the coverage of the attribute combination to the 

appropriate snippet. Rather than manipulate formalised antecedent and consequent specifications 

directly, the node matching operation examines the corresponding attribute combinatorial set of the 

antecedent and consequent; which was simplified from the antecedent and consequent as described in 

Definition H.5 using the δ operator.  

 

Description of the target combination 

Recall from H.4 that the antecedent and consequent derived attribute combinatorial set is in fact 

equivalent to a description of the coverage goals at the snippet node. This coverage goal based 

combinatorial set is denoted as the target combination (targ_comb) of the snippet node. That is, 

targ_comb ∈ CMB from Definition 7.2 Chapter 7.  

The targ_comb captures the attributes combinations that must be exercised during testing for coverage 

measurement. At each snippet node, the antecedent consequent simplified targ_comb specifies the type 

and range of attribute combinations that must be realised by SALVEM tests to achieve full coverage 

for that particular snippet node; and collectively, full coverage for the SoC when undertaking 

SALVEM verification.  

The targ_comb restricts the range of attribute values and combinations of these values using partially 

ordered domains as described in Section 7.5 of Chapter 7. This constrains the required coverage space 

to exercise into smaller regions, as depicted in Figure 7.4 Chapter 7. Hence, the goals for coverage 

measurement at each snippet node (and the overall SoC coverage goal) are essentially a restricted sub 

portion of the test space, corresponding to the important and interesting SoC functions that require 

explicit testing.  

The identification and specification of what SoC functionalities are critical or require special test focus 

depends on the verification team. The antecedents, consequents, and eventually the targ_comb 
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provides a means of describing and narrowing down these test scenarios that must be verified, which 

effectively are the coverage and verification goals. 

During coverage measurement, the targ_combs serves two purposes. In Section 7.8 Chapter 7, the 

targ_combs are also used for matching against the exercised attribute combination test trace, to ensure 

the exercised attribute combination is evaluated for the correct and applicable snippet node. This 

facilitates snippet node matching and control graph traversal. Compared to strictly formal antecedents 

and consequents, using targ_combs for snippet node matching is less complex and more efficient. The 

control graph snippet node matching was described in Section 7.8 Chapter 7. 

The targ_comb are used for coverage metric evaluation to assess exercised attribute combinations 

against the set of combinations required by testing. That is, how much of the attribute combinations 

governed by the targ_comb coverage goals have been realised, so as to evaluate the quantitative 

coverage metric and reveal progress of verification. The use of targ_comb for coverage metric 

measurements is described in Section 7.9 Chapter 7.  

 

H.8 Cumulative combinatorial set (cumu_comb) 

Example of cumu_comb usage 

The strategy in employing the cumu_comb to keep track of exercised attribute combinations using 

partial order domains is illustrated diagrammatically in Figure H.10. It depicts an example of the 

overall coverage measure process. In the example, the initial domain assigned to attributes in the 

cumu_comb is T, which is the single valued domain at the peak of the partial order structure (Figure 

7.3 Chapter 7). In the beginning, the T domain signifies any single attribute value can be exercised. 

Until such time when sufficient attribute values have been exercised such that all values from a partial 

order domain are fulfilled, the attribute domain in the cumu_comb shall remain as T. As more attribute 

combinations are realised, these attributes get replaced with other domains lower in the partial order 

structure.  

For example, the progression of the DMA termination attribute (DMATerm) commences from T to the 

boundary (B), then also the non-boundary (NB), and eventually to the legal (L) domain. This indicates 

during testing, values from the DMA termination boundary domains were exercised, until all values 

from this domain were covered and hence the attribute domain transitioned to B. Eventually, as other 

attribute values are realised, the entire set of legal domain values become satisfied, and the attribute 
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domain is replaced with the legal L domain. At this stage, given the targ_comb specifies the L domain 

for the DMATerm attribute as well, the coverage goal for this attribute can be considered met. As 

testing continues, more combinations of attribute values are exercised, and other attributes’ domain in 

the cumu_comb eventually achieve their corresponding target domains in the targ_comb. This signifies 

the coverage goal for that snippet is achieved.  

The example of the T domain transitioning to the target legal domain is based on a scheme whereby 

attribute values are exercised with the aim of replacing attribute domains in the cumu_comb with 

lower ordered domains. Recall that the partial order structure in Figure 7.3 Chapter 7 is ordered by 

information content, and that the lower ordered domains represent greater coverage of attribute values. 

The goal is to direct testing to produce attribute values toward these target domains, and by doing so, 

continually reduce the cumu_comb domains of these attributes lower down the partial order hierarchy. 

This indicates the desired attribute values of the target domain are indeed captured.  

The concept of directing attribute value testing toward lower ordered domains is beneficial because it 

restricts testing to only focus on the essential attribute values, out of all the possible attribute 

combinations. Besides reducing the state size of what must be exercised, this approach facilitates more 

efficient coverage measuring, as attribute values are managed in terms of a selected set of domains, 

rather than the entire set of possible raw values. A full treatment of this attribute domain reduction 

strategy was outlined in greater detail in Section 7.9.3 Chapter 7. 

Finally, in Figure H.10, note that the X domain was also used to initialise one of the attribute in the 

cumu_comb. Such an initialised attribute implies no particular attribute values need to be specifically 

exercised or targeted for this attribute. This attribute can be considered as don’t care during test and 

coverage measuring. In fact, the meaning of X domain in the partial order structure signifies all 

attribute domain values in the partial order, given that X is the lowest domain. Hence, assigning X 

initially signifies all values of the attribute and any potential attribute value goals are covered already, 

and the attribute can be ignored. 

This example in Figure H.10 demonstrates one of the main concepts of our SALVEM test and 

coverage strategy. That is, to selectively define a restricted target coverage test space that requires 

specific test focus, and to direct testing toward these important design functions and monitor their 

progress. Appendix H.14 details more comprehensive examples of the cumu_comb attribute update 

operations, and evolution process of cumu_comb attribute domains during coverage measure. Besides 

guiding the test and coverage measure process, the cumu_comb is also essential to evaluating the 

quantitative coverage metric. 
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Figure H.10 Example usage of cumu_comb for coverage measuring, and update and reduction 

 

(an→cq) 
〈… targ_comb …〉 

InitDMA 

(an→cq) 
〈… targ_comb …〉 

ExecDMA

(an→cq) 
〈… targ_comb …〉 

TermDMA

(an→cq) 
〈… targ_comb …〉 

CheckDMA 

(an→cq) 
〈… targ_comb …〉 SetupPIO 

START END

Exercised 
attribute 

combinations 
storage 

InitDMA attribute combinatorial set : 〈…, DMATerm, DMAReadAddr, …, DMAStatus, …, UARTEop,  …〉 
Antecedent→Consequent specification : ( (DMATerm is L & DMAReadAddr is B) → (DMAStatus is L) ) 
InitDMA target combination targ_comb : 〈…, L, B, …, L, …, –, …〉 

Other snippet 
coverage nodes

〈…,  3’b001, 0x900020, …, 3’b101, …, X, …〉

〈…,  3’b000, 0x900000, …, 3’b000, …, X, …〉 

〈…,  3’b000, 0x900100, …, 3’b010, …, X, …〉

cumu_comb : 〈…,  T, T, …, T, …, X, …〉  

〈…,  B, T, …, B, …, X, …〉   

〈…,  B ∪ NB, T, …, L, …, X, …〉   

〈…,  L, B, …, L, …, –, …〉   (Matches targ_comb) 

Exercised combinations matching InitDMA 
node targ_comb during testing : 

Reductions at cumu_comb of  
InitDMA node : 

reduce

reduce 

reduce 

DMATerm 

Processing of exercised combinations, update and reduction of 
cumu_comb at InitDMA snippet node during testing 

other exercised combinations 
matching InitDMA targ_comb during 

testing 

For DMATerm attribute, combinations 
exercised during testing such that 
cumu_comb has been updated and 
reduced from T to the legal domain, 
which is the target domain specified by 
the targ_comb coverage goal. 

Attributes: 
DMATerm : DMA termination mode attribute 
DMAReadAddr : DMA source read device address 
DMAStatus : DMA transfer active/inactive status 
UARTEop : UART transfer termination end-of-packet
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H.9 Conventional combinations based coverage evaluation 

To ensure accurate coverage measuring and unique combinations, the basic concept in measuring 

attributes combinations coverage is to keep track of all the exercised combinations, and only increment 

the coverage metric if new combinations not previously exercised are realised. Therefore, the intuitive 

and simplistic approach is to compare each exercised combination against the entire set of 

combinations previously realised. Additionally, any unique combination exercised will also need to be 

stored for future evaluation of other exercised combinations. This basic coverage metric evaluation 

concept is summarised in Figure H.11. 

 

Figure H.11 Conventional attribute combinations based coverage metric evaluation 

Simply employing a strategy such as in Figure H.11 creates a number of issues. First, every exercised 

combination must be compared against previous combinations. If the exercised combination is unique, 

then it must be compared individually against all previous combinations to prove it has never been 

realised before. Only then can the coverage contribution from this attribute combination be included in 

the coverage metric.  

Despite the existence of efficient sorting or search methods, individual comparisons of all 

combinations are still an expensive exercise. The comparison effort also increases with every 

realisation of a unique combination. The addition of each unique combination into the exercised 
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combinations database accumulates the number of comparisons that must be performed for subsequent 

exercised combinations. Eventually, this imposes a hard limit on the combinations that can be stored 

and processed, and prevents further coverage measuring. 

 

H.10 BCM and WCM evaluation 

This section of the appendix provides supplemental details regarding the Best Combinations Metric 

(BCM) and Worst Combinations Metric (WCM) evaluation. 

 

General observations of BCM and WCM 

An important concept of the metrics calculation is to identify and measure coverage contribution of 

unique combinations; so that duplicated combinations’ coverage and over-inflated coverage result do 

not eventuate. To do this, previously exercised and measured combinations are recorded for 

comparisons against future combinations that are realized. However, for practicality and effectiveness 

of our coverage method, only the most recent set of combinations exercised are retained, not all prior 

combinations are available for subsequent coverage measuring. The WCM and BCM metric definition 

differ primarily in how they are calculated with respect to estimating coverage of unique combinations. 

WCM measures the unique attribute values and combinations accumulated during coverage measure; 

repeated attribute combinations are excluded. BCM is a count of the exercised combinations based on 

combinations from within the subset of most recent prior combinations only, not the entire series of 

previously exercised combinations. Therefore, the BCM may include attribute combinations from 

much earlier previous testing. The WCM is a conservative count of the worst case functional coverage 

percentage attained by the test suite throughout the entire measurement across all stages of recently 

captured combinations. The BCM provides the optimistic assessment. It is the best case count of all 

functional behaviours tested from each stage of testing (as defined by every accumulated set of most 

recently exercised prior combinations). The BCM may at times ignore erroneously repeated 

measurements of identical functions tested throughout the evaluation process.  

The level of accuracy in the WCM and BCM is directly influenced by the chosen capacity to store 

recently exercised combinations. We aim to determine the best storage size to reduce susceptibility to 

errors (based upon experiments in Section 7.12.2 Chapter 7). The prior combinations exercised that are 

no longer retained are continually captured in an abstract manner using partial order domains. These 
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abstracted coverage information is used extensively for coverage measure and metric evaluation. The 

storage of prior combinations was described as windowing (Section 7.10 Chapter 7), and abstractive 

capture of their combinations information is denoted update and reduction respectively (Section 7.9.3 

Chapter 7). 

 

BCM specific observations 

Recall that the cumu_comb captures only the attribute domain values independently, and abstracts 

away their combinatorial relationship with each other. By relying on the cumu_comb, the exercised 

combination could have been exercised much earlier, skewing the BCM slightly. However, we reason 

that such distortion of the BCM is uncommon because similar combinations are more likely to occur in 

groups, based on the same flow of SoC functions conducted by the snippet at any one time.  

For example, in a DMA transfer snippet operation, the combinations exercised will be very similar. 

The attributes for DMA device settings are constant, whilst only the DMA addresses and transfer count 

changes with each data transaction. Therefore, these combinations, which are closely exercised with 

respect to one another, will be stored together in the database to ensure accurate BCM. Combinations 

that are not recently exercised within each other to be stored in the database together would be too 

dissimilar, and originate from completely different snippet induced SoC operations. Hence, it is 

unlikely that an exercised combination that was not already included in the current most recently 

exercised combinations database would have been exercised earlier.   

The reasoning behind similar groups of combinations occurring relative to one another is based on the 

similar principle of temporal locality in microarchitectural caches. The motivation for caches is based 

upon the understanding whereby a piece of data retrieved for use from memory will very likely be 

needed again in the near future. Similarly, if an exercised attribute combination is to be realised more 

than once, it will most likely be exercised in relatively close succession from one another. Hence, such 

repeated combinations will be detected within the same stored combinations database, enhancing the 

uniqueness of combinations calculated by the BCM. The BCM is a maximal count because it is more 

likely to include an exercised combination as long as it is not already in the most recent set of 

exercised combinations. 
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BCM and WCM calculation procedure 

Definition H.6 defines the conditions under which the BCM and WCM metrics are updated. 

Definition H.6 : BCM and WCM evaluation conditions 

Let R be the sub set of most recently exercised attribute combinations that are possible from the entire 

attribute combinatorial set, R ⊆ CMB where CMB was defined in Definition 7.2 Chapter 7. 

For a snippet node with m attributes in its combinatorial set 〈a1, a2, … , am〉, let the exercised 

combination of attribute values be a tuple ex = 〈e1, e2, … , em〉, and let cumu_comb = 〈c1, c2, … , cm〉 

where ei and ci are the corresponding attribute domain of attribute ai ∀ i ∈ {1, …, m}. 

The BCM and WCM are updated by incrementation of one based upon the exercised combination ex if 

the following conditions occur.  

 (1) BCM = BCM + 1 if  ∀ r ∈ R, r ≠ ex  

That is, there is no previously exercised combination r that is the same as the exercised 

combination ex.  

(2) BCM = BCM + 1 and WCM = WCM + 1 

if  ∃ ai : (ei ≤ ci is false) ∧ (ei was not previously realised),   

where i = 1, .., m and ≤ is the partial order relation operator defined in Definition 7.3 Chapter 7. 

That is, there exists at least one attribute in which the domain value of the exercised combination is 

not covered by the existing domain of the corresponding attribute in the cumu_comb, such that the 

attribute domain value exercised was never previously realised. The domain of the exercised 

attribute ei was never realised previously, hence was not updated in the cumu_comb and is not 

within the range of values captured by any of the existing domains in the cumu_comb domain ci. 

 

The BCM and WCM provide preliminary assessment of the test and coverage measure whilst 

minimising the processing and resource usage to facilitate efficient coverage measure. The final 

exercised number of combinations (as used in the metric calculation formula in Section 7.3 Chapter 7) 

is used as the eventual quantitative coverage metric, and is based on the BCM. The BCM provides an 

initial estimation of the quality of a test suite. Once this primary coverage metric has been maximised, 
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more effort can be directed to create tests for the secondary WCM metric; and ensure all combinations 

have been uniquely exercised. Focusing test effort toward the BCM enables faster and more efficient 

test suite application and coverage measurement. Once an adequate test suite has been created 

according to the BCM, less effort will be required to satisfy the WCM. When both BCM and WCM 

are sufficiently satisfied, the final coverage metric is estimated between the WCM and BCM – which 

is usually the median between these two figures. As described later, our experimental results will be 

based on the primary BCM measurements. 

 

H.11 Attribute combinations coverage metric evaluation pseudo code 
implementation 

The pseudo code implementation of attribute combinatorial coverage metric evaluation is given in 

Figure H.12. The coverage metric evaluation was described in Section 7.9.2, Chapter 7. 

The coverage metric evaluation process is efficient by making use of partially ordered domains and 

domain operators to check for newly realised attribute values against the cumu_comb. Whenever a 

new previously exercised attribute domain value is detected, this implies immediately the exercised 

combination is unique. This check is performed for every attribute in the snippet node’s attribute 

combinatorial set (lines 13 to 28 in Figure H.12). If the uniqueness of the exercised combination 

cannot be determined in this way, the exercised combination is compared against previously exercised 

combinations in the current window phase (lines 30 to 41 in Figure H.12). Checking of domains using 

partial order operations to detect unique exercised combinations first facilitates efficient coverage 

metric evaluation because the number of attributes to check during coverage measure is constant, and 

the partial order comparison check is quick. Comparing against previous combinations depends on the 

accumulating number of previously exercised combinations stored, hence is not as efficient; and is 

only employed if uniqueness of the exercised combination cannot be detected using partial order 

attribute domain checking. 

At the end of the coverage metric evaluation (lines 43 to 49 in Figure H.12), if the window of 

previously exercised combinations has reached the exercised combinations window size limit, the 

reduction process in Appendix H.13 is triggered. Information from these currently stored combinations 

are abstracted into the cumu_comb, and the previously exercised combinations storage is cleared to 

begin another window phase so newly exercised combinations can continue to be stored for this new 

window phase. 



APPENDIX H.       511 

 

 

Figure H.12 Attribute combinatorial coverage metric evaluation pseudo code  

1  Evaluate_Coverage_Metric [n, ex] { 
2   
3   // n : is the snippet node currently traversed and matched. 
4   // ex : is the set of exercised combination of attribute values from testing. 
5 
6   // Get the set R of most recent previously exercised combinations for the 
7   // snippet node n of the current window phase 
8   R = Get_Previous_Exercised_Combs(n) 
9   cumu_comb = Get_Cumu_Comb(n)  // Get the cumu_comb of n 
10 
11  unique_combination = false 
12  i = 0 
13  foreach [ei ∈  ex] ∧ [ci ∈  cumu_comb]  { 
14    if [ei ≤ ci is false] ∧ [ei was never previously realised] { 
15      // At least one new attribute value is detected, ex is a uniquely 
16      // exercised combination, increment coverage metric 
17      unique_combination = true 
18      BCM = BCM + 1 
19      WCM = WCM + 1 
20      R = {ex} ∪ R  // add the exercised combination to recently exercised set 
21      Update_cumu_comb  // Update the cumu_comb with exercised combination 
22                   // by using the Update operation in Appendix H.13. 
23                   // The Update function in Figure H.14 is called for 
24                   // every attribute for the update process. 
25      exit_loop 
26    } 
27    i = i + 1 // increment until i is the last index in the tuple of attributes 
28  } 
29 
30  if [unique_combination is false] { 
31    // no new attribute value was detected to indicate the uniqueness of the  
32    // exercised combination, check if the exercised combination exists in  
33    // the most recent set of previously exercised combinations 
34    if [ex ∉ R] { 
35      // exercised combinations was not previously exercised in current window 
36      // reduction phase, increment BCM 
37      BCM = BCM + 1 
38      R = {ex} ∪ R   
39      Update_cumu_comb  
40    } 
41  }   
42   
43  // Check the size of the stored combinations, and perform reduction if required 
44  If [ |R| > window_limit] { 
45    Reduce_cumu_comb // Reduce the cumu_comb with combinations from R 
46                 // by using Reduce operation in Appendix H.13. Reduce 
47                 // function in Figure H.15 is called for every attribute. 
48    R = ∅          // Clear R to store new combinations in next window. 
49  } 
50 } 
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H.12 cumu_comb reduction per partial order level 

Domain reduction of attributes in the cumu_comb is conducted by reducing domains one level at a 

time. That is, a higher level parent domain can only be replaced with a lower child domain in one 

reduction stage if it has a direct path to the lower level child domain. For example, according to the 

partial order structure in Figure 7.3 Chapter 7, a Boundary domain can only be reduced to the Legal 

domain at one time. A domain cannot be reduced to lower level domains by skipping intermediate 

domains. Intermediate domains must also be examined for reduction before reducing to lower 

domains.  

The condition for reduction is best explained using Figure H.13, which shows an artificial but 

simplistic partial order structure. In Figure H.13, the lower level child domain r is the root domain of 

multiple parent domains one level above it. A domain d1 can be reduced to its root domain r if and 

only if all attribute values of domain d1 and all attribute values of other domains sharing the same root 

domains have been realised. Only when a reduction to the next domain has occurred, further analysis 

of the newly reduced domain can be conducted with other existing or subsequent domains values to 

perform further reduction. For each potential reduction opportunity, the root child domain from which 

a higher level  parent domain can be reduced to can be identified elegantly by taking the least upper 

bounds of the current domains assigned to an attribute in the cumu_comb. 

 

Figure H.13 Example partial order domain for reduction 

 

H.13 Cumulative combination update and reduce pseudo code 

The operation of the cumu_comb update and reduction process as defined in Section 7.9.3 of Chapter 7 

can be further illustrated by their simplified pseudo code implementation for coverage measure. Figure 

H.14 shows the simplified pseudo code of the first stage cumu_comb updating procedure. 

d1 … dn …

r 

other domains in partial order structure 

other domains in partial order structure 
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Figure H.14 cumu_comb update pseudo code implementation 

1  Update [v, e, d, D, E] { 
2   
3   // For the current attribute in the combinatorial set of a snippet node,  
4   // v : is the exercised attribute value of the exercised combination under examination 
5   // e : is the exercised attribute domain value of the exercised combination 
6   // d : is the existing attribute domain value currently assigned in the cumu_comb 
7   // D : is the set of attribute domain values currently represented by d in cumu_comb 
8   // E ; is the set of attribute values previously exercised and captured by domains in  
9    //   cumu_comb 
10 
11  if [ (cumu_comb ≠ targ_comb) or (e ≠ d) ] { 
12    // Update (and reduction) possible because : 
13    // (i) exercised combinations and attribute values in cumu_comb thus far 
14    //   has not achieved coverage goal of targ_comb 
15    // (ii) exercised domain value has not been previously exercised and reduced to  
16    //   be same as currently in cumu_comb 
17 
18    if [e ≤ d] { 
19      // Exercised domain captured by existing lower ordered domain in cumu_comb 
20      if [e ∈ D] { 
21 
22        if [v ∈ E] { 
23          // Exercised attribute value was previously exercised 
24          exit // Examine the next attribute   
25        } else { 
26          // Update the cumu_comb by storing the exercised attribute value 
27          E = E ∪ {v} 
28          if [all attribute values captured by (d ∪ e) has been exercised] { 
29            Reduce [v, e, d, D, E] 
30          }   
31        } 
32 
33      } else { 
34        // Exercised attribute domain was already updated and reduced to a lower 
35        // domain previously, and all attribute values encapsulated by e were  
36        // already exercised 
37        exit // Examine the next attribute   
38      } 
39 
40    } else { 
41 
42      // e is a new domain previously unrealised 
43      // Update the cumu_comb with the exercised attribute domain value 
44      d = (d ∪ e) 
45      if (all attribute values captured by (d ∪ e) has been exercised) { 
46        Reduce [v, e, d, D, E]     
47      }   
48 
49    } 
50  } 



APPENDIX H.       514 

 

In the first stage, the update process identifies whether the coverage goals specified by the targ_comb 

has been achieved or whether the exercised domain is already the same as that currently in the 

cumu_comb (line 11). If either conditions are true, this implies the exercised combination cannot 

provide further coverage contribution, and no further update (or reduction) of the cumu_comb is 

required. 

Otherwise, the update process performs an efficient and quick assessment of the domain of the 

exercised attribute value. On line 18, using the partial order operator ≤ in the operation defined in 

Definition 7.6 Chapter 7, the exercised attribute domain can be easily identified to check if it is 

captured by any existing domains in the cumu_comb already. If the exercised domain is not covered 

by the domain in cumu_comb, then update can proceed as per Definition 7.12 and the second stage 

reduction is triggered. 

If the condition on line 18 is true, and the exercised domain is covered by the existing cumu_comb 

domain, then further examination of the attribute exercised domain value is required. Firstly, a check is 

conducted to determine if the exercised domain is not in the set of domains currently assigned in the 

cumu_comb (line 20). If the exercised domain does not exist, then given it is covered by the 

cumu_comb domain d from the condition in line 18, this implies the exercised domain was previously 

exercised and is already reduced to d. Hence, no update (and reduction) is needed (line 37). 

If the condition on line 20 is true, and the exercised domain exists in the set of cumu_comb domain for 

that attribute, then the specific attribute domain exercised is examined (lines 22 to 31). The 

examination is simple and consists of comparing with previous exercised values to determine if the 

attribute was has been exercised before. If not previously exercised, then update of just the attribute 

value (and possible reduction of domains contributed by this exercised value) is carried out. 

The approach of the update process in Figure H.14 above is to conduct minimal and efficient 

processing and comparisons using domains and partial order operations at the abstract combinatorial 

attribute information level; before moving on to examine and manipulate lower level and detailed data 

such as the actual exercised value. In this way, the update process contributes to faster and inexpensive 

overall coverage measuring. 

The function Reduce[v, e, d, D, E] in Figure H.14 above for the second stage cumu_comb reduction is 

described in Figure H.15 below. 
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Figure H.15 cumu_comb reduction pseudo code implementation 

In the second stage, which is the reduction process, a check at line 12 (in Figure H.15) is first 

conducted on the existing cumu_comb domain. If the cumu_comb domain d is already reduced to the 

lowest possible domain X, then no further reduction is possible and the reduction process terminates. 

1  Reduce [v, e, d, D, E] { 
2   
3   // For the current attribute in the combinatorial set of a snippet node,  
4   // v : is the exercised attribute value of the exercised combination under examination 
5   // e : is the exercised attribute domain value of the exercised combination 
6   // d : is the existing attribute domain value currently assigned in the cumu_comb 
7   // D : is the set of attribute domain values currently represented by d in cumu_comb 
8   // E ; is the set of attribute values previously exercised and captured by domains in  
9   //   cumu_comb 
10 
11  L1 : for e in set_of_exercised_domains { 
12     if (d = X) { 
13       // No reduction of lower root domain possible 
14       exit_Reduce_function 
15     } 
16     // Identify possible root domain r for current exercised attribute domain e 
17     for d ∈ D { 
18       r = e LUB d 
19     } 
20 
21     // Check that the set U of upper level domains immediately one level above the 
22     // root domain have all been previously realised and captured by the new 
23     // exercised domain value e or existing domains d in the cumu_comb 
24     U = Get_One_Level_Higher_Parent_Domain [r] 
25     L2: for u ∈ D { 
26        if (u ≤ e) {        
27          next _loop_L2 // upper domain captured by e 
28        } 
29        for d ∈ D { 
30          if (u ≤ d) { 
31            next_loop_L2  // upper domain captured by d 
32          } 
33        } 
34        next_loop_L1 // Attempt reduction for any next exercised domain value e  
35     } 
36      
37     // Perform reduction: replace domain in cumu_comb with root domain 
38     //           if safe to do so 
39     If (Safe_To_Replace [r, e, d, D, E] = true) { 
40       d = r 
41       D = {d} 
42       // Check if further reduction to lower root domain is possible 
43       Reduce [v, e, d, D, E] 
44     } 
45             
46   } 
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If there is potential for reduction, all the possible exercised domain e is examined with existing domain 

d in the cumu_comb to identify a root domain r. The root domain is to replace the existing 

cumu_comb domain and represents a greater number of attribute values being exercised and captured. 

The identification of the root domain on line 18 is conducted using the least upper bound operation as 

described in Definition 7.13.  

Once the root domain is determined, all the parent domains one level immediately above the root 

domain are identified using the Get_One_Level_Higher_Parent_Domain[r] function on line 24. The 

Get_One_Level_Higher_Parent_Domain[r] function simply maps a domain to the set of domains one 

level above it. Given this set of parent domain one level above, the exercised domain e and existing 

cumu_comb domain d are examined to ensure that they capture all appropriate attribute values 

specified by the set of parent domains. For every upper level parent domain, if the parent domain is 

captured by either the exercised domain or cumu_comb domain, then the function skips to repeat the 

check for the next parent domain at lines 27 and 31. If any of the parent domain is not captured by 

either the exercised or cumu_comb domain, then no reduction to this root domain is possible. The 

process will move on with examination for reduction of the next exercised domain at line 34. 

If reduction is possible, then before proceeding to replace the current cumu_comb domain with the 

root domain r, a check is conducted to ensure that the replacement will not adversely affect any other 

possible reduction to other root domains. The check is to ensure there is no other lower level root 

domain rother that captures existing cumu_comb domain d (i.e. d ≤ rother) such that (i) rother can be 

reduced to the corresponding attribute targ_comb domain, and (ii) rother is not a domain already 

reduced to d of the current cumu_comb. If these conditions exist, and reduction is conducted to replace 

the cumu_comb domain with the root domain r, reduction to rother and satisfaction of targ_comb at a 

later stages is not possible. This scenario is represented diagrammatically in Figure H.16. 

 
Figure H.16 Pre-reduction check partial order structure condition 

This check that ensures reduction is safe to replace existing cumu_comb domain with r is captured in 

the Safe_To_Replace [r, e, d, D, E] function at line 39. In our partial order structure, comparing the 

structure in Figure H.16 to the partial order structure in Figure 7.3 of Chapter 7, this condition is 

unlikely to occur unless reduction from T domain is performed. For this case, given T domain is the 

single upper most domain, this check and reduction restriction is specially exempted to speed the 

reduction process. The inclusion of the Safe_To_Replace [r, e, d, D, E] function check in Figure H.15 

e  
(or other domains) d

r rother 



APPENDIX H.       517 

 

is included for cases when the reduction pseudo code is applied to other partial orders and coverage 

measuring. 

If reduction is allowed to proceed, then lines 40 to 43 replaces the existing cumu_comb domain with 

the root domain, and the reduction process is called recursively to potentially reduce this newly 

reduced cumu_comb domain further to even lower ordered domains. Despite updating and reducing 

the cumu_comb with exercised domains one step and one level at a time, the recursive triggering of the 

reduction process ensures the cumu_comb domains are always reduced to the lowest possible level in 

the partial order.  

 

H.14 Attribute combinations coverage detailed example 

Figure H.17 and Figure H.18 show a detailed example of the coverage measuring operations that are 

conducted at a snippet node. Specifically, the example shows the processing of exercised combinations 

from either the same or different tests whenever graph traversal encounters and matches the snippet 

node. The example demonstrates a possible scenario whereby a trace of snippet node matched 

exercised combinations is examined against the snippet node’s targ_comb, and the coverage metric 

evaluation, cumu_comb update and reduction operations are shown. The example is given for a typical 

I/O transfer based device snippet with the following attribute combinatorial set, 

〈start, int_enable, termination, unit_size, read_address, write_address, transfer_size〉 

and corresponding attributes and domain attribute values in Table H.4. 

Figure H.17 shows the coverage process for individual exercised combinations in sequence one after 

another, but for single exercised combination windows, so that reduction is conducted every time for 

example purposes only. The example is primarily to demonstrate domain replacement in the 

cumu_comb arising from reductions. Hence, the exercised combinations are contrived to show 

reductions with just about every exercised combination. Eventually, the cumu_comb is updated and 

reduced with exercised combinations that match the snippet node targ_comb; the coverage goals of the 

snippet node is satisfied. Figure H.17 focuses on the update and reduction progress of the cumu_comb.  

Figure H.18 demonstrates the lifecycle of the coverage measuring at the snippet node for selected 

exercised combinations throughout multiple reduction stages, and of window size greater than one. 

Although in this figure, the window size is still artificially small for example purposes. Like Figure 

H.17, Figure H.18 details the operations conducted at each snippet node to evaluate the exercised 



APPENDIX H.       518 

 

combination, and specifically demonstrates the update of various metric, and cumu_comb and 

targ_comb as well. The steps 1 to 5 in Figure H.17 and Figure H.18  correspond to the coverage 

measuring operational steps described in Figures 7.9 and 7.10 of Chapter 7. 

Table H.4 Example attributes and domains for  H.14 example 

 Boundary Non-Boundary Intentional Error Unintentional 
Error 

start  0x0, 0x1   

int_enable  0x0, 0x1   

termination  0b001, 0b010, 
0b100, 0b110 

0b111, 0b101, 
0b011 

0b000 

unit_size 0b001, 0b100 0b010 0b111, 0b011, 
0b101, 0b110 

0b000 

read_address 0x0, 0x007FFFFF, 
0x00800000, 
0x008FFFFF 

0x00900000, 
0x00900840, 
0x00001234 

0xFFFFFFFF, 
0x00900804 

0x7, 0x101 

write_address 0x0, 0x007FFFFF, 
0x00800000, 
0x008FFFFF 

0x00900000, 
0x00900840, 
0x00001234 

0xFFFFFFFF, 
0x00900804 

0x7, 0x101 

transfer_size 0x1, 0x2, 0x4, 
0x00800000 

0x10, 0x20, 
0x40, 0x100 

0x7 0x0, 
0xFFFFFFFF 

 

In the example Figure H.18, the maxc and minc are used to monitor against progress of the coverage 

metric count of exercised combinations when compared against the possible combinations that can be 

realised at the snippet node. The maxc is described as the number of cross-product combinations 

encapsulated by an abstract combinatorial set such as the cumu_comb. It represents the maximum 

number of unique combinations that can be exercised to satisfy the cumu_comb at various stages 

during coverage measure. That is, the number of combinations whereby every attribute domain value 

of the cumu_comb is exercised with every other domain value. 

On the other hand, the minc is the minimum number of combinations required to satisfy the abstract 

combinatorial set such as the cumu_comb. It represents the least number of combinations that will 

exercise each every attribute domain value of the cumu_comb at least once. That is, this minimum 

number of combinations is identified to be the count of combinations that exercises an unique attribute 

domain value each time. Essentially, minc is the largest number of domain values in the cumu_comb 

that can be exercised uniquely. The examples in this section provide greater details into various 

coverage measuring operations, and are an extension of the explanation and example diagram shown 

in Figure 7.9 in Chapter 7.  
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〈X, X, NB*∪Un, B*, B*, B*, NB*∪In〉 

〈X, X, NB*∪Un∪In*, L, B, B, B*∪NB*∪In〉 

S
 

e1 : 〈0x1(NB), 0x0(NB), 0b000(Un), 0b001(B), 0x0(B), 0x008FFFFF(B), 0x7(In)〉 

targ_comb 

e2 : 〈0x1(NB), 0x0(NB), 0b001(NB), 0b001(B), 0x0(B), 0x00800000(B), 0x100(NB)〉 

〈X, X, T, T, T, T, T〉 

〈X, X, Un, B*, B*, B*, In〉 

Exercised  
combinations 

reduce 

‘T’ domains reduced to domains of 
initial exercised values. 
First two attributes - fixed and don’t 
care domains, do not need reduction. 

≤ (partial order relation node match)

Gather snippet node, 
cumu_comb, targ_comb, etc 

reduce 

STEP 1 

STEP 2 

STEP 4

etc… 

“cumu_comb before reduction” 

e3 : 〈0x1(NB), 0x1(NB), 0b010(NB), 0b010(NB), 0x007FFFFF(B), 0x00800000(B), 0x20(NB)〉 

reduce 

Additional domain NB values 
exercised for the first time, for 
termination and transfer size (3rd and 
last attribute). 

e5 : 〈0x1(NB), 0x0(NB), 0b111(In), 0b100(B), 0x00800000(B), 0x007FFFFF(B), 0x10(NB)〉 

〈X, X, NB*∪Un, B*∪NB, B*, B*, NB*∪In〉 reduce 

transfer unit size (4th attribute) 
exercised by another domain value, 
that is now fully completed (NB). 

e4 : 〈0x0(NB), 0x0(NB), 0b111(In), 0b000(In), 0xFFFFFFFF(In), 0x007FFFFF(B), 0x10(NB)〉 

e6 : 〈0x1(NB), 0x1(NB), 0b110(NB), 0b100(B), 0x008FFFFF(B), 0x0(B), 0x1(B)〉 

〈X, X, NB*∪Un∪In*, B∪NB→L, B*, B*, NB*∪In〉 reduce 

Boundary(B) domain of transfer unit 
size (4th attribute) is now fully 
completed, and along with NB domain, 
it is reduced to the Legal(L) domain. 

e7 : 〈0x1(NB), 0x0(NB), 0b100(NB), 0b001 (B), 0x008FFFFF(B), 0x0(B), 0x2(B)〉 

reduce 

All values of Boundary(B) domain of 
R/W-addr (5th, 6th attribute) is now 
exercised, and satisfies domain spec of 
targ_comb. 

〈0x1(T), X, X, Legal, Boundary, Boundary, Legal∪Intentional〉 

cumu_comb 〈X, X, T, T, T, T, T〉 
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Figure H.17 Attribute combinations coverage measuring example at a snippet node for 

individually exercised combinations  

 

〈X, X, NB∪Un∪In*→L∪Un∪In*, L, B, B, B*∪NB*∪In〉 

e8 : 〈0x1(NB), 0x0(NB), 0b101(In), 0b001(B), 0x008FFFFF(B), 0x0(B), 0x00800000(B)〉 

〈X, X, L∪Un∪In*, L, B, B, B*∪NB*∪In〉 

e9 : 〈0x1(NB), 0x0(NB), 0b011(In), 0b001(B), 0x00800000(B), 0x0(B), 0x4(B)〉 

〈X, X, L∪Un∪In→L∪IL→X, L, B, B, B∪NB*∪In〉 

〈X, X, X, L, B, B, B∪NB∪In→L∪In 〉 

en : 〈0x1(NB), 0x0(NB), 0b011(In), 0b001(B), 0x00800000(B), 0x0(B), 0x40(NB)〉 

〈X, X, X, L, B, B, L∪In 〉 

reduce 

reduce 

reduce 

… Further exercised combinations … 

Fully reduced cumu_comb –
Post-Analysis shows 
cumu_comb satisfies 

targ_comb.

All NB domain values for termination 
(3rd attribute) are now exercised. And 
since there are no B domain values for 
this attribute, it can be reduced to L. 

Only termination and transfer size (3rd, 
and last attribute) needs reduction to 
satisfy targ_comb. Other attributes 
already reduced. 

All domain values of termination (3rd 
attribute) exercised, and is reduced 
fully to ‘X’, satisfying targ_comb. 

All domain values (B, NB, In) of 
transfer size (last attribute) exercised, 
and is reduced fully to L∪In 

STEP 5 

“cumu_comb after reductions” 
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S
〈0x1(T), X, X, Legal, Boundary, Boundary, Legal∪Intentional〉 

Test 1: 〈0x1(NB), 0x0(NB), 0b000(Un), 0b001(B), 0x0(B), 0x008FFFFF(B), 0x7(In)〉

Target Combination 
(targ_comb) 

T2: 〈0x1(NB), 0x0(NB), 0b001(NB), 0b001(B), 0x0(B), 0x00800000(B), 0x100(NB)〉 

T3: 〈0x1(NB), 0x0(NB), 0b001(NB), 0b001(B), 0x0(B), 0x00800000(B), 0x7(In)〉 

〈X, X, T, T, T, T, T〉 

〈X, X, NB*∪Un, B*, B*, B*, NB*∪In〉 

Exercised Combinations 
(ex_comb) 

measure 

≤ (partial order relation)

Reduced 
Cumulative 

Combinations
(cumu_comb) 

〈X, X, T, T, T, T, T〉Cumulative Combination 
(cumu_comb) starting state

T7: 〈0x0(NB), 0x0(NB), 0b111(In), 0b000(In), 0xFFFFFFFF(In), 0x007FFFFF(B), 0x100(NB)〉 

STEP 1 : Get 
coverage data 

STEP 2

etc… 

 

wcm = 1 
bcm = 1 

wcm = 2 
bcm = 2 

STEP 3 

measure 

wcm = 3 
bcm = 3 

measure 

wcm = 4 
bcm = 4 

measure 

T5: 〈0x1(NB), 0x0(NB), 0b001(NB), 0b001(B), 0x0(B), 0x00800000(B), 0x100(NB)〉 wcm = 4 
bcm = 4 

T6: 〈0x1(NB), 0x0(NB), 0b001(NB), 0b001(B), 0x0(B), 0x008FFFFF(B), 0x7(In)〉 

T8: 〈0x1(NB), 0x1(NB), 0b000(Un), 0b001(B), 0x007FFFFF(B), 0x00800000(B), 0x7(In)〉 

wcm = 5 
bcm = 5 

wcm = 6 
bcm = 6 . 

. 

. Tn: 〈…....…………………… Further Exercised Combinations …………...………...〉 
wcm = 15 
bcm = 15 measure 

reduce 
STEP 4 measure 

measure 

“Combinations Store Limit Reached – Reduce cumu_comb and discard above combs” 

Initial : 
 
Worst Count Metric  
wcm = 0 (0) 
Best Count Metric  
bcm = 0 (0) 
Minimum Combinations  
minc = 0 (0) 
Maximum Combinations 
maxc = 0 (0) 
 
[‘(val)’ indicates the number 
of additional combinations 
introduced from the most 
recent reduced stage.] 

‘Exercised combinations 
stored for future 

comparison.’ 

etc… 

Reduced 
Stage 1: 
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Tn+1: 〈0x1(NB), 0x1(NB), 0b000(Un), 0b010(NB), 0x007FFFFF(B), 0x0800000(B), 0x100(NB)〉 After Reduced 
Stage 1 : 
wcm = 15 (15) 
bcm  = 15 (15) 
minc  = 2 (2) 
maxc   = 16 (16) 

wcm = 16 
bcm = 16 

measure 

Tn+2: 〈0x1(NB), 0x1(NB), 0b000(Un), 0b010(NB), 0x007FFFFF(B), 0x0800000(B), 0x20(NB)〉 measure 

〈X, X, NB*∪Un, B*∪NB, B*, B*, NB*∪In〉 

Tn+3: 〈0x1(NB), 0x1(NB), 0b000(Un), 0b010(NB), 0x0(B), 0x0800000(B), 0x100(NB)〉 wcm = 18 
bcm = 18 

measure 

Tn+4: 〈0x1(NB), 0x1(NB), 0b000(Un), 0b001(B), 0x0(B), 0x0800000(B), 0x20(NB)〉 wcm = 19 
bcm = 19 

measure 

Tn+5: 〈0x1(NB), 0x1(NB), 0b000(Un), 0b001(B), 0x007FFFFF(B), 0x0800000(B), 0x7(In)〉 wcm = 19 
bcm = 20 

measure 

Tn+6: 〈0x1(NB), 0x1(NB), 0b000(Un), 0b001(NB), 0x007FFFFF(B), 0x0800000(B), 0x100(NB)〉 wcm = 19 
bcm = 21 

measure 

Tn+7: 〈0x1(NB), 0x1(NB), 0b000(Un), 0b010(NB), 0x0(B), 0x0800000(B), 0x100(NB)〉 wcm = 19 
bcm = 21 

measure 

Tn+8: 〈0x1(NB), 0x1(NB), 0b000(Un), 0b001(B), 0x007FFFFF(B), 0x0800000(B), 0x7(In)〉 wcm = 19 
bcm = 21 

measure 

Tn+9: 〈0x1(NB), 0x1(NB), 0b000(Un), 0b001(B), 0x0(B), 0x007FFFFF(B), 0x20(NB)〉 wcm = 19 
bcm = 22 

measure 

Tm: 〈…....…………………… Further Exercised Combinations …………...………...〉 wcm = 26 
bcm = 30 

measure 

. 

. 

. 

reduce 

“Combinations Store Limit Reached – Reduce cumu_comb and discard above combs” 

Reduced 
Stage 2: 

wcm = 17 
bcm = 17 
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Tm+1: 〈0x1(NB), 0x0(NB), 0b010(NB), 0b100(B), 0x00800000(B), 0x007FFFFF(B), 0x7(In)〉 

〈X, X, NB*∪Un∪In*, B∪NB→L, B*, B*, NB*∪In〉 

After Reduced 
Stage 2 : 
wcm = 26 (11) 
bcm  = 30 (15) 
minc = 3 (1) 
maxc  = 48 (32) 

wcm = 27 
bcm = 31 

measure 

Tm+2: 〈0x1(NB), 0x0(NB), 0b111(In), 0b100(B), 0x00800000(B), 0x007FFFFF(B), 0x7(In)〉 wcm = 28 
bcm = 32 

measure 

Tx: 〈…....…………………… Further Exercised Combinations …………...………...〉 wcm = 40 
bcm = 45 

measure 

. 

. 

. 

Reduced 
Stage 3: 

reduce 

After Reduced 
Stage 3 : 
wcm = 40 (14) 
bcm  = 45 (15) 
minc  = 4 (1) 
maxc  = 216 (168) 

“Combinations Store Limit Reached – Reduce cumu_comb and discard above combs” 

Tx+1: 〈0x1(NB), 0x0(NB), 0b111(In), 0b100(B), 0x00800000(B), 0x007FFFFF(B), 0x10(NB)〉 wcm = 41 
bcm = 46 

measure 

Ty: 〈…....…………………… Further Exercised Combinations …………...………...〉 wcm = 53 
bcm = 60 

measure 

. 

. 

. 

“Combinations Store Limit Reached – Reduce cumu_comb and discard above combs” 

reduce 

Reduced 
Stage 4: 

〈X, X, NB*∪Un∪In*, L, B*, B*, NB*∪In〉 
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After Reduced 
Stage 4 : 
wcm = 53 (13) 
bcm  = 60 (15) 
minc  = 4 (0) 
maxc   = 288 (72) 

Tz: 〈…....…………………… Further Exercised Combinations …………...………...〉 wcm = 54 
bcm = 61 

measure 
. 
. 
. 

“Combinations Store Limit Reached – Reduce cumu_comb and discard above combs” 

Reduced 
Stage 5: 

reduce 

. 

. 

.
Further reduction stages until all tests are exercised 

and coverage measured. 

. 

. 

. 

〈X, X, X, L, B, B, L∪In 〉 
Execute tests and measure coverage until post-analysis 

shows cumu_comb satisfies targ_comb. 
STEP 5

Notes: The different kinds of combinations are handled as follows. 
a) All combinations in reduced stage 1 (unless already exercised) will exercise new attribute values and combinations of these values (when compared to the 

initial cumu_comb). Hence, all combinations are stored and both wcm and bcm are incremented. E.g. combinations T1, T2, T3,…,Tn. 
b) A combination already exercised in the current reduced stage will be detected by comparing against the set of combinations stored previously; wcm and bcm 

are both unchanged. E.g. combination T5 has been exercised previously by combination T2; and combination Tn+8 has been exercised previously by Tn+5. 
c) A combination that does not satisfy targ_comb of the snippet node is ignored. E.g. combination T7. 
d) Combinations with attribute values which have not been exercised in previous stages (when compared to the most recently reduced cumu_comb), imply 

these combinations have never been exercised before. Hence, these combinations are stored and both wcm and bcm are incremented. E.g. combination Tn+1, 
Tn+2, Tn+3, Tm+1, Tm+2, Tx+1. 

e) Combinations that have not been exercised in the current reduced stage, and do not exercise any new attributes (when compared to previous reduced stages) 
are stored but increments bcm only. It is uncertain whether such combinations have been exercised in previous reduced stages because the combinations 
from those stages have been discarded.  
E.g. combination Tn+5 has been exercised previously by T8; whereas combination Tn+6 has never been exercised – there is insufficient information to 
ascertain the uniqueness of combinations Tn+5 and Tn+6. 

Final : 
wcm = ? (?) 
bcm  = ? (?) 
minc  = 9 (?) 
maxc   = 3456 (?) 
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Figure H.18 Attribute combinations coverage measuring example at a snippet node for selective combinations 

 

f) Combinations that exercises new attributes values (as explained in iv) but have been exercised previously in the current reduced stage are not stored; 
and wcm and bcm are both unchanged. E.g. combination Tn+7 exercises new attributes values but was previously exercised by Tn+3. 

g) In this example, the reduce stages are shown to be very small before combinations are reduced and discarded (i.e. the combinations store limit is only 
up to 15). Therefore, from stage 3 onwards, the number of desirable cross-product combinations (due to newly exercised attribute values in the reduced 
stage) maxc is a lot greater than exercised combinations, wcm and bcm. In the actual system, the reduce stages will be a lot larger. Many more 
combinations can be exercised to improve the metric counts toward bcc in the reduced stages. However, how much improvement is uncertain. 
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H.15 Effects of coverage windowing size 

Regardless of fixed or variable size, choosing an appropriate window size affects coverage measure 

effectiveness. The window size can be selected to provide better computational performance so 

coverage data is extracted and fed back to the test generator efficiently. However, the accuracy and 

usefulness of coverage data attained is also dependant on the window size, in particular, how many 

attribute combinations are available at the end of each windowing stage for analysis.  

In particular, the effect of the window size on the WCM and BCM coverage metric is obvious. For a 

larger window size, this provides more opportunities to detect new domain values. Many more 

combinations that exercise new domain values can be processed within the same window stage before 

they are updated in the cumu_comb and allocated to the next window. This implies the WCM is higher 

for larger window sizes. By the same argument, a larger window implies many more exercised 

combinations can be stored. Therefore, the likelihood of detecting identical combinations is greater, 

reducing the count of BCM but providing a more accurate tally.  

Furthermore, window size affects coverage measuring performance. Processing power is expended to 

execute various graph traversals and comparisons between attribute values or combinations. For 

example, to perform coverage operations such as check for realization of new domain values, detect 

identical combinations, or reduction of domains in the cumu_comb, as outlined in Section 7.9 Chapter 

7. Therefore, a larger window size requires greater CPU time to perform these operations. A larger 

window size also implies more attribute values and combinations can be accumulated. Subsequently, 

more traversals through each graph node, and more comparisons between a greater number of stored 

values and combinations are needed during coverage measure. In effect, a larger window requires 

additional memory to provide the window capacity needed to hold the attribute values and 

combinations.  

Despite gaining more favourable WCM and BCM coverage results using larger windows, a window 

too large may in fact result in highly inefficient coverage measurement and excessive bottlenecks in 

the test flow; or even worst, incomplete coverage measurements. These behaviours are confirmed by 

our experimental results, and are useful for configuring an efficient coverage evaluation in SALVEM. 

Particularly, careful consideration must be taken to find an optimized window size and understand its 

implications on coverage measure. These considerations were explored via experiments in Section 

7.12.2 Chapter 7. 
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H.16 Summary of coverage metric evaluation  

The coverage measurement process begins by attaining the trace of exercised attribute combinations 

from the next available test in order to commence control graph traversal. As per step 1, the target and 

cumulative combination (targ_comb and cumu_comb) of the next applicable snippet node (i.e. the first 

snippet node at the start of graph traversal) are identified to begin graph traversal with the exercised 

combinations. 

Before a snippet node can be traversed, the cumu_comb is initialized to represent an empty coverage 

space. This is conducted only once for each snippet node at the start of coverage measuring, despite 

multiple traversals of the control graph from each test. Attributes in the cumu_comb are either 

assigned the top level empty terminal domain T, signifying the attribute has not exercised any values; 

or the lowest level X domain signifying the attribute is ignored for the functions tested for this 

targ_comb goal. The aim is to exercise attribute values and combinations during testing to update the 

cumu_comb with domains that match the targ_comb, thus satisfying the coverage goal. 

Using the identified targ_comb of the current snippet node and the next exercised combination from 

the test, the traversal to this snippet node is facilitated by matching the exercised combination to the 

targ_comb. If the exercised combination is unable to satisfactory match the targ_comb, the targ_comb 

of the next possible snippet node is examined. Multiple snippet nodes can be available to attempt node 

match and act as graph traversal targets because the graph allows for nodes with multiple fan-out 

edges. However, only one snippet node is guaranteed to match a particular exercised combination.  

The exercised combination to targ_comb node matching is conducted using the partial order ≤ 

operator. The node matching and graph traversal is the second step in the coverage measure process (in 

Figure H.19 and Figure 7.9 of Chapter 7), and was described in Section 7.8 Chapter 7. If no suitable 

snippet node can be matched, then graph traversal and coverage measuring of the current test 

terminates. 

Otherwise, if graph traversal to the snippet node is successful, then every new combination of 

exercised attribute values is analysed against the cumu_comb to determine if it is unique and which 

metric, WCM or BCM it contributes to. Firstly, the combination is examined to detect if any attribute 

exercises a new domain value. If so, this implies the combination is unique, a new function was tested 

on the SoC, and the WCM and BCM is immediately incremented to reflect this.  

On the other hand, if no new domain value was exercised, the combination is compared against 

previously stored combinations in the current window. If the exercised combination does not exist in 
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the current window, then only the BCM is incremented. The SoC function corresponding to this 

combination may have been tested previously, but not during the current window of functions 

processed already. When either WCM or BCM has been updated, the exercised combination is stored 

for the current window stage to detect any repeated combinations and SoC test functions.  

The process of establishing whether any new domain values have been exercised, and whether to 

update coverage metric (BCM and WCM) constitute step 3, and was described in Section 7.9.2 

Chapter 7. 

Next, in step 4, the cumu_comb update and reduction process is performed. The update and reduction 

process is based on the operations in Section 7.9.3 and Figure 7.6 in Chapter 7. It is conducted for each 

attribute in the cumu_comb. If the exercised combination is found to have contributed to coverage by 

updating WCM or BCM, the cumu_comb is updated as described by the update process which is stage 

one in Section 7.9.3 Chapter 7. After a period of testing, if the number of combinations stored reaches 

window capacity, the cumu_comb undergoes reduction to further update the attributes and 

combinational information gathered during that window stage. The reduction process was described as 

stage two in Section 7.9.3 Chapter 7. Unlike Figure 7.6 Chapter 7, in Figure H.19 of the actual 

coverage method, the update process is conducted for every coverage contribution. Whereas reduction, 

is only carried out depending on the allocated exercised combinations storage capacity. The first 

update stage and second reduction stage corresponding to Figure 7.6 Chapter 7 are in fact segregated 

by the windowing process. 

Briefly, the update and reduction process is as follows. For each attribute, the exercised combinational 

values during the window are examined. If all values from a particular domain were exercised, the 

attribute in the cumu_comb is updated with that domain to indicate the additional coverage 

combinations space that has been covered. The updated cumu_comb is then used in the next window 

stage to aid WCM and BCM measurements. If reduction is performed as well, the stored coverage 

combinations are discarded, freeing up capacity for the next set of exercised combinations in the next 

window stage.  

During coverage measurement, the storing of exercised coverage combinations is required to check for 

duplicates and preserve accurate coverage results. But when the storage capacity at a node is filled 

according to the window process, a modified domain reduction technique abstracts the stored 

combinations to a single coverage set. Specifically, the cumu_comb is used to abstract and capture the 

attribute values and independent combinations information from each window stage.  
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Precise information from the attribute combinations are not retained, hence, some small inaccuracy is 

introduced into the BCM. An exercised combination may have been realized in previous window 

stages, however, we assume optimistically that this is uncommon and increment the BCM accordingly. 

Dependency information between attribute values is traded off to condense the number of 

combinations needed for storage. Our coverage method can still make use of independent attribute data 

in the cumu_comb to ensure coverage accountability and accurate results. Attribute domain reduction 

reduces the memory resource requirements. 

Note that the cumu_comb is progressively updated for each window until the end of testing and 

coverage measure. The coverage space captured by testing and represented by the cumu_comb, is 

compared to that of the targ_comb to identify which combinations and which SoC functions have (or 

have not) been tested. The final WCM and BCM only provide the quantitative coverage effectiveness 

result.  

Finally, when exercised combinations from a test are exhausted, the coverage measuring repeats steps 

1 to 4 examining the trace of exercised combinations from the next test, and initiate a new graph 

traversal from the first snippet node again. Step 5 is the remaining operation in which the overall 

coverage metric are quantitatively collated to provide the final coverage result. Appendix H.17 

outlines a post coverage measuring collation and analysis. 
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Figure H.19 Coverage measuring control flow process
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H.17 Attribute combinations coverage post analysis 

Whenever all exercised combinations from testing have been evaluated by attribute combinatorial 

coverage measuring, a post coverage analysis operation can be conducted to assess the effectiveness of 

the testing from the attribute combinatorial perspective. Besides the coverage metric that quantitatively 

reports the percentage of functional operations tested by snippets, it is beneficial to identify some form 

of functional coverage information that outlines what has or has not been exercised with respect to 

attribute combination measuring. 

To this end, our coverage post analysis process identifies the gap in attribute combinatorial domain 

values between the domain values already exercised and the target domain goal values. That is, what 

are the missing attribute combinatorial domain values needed to be exercised in order for the 

cumu_comb to match the targ_comb, and for coverage goals to be met. For each attribute, the domains 

reported by the cumu_comb will be compared to the domains specified by the targ_comb. According 

to the partial order domain structure (Figure 7.3, Chapter 7), the domain values gap between the 

cumu_comb and targ_comb will be reported. These gaps of missing domain values are what are 

required to be exercised in order for the cumu_comb to match the targ_comb coverage goal. By 

reporting this information, testing and coverage measuring can be analysed to direct snippet testing to 

exercise for these missing domain values. By targeting these missing domain values, these maps to 

previously untested functional operations, and enhances SALVEM verification.  

The coverage post analysis will first check whether the cumu_comb satisfies the targ_comb. That is, 

are the set of exercised combinatorial values fully covered by targ_comb, or are there attribute domain 

values that remain unexercised. If the cumu_comb is not yet reduced to match targ_comb from 

exercised attribute combinations, then (i) the attribute domain values exercised thus far needs to be 

established, and (ii) the remaining attribute domain values unexercised must be identified.  

For (i), the attribute domains already exercised can be simply determined from the cumu_comb. To 

identify missing attribute domain values between the cumu_comb and targ_comb for (ii), according to 

the partial order structure, a traversal of the domains between those specified in the cumu_comb and 

targ_comb must be conducted. The domains traversed correspond to the missing unexercised domains 

that are required to satisfy targ_comb, and improve SALVEM testing. 

The domain traversal between cumu_comb and targ_comb can be conducted either by a top-down 

traversal or bottom-up traversal. In a top-down traversal, the cumu_comb domains provide the starting 

point to commence traversal. Traversal from cumu_comb to targ_comb down the partial order records 

what domains are missing. In a bottom-up approach, the traversal starts at the targ_comb. 
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The coverage post analysis top-down strategy is shown in Figure H.20, and is invoked for each 

attribute of each snippet node. Firstly, the domains to start traversal from is determined (lines 7 to 19). 

On lines 23 to 26, if the cumu_comb and starting domain is T, then attribute domain values have not 

be exercised for that attribute. The traversal would have commenced from domains immediately 

beneath the T domains, but the missing unexercised domains are simply all attribute domain values 

covered by targ_comb. 

During traversal at lines 29 to 50, unexercised missing domain values traversed are accumulated in M 

to be reported at the end of the analysis process. To identify further lower domains for traversal in each 

traversal loop (line 29), the current domain being traversed and under examination undergoes a 

greatest lower bound operation (GLB) with all other domains at the same partial order level as this 

domain (line 40 to 47). The GLB operation is inverse to the least upper bound operation defined in 

Definition 7.4 at Chapter 7. The resultant domain of the GLB operation is then checked to ascertain 

whether it can be reduced to and covered by the targ_comb. If so, then the resultant GLB domain is 

added to the set of domains to continue top-down traversal toward. This traversal loop repeats until the 

targ_comb is encountered, and finally the set of unexercised domains is reported. 

In a bottom-up traversal approach, traversal begins at the targ_comb and continues up the partial order 

structure until the exercised attribute domain values are encountered. A bottom-up strategy may be 

considered more advantageous over the top-down approach. In the top-down approach, traversal 

begins from cumu_comb domains only. Therefore, if insufficient domains are exercised such that a 

lack starting point domains are available, there may be other paths down the partial order covered by 

the targ_comb that do not get traversed. For example, for a targ_comb X domain and cumu_comb L 

domain, identifical of missing IL, InE, and UnE domains may not get traversed and identified as 

missing because the starting domain may not be aware of them. 

The bottom-up traversal approach is shown in Figure H.21. Traversal begins at targ_comb which acts 

as the traversal starting domains (line 9). In each traversal loop (lines 16 to 38), missing unexercised 

domain values are accumulated for reporting in M and traversal continues as long as the currently 

traversed domains still covers the domains in the cumu_comb (line 23). Traversal will stop when the 

current traversed domain no longer covers cumu_comb indicating the cumu_comb domain has been 

encountered. During the traversal loop, the next set of domains to continue upward traversal toward is 

simply attained from the parent domains of the current domains under traversal examination (lines 31 

to 35). The traversal loop ensures that all missing unexercised domain values, including those that 

cannot be traversed from current domains in the cumu_comb are detected. 
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Figure H.20 Top down post analysis pseudo code 

1  Top_Down_Post_Analysis [n, a] { 
2   
3   // For the current attribute in the combinatorial set of a snippet node,  
4   // n : is snippet node under examination for coverage post analysis 
5   // a : is attribute in the snippet node combinatorial set to perform top-down analysis for 
6 
7   targ_comb = Get_Targ_Comb(n, a)  // Get the targ_comb domains of n for a 
8   cumu_comb = Get_Cumu_Comb(n, a)  // Get the cumu_comb of n for a 
9   S = ∅  // S is the set of start domains from which top-down analysis will commence 
10  // Gather the start domains by examining the domains in cumu_comb that have been 
11  // exercised from testing, and include domains that are covered by the targ_comb but 
12  // not in targ_comb 
13  foreach [t ∈ targ_comb] { 
14    foreach [c ∈ cumu_comb] { 
15      if [c < t] ∧ [c ∉ S] {  // only include non-duplicate starting domains in S 
16        S = {c} ∪ S 
17      } 
18     } 
19  } 
20  // M is the set of missing untested attribute domain values between  
21  // cumu_comb and targ_comb 
22  M = ∅   
23  if [S = {T}] { 
24    // cumu_comb starting domain is T, missing unexercised domain values are all 
25    // domain attribute values above domains in the targ_comb to the top domain T 
26    M = { all attribute domain values covered by targ_comb }  
27  } else { 
28    // Perform top-down traversal analysis 
29    while [S ≠ ∅] { 
30      // N is the next set of start domains to start top-down traversal analysis from S 
31      N = ∅   
32      foreach [s ∈ S] { 
33        // Include the missing unexercised attribute domains at s if not in M already 
34        if [s ∉ M] { 
35          M = { attribute domain values in s } ∪ M            
36        } 
37        // Determine any next domains to continue top-down traversal analysis 
38        // from domains in s. Perform traversal if any domains at the same level 
39        // shares common root domain as s that is covered by targ_comb 
40        foreach [l ∈ set of domains at same level as s in partial order] { 
41          // Find common root domain using greatest upper bound operator GLB, 
42          // which is the inverse operation of LUB in Definition 7.4, Chapter 7 
43          common_root = GLB(l, s) 
44          if [common_root < domains in targ_comb] ∧ [l ∉ N] { 
45            N = {l} ∪ N  // Add to next domains to continue traversal 
46          } 
47        } 
48      } 
49      S = N  // Set up next set of domains to continue top-down traversal analysis 
50    } 
51  } 
52  return M 
53 } 
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Figure H.21 Bottom up post analysis pseudo code 

Despite its conceptual benefits, the coverage post-analysis work has not been fully investigated and 

implemented in our research. It remains an area of work that is an avenue for future research. 

However, it is clear that identification of unexercised attribute domain values missing between the 

cumu_comb and targ_comb would no doubt aid in the evaluation of functional SoC operations tested, 

and direct further snippets based verification. 

1  Bottom_Up _Post_Analysis [n, a] { 
2   
3   // For the current attribute in the combinatorial set of a snippet node,  
4   // n : is snippet node under examination for coverage post analysis 
5   // a : is attribute in the snippet node combinatorial set to perform bottom-up analysis for 
6 
7   targ_comb = Get_Targ_Comb(n, a)  // Get the targ_comb domains of n for a 
8   cumu_comb = Get_Cumu_Comb(n, a)  // Get the cumu_comb of n for a 
9   S = targ_comb  // S is the set of start domains from which bottom-up analysis will  
10           // commence 
11 
12  // M is the set of missing untested attribute domain values between  
13  // cumu_comb and targ_comb 
14  M = ∅   
15 
16  while [S ≠ ∅] { 
17    // N is the next set of start domains to start bottom-up traversal analysis from S 
18    N = ∅   
19    foreach [s ∈ S] { 
20      // Check if current domains in s covers domains in cumu_comb; if so, this 
21      // implies there are missing attribute combinatorial values between cumu_comb 
22      // and the current bottom-up traversal analysed at this domain level. 
23      if [cumu_comb ≤ s] { 
24        // Include the missing unexercised attribute domains at s if not in M already 
25        if [s ∉ M] { 
26          M = { attribute domain values in s } ∪ M            
27        } 
28        
29        // Gather the next upper parent level of domains from s to perform  
30        // bottom-up traversal analysis to 
31        foreach [p ∈ parent domains of s] { 
32          if [p ∉ N] { 
33            N = {p} ∪ N  // Add to next domains to continue traversal 
34          }            
35        } 
36      } 
37    }   
38    S = N  // Set up next set of domains to continue top-down traversal analysis 
38  } 
39 
40  return M 
41 } 
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H.18 Coverage method enhancements and future work 

The research described in this chapter opens up a number of avenues for future work. Currently, the 

coverage measuring is based on traversing control graphs whereby exercised combinations are mapped 

to individual snippet nodes as part of sequences of snippets possible from a test program. To facilitate 

more efficient coverage measuring and reduce the processing required at each node traversal, one 

could abstract the information captured at the nodal control graph level. Instead of a node for each 

snippet, a node could represent a set of common snippets (e.g., set of DMA or UART snippets) or 

short sequences of snippets. At the graph level, instead of individual graph traversal for each test, the 

control graph can be used to represent multiple tests as well. By abstracting and raising the level of 

information captured by control graphs and nodes, it would be interesting to investigate how this 

improves the performance of coverage measuring and handling of larger coverage attributes model; 

and how coverage metric results are affected.  

The present coverage method employs a windowing strategy to break down the update processing 

operation of coverage data into a divide-n-conquer approach (Section 7.10 Chapter 7) The selection of 

this window size involves a well-thought-out process given a number of confliction factors must be 

considered (Section 7.12.2 Chapter 7 and Appendix H.15). Previously, the window size was 

determined statically before commencement of the measurement process, and this fixed window is 

used throughout coverage measuring.  

Given that the exercised combinations and the coverage measuring in general is dynamic, and can 

produce different measuring conditions, it could be beneficial for the window size to change and adapt 

to these changing conditions rather than stay as a fixed size. An adapting window size is then able to 

continually facilitate optimal coverage data processing during the measuring operation. For example, 

at the end of every window stage after the most recent stored exercised combinations update/reduction 

is carried out, the current window size can be re-evaluated and modified to suit the current coverage 

measuring conditions. The divide-n-conquer approach is no longer segregated evenly, but the 

windowing and coverage data processing will be carried out whenever deem most appropriate to 

realise efficient update/reduction. For example, update/reduce only when necessary and with sufficient 

coverage data accumulated.  

Another windowing option could be to employ a sliding windowing technique as well. Rather than 

using a fixed window whereby uniquely divided coverage combinations are processed each time, the 

windowing process could process both new combinations exercised within the window, and also 

overlapping combinations from the previous window of coverage data. That is, the window slides 
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through the sequence of coverage combinations data, and processes whatever combinations are 

covered by the window at any appropriately chosen stage. The sliding window could include 

combinations that were already processed previously but are still covered by the current window. With 

a variable window size as well, the coverage measuring process can be adapted to execute most 

efficiently and perform update/reduction operation only whenever needed, and according to the status 

of the measurement process. 

Due to the limitations of available research resources and duration available, no further investigations 

were carried out to integrate the attribute combinations coverage method more closely with SALVEM, 

in particular the randomised and genetic evolutionary test generation processes in Chapters 3, 4, and 6. 

It would be fruitful to investigate the benefits of using the attribute combinations process to directly 

drive SALVEM test generation, given the types of functional information deduced from this coverage 

method. In fact, a manual coverage driven example was described in our experiments in Section 7.12.1 

Chapter 7, whereby the functional attributes data was used to deduce what missing DMA transfers 

were not tested and to manipulate the DMA snippets to recreate tests for these missing SoC operating 

scenarios. With such examples and given the goals of the coverage method, attribute combinations 

coverage should be able to explicitly drive SALVEM test generation automatically. 

One remaining possible benefit of the attribute combinations coverage that remains unexamined is 

how to use functional coverage data to further develop other snippets. Specifically, snippets to capture 

uncovered test space and enhance the snippets library. Employing such functional information from 

the attribute combinations coverage would facilitate a well-directed scheme for developing snippets of 

other designs. As yet, the strategy employing such coverage to create snippets is still to be developed. 

During testing, the combinations of exercised attributes are recorded directly from SoC hardware so 

that the coverage metric is evaluated immediately. The coverage method uses these attribute 

combinatorial values and the graph base coverage measuring infrastructure. Specifically, STE 

trajectory checking to traverse a graph based coverage model is performed allowing coverage 

contributions to be recorded against snippet based graph nodes. In fact, the range of SoC behaviours 

tested can not only be deduced from the attribute combinations, but also the percentage of coverage 

graph model traversed. Furthermore, the untested functional behaviours can be identified by examining 

at each graph node, the SoC register values that were not exercised. These features promote SALVEM 

to be adapted as a coverage driven test flow. Currently, the coverage measure quantification is largely 

focused on attribute combinational evaluation only. However, there is scope for future extension of the 

coverage method to incorporate graph measuring capabilities. So far, the usage of STE based graphs is 

solely to facilitate attribute combinations coverage measuring as described in Section 7.9 Chapter 7. 
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