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Abstract 

The hypothesis investigated in the current study is that, increasing the scale of, and energy 

contained in, the larger scales of jet turbulence can beneficially influence the stability of 

pulverised fuel (P F) flames, their heat release profiles, and NOx emissions. The hypothesis 

is investigated using precessing jet nozzles to enlarge the largest scales of turbulence and 

shift the energy in the spectrum of turbulence away from the fine scales. These effects are 

referred to as "enhanced large scale mixing" in the text. 

Experiments were conducted to measure and compare the effects of a number of types of 

central jet, located within a co-annular stream, on the turbulent structure of the combined 

flow. Modelling was performed in water using a planar laser induced fluorescence 

visualisation technique, and limited to a region corresponding to the pre-ignition region of 

flames, where reasonable similarity exists. Individual fluid structures were tracked on 

successive video images. The effects of precession on jet half angles, convection velocities 

and characteristic strain rates were measured and compared with those of steady jets. 

In a separate experiment, glass beads with particle size distributions similar to that of 

pulverised coal, were visualised in non-reacting air jets at ambient temperature, using a 

planar laser technique. The effects of large-scale structures, generated by centrally located 

precessing air flows, on particle motion and preferential concentration of particles in an 

annular jet were measured. Only the region corresponding to the pre-combustion region of 

flames was investigated since combustion is known t  dramatically alter particle motion. 

The effects of enhanced large scale mixing and particle clustering on PF flames were 

measured in two refractory lined kilns operated at 130 kW and 2.5 MW, respectively. A 

scaling parameter, which relates the effects of the dominant mechanisms on flame ignition 

distance was developed, and used to estimate the influence of enhanced large scale mixing at 

full scale. The dominant mechanisms, by which enhanced large scale mixing and particle 

clustering influences combustion, were assessed using sensitivity analyses. 

It was demonstrated that large-scale particle clustering results from the promotion of the 

large scales of turbulence. These changes are shown to have potential to provide a means to 

simultaneously control NOx emissions, and improve heat release and stability of PF flames 

in rotary kiln applications. 


