

The influence of the spectrum of jet turbulence on the stability, NO_x emissions and heat release profile of

pulverised coal flames

Ph.D. Thesis

Neil Lincoln Smith

The University of Adelaide

Departments of Mechanical and Chemical Engineering

October 2000

Table of contents

Table of contents	iii
Abstract	xi
Statement of originality	xiii
Permission to copy	xiii
Acknowledgement	xiv
Terminology	xv
Notation	xv

Chapter 1. Introduction

1.1.	Introd	uction	1
	1.1.1.	Objectives and scope	1
	1.1.2.	Thesis outline	2
1.2.	Issues	pertaining to the continued use of pulverised fuel	3
	1.2.1	Current usage of pulverised fuel and future outlook	3
	1.2.2.	Pollutants	4
	1.2.3.	Process operation	5
	1.2.4.	Summary	5
1.3.	Flame	stabilisation	6
	1.3.1.	Physical and chemical requirements for flame stability	6
	1.3.2.	Historical development of technologies used to provide flame stability	7
	1.3.3.	Stabilisation in rotary kilns	9
	1.3.4.	Summary	10
1.4.	Nitrog	gen Oxides	11
	1.4.1.	A review of fundamental research on NO_X formation in PF flames	11
	1.4.2.	Existing NO _x reduction strategies	12
	1.4.3.	Summary	14
1.5.	The in	npact of large scale turbulence on PF flames	15
	1:5.1.	Large scale turbulent structures	15
	1.5.2.	Effects of large turbulent structures on particle motions	17
	1.5.3.	Turbulence scales	19
	1.5.4.	Influence of the scale of turbulence on PF combustion	22
	1.5.5.	Summary	22
1.6.	Means	s of varying turbulent structure in annular jet flows	23
1.7.	Precessing jets		
	1.7.1.	The phenomenon of precession produced by a stationary nozzle	25
	1.7.2.	The exiting precessing jet	26
	1.7.3.	The region of large scale turbulence	29
	1.7.4.	The energy associated with different scales of turbulence	30
	1.7.5.	Gas PJ flames	32
	1.7.6.	Summary	33
1.8.	H	ypotheses	34

1.9.	Summary	35
Figure	1.1. A schematic diagram of a "lifted" pulverised coal flame	37
Figure	1.2. Schematic diagrams of typical firing arrangements in:	38
(a)	a wall fired boiler	
(b)	a cement kiln	
Figure	1.3. A schematic diagram of the Fluidic Precessing Jet (FPJ) nozzle	39
Figure	1.4 A schematic diagram of the rotating tip of the Mechanical Precessing Jet (MPJ) nozzle	40
Figure	1.5. Turbulence spectra at selected points in a simple axial jet flow (AJ) and a MPJ flow (PJ)	41

Chapter 2. Experimental Design and Scaling Criteria

2.1	Introduction		43
2.2	Modelling PF flames		44
2.3	A comparison of constant velocity and constant residence time scaling		45
2.4	"Partial scaling" in experimental design		48
2.5	Burner design and the range of conditions studied	·	50
2.6	Summary		52
Figure	2.1 Schematic diagrams of the annular and PJ nozzle exit regions		53

Chapter 3. Turbulent structure in single phase non-reacting annular flows

3.1	Introduction	55
3.2	Rationale for use of a single phase water flow technique	56
3.3	Apparatus and experimental procedures	58
	3.3.1 Nozzles investigated by the water LIF technique	58
	3.3.2 Experimental Technique	60
	3.3.3 Experimental Procedure	61
	3.3.4 Methods of data analysis	63
3.4	Flow visualisation	64
3.5	The effect of nozzle type on jet half angles and half widths	65
3.6	Strain rates of flows with $G_{MIX}/G_I = 2.56$	68
3.7	The effect of PJ nozzle size and momentum ratio on jet half widths	70
3.8	The effect of G_{PJe}/G_I on strain rates	71
3.9	Conclusions	73
Figure 3	1 Schematic diagrams of nozzles used in water LIF experiments	75
Figure 3.	2 Schematic diagram of the optical arrangement, LIF experiments	77
Figure 3.	3 Planar Laser Induced Fluorescence (PLIF) images of different types of jet	79
Figure 3.	4 Instantaneous PLIF images of the combined jets with $G_{MLX}/G_1 = 2.56$	81
Figure 3	5 Normalised mean jet fluid concentration map of the annular jet	83
Figure 3.	Normalised mean concentration plots of combined flows with $G_{MLX'}G_I = 2.56$	85
Figure 3.	7 Sequences of LIF images of annular and combined jets with $G_{MLX}/G_I = 2.56$	87
Figure 3	8 Axial positions of the edge of structures, X_{LS} , in combined jets, as a function of time	97
Figure 3.	9 Mean local structure convection velocities as a function of X_{LS} , $G_{MLX}/G_1 = 2.56$	98
Figure 3.	10 Structure convection velocities for the combined flows with $G_{MLX}/G_1 = 2.56$	99
Figure 3	11 Characteristic mean local strain rate, $S/r_{1/2}$ in combined jet flows at $x/D_{A,2} = 3$	100
Figure 3	12 Normalised concentration plots of 19PJ-annular flows with a range of G_{PJe}/G_1	101

Figure 3.13	Normalised concentration plots of 10PJ-annular flows with a range of G_{PJe}/G_1	103
Figure 3.14	The effect of G_{PJe}/G_I on the half widths of combined PJ-annular flows at $x/D_{A,2} = 3$	105
Figure 3.15	The effect of $G_{PJe'}/G_1$ on $r_{1/2}/D$ of combined PJ-annular flows at $x/D_{A,2} = 3$	105
Figure 3.16	Axial positions of structures, X_{LS} , as a function of residence time with varying $19G_{PJe}/G_I$	106
Figure 3.17	Axial positions of structures, X_{LS} , as a function of residence time with varying $10G_{PJe}/G_1$	107
Figure 3.18	Mean structure convection velocities for the combined flows with varying $G_{P/e}/G_i$	108
Figure 3.19	Standard deviation in structure convection velocities with varying G_{PJe}/G_I	108
Figure 3.20	Characteristic mean local strain rate, $S/r_{1/2}$ of PJ structures in PJ-annular flows at $x/D_{A,2} = 3$	109

Chapter 4. The influence of large scale jet oscillations on particle motion

4.1.	Introduction	111
4.2.	Preferential concentration of particles by turbulence	112
	4.2.1 The significance of the Stokes number	112
	4.2.2 Numerical calculations of particle - fluid structure interactions	115
	4.2.3 Experimental measurements of particle concentration effects	117
	4.2.4 Summary	119
4.3	Experimental Equipment and Procedures	120
	4.3.1 Experimental Equipment	120
	4.3.2 Light Sources and recording media	122
4.4	Flow visualisation experimental conditions and results	124
	4.4.1 PJ – annular flows	124
	4.4.2 Flow visualisation of particles from a "point source"	126
	4.4.3 Summary of flow visualisation results	128
4.5	Measurements of particle concentration and trajectories	129
	4.5.1 Particle counting methodology: PJ – annular flows	129
	4.5.2 Factors which influence particle clustering in PJ - annular flows	130
	4.5.3 Factors which influence particle dispersion from the 1.5 mm injector	134
	4.5.4 Key findings – Measurements of particle concentration and trajectories	136
4.6	Conclusions	137
Figure	4.1 A schematic diagram of planar laser sheet – particle visualisation experiments	139
Figure	4.2 Size distribution of glass beads used for planar laser visualisation	140
Figure	4.3 A schematic diagram of the experimental equipment used to perform visualisation of	141
Figure	4.4 Photographs of particles in (a) an annular air flow and (b) the 19PJ flow with $G_{Pla}/G_l = 3.91$.	141
Figure	4.5 A 0.001s photograph of glass bead tracks without flow tracer particles, $G_{PJe}/G_I = 3.91$.	
	Beads are imaged up to 10 times each by the copper vapour laser pulsed at 10 kHz.	144
Figure	4.6 A 0.001 s photograph of glass bead tracks without flow tracer particles, $G_{PJe}/G_I = 3.91$.	
Figure	Beads are imaged 2 times each by the copper vapour laser pulsed at 10 kHz.	145
гідше	pulsing at 10 kHz. The framing rate is nominally 1000 fps. $G_{BL}/G_L = 3.91$.	146
Figure	4.8 Digitised, 1/25s images showing the effect of varying particle injection velocity at a	1.0
	constant 10PJ exit velocity of 101 ms ⁻¹ , on particle tracks and spread of particles.	147
Figure	4.9 Photograph (0.001s exposure ~ 1/3 of a precession cycle) of 80 μ m particles injected	1.40
Figure	through the 1.5 mm injector at 4.5 ms ' (G_{PJe}/G_1 1260).	149
rigure	at 3.3ms ⁻¹ into the NBZ of the 10PJ air flow, with PJ exit velocity of 101ms ⁻¹ .	150
	-	

Figure 4.11 Particle concentration measurement grid overlaid on a photograph of glass beads in an	
annular air flow with velocity 9.8 ms ⁻¹ , $G_{PJe}/G_1 = 0$.	151
Figure 4.12 Photographs used for particle concentration measurements, of glass beads in a flow with	
annular air velocity $= 9.8$	152
Figure 4.13 The influence of $G_{PJe'}/G_1$ on the ratio of standard deviation to mean particle number per	
cell (σ/μ) of glass beads in PJ-annular flows.	159
Figure 4.14 A schematic diagram of a jet showing the assumptions used to estimate the fluid time-scale.	159
Figure 4.15 Relationship between St and (σ/μ) in PJ-annular flows.	160
Figure 4.16	160
Figure 4.17	161
Figure 4.18	
as a function of axial position and particle exit velocity.	162
Figure 4.19 Mean total spread of 80 µm and 46 µm particles emanating from the 1.5 mm injector	
as a function of particle exit velocity, at $x/D = 3$.	162
Figure 4.20	163
Figure 4.21	163
Figure 4.22 Influence of $(G_{PJe}/G_l).St^{-1}$ on the maximum spread of particles from the 1.	164

Chapter 5. The influence of precession on small-scale PF flames

5.1	Introd	uction	165
5.2	A revi	ew of factors that influence flame combustion characteristics	166
	5.2.1	Introduction	166
	5.2.2	Particle heating rate in the pre-ignition region	167
	5.2.3	Moisture evaporation, devolatilisation rates and yields, soot formation	172
	5.2.4	Ignition	178
	5.2.5	Effects of large scale mixing on gas flame stability	180
	5.2.6	Factors affecting heat release to walls and flame temperature	181
	5.2.7	Nitrogen release rates and NO _x formation	186
	5.2.8	Possible effects of enhanced large scale mixing on flames	188
5.3.	Experi	mental Design	189
	5.3.1.	Introduction	189
	5.3.2.	Selection of the range of momentum ratios	189
5.4.	130 kW	V flames - Experimental equipment and procedures	191
	5.4.1.	Scope	191
	5.4.2.	Furnace and instrumentation	192
	5.4.3.	Burners	195
	5.4.4.	Fuels	197
	5.4.5.	Determination of ignition distance	198
5.5.	Result	s - Comparison of mono-channel annular flames with PJ flames	199
	5.5.1.	Stabilisation in flames influenced by enhanced large scale mixing	199
	5.5.2.	The influence of enhanced large scale mixing on heat flux profiles	201
	5.5.3.	The influence of enhanced large scale mixing on flue gas emissions	202
	5.5.4.	The influence of enhanced large scale mixing on in-flame measurements	204
5.6.	Compa	arison of flames from different burner types	207

5.7.	Experiments to explore the mechanisms by which enhanced large scale mixing	
	affects flame properties	210
5.8.	Conclusions	214
Figure 5	5.1 A schematic diagram of the 130 kW furnace	217
Figure 5	2. A schematic diagram of the standard burner arrangement used in the 130 kW furnace	218
Figure 5	3. Schematic diagrams of supplementary burners	219
Figure 5	.4. Normalised mean axial ignition distance - 10PJ confined 130 kW PF flames	221
Figure 5	.5 Consecutive video images of the ignition region of the 10PJ flame with $P_{PJ} = 108$ kPa(g).	223
Figure 5	6.6. 1/1000s video image of 19PJ flame with $G_{PJP}/G_1 = 8.5$.	225
Figure 5	.7 Effect of G_{PJ}/G_I on wall temperatures for 10PJ flames	227
Figure 5	.8 Effect of G_{PJ}/G_I on wall temperatures for 19PJ flames	227
Figure 5	.9 Effect of PJ flow-rate on flue NO and CO emissions	228
Figure 5	.10 Comparison of NO emissions from 10PJ and 19PJ flames as a function of PJ momentum	228
Figure 5	.11 –	229
Figure 5	.12 Centre-line in-flame oxygen concentration profiles – 19PJ flame with $G_{PJP}/G_I = 8.5$.	229
Figure 5	.13 Centre-line in-flame burnout profiles – 19PJ flame with $G_{PJI}/G_I = 8.5$.	230
Figure 5	.14 Centre-line in-flame particle volatile matter content profiles – 19PJ flame with $G_{PJ}/G_I = 8.5$.	230
Figure 5	.15 Radial coal burnout and oxygen concentration profile for the 19PJ flame with $G_{PJ}/G_I = 8.5$,	
	at $x/D = 10$.	231
Figure 5	5.16	
	$G_{PJI}/G_I = 8.5$, at $x/D = 10$.	231
Figure 5	5.17 Radial coal burnout and gas temperature, $= 8.5$, at $x/D = 10$.	232
Figure 5	.18 Radial coal burnout and gas temperature, 19PJ flame with $G_{PJt}/G_1 = 8.5$, at $x/D = 26$.	232
Figure 5	.19 Coal burnout and oxygen concentration, 19PJ flame with $G_{PJt}/G_1 = 8.5$, at $x/D = 26$.	233
Figure 5	.20 Radial volatile, fixed carbon and ash profiles, 19PJ flame with $G_{PJt}/G_1 = 8.5$, at $x/D = 26$.	233
Figure 5	5.21 Centre-line in-flame NO concentration profiles,	234
Figure 5	.22 Centre-line in-flame CO concentration profiles – 19PJ flame with $G_{PJt}/G_1 = 8.5$.	234
Figure 5	5.23 Flue emissions and ignition distances for the 130 kW flames.	235
Figure 5	.24 Comparison of wall temperatures for the 130 kW flames.	235
Figure 5	.25 Comparison of wall temperatures profiles of various 130 kW PJ flames.	236
Figure 5	2.26. Effect of secondary air temperature on ignition distance of 19PJ flames with $G_{P,t}/G_1 = 8.5$.	236
Figure 5	27. Correlation between peak wall temperature and secondary air temperature.	237
Figure 5	.28. Effect of secondary air temperature on NO emissions for three PJ flames.	237
Figure 5	.29 Effect of coal flow (energy input) on 19PJ flames. PJ pressure = 60 kPa(g).	238
Figure 5	.30 Effect of primary air channel diameter and flow-rate on NO emissions.	238
Figure 5	.31 Effect of primary air channel diameter and flow-rate on CO emissions.	239
Figure 5	.32 Three consecutive images of the ignition region of the "Diffuser" flame, G_{PJe}/G_I	240
Figure 5	5.33 The effect of PJ air mass fraction on the ignition distance of 10PJ, 19PJ and 40PJ flames.	241
Figure 5	.34 Images of the flame created by introducing particles directly through a 40 mm PJ nozzle.	243
Figure 5	.35 The effect of the mass fraction of air introduced through the 40 mm PJ nozzle on emissions.	245
Figure 5	.36 The effect of PJ air momentum flux on NO emissions.	245

.

Chapter 6. 2.5 MW Combustion Experiments

6.1.	Introduction	247
6.2.	Experimental Equipment	248
	6.2.1. IFRF Furnace No.1 and Instrumentation	248
	6.2.2. Burners	250
	6.2.3. Fuel Characteristics	253
6.3.	Experimental program	254

6.4.	Results	256
	6.4.1. Laser sheet visualisation	256
	6.4.2. Effects of enhanced large scale mixing on ignition distance and	
	heat extraction	257
		257
	6.4.3. Effect of enhanced large scale mixing on NO_x emissions and burnout	259
	6.4.4. The effects of secondary air momentum on flame characteristics	260
	6.4.5. In-flame measurements	262
6.5.	Scaling the influence of precession on flames	265
6.6.	Conclusion	267
Figure 6	5.1 A schematic diagram of the IFRF Furnace No.1., operated here at 2.5 MW	269
Figure 6	.2 A schematic diagram of the burner and quarl arrangement	270
Figure 6	.3 Effect of PJ throat pressure on $G_{PJ}/(G_1+G_2)$.	271
Figure 6.	.4 Effect of PJ throat pressure on $[G_{PJ}/(G_1+G_2)]$. St ^{-0.5} at the experimental scales.	271
Figure 6.	.5 A schematic diagram of the laser sheet visualisation technique – plan view.	272
Figure 6.	.6 Typical laser sheet visualisation images from the pre-ignition and ignition regions of flames	273
Figure 6	.7. Schematic diagrams of the video recording arrangements.	275
Figure 6	.8. Video-taped images of the ignition region of flames with varying G_{PJI}/G_{I} .	277
Figure 6	.9 Effect of G_{PI}/G_I on ignition distance, 2.5 MW flames.	279
Figure 6	.10 The effect of $G_{P,I}/G_{I}$ on the profile of heat extraction, 80PJ, 2.5 MW flames.	279
Figure 6	.11 The effect of G_{Pl}/G_l on the profile of heat extraction, 80PJ, 2.5 MW flames as a function	
U	of axial distance downstream from ignition.	280
Figure 6	.12 The effect of G_{PI}/G_{I} on the profile of heat extraction from 55PJ, 2.5 MW flames.	280
Figure 6	.13 Effect of PJ momentum on NO ₂ emissions and flue gas temperatures. 2.5 MW flames.	281
Figure 6	.14 Effect of PJ momentum on coal burnout.	281
Figure 6	.15 Relationship between NO ₂ emissions and coal burnout.	282
Figure 6	.16 Relationship between flue gas temperature and NO ₂ emissions	282
Figure 6	17 The effect of secondary momentum on the heat extraction profiles of 80PI flames	
	with a constant PI flow-rate of 250 kg hr ⁻¹	283
Figure 6	18 The effect of secondary momentum on the heat extraction profiles of 80PI flames	
i iguie o	with a constant PI flow-rate of 375 kg hr ⁻¹	283
Figure 6	19 The effect of secondary momentum on the heat extraction profiles of 80PI flames	200
I Iguite of	with a constant PI flow-rate of 500 kg hr ⁻¹	284
Figure 6	20. The effect of secondary momentum on NO, emissions from 80PI flames	284
Figure 6	21 In-flame temperature measurements 80PI flame with $G_{\rm res}/G_{\rm r} = 0.03$	285
Figure 6	22 Temperature distribution in the 80PI flame with $G_{\rm p}/G_{\rm r} = 2.90$	285
Figure 6	23 Dependence of centre-line coal humout on axial position 80PI flames	286
Figure 6	24 In-flame oxygen concentration for the 80PI flame with $G_{\rm ps}/G_{\rm s} = 2.90$	286
Figure 6	25 Radial NO concentration profiles in the 80PL flame with $G_{pl}/G_{l} = 2.90$	287
Figure 6	26 Radial CO concentration profiles in the 80PI flame with $G_{\rm ex}/G_{\rm e} = 2.90$	287
Figure 6	27 Mean axial velocity at $r/D = 4.8$ for the 80PI flame with $G_{PV}/G_{V} = 2.90$	287
Figure 6	28 Mean axial velocity as a function of position in the 80PL flame with $G_{22}/G_{4} = 2.90$	288
Figure 6	29 Distribution of rms/mean axial velocity for the 80PI with $G_{\rm e}$, $G_{\rm e} = 2.90$	289
Figure 6	30 The influence of PI momentum on the ignition distance of flames from the 10DI 10DI 55DI	207
riguit 0.	and 80 PI humers	290
Figure 6	31 Experimental ignition distances plotted as a function of $[G_{-}]/[G_{-}+G_{-}]$ St ^{0.5}	290
Figure 6	32 Predicted PI nozzle pressure in hypothetical full-scale kilns	201
Figure 6	33 Predicted PI nozzle diameters for humers in hypothetical full-scale kilns	291
TIRUIC O	.55 Treatered T& nozzie diameters for outliers in hypothetical full-scale kills.	£71

Chapter 7 Assessment of the dominant mechanisms by which precession influences ignition and combustion using sensitivity analyses

7.1	Introd	uction	293	
7.2	Scope			
	7.2.1.	Ignition distance	294	
	7.2.2.	Heat release and NO_x emissions	294	
	7.2.3	The influence of PJ mixing	294	
73	Interac	Interactions between entrainment external recirculation heat extraction		
1.5.	mora	and NO ₂ emissions	296	
	731	Theoretical considerations	290	
	7.3.1	Estimation of antrainment and regiraulation in DI flows	290	
	7.3.2	Estimation of entrainment and recirculation in PJ nows	299	
	7.3.3	Mean effects of externally recirculated gases	301	
	7.3.4	Summary	305	
7.4	Effect	of precession in the NBZ on convective heating of particles	306	
7.5	The in	fluence of clustering on the heating of particles in the pre-ignition region	308	
	7.5.1	Introduction	308	
	7.5.2	Cluster energy balances	309	
	7.5.3	Particle heating rate sensitivity analysis	311	
	7.5.4	Summary	317	
7.6.	The in	The influence of enhanced large scale mixing on gas phase combustion rates		
	7.6.1	Theoretical considerations - The use of turbulence scales in		
		combustion models	318	
	762	Estimation of the dominant effects of precession on volatile matter	010	
	/.o.z.	and NO reaction rates	377	
77	The	and NO_X reaction facts.	322	
7.7.	The se		323	
/.8.	Concl	usions	324	
Figure	7.1 PLIF	photographs (1/1000 s exposure) of 19PJ-annular water flows.	327	
Figure	7.2 • A scl	nematic diagram of recirculation in confined jets.	329	
Figure	7.3 Sche	matic diagrams of external recirculation patterns deduced to occur in the two furnaces.	330	
Figure	7.4 Calci	ulated entrainment of ERZ gases by the combined PJ, primary and secondary jets.	331	
rigure	1.5 Elle	combined PL primary secondary air ERZ gas and coal mixture in 2.5 MW flames	332	
Figure	7.6 Corre	elation between the calculated enthalpy of ERZ gases and measured NO_x emissions	552	
U		from 2.5 MW flames with 80PJ flow-rates of 25, 125, 250, 275 and 500 kg.hr ⁻¹ .	332	
Figure	7.7 The	effect of 19PJ momentum on the calculated mass of gas entrained by the combined		
D .	-	19PJ-primary flows and the secondary flow (at 500°C) in 130 kW flames.	333	
Figure	7.8 Corre	elation between the mass of ERZ gas and secondary air entrained by the combined	222	
Figure	7.9 The	effect of 10PJ momentum on the mass of mixed ERZ gas and secondary air	555	
		entrained by the combined 10PJ-primary flows.	334	
Figure	7.10 Mas	ss of ERZ gas and secondary air entrained by the combined 10PJ-primary stream,		
		NO_x emissions, and the increase in the mean temperature of the combined stream	334	
Figure	7.11 Effe	ect of precession frequency and particle size on the entrainment factor.	335	
Figure	7.12 Effe	Let of U_{rel} , and a_p , on the fluctuating Nusselt number due to precession, Nu_t .	335 226	
- iguic	U 9	memane representation of energy exchange within a large spherical particle cluster.	550	

s of the
). 337
338
339
339
340
s
341
341
particles. 342
nes 343
ies 343
diant
344

Chapter 8 Conclusions and Future Work

8.1	Conclusions	345
8.1.1	Introduction	345
8.1.2	The influence of precession on the structure of annular flows	346
8.1.3	Particle response to turbulence	348
8.1.4	The influence of enhanced large scale mixing on flame stability and heat release	350
8.1.5	The influence of enhanced large scale mixing on NO _x emissions	353
8.2	Further work	355
8.2.1	Specific objectives of further work arising from the present work	356
8.2.2	Suggested methods for future investigations	357

Appendices

Reference	25	387
Appendix 5	Errors in heat flux measurements in 2.5 MW flames	385
Appendix 4	Visualisation of burning coal particles in open gas flames	381
Appendix 3	Clustering in non-reacting flows with high particle loading	371
Appendix 2	Histograms of particle number density	365
Appendix 1	Measurement of PJ and annular air flow rates	359

Publications arising from this thesis398

Abstract

The hypothesis investigated in the current study is that, increasing the scale of, and energy contained in, the larger scales of jet turbulence can beneficially influence the stability of pulverised fuel (PF) flames, their heat release profiles, and NO_x emissions. The hypothesis is investigated using precessing jet nozzles to enlarge the largest scales of turbulence and shift the energy in the spectrum of turbulence away from the fine scales. These effects are referred to as "enhanced large scale mixing" in the text.

Experiments were conducted to measure and compare the effects of a number of types of central jet, located within a co-annular stream, on the turbulent structure of the combined flow. Modelling was performed in water using a planar laser induced fluorescence visualisation technique, and limited to a region corresponding to the pre-ignition region of flames, where reasonable similarity exists. Individual fluid structures were tracked on successive video images. The effects of precession on jet half angles, convection velocities and characteristic strain rates were measured and compared with those of steady jets.

In a separate experiment, glass beads with particle size distributions similar to that of pulverised coal, were visualised in non-reacting air jets at ambient temperature, using a planar laser technique. The effects of large-scale structures, generated by centrally located precessing air flows, on particle motion and preferential concentration of particles in an annular jet were measured. Only the region corresponding to the pre-combustion region of flames was investigated since combustion is known to dramatically alter particle motion.

The effects of enhanced large scale mixing and particle clustering on PF flames were measured in two refractory lined kilns operated at 130 kW and 2.5 MW, respectively. A scaling parameter, which relates the effects of the dominant mechanisms on flame ignition distance was developed, and used to estimate the influence of enhanced large scale mixing at full scale. The dominant mechanisms, by which enhanced large scale mixing and particle clustering influences combustion, were assessed using sensitivity analyses.

It was demonstrated that large-scale particle clustering results from the promotion of the large scales of turbulence. These changes are shown to have potential to provide a means to simultaneously control NO_x emissions, and improve heat release and stability of PF flames in rotary kiln applications.