Insulin sensitivity and nutrient utilisation in skeletal muscle

by

Yan Yan Lam

Thesis submitted in fulfilment of the requirement for the Degree of Doctor of Philosophy

Discipline of Medicine School of Medicine Faculty of Health Sciences University of Adelaide, South Australia, Australia

November 2009

Table of Contents

TABLE OF CONTENTS	II
SUMMARY	. XIII
DECLARATION	.XVI
ABBREVIATIONS	XVIII
ACKNOWLEDGEMENTS	XXIII
CHAPTER 1: BACKGROUND	2
 1.1 INTRODUCTION 1.2 OBESITY AND METABOLIC RISK	2 3 4 5 6 7 9 15 26 32 32 35
 SKELETAL MUSCLE	45 45 50 52 54 54 55 vitro
1.7 AIMS CHAPTER 2: METHODOLOGY 2.1 Collection of human skeletal muscle and adipose tissue biopsie	56 61 62 s . 62
2.2 SKELETAL MUSCLE CELL CULTURE	62

2.2.1 L6 cells	62
2.2.2 Primary human skeletal muscle cells	64
2.2.3 Total protein content of cell culture	67
2.3 ADIPOSE TISSUE-CONDITIONED MEDIUM	67
2.4 Cell viability assays	68
2.4.1 Lactate dehydrogenase assay	68
2.4.2 Visualisation of DNA laddering	69
2.5 CYTOKINE PROFILING	74
2.5.1 Enzyme-linked immunosorbent assay (ELISA)	74
2.5.2 Multiplex assay	75
2.6 FATTY ACID PROFILING	77
2.7 GLUCOSE UPTAKE IN SKELETAL MUSCLE CELLS	79
2.8 QUANTIFICATION OF GENE EXPRESSION	
2.8.1 mRNA quantification via 'Real Time' Polymerase Chain-Reaction (R)	Γ_
PCR)	80
2 8 2 Gene expression profiling via microarray analysis	87
2.9 FLUORESCENT WESTERN BLOTTING	92
2.9.1 Protein extraction from L6 cells	92
$2.0.2$ NuPA $CE^{\mathbb{R}}$ algoritantian from 20 constant	04
2.9.2 NurAOE · electrophoresis system	94
2.9.5 Reversible memorale stating	90
2.9.4 Western Diotung	101
2.9.5 Cheminuolescence delection	101
2.10 DATA ANAL 1515	102
CHAPTER 3: DEVELOPMENT AND CHARACTERISATION OF AN IN	
CHAPTER 3: DEVELOPMENT AND CHARACTERISATION OF AN <i>IN</i> VITRO SYSTEM USING ADIPOSE TISSUE-CONDITIONED MEDIA TO	
CHAPTER 3: DEVELOPMENT AND CHARACTERISATION OF AN <i>IN</i> <i>VITRO</i> SYSTEM USING ADIPOSE TISSUE-CONDITIONED MEDIA TO	_
CHAPTER 3: DEVELOPMENT AND CHARACTERISATION OF AN <i>IN</i> <i>VITRO</i> SYSTEM USING ADIPOSE TISSUE-CONDITIONED MEDIA TO STUDY THE EFFECT OF ADIPOSE TISSUE ON GLUCOSE UPTAKE IN	1
CHAPTER 3: DEVELOPMENT AND CHARACTERISATION OF AN <i>IN</i> <i>VITRO</i> SYSTEM USING ADIPOSE TISSUE-CONDITIONED MEDIA TO STUDY THE EFFECT OF ADIPOSE TISSUE ON GLUCOSE UPTAKE IN SKELETAL MUSCLE CELLS.	I 103
CHAPTER 3: DEVELOPMENT AND CHARACTERISATION OF AN <i>IN</i> <i>VITRO</i> SYSTEM USING ADIPOSE TISSUE-CONDITIONED MEDIA TO STUDY THE EFFECT OF ADIPOSE TISSUE ON GLUCOSE UPTAKE IN SKELETAL MUSCLE CELLS	I 103
CHAPTER 3: DEVELOPMENT AND CHARACTERISATION OF AN <i>IN</i> <i>VITRO</i> SYSTEM USING ADIPOSE TISSUE-CONDITIONED MEDIA TO STUDY THE EFFECT OF ADIPOSE TISSUE ON GLUCOSE UPTAKE IN SKELETAL MUSCLE CELLS	I 103 103
CHAPTER 3: DEVELOPMENT AND CHARACTERISATION OF AN <i>IN</i> <i>VITRO</i> SYSTEM USING ADIPOSE TISSUE-CONDITIONED MEDIA TO STUDY THE EFFECT OF ADIPOSE TISSUE ON GLUCOSE UPTAKE IN SKELETAL MUSCLE CELLS	103 103 104
CHAPTER 3: DEVELOPMENT AND CHARACTERISATION OF AN <i>IN</i> <i>VITRO</i> SYSTEM USING ADIPOSE TISSUE-CONDITIONED MEDIA TO STUDY THE EFFECT OF ADIPOSE TISSUE ON GLUCOSE UPTAKE IN SKELETAL MUSCLE CELLS	I 103 103 104 104
CHAPTER 3: DEVELOPMENT AND CHARACTERISATION OF AN <i>IN</i> <i>VITRO</i> SYSTEM USING ADIPOSE TISSUE-CONDITIONED MEDIA TO STUDY THE EFFECT OF ADIPOSE TISSUE ON GLUCOSE UPTAKE IN SKELETAL MUSCLE CELLS. 3.1 INTRODUCTION	1 103 104 104 104
CHAPTER 3: DEVELOPMENT AND CHARACTERISATION OF AN <i>IN</i> <i>VITRO</i> SYSTEM USING ADIPOSE TISSUE-CONDITIONED MEDIA TO STUDY THE EFFECT OF ADIPOSE TISSUE ON GLUCOSE UPTAKE IN SKELETAL MUSCLE CELLS	1 103 104 104 105 105
CHAPTER 3: DEVELOPMENT AND CHARACTERISATION OF AN <i>IN</i> <i>VITRO</i> SYSTEM USING ADIPOSE TISSUE-CONDITIONED MEDIA TO STUDY THE EFFECT OF ADIPOSE TISSUE ON GLUCOSE UPTAKE IN SKELETAL MUSCLE CELLS. 3.1 INTRODUCTION	J 103 104 104 104 105 105 106
CHAPTER 3: DEVELOPMENT AND CHARACTERISATION OF AN <i>IN</i> <i>VITRO</i> SYSTEM USING ADIPOSE TISSUE-CONDITIONED MEDIA TO STUDY THE EFFECT OF ADIPOSE TISSUE ON GLUCOSE UPTAKE IN SKELETAL MUSCLE CELLS. 3.1 INTRODUCTION	1 103 104 104 104 105 105 106 106
CHAPTER 3: DEVELOPMENT AND CHARACTERISATION OF AN <i>IN</i> <i>VITRO</i> SYSTEM USING ADIPOSE TISSUE-CONDITIONED MEDIA TO STUDY THE EFFECT OF ADIPOSE TISSUE ON GLUCOSE UPTAKE IN SKELETAL MUSCLE CELLS. 3.1 INTRODUCTION 3.2 MATERIALS AND METHODS 3.2.1 Adipose tissue-conditioned media-skeletal muscle myotube culture 3.2.2 Cell viability of adipose tissue explants. 3.2.3 Myotube viability. 3.2.4 Glucose uptake. 3.2.5 Data analysis. 3.3 RESULTS.	J 103 104 104 105 105 106 106 106
CHAPTER 3: DEVELOPMENT AND CHARACTERISATION OF AN <i>IN</i> <i>VITRO</i> SYSTEM USING ADIPOSE TISSUE-CONDITIONED MEDIA TO STUDY THE EFFECT OF ADIPOSE TISSUE ON GLUCOSE UPTAKE IN SKELETAL MUSCLE CELLS	J 103 104 104 105 105 106 106 106 106
CHAPTER 3: DEVELOPMENT AND CHARACTERISATION OF AN <i>IN</i> <i>VITRO</i> SYSTEM USING ADIPOSE TISSUE-CONDITIONED MEDIA TO STUDY THE EFFECT OF ADIPOSE TISSUE ON GLUCOSE UPTAKE IN SKELETAL MUSCLE CELLS	I 103 104 104 104 105 106 106 106 106 108
CHAPTER 3: DEVELOPMENT AND CHARACTERISATION OF AN <i>IN</i> <i>VITRO</i> SYSTEM USING ADIPOSE TISSUE-CONDITIONED MEDIA TO STUDY THE EFFECT OF ADIPOSE TISSUE ON GLUCOSE UPTAKE IN SKELETAL MUSCLE CELLS. 3.1 INTRODUCTION	J 103 103 104 104 105 106 106 106 106 108 110
CHAPTER 3: DEVELOPMENT AND CHARACTERISATION OF AN <i>IN</i> <i>VITRO</i> SYSTEM USING ADIPOSE TISSUE-CONDITIONED MEDIA TO STUDY THE EFFECT OF ADIPOSE TISSUE ON GLUCOSE UPTAKE IN SKELETAL MUSCLE CELLS	L. 103 103 104 104 105 105 106 106 106 106 108 110 112
CHAPTER 3: DEVELOPMENT AND CHARACTERISATION OF AN <i>IN</i> <i>VITRO</i> SYSTEM USING ADIPOSE TISSUE-CONDITIONED MEDIA TO STUDY THE EFFECT OF ADIPOSE TISSUE ON GLUCOSE UPTAKE IN SKELETAL MUSCLE CELLS. 3.1 INTRODUCTION	L.103 103 104 104 105 106 106 106 106 108 110 112 n
CHAPTER 3: DEVELOPMENT AND CHARACTERISATION OF AN <i>IN</i> <i>VITRO</i> SYSTEM USING ADIPOSE TISSUE-CONDITIONED MEDIA TO STUDY THE EFFECT OF ADIPOSE TISSUE ON GLUCOSE UPTAKE IN SKELETAL MUSCLE CELLS	L. 103 103 104 104 105 105 106 106 106 108 110 112 n 120
CHAPTER 3: DEVELOPMENT AND CHARACTERISATION OF AN <i>IN</i> <i>VITRO</i> SYSTEM USING ADIPOSE TISSUE-CONDITIONED MEDIA TO STUDY THE EFFECT OF ADIPOSE TISSUE ON GLUCOSE UPTAKE IN SKELETAL MUSCLE CELLS	L103 103 104 104 105 105 106 106 106 106 106 108 110 112 n 120 120
CHAPTER 3: DEVELOPMENT AND CHARACTERISATION OF AN <i>IN</i> <i>VITRO</i> SYSTEM USING ADIPOSE TISSUE-CONDITIONED MEDIA TO STUDY THE EFFECT OF ADIPOSE TISSUE ON GLUCOSE UPTAKE IN SKELETAL MUSCLE CELLS	L103 103 104 104 105 106 106 106 106 108 110 112 n 120 127

CHAPTER 4: EFFECT OF SECRETORY FACTORS FROM ADIPOSE	
TISSUE ON INSULIN-STIMULATED GLUCOSE UPTAKE IN SKELETAL	
MUSCLE CELLS	134
4.1 INTRODUCTION	.134
4.2 MATERIALS AND METHODS	.138
4.2.1 Adipose tissue-conditioned medium (CM)	138
4.2.2 Cytokine and fatty acid profiling in the adipose tissue-conditioned medi	um
	140
4.2.3 Rapamycin and pyrrolidinedithiocarbamate (PDTC)	140
4.2.4 Neutralisation of IL-6 in the adipose tissue-conditioned medium	141
4.2.5 Glucose uptake	141
4.2.0 Data allalysis	141
4.3 1 Cytokine profiling in the adipose tissue-conditioned medium	142
4.3.2 Fatty acid profiling in the adipose tissue-conditioned medium	144
4 3 3 Effect of CM on glucose untake in L6 myotubes	147
4.3.4 Dose-response effect of rapamycin and PDTC on insulin-stimulated	
glucose uptake in PA-treated myotubes	149
4.3.5 Roles of mTORC1 and NFkB activation in IAB fat-induced insulin	
resistance in L6 myotubes	153
4.3.6 Role of IL-6 in IAB fat-induced insulin resistance in L6 myotubes	155
4.4 DISCUSSION	. 160
CHAPTER 5: EFFECT OF LONG-CHAIN SATURATED, N-3 AND N-6	
POLYUNSATURATED FATTY ACIDS ON INSULIN-STIMULATED	
	165
GLUCUSE UPTARE IN SKELETAL MUSCLE CELLS	105
5.1 INTRODUCTION	165
5.2 MATERIALS AND METHODS	170
5.2.1 Adipose tissue-conditioned medium (CM)	170
5.2.2 Fatty acids	172
5.2.3 Myriocin	172
5.2.4 Rapamycin and PDTC	173
5.2.5 Glucose uptake	.173
5.2.6 Data analysis	. 173
5.3 RESULTS	.174
5.3.1 Dose-response effect of fatty acids on glucose uptake in L6 myotubes	. 1 / 4
myotubes	176
5.3.3 Combined effect of adipose tissue-conditioned media and fatty acids or	net
insulin-stimulated glucose uptake in L6 myotubes	
5.3.4 Role of ceramide in PA-induced insulin resistance in L6 myotubes	178
	178 180
5.3.5 Role of mTORC1 and NFKB activation in insulin resistance in L6	178 180
5.3.5 Role of mTORC1 and NFkB activation in insulin resistance in L6 myotubes	178 180 183

CHAPTER 6: EFFECT OF LONG-CHAIN SATURATED, N-3 AND N-6	
ENERGY METABOLISM IN SKELETAL MUSCLE CELLS	.194
6.1 INTRODUCTION	194
6.2 MATERIALS AND METHODS	201
6.2.1 Adipose tissue-conditioned medium (CM)	201
6.2.2 Gene expression	201
6.2.3 Western blotting	201
6.3.1 Effect of fatty acids on gene expression in L6 myotubes	201
6.3.2 Combined effect of secretory factors from adipose tissue and fatty acid	ls on
gene expression in L6 myotubes	204
6.3.3 Acute effect of fatty acids on protein phosphorylation in L6 myotubes.	208
6.3.4 Combined effect of secretory factors from adipose tissue and fatty acid	$\frac{15 \text{ on}}{210}$
c A Discussion	210
0.4 DISCUSSION	213
CHAPTER 7: COMPARING GENE EXPRESSION PROFILE OF SKELET	AL
MUSCLE CELLS IN RESPONSE TO LONG-CHAIN SATURATED AND I	N-3
	240
	.219
7.1 INTRODUCTION	219
7.2 MATERIALS AND METHODS	222
7.2.1 Sample collection	222
7.2.2 Sample validation	222
7.2.3 Gene expression profiling, data processing and analysis	223
7.3 RESULTS	223
7.3.1 Sample validation	223
7.3.2 Initial characterisation of microarray gene expression data	228
7.3.5 Exploratory data analysis	233
7.3.5 Pathway analysis	233
7 4 DISCUSSION	240 250
7.4.1 Differential effects of PA and DHA on gene expression profile	250
7 4 2 Mechanisms for the effect of SFAs and n-3 PUFAs on muscle insulin	200
sensitivity	251
7.4.3 Implications of the effect of SFAs and n-3 PUFAs on other aspects of	
health	254
7.4.4 Conclusions	256
CHAPTER 8: CONCLUSIONS. IMPLICATIONS AND FUTURE STUDIES	257
8.1 SUMMARY OF FINDINGS	257

8.2 IMPLICATIONS OF FINDINGS	258
8.2.1 Nutritional management for obesity	
8.2.2 Physical activity	

BIBLIOGRAPHY	270
8.3 FUTURE STUDIES	
8.2.3 Pharmacological treatments for obesity	

List of Figures and Tables

	Page #
: BACKGROUND	
Schematic model for insulin-stimulated GLUT4	
translocation in skeletal muscle.	11
Glycolysis in skeletal muscle.	14
The transport of long-chain fatty acids into the mitochondria	
via the carnitine palmitoyltransferase system.	18
Triglyceride synthesis in skeletal muscle.	22
De novo synthesis of ceramide in skeletal muscle.	25
The Randle cycle.	28
Pathways mediating the inhibitory effect of saturated fatty	
acids on insulin-stimulated glucose uptake in skeletal muscle	48
	 BACKGROUND Schematic model for insulin-stimulated GLUT4 translocation in skeletal muscle. Glycolysis in skeletal muscle. The transport of long-chain fatty acids into the mitochondria via the carnitine palmitoyltransferase system. Triglyceride synthesis in skeletal muscle. De novo synthesis of ceramide in skeletal muscle. The Randle cycle. Pathways mediating the inhibitory effect of saturated fatty acids on insulin-stimulated glucose uptake in skeletal muscle

CHAPTER 2: METHODOLOGY

Table 2.1.	Primer sequences.	84
Table 2.2.	Real-Time PCR conditions.	86
Table 2.3.	Preparation of lysis buffer.	93
Figure 2.1.	Gel/membrane/filter paper assembly when transferring	
	one or two gels.	97
Table 2.4.	Primary antibody preparation.	100

CHAPTER 3: DEVELOPMENT AND CHARACTERISATION OF AN *IN VITRO* SYSTEM USING ADIPOSE TISSUE-CONDITIONED MEDIA TO STUDY THE EFFECT OF ADIPOSE TISSUE ON GLUCOSE UPTAKE IN SKELETAL MUSCLE CELLS

Figure 3.1.	Lactate dehydrogenase activity of adipose tissue-	
	conditioned media generated from visceral and subcutaneous	
	fat explants during a collection period of 168 h.	107
Figure 3.2.	DNA fragmentation in adipose tissue explants.	109

		Page #
Figure 3.3.	Lactate dehydrogenase activity released by L6 and	
	primary human myotubes after cultured with adipose	
	tissue-conditioned media for 6 h.	111
Figure 3.4.	Dose-response effect of adipose tissue-conditioned media	
	generated from visceral and subcutaneous fat on basal glucose	
	uptake in primary human myotubes.	113
Figure 3.5.	Volume effect of adipose tissue-conditioned media generated	
	from visceral and subcutaneous fat on basal glucose uptake in	
	primary human myotubes.	115
Figure 3.6.	The effect of adipose tissue-conditioned media from	
	visceral and subcutaneous fat, collected after 48, 72, 96 h of	
	culture, on basal glucose uptake in primary human myotubes.	117
Figure 3.7.	Concentration and duration effect of BSA exposure on basal	
	glucose uptake in primary human myotubes.	119
Figure 3.8.	Insulin-stimulated glucose uptake in L6 myotubes.	121
Figure 3.9.	The effect of insulin stimulation on specific glucose uptake	
	in L6 myotubes.	124
Figure 3.10.	The effect of cytochalasin B exposure on inhibiting	
	carrier-mediated glucose uptake in L6 myotubes.	126
Figure 3.11.	Insulin sensitivity of primary human myotubes.	128
Figure 3.12.	The effect of secretory factors from subcutaneous fat on basal	
	glucose uptake in primary human myotubes.	130

CHAPTER 4: EFFECT OF SECRETORY FACTORS FROM ADIPOSE TISSUE ON INSULIN-STIMULATED GLUCOSE UPTAKE IN SKELETAL MUSCLE CELLS

Table 4.1.	Clinical characteristics of tissue donors.	139
Figure 4.1.	Concentrations of adipokines in adipose tissue-conditioned	
	media generated from subcutaneous and visceral fat.	143

		Page #
Figure 4.2.	Long-chain fatty acids in adipose tissue-conditioned media	
	generated from subcutaneous and visceral fat.	145
Table 4.2.	Molar percentage fatty acid compositions in adipose tissue-	
	conditioned media generated from subcutaneous and visceral fat.	146
Figure 4.3.	The effect of adipose tissue-conditioned media generated	
	from subcutaneous and visceral fat on basal and insulin-	
	stimulated glucose uptake in L6 myotubes.	148
Figure 4.4.	The effect of rapamycin and PDTC on basal and insulin-	
	stimulated glucose uptake in L6 myotubes.	151
Figure 4.5.	Dose-response effect of rapamycin and PDTC on insulin-	
	stimulated glucose uptake in L6 myotubes.	152
Figure 4.6.	The effect of rapamycin and PDTC on basal and insulin-	
	stimulated glucose uptake in L6 myotubes cultured	
	with visceral fat-conditioned media.	154
Figure 4.7.	Dose-response effect of anti-interleukin-6 antibody on basal	
	and insulin-stimulated glucose uptake in L6 myotubes cultured	
	with visceral fat-conditioned media.	156
Figure 4.8.	The effect of interleukin-6 neutralisation on basal and insulin-	
	stimulated glucose uptake in L6 myotubes cultured	
	with visceral fat-conditioned media.	157
Figure 4.9.	The effect of interleukin-6 on basal and insulin-stimulated	
	glucose uptake in L6 myotubes.	158
Figure 4.10.	The effect of rapamycin and PDTC on basal and insulin-	
	stimulated glucose uptake in L6 myotubes cultured with	
	interleukin-6.	159

CHAPTER 5: EFFECT OF LONG-CHAIN SATURATED, N-3 AND N-6 POLYUNSATURATED FATTY ACIDS ON INSULIN-STIMULATED GLUCOSE UPTAKE IN SKELETAL MUSCLE CELLS

able 5.1.	s of tissue donors. 171
ıble 5.1.	s of tissue donors.

		Page #
Figure 5.1.	Dose-response effect of linoleic acid, docosahexaenoic acid	
	and palmitic acid on basal and insulin-stimulated glucose uptake	
	in L6 myotubes.	175
Figure 5.2.	The effect of fatty acids, alone and in combination, on net	
	insulin-stimulated glucose uptake in L6 myotubes.	177
Figure 5.3.	Net insulin-stimulated glucose uptake in L6 myotubes cultured	
	with fatty acids and adipose tissue-conditioned media generated	
	from visceral and subcutaneous fat.	179
Figure 5.4.	The effect of myriocin on basal and insulin-stimulated glucose	
	uptake in palmitic acid-treated myotubes.	181
Figure 5.5.	The effect of myriocin on insulin-stimulated glucose uptake	
	in L6 myotubes cultured with visceral fat-conditioned	
	media and palmitic acid.	182
Figure 5.6.	The effect of rapamycin and PDTC on basal and insulin-	
	stimulated glucose uptake in L6 myotubes treated with	
	palmitic acid.	185
Figure 5.7.	The effect of rapamycin and PDTC on basal and	
	insulin-stimulated glucose uptake in L6 myotubes treated with	
	visceral fat-conditioned media and palmitic acid.	186
Figure 5.8.	Potential mechanisms by which palmitic acid inhibits	
	insulin-stimulated glucose uptake in skeletal muscle cells.	191

CHAPTER 6: EFFECT OF LONG-CHAIN SATURATED, N-3 AND N-6 POLYUNSATURATED FATTY ACIDS ON PATHWAYS REGULATING ENERGY METABOLISM IN SKELETAL MUSCLE CELLS

Figure 6.1.	A simplified schematic model showing the key genes involved	
	in the regulation of energy metabolism in skeletal muscle.	200
Figure 6.2.	The effect of fatty acids on mRNA content of AMPK α 2, SCD1,	
	PDK4 and PGC-1α in L6 myotubes.	203

		Page #
Figure 6.3.	mRNA content of AMPKa2, PGC-1a and SCD1 in L6	
	myotubes cultured with adipose tissue-conditioned media	
	generated from visceral and subcutaneous fat.	206
Figure 6.4.	mRNA content of AMPK α 2, PGC-1 α and SCD1 in L6	
	myotubes cultured with fatty acids and adipose tissue-	
	conditioned media generated from visceral and subcutaneous fat.	207
Figure 6.5.	The effect of fatty acids on protein phosphorylation of AMPK α	
	and ACC β in L6 myotubes.	209
Figure 6.6.	Protein phosphorylation of AMPK α and ACC β in L6 myotubes	
	cultured with adipose tissue-conditioned media from visceral and	l
	subcutaneous fat.	211
Figure 6.7.	Protein phosphorylation of AMPK α and ACC β in L6 myotubes	
	cultured with fatty acids and adipose tissue-conditioned media	
	generated from visceral and subcutaneous fat.	212

CHAPTER 7: COMPARING GENE EXPRESSION PROFILE OF SKELETAL MUSCLE CELLS IN RESPONSE TO LONG-CHAIN SATURATED AND N-3 POLYUNSATURATED FATTY ACIDS

Figure 7.1.	Agarose gel electrophoresis of RNA isolated from L6 myotubes.	225
Table 7.1.	Quality of RNA isolated from L6 myotubes.	226
Figure 7.2.	The effect of fatty acids on mRNA content of AMPK α 2, SCD1	
	and PGC-1a in L6 myotubes.	227
Figure 7.3.	Three-dimensional scatter plot view of biological replicates	
	of L6 myotubes subjected to fatty acid treatments.	230
Figure 7.4.	Individual MA-plot of biological replicates of L6 myotubes	
	subjected to fatty acid treatments.	231
Figure 7.5.	Box-plots of probe intensities before and after normalisation.	232
Figure 7.6.	Hierarchical clustering of samples.	234
Table 7.2.	Genes differentially regulated by docosahexaenoic acid.	236
Table 7.3.	Genes differentially regulated by palmitic acid.	237

Table 7.4.	Genes differentially regulated by both docosahexaenoic acid	
	and palmitic acid.	239
Figure 7.7.	Heatmaps of genes differentially regulated by docosahexaenoic	
	acid and palmitic acid as compared to controls.	241
Figure 7.8.	Heatmap of genes differentially regulated by both	
	docosahexaenoic acid and palmitic acid as compared to controls.	242
Table 7.5.	A selection of genes differentially regulated by either	
	docosahexaenoic acid or palmitic acid.	243
Table 7.6.	Gene Ontology categories enriched by docosahexaenoic acid	
	as compared to controls.	247
Table 7.7.	Gene Ontology categories enriched by palmitic acid as	
	compared to controls.	248
Table 7.8.	Gene Ontology categories enriched by palmitic acid as compared	
	to docosahexaenoic acid.	249

CHAPTER 8: CONCLUSIONS, IMPLICATIONS AND FUTURE STUDIES

Figure 8.1.Schematic model showing the relationship between long-chain
saturated fatty acids, visceral fat and insulin-stimulated glucose
uptake in skeletal muscle.260

Page #

Summary

Obesity is a condition in which fat accumulation in adipose tissue is in excess to an extent that health may be impaired. Insulin resistance is integral to the pathophysiology of obesity-related metabolic complications. Central adiposity and skeletal muscle mass and function determine insulin sensitivity and metabolic risk. A high visceral fat-to-skeletal muscle mass-ratio contributes to an unfavourable metabolic profile.

Epidemiological and experimental studies suggest that high dietary saturated fat intake is deleterious while polyunsaturated fatty acids (PUFAs), in particular n-3 PUFAs of marine origin, may be advantageous to metabolic health.

The aim was to determine the effect of subcutaneous (SC) and visceral (IAB) fat, and long-chain saturated, n-3 and n-6 PUFAs, and the interactions between them, on insulin sensitivity and the pathways regulating energy metabolism in skeletal muscle. Thereby an adipose tissue-conditioned media-skeletal muscle myotube co-culture system was developed.

Adipose tissue-conditioned medium (CM) was generated from SC and IAB fat biopsy of obese humans. Viability of the tissue explants was confirmed by the measurement of lactate dehydrogenase activity in the CM and nuclear DNA fragmentation of tissue explants. The concentrations of cytokines (leptin, adiponectin, interleukin (IL)-1β, IL- 6, IL-8, tumor necrosis factor- α , resistin and plasminogen activator inhibitor-1) and long-chain fatty acids were determined in CM.

CM from IAB but not SC fat reduced insulin-stimulated glucose uptake. The effect of IAB fat was predominantly mediated by IL-6 via the activation of a nuclear factor kappa B/mammalian target of rapamycin complex 1 (NF κ B/mTORC1)-dependent pathway.

Palmitic acid (PA; 16:0) reduced insulin-stimulated glucose uptake, an effect mediated by intramuscular accumulation of ceramide and the activation of NF κ B and mTORC1. The effects of fatty acids were similar in the presence of CM from either fat depot, where the effect of PA was partially reversed by docosahexaenoic acid (DHA; 22:6n-3) and completely by linoleic acid (LA; 18:2n-6).

The effect of each fatty acid in the presence or absence of CM from each fat depot on mRNA expression of key genes regulating muscle energy metabolism was determined. Protein phosphorylation of adenosine monophosphate-activated protein kinase (AMPK)- α and acetyl-coenzyme A carboxylase (ACC)- β were also determined. PA increased SCD1 mRNA. DHA and LA increased AMPK α 2 mRNA and AMPK α and ACC β protein phosphorylation.

Microarray analysis was used to determine the global gene expression changes in PAand DHA-treated L6 myotubes. DHA down-regulated lipogenic genes and upregulated genes which were involved in β -oxidation and mitochondrial function. When compared to PA, DHA down-regulated genes which were involved in lipid synthesis, endoplasmic reticulum metabolism and mitogen-activated protein kinase activity.

Taken together, pro-inflammatory cytokines from IAB fat and PA induced insulin resistance in skeletal muscle and both were at least partly mediated by a NF κ B/mTORC1-dependent pathway. In contrast, DHA and LA may improve insulin sensitivity by diverting fatty acids towards oxidation and subsequently reducing substrate availability for the formation of lipid metabolites including ceramide. A reduction in PA intake and substitution (rather than addition) of DHA and LA, together with a reduction in overall energy intake and increase in physical activity, is optimal for metabolic health.

Name: Yan Yan Lam

Degree Program: Doctor of Philosophy

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due references has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signature:

Date:

Manuscripts submitted for publication:

- Lam, Y.Y., Janovská, A., McAinch, A.J., Belobrajdic, D.P., Hatzinikolas, G., Game, P., Wittert, G.A. Adipokines from visceral fat inhibit insulin-stimulated glucose uptake in skeletal muscle cells: the roles of the nuclear factor kappa B and mammalian target of rapamycin pathways.
- Lam, Y.Y., Janovská, A., McAinch, A.J., Hatzinikolas, G., Cavuoto, P., Game, P., Wittert, G.A. Insulin-stimulated glucose uptake and pathways regulating energy metabolism in skeletal muscle cells: the effects of subcutaneous and visceral fat, and long-chain saturated, n-3 and n-6 polyunsaturated fatty acids.

Manuscripts in preparation:

- <u>Lam, Y.Y.</u>, Buchanan, G., Heilbronn L.K., Hatzinikolas, G., Wittert, G.A. The gene expression profile of skeletal muscle cells in response to long-chain saturated and n-3 polyunsaturated fatty acids: implications for nutrition, health and disease prevention.
- 2. <u>Lam, Y.Y.</u>, Wittert, G.A. Review: The effects of free fatty acids on insulin sensitivity and energy metabolism in skeletal muscle.
- 3. <u>Lam, Y.Y.</u>, Wittert, G.A. Review: *In vitro* models to study the relationship between central obesity, inflammation and insulin resistance in skeletal muscle.

Abbreviations

AA	Arachidonic acid
ACC	Acetyl-coenzyme A carboxylase
AGPAT	1-acylglycerol-3-phosphate acyltransferase
AICAR	5-aminoimidazole-4-carboxamide-1-β-D-ribofuranoside
AMP	Adenosine monophosphate
AMPK	AMP-activated protein kinase
ANOVA	Analysis of variance
aPKC	Atypical protein kinase C
ATP	Adenosine triphosphate
BCA	Bicinchoninic acid
BH	Benjamini & Hochberg
BMI	Body mass index
BP	Biological process
BSA	Bovine serum albumin
CACT	Carnitine-acylcarnitine translocase
CBP	cAMP-responsive element-binding protein-binding protein
CC	Cellular component
СМ	Adipose tissue-conditioned medium
cm	Centimetre
CO ₂	Carbon dioxide
CoA	Coenzyme A
СРТ	Carnitine palmitoyltransferase
C _T	Threshold cycle
Ctrl	Control
DAG	Diacylglycerol
DEPC	Diethyl pyrocarbonate
DGAT	Diacylglyceroltransferase
DHA	Docosahexaenoic acid
DMSO	Dimethyl sulfoxide

DNA	Deoxyribonucleic acid
DPA	Docosapentaenoic acid
dSAT	Deep subcutaneous adipose tissue
dsDNA	Double-stranded DNA
ECM	Extracellular matrix
EDTA	Ethylenediaminetetraacetic acid disodium salt dihydrate
EGTA	Ethylene glycol-bis (2-aminoethylether) – <i>N</i> , <i>N</i> , <i>N</i> ', <i>N</i> '-tetraacetic acid
ELISA	Enzyme-linked immunosorbent assay
EPA	Eicosapentaenoic acid
ER	Endoplasmic reticulum
ERK	Extracellular signal-regulated kinase
FABPpm	Plasma membrane fatty acid-binding protein
FAME	Fatty acid methyl ester
FAS	Fatty acid synthase
FAT/CD36	Fatty acid translocase
FATP	Fatty acid transport protein
FBS	Fetal bovine serum
g	Gram
G-6-P	Glucose-6-phosphate
GLUT	Glucose transporter
GO	Gene Ontology
GPAT	Glycerol-3-phosphate acyltransferase
h	Hour
HCl	Hydrochloric acid
HEPES	4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid
HS	Horse serum
IAB	Visceral
ΙκΒ	Inhibitor protein inhibitor kappa B
IKK	Inhibitor of kappa B kinase
IL	Interleukin
IR	Insulin receptor
IRS	Insulin receptor substrate

JAK	Janus kinase
JNK	c-Jun NH2-terminal kinase
kb	Kilobase
kg	Kilogram
L	Litre
LA	Linoleic acid
LDH	Lactate dehydrogenase
LPL	Lipoprotein lipase
m	Metre
М	Molar
MAPK	Mitogen-activated protein kinase
МСР	Monocyte chemoattractant protein
MEM	Minimal Essential Medium
MEK	Mitogen-activated protein kinase kinase
MF	Molecular function
μg	Microgram
mg	Milligram
min	Minute
μl	Microlitre
ml	Millilitre
μΜ	Micromolar
mМ	Millimolar
mm	Millimetre
μm	Micrometre
mmol	Millimol
mRNA	Messenger ribonucleic acid
mTORC1	Mammalian target of rapamycin complex 1
mU	Milliunit
MUFA	Monounsaturated fatty acid
NaF	Sodium fluoride
NaOH	Sodium hydroxide
NaPPi	Sodium pyrophosphate tetrabasic decahydrate

NFκB	Nuclear factor kappa B
nPKC	Novel protein kinase C
ng	Nanogram
nM	Nanomolar
nm	Nanometre
PA	Palmitic acid
PAI	Plasminogen activator inhibitor
PAP	Phosphatidate phosphohydrolase
PBS	Phosphate buffered saline
PCA	Principal Components Analysis
PDC	Pyruvate dehydrogenase complex
PDK	Pyruvate dehydrogenase kinase
PDP	Pyruvate dehydrogenase phosphatase
PDPK	3-phosphoinositide-dependent protein kinase
PDTC	Pyrrolidinedithiocarbamate
PFK	Phosphofructokinase
PGC	Peroxisome proliferator-activated receptor-γ coactivator
PIP2	Phosphatidylinositol(4,5)-bisphosphate
PIP3	Phosphatidylinositol(3,4,5)-trisphosphate
PI3K	Phosphatidylinositol 3-kinase
РКС	Protein kinase C
PMSF	Phenylmethylsulfonyl fluoride
PP	Protein phosphatase
PPAR	Peroxisome-proliferator-activated receptor
РТР	Protein-tyrosine phosphatase
PUFA	Polyunsaturated fatty acid
RIN	RNA Integrity Number
RMA	Robust Multi-array Average
RNA	Ribonucleic acid
RNAse	Ribonuclease
ROS	Reactive oxygen species
rpm	Revolutions per minute

RT-PCR	'Real Time' Polymerase Chain-Reaction
SAPK	Stress-activated protein kinase
SBTI	Soybean trypsin inhibitor
SC	Subcutaneous
SCD	Stearoy-coenzyme A desaturase
sec	Second
SEM	Standard error of mean
SFA	Saturated fatty acid
SOCS	Suppressor of cytokine signalling
SPT	Serine palmitoyltransferase
SREBP	Sterol regulatory element binding protein
sSAT	Superficial subcutaneous adipose tissue
STAT	Signal transducers and activators of transcription
TBE	Tris-borate-EDTA
TCA	Tricarboxylic acid
TNF	Tumor necrosis factor
TSC	Tuberous sclerosis complex
U	Unit
UCP	Uncoupling protein
UV	Ultraviolet
pg	Picogram
V	Volt
V	Volume
W	Weight
W.W.	Wet weight
WHR	Waist-to-hip ratio
yr	Year

Acknowledgements

I am incredibly grateful to, first and foremost, my supervisors Professor Gary Wittert, Dr Andrew McAinch and Dr Alena Janovská. To Gary, I am forever indebted to his knowledge, patience and support throughout this candidature. I thank him for his assistance in helping me explore the world of research and guiding me along the pathway of a research career. To both Andrew and Alena, their knowledge and support are truly appreciated.

Thanks to George Hatzinikolas, Paul Cavuoto and Lisa Philp for their endless help in running studies and the constant availability for technical assistance. They made my life in the laboratory much easier and enjoyable.

Thanks are also due to the senior research fellows who have collaborated and assisted with the studies herein presented. In particular, thanks to Dr Philip Game for collecting tissue samples, Dr Grant Buchanan for the microarray analysis and Dr Damien Belobrajdic for performing the cytokine assays.

To Associate Professor Karen Jones, Dr Natalie Luscombe, Dr Diana Gentilcore and Dr Julie Stevens, I thank you for their support and advice during my years in the Department, especially in the last few months of my candidature.

Thank you to all the staff, postdoctoral fellows and students in the Discipline of Medicine for their help and friendship. Special thanks to Sue Rogers and Emily Wooldridge for fitting me in Gary's busy schedule. To Dr Jing Ma, Dr Paul Kuo, Lora Vanis, Radhika Seimon, Brydie Clarke and Niva Nair, I thank them for the countless laughs, jokes and, most importantly, the chocolates and cakes. I can never imagine an office can be that fun to be in.

Above all, to my family, friends and squash teammates Jackie, Bev and Noelle, I owe an enormous debt of gratitude for their understanding, patience and support for me to pursue a career and life that I aspire. Finally, thanks to Anne, who has been sharing all the ups and downs and every moment during this long journey.