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Abstract

In a microarray experiment, it is expected that there will be correlations between the ex-

pression levels of different genes under study. These correlation structures are of great

interest from both biological and statistical points of view. From a biological perspective,

the identification of correlation structures can lead to an understanding of genetic pathways

involving several genes, while the statistical interest, and the emphasis of this thesis, lies in

the development of statistical methods to identify such structures. However, the data arising

from microarray studies is typically very high-dimensional, with an order of magnitude more

genes being considered than there are samples of each gene. This leads to difficulties in

the estimation of the dependence structure of all genes under study. Graphical models and

Bayesian networks are often used in these situations, providing flexible frameworks in which

dependence structures for high-dimensional data sets can be considered.

The current methods for the estimation of dependence structures for high-dimensional data

sets typically assume the presence of independent and identically distributed samples of gene

expression values. However, often the data available will have a complex mean structure and

additional components of variance. Given such data, the application of methods that assume

independent and identically distributed samples may result in incorrect biological conclusions

being drawn. In this thesis, methods for the estimation of Bayesian networks for gene

expression data sets that contain additional complexities are developed and implemented.

The focus is on the development of score metrics that take account of these complexities

for use in conjunction with score-based methods for the estimation of Bayesian networks, in

particular the High-dimensional Bayesian Covariance Selection algorithm.

The necessary theory relating to Gaussian graphical models and Bayesian networks is re-

viewed, as are the methods currently available for the estimation of dependence structures

xi



for high-dimensional data sets consisting of independent and identically distributed samples.

Score metrics for the estimation of Bayesian networks when data sets are not independent

and identically distributed are then developed and explored, and the utility and necessity

of these metrics is demonstrated. Finally, the developed metrics are applied to a data set

consisting of samples of grape genes taken from several different vineyards.
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Chapter 1

Introduction

The inner workings of a cell are very complex, with many interacting components. Deter-

mining how the genes within a cell interact with one another is an important, and difficult,

field of research. Systems of these interactions are known as genetic regulatory networks.

The work comprising this thesis is motivated by the estimation of such networks.

Genes are composed of deoxyribonucleic acid (DNA), a structure consisting of two strands

made up of four types of nucleotide molecules. Much of the information stored in a DNA

molecule can be thought of as containing instructions for the construction of proteins. Pro-

teins are the molecules that make up a cell, and allow the cell to perform certain functions.

For example, in plants there exist proteins known as heat-shock proteins that protect the

cells of an organism from the consequences of heat stress. Proteins are synthesised, not di-

rectly from DNA, but from molecules known as messenger ribonucleic acid (mRNA), which

are derived from DNA via a process known as transcription. Proteins are then synthesised

from these mRNA molecules through a process known as translation.

If the DNA of a particular gene has been transcribed to mRNA, it is said that the gene is

expressed. Gene expression is the level of the transcription of the DNA of a gene to mRNA,

and provides an indication of which proteins are being formed within a cell.

The expression levels of genes within a sample of cells may be measured using microarray

experiments. These experiments allow the measurement of the expression levels of thousands

of genes in a sample of cells simultaneously. The details of such experiments are briefly

1



summarised below. For a more detailed description of microarray technology, the interested

reader is directed to [61]. In this thesis gene expression data sets obtained from single channel

short oligonucleotide microarrays, as used by Affymetrix, are considered.

A microarray consists of a slide on to which short gene sequences, known as probes, are

attached. A solution containing the mRNA present within a sample of cells is then washed

over the slide. If this sample contains mRNA that is complementary to a probe on the slide,

that mRNA will bind to the appropriate probe, in a process known as hybridisation. A

fluorescent dye is added, and after hybridisation, the slides are washed to remove any excess

genetic material.

The fluorescence of the probes is then measured by scanning the slide with a laser. The more

highly expressed a gene is within a sample, the greater the fluorescence of the corresponding

probe on the microarray slide. The raw measurements take the form of a digital image, which

requires pre-processing and normalisation before meaningful analyses can be conducted.

Pre-processing and normalisation is performed to remove systematic components of non-

biological variation from the data. It will be assumed that the normalised gene expression

values reflect the actual levels of expression in the genetic material.

Note that while microarray experiments can measure the expression levels of thousands of

genes simultaneously, the replication of these measurements is typically very low. Due to

the expense involved in the production of microarray slides, an experiment will typically

consist of fewer slides than there are genes of interest. Hence, the data sets obtained from

microarray experiments are typically very high-dimensional, with an order of magnitude

more genes being considered than there are samples of gene expression levels.

Within a genetic regulatory network, the expression levels of genes are controlled by the

expression levels of other genes. Typically, the expression level of a particular gene will

be influenced by the expression levels of a relatively small number of genes. There may

exist feedback loops within a genetic regulatory network, whereby the expression level of a

particular gene is regulated by itself.

The extent to which genetic regulatory networks may be inferred from observational gene

expression data is unknown. To explore this question carefully, high-dimensional multivariate

models, such as Bayesian networks and graphical models, need to be considered. Estimation

2



of such structures allows insight into how the expression levels of large groups of genes

are related to one another, which may, in turn, shed light on genetic regulatory networks

involving the genes. It is hoped that, in due course, the results of such analyses will aid the

work of biologists; indicating which aspects of genetic regulatory networks warrant further

biological investigation, and guiding experimentation.

The intended purpose of the estimation of Bayesian networks for gene expression data is to

discover novel regulatory networks. However, often the correlations between genes apparent

in observational gene expression data will be due to external factors, instead of due to some

regulatory association. For example, the expression levels of heat shock genes are known to

be affected by changes in temperature. Hence, if the effect of temperature is unaccounted

for in the analysis of the expression levels of heat shock genes, because of their common

relationships with temperature, many pairs of genes will exhibit strong correlations. Unless

the gross effect of temperature is removed, one cannot hope to detect more subtle associations

between genes.

There are many methods available for the estimation of graphical models and Bayesian

networks given gene expression data, or other high-dimensional data sets. The vast majority

of these methods do not allow the inclusion of external factors, assuming data sets that

consist of independent and identically distributed samples. The focus of this thesis is on

the development of methods for the estimation of Bayesian networks from high-dimensional

data sets that allow the inclusion of the effects of external factors, in the form of a complex

mean structure.

Chapter 2 consists of a review of the graph theory necessary for the remainder of the thesis.

The concept of conditional independence is reviewed, as are graphical models and Bayesian

networks. It is noted that the estimation of a Gaussian graphical model, or a Bayesian

network, which is then moralised, for a set of variables is equivalent to the estimation of the

covariance matrix of these variables. In Section 2.3, the representation of genetic regulatory

networks by graphical models and Bayesian networks is discussed.

In Chapter 3, many currently available methods for the estimation of Bayesian networks and

graphical models are reviewed. Of particular interest are the score-based methods for the

estimation of Bayesian networks given high-dimensional data, which are discussed in Section

3.1.1. Constraint-based methods for the estimation of Bayesian networks are briefly discussed

3



in Section 3.1.2, as are methods for the estimation of graphical models in Section 3.2. The

method used for the estimation of Bayesian networks in this thesis is High-dimensional

Bayesian Covariance Selection, [23, 25], a score-based method that is discussed in Section

3.3.

In Chapter 4, new score metrics for data sets that are not independent and identically dis-

tributed are developed. These score metrics can be used in conjunction with any score-based

method for the estimation of Bayesian networks. These score metrics are further explored

in Chapter 5. In Chapter 6, a novel score metric motivated by residual maximum likelihood

for use with samples that are not independent and identically distributed is developed.

In Chapter 7, the consequences of incorrectly assuming independent and identically dis-

tributed samples are illustrated through the estimation of Bayesian networks for data sets

with a complex mean structure. The utility of the methods developed in Chapters 4 and 6

in the estimation of Bayesian networks for data sets with a complex mean structure is then

demonstrated. The use of these methods is illustrated with the High-dimensional Bayesian

Covariance Selection algorithm.

Chapter 8 consists of the application of the methods developed in Chapters 4 and 6 to a real

gene expression data set. This data set consists of expression levels of grape genes known to

be affected by temperature, where grapes were sampled from three different vineyards, and

temperatures leading up to the times when the grapes were sampled. This data set does not

consist of independent and identically distributed samples. Initially, a Bayesian network is

estimated assuming independent and identically distributed samples. This Bayesian network

is compared to those obtained when the complex mean structure of the data set is accounted

for through the use of the methods developed in Chapters 4 and 6.

Finally, the results of the thesis are summarised in Chapter 9, and future research is discussed.
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Chapter 2

Graph Theory and Graphical

Modelling

In this chapter, the necessary graph theory will be reviewed, graphical models and Bayesian

networks will be defined, and the application of such models to the analysis of gene expression

data will be explained.

2.1 Required Graph Theory

In this section, the graph theory required for the remainder of the work is stated. Readers

interested in a more detailed account of graph theory are directed to [50].

A graph is a pair, G = (V,E), where V = {v1, v2, . . . , vn} is a finite set of elements known

as vertices, and E ⊆ {(vi, vj)|vi, vj ∈ V, i �= j}, is the edge set. Note that pairs in the edge

set are ordered, so that (vi, vj) �= (vj, vi).

We will write i for vi ∈ V , and (i, j) for (vi, vj) ∈ E.

Consider a graph G = (V,E), and i, j ∈ V . If (i, j) and (j, i) are both in E, the edge between

i and j is said to be undirected, and in the diagram of the graph, a line is drawn between

the two vertices. If (i, j) ∈ E and (j, i) /∈ E, there is said to be a directed edge from i to j,

and in the diagram an arrow is drawn from i to j. An undirected graph is a graph with only

undirected edges, while a directed graph has only directed edges. In what follows, graphs
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with both directed and undirected edges will not be considered.

If there is an undirected edge between two vertices i and j then i and j are said to be

adjacent. The set of nodes adjacent to node i is said to be the neighbourhood of i, written

Ni. The degree of a vertex is the number of nodes it is adjacent to.

If it is clear that an undirected graph is being considered, the edges of a graph will be taken

to be unordered pairs in V × V .

If A ⊂ V , a subgraph GA = (A,EA) may be induced by taking EA = E ∩ (A×A). In plainer

terms, the edges of the induced graph GA are the edges of the original graph G that link

vertices contained in A.

A graph is said to be complete if there are edges between all the vertices of that graph. A

subset of the vertex set is said to be complete if it induces a complete subgraph. A clique

is a complete subset that is maximal with respect to inclusion. That is, A ⊆ V is a clique

if the subgraph induced by A is complete, but the subgraph induced by A ∪ {i}, for any

i ∈ V \ A, is not complete.

A path of length m from i to j is a sequence of distinct vertices i = v0, . . . , vm = j such

that (vk−1, vk) ∈ E ∀k = 1, . . . ,m. If there exists a path from i to j, it is said that i leads

to j, written i � j. If i � j and j � i, it is said that the two vertices are connected,

written i � j. Note that in an undirected graph, i � j ⇐⇒ j � i. It can be seen

that � is an equivalence relation on the vertex set of a graph, with equivalence classes [i]:

j ∈ [i] ⇐⇒ i� j. The equivalence classes of a graph, so defined, are called the connectivity

components of G.

A path i = v0, . . . , vm = i, m > 1, is called a cycle.

A directed acyclic graph, often abbreviated as DAG, is a directed graph containing no cycles.

Consider i, j ∈ V . If (i, j) ∈ E, i is said to be the parent of j, and j the child of i. The set

of parents of a vertex i is denoted by Pi, the set of children by Ci.

If there is a path such that k � i, but no path such that i� k, k is said to be an ancestor

of i. The set of all ancestors of i is written Ai. The descendants of a vertex i, written Di, is

the set of vertices k such that i� k and k �� i. The non-descendants of a vertex i, written

NDi, consist of the vertices in V \ {Di ∪ {i}}.
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Consider now a set of vertices, A. The boundary of this set of vertices, BDA, is the set of

vertices in V \ A that are adjacent to or parents of any of the vertices in A. The closure of

A, denoted by CLA, is A ∪ BDA.

An (i, j)-separator is a set C ⊂ V such that all paths from i to j intersect C. In an

undirected graph, the notion can be expressed in terms of connectivity components: C is an

(i, j)-separator ⇔ [i]V \C �= [j]V \C . The subset C is said to separate A from B, A,B ⊆ V , if

it is an (i, j)-separator ∀ i ∈ A, j ∈ B.

The skeleton of a directed graph is the undirected graph obtained by replacing all directed

edges with undirected edges.

The moral graph, Gm, of a directed graph G is the undirected graph with the same vertex

set as G but with i and j adjacent in Gm if and only if (i, j) ∈ V or (j, i) ∈ V or if i and j

share a child. In the anachronistically named moral graph, all parents are “married”; that

is, joined by an edge. If no edges have to be added to the directed graph to form the moral

graph, the directed graph is said to be perfect.

1 2

3 4

5

Figure 2.1: An undirected graph, discussed in Example 2.1

Example 2.1. An example of an undirected graph.

Consider the undirected graph G depicted in Figure 2.1. Here, V = {1, 2, 3, 4, 5} and E =

{(1, 3), (1, 4), (2, 4), (3, 5), (4, 5)}. This graph is represented in Figure 2.1. The boundary

and closure sets of each vertex can be found: for example, BD1 = {3, 4}, so CL1 = {1, 3, 4}.
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1 2

3 4

5

1 2

3 4

5

Figure 2.2: The graphs discussed in Example 2.2. On the left is an example of a directed

acyclic graph, and on the right the moral graph.

Separators can also be found: {3, 4} is a (1, 5)-separator. The graph can be seen to contain

a cycle of length 4.

Example 2.2. An example of a directed graph.

The graph in Figure 2.2 has the same vertex and edge sets as in Example 2.1, however, the

edge set now contains ordered pairs. The graph is acyclic and parent and child sets of each

vertex can be found. For example, P4 = {1, 2} and C4 = {5}. Similarly, A4 = {1, 2}, D4 =

{5}, ND4 = {1, 2, 3}. The corresponding moral graph is also shown in this figure, and the

skeleton is given in Figure 2.1.

2.2 Graphical Models

In what follows, the emphasis is upon continuous random variables. For a review of graphical

models for discrete random variables, or graphical models for both discrete and continuous

random variables, the reader is directed to [13, 27, 50, 89].
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2.2.1 Conditional Independence

The notion of the conditional independence of random variables is central to graphical mod-

elling [13, 27, 50, 89]. A general discussion of conditional independence in statistics is given

by [17]. It will be shown that graphs are well-suited for the representation of the conditional

independence relationships of a set of random variables.

Definition 2.1. Consider continuous random variables X, Y and Z. X is said to be con-

ditionally independent of Y given Z, written X ⊥⊥ Y |Z, if and only if the joint density

function satisfies

fXY Z(x, y, z) = g(x, z)h(y, z),

for some functions g and h. Note that this definition holds in the case that X, Y and Z are

continuous random vectors.

The following properties of conditional independence can be shown to hold, for any measur-

able function k:

(C1) X ⊥⊥ Y |Z =⇒ Y ⊥⊥ X|Z;

(C2) X ⊥⊥ Y |Z =⇒ k(X) ⊥⊥ Y |Z;

(C3) X ⊥⊥ Y |Z =⇒ X ⊥⊥ Y |(Z, k(X));

(C4) X ⊥⊥ Y |Z and X ⊥⊥ W |(Y, Z) =⇒ X ⊥⊥ (W,Y )|Z.

See [17] for proofs of these properties.

2.2.2 Markov Properties

The Markov properties described in this section are the ties that bind conditional indepen-

dence relationships to graph theory. It is these Markov properties that allow conditional

independence relationships to be read directly off of graphs.

For a more in-depth analysis of the Markov properties of graphs, the interested reader is

referred to Chapter 3 in [50], from which much of the present section is derived.
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Definition 2.2. Consider a set of random variables {X1, X2, . . . , Xn}. An undirected graph

G = (V,E) associated with this set of random variables has V = {1, 2, . . . , n}, and E a subset

of unordered pairs from V × V .

Let A, B and C be subsets of {1, 2, . . . , n}. In what follows, if XA ⊥⊥ XB|XC , we will write

A ⊥⊥ B|C.

There are three Markov properties that may hold with respect to such graphs:

(P ) the Pairwise Markov property holds if, for any i and j such that (i, j) /∈ E,

i ⊥⊥ j|V \ {i, j};

(L) the Local Markov property holds if, for any i ∈ V ,

i ⊥⊥ V \ CLi|BDi;

(G) the Global Markov property holds if, for S separating A and B,

A ⊥⊥ B|S.

It appears that (G) is the most powerful of these properties, and this is proven in the following

theorem.

Theorem 2.1. (Markov Implication) For any set of random variables {X1, X2, . . . , Xn}
with associated undirected graph G,

(G) =⇒ (L) =⇒ (P ).

Proof. (G) =⇒ (L): Since for any i ∈ V , BDi separates CLi and V \CLi, this implication

is proved.

(L) =⇒ (P ): Consider i, j ∈ V with (i, j) /∈ E. Then j ∈ V \ CLi. Hence, BDi ∪
{(V \ CLi) \ {j}} = V \ {i, j}, so (L) and (C3) imply that i ⊥⊥ V \ CLi|V \ {i, j}.
Symmetry of conditional independence and (C2) now imply that i ⊥⊥ j|V \ {i, j}.
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A much stronger result holds when the random variables have a positive probability density

function:

Theorem 2.2. (Equivalence of Markov Properties) If a set of continuous random

variables {X1, X2, . . . , Xn} have a positive probability density function, with associated graph

G, then
(G) ⇐⇒ (L) ⇐⇒ (P ).

Proof. This proof is adapted from [50]. Proof will be done in two separate parts: First, it

will be shown for A,B,C,D disjoint subsets of V = {1, 2, . . . , n},

A ⊥⊥ B|(C ∪D) and A ⊥⊥ C|(B ∪D) =⇒ A ⊥⊥ (B ∪ C)|D. (2.1)

Then it will be shown that Equation (2.1) implies the equivalence of the Markov properties.

Assume that A ⊥⊥ B|(C ∪D) and A ⊥⊥ C|(B ∪D). Then, by the definition of conditional

independence,

fXA,XB ,XC ,XD
(xA, xB, xC , xD) = k(xA, xC , xD)l(xB, xC , xD)

= g(xA, xB, xD)h(xB, xC , xD),

where k, l,m and n are strictly positive. Since the density function is continuous,

g(xA, xB, xD) =
k(xA, xC , xD)l(xB, xC , xD)

h(xB, xC , xD)
.

Setting xC = xC0 , g(xA, xB, xD) = m(xA, xD)n(xB, xD), where

m(xA, xD) = k(xA, xC0 , xD)

n(xB, xD) =
l(xB, xC0 , xD)

h(xB, xC0 , xD)
.

This implies that

fXA,XB ,XC ,XD
(xA, xB, xC , xD) = m(xA, xD)n(xB, xD)h(xB, xC , xD)

= m(xA, xD)h
∗(xB, xC , xD),

which, by the definition of conditional independence, implies that A ⊥⊥ (B ∪ C)|D.
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To now show that Equation (2.1) implies the equivalence of the 3 Markov properties, all that

is required is a proof that (P ) =⇒ (G).

Suppose now that C separates A and B in the associated graph of {X1, X2, . . . , Xn}. The

proof is by backwards induction on |C|.

• If |C| = |V | − 2, then A and B each contain only one vertex, and (G) follows immedi-

ately from (P ).

• Let |C| < |V | − 2, and suppose that (P ) =⇒ (G) for all separating sets with more

elements. There are then 2 possibilities:

– A∪B ∪C = V . In this case, without loss of generality, it can be assumed that A

has more than one element. If i ∈ A, then C ∪ {i} separates A \ {i} and B, and

C ∪ A \ {i} separates {i} and B. The induction hypothesis implies

A \ {i} ⊥⊥ B|C ∪ {i} and i ⊥⊥ B|C ∪ A \ {i}.

Equation (2.1) then implies that B ⊥⊥ A|C, as required.

– A ∪ B ∪ C ⊂ V . Choose i ∈ V \ {A ∪ B ∪ C}. Then C ∪ {i} separates A and

B, and, by the induction hypothesis, A ⊥⊥ B|C ∪ {i}. Without loss of generality,

this implies that A ∪C separates B from {i}. The following diagram depicts the

situation. Note that the dashed lines from i indicate the only places where there

may be an edge from i.

A C B

i

The induction hypothesis then implies i ⊥⊥ B|A∪C. Applying Equation (2.1) to

the previous two conditional independence relations then implies A∪{i} ⊥⊥ B|C.

(C2) then implies that A ⊥⊥ B|C.
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Example 2.3. The Markov Properties

Consider a random vector X = (X1, X2, X3, X4, X5). Suppose that associated with this

random vector is the undirected graph in Figure 2.1. Further, suppose that (G) holds with

respect to this graph. Then, by Theorem 2.1, all of the Markov properties hold. It can be

seen that since {3, 4} separates 1 and 5, (G) =⇒ 1 ⊥⊥ 5|{3, 4}. Further, since BD1 = {3, 4}
and CL1 = {1, 3, 4}, (L) =⇒ 1 ⊥⊥ {2, 5}|{3, 4}.

The definition of conditional independence implies a factorisation of the probability density

function of interest. Similarly, there is a definition of factorisation of a probability density

function over a graph:

Definition 2.3. If the probability density function f(x) of a random vector with associated

graph G can be written as

(F ) f(x) =
∏

A a complete subgraph of G hA(x),

then f is said to factorise with respect to G, and is said to have property (F ).

This property can be shown to be equivalent to the above Markov properties under certain

conditions:

Theorem 2.3. If a set of random variables {X1, X2, . . . , Xn} has a positive and continuous

probability density function, with associated graph G, then

(F ) ⇐⇒ (G) ⇐⇒ (L) ⇐⇒ (P ).

The interested reader is directed to [50] for a proof of this theorem.

2.2.3 Independence Graphs

Definition 2.4. Consider a random vector X = (X1, X2, . . . , Xn). The independence graph,

also known as the concentration graph [13], associated with this random vector is the graph

G = (V,E), V = {1, 2, . . . , n}, and (i, j) ∈ E if and only if {i} �⊥⊥ {j}|V \ {i, j}. That is, if

{i} ⊥⊥ {j}|V \ {i, j}, then (i, j) /∈ E.
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Note that since X ⊥⊥ Y |Z ⇐⇒ Y ⊥⊥ X|Z, independence graphs are, by definition,

undirected. Note also, that by definition, (P ) holds for all independence graphs. Hence, if

X = (X1, X2, . . . , Xn) has a positive and continuous probability function, all of the Markov

properties hold.

Example 2.4. An independence graph.

Consider a random vector X = (X1, X2, X3, X4, X5). Let V = {1, 2, 3, 4, 5} and suppose the

following conditional independence relationships hold:

• 1 ⊥⊥ 5|V \ {1, 5}

• 2 ⊥⊥ 3|V \ {2, 3}

• 2 ⊥⊥ 5|V \ {2, 5}

Then the independence graph associated with this random vector is the undirected graph in

Figure 2.2.

2.2.4 Gaussian Graphical Models

First, definitions of the multivariate normal distribution and graphical models are given.

Definition 2.5. A random vector X = (X1, X2, . . . , Xn) is said to have an n-dimensional

multivariate normal distribution with mean μ and variance matrix Σ, written X ∼ Nn(μ,Σ),

if it has density function

f(x) = (2π)−
n
2 |Σ|− 1

2 exp

{
−1

2
(x− μ)TΣ−1(x− μ)

}
.

Ω = Σ−1 is called the precision or concentration matrix of the random vector.

Definition 2.6. A graphical model for a random vector X = (X1, X2, . . . , Xn), with as-

sociated independence graph G, is a probability distribution that satisfies (P ) with respect

to this graph. Hence, a Gaussian graphical model for a random vector with an associated

independence graph is simply a multivariate normal distribution that satisfies the required

conditional independence relations.
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Gaussian graphical models are often called covariance selection models, a term first coined

by Dempster [21], or concentration graphs. The reason for the nomenclature is clarified

through the following theorem.

Theorem 2.4. Let X = (X1, X2, . . . , Xn) have a multivariate normal distribution, X ∼
Nn(μ,Σ), with concentration matrix Ω. Then there is no edge between the nodes i and j,

i, j ∈ {1, 2, . . . , n}, i �= j, in the independence graph associated with X if and only if ωij, the

(i, j)th element of Ω, is equal to zero.

Proof. By definition, there is no edge between i and j in the independence graph associated

with X if and only if i ⊥⊥ j|V \{i, j}. So we need to show that i ⊥⊥ j|V \{i, j} ⇐⇒ ωij = 0.

Without loss of generality, take μ = 0, and consider the joint distribution:

f(x) = (2π)−
n
2 |Ω| 12 exp

{
−1

2
xTΩx

}

∝
n∏

k=1

exp
(−ωkkx

2
k

) ∏
k<l

exp (−ωklxkxl)

∝ e−ωijxixj exp

⎧⎨
⎩−ωiix

2
i −

∑
k∈V \{i,j}

ωkixkxi

⎫⎬
⎭ exp

⎧⎨
⎩−ωjjx

2
j −

∑
k∈V \{i,j}

ωkjxkxj

⎫⎬
⎭

×
∏

k∈V \{i,j}
e−ωkkx

2
k

∏
k∈V \{i,j},k<l

e−ωklxkxl

∝ e−ωijxixjg(xi, xV \{i,j})h(xj, xV \{i,j}),

hence,

f(x) = g(xi, xV \{i,j})h(xj, xV \{i,j}) ⇐⇒ ωij = 0.

Theorem 2.4 implies that Gaussian graphical models are very easy to work with, as an

edge between two vertices can be removed simply by setting the corresponding entry in the

concentration matrix to 0 and matching the covariances in all other positions as well as the

variances to the observed values.
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Example 2.5. Theorem 2.4 and Gaussian graphical models

Consider a Gaussian graphical model for the vectorX = (X1, X2, X3, X4, X5) with associated

independence graph given in Figure 2.1. By Theorem 2.4 the concentration matrix of this

Gaussian graphical model has the following form:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω11 0 ω13 ω14 0

0 ω22 0 ω24 0

ω31 0 ω33 0 ω35

ω41 ω42 0 ω44 ω45

0 0 ω53 ω54 ω55

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Similarly, a normal random vector Y = (Y1, Y2, Y3, Y4, Y5) with concentration matrix⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω11 ω12 ω13 0 0

ω21 ω22 ω23 0 0

ω31 ω32 ω33 ω34 ω35

0 0 ω43 ω44 ω45

0 0 ω53 ω54 ω55

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

has an associated independence graph given by:

1

2

3

4

5

2.2.5 Directed Markov Properties

Consider a vector of random variables X = (X1, X2, . . . , Xn) with joint probability distri-

bution f(x), and an associated directed acyclic graph G = (V = {1, 2, . . . , n}, E). If

f(x) =
n∏

i=1

fi|Pi
(xi|xPi

),
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where Pi is the set of the parents of i in G, then it is said that a recursive factorisation

according to G is admitted, and it is said that (DF ) holds. Note that for variables Xj with

Pj = ∅, fj|Pj
(xj|xPj

) = fj(xj).

Theorem 2.5. If f(x) factorises recursively according to the directed acyclic graph G, then
f(x) will factorise according to Gm.

Proof. Moralisation of a graph G results in the completeness of the sets {i} ∪ Pi in Gm.

Therefore, one can take ψ{i}∪Pi
= fi|Pi

, proving the theorem.

As there were three Markov properties that could hold with respect to undirected graphs,

so there are three Markov properties that may hold with respect to directed acyclic graphs:

(DP ) the Directed Pairwise Markov property holds if for any i, j ∈ V that are non-adjacent,

with j ∈ NDi,

i ⊥⊥ j|NDi \ {j};

(DL) the Directed Local Markov property holds if for any i ∈ V ,

i ⊥⊥ NDi|Pi;

(DG) the Directed Global Markov property holds if, for S,A,B ⊂ V , S separating A and

B in (GAA∪B∪S
)m,

A ⊥⊥ B|S.

The following theorem is the directed analogue of Theorem 2.3.

Theorem 2.6. Consider a directed acyclic graph G, with a given density function. Then

(DF ) ⇐⇒ (DL) ⇐⇒ (DG).

The proof is omitted, and the interested reader is referred to [50].

Together, Theorems 2.5 and 2.6 show how the Markov properties of directed and undirected

graphs relate to one another: for all but the directed Pairwise Markov property, if a directed

Markov property holds for a directed graph with a positive and continuous density function,

the corresponding Markov property will hold for the moralised version of that graph.
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2.2.6 Equivalence of Directed Acyclic Graphs

Definition 2.7. Two directed acyclic graphs are said to be Markov Equivalent if they encode

the same conditional independence constraints.

From this point, we will take equivalent to mean Markov equivalent.

For example, consider the following three directed acyclic graphs:

X1 X2 X3

X1 X2 X3

X1 X2 X3

The only conditional independence relationship that each of these graphs represent is that

X1 ⊥⊥ X3|X2. Hence, these graphs are examples of equivalent graphs.

Before equivalent graphs can be characterised, a definition is required.

Definition 2.8. A directed acyclic graph G = (V,E) is said to contain a v-structure if, for

some i, j, k ∈ V , (i, j) ∈ E and (k, j) ∈ E, but (i, k) /∈ E and (k, i) /∈ E. That is, G has a

v-structure if there exists a subgraph of G of the following form:

i

j

k

The following theorem, due to Verma and Pearl [85], characterises equivalent graphs.

Theorem 2.7. Two directed acyclic graphs are equivalent if they have the same skeleton,

and the same v-structures.
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See [85] for the proof of this theorem.

The following theorem, due to Chickering [8], shows that edge reversals are all that is required

to move through an equivalence class of directed acyclic graphs:

Theorem 2.8. Let G and G ′ be any pair of equivalent directed acylic graphs, and let Δ(G,G ′)
be the set of edges in G that have opposite orientation in G ′. Then there exists a sequence of

|Δ(G,G ′)| distinct edge reversals in G with the following properties:

1. Each edge (i, j) reversed in G is such that Pj = Pi ∪ {i};

2. After each edge reversal G is a directed acyclic graph, equivalent to G ′;

such that after all edge reversals, G = G ′.

See [8] for a proof.

2.2.7 Bayesian Networks

Bayesian networks, first introduced by Pearl in [63], much like graphical models, provide

a representation of a joint probability distribution and exploit conditional independence

relations in a similar way.

Definition 2.9. A Bayesian network B = (G,Θ) for a random vector X = (X1, X2, . . . , Xn)

and Θ = (θ1, θ2, . . . , θn) consists of two components:

• a directed acyclic graph G = (V,E), with V = {1, 2, . . . , n},

• conditional distributions for each random variable, f(xj|xPj
, θj), where Pj is the set of

parents of Xj in G, and θj are the parameters associated with the distributions.

The graph and the conditional distributions specify a joint distribution for X:

f(x|Θ) =
n∏

j=1

f(xj|xPj
, θj).
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By definition, a Bayesian network obeys (DF ), and so by Theorem 2.6, also obeys (DL) and

(DG).

Note that due to the acyclic nature of Bayesian networks, each network has associated with

it at least one ordering of the variables, denoted by Ord(X), such that there may only be

a directed edge from i to j if j occurs after i in the ordering. That is, a node j will occur

after its parents Pj in the ordering.

Example 2.6. A Bayesian network

Suppose that the Bayesian network for random vector X = (X1, X2, X3, X4, X5) has the

directed acyclic graph in Figure 2.2 and the required conditional distributions. Hence, the

joint distribution is given by

f(x) = f(x1)f(x2)f(x3|x1)f(x4|x1, x2)f(x5|x3, x4).

There are many orderings of the variables that are consistent with this Bayesian network.

For example, {5, 4, 3, 2, 1} and {5, 3, 4, 1, 2} are both consistent orderings.

2.2.8 Linear Recursive Equations

As a consequence of their definition, Bayesian networks may be used for the representation

of the relationships of a set of variables in a system of linear recursive equations, a fact

first shown by Wermuth [88]. By a system of linear recursive equations, we mean, for the

purposes of this work, a set of equations involving random variables X = (X1, X2, . . . , Xn)
T ,

ordered such that

X1 = γ12X2 + γ13X3 + . . .+ γ1kXk + γ1,k+1Xk+1 + . . .+ γ1nXn + ε1

X2 = γ23X3 + . . .+ γ2kXk + γ2,k+1Xk+1 + . . .+ γ2nXn + ε2
...

Xk = γk,k+1Xk+1 + . . .+ γknXn + εk
...

Xn−1 = γn−1,nXn + εn−1

Xn = εn,
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where εi ∼ N(0, ψi) ∀i = 1, 2, . . . , n independently. If none of the γij are set equal to zero,

the system is called complete, while if some of the γij are restricted to zero, the system is

called incomplete.

Note that this system of equations can be written as

X = ΓX + ε, (2.2)

where ε = (ε1, ε2, . . . , εn)
T , ε ∼ N(0,Ψ), Ψ = diag(ψ1, ψ2, . . . , ψn), and Γ is an upper

triangular matrix:

Γ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 γ12 γ13 · · · γ1k γ1,k+1 · · · γ1n

0 0 γ23 · · · γ2k γ2,k+1 · · · γ2n
...

0 0 0 · · · 0 γk,k+1 · · · γkn
...

0 0 0 · · · 0 0 · · · γn−1,n

0 0 0 · · · 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Due to the triangular nature of the system, the joint probability density function of X can

be written as

f(x) = f(x1|x2, . . . , xn)f(x2|x3, . . . , xn) · · · f(xk|xk+1, . . . , xn) · · · f(xn−1|xn)f(xn). (2.3)

A Bayesian network over X then consists of a directed acyclic graph G = (V,E), where

V = {1, 2, . . . , n}, with (i, j) ∈ E if and only if γji �= 0, and the conditional distributions

given in Equation (2.3).

Example 2.7. Linear recursive system

Consider the following complete linear recursive system of equations:

X1 = γ12X2 + γ13X3 + γ14X4 + ε1

X2 = γ23X3 + γ24X4 + ε2

X3 = γ34X4 + ε3

X4 = ε4.

This system then has the following directed acyclic graph:
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1 2

3 4

which has a complete moral graph.

Note that the moral graph of the directed acyclic graph associated with a complete system

of recursive equations will always be complete, while the moral graph associated with an

incomplete system of equations will not always be incomplete.

Just as a Gaussian system of recursive linear equations can be associated with a directed

acyclic graph, any directed acyclic graph may be associated with a system of linear equations:

if (i, j) ∈ E, then Xi will occur in the regression of Xj.

For example, the system of linear equations associated with the directed acyclic graph in

Figure 2.2 is

X5 = γ53X3 + γ54X4 + ε5

X4 = γ41X1 + γ42X2 + ε4

X3 = γ31X1 + ε3

X2 = ε2

X1 = ε1.
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It should be noted that the definition of a system of linear recursive equations can be gener-

alised to include random variables Z = (Z1, Z2, . . . , Zm)
T that the random variables X may

depend upon:

X1 = γ12X2 + γ13X3 + . . .+ γ1kXk + γ1,k+1Xk+1 + . . .+ γ1nXn + λ11Z1 + . . .+ λm1Zm + ε1

X2 = γ23X3 + . . .+ γ2kXk + γ2,k+1Xk+1 + . . .+ γ2nXn + λ12Z1 + . . .+ λm2Zm + ε2
...

Xk = γk,k+1Xk+1 + . . .+ γknXn + λ1kZ1 + . . .+ λmkZm + εk
...

Xn−1 = γn−1,nXn + λ1,n−1Z1 + . . .+ λm,n−1Zm + εn−1

Xn = λ1nZ1 + . . .+ λmnZm + εn,

(2.4)

εi ∼ N(0, ψi) ∀i = 1, 2, . . . , n. Such variables Z are termed exogeneous: their effect on the

system of linear recursive equations may be thought of as lying on the surface, influencing

the random variables X, without adding any additional structure to the system.

This generalised system can be written as

X = ΓX + ΛZ + ε, (2.5)

where Γ and ε are as in Equation (2.2), and

Λ =

⎛
⎜⎜⎜⎜⎜⎝

λ11 λ21 · · · λm1

λ12 λ22 · · · λm2

...

λ1n λ2n · · · λmn

⎞
⎟⎟⎟⎟⎟⎠ .

2.3 Using Gaussian Graphical Models and Bayesian

Networks to Model Genetic Regulatory Networks

Gene expression, as described briefly in Chapter 1, is a complex process, and the extent

to which genes are expressed within a cell depend upon the extent to which certain other

genes are expressed within that cell. If changes in the expression level of a particular gene
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cause changes in the expression level of another gene, the first gene is said to regulate the

second. Of course, regulatory interactions are typically very complex, involving many genes.

Systems of regulatory interactions are known as genetic regulatory networks, and knowledge

of these genetic regulatory networks is essential if we wish to understand the functions of

genes.

Knowledge of genetic regulatory networks typically arises from the analysis of gene expres-

sion data obtained from microarray experiments. The focus here is on observational gene

expression data. Data obtained through experimental intervention, such as that obtained

from perturbation experiments, which are discussed in [42], is not considered.

Gaussian graphical models and Bayesian networks provide tools for the representation of ge-

netic regulatory networks that are able to cope with the noisy gene expression data obtained

from microarray experiments. In both cases, noise is accounted for through the assumption

of a normally distributed error structure for the log-scale gene expression data.

When used to model genetic regulatory networks, Gaussian graphical models and Bayesian

networks examine conditional independence relationships of the genes being considered. For

example, consider gene expression data for p genes, and let Xi represent the expression level

of gene i. If Xi ⊥⊥ Xj|Xk, k ⊆ {1, 2, . . . , p} \ {i, j}, then given the expression levels of genes

k, the expression level of gene i does not affect the expression level of gene j.

In a graphical model of a genetic regulatory network on these p genes, the expression level of

gene i is conditionally independent of the expression level of gene j given all remaining genes

if and only if there is no edge between Xi and Xj in the associated independence graph.

In a Bayesian network representation of a genetic regulatory network, the expression level

of gene i is conditionally independent of the expression level of gene j given the expression

levels of all remaining genes if and only if there is no edge between Xi and Xj in the moral

graph of the directed acyclic graph of the Bayesian network. Gaussian graphical models and

Bayesian networks are useful in the analysis of genetic regulatory networks because these

conditional independence relationships allow genetic regulatory networks to be discussed in

terms of locally interacting genes.

There are limitations to the use of Bayesian networks or Gaussian graphical models in

modelling genetic regulatory networks. Bayesian networks are, by definition, acyclic, so that
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feedback relationships, known to occur in biological networks, may not be modelled when

Bayesian networks are used. Dynamic Bayesian networks, which are not further discussed

here, have been used, for example by Husmeier [41], in an attempt to allow the modelling of

such biological structure using the language of Bayesian networks.

Both techniques assume that expression levels of different genes are linearly related. There do

exist techniques that allow for more complicated relationships between genes. For example,

the use of differential equations in the modelling of genetic regulatory networks, as reviewed

in [19], allows for the description of non-linear relationships between the expression levels of

genes.

For a review of the use of graph-based methods for the modelling of genetic regulatory

networks, see [56]. For a review of several methods for the modelling of genetic regulatory

networks, the interested reader is directed to [19].

Methods for the estimation of Gaussian graphical model and Bayesian network representa-

tions of genetic regulatory networks given observational gene expression data are described

in the next chapter.
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Chapter 3

Estimating Graphs for Gene

Expression Data

Consider a gene expression data set produced by a microarray experiment, in which the

expression levels of p genes are recorded for n samples. Note that the emphasis here is on

pre-processed, normalised gene expression values: it is assumed that systematic sources of

bias and error have been removed from the data. If X = (X1, X2, . . . , Xp) is a vector of

log-scale expression levels for the p genes of interest, in what follows it is supposed that

X ∼ Np(0,Σ), with Ω = Σ−1. Given a complete data set d = {x1,x2, . . . ,xn}, consisting of

n independent samples of X, the interest, for the purposes of this work, lies in the estimation

of the underlying dependence structure of all p genes, Σ. This is difficult, since, for gene

expression data, p is typically much larger than n.

By Theorem 2.4, the problem of estimating a Gaussian covariance matrix Σ, subject to

zero constraints on off-diagonal elements of its inverse, is equivalent to the estimation of a

graphical model for the gene expression data. There are two slightly different approaches to

this problem: the first involves the estimation of a Bayesian network for the genes, while the

second estimates the dependence structure of the genes using a Gaussian graphical model

framework. Within each of these approaches there are several methods for the estimation of

the structure, many of which are briefly reviewed below.

This problem is a rich area of research, and, as such, old techniques are constantly being

improved, and new techniques are constantly being developed. An overview of the area is
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presented, with emphasis on score-based methods for the estimation of Bayesian networks.

Note that the method of particular interest herein is High-dimensional Bayesian Covariance

Selection ([23, 25]) which exploits the links between Gaussian graphical models and Bayesian

networks, and takes a score-based approach.

3.1 The Bayesian Network Approach

Bayesian networks are a popular tool for the analysis of gene expression data. Techniques

for the estimation of such structures for high-dimensional data abound, with any new issue

of Machine Learning or the Journal of Machine Learning Research containing new methods.

Hence, there are a number of different approaches to the estimation of a Bayesian network

for a given set of data. Following [75, 83], the methods can be grouped into two main

categories: score-based methods, and constraint-based methods. Score-based methods at-

tempt to maximise some score metric associated with the estimated Bayesian network, while

constraint-based methods estimate conditional independence relationships directly from the

data. These constraint-based methods are similar to the methods for the estimation of Gaus-

sian graphical models, as they often involve the estimation of an undirected graph, which is

then directed.

Recall the definition of a Bayesian network, given in Section 2.2.7. It can be seen that

finding such a Bayesian network for a given set of genes is equivalent to the discovery of sets

of parents for each gene and an ordering of the genes, such that gene i may be a parent of

gene j if and only if i occurs after j in the ordering. Further, as described in Section 2.2.7,

the ordering and the parent sets imply the conditional independence relationships of the

genes. The aim is to find a Bayesian network, or a set of Bayesian networks, that describe

the data well.

It has been shown [67] that the number of directed acyclic graphs on p vertices is

bp =

p∑
i=1

(−1)i+1

⎛
⎝p

i

⎞
⎠ 2i(p−i)bp−i,

where p > 0 and b0 = 1. Using this equation, it can be shown that the number of directed

acyclic graphs on p vertices increases exponentially: for example, there are 3 possible directed
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acyclic graphs on 2 vertices, 25 on 3 vertices, 543 on 4 vertices and 29281 on 5 vertices. It

has also been shown that the problem of finding a Bayesian network that maximises a given

score metric is NP-hard [10]. These difficulties, coupled with the high-dimensional nature of

gene expression data, mean that the best an algorithm for finding a Bayesian network can

be hoped to do is explore a small part of the space of possible Bayesian networks for the

data, and find networks that describe the data well relative to those explored.

In our approach to finding Bayesian networks, it is assumed that the expression levels of

each gene depend upon the expression levels of their parent genes in a linear fashion:

Xi =
∑
j∈Pi

γijXj + εi, εi ∼ N(0, ψi), ∀i ∈ {1, 2, . . . , p}, (3.1)

where an ordering may be imposed upon the genes such that this set of equations forms a

system of linear recursive equations. Without loss of generality, the ordering is taken to be

such that this system of linear recursive equations can be written in the following structural

form:

X = ΓX + ε, ε ∼ N(0,Ψ) (3.2)

where X, ε, Ψ and Γ are as in Equation (2.2), with γij = 0 if and only if j /∈ Pi.

Hence, the Bayesian network B = (G,Θ) that we wish to find has the directed acyclic graph

G with edges (j, i) such that j ∈ Pi, and Θ = ∪p
i=1{γi, ψi}, where γi = (γij)

T
j∈Pi

.

In general, Bayesian networks are used merely as a tool for the discovery of a genetic struc-

ture: directed edges do not necessarily imply causal relationships. The estimation of such

relationships would require extensive experimentation, while herein the emphasis is upon

observational gene expression data.

3.1.1 Score-Based Methods

Using a score-based approach, how well a given Bayesian network B describes the data is

determined through the calculation of the score of this network given the data: S(B|d). Note
that in general this score metric is not the familiar score statistic of likelihood theory: ∂�(θ)

∂θ
.

In the techniques described below, the score metric is typically taken to be proportional to
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the posterior probability of the network:

S(B|d) = p(d|B)p(B), (3.3)

although there do exist other scores: for example, the Bayesian Information Criterion may

be used [29].

Since the emphasis herein is on observational gene expression data, it is difficult to ap-

ply notions such as causation to the Bayesian networks found for the data. Instead, the

Bayesian networks found for gene expression data sets are interpreted as encoding condi-

tional independence relationships between genes. As such, Bayesian networks that encode

the same conditional independence relationships should not be discriminated between. This

notion, known as score equivalence, [9], implies that if B and B′ are Bayesian networks with

equivalent directed acyclic graphs, as defined in Section 2.2.6, then

S(B|d) = S(B′|d). (3.4)

In what follows, score metrics that satisfy the notion of score equivalence are constructed.

From the definition of the score metric in Equation (3.3), the score metrics considered herein

consist of two components: p(d|B) and p(B). The term p(d|B) is the marginal likelihood of

the data d given a Bayesian network B, obtained through marginalising over the parameters

Θ associated with B:

p(d|B) =

∫
p(d|B,Θ)p(Θ|B)dΘ, (3.5)

and the term p(B) is the prior probability of the Bayesian network B. Hence, a prior

distribution over the space of all possible Bayesian networks and the marginal likelihood of

the data given a Bayesian network must be specified.

The prior distribution over the space of Bayesian networks varies between the different

approaches taken, and the specification thereof is not considered to be as important as

the specification of the marginal likelihood [31]. In order to satisfy score equivalence, the

requirement placed upon the prior is that Bayesian networks with equivalent directed acyclic

graphs have the same prior probability [39]. That is, if B is Markov equivalent to B′,

p(B) ≡ p(B′). (3.6)
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Equation (3.5) implies that the calculation of the marginal likelihood p(d|B) requires the

specification of two distributions: p(d|B,Θ), the distribution of the data d given the network

B and the parameters Θ, and the prior distribution of the parameters Θ given the network

B, p(Θ|B). These distributions are specified so that for equivalent Bayesian networks B and

B′,

p(d|B) = p(d|B′),

a condition known as likelihood equivalence, [39]. This condition together with a prior

distribution on the space of Bayesian networks as in Equation (3.6) implies a score metric

that satisfies score equivalence.

Geiger and Heckerman, [35], discuss five assumptions that together imply likelihood equiva-

lence. Three of these assumptions concern the distribution of d|B,Θ, and the remaining two

concern the prior distribution of the parameters Θ|B.

To find p(d|B,Θ), note that Equation (3.2) can be reduced to obtain X = (Ip − Γ)−1ε so

that

X ∼ Np(0,Σ), where Σ = (Ip − Γ)−1Ψ(Ip − Γ)−T , (3.7)

and Ω = Σ−1 = (Ip − Γ)TΨ(Ip − Γ). Note that in what follows, (Ip − Γ)−T = ((Ip − Γ)−1)T .

Hence,

d|B,Θ ∼ Nnp (0,Σ⊗ In) ,

which, due to the ordering of the variables, may be written as

f(d|B,Θ) =

p∏
i=1

f(xi|xPi
,γi, ψi), (3.8)

where xi is the n-vector of observations of Xi and xPi
is the n × |Pi| matrix with columns

xj, j ∈ Pi. Equation (3.1) implies that

xi|xPi
,γi, ψi ∼ Nn(xPi

γi, ψiIn). (3.9)

This distribution satisfies the assumptions set out by Geiger and Heckerman, [35], so that

p(Θ = ∪p
i=1 {γi, ψi} |B) is then all that requires specification. It has been shown, [18, 35, 69],

that an encompassing inverse Wishart prior distribution on Σ, the full covariance structure of
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the genes, satisfies the assumptions of Geiger and Heckerman. The implications of this prior

for the form of the prior distributions of the parameters {γi, ψi} for each i ∈ {1, 2, . . . , p},
will be detailed below, in the description of High-dimensional Bayesian Covariance Selection,

in Section 3.3.

It should be noted that the assumptions of Geiger and Heckerman imply that the marginal

model likelihood in Equation (3.5) has the following form:

p(d|B) =

p∏
i=1

f (xi|xPi
) ,

where f(xi|xPi
) is the marginal model likelihood of gene i:

f(xi|xPi
) =

∫ ∞

0

∫
R
|Pi|

f(xi|xPi
,γi, ψi)f(γi, ψi|xPi

)dγidψi. (3.10)

Note that f(γi, ψi|xPi
) is the joint prior distribution of the parameters associated with gene

i when the genes in Pi are the parents of gene i.

The score of a Bayesian network B given a data set d then has the form

S(B|d) = p(B)

p∏
i=1

f (xi|xPi
) . (3.11)

Note that this score metric has been referred to as the BGe metric by Geiger and Heckerman,

[34], standing for “Bayesian metric for Gaussian networks having score equivalence”.

The exact form of the marginal model likelihoods in Equation (3.10) are derived in Section

3.3.

Some score-based methods for the estimation of Bayesian networks for a given gene expression

data set are now described.

Greedy hill-climbing, first introduced by Cooper and Herskovits [12] for the search over

Bayesian networks, is a standard, and very general, score-based method in the estimation of

Bayesian networks for high-dimensional data [5, 29, 83], and many algorithms based upon this

method have been developed. The algorithm takes as input, along with a data set and a score

function as in Equation (3.3), an initial Bayesian network, which may be the empty network.

To move through the space of Bayesian networks, a set of operations on Bayesian networks

are defined. In the archetypal formulation, these moves are edge addition, edge deletion, and

edge reversal. At each iteration of the algorithm, the score function is evaluated for each
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possible operation (that still results in a Bayesian network), and the operation increasing

the score the most is performed. The algorithm ceases when no permitted operation on the

current Bayesian network results in a network with a higher score.

The algorithm is prone to entrapment in local maxima. To overcome this limitation greedy

hill-climbing is typicially run several times with different initial graphs. Taboo lists and

simulated annealing are two popular augmentations of the algorithm.

Greedy hill-climbing often forms the basis of different methods for the estimation of Bayesian

networks. One augmentation is to first find a set of candidate parents for each gene, and

then apply greedy hill-climbing, restricting the parent sets of each gene to be subsets of these

candidate sets. This approach is taken in the Sparse Candidate algorithm [32, 33]. Max-Min

Hill-Climbing [83] behaves similarly, although it may be more properly be classified as a

hybrid of the score-based and constraint-based approaches, as it first estimates a skeleton,

which is then directed using greedy hill-climbing. The Ideal Parent algorithm [29] further

augments greedy hill-climbing by calculating ideal parents for each of the genes of inter-

est, and comparing candidate parents to these ideal parents to help determine if proposed

operations should occur.

Often, instead of performing hill-climbing over the space of Bayesian networks, another

smaller space will be searched over. Chickering [9] defines a search over the space of equiva-

lence classes of directed acyclic graphs, while Teyisser and Koller [78] search over the space

of orderings of the variables. Friedman and Koller [31] also search over the orderings of the

variables, but their interest lies in the estimation of the posterior probability of particular

features of a Bayesian network.

Optimal Reinsertion [59] is a technique that estimates a Bayesian network by selecting a gene

at each step, severing all edges directed to or from this gene, then estimating the optimal

edges to or from this gene before reinserting the gene back into the network. Moore and

Wong [59] discuss incorporating the Sparse Candidate algorithm into Optimal Reinsertion.

In [48, 73, 74], dynamic programming approaches are taken to maximising the score of a

Bayesian network, and for networks with around 30 nodes, promising results are obtained.

However, in the applications of interest in the present work, networks with an order of

magnitude more nodes are considered.
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3.1.2 Constraint-Based Methods

Constraint-based methods, which are discussed in detail in [75], instead of finding a Bayesian

network that maximises a score metric, estimate conditional independence relationships di-

rectly from the data. These estimated conditional independence relationships are then used

as constraints in the development of a Bayesian network for the genes of interest.

For example, the PC-Algorithm, [45, 75], consists of two algorithms, run consecutively. The

first algorithm starts with a complete undirected graph on all genes. Partial correlation

coefficients, described in Section 3.2.1, are calculated for each pair of genes. If the partial

correlation coefficient for a pair of genes i and j is not significantly different from zero, the

edge between i and j is removed from the undirected graph. The resultant undirected graph

is treated as a skeleton graph by the second algorithm, which extends the graph through the

imposition of directed edges, resulting in a representative of an equivalence class of directed

acyclic graphs.

Three-Phase Dependency Analysis, [7], formulated for discrete variables, uses conditional

mutual information as a measure of conditional dependence. The conditional mutual infor-

mation of two variables Xi and Xj given some other variable set, Y , is defined to be

I(Xi, Xj|Y ) =
∑

xi,xj ,y

p(xi, xj|y) log p(xi, xj|y)
p(xi|y)p(xj|y) .

If p(·) is the true distribution from which samples are drawn, the conditional mutual in-

formation is zero if Xi ⊥⊥ Xj|Y . Since p(·) is estimated, Xi is deemed to be conditionally

independent of Xj given Y if I(Xi, Xj|Y ) < ε, where ε is a user-specified positive value.

These estimated conditional independence relationships are then algorithmically combined

to form a Bayesian network.

In the present work, constraint-based methods for the estimation of Bayesian networks will

not be considered further.

3.2 The Gaussian Graphical Model Approach

Estimating a Gaussian graphical model for a set of p genes differs from the estimation of

a Bayesian network for the same genes in two key ways. First, since a Bayesian model is
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not being assumed, there is no need to specify prior distributions on parameters. Second,

estimation of the direction of edges is no longer required. Note also that the definition of a

Bayesian network for a set of genes does not allow the representation of structures such as

feedback loops, while there are no such restrictions on Gaussian graphical models. It should,

however, be noted that the requirement of a joint Gaussian distribution of the variables

under consideration remains.

The estimation of a Gaussian graphical model for a set of genes, as noted previously, is

equivalent to the estimation of which elements of the concentration matrix of the joint

distribution are equal to zero. The high-dimensional nature of gene expression data prohibits

the estimation of the matrix directly, and in this section, several approaches to this problem

are outlined.

Many of the approaches can be classified as either shrinkage methods or limited-order partial

correlation methods. The shrinkage methods attempt to indirectly estimate the full inverse

covariance matrix, and, in particular, the zero elements of that matrix. Limited-order partial

correlation methods, instead of estimating the full-order partial correlations, assume that

in a Gaussian graphical model with few edges, these low-order conditional independence

relationships will estimate the full-order relationships quite well.

3.2.1 Limited-Order Partial Correlation-Based Methods

In a Gaussian graphical model for a set of genes, there is no edge between gene i and gene j

if and only if gene i is conditionally independent of gene j given all remaining genes. It was

shown, in Theorem 2.4, that this occurs if and only if the (i, j)-entry of the concentration

matrix, ωij, is equal to zero. Noting that the partial correlation coefficient of gene i and

gene j, ρij|V \{i,j} =
−ωij√
ωiiωjj

, an equivalent formulation would be to specify that this partial

correlation coefficient be equal to zero.

Limited-order partial correlation-based methods, instead of attempting to estimate these

partial correlations, estimate lower-order partial correlations. This approach is based on the

assumption that, in a graphical model with few edges, low-order conditional independence

relationships will approximate full-order conditional independence relationships well.
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A q-order partial correlation of i and j is defined by considering a set Q, |Q| = q, such that

Q ⊂ V , i, j /∈ Q:

ρij|Q =
−ω

Q∪{i,j}
ij√

ω
Q∪{i,j}
ii ω

Q∪{i,j}
jj

,

where ω
Q∪{i,j}
ij is the (i, j)-entry of the concentration matrix of XQ∪{i,j}. It is clear that

Xi ⊥⊥ Xj|XQ ⇐⇒ ρij|Q = 0.

The graphs based on these limited-order partial correlation coefficients are called q-partial

graphs, a term coined by Castelo and Roverato [6]. A q-partial graph is defined such that

there is an edge between genes i and j if and only if ρij|Q = 0, for all sets Q such that |Q| = q.

Castelo and Roverato [6] develop the theory of q-partial graphs as well as a procedure to

estimate such graphs for a given data set.

Castelo and Roverato, in their development of the theory of q-partial graphs, unified many

previous approaches to the estimation of Gaussian graphical models. Wille and Bühlmann

[90] developed a method for the discovery of 0, 1-partial graphs, while de la Fuente et al. [20]

described a method that uses up to second-order partial correlations. Magwene and Kim

[55] considered first-order conditional independence relationships in their method.

3.2.2 Shrinkage-Based Methods

It is well known that for high-dimensional data the maximum likelihood estimate of the co-

variance matrix is singular, and, as such, does not provide a good estimate of the concentra-

tion matrix. Shrinkage-based methods provide non-singular estimates of the full covariance

matrix of high-dimensional data sets through the shrinkage of partial correlation coefficients

towards zero.

Wong, Carter and Kohn [91] take a Bayesian approach to the shrinkage estimation of the

concentration matrix. The concentration matrix is factorised as Ω = T × C × T , where

T = diag(ωii), and C = (cij) is a correlation matrix, such that −cij = ρij|V \{i,j}. Prior

distributions are then placed upon ωii, i = 1, 2, . . . , n, and upon each cij, i < j. The

concentration matrix is then estimated using a reversible jump Metropolis-Hastings method.

Schäfer and Strimmer [71] specify their approach in terms of the partial correlation matrix,
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introducing new small sample point estimators thereof. They note that when n < p, the

sample covariance matrix, Σ̂ = 1
n−1(X − X̄)T (X − X̄), may be inverted, and then used

to obtain an estimate of the partial correlation matrix. To estimate the partial correlation

matrix from a small sample, they apply the Moore-Penrose pseudo-inverse [64] to the sample

covariance matrix, stabilising the estimator through the application of the bootstrap and

bagging [4]. An empirical Bayes approach is then used to determine which elements of the

estimated partial correlation matrix are equal to zero.

In their subsequent approach to the problem, Schäfer and Strimmer [72], develop an alter-

native small-sample estimator, following the work of Ledoit and Wolf [52] on the shrinkage

estimation of small-sample covariance matrices. The performance of this new estimator

is compared to that of their earlier estimators, and to the approach of Meinshausen and

Bühlmann [57]. Note that [72] provides a good review of the shrinkage approach to the

estimation of Gaussian graphical models.

Meinshausen and Bühlmann [57], taking an approach similar to that taken in High-dimensional

Bayesian Covariance Selection, cast the problem of estimating a Gaussian graphical model

for a set of variables as a variable selection problem, choosing regression models for each

variable. They use the lasso [80] to obtain these regression models, hence obtaining shrink-

age estimates of regression parameters. The predictors in a regression model for a particular

variable form the neighbourhood of that variable in the graphical model obtained. Applying

their technique to a simulated data set with 1000 nodes and 600 observations, they were able

to correctly identify 1109 edges out of 1747.

3.2.3 Other Methods

Some earlier approaches to the estimation of Gaussian graphical models for gene expression

data do not fit well into either of the above categories. For completeness they are briefly

summarised here.

Kishino and Waddell [46] use multiple regressions with variable selection procedures to esti-

mate partial correlation coefficients for each pair of genes.

Toh and Horimoto [81, 82] deal with high-dimensional gene expression data using a com-

36



bination of cluster analysis and Gaussian graphical models. Their approach reduces the

dimension of the problem by clustering the genes, then finds a Gaussian graphical model

for these clusters, instead of for the genes. This method results in conditional independence

relationships that are quite difficult to interpret, as not all genes of one cluster are necessarily

associated with all genes of another cluster.

3.3 High-Dimensional Bayesian Covariance Selection

High-dimensional Bayesian Covariance Selection, [23, 25], seeks to identify high-scoring,

high-dimensional, sparse Gaussian graphical models for a given gene expression data set.

The High-dimensional Bayesian Covariance Selection algorithm uses a score-based method

to find Bayesian networks for the data, which are then moralised to obtain Gaussian graphical

models.

For each i ∈ {1, 2, . . . , p}, it is assumed that the expression level of gene i depends linearly

on the expression levels of genes in gene i’s parent set, Pi, with normally distributed random

error:

Xi =
∑
j∈Pi

γijXj + εi, εi ∼ N(0, ψi). (3.12)

As discussed in Section 3.1.1, it is assumed that this set of equations forms a system of linear

recursive equations, so that

X ∼ Np (0,Σ) , where Σ = (Ip − Γ)−1 Ψ(Ip − Γ)−T , (3.13)

where Γ is an upper triangular matrix as in Equation (3.7), with γij = 0 if and only if j /∈ Pi.

Recall that if xi is the n-vector of gene expression levels for gene i, Equation (3.12) implies

xi|xPi
,γi, ψi ∼ Nn(xPi

γi, ψiIn), (3.14)

where xPi
is the n× |Pi| matrix with columns xj, j ∈ Pi, and γi = (γij)

T
j∈Pi

.

The focus of High-dimensional Bayesian Covariance Selection is on the estimation of sparse

Bayesian networks for the given gene expression data. A sparse Bayesian network or graphical

model is one that has few edges relative to the number of vertices in the graph. Recall, from

Theorem 2.4, that a missing edge in the independence graph associated with a Gaussian
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graphical model corresponds to a zero in the concentration matrix of that model. Hence, a

sparse Gaussian graphical model is one with a sparse concentration matrix. From Equation

(3.13), the concentration matrix of the genes under consideration is assumed to have the

form

(Ip − Γ)T Ψ−1 (Ip − Γ) .

This matrix will be sparse when Γ contains few non-zero entries, which will occur when |Pi|
is small for all values of i.

The notion of sparsity reduces the number of parameters requiring estimation, allows access

to a sparse Cholesky decomposition of the concentration matrix, and reflects the view that

the expression level of a particular gene will be directly influenced by relatively few other

genes. Sparse Bayesian networks are found through the use of a score metric that gives

higher scores to such sparse networks. The construction of such a score metric is detailed in

the following section.

3.3.1 Construction of the High-dimensional Bayesian Covariance

Selection Score Metric

Recall, from Equation (3.11), that for the purposes of this work, the score of a Bayesian

network B for a data set d, S(B|d), has the form

S(B|d) = p(B)

p∏
i=1

f(xi|xPi
),

where p(B) is the prior probability of the network and f(xi|xPi
) is the marginal model

likelihood of gene i.

The estimation of sparse Bayesian networks in High-dimensional Bayesian Covariance Se-

lection is achieved through the construction of a prior distribution on the space of Bayesian

networks that induces ai = |Pi|, to be small ∀i. The probability of gene i having any par-

ticular gene in its parent set Pi is β, where β small induces sparser structures. Dobra et al.

[23, 25] implement this through the imposition of a binomial prior distribution on the space

of all possible Bayesian networks:

p(B) ∝
(

β

1− β

)|B|
,
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where |B| = ∑p
i=1 ai is the number of edges in B. It is a consequence of Theorem 2.8 that

equivalent directed acyclic graphs have the same number of vertices, so that if B and B′ are

Bayesian networks with equivalent directed acyclic graphs, p(B) = p(B′).

The construction of the marginal likelihood of the data given the network, p(d|B), then

proceeds through the application of an inverse Wishart prior distribution on the full covari-

ance structure Σ, as discussed in Section 3.1.1. This inverse Wishart prior distribution on Σ

induces prior distributions on the regression parameters for each gene, γi and ψi. Dobra et

al., [23, 25], use the following prior on the covariance matrix:

Σ ∼ IWp(δ, τIp),

where IWp(δ, τIp) represents an Inverse-Wishart distribution, with probability density func-

tion

f (Σ) =

(
2

δp
2 π

p(p−1)
4

p∏
i=1

Γ

(
δ + 1− i

2

))−1

τ
δp
2 |Σ|−( δ+p+1

2 ) exp

{
−1

2
tr(τΣ−1)

}
,

with degrees of freedom δ and scale matrix τIp, δ > 0 and τ > 0. A noninformative prior

distribution is obtained as δ → 0. The parameter δ can be thought of as a shrinkage

parameter; as δ gets larger, graphs with larger numbers of edges are encouraged, so setting

δ to be small encourages sparsity. The diagonal scale matrix, τIp, is reasonable if, a priori,

gene expressions are thought to be independent with a common scale. Note that τ should

be selected to be on a scale consistent with the data [44].

Given that an encompassing inverse Wishart prior distribution is used, consider, then, the

variance matrix of all genes associated with the regression of gene i:

Σ{i}∪Pi
=

⎛
⎝σii σT

i

σi ΣPi

⎞
⎠ ,

where σi is the vector of length ai consisting of the covariances of Xi with Xj, j ∈ Pi. The

prior implies that Σ{i}∪Pi
∼ IWai+1 (δ, τIai+1). Then, by Proposition C.5 in [50], Xi|xPi

∼
N(xT

Pi
γi, ψi), where

γi = Σ−1Pi
σi and ψi = σii − σT

i Σ
−1
Pi
σi.
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The implied priors on the regression parameters for gene i are then given by

γi|ψi ∼ Nai(0, τ
−1ψiIai), and

ψ−1i ∼ Ga

(
δ + ai
2

,
τ

2

)
. (3.15)

The marginal model likelihood, f(xi|xPi
), can then be found for each gene i:

f(xi|xPi
) =

∫
f(xi|γi, ψi,xPi

)f(γi|ψi)f(ψi)dγidψi

=

∫
(2π)−(

n+ai
2 )

(
τ
2

) δ+ai
2

Γ
(
δ+ai
2

)τ ai
2 ψ−(

n+2ai+δ

2
+1)

× exp

{
− τ

2ψi

− τ

2ψi

γT
i γi −

1

2ψi

(xi − xPi
γi)

T (xi − xPi
γi)

}
dγidψi.

Where the terms involving γi can be manipulated as follows:

− τ

2ψi

γT
i γi −

1

2ψi

(xi − xPi
γi)

T (xi − xPi
γi)

=− 1

2ψi

(
γi −

(
τIai + xT

Pi
xPi

)−1
xT
Pi
xi

)T (
τIai + xT

Pi
xPi

) (
γi −

(
τIai + xT

Pi
xPi

)−1
xT
Pi
xi

)
− 1

2ψi

xT
i

[
In − xPi

(
τIai + xT

Pi
xPi

)−1
xT
Pi

]
xi,

so that

f(xiγi, ψi|xPi
) =

(2π)−(
n+ai

2 )
(
τ
2

) δ+ai
2

Γ
(
δ+ai
2

)τ ai
2 ψ

−(n+2ai+δ

2
+1)

i exp

{
− 1

2ψi

(
τ + xT

i

[
In − xPi

(
τIai + xT

Pi
xPi

)−1
xT
Pi

]
xi

)}

× exp

{
− 1

2ψi

(
γi −

(
τIai + xT

Pi
xPi

)−1
xT
Pi
xi

)T (
τIai + xT

Pi
xPi

) (
γi −

(
τIai + xT

Pi
xPi

)−1
xT
Pi
xi

)}
,

(3.16)

The terms involving γi then form the kernel of an ai-dimensional normal distribution with

covariance matrix

ψi

(
τIai + xT

Pi
xPi

)−1
.

Integrating over γi then results in

f(xi|ψi,xPi
) = (2π)−(

n
2 )

(
τ
2

) δ+ai
2

Γ
(
δ+ai
2

)τ ai
2

∣∣τIai + xT
Pi
xPi

∣∣− 1
2

ψ
−(n+ai+δ

2
+1)

i exp

{
− 1

2ψi

(
τ + xT

i

[
In − xPi

(
τIai + xT

Pi
xPi

)−1
xT
Pi

]
xi

)}
.
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This has the form of an Inverse-Gamma(α, β) kernel in ψi, with

α =
n+ ai + δ

2

β =
τ

2
+

1

2
xT
i

[
In − xPi

(
τIai + xT

Pi
xPi

)−1
xT
Pi

]
xi.

Integrating over ψi then gives the marginal model likelihood:

f(xi|xPi
) = (2π)−(

n
2 )

(
τ
2

) δ+ai
2

Γ
(
δ+ai
2

)τ ai
2

∣∣τIai + xT
Pi
xPi

∣∣− 1
2 Γ

(
n+ ai + δ

2

)

×
(
τ

2
+

1

2
xT
i

[
In − xPi

(
τIai + xT

Pi
xPi

)−1
xT
Pi

]
xi

)−(n+ai+δ

2 )
(3.17)

which has the form of a multivariate t-distribution,

xi|xPi
∼ tδ+ai(0,Σi), (3.18)

where

Σi =
τ

δ + ai

(
In − xPi

(τIai + xT
Pi
xPi

)−1xT
Pi

)−1
.

In any Bayesian network, there will always exist at least one variable with no parents. Hence,

the marginal model likelihood for gene i when Pi = ∅ also needs to be calculated. In such a

case, Pi = ∅ implying that ai = 0, and

xi ∼ tδ

(
0,

τ

δ
In

)
. (3.19)

The High-dimensional Bayesian Covariance Selection score metric, hereafter referred to as

S0, then has a closed form:

S0(B|d) =
p∏

i=1

f(xi|xPi
)

(
β

1− β

)|Pi|

=

(
β

1− β

)∑p
i=1 ai p∏

i=1

f(xi|xPi
), (3.20)

where f(xi|xPi
) is given by Equation (3.17) for all i such that Pi �= ∅, and

f(xi|xPi
) ≡ f(xi) = (2π)−(

n
2 )

(τ
2

) δ
2 Γ

(
n+δ
2

)
Γ

(
δ
2

) (
τ

2
+

1

2
xT
i xi

)−(n+δ
2 )

(3.21)

for all i such that Pi = ∅.

As noted above, in Section 3.1.1, this score metric is also known as the BGe metric.
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3.3.2 Posterior Distributions

If an estimate of the joint covariance matrix of a subset of genesK ⊆ {1, 2, . . . , p} is required,
posterior estimates of the regression parameters γi and ψi ∀i ∈ K must be obtained. Note

the posterior independence of the regression parameters associated with different genes, so

that

f (γi∈K , ψi∈K |d) =
∏
i∈K

f(γi, ψi|d).

The posterior distributions required to obtain such estimates are those of γi|ψi,xPi
, ψi|xPi

and ψi, ∀i ∈ K, all of which have a closed form. To find these posterior distributions, note

that

f(γi|ψi,xi,xPi
) ∝ f(xi,γi|xPi

, ψi)

∝ exp

{
− 1

2ψi

(
γi −

(
τIai + xT

Pi
xPi

)−1
xT
Pi
xi

)T (
τIai + xT

Pi
xPi

) (
γi −

(
τIai + xT

Pi
xPi

)−1
xT
Pi
xi

)}
,

which, as noted previously, is the kernel of a normal distribution in γi, so that

γi|ψi,xi,xPi
∼ Nai

(
(τIai + xT

Pi
xPi

)−1xT
Pi
xi, ψi(τIai + xT

Pi
xPi

)−1
)
. (3.22)

Similarly,

f(ψi|xi,xPi
) ∝f(xi, ψi|xPi

)

∝ψ−(
n+ai+δ

2
+1) exp

{
− 1

2ψi

(
τ + xT

i

[
In − xPi

(
τIai + xT

Pi
xPi

)−1
xT
Pi

]
xi

)}
,

which has already been recognised as an Inverse-Gamma kernel in ψi, so

ψ−1i |xi,xPi
∼ Ga

⎛
⎝δ + ai + n

2
,
τ + xT

i

(
Iai − xPi

(
τIai + xT

Pi
xPi

)−1
xT
Pi

)
xi

2

⎞
⎠ . (3.23)

The final posterior distribution required is the posterior distribution of the variance of gene

i, when gene i has no parents:

f(ψi|xi) ∝f(xi, ψi)

∝ψ−(
n+δ
2

+1) exp

{
− 1

2ψi

(
τ + xT

i xi

)}

so that

ψ−1i |xi ∼ Ga

(
δ + n

2
,
τ + xT

i xi

2

)
.

42



3.3.3 The High-dimensional Bayesian Covariance Selection Algo-

rithm

The High-dimensional Bayesian Covariance Selection algorithm, described in detail below,

is based upon the estimation and combination of good regression models for each gene. The

algorithm consists of the following stages:

• The first stage of the algorithm involves estimating initial sets of parents, Pi, for each

gene. This is equivalent to finding good regression models for each gene.

• It is in the second stage of the algorithm that the regression models found in stage 1

are modified so that they imply a system of linear recursive equations, and hence a

Bayesian network. That is, the sets Pi are modified so that they are consistent with

an ordering: j ∈ Pi if and only if j occurs after i in the ordering.

• The Bayesian network found in stage 2 is then moralised to obtain a Gaussian graphical

model for the data, and this, along with the posterior distributions for the regression

parameters, is used for inference.

Stage 1: Initialisation of the Network

In this stage, initial regression models for each gene are found. These regression models are

unrestricted in the sense that there is, at this stage, no ordering associated with this set of

regressions, as there would be if the regressions formed a recursive linear system. Hence,

any gene can be a predictor for any other gene. Let Ri ⊆ V \ {i} be the set of predictors for

gene i found at this stage.

Initially, Gibbs sampling was used to find these regression models. Later, shotgun stochastic

search, [38, 44], was recommended, and currently, work in Mode-Oriented Stochastic Search,

[22, 24, 53], is progressing. These approaches to the identification of suitable regression

models for each gene are described below.

Gibbs Sampling To start the Gibbs Sampling, for each i, the sets Ri are randomly se-

lected. For each gene i ∈ V , cycling through j ∈ V \ {i} in random order, the jth gene

43



is then included in the regression model for xi, that is, Ri → Ri∪{j}, with probability

P (j ∈ Ri|Ri \ {j}) = a

a+ b

where

a = f(xi|xRi∪{j})p(having |Ri ∪ {j}| predictors) = f(xi|xRi∪{j})
(

β

1− β

)|Ri∪{j}|
,

b = f(xi|xRi\{j})p(having |Ri \ {j}| predictors) = f(xi|xRi\{j})
(

β

1− β

)|Ri\{j}|
.

Note that f(xi|xRi\{j}) is as given by Equation (3.17), where Pi is taken to be Ri \{j}.
One Gibbs sampling iteration for a gene i is a full cycle through all possible predictors

in V \ {i}.
This sampling can be run independently for each variable, but due to the large number

of potential predictors for each gene in the data sets, it is possible that potentially

strong predictors for a gene will not be included in Ri.

Shotgun Stochastic Search This method for finding regressions for each gene proceeds as

follows. Consider gene i. For each regression model Ri, where Ri contains k predictors

for this gene, the neighbourhood of that regression model, N(Ri) is defined as follows:

N(Ri) = {R+
i , R

◦
i , R

−
i }, where

• R+
i is the set of neighbouring models containing k + 1 predictors, obtained by

adding any gene to Ri,

• R◦i is the set of neighbouring models containing k predictors, obtained by replacing

any of the predictors in Ri by another

• R−i is the set of neighbouring models containing k − 1 predictors, obtained by

taking any one of the predictors out of Ri.

When 2 ≤ k < p, |R+
i | = p − k, |R◦i | = k(p − k) and |R−i | = k, and R+

i = ∅ if

k = p. It is noted that when p is large, these three sets are of very different sizes:

|R◦i | � |R+
i | � |R−i |. Further noted is that as p → ∞, if all models were to have equal

weight, and a model were to be selected from N(Ri), the probability of randomly

selecting a model from R◦i → k
k+1

, R+
i → 1

k+1
and R−i → 0.
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The score of a particular model Ri for gene i is defined to be the unnormalised posterior

probability:

S(Ri) = p(Ri|xi) ∝ f(xi|Ri)p(Ri)

∝ f(xi|Ri)

(
β

1− β

)|Ri|
,

where f(xi|Ri) ≡ f(xi|xRi
), as given by Equation (3.17).

The method for finding a regression model for gene i proceeds as follows:

0 Evaluate the scores for the null model, and all one-variable models. Choose K, the

maximum number of models. Given a starting model R
[0]
i , set Γ∗ = {R[0]

i }, and
for t = 1, 2, . . . , T :

1 Compute S(Ri) for all Ri ∈ N(R
[t]
i ), so that R+

i , R
◦
i , R

−
i are constructed. Γ∗ →

Γ∗ ∪N(R
[t]
i ); if |Γ∗| > K, remove the |Γ∗| −K lowest scoring models.

2 Sample models R+∗
i , R◦∗i and R−∗i from R+

i , R
◦
i , R

−
i with probabilities proportional

to S(Ri), normalised within each set.

3 Sample R
[t+1]
i from {R+∗

i , R◦∗i , R−∗i } with probability proportional to S(Ri), nor-

malised within this set.

At the completion of the algorithm, Γ∗ contains the K highest scoring models in⋃t−1
t=0N(R

[t]
i ).

It is clear that shotgun stochastic search allows movement across dimension to occur

with greater probability than in the Gibbs sampling paradigm.

Mode Oriented Stochastic Search This method for finding regression models for each

gene seeks to identify models such that the ratio of the posterior probability of these

models and the posterior probability of the best model is above a threshold. That is, if

R is the set of all possible regression models for a given gene, the algorithm identifies

models in

R(c) =

{
R ∈ R| p(R|xi) ≥ cmax

R′∈R
p(R′|xi)

}
,

where c ∈ (0, 1).

The algorithm, which is not presented here, is described in detail in [22, 24] and [53].

45



Note that both the Stochastic Shotgun Search and Mode Oriented Stochastic Search algo-

rithms may be used to directly estimate Σ, the joint covariance matrix of all genes, instead

of being used to estimate regression models for each gene, which are then combined via the

High-dimensional Bayesian Covariance algorithm. This involves directly exploring the space

of Gaussian graphical models, instead of indirectly exploring such models through the gen-

eration of systems of linear recursive equations, as High-dimensional Bayesian Covariance

Selection does. For details on how the Shotgun Stochastic Search algorithm may be used in

this way, see [44], and for details on how this is done using the Mode Oriented Stochastic

Search algorithm, see [53].

Stage 2: Finding a Bayesian Network

The second stage of the High-dimensional Bayesian Covariance Selection algorithm involves

finding a Bayesian network for the genes, based upon the sets Ri found in the first stage of the

algorithm. Set an iterate counter t = 0. Let Ord(X) be the vector containing the ordering

of the genes, initially the null vector. Let C = {1, 2, . . . , p} be the candidate variable set,

which contains the indices of unordered genes. Assign each gene Xj, j ∈ C an explanatory

score:

sj =
∏
i∈C

f(xi|xRi\{j})
(

β

1− β

)|Ri\{j}|
.

The score of a gene is related to the usefulness of that gene’s expression level in the expla-

nation of all other genes’ expression levels. The more useful a particular gene, the lower the

score of that gene.

The algorithm for finding a Bayesian network is as follows.

For t = 1, 2, . . . , p− 1:

1. Choose the gene with the highest score: jt = argmaxj∈C{sj}

2. xjt is the next variable in the ordering: Ord(X) → {Ord(X), jt}. For this variable,

take Pjt to be Rjt .

3. Remove jt from the candidate variable set: C → C \ {jt}.
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4. ∀i ∈ C with jt ∈ Ri, find a new set Ri such that Ri ⊂ C. Then calculate updated

scores si for all such genes.

At t = p, there remains one unordered gene; the gene with the lowest score that is, ostensibly,

the gene that is most useful in the prediction of the expression levels of other genes. This

gene is appended to the ordering Ord(X). This ordering, the sets Pi and the conditional

distributions of each gene given its predictors then define a Bayesian network on the genes.

Various aspects of the model can then be explored, such as dependence structures for subsets

of genes, or the posterior analysis of the regression coefficients {γi, ψi}.

Stage 3: Estimation

It is in this stage of the algorithm that the Bayesian network obtained at stage 2 is moralised,

and various aspects of the resultant Gaussian graphical model explored.

Recall from Equation (3.7) that the concentration matrix for all genes may be expressed as

Ω = (Ip − Γ)TΨ−1(Ip − Γ). Note that a Cholesky decomposition is available:

Ω = LLT , where L = (Ip − Γ)TΨ−1/2.

Note further that since each gene is expected to have a small number of parent genes, Γ will

be a sparse upper triangular matrix, and hence L will be a sparse lower triangular matrix.

This implies that finding the joint covariance matrix Σ = Ω−1 = L−TL−1, while perhaps not

particularly easy for the entire set of genes, is feasible for smaller sets of genes, W :

ΣW = L−TW L−1W ,

where LW is the matrix consisting of the rows of L corresponding to the variables in W .

Estimates thereof may be obtained through sampling from the posterior distributions of ψi

and γi|ψi, i ∈ W .

Generation of Multiple Graphs

This algorithm is deterministic, meaning that the result of the algorithm is a single Bayesian

network. If multiple Bayesian networks for the given gene expression data could be found,
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then uncertainty associated with the model could be investigated, using a technique such as

Bayesian model averaging [40, 54, 66].

In the algorithm, at each iteration, the gene with the highest score is chosen. This results in

the generation of a single ordering of the genes. If, instead of simply selecting the gene with

the highest score, a gene is randomly sampled, multiple orderings will be generated with

multiple runs of the algorithm. Hence the extension of the algorithm:

1∗. Sample a gene jt from C with probability proportional to (sjt)
A

for an annealing parameter A > 0. This “annealed” approach introduces stochasticity into

the algorithm, leading to the generation of multiple Bayesian networks for the genes.

Dobra et al apply the algorithm to a breast cancer data set, see [23], with p = 12558 and

n = 158. Taking A = 25, 150 graphs were saved, with biologically plausible sub-graphs.

3.3.4 The High-dimensional Bayesian Covariance Selection Pro-

gram

The High-dimensional Bayesian Covariance Selection program is available to download from

http://www.stat.duke.edu/~adobra/hdbcs.html. There are two versions of the program:

a serial version, and a parallel version, which makes use of Message Passing Interface (MPI)

libraries. The serial version, which is claimed to work well for p < 250, is used here. In

each case, the program is written in C++, and requires the use of the Fortran77 LAPACK

library, and the C++ Blitz++ library.

The program requires that the data matrix have n rows and p columns; a column for each

gene, and a row for each sample. Also required is that the gene expression data for each

gene be centered and scaled such that each column of the matrix has sample mean 0 and

sample variance 1. Also required are the parameters τ , δ and β. The README file included

in the download lists the other required inputs, which are mostly related to the number of

graphs that the user decides to save, and how many iterations of the algorithm are desired.

In Chapter 7, the program is used in the analysis of data sets with a known network structure,

and in Chapter 8, is used in the analysis of a gene expression data set.
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3.4 Extensions and Use of the Methods

Since the publication of the methods reviewed in this Chapter, much subsequent work has

focussed on the improvement and further development of methods for the estimation of

Bayesian networks and Gaussian graphical models. For example, methods such as Anjum

et al ’s BoostiGraph, [2] and Bottolo and Richardson’s Evolutionary Stochastic Search, [3],

have been developed for the estimation of Gaussian graphical models given high-dimensional

data sets. In addition, Meinshausen and Bühlmann’s recently developed Stability Selection,

[58], is a widely-applicable method that may be used to estimate Gaussian graphical models,

controlling the number of falsely discovered edges.

Much work has also been done on the incorporation of prior knowledge in the estimation of

Bayesian networks and Gaussian graphical models. Angelopoulos and Cussens, [1], review

the inclusion of prior structural information in the estimation of Bayesian networks, and

use Bayesian model averaging as a tool in the estimation of Bayesian networks for some

examples. Mukherjee and Speed, [60], discuss the inclusion of prior biological information

in the estimation of Bayesian networks, and present an example involving proteins.

Koller and Friedman recently published a book, [47], drawing together much recent research

on Bayesian networks and graphical models, including several chapters on the learning of

such structures.

It seems that the biological applications of the methods reviewed in this chapter have been

largely confined to the initial biological applications present in the originally published ar-

ticles. That is, popular uptake of the methods by biologists does not seem to have occurred

as yet, perhaps due to the statistical and mathematical complexity of these methods.
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Chapter 4

Score Metrics for Data Sets with

Complex Mean Structures

4.1 Motivation for the Inclusion of Complex Mean Struc-

tures

High-dimensional Bayesian Covariance Selection, like many score-based methods for the

estimation of Bayesian networks for the log-scale gene expression levels of p genes, X =

(X1, X2, . . . , Xp)
T ∼ Np(0,Σ), assumes that the data set, d = {x1,x2, . . . ,xn}, consists of n

independent and identically distributed samples of expression levels for the p genes.

Typically, the data available will be more complicated. For example, consider the grape gene

data introduced in Chapter 1. The data available consists of gene expression values for 132

genes, with 174 samples in total; 68 samples taken from grapes grown at one vineyard, 68

samples taken from grapes grown at another vineyard, and 38 samples taken from grapes

grown at a third vineyard. It is apparent that since different vineyards have different charac-

teristics, expression levels of individual genes will be expected to vary not only from sample

to sample, but also from vineyard to vineyard.

If we wished to use High-dimensional Bayesian Covariance Selection or one of the other score-

based methods discussed in Chapter 3 to estimate the covariance structure of the grape genes

given such a data set, one of a number of approaches could be taken. For example,
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• The method could be applied to the data from each vineyard separately;

• The possible effects of vineyards upon gene expressions could be ignored, and the

method applied to the entire data set;

• An ad-hoc method to remove the possible vineyard effects could be used; for example,

the mean expression level at each vineyard could be subtracted, and the method applied

to this augmented data set, or

• Vineyards could be included as vertices in a Bayesian network or Gaussian graphical

model.

None of these approaches are particularly appealing; each has obvious associated problems.

For example,

• Applying the method to data from each vineyard separately may result in the estima-

tion of different graphs at each vineyard, which may negate the utility of said graphs.

That is, if different graphs are obtained for gene expressions taken from two different

vineyards, using either of these graphs to explain relationships between genes at any

other vineyard would be difficult;

• If possible vineyard effects are ignored, graphs with spurious edges may result. Further,

if either of these first two approaches are taken, the effect of each vineyard on the

expression level of each gene may not be estimable;

• There may be several ad-hoc methods available for the removal of possible vineyard

effects and different choices may lead to different results;

• The difficulty with the final suggestion, including variables such as vineyard as vertices,

is that models for mixed variables may be required if the variable is discrete, and

sparsity constraints may have to be modified, if such variables are expected to affect

the expression levels of all genes.

The aim of the current chapter is the development of a new score metric for the estimation of

Bayesian networks that may be applied to data sets more complex than those consisting of

independent and identically distributed samples of gene expression levels. Initially, a score
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metric that takes account of the possible effects that different sites may have on the expression

levels of different genes is presented. This score metric, motivated by the example discussed

above involving grape genes, includes the effect of each site on the expression level of each

gene as a random effect, [49]. This score metric is then extended to include more general

random effects. Note that the score metrics developed herein may be used in conjunction

with any score-based method for the estimation of Bayesian networks; here the method of

choice is High-dimensional Bayesian Covariance Selection.

Consider, then, a gene expression data set of the form of the grape gene data set, consisting

of n samples of p genes, with samples taken from m different sites; ns samples taken at site

s, such that
∑m

s=1 ns = n. If Xis is the expression level of gene i measured on a sample taken

from site s, the regression model in Equation (3.1) becomes

Xis =
∑
j∈Pi

γijXjs + bis + εis, εis ∼ N(0, ψi), (4.1)

where i = 1, 2, . . . , p and s = 1, 2, . . . ,m, and bis is the effect of site s on the expression level

of gene i. These site effects will be treated as random effects, having some probability density

function f(bis), not dependent upon εis, with variance parameter φi. That is, the expression

level of gene i measured at site s is linearly dependent upon the expression levels of the genes

in Pi, with normally distributed error, and some gene-specific site effect, independent of the

error.

The model for each gene can then be expressed as

xi|xPi
,γi, ψi, bi, φi ∼ Nn(xPi

γi +Qbi, ψiI), (4.2)

where xi is the n-vector of expression levels for gene i:

xi = (xi11, xi21, . . . , xin11, xi12, xi22, . . . , xin22, . . . . . . , xi1m, xi2m, . . . , xinmm)
T ,

xPi
is the n× |Pi| matrix with columns xj, j ∈ Pi, bi is the m-vector of site effects for gene

i:

bi = (bi1, bi2, . . . , bim)
T ,
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and Q is the n×m matrix:

Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 · · · 0

1 0 · · · 0
...

...
...

1 0 · · · 0

0 1 · · · 0

0 1 · · · 0
...

...
...

0 1 · · · 0
...

0 0 · · · 1

0 0 · · · 1
...

...
...

0 0 · · · 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Through the choice of an appropriate Q matrix, the formulation in Equations (4.1) and (4.2)

can be generalised to include any random effects of interest.

For example, consider a data set consisting of n samples of p grape genes, now all taken from

one vineyard, and the temperature at the time each sample was taken. Suppose that the

effect of the temperature upon the expression levels of different genes is of interest, and that

temperature may influence how genes relate to one another. The data set now consists of np

gene expression levels and n temperatures; xik is the expression level of gene i in sample k,

and qk the temperature at the time sample k was taken, regarded as being fixed. Through

the choice of an appropriate Q matrix, the effect of temperature upon gene expression values

may be included as a random effect in the analysis of the dependence structure of the grape

genes.

If the effect of temperature is included in the model, the model for each gene can be expressed

as in Equation (4.2), with

xi =(xi1, xi2, . . . , xin)
T , (4.3)

bi =bi and Q = (q1, q2, . . . , qn)
T .
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If m general random effects are included in the model, the model for each gene is again as

in Equation (4.2), with xi as in Equation (4.3), and

Q =

⎛
⎜⎜⎜⎜⎜⎝

q11 q21 · · · qm1

q12 q22 · · · qm2

...
...

...

q1n q2n · · · qmn

⎞
⎟⎟⎟⎟⎟⎠ . (4.4)

Hence, in general, the linear model for sample k of gene i may be written as

Xik =
∑
j∈Pi

γijXjk +
m∑
r=1

qrkbir + εik, εik ∼ N(0, ψi), i ∈ {1, 2, . . . , p}. (4.5)

Similarly to when no random effects were assumed to be present, it is assumed that there

exists an ordering of the genes such that the system of equations in (4.5) forms a generalised

system of linear recursive equations, as given in Equation (2.4). In this way, the random

effects that are present may be thought of as exogenous variables, affecting the expression

levels of the genes, but not adding any additional structure to the genetic regulatory network

that is present.

4.2 Derivation of the Score Metric

The application of the High-dimensional Bayesian Covariance Selection algorithm to the

random effects formulation requires the derivation of a score metric. Recall the score metric

under the original formulation of High-dimensional Bayesian Covariance Selection:

S0(B|d) =
(

β

1− β

)∑p
i=1 ai p∏

i=1

f(xi|xPi
), (4.6)

where ai = |Pi|,

f(xi|xPi
) =

∫
f(xi|γi, ψi,xPi

)f(γi|ψi)f(ψi)dγidψi

=
Γ

(
n+δ+ai

2

)
Γ

(
δ+ai
2

)
π

n
2 τ

n
2

∣∣∣In − xPi

(
τIai + xT

Pi
xPi

)−1
xT
Pi

∣∣∣ 1
2

×
[
1 +

1

τ
xT
i

{
In − xPi

(
τIai + xT

Pi
xPi

)−1
xT
Pi

}
xi

]−(n+δ+ai
2 )

,
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and, when Pi = ∅,

f(xi|xPi
) ≡ f(xi) =

∫
f(xi|ψi,xPi

)f(ψi)dψi

=
Γ

(
n+δ
2

)
Γ

(
δ
2

)
π

n
2 τ

n
2

(
1 +

1

τ
xT
i xi

)−(n+δ
2 )

.

Recall that δ and τ are hyper parameters of the prior distribution of Σ, the joint covariance

matrix.

The score metric when there exists a more complex mean structure is taken to have the

same form as that given in Equation (4.6). Hence, the calculation of the marginal model

likelihoods f(xi|xPi
) and f(xi), ∀i ∈ {1, 2, . . . , p}, when

xi|xPi
,γi, ψi, bi, φi ∼Nn(xPi

γi +Qbi, ψiI)

and

xi|ψi, bi, φi ∼Nn(Qbi, ψiI)

are required.

The calculation of the marginal model likelihood requires the specification of the joint

distribution of the data for gene i and the parameters relating to that gene, for each

i ∈ {1, 2, . . . , p}. Hence, prior distributions for the parameters γi, ψi, bi and φi need to

be specified. Initially, it will be assumed that the random effects for each gene are indepen-

dent and identically distributed. This assumption will be explored in Chapter 5.

Geiger and Heckerman, [35], show that in order for score equivalence, as defined in Equation

(3.4), to be satisfied under the assumption of a more complex mean structure, it is required

that f(γi, ψi, bi|φi) have a normal-inverse gamma form ∀i ∈ {1, 2, . . . , p}, and that the

random effects for one gene are a priori independent of those for all other genes. Hence, the

prior distributions for γi|ψi and ψi given in (3.15) are retained, and it is supposed that

bi|φi ∼ Nm (0, φiI) , ∀i ∈ {1, 2, . . . , p}.

There are several possible assumptions about the form of the prior distribution of the variance

of the random effects for gene i, f(φi), that may be made. The four assumptions considered

herein are:
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M1 φi is known, implying that bi|φi ≡ bi ∼ N (0, φiIm).

M2 The random effects, bi, vary in the same way as the regression coefficients γi: bi|φi ≡
bi|ψi ∼ N (0, υ−1ψi) .

M3 Following [36], a Uniform(0, κ) prior distribution is placed upon φ
1
2
i , where κ is a specified

upper bound, implying that f(φi) =
1
2κ
φ
− 1

2
i .

M4 φi has an Inverse-Gamma(α, β) prior distribution, with some fixed values of α and β.

For each choice of prior distribution, the marginal model likelihood for each gene can be

calculated, through marginalisation over the required parameters:

f(xi|xPi
) =

∫
f(xi,γi, ψi, bi, φi|xPi

)dγidψidbidφi

=

∫
f(xi|xPi

,γi, ψi, bi, φi)f(γi|ψi)f(ψi)f(bi|φi)f(φi)dγidψidbidφi.

When gene i has no parents, the required marginal model likelihood may be calculated

similarly:

f(xi) =

∫
f(xi, ψi, bi, φi)dψidbidφi

=

∫
f(xi|xPi

, ψi, bi, φi)f(ψi)f(bi|φi)f(φi)dψidbidφi.

Geiger and Heckerman [35] note that when φi �= υ−1ψi, any choice of prior distribution

on φi will result in a marginal model likelihood without a closed form. When this is the

case, Gaussian quadrature, as described in Appendix A, is used to compute the marginal

model likelihoods. Of course, other approximate methods, such as MCMC, could be used to

perform these computations.

Each assumption on the prior form of the distribution of φi results in a different score

metric: let Si(B|d) be the score metric induced by assumption i ∈ {1, 2, 3, 4}. These score

metrics are now derived, and after discussions about posterior sampling of parameters and

the estimation of the joint covariance matrix of a subset of genes, the utility of each score

metric is discussed in Section 4.5.
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4.2.1 Assuming φi known: Derivation of S1

The simplest assumption that may be made about the variance of the random effects is that

it is known. In this case, the required prior distributions are

γi|ψi ∼ Nai(0, τ
−1ψiI),

ψi ∼ Inv Gamma

(
δ + ai
2

,
τ

2

)
, and

bi ∼ Nm(0, φiI),

where φi is a positive constant.

In this case,

f(xi,γi, ψi, bi|xPi
) =(2π)−(

n+ai+m

2 )φ
−m

2
i

(
τ
2

) δ+ai
2

Γ
(
δ+ai
2

)τ ai
2 ψ

−(n+2ai+δ

2
+1)

i exp

{
− τ

2ψi

− 1

2φi

bTi bi

− τ

2ψi

γT
i γi −

1

2ψi

(xi − xPi
γi −Qbi)

T (xi − xPi
γi −Qbi)

}
.

The terms involving bi may be written as

− 1

2ψi

(xi − xPi
γi −Qbi)

T (xi − xPi
γi −Qbi)− 1

2φi

bTi bi

=− 1

2

{
bi −

(
1

φi

I +
1

ψi

QTQ

)−1
1

ψi

QT (xi − xPi
γi)

}T (
1

φi

I +
1

ψi

QTQ

)

×
{
bi −

(
1

φi

I +
1

ψi

QTQ

)−1
1

ψi

QT (xi − xPi
γi)

}

− 1

2ψi

(xi − xPi
γi)

T

{
I − 1

ψi

Q

(
1

φi

I +
1

ψi

QTQ

)−1
QT

}
(xi − xPi

γi) .

The quadratic term in bi can be interpreted as the kernel of a normal distribution and hence,

integrating out bi results in

f(xi,γi, ψi|xPi
) =(2π)−(

n+ai
2 )

(
τ
2

) δ+ai
2

Γ
(
δ+ai
2

)τ ai
2

∣∣∣∣I + φi

ψi

QTQ

∣∣∣∣
− 1

2

ψ
−(n+2ai+δ

2
+1)

i

× exp

[
− τ

2ψi

− τ

2ψi

γT
i γi

− 1

2ψi

(xi − xPi
γi)

T

{
I − 1

ψi

Q

(
1

φi

I +
1

ψi

QTQ

)−1
QT

}
(xi − xPi

γi)

]
.
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Letting

Jψi
1 = I −Q

(
ψi

φi

I +QTQ

)−1
QT , (4.7)

terms involving γi may be written as

− τ

2ψi

γT
i γi −

1

2ψi

(xi − xPi
γi)

T Jψi
1 (xi − xPi

γi)

=− 1

2ψi

{
γi −

(
τI + xT

Pi
Jψi
1 xPi

)−1
xT
Pi
Jψi
1 xi

}T (
τI + xT

Pi
Jψi
1 xPi

)

×
{
γi −

(
τI + xT

Pi
Jψi
1 xPi

)−1
xT
Pi
Jψi
1 xi

}

− 1

2ψi

xT
i

{
Jψi
1 − Jψi

1 xPi

(
τI + xT

Pi
Jψi
1 xPi

)−1
xT
Pi
Jψi
1

}
xi.

The quadratic term in γi is the kernel of a normal distribution in γi, so integrating out γi

gives

f(xi, ψi|xPi
) =(2π)−

n
2

(
τ
2

) δ+ai
2

Γ
(
δ+ai
2

)τ ai
2

∣∣∣∣I + φi

ψi

QTQ

∣∣∣∣
− 1

2 ∣∣∣τI + xT
Pi
Jψi
1 xPi

∣∣∣− 1
2
ψ
−(n+ai+δ

2
+1)

i

× exp

[
− τ

2ψi

− 1

2ψi

xT
i

{
Jψi
1 − Jψi

1 xPi

(
τI + xT

Pi
Jψi
1 xPi

)−1
xT
Pi
Jψi
1

}
xi

]
.

(4.8)

The appearance of ψi in Jψi
1 means that, unlike in Equation (3.16), there does not exist a

closed-form expression for f(xi|xPi
) under this assumption. Hence, f(xi|xPi

) is approxi-

mated through numerical integration over ψi. In particular, q-point Gauss Laguerre quadra-

ture, as described in Appendix A, is used.

If w1, w2, . . . , wq are the weights and u1, u2, . . . , uq the abscissae for such quadrature, then

f(xi|xPi
) ≈

q∑
s=1

wse
usf(xi, us|xPi

). (4.9)

The marginal model likelihood when gene i has no parents also requires calculation. In such

a case,

f(xi, ψi) =(2π)−
n
2

(
τ
2

) δ
2

Γ
(
δ
2

) ∣∣∣∣I + φi

ψi

QTQ

∣∣∣∣
− 1

2

ψ
−(n+δ

2
+1)

i exp

(
− τ

2ψi

− 1

2ψi

xT
i J

ψi
1 xi

)
,
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which, while a more compact expression than that given by Equation (4.8), still does not

admit a closed-form expression for f(xi). Hence, numerical integration, as applied to obtain

an approximation of f(xi|xPi
) in Equation (4.9), is again required:

f(xi) ≈
q∑

s=1

wse
usf(xi, us).

Under this assumption, the score of a Bayesian network B given a data set d is taken to be

S1(B|d) =
(

β

1− β

)∑p
i=1 ai p∏

i=1

{
q∑

s=1

wse
usf(xi, us|xPi

)

}
, (4.10)

where f(xi, us|xPi
) = f(xi, us) when gene i has no parents.

4.2.2 Assuming bi vary as γi: Derivation of S2

Assuming that the random effects bi vary in the same way as the regression coefficents γi

does not require the specification of a new prior distribution for the variance of the random

effects. Under this assumption, φi = υ−1ψi. Hence, the required prior distributions are

γi|ψi ∼ Nai(0, τ
−1ψiI),

bi|ψi ∼ Nm(0, υ
−1ψiI), and

ψi ∼ Inv Gamma

(
δ + ai
2

,
τ

2

)
,

where υ is a positive parameter. If υ = τ , then bi and γi are independent and identically

distributed. Taking υ > τ implies that bi are less variable than γi, while υ < τ implies that

the bi are more variable than the γi. Note that υ is treated in the same way as τ was treated

by Dobra et al. [23, 25]: τ controls how the variance of the γis relates to the variance of the

gene expression values, and is a user-defined value.

Hence,

f(xi,γi, ψi, bi|xPi
) =(2π)−(

n+ai+m

2 )
(
τ
2

) δ+ai
2

Γ
(
δ+ai
2

)τ ai
2 υ

m
2 ψ

−(n+2ai+m+δ

2
+1)

i exp

{
− τ

2ψi

− υ

2ψi

bTi bi

− τ

2ψi

γT
i γi −

1

2ψi

(xi − xPi
γi −Qbi)

T (xi − xPi
γi −Qbi)

}
.
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The terms involving bi may be rearranged to give

− υ

2ψi

bTi bi −
1

2ψi

(xi − xPi
γi −Qbi)

T (xi − xPi
γi −Qbi)

=− 1

2ψi

{
bi −

(
υI +QTQ

)−1
QT (xi − xPi

γi)
}T (

υI +QTQ
) {

bi −
(
υI +QTQ

)−1
QT (xi − xPi

γi)
}

− 1

2ψi

(xi − xPi
γi)

T
{
I −Q

(
υI +QTQ

)−1
QT

}
(xi − xPi

γi) .

Substituting this into f(xi,γi, ψi, bi|xPi
) gives a normal kernel in bi, so integrating over bi

gives

f(xi,γi, ψi|xPi
) =(2π)−(

n+ai
2 )

(
τ
2

) δ+ai
2

Γ
(
δ+ai
2

)τ ai
2 υ

m
2

∣∣υI +QTQ
∣∣− 1

2 ψ
−(n+2a+δ

2
+1)

i

× exp

[
− τ

2ψi

− τ

2ψi

γT
i γi

− 1

2ψi

(xi − xPi
γi)

T
{
I −Q

(
υI +QTQ

)−1
QT

}
(xi − xPi

γi)

]
,

Letting

J2 =I −Q
(
υI +QTQ

)−1
QT , (4.11)

the terms involving γi may be written as

− τ

2ψi

γT
i γi −

1

2ψi

(xi − xPi
γi)

T
{
I −Q

(
υI +QTQ

)−1
QT

}
(xi − xPi

γi)

=− 1

2ψi

{
γi −

(
τI + xT

Pi
J2xPi

)−1
xT
Pi
J2xi

}T (
τI + xT

Pi
J2xPi

) {
γi −

(
τI + xT

Pi
J2xPi

)−1
xT
Pi
J2xi

}
− 1

2ψi

xT
i

{
J2 − J2xPi

(
τI + xT

Pi
J2xPi

)−1
xT
Pi
J2

}
xi,

which, when substituted back into f(xi,γi, ψi|xPi
), is the kernel of a normal distribution in

γi. Integrating over γi then gives

f(xi, ψi|xPi
) =(2π)−

n
2

(
τ
2

) δ+ai
2

Γ
(
δ+ai
2

)τ ai
2 υ

m
2

∣∣υI +QTQ
∣∣− 1

2
∣∣τI + xT

Pi
J2xPi

∣∣− 1
2 ψ

−(n+ai+δ

2
+1)

i

× exp

[
− τ

2ψi

− 1

2ψi

xT
i

{
J2 − J2xPi

(
τI + xT

Pi
J2xPi

)−1
xT
Pi
J2

}
xi

]
.

This is an Inverse-Gamma kernel in ψi, with

α =
n+ ai + δ

2

β =
τ

2
+

1

2
xT
i

{
J2 − J2xPi

(
τI + xT

Pi
J2xPi

)−1
xT
Pi
J2

}
xi
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so integrating over ψi gives

f(xi|xPi
) =(2π)−

n
2
Γ

(
δ+ai+n

2

)
Γ

(
δ+ai
2

) (τ
2

) δ+ai
2

τ
ai
2 υ

m
2

∣∣υI +QTQ
∣∣− 1

2
∣∣τI + xT

Pi
J2xPi

∣∣− 1
2

×
[
τ

2
+

1

2
xT
i

{
J2 − J2xPi

(
τI + xT

Pi
J2xPi

)−1
xT
Pi
J2

}
xi

]−( δ+ai+n

2 )

=π−
n
2 τ

ai−n

2
Γ

(
δ+ai+n

2

)
Γ

(
δ+ai
2

) υ
m
2

∣∣υI +QTQ
∣∣− 1

2
∣∣τI + xT

Pi
J2xPi

∣∣− 1
2

×
[
1 +

1

τ
xT
i

{
J2 − J2xPi

(
τI + xT

Pi
J2xPi

)−1
xT
Pi
J2

}
xi

]−( δ+ai+n

2 )
. (4.12)

Hence, when bi ∼ Nm(0, υ
−1ψiI), xi|xPi

∼ tδ+ai

(
0,Σxi|xPi

)
, with

Σxi|xPi
=

τ

δ + ai

{
J2 − J2xPi

(
τI + xT

Pi
J2xPi

)−1
xT
Pi
J2

}−1
.

The case when xi has no parents also needs to be considered. In such a case, ai = 0, and

xi ∼ tδ (0,Σxi
), with

Σxi
=

τ

δ
J−12 =

τ

δ

{
I −Q

(
υI +QTQ

)−1
QT

}−1
.

Under this assumption, the score of a Bayesian network B given a data set d has a closed

form:

S2(B|d) =
(

β

1− β

)∑p
i=1 ai p∏

i=1

f(xi|xPi
), (4.13)

where

f(xi|xPi
) =π−

n
2 τ

ai−n

2
Γ

(
δ+ai+n

2

)
Γ

(
δ+ai
2

) υ
m
2

∣∣υI +QTQ
∣∣− 1

2
∣∣τI + xT

Pi
J2xPi

∣∣− 1
2

×
[
1 +

1

τ
xT
i

{
J2 − J2xPi

(
τI + xT

Pi
J2xPi

)−1
xT
Pi
J2

}
xi

]−( δ+ai+n

2 )
,

and, when Pi = ∅

f(xi|xPi
) =f(xi) = π−

n
2 τ−

n
2
Γ

(
δ+n
2

)
Γ

(
δ
2

) υ
m
2

∣∣υI +QTQ
∣∣− 1

2

(
1 +

1

τ
xT
i J2xi

)−( δ+n
2 )

.
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4.2.3 Assuming φ
1
2

i ∼ Uniform (0, κ): Derivation of S3

In [36], Gelman discusses possible choices of prior distributions for variance parameters

and suggests a uniform prior on the square root of the variance. Assuming such a prior

distribution on φ
1/2
i , the full set of prior distributions are

γi|ψi ∼ Nai(0, τ
−1ψiI),

ψi ∼ Inv Gamma

(
δ + ai
2

,
τ

2

)
,

bi|φi ∼ Nm(0, φiI), and

φ
1
2
i ∼ Uniform(0, κ).

This implies that f(φi) =
1
2κ
φ
− 1

2
i , φi ∈ (0, κ2), so that the joint distribution is

f(xi,γi, ψi, bi, φi|xPi
)

=(2π)−(
n+ai+m

2 )(2κ)−1
(
τ
2

) δ+ai
2

Γ
(
δ+ai
2

)τ ai
2 φ

−(m+1
2 )

i ψ
−(n+2ai+δ

2
+1)

i

× exp

{
− τ

2ψi

− 1

2φi

bTi bi −
τ

2ψi

γT
i γi −

1

2ψi

(xi − xPi
γi −Qbi)

T (xi − xPi
γi −Qbi)

}
.

After integrating over bi and γi,

f(xi,ψi, φi|xPi
)

=
(2π)−

n
2

2κ

(
τ
2

) δ+ai
2

Γ
(
δ+ai
2

)τ ai
2

∣∣∣∣I + φi

ψi

QTQ

∣∣∣∣
− 1

2 ∣∣∣τI + xT
Pi
Jψi,φi
1 xPi

∣∣∣− 1
2
φ
− 1

2
i ψ

−(n+ai+δ

2
+1)

i

× exp

[
− τ

2ψi

− 1

2ψi

xT
i

{
Jψi,φi
1 − Jψi,φi

1 xPi

(
τI + xT

Pi
Jψi,φi
1 xPi

)−1
xT
Pi
Jψi,φi
1

}
xi

]
,

(4.14)

where

Jψi,φi
1 =I −Q

(
ψi

φi

I +QTQ

)−1
QT . (4.15)

Again, due to the appearance of ψi and φi in Jψi,φi
1 , evaluation of f(xi|xPi

) requires nu-

merical integration over both ψi and φi. Gauss Laguerre quadrature is used over ψi, and

Gauss Legendre quadrature is used to marginalise over the variance of the random effects.
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Since Gauss Legendre quadrature performs numerical integration over the range (−1, 1), the

following change of variables is required:

φi =
κ2

2
(1 + t), t ∈ (−1, 1).

This implies that

f(xi,ψi, t|xPi
)

=
κ2

2
f

(
xi, ψi,

κ2

2
(1 + t)|xPi

)

=2−
3
2 (2π)−

n
2

(
τ
2

) δ+ai
2

Γ
(
δ+ai
2

)τ ai
2

∣∣∣∣I + κ2(1 + t)

2ψi

QTQ

∣∣∣∣
− 1

2 ∣∣τI + xT
Pi
Jψi,t∗ xPi

∣∣− 1
2 (1 + t)−

1
2

× ψ
−(n+ai+δ

2
+1)

i exp

[
− τ

2ψi

− 1

2ψi

xT
i

{
Jψi,t∗ − Jψi,t∗ xPi

(
τI + xT

Pi
Jψi,t∗ xPi

)−1
xT
Pi
Jψi,t∗

}
xi

]
,

where

Jψi,t∗ = I −Q

(
2ψi

κ2(1 + t)
I +QTQ

)−1
QT . (4.16)

Hence, if w1, w2, . . . , wq1 are the weights and u1, u2, . . . , uq1 the abscissae for q1-point Gauss

Laguerre quadrature, and v1, v2, . . . , vq2 the weights and t1, t2, . . . , tq2 the abscissae for q2-

point Gauss Legendre quadrature, then

f(xi|xPi
) ≈

q1∑
s=1

q2∑
h=1

wsvhe
usf(xi, us, th|xPi

). (4.17)

When gene i has no parents,

f(xi, ψi, t) =2−
3
2 (2π)−

n
2

(
τ
2

) δ
2

Γ
(
δ
2

) ∣∣∣∣I + κ2(1 + t)

2ψi

QTQ

∣∣∣∣
− 1

2

(1 + t)−
1
2

× ψ
−(n+δ

2
+1)

i exp

(
− τ

2ψi

− 1

2ψi

xT
i J

ψi,t∗ xi

)
,

(4.18)

so f(xi) is obtained via numerical integration, as f(xi|xPi
) was in Equation (4.17):

f(xi) ≈
q1∑
s=1

q2∑
h=1

wsvhe
usf(xi, us, th).

This assumption gives rise to the following score metric:

S3(B|d) =
(

β

1− β

)∑p
i=1 ai p∏

i=1

{
q1∑
s=1

q2∑
h=1

wsvhe
usf(xi, us, th|xPi

)

}
, (4.19)

where f(xi, us, th|xPi
) = f(xi, us, th) when gene i has no parents.
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4.2.4 Assuming φi ∼ Inverse Gamma (α, β): Derivation of S4

A typical choice for a non-informative prior distribution on a variance parameter is the

Inverse-Gamma (α, β) distribution, with α and β small. Under this assumption, the prior

distributions are

γi|ψi ∼ Nai(0, τ
−1ψiI),

ψi ∼ Inv Gamma

(
δ + ai
2

,
τ

2

)
,

bi|φi ∼ Nm(0, φiI), and

φi ∼ Inv Gamma(α, β),

where α and β are positive constants.

The joint distribution is then

f(xi,γi, ψi, bi, φi|xPi
)

=(2π)−(
n+ai+m

2 )
(
τ
2

) δ+ai
2

Γ
(
δ+ai
2

)τ ai
2

βα

Γ (α)
φ
−(α+m

2
+1)

i ψ
−(n+2ai+δ

2
+1)

i exp

{
− τ

2ψi

− β

φi

}

× exp

{
− 1

2φi

bTi bi −
τ

2ψi

γT
i γi −

1

2ψi

(xi − xPi
γi −Qbi)

T (xi − xPi
γi −Qbi)

}
.

After integrating over bi and γi,

f(xi,ψi, φi|xPi
)

=(2π)−
n
2

(
τ
2

) δ+ai
2

Γ
(
δ+ai
2

)τ ai
2

βα

Γ (α)

∣∣∣∣I + φi

ψi

QTQ

∣∣∣∣
− 1

2 ∣∣∣τI + xT
Pi
Jψi,φi
1 xPi

∣∣∣− 1
2
φ
−(α+1)
i ψ

−(n+ai+δ

2
+1)

i

× exp

[
− β

φi

− τ

2ψi

− 1

2ψi

xT
i

{
Jψi,φi
1 − Jψi,φi

1 xPi

(
τI + xT

Pi
Jψi,φi
1 xPi

)−1
xT
Pi
Jψi,φi
1

}
xi

]
,

(4.20)

where Jψi,φi
1 is as given in (4.15).

The appearance of ψi and φi in Jψi,φi
1 means that, as in the case of S1, numerical integration

is required to evaluate S3. Two-dimensional Gauss Laguerre quadrature is then used to

marginalise over ψi and φi. If w1, w2, . . . , wq are the weights and u1, u2, . . . , uq the abscissae

for q-point Gauss Laguerre quadrature, then

f(xi|xPi
) ≈

q∑
s=1

q∑
h=1

wswhe
useuhf(xi, us, uh|xPi

). (4.21)
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When gene i has no parents,

f(xi, ψi, φi) =(2π)−
n
2

(
τ
2

) δ
2

Γ
(
δ
2

) βα

Γ (α)

∣∣∣∣I + φi

ψi

QTQ

∣∣∣∣
− 1

2

φ
−(α+1)
i ψ

−(n+δ
2

+1)
i

× exp

(
− β

φi

− τ

2ψi

− 1

2ψi

xT
i J

ψi,φi
1 xi

)
.

Hence, numerical integration is also required to obtain an estimate of f(xi):

f(xi) ≈
q∑

s=1

q∑
h=1

wswhe
useuhf(xi, us, uh).

The score metric under this assumption is then

S4(B|d) =
(

β

1− β

)∑p
i=1 ai p∏

i=1

{
q∑

s=1

q∑
h=1

wswhe
useuhf(xi, us, uh|xPi

)

}
, (4.22)

where f(xi, us, uh|xPi
) = f(xi, us, uh) when gene i has no parents.

4.2.5 The score metrics when φi is small relative to ψi

It is interesting to investigate the behaviours of the above score metrics when the variance

of the random effects is small relative to the variance of the gene expression values given the

random effects. That is, the behaviour of these score metrics when φi � ψi is of interest.

When φi is small relative to ψi, this implies that any random effects that may be present

do not contribute much to the variability of gene expression values. Note that if φi = 0, ∀i,
then the samples are again independent and identically distributed, and may be analysed

using the original score metric.

The behaviour of the score metrics developed above as φi

ψi
→ 0 is now considered.

When φi is assumed known for all i, from Equation (4.8) it can be seen that φi enters the

marginal model likelihood of the ith gene through the matrices

I +
φi

ψi

QTQ and I −Q

(
ψi

φi

I +QTQ

)−1
QT .

Note that

I −Q

(
ψi

φi

I +QTQ

)−1
QT = I − φi

ψi

Q

(
I +

φi

ψi

QTQ

)−1
QT ,
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so that as φi

ψi
→ 0

I +
φi

ψi

QTQ → I

and

I −Q

(
ψi

φi

I +QTQ

)−1
QT → I.

This implies that when φi is known, as
φi

ψi
→ 0,

f(xi, ψi|xPi
) = (2π)−(

n
2 )

(
τ
2

) δ+ai
2

Γ
(
δ+ai
2

)τ ai
2

∣∣τIai + xT
Pi
xPi

∣∣− 1
2

× ψ
−(n+ai+δ

2
+1)

i exp

(
− 1

2ψi

[
τ + xT

i

{
In − xPi

(
τIai + xT

Pi
xPi

)−1
xT
Pi

}
xi

])
,

(4.23)

which is identical to the distribution of xi, ψi|xPi
when no random effects are present. Hence,

integrating over ψi gives the same marginal model likelihood for gene i as was calculated

when no random effects were present, given in Equation (3.17).

Under the assumption that φi = υ−1ψi,
φi

ψi
→ 0 if and only if υ−1 → 0. Examination of the

marginal model likelihood of gene i under this assumption, given in Equation (4.12), shows

that υ appears in the marginal model likelihood in the terms

υ
m
2

∣∣υI +QTQ
∣∣− 1

2 and I −Q
(
υI +QTQ

)−1
QT .

These terms may be written as follows:

υ
m
2

∣∣υI +QTQ
∣∣− 1

2 =
∣∣I + υ−1QTQ

∣∣− 1
2

I −Q
(
υI +QTQ

)−1
QT =I − υ−1Q

(
I + υ−1QTQ

)−1
QT ,

so that as υ−1 → 0

υ
m
2

∣∣υI +QTQ
∣∣− 1

2 → 1,

I −Q
(
υI +QTQ

)−1
QT → I.

Implying that

f(xi|xPi
) →π−

n
2 τ

ai−n

2
Γ

(
δ+ai+n

2

)
Γ

(
δ+ai
2

) ∣∣τI + xT
Pi
xPi

∣∣− 1
2

×
[
1 +

1

τ
xT
i

{
I − xPi

(
τI + xT

Pi
xPi

)−1
xT
Pi

}
xi

]−( δ+ai+n

2 )
,
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which is the same marginal model likelihood as was obtained in the absence of random

effects.

When a uniform prior distribution is placed on φ
1
2
i , it was shown in Section 4.2.3 that

f(xi,ψi, φi|xPi
)

=
(2π)−

n
2

2κ

(
τ
2

) δ+ai
2

Γ
(
δ+ai
2

)τ ai
2

∣∣∣∣I + φi

ψi

QTQ

∣∣∣∣
− 1

2 ∣∣∣τI + xT
Pi
Jψi,φi
1 xPi

∣∣∣− 1
2
φ
− 1

2
i ψ

−(n+ai+δ

2
+1)

i

× exp

[
− τ

2ψi

− 1

2ψi

xT
i

{
Jψi,φi
1 − Jψi,φi

1 xPi

(
τI + xT

Pi
Jψi,φi
1 xPi

)−1
xT
Pi
Jψi,φi
1

}
xi

]
.

Hence, as φi

ψi
→ 0,

f(xi, ψi, φi|xPi
) → (2π)−

n
2

2κ

(
τ
2

) δ+ai
2

Γ
(
δ+ai
2

)τ ai
2

∣∣τI + xT
Pi
xPi

∣∣− 1
2 φ

− 1
2

i ψ
−(n+ai+δ

2
+1)

i

× exp

[
− τ

2ψi

− 1

2ψi

xT
i

{
I − xPi

(
τI + xT

Pi
xPi

)−1
xT
Pi

}
xi

]
.

Recall from Section 4.2.3 that if φ
1
2
i ∼ Uniform(0, κ), then f(φi) =

1
2κ
φ
− 1

2
i . Hence, integrating

over φi in the above equation gives f(xi, ψi|xPi
) as in Equation (4.23).

When it is assumed that φi ∼ Inverse Gamma(α, β), from Equation (4.20),

f(xi,ψi, φi|xPi
)

=(2π)−
n
2

(
τ
2

) δ+ai
2

Γ
(
δ+ai
2

)τ ai
2

βα

Γ (α)

∣∣∣∣I + φi

ψi

QTQ

∣∣∣∣
− 1

2 ∣∣∣τI + xT
Pi
Jψi,φi
1 xPi

∣∣∣− 1
2
φ
−(α+1)
i ψ

−(n+ai+δ

2
+1)

i

× exp

[
− β

φi

− τ

2ψi

− 1

2ψi

xT
i

{
Jψi,φi
1 − Jψi,φi

1 xPi

(
τI + xT

Pi
Jψi,φi
1 xPi

)−1
xT
Pi
Jψi,φi
1

}
xi

]
,

so that as φi

ψi
→ 0,

f(xi, ψi, φi|xPi
) →(2π)−

n
2

(
τ
2

) δ+ai
2

Γ
(
δ+ai
2

)τ ai
2

βα

Γ (α)

∣∣τI + xT
Pi
xPi

∣∣− 1
2 φ

−(α+1)
i ψ

−(n+ai+δ

2
+1)

i

× exp

[
− β

φi

− τ

2ψi

− 1

2ψi

xT
i

{
I − xPi

(
τI + xT

Pi
xPi

)−1
xT
Pi

}
xi

]
.

In this equation, terms involving φi have the form of an Inverse Gamma kernel, so integrating

over φi gives f(xi, ψi|xPi
) as in Equation (4.23). Hence, when φi has an Inverse Gamma

distribution, and φi is small relative to ψi, the marginal model likelihood of gene i has the

same form as when no random effects are present.
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Hence, for each prior assumption on φi made in Section 4.2, the marginal model likelihood of

gene i as φi

ψi
→ 0 reduces to the marginal model likelihood of gene i when random effects are

absent. The implication is that when the variance of the random effects is small, the Bayesian

networks obtained by the High-dimensional Bayesian Covariance Selection algorithm when

random effects are ignored will be similar to those obtained when random effects are included

in the analysis. This is because when φi is small ∀i, the samples obtained can be considered

to be similar to independent and identically distributed samples.

4.3 Estimation of the Joint Covariance Matrix

The score functions derived in Sections 4.2.1–4.2.3 may be incorporated in the High-dimensional

Bayesian Covariance Selection algorithm, allowing the estimation of Gaussian graphical mod-

els for high-dimensional data sets that are not independent and identically distributed sam-

ples. The implementation is discussed in Section 4.6. Given a data set consisting of ex-

pression levels for p genes, the High-dimensional Bayesian Covariance Selection program will

produce an ordering of the genes, and a list of edges in the graph. Without loss of generality,

we will suppose that the ordering of the genes that has been produced is 1, 2, . . . , p.

The joint covariance matrix of all genes is of interest. However, typically, the number of

genes in the data set will be very large, so the joint covariance matrix of all genes will be

too large to deal with. However, covariance matrices of small subsets of genes may be dealt

with easily. To estimate such structures, the structural form of all genes must be considered.

Consider the regression model for gene i, assuming the presence of m random effects, for a

given sample k:

Xik =
∑
j∈Pi

γijXjk +
m∑
r=1

qrkbir + εi, εi ∼ N(0, ψi), bi ∼ Nm (0, φiI) . (4.24)

The structural form of these equations may be written as

X∗ =Γ∗X∗ +Q∗b+ ε, ε ∼ Npn(0,Ψ), b ∼ Npm(0,Φ). (4.25)

The similarity of this equation to Equation (2.5) must be noted. Note also that when

the variables in b are discrete, the conditional distribution of X∗ given b is the conditional
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Gaussian distribution, as described by Lauritzen and Wermuth, [51]. Edwards, [26], provided

a program for the estimation of conditional independence relationships for these conditional

Gaussian models, and, with others in [28], developed programs for the estimation of such

relationships for high-dimensional data. In the remainder of this thesis, the High-dimensional

Bayesian Covariance Selection algorithm is generalised directly.

In Equation (4.25),

X∗ =

⎛
⎜⎜⎜⎜⎜⎝

X1

X2

...

Xn

⎞
⎟⎟⎟⎟⎟⎠ = (X11, X21, . . . , Xp1, X12, X22, . . . , Xp2, . . . . . . , X1n, X2n, . . . , Xpn)

T ,

Γ∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 γ12 γ13 · · · γ1p 0 0 0 · · · 0 · · · · · · 0 0 0 · · · 0

0 0 γ23 · · · γ2p 0 0 0 · · · 0 · · · · · · 0 0 0 · · · 0
...

0 0 0 · · · 0 0 0 0 · · · 0 · · · · · · 0 0 0 · · · 0

0 0 0 · · · 0 0 γ12 γ13 · · · γ1p · · · · · · 0 0 0 · · · 0

0 0 0 · · · 0 0 0 γ23 · · · γ2p · · · · · · 0 0 0 · · · 0
...

0 0 0 · · · 0 0 0 0 · · · 0 · · · · · · 0 0 0 · · · 0
...
...

0 0 0 · · · 0 0 0 0 · · · 0 · · · · · · 0 γ12 γ13 · · · γ1p

0 0 0 · · · 0 0 0 0 · · · 0 · · · · · · 0 0 γ23 · · · γ2p
...

0 0 0 · · · 0 0 0 0 · · · 0 · · · · · · 0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=In ⊗

⎛
⎜⎜⎜⎜⎜⎝

0 γ12 γ13 · · · γ1p

0 0 γ23 · · · γ2p
...

0 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎠

=In ⊗ Γ

where γij is the coefficient of gene j in the regression of gene i, and Γ is as in Equation (3.2).
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Q∗ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q11 0 0 · · · 0 q21 0 0 · · · 0 · · · · · · qm1 0 0 · · · 0

0 q11 0 · · · 0 0 q21 0 · · · 0 · · · · · · 0 qm1 0 · · · 0
...

0 0 0 · · · q11 0 0 0 · · · q21 · · · · · · 0 0 0 · · · qm1

q12 0 0 · · · 0 q22 0 0 · · · 0 · · · · · · qm2 0 0 · · · 0

0 q12 0 · · · 0 0 q22 0 · · · 0 · · · · · · 0 qm2 0 · · · 0
...

0 0 0 · · · q12 0 0 0 · · · q22 · · · · · · 0 0 0 · · · qm2

...

...

q1n 0 0 · · · 0 q2n 0 0 · · · 0 · · · · · · qmn 0 0 · · · 0

0 q1n 0 · · · 0 0 q2n 0 · · · 0 · · · · · · 0 qmn 0 · · · 0
...

0 0 0 · · · q1n 0 0 0 · · · q2n · · · · · · 0 0 0 · · · qmn

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

q11 q21 · · · qm1

q12 q22 · · · qm2

...
...

...

q1n q2n · · · qmn

⎞
⎟⎟⎟⎟⎟⎠ ⊗ Ip

=Q⊗ Ip

where Q is the same matrix as given in Equation (4.4), and

b =(b11, b21, . . . , bp1, b21, b22, . . . , b2p, . . . . . . , b1m, b2m, . . . , bpm)
T

Φ =Im ⊗ diag (φ1, φ2, . . . , φp)

ε =(ε1, ε2, . . . , εp, ε1, ε2, . . . , εp, . . . . . . , ε1, ε2, . . . , εp)
T

Ψ =In ⊗ diag (ψ1, ψ2, . . . , ψp) .

When bi ∼ Nm (0, υ−1ψiI)

Φ =υ−1Im ⊗ diag (ψ1, ψ2, . . . , ψp) .

Equation (4.25) may be rearranged to obtain

X∗ =(I − Γ∗)−1 (Q∗b+ ε) ,
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which implies that

E [X∗] = (I − Γ∗)−1 E [Q∗b+ ε]

= (I − Γ∗)−1 (Q∗E [b] + E [ε])

=0

var (X∗) = (I − Γ∗)−1 var (Q∗b+ ε) (I − Γ∗)−T

=(I − Γ∗)−1 {var (Q∗b) + var (ε)} (I − Γ∗)−T

=(I − Γ∗)−1
(
Q∗ΦQ∗T +Ψ

)
(I − Γ∗)−T .

Hence,

X∗ ∼Npn (0,Σ
∗) ,

with

Σ∗ =(I − Γ∗)−1
(
Q∗ΦQ∗T +Ψ

)
(I − Γ∗)−T , (4.26)

which may be estimated, given estimates of Γ∗, Φ and Ψ.

This joint covariance matrix may also be decomposed as

Σ∗ = var (X∗) = E [var (X∗|b)] + var (E [X∗|b])
= E

[
(I − Γ∗)−1 Ψ(I − Γ∗)−T

]
+ var

(
(I − Γ∗)−1 Q∗b

)
= (I − Γ∗)−1 Ψ(I − Γ∗)−T + (I − Γ∗)−1 Q∗ΦQ∗T (I − Γ∗)−T .

Note that the first component of this variance matrix is of the same form as the variance

matrix obtained when no random effects are present. The second component contains the

variability of the gene expression values that can be explained by the presence of random

effects, and also encodes the dependence between samples.

It can be seen that when the variances of the random effects are small, the contribution of

this second component to the joint covariance matrix will be negligible. Hence, when random

effects do not vary much, ignoring the presence of random effects will not affect the joint

covariance matrix to a great degree. Conversely, when the variance of the random effects is

large, neglecting to include such effects in the model will result in underestimation of the

elements of the matrix.
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The assumption of sparsity in the original formulation of High-dimensional Bayesian Co-

variance Selection carries over to the random effects formulation. Sparsity in the original

formulation implies that Γ will be a sparse upper-triangular matrix, with zeros on the diag-

onal. In the random effects formulation, the sparsity assumption again implies that Γ is a

sparse upper-triangular matrix, with zeros on the diagonal. This, in turn, implies that Γ∗

is a sparse upper-triangular matrix, with zeros on the diagonal. Hence, the lower triangular

matrix

L = (I − Γ∗)T
(
Q∗ΦQ∗T +Ψ

)−1/2
(4.27)

will be sparse, and the concentration matrix, Ω∗ = Σ∗−1, has a Cholesky decomposition

Ω∗ = LLT .

Hence, for a given subset of genes U , Σ∗U , the joint variance matrix of the genes in U , is

given by

Σ∗U = L−TU L−1U ,

where LU consists of the rows in L corresponding to the variables in U .

By Equations (4.26) and (4.27), it can be seen that estimation of Σ∗U requires estimates of

γij, ψi and φi, for i ∈ U and j such that j ∈ Pi ∀i ∈ U . Schemes for obtaining such posterior

estimates are discussed in Section 4.4.

4.4 Posterior Estimation of Parameters

Posterior distributions of the parameters γi, ψi, bi and φi allow a detailed analysis of the

relationships between the expression levels of different genes and of the relationships between

random effects and these expression levels. As discussed above, posterior estimates of γi,

ψi and φi, ∀i ∈ U , are required to obtain estimates of ΣRE;U , the joint covariance matrix of

genes of interest. Note that due to the posterior independence of the parameters associated

with each gene,

f (γi, ψi, bi, ψi, ∀i ∈ U |d) =
∏
i∈U

f (γi, ψi, bi, ψi|d) ,
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so that posterior estimates of the parameters associated with each gene may be obtained

separately.

When it is assumed that the random effects bi vary as γi, the posterior distributions of

γi|ψi, bi|ψi and ψi all have closed form. When φi is assumed to be known, only the pos-

terior distribution of γi|ψi has a closed form, with the posterior distributions of bi and ψi

requiring numerical integration. Under the remaining two assumptions, none of the posterior

distributions of γi|ψi, ψi, bi|φi or φi have closed forms, again requiring the use of numerical

integration. Hence, excepting the case when bi has variance proportional to ψi, it is cumber-

some to sample from the posterior distributions that may be of the most interest. Instead,

Gibbs sampling is used to obtain samples from the joint posterior distribution of γi, ψi, bi

and φi.

To perform Gibbs sampling, the following conditional posterior distributions are required:

γi|xi, ψi, bi, φi,xPi

ψi|xi,γi, bi, φi,xPi

bi|xi,γi, ψi, φi,xPi

φi|xi,γi, ψi, bi,xPi
. (4.28)

These distributions are derived under the assumptions of known φi, φi ∼ Inverse Gamma(α, β),

and φ
1
2
i ∼ Uniform(0, κ). Assuming that bi varies as γi results in closed forms for posterior

distributions of interest, and as such, Gibbs sampling is not required under that assumption.

The sampling scheme given these distributions is discussed in Section 4.4.5.
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4.4.1 Posteriors assuming φi known

The required conditional posterior distributions for Gibbs sampling under this assumption

are:

γi|xi, ψi, bi,xPi
∼Nai

((
τI + xT

Pi
xPi

)−1
xT
Pi
(xi −Qbi) , ψi

(
τI + xT

Pi
xPi

)−1)
, (4.29)

ψi|xi,γi, bi,xPi
∼Inv-Gamma (αψi

, βψi
) ; (4.30)

αψi
=
n+ 2ai + δ

2
,

βψi
=
τ

2
+

τ

2
γT
i γi +

1

2
(xi − xPi

γi −Qbi)
T (xi − xPi

γi −Qbi) ,

bi|xi,γi, ψi,xPi
∼Nm

((
ψi

φi

I +QTQ

)−1
QT (xi − xPi

γi) ,

(
1

φi

I +
1

ψi

QTQ

)−1)
.

When xi has no parents in the graph, that is, when ai = 0, the required posterior distribu-

tions are

ψi|xi, bi ∼Inv-Gamma

(
n+ δ

2
,
τ

2
+

1

2
(xi −Qbi)

T (xi −Qbi)

)
; (4.31)

bi|xi, ψi ∼Nm

((
ψi

φi

I +QTQ

)−1
QTxi,

(
1

φi

I +
1

ψi

QTQ

)−1)
.

4.4.2 Posteriors assuming bi vary as γi

The posterior distributions under this assumption have closed form expressions:

γi|xi, ψi,xPi
∼ Nai

((
τI + xT

Pi
J2xPi

)−1
xT
Pi
J2xi, ψi

(
τI + xT

Pi
J2xPi

)−1)
,

where J2 is as given in Equation (4.11). Further,

bi|xi, ψi,xPi
∼ Nm

((
υI +QTJ∗2Q

)−1
QTJ∗2xi, ψi

(
υI +QTJ∗2Q

)−1)
,

where

J∗2 = I − xPi

(
τI + xT

Pi
xPi

)−1
xT
Pi
,

and

ψi|xi,xPi
∼ Inv Gamma

(
n+ ai + δ

2
,
τ

2
+

1

2
xT
i

{
J2 − J2xPi

(
τI + xT

Pi
J2xPi

)−1
xT
Pi
J2

}
xi

)
.
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When xi has no parents in the graph,

bi|xi, ψi ∼ Nm

((
υI +QTQ

)−1
QTxi, ψi

(
υI +QTQ

)−1)
,

and

ψi|xi ∼ Inv Gamma

(
n+ δ

2
,
τ

2
+

1

2
xT
i J2xi

)
.

Hence, Gibbs sampling is not required under this assumption, as these posterior distributions

provide all of the required information about the parameters, and are easily sampled from.

However, for the purposes of comparison, the conditional posterior distributions in Equation

(4.28) are derived.

γi|xi, ψi, bi,xPi
∼Nai

((
τI + xT

Pi
xPi

)−1
xT
Pi
(xi −Qbi) , ψi

(
τI + xT

Pi
xPi

)−1)
,

ψi|xi,γi, bi,xPi
∼Inv-Gamma (αψi

, βψi
) ;

αψi
=
n+ 2ai +m+ δ

2
,

βψi
=
τ

2
+

υ

2
bTi bi +

τ

2
γT
i γi +

1

2
(xi − xPi

γi −Qbi)
T (xi − xPi

γi −Qbi) ,

bi|xi,γi, ψi,xPi
∼Nm

((
υI +QTQ

)−1
QT (xi − xPi

γi) , ψi

(
υI +QTQ

)−1)
.

4.4.3 Posteriors assuming φ
1
2

i ∼ Uniform (0, κ)

Under this assumption, f(γi|xi, ψi, bi, φi,xPi
) = f(γi|xi, ψi, bi,xPi

) and has the form given

in (4.29). Similarly, f(ψi|xi,γi, bi, φi,xPi
) = f(ψi|xi,γi, bi,xPi

), and has the form given in

(4.30). The conditional posterior distributions of the random effect parameters are

bi|xi,γi, ψi, φi,xPi
∼Nm

((
ψi

φi

I +QTQ

)−1
QT (xi − xPi

γi) ,

(
1

φi

I +
1

ψi

QTQ

)−1)
,

(4.32)

φi|xi,γi, ψi, bi,xPi
≡φi|bi ∼ Inv Gamma

(
m− 1

2
,
1

2
bTi bi

)
. (4.33)

Note that the variance of this distribution only exists when at least 6 random effects are

present, hence, the use of S3 is only recommended when m ≥ 6.
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When xi has no parents, the conditional posterior for φi is unchanged, the conditional

posterior for ψi is as given in Equation (4.31), and the conditional posterior of bi is

bi|xi, ψi, φi ∼Nm

((
ψi

φi

I +QTQ

)−1
QTxi,

(
1

φi

I +
1

ψi

QTQ

)−1)
. (4.34)

4.4.4 Posteriors assuming φi ∼ Inverse Gamma (α, β)

When assuming this form of the prior distribution of the variance of the random effects, the

distributions of γi|xi, ψi, bi, φi,xPi
, ψi|xi,γi, bi, φi,xPi

and bi|xi,γi, ψi, φi,xPi
are as given

under the assumption that φ
1/2
i has a Uniform distribution. That is, the distributions are

as given by (4.29), (4.30) and (4.32). However, the posterior distribution of φi given all

remaining parameters is now given by

φi|xi,γi, ψi, bi,xPi
≡ φi|bi ∼ Inv Gamma

(
m− 2α

2
,
1

2
bTi bi + β

)
. (4.35)

Note that the variance of this distribution only exists when

m− 2α

2
> 2,

which will only occur when m > 4 + 2α. Hence, the use of an Inverse Gamma prior when

there are fewer than 5 random effects give no information on how the variances of the given

random effects vary, and the use of this score metric when m < 5 is not recommended. This

is consistent with the conclusions drawn by Gelman [36].

Again, when xi has no parents, the conditional posterior for φi is unchanged, and the condi-

tional posteriors for ψi and bi are as they were under the assumption that φ
1/2
i has a Uniform

distribution.

4.4.5 Gibbs sampling from the joint posterior distribution

Given distributions for

γi|xi, ψi, bi, φi,xPi
≡ γi|xi, ψi, bi,xPi

ψi|xi,γi, bi, φi,xPi
≡ ψi|xi,γi, bi,xPi

bi|xi,γi, ψi, φi,xPi

φi|xi,γi, ψi, bi,xPi
≡ φi|bi, (4.36)
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the joint posterior distribution f(γi, ψi, bi, φi|xi,xPi
) can be sampled from.

To perform such sampling, let θd be sample d of parameter θ, where θ ∈ {γi, ψi, bi, φi}. To
obtain a sample of size N from f(γi, ψi, bi, φi|xi,xPi

):

1. Initialize the sampling by taking arbitrary values γ0
i , ψ

0
i , b

0
i and φ0

i .

2. For d = 1, 2, . . . , N :

(a) sample γd
i from f(γi|xi, ψ

d−1
i , bd−1i ,xPi

),

(b) sample ψd
i from f(ψi|xi,γ

d
i , b

d−1
i ,xPi

),

(c) sample bdi from f(bi|xi,γ
d
i , ψ

d
i , φ

d−1
i ,xPi

),

(d) sample φd
i from f(φi|bdi ).

If φi is assumed to be known, the sampling proceeds as above, setting φd
i = φi, ∀d ∈

{0, 1, . . . , N}, and omitting step 2(d). Similarly, if xi has no parents, the sampling proceeds

by ignoring references to γi, and using f(ψi|xi, b
d−1
i ) and f(bi|xi, ψ

d
i , φ

d−1
i ) in place of the

distributions given in steps 2(b) and 2(c).

4.5 Discussion

In the discussion of the score metrics S1, S2, S3 and S4, derived in Section 4.2, there are two

factors that must be considered. The first factor is how easily the prior distribution of the

variance of the random effects may be specified, while the second factor is the speed at which

the score of a particular Bayesian network may be computed given this prior specification.

The four choices for the prior distribution of the variance of the random effects, φi, considered

herein are:

1. φi known,

2. φi ∝ ψi,

3. φ
1
2
i ∼ Uniform(0, κ), and
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4. φi ∼ Inv Gamma (α, β).

The first choice, φi known, requires the specification of p variance parameters. The spec-

ification of these parameters requires information about the random effects of each gene,

which, typically, will be unavailable. However, instead of specifying p separate parameters,

one variance parameter for the random effects of all genes, φi = φ, ∀i ∈ {1, 2, . . . , p}, could
be specified. While this simplifies the problem, it still requires the choice of a parameter

about which there is little information, and the validity of the assumption that the random

effects of each gene have the same variance may not be appropriate.

Sensitivity analysis may be used to determine appropriate values of φi, i ∈ {1, 2, . . . , p}, or
φ, which leads to the consideration of the computational speed of S1. As shown in Equation

(4.10), the calculation of S1 requires q-point numerical integration. Hence, to determine the

score for a given Bayesian network on p genes, pq evaluations of f(xi, ψi|xPi
) are required.

Assuming the data set consists of expression levels for 1000 genes, and 20-point numerical

integration is used, 20, 000 evaluations of f(xi|xPi
) will be required for the calculation of the

score of one Bayesian network for the 1000 genes. Hence, for very large problems, the use of

S1 may be intractable. However, the use of S1, when φi = φ ∀i is investigated and compared

to other score metrics in Chapter 7, and the sensitivity of this score metric to choices φ and

quadrature size is investigated. It is somewhat paradoxical that known values of φi lead to

a rather complicated expression for f(xi|xPi
).

The second choice, φi ∝ ψi, requires the selection of υ, which controls how the variance of

the random effects of gene i is related to the variance of the regression coefficients γi. Again,

this information will typically be unavailable. However, since the score metric S2, given in

Equation (4.13), has a closed form, sensitivity analysis is available here, so the effect that

different values of υ have on the graphical models produced by High-dimensional Bayesian

Covariance Selection may be determined.

The validity of this assumption, that φi ∝ ψi, may be questioned. This assumption implies

that the variance of the random effects is related to the variance of the regression parameters

in the same way for each gene. Dependent upon the choice of υ, the assumption implies

that the variance of the random effects is either always smaller, or always larger, than the

variance of the regression parameters. Of course, how φi is related to ψi probably varies from
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gene to gene: for some genes, the random effects may be more variable than the regression

parameters, while for other genes, the random effects may have a smaller variance than the

regression parameters. In theory, a separate υi could be selected for each gene i; however,

this creates the same problem as when φi was assumed known for all i. To circumvent this

problem of specification, a hyperprior distribution could be placed upon each υi. However,

due to the form of the distribution of xi|xPi
as given in Equation (4.12), numerical integration

over υ would then be required to evaluate the score metric S2.

The third choice places a uniform prior distribution on φ
1
2
i . This choice of prior is recom-

mended in [36], however, it is recommended that such a prior be used only when there are

6 or more random effects of interest. From the form of the posterior distribution of φi|bi, in
(4.33), it can be seen that when m is small, the posterior estimates of φi will be large. In

fact, when m = 1, this posterior distribution is improper. This prior distribution requires

the specification of κ, the upper bound of φ
1
2
i . The choice of κ is typically guided by context,

and the scale of the data, and in the case of log-scale gene expression data, choosing κ = 4

is large enough.

S3, the score metric defined by this prior choice, given in Equation (4.19), requires double

q-point numerical integration. This implies that for a given Bayesian network B on p genes,

q2p function evaluations are required to find the score of that network. Taking q = 20,

and supposing a Bayesian network on 1000 genes, 400,000 evaluations of f(xi, ψi, φi|xPi
) are

required to obtain the score of a single Bayesian network. Hence, for large problems, the use

of S3 is even more intractable than the use of S1.

The final choice of prior distribution for φi is an Inverse Gamma distribution with parameters

α and β. Typically, α and β will be the same for all values of i. Choosing α and β small,

α = β = 0.001, say, is an attempt at specifying a noninformative prior for φi.

Again, a sensitivity analysis would be desirable, to determine the reliance of the algorithm

on these values. However, under this assumption, the calculation of S4 given in Equation

(4.22), like S3, requires numerical integration over two dimensions to evaluate the score of a

given Bayesian network. If both numerical integrations are taken to be over 20 points, and

the data set contain gene expression data for 1000 genes, 400,000 function evaluations are

required to obtain the score of one Bayesian network, which is computationally prohibitive.

In any case, this choice of prior distribution was discussed by Gelman in [36], and was

79



not recommended, as when φi is estimated to be close to zero, the resulting inferences are

sensitive to the choice of α and β. Due to the large number of function evaluations required,

how sensitive inferences are to these choices is difficult to determine. For these reasons, S4

will not be considered further.

Due to the simplicity of its form, it appears that S2 is the most useful of the four scores

considered. Numerical integration is not required in the calculation of S2, and the specifica-

tion of the prior distribution of the variance of the random effects is simple, with sensitivity

analysis of said specification available. However, the assumption that leads to S2 may be

questionable. It is for this reason that S1 and S3 will also be considered for problems with

small p, and the results compared in Chapter 7.

4.6 Implementation

The score metrics S1, S2 and S3 may be incorporated into any score-based method for

the estimation of Bayesian networks. Note that if the score metric initially used is S0,

no additional programming is required for the calculation of the S2 score metric, a point

elaborated upon below. C++ code for the calculation of the score metrics S1 and S3, for

use in conjunction with the High-dimensional Bayesian Covariance Selection algorithm, is

provided in Appendix B.

Given a score-based method for the estimation of Bayesian networks, the use of S1 or S3

requires, along with the data and any method-specific inputs, values for δ, τ , φ when S1 is

used, κ when S3 is used, the Q matrix containing the data relating to the random effects,

and the desired quadrature size. The method will then proceed as it did when random effects

were assumed to be absent. For example, When S1 or S3 are used in conjunction with the

High-dimensional Bayesian Covariance Selection algorithm, output is produced as it is when

S0 is used: for each Bayesian network saved, the score of that network, the ordering of the

genes and a list of edges in the directed acyclic graph are recorded.

If the score metric associated with the score-based method being used is S0, the use of S2

does not require any additional programming or the input of any information additional

to that required when S0 is used. However, further pre-processing of the data is required.
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Recall from Section 4.2.2 that

S2(B|d) =
(

β

1− β

)∑p
i=1 ai p∏

i=1

f(xi|xPi
),

where

f(xi|xPi
) =π−

n
2 τ

ai−n

2
Γ

(
δ+ai+n

2

)
Γ

(
δ+ai
2

) υ
m
2

∣∣υI +QTQ
∣∣− 1

2
∣∣τI + xT

Pi
J2xPi

∣∣− 1
2

×
[
1 +

1

τ
xT
i

{
J2 − J2xPi

(
τI + xT

Pi
J2xPi

)−1
xT
Pi
J2

}
xi

]−( δ+ai+n

2 )
,

and, when Pi = ∅

f(xi|xPi
) =f(xi) = π−

n
2 τ−

n
2
Γ

(
δ+n
2

)
Γ

(
δ
2

) υ
m
2

∣∣υI +QTQ
∣∣− 1

2

(
1 +

1

τ
xT
i J2xi

)−( δ+n
2 )

.

Note first that υ
m
2

∣∣υI +QTQ
∣∣− 1

2 occurs in every term of the product in S2, so that S2 may

be written as

S2(B|d) = υ
pm
2

∣∣υI +QTQ
∣∣− p

2

(
β

1− β

)∑p
i=1 ai p∏

i=1

g(xi|xPi
),

where f(xi|xPi
) = υ

m
2

∣∣υI +QTQ
∣∣− 1

2 g(xi|xPi
) and f(xi) = υ

m
2

∣∣υI +QTQ
∣∣− 1

2 g(xi).

Since υ
pm
2

∣∣υI +QTQ
∣∣− p

2 is the same for all Bayesian networks for the genes, this term may

be ignored. Hence, hereafter, the score metric S2 is given by

S2(B|d) =
(

β

1− β

)∑p
i=1 ai p∏

i=1

g(xi|xPi
).

Consider now the function g(xi|xPi
). Recall that

J2 =I −Q
(
υI +QTQ

)−1
QT ,

which is a symmetric, positive-definite matrix. Hence, the Cholesky decomposition of J2

may be obtained, and J2 may be written as J2 = LTL for some n × n matrix L. Hence,

g(xi|xPi
) may be written as

g(xi|xPi
) = π−

n
2 τ

ai−n

2
Γ

(
δ+ai+n

2

)
Γ

(
δ+ai
2

) ∣∣∣τI + (LxPi
)T LxPi

∣∣∣− 1
2

×
[
1 +

1

τ
(Lxi)

T Lxi − (Lxi)
T LxPi

{
τI + (LxPi

)T LxPi

}−1
(LxPi

)T Lxi

]−( δ+ai+n

2 )
,
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and

g(xi) = π−
n
2 τ−

n
2
Γ

(
δ+n
2

)
Γ

(
δ
2

) {
1 +

1

τ
(Lxi)

T Lxi

}−( δ+n
2 )

.

These functions have the same form as the marginal model likelihoods obtained under the

assumption of independent and identically distributed samples, given in Equations (3.17)

and (3.21). Hence, to incorporate S2 into an S0-based method for the estimation of Bayesian

networks, no extra code needs to be written, and no additional inputs are required. However,

the data matrix d must be augmented, so that Ld, where J2 = LTL, is the input for the

program.

Given the Bayesian networks estimated through the use of any score-based method, posterior

estimates of γi, ψi, bi and φi may be obtained for the desired values of i ∈ {1, 2, . . . , p}.
These estimates may then be used in the estimation of the joint covariance matrix of genes

of interest, as described in Section 4.3.

In this thesis, the score metrics S1, S2 and S3 are used in conjunction with the High-

dimensional Bayesian Covariance Selection algorithm, as described in Section 3.3. The per-

formance of these score metrics when used in conjunction with this algorithm are analysed

and discussed in Chapter 7.
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Chapter 5

Generalisation of the Distribution of

the Random Effects

The random effects formulation of High-dimensional Bayesian Covariance Selection, given

by

xi|xPi
,γi, ψi, bi, φi ∼ Nn(xPi

γi +Qbi, ψiI),

γi|ψi ∼ Nai(0, τ
−1ψiI),

ψi ∼ Inv Gamma

(
δ + ai
2

,
τ

2

)
,

bi|φi ∼ Nm(0, φiI),

φi = υ−1ψi or φ
1
2
i ∼ Uniform(0, κ), (5.1)

assumes that the random effects are independent and identically distributed for each gene,

with some variance φi. This covariance structure is not particularly satisfactory, as it does

not allow for dependence amongst the random effects of a particular gene, nor does it allow

the random effects for each gene to have unequal variance parameters. Such modifications

to the prior distribution of the random effects are explored in Section 5.1. In Section 5.2, an

improper prior for the random effects is proposed.
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5.1 Exploring the Covariance Structure of the Random

Effects

In the development of the random effects formulation of High-dimensional Bayesian Covari-

ance Selection, it was assumed that the random effects, bik, k ∈ {1, 2, . . . ,m}, of gene i were
independent and identically distributed, for all values of i. This assumption is questionable,

as random effects may have different variances, and may not be independent.

5.1.1 Assuming bi|φi ∼ Nm (0, φiV ), V known

As a first step in the generalisation of the covariance structure of the random effects, suppose

there is some known symmetric positive-definite m×m matrix V such that

bi|φi ∼ Nm (0, φiV ) .

When the random effects are assumed to vary as the regression coefficients, this prior distri-

bution becomes

bi|ψi ∼ Nm (0, ψiV ) .

Note that in this case, the υ that was present in the random effects formulation, given in

Equation (5.1), has been subsumed into the V matrix.

The modified score metric under the assumption that φ
1
2
i ∼ Uniform(0, κ) is then

SV
3 (B|d) =

p∏
i=1

(
β

1− β

)ai q1∑
s=1

q2∑
h=1

wsvhe
usf(xi, us, th|xPi

), (5.2)

where

f(xi,ψi, t|xPi
)

=2−
3
2 (2π)−

n
2

(
τ
2

) δ+ai
2

Γ
(
δ+ai
2

)τ ai
2

∣∣∣∣V +
κ2(1 + t)

2ψi

QTQ

∣∣∣∣
− 1

2 ∣∣∣τI + xT
Pi
Jψi,t
V xPi

∣∣∣− 1
2 ψ

−(n+ai+δ

2
+1)

i

(1 + t)
1
2

× exp

(
− 1

2ψi

[
τ + xT

i

{
Jψi,t
V − Jψi,t

V xPi

(
τI + xT

Pi
Jψi,t
V xPi

)−1
xT
Pi
Jψi,t
V

}
xi

])
,

Jψi,t
V = I −Q

(
2ψi

κ2(1 + t)
V +QTQ

)−1
QT ,
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and when gene i has no parents,

f(xi, ψi, t) =2−
3
2 (2π)−

n
2

(
τ
2

) δ
2

Γ
(
δ
2

) ∣∣∣∣V +
κ2(1 + t)

2ψi

QTQ

∣∣∣∣
− 1

2

(1 + t)−
1
2

× ψ
−(n+δ

2
+1)

i exp

(
− τ

2ψi

− 1

2ψi

xT
i J

ψi,t
V xi

)
,

Similarly, the modified score metric under the assumption that the random effects vary as

the regression coefficients is given by

SV
2 (B|d) =

(
β

1− β

)∑p
i=1 ai p∏

i=1

f(xi|xPi
),

where xi|xPi
has a multivariate t-distribution, xi|xPi

∼ tδ+ai

(
0,ΣV

xi|xPi

)
,

ΣV
xi|xPi

=
τ

δ + ai

{
JV
2 − JV

2 xPi

(
τI + xT

Pi
JV
2 xPi

)−1
xT
Pi
JV
2

}−1
,

JV
2 =I −Q

(
V +QTQ

)−1
QT ,

and when gene i has no parents, xi ∼ tδ+ai

(
0,ΣV

xi

)
,

ΣV
xi

=
τ

δ
JV
2
−1 =

τ

δ

{
I −Q

(
V +QTQ

)−1
QT

}−1
.

Hence, when the matrix V is known, it may be included in the analysis at no extra compu-

tational cost. The inclusion of such a matrix will not be considered further.

5.1.2 A different variance parameter for each random effect

Instead of assuming the existence of a known positive definite matrix V controlling the

relationships of the random effects, it could be assumed that each random effect has its own

variance parameter. That is, the prior distribution on the random effects becomes

bi|φi ∼ Nm (0,Φi = diag(φi1, φi2, . . . , φim)) .

This assumption cannot apply when it is assumed that the random effects have variance

proportional to that of the regression coefficients.

If it is assumed that φ
1
2
ik ∼ Uniform(0, κ), ∀i ∈ {1, 2, . . . , p}, ∀k ∈ {1, 2, . . . ,m}, then the

marginal model likelihood for each gene i can be calculated:

f(xi|xPi
) =

∫
f(xi,γi, ψi, bi, φi1, φi2, . . . , φim|xPi

)dγidψidbidφi1dφi2 · · · dφim,
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f(xi,γi, ψi, bi, φi1, φi2, . . . , φim|xPi
)

=(2π)−(
n+ai+m

2 )(2κ)−m
(
τ
2

) δ+ai
2

Γ
(
δ+ai
2

)τ ai
2 ψ

−(n+2ai+δ

2
+1)

i

(
m∏
k=1

φ−1ik

)

× exp

{
− τ

2ψi

− 1

2φi

bTi Φibi − τ

2ψi

γT
i γi −

1

2ψi

(xi − xPi
γi −Qbi)

T (xi − xPi
γi −Qbi)

}
.

After integrating over bi and γi, the joint distribution of the data and the variance parameters

for gene i is

f(xi,ψi, φi1, φi2, . . . , φim|xPi
)

=(2π)−
n
2 (2κ)−m

(
τ
2

) δ+ai
2

Γ
(
δ+ai
2

)τ ai
2

∣∣∣∣Φi +
1

ψi

QTQ

∣∣∣∣
− 1

2 ∣∣τI + xT
Pi
JΦi

xPi

∣∣− 1
2

(
m∏
k=1

φ−1ik

)
ψ
−(n+ai+δ

2
+1)

i

× exp

[
− τ

2ψi

− 1

2ψi

xT
i

{
JΦi

− JΦi
xPi

(
τI + xT

Pi
JΦi

xPi

)−1
xT
Pi
JΦi

}
xi

]
, (5.3)

where

JΦi
=I −Q

(
ψiΦi +QTQ

)−1
QT .

Numerical integration over m + 1 dimensions is then required to obtain the score metric

under this assumption. Such numerical integration is not feasible; given data on p genes,

and q-point numerical integration over each of φi1, φi2, . . . , φim and ψi, pq
m+1 evaluations

of Equation (5.3) would be required to obtain the score of one Bayesian network. More

concretely, supposing 1000 genes, 2 random effects and 10-point numerical integration over

each variance parameter, one million evaluations of Equation (5.3) would be required to

obtain the score of a single Bayesian network. Hence, while the assumption of a separate

variance parameter for each random effect may be more realistic than the assumption of

independent and identically distributed random effects, such an assumption is impracticable.

Similarly, assuming a wholly unknown random effects covariance matrix results in marginal

model likelihoods requiring m2+m+2
2

-dimensional numerical integration; which is again infea-

sible.
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5.2 An Uninformative Random Effects Prior

Often, there will be very little prior information about the random effects. Hence, it is

tempting to place an improper prior on the random effects,

f(bi) ∝ 1,

and derive the score metric induced by such an assumption. Note that such a prior distribu-

tion on the random effects satisfies the requirements on prior distributions for the parameters

of graphical models presented in [35].

Assuming that f(bi) ∝ 1 implies that

f(xi,γi, ψi, bi|xPi
) ∝(2π)−(

n+ai
2 )

(
τ
2

) δ+ai
2

Γ
(
δ+ai
2

)τ ai
2 ψ

−(n+2ai+δ

2
+1)

i

× exp

{
− τ

2ψi

− τ

2ψi

γT
i γi −

1

2ψi

(xi − xPi
γi −Qbi)

T (xi − xPi
γi −Qbi)

}
.

Given the Normal-Inverse Gamma priors on the regression parameters γi and ψi, the marginal

model likelihood then has the form of a multivariate t-distribution:

xi|xPi
∼tai+δ−m

(
0,

τ

ai + δ −m

{
ĤQ − ĤQxPi

(
τI + xT

Pi
ĤQxPi

)−1
xT
Pi
ĤQ

}−1)
, (5.4)

where

ĤQ =I −Q
(
QTQ

)−1
QT .

Note that this distribution is improper for ai + δ − m ≤ 0, implying that for the score of

a Bayesian network to exist, ai + δ > m, ∀i ∈ {1, 2, . . . , p}. All Bayesian networks contain

at least one vertex with no parents, hence, δ must be selected so as to be strictly greater

than m. Recall that δ, which must be positive, can be thought of as, in part, controlling the

sparsity of the networks generated: the smaller the choice of δ, the sparser the generated

networks. Hence, if δ must be larger than some number m, the sparsity of the estimated

networks may be compromised.

When gene i has no parents,

xi ∼tδ−m

(
0,

τ

δ −m

{
I −Q

(
QTQ

)−1
QT

}−1)
. (5.5)
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This distribution is improper, since I − Q
(
QTQ

)−1
QT is singular. In fact, f(xi) = 0

∀xi ∈ R
n.

This implies that even if δ > m, when an improper prior distribution on the random effects

is assumed, the score of any Bayesian network will be zero. Hence, the score metric induced

by (5.4) and (5.5) is useless in the estimation of Bayesian networks for a given data set.

It is for this reason that an improper prior on the random effects is not recommended.

However, such a prior could be approximated by assuming a normal prior distribution with

a large variance for the random effects. That is, in an approximation to a noninformative

prior on the random effects, the score metric S1, given in Equation (4.10), could be used,

where φi is taken to be large, ∀i ∈ {1, 2, . . . , p}.
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Chapter 6

Removal of Random Effects Through

Analysis of Residuals

In many situations, the random effects associated with a gene expression data set may be

considered to be nothing more than a nuisance, complicating the estimation of Bayesian

networks for the given gene expression levels. It may be desirable to ignore the possible

influences of such effects on gene expression levels, and on the relationships between genes.

Of course, as discussed in Section 4.1, such an approach is not recommended. Instead, an

approach which takes account of random effects that are present, without making assump-

tions on the form of the distribution of these random effects, is developed for use in such

situations.

This approach, instead of directly using the gene expression data, is based upon the use of

linear combinations of residuals left over when the data is regressed upon the random effects.

This approach to the estimation of Bayesian networks for gene expression data, hereafter

termed the “residual approach”, was motivated by the restricted maximum likelihood pro-

cedure used in inference for mixed linear models; see for example [16, 62].

This approach is useful for a number of reasons, primarily for the reason that it makes

no assumptions about the distributional form of the random effects of interest. Since no

assumptions on the form of this distribution are made, the approach is correct no matter

what the true distribution of the random effects may be. Another reason for the usefulness

of the approach is that it results in a score metric which allows for a complex mean structure
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that is as fast to compute as S0.

The drawback of the residual approach is that estimates of the random effects bi are not

admitted when this approach is taken. However, in cases when such effects are not of

particular interest, but still need to be accounted for in some way, the residual approach is

recommended. It is conjectured that the loss of information occurring through the use of

this approach, as opposed to the use of the approaches outlined in Chapter 4, is minimal.

Consider the regression model for the expression values of gene i when random effects are

included:

xi|xPi
,γi, ψi, bi, φi ∼ Nn(xPi

γi +Qbi, ψiI), bi|φi ∼ Nm (0, φiI) ,

where φi has some distribution function, f(φi). The residual approach to the derivation

of a score metric for use in conjunction with any score-based method for the estimation of

Bayesian networks requires an n× (n−m) matrix P such that

P TQ = 0,

P TP = In−m,

PP T = In −Q(QTQ)−1QT . (6.1)

Consider the (n − m) × 1 random variable yi = P Txi. This random variable is a vector

of linear combinations of the n gene expression values given in xi. Let yPi
= P TxPi

, an

(n − m) × ai matrix whose jth column is a vector of linear combinations of the expression

values of the jth predictor of xi. Then

E[yi] = E[P Txi] = P TE[xi]

= P T (xPi
γi +Qbi)

= P TxPi
γi + P TQbi

= P TxPi
γi

= yPi
γi,

var(yi) = var(P Txi) = P Tvar(xi)P

= ψiP
TP

= ψiIn−m,
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and

yi|γi, ψi,yPi
∼ Nn−m(yPi

γi, ψiI). (6.2)

The form of this distribution is the same as that assumed for xi|γi, ψi,xPi
given in Equation

(3.14). Hence, the High-dimensional Bayesian Covariance Selection algorithm, or any other

S0-based algorithm, may be applied directly to the reduced data set {yi = P Txi}i∈{1,2,...,p}.
Note that when the reduced data is used, the algorithm takes as input n − m linear com-

binations of the n expression levels of each gene, instead of the n original gene expression

values for each gene.

Implementation of the residual approach to the estimation of Bayesian networks is therefore

simple: after selection of an appropriate matrix P and computation of yi = P Txi, for all

i ∈ {1, 2, . . . , p}, {yi = P Txi}i∈{1,2,...,p} is used as input for the algorithm, and S0 is used.

It will now be shown that the score metric is not dependent upon the (somewhat arbitrary)

choice of P . Consider the marginal model likelihood of yi, from Equation (3.18):

yi|yPi
∼tδ+ai

(
0,

τ

δ + ai

{
In−m − yPi

(
τI + yT

Pi
yPi

)−1
yT
Pi

}−1)
.

This implies that

f(yi|yPi
) =

Γ
(
δ+ai+n−m

2

)
Γ

(
δ+ai
2

)
(πτ)

n−m
2

∣∣∣I − yPi

(
τI + yT

Pi
yPi

)−1
yT
Pi

∣∣∣ 1
2

×
[
1 +

1

τ
yT
i

{
I − yPi

(
τI + yT

Pi
yPi

)−1
yT
Pi

}
yi

]−( δ+ai+n−m

2 )

=
Γ

(
δ+ai+n−m

2

)
Γ

(
δ+ai
2

)
(πτ)

n−m
2

∣∣∣I − P TxPi

(
τI + xT

Pi
PP TxPi

)−1
xT
Pi
P

∣∣∣ 1
2

×
[
1 +

1

τ
xT
i P

{
I − P TxPi

(
τI + xT

Pi
PP TxPi

)−1
xT
Pi
P

}
P Txi

]−( δ+ai+n−m

2 )

=
Γ

(
δ+ai+n−m

2

)
Γ

(
δ+ai
2

)
(πτ)

n−m
2

∣∣∣I − P TxPi

(
τI + xT

Pi
PP TxPi

)−1
xT
Pi
P

∣∣∣ 1
2

×
[
1 +

1

τ
xT
i

{
PP T − PP TxPi

(
τI + xT

Pi
PP TxPi

)−1
xT
Pi
PP T

}
xi

]−( δ+ai+n−m

2 )
.

Using the identity∣∣∣I − P TxPi

(
τI + xT

Pi
PP TxPi

)−1
xT
Pi
P

∣∣∣ 1
2
= τ

ai
2

∣∣∣(τI + xT
Pi
PP TxPi

)−1∣∣∣ 1
2
, (6.3)

91



it can be seen that P only appears in the marginal model likelihood as PP T = In −Q(QTQ)−1QT .

Similarly, from Equation (3.19), when gene i has no parents,

yi ∼ tδ

(
0,

τ

δ
In−m

)
,

so that

f(yi) =
Γ

(
δ+n−m

2

)
Γ

(
δ
2

)
(πτ)

n−m
2

(
1 +

1

τ
yT
i yi

)−( δ+n−m
2 )

=
Γ

(
δ+n−m

2

)
Γ

(
δ
2

)
(πτ)

n−m
2

(
1 +

1

τ
xT
i PP Txi

)−( δ+n−m
2 )

.

Hence, the score metric under this residual approach to the removal of random effects is

independent of the choice of P .

The posterior distributions of the parameters γi and ψi are also independent of P . Equations

(3.22) and (3.23) imply that

γi|yi, ψi,yPi
∼ Nai

(
μγi

,Σγi

)
,

μγi
=

(
τI + yT

Pi
yPi

)−1
yT
Pi
yi,

=
(
τI + xT

Pi
PP TxPi

)−1
xT
Pi
PP Txi,

Σγi =ψi

(
τI + yT

Pi
yPi

)−1
,

=ψi

(
τI + xT

Pi
PP TxPi

)−1
ψi|yi,yPi

∼ Inv Gamma(α, β),

α =
δ + ai + n−m

2

β =
τ

2
+

1

2
yT
i

{
I − yPi

(
τI + yT

Pi
yPi

)−1
yT
Pi

}
yi,

=
τ

2
+

1

2
xT
i

{
PP T − PP TxPi

(
τI + xT

Pi
PP TxPi

)−1
xT
Pi
PP T

}
xi,

and when gene i has no parents,

ψi|yi ∼ Inverse Gamma

(
δ + n−m

2
,
τ

2
+

1

2
yT
i yi

)
,
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where yT
i yi = xT

i PP Txi.

Hence, the residual approach to the removal of random effects is independent of the choice

of P . In Chapter 7, the performance of the residual approach is assessed and compared to

the performance of the original approach, and to the performance of the score metrics S1,

S2 and S3.

93



Chapter 7

The Use of Score Metrics That Take

Account of Complex Mean Structure

In this chapter, the necessity and utility of score metrics that take account of a complex

mean structure in the estimation of graphical models is demonstrated. In particular, the

score metrics S1, S2 and S3 and the residual approach are implemented within the High-

dimensional Bayesian Covariance Selection algorithm [23, 25], and applied to example data

sets with known network structure. Note that while High-dimensional Bayesian Covariance

Selection is the algorithm used here, the score metrics considered could be used within any

other score-based method for the estimation of Bayesian networks, such as those described

in Section 3.1.1.

Recall that S1, given in Equation (4.10), arises from placing a prior distribution with a

fixed variance φi on the random effects for gene i. In our evaluation of this score metric,

we make the simplifying assumption, as discussed in Section 4.5, that φi = φ for all i. S2,

given in Equation (4.13), arises from the assumption that the random effects have a variance

φi = υ−1ψi, where ψi is the true variance of the log-scale expression levels for gene i. The

third score metric considered, S3, given in Equation (4.19), arises from the assumption that

the standard deviation of the random effects for gene i, φ
1/2
i , is uniformly distributed over

the range (0, κ). Note that S3 is only appropriate when more than 5 random effects are

being considered.

In Section 7.1, the necessity of score metrics that take account of complex mean structure is
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demonstrated. In particular, it is shown that in the estimation of Bayesian networks, failure

to account for heterogeneity can lead to significant bias.

In Section 7.2, the effect of misspecification of the parameters associated with S1 and S2 on

the estimation of Bayesian networks is investigated.

In Section 7.3, the consequences of misspecifying the distribution of φi on the estimation of

Bayesian networks is investigated. Also considered are the consequences of such misspecifi-

cation on the posterior estimation of random effects.

7.1 The Necessity of Taking Account of Complex Mean

Structure

To demonstrate the need to account for complex mean structure in the estimation of Bayesian

networks, S0, given in Equation (3.20), is applied to data sets generated from known systems

of linear recursive equations. First, S0 is applied to data sets consisting of independent and

identically distributed samples. S0 is then applied to more complex data sets with a non-zero

mean structure, allowing a demonstration of results typical when the presence of the mean

structure is ignored. In order to compare these results to the Bayesian networks obtained

when random effects are taken into account, the residual approach is applied to these same

data sets.

Comparison of the results of these analyses demonstrate the necessity of score metrics that

can take account of a complex mean structure, and the utility of the residual approach in

the estimation of Bayesian networks for data sets with such a complex mean structure. The

application of the residual approach to data sets that consist of independent and identi-

cally distributed samples demonstrates what can happen when a non-zero mean structure is

wrongly assumed for the data.

The data sets analysed in this section are generated according to the systems of linear

recursive equations outlined in Examples 7.1–7.6. Note that data sets generated according

to Examples 7.1–7.3 consist of independent and identically distributed samples, while those

data sets generated according to Examples 7.4–7.6 contain random effects. For each example,
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10 data sets are generated.

Example 7.1. For this example, ten data sets are simulated according to the following system

of linear recursive equations:

Xik =εik, εik ∼ N(0, ψi), i = 1, 2, . . . , 10, k = 1, 2, . . . , 10,

where

Ψ = (ψ1, ψ2, . . . , ψ10) = (0.555, 0.713, 1.38, 0.942, 3.513, 1.234, 2.256, 1.739, 0.552, 39.251) .

Note that the values of the ψi were obtained by sampling from an Inverse Gamma (1, 1/2)

distribution, and were constant for each of the samples generated according to this system of

linear recursive equations.

Each of the ten data sets generated consist of ten independent and identically distributed

samples of ten variables. Note that the Bayesian network associated with this system of

linear recursive equations is the empty network.

Example 7.2. This example is a larger version of Example 7.1. For this example, ten data

sets are simulated according to

Xik =εik, εik ∼ N(0, ψi), i = 1, 2, . . . , 100, k = 1, 2, . . . , 100,

where the parameters ψi, i = 1, 2, . . . , 100, were again obtained by sampling from an Inverse

Gamma (1, 1/2) distribution, and are constant across the data sets sampled from this system

of linear recursive equations.

Each of the ten data sets generated consist of 100 independent and identically distributed

samples of 100 variables. As with the previous example, the Bayesian network associated

with this system of linear recursive equations is the empty network.

Example 7.3. The system of linear recursive equations governing the data sets simulated

for this example is

Xik =εik, i = 1, 2, . . . , 18

X19,k =γ19,1X1k + γ19,2X2k + ε19,k,

X20,k =γ20,19X19,k + ε20,k,

εik ∼N(0, ψi), i = 1, 2, . . . , 20, k = 1, 2, . . . , 10.
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Figure 7.1: The connected component of the directed acyclic graph of the Bayesian network

in Example 7.3, and the moralised version of that connected component.

The parameters ψi, i = 1, 2, . . . , 20, γ19 = (γ19,1, γ19,2)
T and γ20,19 are constant across sam-

ples, and were obtained by sampling from the following distributions:

ψi ∼Inv Gamma

(
2 + ai

2
,
1

2

)
, ai = 0, i = 1, 2, . . . , 18, a19 = 2, a20 = 1,

γ19 ∼ N2 (0, ψ19I2) , γ20,19 ∼ N(0, ψ20).

The Bayesian network associated with this system of linear recursive equations then has 3

edges: edges from vertices 1 and 2 to 19, and an edge from vertex 19 to 20. See Figure

7.1 for the connected component of the directed acyclic graph associated with this Bayesian

network, and the corresponding moralised component.

Each of the ten data sets generated for this example consist of ten independent and identically

distributed samples of 20 variables.

Example 7.4. The system of linear recursive equations governing this example is the same

as Example 7.1, but a non-zero mean structure corresponding to two groups is included. The

system of linear recursive equations is given by

Xijk =bij + εijk, εi ∼ N(0, ψi), i = 1, 2, . . . , 10 j = 1, 2, k = 1, 2, . . . , 5 (7.1)

where values of the parameters ψi are the same as those given in Example 7.1, and bi =

(bi1, bi2)
T are fixed across samples, obtained by sampling from:

bij ∼N(0, 5), i = 1, 2, . . . , 10, j = 1, 2.
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The Bayesian network associated with this system of linear equations has no edges, and the

true model for each variable may be written as

xi|ψi, bi ∼N10 (Qbi, ψiI10) , (7.2)

where

xi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xi11

xi12

xi13

xi14

xi15

xi21

xi22

xi23

xi24

xi25

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0

1 0

1 0

1 0

1 0

0 1

0 1

0 1

0 1

0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

i = 1, 2, . . . , 10. Here, p = n = 10 and m = 2.

Ten data sets are generated for this example.

Example 7.5. The system of linear recursive equations governing this example is the same

as Example 7.2, but a non-zero mean structure corresponding to two groups is included:

Xijk =bij + εijk, εi ∼ N(0, ψi), i = 1, 2, . . . , 100, j = 1, 2, k = 1, 2, . . . , 50. (7.3)

Values of the parameters ψi are the same as those for Example 7.2, and bi = (bi1, bi2)
T ,

i = 1, 2, . . . , 100, are fixed across data sets, obtained by sampling from

bij ∼N(0, 5), i = 1, 2, . . . , 100, j = 1, 2.

Example 7.6. The system of linear recursive equations governing this example is the same

as Example 7.3, but with a non-zero mean structure included:

Xik =q1kbi1 + q2kbi2 + q3kbi3 + εik, i = 1, 2, . . . , 18

X19,k =q1kb19,1 + q2kb19,2 + q3kb19,3 + γ19,1X1k + γ19,2X2k + ε19,k,

X20,k =q1kb20,1 + q2kb20,2 + q3kb20,3 + γ20,19X19,k + ε20,k,

εik ∼N(0, ψi), i = 1, 2, . . . , 20, k = 1, 2, . . . , 10,
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where values of the parameters ψi, γ19 = (γ19,1, γ19,2)
T and γ20,19 are the same as those

obtained for the data sets generated from Example 7.3. The random effects bi = (bi1, bi2, bi3)
T ,

i = 1, 2, . . . , 20, constant across the 10 data sets generated, are obtained by sampling from

bij ∼N(0, 4), i = 1, 2, . . . , 20, j = 1, 2, 3.

The Bayesian network associated with this system of linear recursive equations is the same

as that associated with Example 7.3, shown in Figure 7.1.

The true model for each variable may be written as

xi|ψi, bi ∼N10 (Qbi, ψiI10) , i = 1, 2, . . . , 18

x19|γ19, ψ19, b19 ∼N10 (xP19γ19 +Qb19, ψ19I10) ,

x20|γ20, ψ20, b20 ∼N10 (xP20γ20 +Qb20, ψ20I10) ,

where

xi =

⎛
⎜⎜⎜⎜⎜⎝

xi1

xi2

...

xi10

⎞
⎟⎟⎟⎟⎟⎠ , xP19 =

(
x1,x2

)
, xP20 = x19

and

Q =

⎛
⎜⎜⎜⎜⎜⎝

q11 q21 q31

q12 q22 q32
...

...
...

q1,10 q2,10 q3,10

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1.3222537 0.83255032 −1.73607746

0.2200045 −1.36996699 0.54524960

0.3711498 0.60683906 0.60280101

−1.5345847 1.51883764 0.82072612

−0.7342315 −0.01382055 0.92755141

0.9225403 0.86877640 −0.09072802

1.0222735 −0.44125852 −0.04272580

0.2694415 −0.59209217 0.11438749

−0.6392365 0.20427984 −0.21395314

−0.1542683 0.47523095 −0.12045658

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that in this case, elements of the Q matrix consist of random samples from the standard

normal distribution, but are treated as known constants in the analysis.
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7.1.1 Analysis of the data sets

For each of the six examples described above, ten data sets are generated. Bayesian networks

are estimated for each of these data sets using two methods: first S0 is used in conjunction

with the High-dimensional Bayesian Covariance Selection algorithm, then the residual ap-

proach is taken in the estimation of Bayesian networks for the data sets.

7.1.2 Using S0 in the Estimation of Bayesian Networks

The number of edges in the highest-scoring networks found when S0 is used in the estimation

of Bayesian networks for data sets generated according to Examples 7.1–7.6 are summarised

in Table 7.1. Note that data sets drawn from Examples 7.1–7.3 consist of independent and

identically distributed samples, while data sets drawn from Examples 7.4–7.6 contain a non-

constant mean structure. Recall that implicit in the use of S0 is the assumption of the

presence of a data set that consists of independent and identically distributed samples.

Note that since we are primarily interested in the conditional independence relationships

present in the estimated graphs, only the number of spurious and correct edges present in

the estimated graphs is considered.

From the top half of Table 7.1, it can be seen that when S0 is applied to the simulated

data sets consisting of independent and identically distributed samples, the highest-scoring

Bayesian networks obtained are, in general, reasonably close to the true networks that were

used to generate the data sets. For each example, few spurious edges are included in the

highest-scoring networks found. Conversely, the bottom half of this table shows that when

S0 is used to analyse data sets with a non-constant mean structure, the highest-scoring

networks obtained generally contain many more edges than are present in the true network.

Comparison of the top and bottom halves of of Table 7.1 demonstrates the consequences of

ignoring the presence of a complex mean structure in the estimation of Bayesian networks for

data sets. These results show clearly that if S0 is used in the analysis of a data set that has

a complex mean structure, the high-scoring Bayesian networks found generally have many

more spurious edges than those networks obtained when data sets consisting of independent

and identically distributed samples are analysed. This is to be expected, as correlations
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Table 7.1: Mean and standard deviation of the number of spurious and correct edges in

the highest-scoring Bayesian networks obtained when S0 is applied to data sets simulated

according to Examples 7.1–7.6.

Example True Edges Spurious Edges Correct Edges

7.1 0 0.2(0.42) -

7.2 0 0.7(0.95) -

7.3 3 0.8(0.63) 1.7(0.48)

7.4 0 2.2(0.63) -

7.5 0 107.7(5.42) -

7.6 3 5.3(1.42) 1.8(0.42)

between samples are not being correctly controlled for when the complex mean structure is

ignored, and hence spurious correlations between variables are induced. Such results have

been discussed by Schäfer and Bühlman [70], and by Teng et al [77].

Other Approaches Based on S0

Other approaches based on the use of S0, such as those briefly discussed in Chapter 4, could

be used in the analysis of data sets that contain a complex mean structure. These approaches

do not explicitly provide for the presence of a complex mean structure in the models of each

of the variables, instead allowing for the presence of such effects in a less rigorous way.

The first such method involves considering the sub-samples in each data set that are inde-

pendent and identically distributed, and using S0 in the estimation of Bayesian networks

given these independent and identically distributed samples. For example, the data sets

generated according to Example 7.4 consist of 10 samples of each variable. The first five of

these samples can be viewed as independent and identically distributed samples, as can the

last five of these samples. Hence, S0 may be used in the estimation of Bayesian networks for

each half of the data sets generated according to Example 7.4. Note that this approach is

also applicable to the data sets generated according to Example 7.5.

Application of this approach to the data sets generated according to Example 7.4 results
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in the estimation of Bayesian networks for 20 data sets consisting of 5 independent and

identically distributed samples of each of 10 variables. For each of these 20 data sets, the

highest-scoring network obtained is the true network, with no edges.

Table 7.2: Mean and standard deviation of the number of edges in the highest-scoring

network when data sets from Example 7.5 are analysed in halves.

Mean (sd)

First half 1.6 (0.97)

Second half 2.4 (1.78)

When this method is applied to the data sets generated according to Example 7.5, Bayesian

networks are estimated for 20 data sets each consisting of 50 independent and identically

distributed samples of 100 variables. The number of edges in the highest-scoring network

found in each of these analyses is summarised in Table 7.2. Examination of these results

shows that the highest-scoring networks found through the use of this method are quite close

to the true networks.

Note that while this method appears to work quite well in the estimation of Bayesian net-

works for Examples 7.4 and 7.5, the method is only applicable when the data set being

analysed contains some independent and identically distributed samples. Often this method

will not be appropriate. For example, it is not applicable to data sets generated according

to Example 7.6.

The second method considered is to include the variables that define the mean structure

as vertices. If the data relating to these variables consists of samples from some normal

distribution, these variables may be directly included as vertices in the estimation of a

Bayesian network for the data. However, if the data relating to these variables is discrete,

as it is in Examples 7.4 and 7.5, then hybrid Bayesian networks, that is, networks on both

continuous and discrete random variables, need to be considered. Such networks are beyond

the scope of this work, but the interested reader is referred to Lauritzen [50] for a discussion

on graphical models on both continuous and discrete variables.

As the data relating to the variables that define the mean structure in Example 7.6 are in
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fact samples from the standard normal distribution, data generated from this example may

be analysed in this way. Hence, instead of estimating a Bayesian network on 20 variables, a

Bayesian network on 23 variables is estimated. The true directed acyclic graph underlying

this Bayesian network will have 63 edges: an edge from each of the vertices representing the

variables involved in the mean structure to each of the original vertices, and the three edges

that were present in the original directed acyclic graph, as shown in Figure 7.1.

Each of the ten data sets generated according to Example 7.6 are analysed in this way, and

the number of edges in the highest-scoring networks found are recorded. The number of

these edges that are associated with the nodes that represent the mean structure covariates,

as well as the number of edges that are present in the true network, are also recorded. The

results are displayed in Table 7.3.

Table 7.3: Mean and standard deviation of the number of edges in the highest-scoring

networks when covariates are included as vertices in the analysis of Example 7.6.

Edges Mean (sd)

Total 10.5 (1.35)

Covariate 4.0 (0.67)

Correct 1.6 (0.52)

Spurious 4.9 (1.66)

The first thing to note is that the number of edges in the highest-scoring networks increase

upon the inclusion of mean structure covariates as nodes in the network, as can be seen from

the comparison of the first line of Table 7.3 and the last line of Table 7.1. Note also that

when mean structure covariates are included as nodes, many of the edges in the networks

found are connected to the nodes representing these covariates.

The connected components of the highest scoring Bayesian network obtained when the first

data set is analysed in this way are shown in Figure 7.2, where the vertices corresponding to

the covariates are labelled as Ci, i = 1, 2, 3. Note that the direction of the edges do not imply

any notions of causality: the edges only provide information about conditional independence

relationships between the variables. The network shown is typical of the networks found

in the analysis of the other data sets. While several of the edges found in these graphs are
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connected to the covariates, these graphs are quite different to the true graph. As mentioned

above, in the true graph there are 60 edges connected to the covariates; on average, the graphs

obtained via this method have 4 edges connected to the covariates.

From the table and the figure, it can be seen that the nodes representing the random effects

are the most highly connected vertices in the networks obtained. However, these nodes are

not as highly connected as may be hoped, as it is known that each random effect affects each

variable in the network.

A possible explanation for these results may lie in the sparsity constraint of the High-

dimensional Bayesian Covariance Selection algorithm. This constraint is thought to reflect

the sparse nature of genetic networks, and is useful in the estimation of large joint covariance

matrices. However, in this case, the network of interest cannot be thought of as sparse, since

each of the three covariate vertices is the parent of 20 vertices. Recall that the degree of

sparsity of the networks found by the High-dimensional Bayesian Covariance Selection algo-

rithm is controlled through the value of β, which is the probability of any variable having

any other variable in its parent set. Hence, an increase in β may result in the estimation of

a network with more edges involving the random effect vertices.

Table 7.4: Mean and standard deviation of the number of edges in the highest-scoring

networks when covariates are included as vertices in the analysis of Example 7.6, β = 0.9.

Edges Mean (sd)

Total 66.2 (4.89)

Covariate 21.7 (3.56)

Correct 2.2 (0.42)

Spurious 42.3 (7.07)

The results of increasing β to 0.9 are summarised in Table 7.4. It can be seen that, on

average, the highest scoring Bayesian network found has 66.2 edges, and that 21.7 of these

involve the covariates. Although more edges associated with the covariate vertices are present

in the highest-scoring network, so are more spurious edges.

Another approach could be to control the sparsity of the covariate vertices separately, allow-
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Figure 7.2: The connected components of the Bayesian network for Example 7.6, taking the

covariates as vertices in the network. Vertices corresponding to these random effects are C1,

C2 and C3.

ing these vertices to be highly connected, while still ensuring that the rest of the structure

remains quite sparse. However, this approach is beyond the scope of this thesis.

Alternatively, the possible orderings of variables could be constrained, allowing the covariates

associated with the exogenous variables to be associated with more of the original variables.

Again, this approach is beyond the scope of this thesis.

In the light of the preceding examples, it appears that simple approaches to account for the

presence of a complex mean structure are not effective.

7.1.3 The Residual Approach to the Estimation of Bayesian Net-

works

Here the residual approach to the estimation of Bayesian networks is applied to the data

sets simulated according to Examples 7.1–7.6. First this approach will be applied to the

data sets with a complex mean structure, generated according to Examples 7.4–7.6. Then

the consequences of mistakenly taking account of a complex mean structure will be explored
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Table 7.5: Mean and standard deviation of the number of spurious and correct edges in the

highest-scoring Bayesian networks obtained when the residual approach is applied to data

sets simulated according to Examples 7.4–7.6.

Example True Edges Spurious Edges Correct Edges

7.4 0 0.0(0.00) -

7.5 0 1.3(1.64) -

7.6 3 0.3(0.48) 1.7(0.82)

Table 7.6: Mean and standard deviation of the number of spurious and correct edges in the

highest-scoring Bayesian networks obtained when the residual approach is applied to data

sets simulated according to Examples 7.1–7.3.

Example True Edges Spurious Edges Correct Edges

7.1 0 0.0(0.00) -

7.2 0 0.4(0.52) -

7.3 3 0.5(0.53) 1.4(0.52)

through the application of the residual approach to data sets generated according to Exam-

ples 7.1–7.3.

Table 7.5 summarises the results obtained when complex mean structure is correctly ac-

counted for in the estimation of Bayesian networks for the data sets generated according to

Examples 7.4–7.6. The results show that few spurious edges are included in the highest-

scoring Bayesian networks found when this approach is taken. These results must be com-

pared with those presented in the bottom half of Table 7.1, obtained when S0 is used in the

analysis of these data sets. Upon such comparison, it can be seen that a score metric that

takes account of the presence of a complex mean structure performs much better than in a

score metric that does not take account of such complexity.

The consequences of the assumption of a more complex mean structure than is actually

present in a data set is investigated through the application of the residual approach to the

data sets generated according to Examples 7.1–7.3. When the residual approach is applied
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to Example 7.1, the mean structure of Example 7.4 is assumed, in the analysis of data

sets generated according to Example 7.2, the mean structure of Example 7.5 is assumed,

and in the analysis of data sets generated according to Example 7.3, the mean structure of

Example 7.6 is assumed. The results so obtained are summarised in Table 7.6. Examination

of the results in this table indicates that wrongly supposing a complex mean structure in the

analysis of a data set does little to affect the networks obtained.

Hence, it can be concluded that the residual approach to the estimation of Bayesian networks

performs quite well when the mean structure is correctly specified. Further, when the mean

structure is supposed to be more complex than is actually the case, the residual approach

performs similarly well, as was to be expected.

7.2 The Use of S1 and S2 in the Estimation of Bayesian

Networks

In the previous section, it was shown that the residual approach performed quite well in

the estimation of Bayesian networks for data sets with a complex mean structure. Here,

the performance of the score metrics S1 and S2 are evaluated. After initial assessments of

the performance of these score metrics under ideal conditions, the sensitivity of the results

obtained to the choice of parameters relating to these score metrics is assessed. If the

networks obtained are very sensitive to changes in these parameters, then the utility of these

score metrics will be limited to cases when the true values of the parameters are known, or

can be estimated with high precision. If, on the other hand, the estimated Bayesian networks

are not so sensitive to changes in these parameters, the random effects score metrics will be

more useful.

Investigation into this is conducted through the application of S1 and S2, in conjunction

with the High-dimensional Bayesian Covariance Selection algorithm, to data sets generated

from Examples 7.4, 7.5 and 7.6. Data sets are generated from the systems of linear recursive

equations in these examples for fixed parameter values, and are analysed for a range of these

parameter values. Initially, analysis of these data sets is conducted given the true parameter

values. Then, when S1 is used, the sensitivity of the algorithm to changes in the size of
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the quadrature used to calculate S1 and to the mis-specification of φ are investigated. The

sensitivity of the algorithm to the mis-specification of υ, the parameter associated with S2,

is similarly examined. Note that due to the computational speed of S1, S1 is not used in the

analysis of data sets generated according to Example 7.5.

Note that in what follows, φ∗ denotes the specified value of φ, where φ is the true variance

of the random effects used in the generation of the data. It is this value, φ∗, that is used in

the calculation of S1. Similarly, υ∗ is the specified value of υ: υ is the parameter used in the

generation of the data, υ∗ is used in the calculation of S2.

It is here that the results of Section 4.2.5 should be brought to mind. In that section it

was shown that as φ∗
ψ∗ → 0, both of the score metrics S1 and S2 approach the score metric

obtained when no random effects are present. Hence, as smaller values of φ∗ are selected in

the use of S1, and as larger values of υ∗ are selected in the use of S2, the results obtained

should approach those obtained when the presence of random effects is ignored, and the

original score metric is used. This implies that the performance of S1 for decreasing values

of φ∗ and of S2 for increasing values of υ∗ for a particular example will be largely dependent

upon the performance of the original score metric in the analysis of that example.

7.2.1 The Use of S1

The use of S1 in the analysis of data sets generated according to Examples 7.4 and 7.6 is

investigated in this section. First, the true value of φ and quadrature of size 50 are used

in the analysis of these data sets. Then, the sensitivity of the Bayesian networks found

through the application of S1 to the misspecification of φ and the use of smaller quadratures

is examined.

Table 7.7 summarises the results of using S1 to analyse the data sets generated according

to Examples 7.4 and 7.6 under ideal conditions. In these analyses, the true value of φ was

used, and a quadrature of size 50, the largest quadrature size considered here, was used.

Recall that for Example 7.4, φ = 5, and in Example 7.6, φ = 4. The results shown in the

table indicate that the highest-scoring Bayesian networks obtained when S1 is used in ideal
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Table 7.7: Mean and standard deviation of the number of spurious and correct edges in

the highest-scoring Bayesian networks obtained when S1 is applied to data sets simulated

according to Examples 7.4 and 7.6, using the true value of φ and quadrature of size 50.

Example φ True Edges Spurious Edges Correct Edges

7.4 5 0 0.1(0.32) -

7.6 4 3 0.1(0.32) 2.3(0.68)

Table 7.8: Mean and standard deviation of the number of edges found in the analysis of data

sets from Example 7.4 using S1, (standard deviation in brackets).

φ∗

Quadrature Size 0.005 0.05 0.5 1 2

10 0.1(0.32) 0.1(0.32) 0.2(0.42) 0.1(0.32) 0.1(0.32)

25 0.1(0.32) 0.1(0.32) 0.2(0.42) 0.1(0.32) 0.1(0.32)

50 0.1(0.32) 0.1(0.32) 0.2(0.42) 0.1(0.32) 0.1(0.32)

φ∗

Quadrature Size 4 5 50 500

10 0.1(0.32) 0.1(0.32) 0.1(0.32) 0(0)

25 0.1(0.32) 0.1(0.32) 0.1(0.32) 0(0)

50 0.1(0.32) 0.1(0.32) 0.1(0.32) 0(0)

conditions are, on average, quite close to the true networks.

To assess the sensitivity of the high-scoring Bayesian networks found by the algorithm to

changes in S1, data sets are analysed for differing quadrature sizes and for varying values of

φ∗. Given that φ will, in general, need to be estimated, how differing values of φ∗ affect the

estimation of Bayesian networks requires consideration. The results obtained for differing

quadrature sizes are also of interest. Given a Bayesian network on a set of p variables,

the calculation of the S1 score of that network requires p × q function evaluations, where q

is the size of the Gauss-Laguerre quadrature used in the estimation of the marginal model

likelihood for each variable. Since p will in general be large, it is useful to know to what degree

quadrature size q affects the results obtained by the High-dimensional Bayesian Covariance
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Selection algorithm. The smaller q is, the less time required to run the algorithm, and the

larger the data set S1 may be used to analyse.

Analyses of the data generated according to Examples 7.4 and 7.6 using the S1 score metric

are then conducted for each value of φ∗ ∈ {0.005, 0.05, 0.5, 1, 2, 4, 5, 50, 500} for quadratures

of sizes 10, 25 and 50.

The number of edges in the highest-scoring Bayesian networks obtained when data sets

generated according to Example 7.4 are analysed in this way is summarised in Table 7.8.

This table gives the mean number of edges and the standard deviation of the number of

edges in the highest-scoring Bayesian network found in the analysis of the data sets for each

combination of φ∗ and quadrature size. For example, when the data sets are analysed for

φ∗ = 0.005, with a quadrature of size 25, the mean number of edges in the highest-scoring

graphs obtained when the 10 data sets are analysed in this way is 0.1 edges, with a standard

deviation of 0.95 edges.

Examination of Table 7.8 shows that, for these data sets, changes in quadrature size do not

affect the number of edges in the highest-scoring networks found. Also shown by this table

is the robustness of the highest-scoring networks to changes in φ∗.

The number of edges in the highest-scoring Bayesian networks obtained when data sets

generated according to Example 7.6 are analysed in this way is summarised in Table 7.9.

As was the case in Table 7.8, the mean number of edges and the standard deviation of the

number of edges in the highest-scoring network found in the analysis of the data sets for

each combination of φ∗ and quadrature size is recorded.

Examination of this table shows that, for this example, the number of edges in the highest-

scoring networks obtained are relatively constant for different quadrature sizes. It can also be

seen that this quantity is also quite constant for changing values of φ∗, although it does appear

that slightly fewer edges are found when φ∗ is taken to be very large. Hence, the variability

in the number of edges in the highest-scoring networks found for various combinations of φ∗

and quadrature size appears to be primarily due to changes in φ∗.

From the two small examples considered here, it appears that when S1 is used in conjunction

with the High-dimensional Bayesian Covariance Selection algorithm in the analysis of data

sets containing a small number of variables, the highest-scoring Bayesian networks visited
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Table 7.10: Mean and standard deviation of the number of edges in the highest scoring

networks found when the data sets generated by taking φi = ψi are analysed using S0,

(standard deviation in brackets).

Example True Edges Spurious Edges Correct Edges

7.4 0 0.1(0.32) -

7.5 0 123.6(2.99) -

7.6 3 1.9(1.37) 2.2(0.79)

by the algorithm are quite robust to changes in quadrature size and φ∗. Due to the com-

putational speed of the S1 score metric, sensitivity analyses for larger examples were not

conducted.

7.2.2 The Use of S2

Here, the use of S2 in the analysis of data sets generated according to Examples 7.4–7.6 is

investigated. In order for the score metric under consideration to be consistent with the data

under analysis, in the generation of the data sets considered in this section, φi is taken to be

equal to ψi, so that bi ∼ N(0, ψiI), implying that υ = 1. Given the values of ψi previously

generated, the values of bi are generated, then treated as constants in the simulation of the

data sets for each of the examples.

To allow a baseline for comparison, the data sets so generated are first analysed using S0.

The results of these analyses are summarised in Table 7.10. These data sets are then analysed

using S2, taking υ∗ = υ = 1. These results are summarised in Table 7.11, and show that

when S2 is used given the true value of υ, the highest-scoring Bayesian networks found are

quite close to the true networks.

Typically, the true value of υ will not be known, and some estimate of υ, here denoted υ∗,

will be used in the calculation of S2. To analyse the sensitivity of the algorithm to the

misspecification of this parameter, the data sets generated taking υ = 1 are analysed for

112



Table 7.11: Mean and standard deviation of the number of edges in the highest scoring

networks found when the data sets generated by taking φi = ψi are analysed using S2,

υ∗ = υ = 1, (standard deviation in brackets).

Example True Edges Spurious Edges Correct Edges

7.4 0 0.1(0.32) -

7.5 0 1.0(0.82) -

7.6 3 0.4(0.70) 2.2(0.92)

each υ∗ ∈ {0.0001, 0.001, 0.01, 0.1, 0.5, 1, 2, 5, 10, 20, 50, 100, 500, 1000}.

The number of edges in the highest-scoring Bayesian networks obtained when data sets

generated according to Examples 7.4–7.6 are analysed in this way is summarised in Table

7.12. For Examples 7.4 and 7.5, for each value of υ∗, the mean number of edges and the

standard deviation of the number of spurious edges in the highest-scoring network is recorded.

For Example 7.6, the mean number of edges and the standard deviation of the number of

spurious and correct edges are recorded. For example, in the analysis of the data sets

generated according to Example 7.6, when υ∗ = 1
2
, the mean number of spurious edges in

the highest-scoring Bayesian networks for these 10 data sets is 0.6 edges, with a standard

deviation of 0.84 edges. On average, 2.1 correct edges are found, with a standard deviation

of 0.74 edges.

From Table 7.12, it can be seen that for values of υ∗ smaller than or of the same magnitude

as the true value of υ = 1, changes in υ∗ do not result in very substantial changes to the

average number of spurious edges in the highest-scoring network obtained through the use

of S2. It can also be seen that as υ∗ increases, the average number of edges in the highest-

scoring networks approaches the average number of edges in the highest-scoring networks

found when random effects are ignored in the estimation of Bayesian networks for the data.

This is particularly apparent in the analysis of the data sets from Examples 7.5 and 7.6.

An explanation of this behaviour is as follows. Recall that as υ increases, the variance of the

random effects decreases: φi = υ−1ψi. Hence, the larger the value of υ used in the estimation

of Bayesian networks, the less of the variation in the data is expected to be accounted for by

the presence of a complex mean structure. As the true value of υ is smaller than the value
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of υ∗ used in the analysis, the complex mean structure actually accounts for more variation

than indicated by this larger value of υ∗. This extra variation is accounted for through the

inclusion of edges in the Bayesian network for the data.

This behaviour is consistent with the result obtained in Section 4.2.5. In that section it

was found that as the variance of the exogenous variables that make up the complex mean

structure becomes much smaller than the variance of the variables being considered, S2

tends towards the score metric obtained when there is no complex mean structure. Hence,

the high-scoring Bayesian networks obtained when υ∗ is large tend towards those obtained

when S0 is used.

From the analysis of data sets from these three examples, it appears that the networks

obtained through the use of High-dimensional Bayesian Covariance Selection algorithm are

reasonably robust to the mis-estimation of υ. For values of υ∗ orders of magnitude larger

than the true value υ, the results of Section 4.2.5 imply that the extent of this robustness

depends on the graphs obtained when a complex mean structure is ignored in the analysis.

For selected values of υ∗ of the same or smaller order of magnitude as the true value υ,

high-scoring Bayesian networks obtained are very similar to those obtained when υ∗ = υ is

used.

7.3 Consequences of Misspecification of the Distribu-

tion of φi

In Section 7.2, it was shown that the highest-scoring Bayesian networks found through the

application of S1 or S2 in conjunction with the High-dimensional Bayesian Covariance Selec-

tion algorithm are reasonably robust to the misspecification of parameters associated with

the distribution of the variance of the random effects. Typically, not only will the parame-

ters of this distribution be misspecified, but the distribution itself may be misspecified. In

this section, the robustness of the estimation of Bayesian networks, and the robustness of

posterior inference on the random effects, to such model misspecification is discussed and

investigated. The investigation proceeds through the analysis of data sets generated from

the following example.
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Example 7.7. For this example, data sets are generated according to the following system

of linear recursive equations:

Xijk =bij + εijk,

εijk ∼N(0, ψi), i = 1, 2, . . . , 20, j = 1, 2, . . . , 6, k = 1, 2, 3.

The values of ψi are constant across the data sets that are generated, and are obtained by

taking a sample of size 20 from an Inverse Gamma (1, 1/2) distribution.

For each of the data sets generated, values of bij are obtained by sampling from a N(0, φi)

distribution. Ten data sets are generated for each of the following assumptions on φi:

M1 : φi = φ = 4,

M2 : φi = ψi,

M3 : φ
1
2
i ∼ Uniform (0, 2) .

For the ten data sets generated given model M1, the values of bij are held constant, having

been sampled from a N(0, 4) distribution. For the ten data sets generated given model M2,

the values of bij are again held constant, obtained by sampling from N(0, ψi) distributions.

For the ten data sets generated given M3, the values of φi are constant across data sets, with

φ
1
2
i sampled from Uniform(0, 2) distributions. The values of bij are also constant across data

sets, sampled from N(0, φi) distributions.

The Bayesian network associated with this system of linear equations has no edges, and the

true model for each variable may be written as

xi|ψi, bi ∼N18 (Qbi, ψiI18) , (7.4)
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where

xi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

xi11

xi12

xi13

xi21

xi22

xi23

xi31

xi32

xi33

xi41

xi42

xi43

xi51

xi52

xi53

xi61

xi62

xi63

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Q =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0

1 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, bi =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

bi1

bi2

bi3

bi4

bi5

bi6

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Note that since there are 6 random effects in this model, S3 may be used in the analysis of

data generated from the model.

Thirty data sets are generated; ten for each assumption on the distribution of the variance

of the random effects. Each of these thirty data sets is then analysed using each of the score

metrics S0, S1, S2, S3 and the residual approach. The number of edges in the highest-scoring

Bayesian network for each assumption/score metric combination are summarised in Table

7.13.

The tabulated results show that as the variance of the bij increases, the number of spurious

edges in the highest-scoring networks found through the application of S0 increases. This

is to be expected, because as φi increases, the more variation due to the presence of the bij

there will be in the data sets generated.
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Table 7.13: Mean and standard deviation of the number of spurious edges in the highest-

scoring Bayesian networks for data sets generated from Example 7.7, (standard deviation in

brackets).

Score Metric

Distribution of φ S1 (φ∗ = 4) S2 (υ∗ = 1) S3 Residual Approach S0

φ = 4 1.4(0.84) 0.4(0.52) 2.2(1.62) 0(0) 9.1(2.13)

φi = ψi 1.1(0.88) 0.3(0.48) 2.7(1.16) 0.1(0.32) 0.7(0.82)

φ
1
2
i ∼ Uniform(0, 2) 1.0(0.47) 0(0) 2.4(1.58) 0(0) 2.1(1.10)

Consider now the results obtained when one of S1, S2, S3 or the residual approach is used in

the analysis of the data sets. The tabulated results indicate that while the number of edges

in the highest-scoring Bayesian network found appears to depend upon the score metric

used in the analysis of the data, there does not appear to be much dependence upon the

distribution of φi used in the generation of the data. Consider, for example, the results

obtained when S1 is used in the estimation of Bayesian networks for the data sets. Recall

that implicit in the use of S1 is the assumption that the variance of the bij is fixed. It may

be expected that the results obtained when S1 is used in the analysis of data sets generated

when φ = ψi or φ
1
2
i ∼ Uniform(0, 2) would be different to the results obtained when S1 is

used in the analysis of data sets generated when φ is fixed. However, the table shows that

no matter what distribution for the variance of the bij was used in the generation of data

sets, similar results are obtained when S1 is used in the analysis of those data sets. Similar

results are shown for S2, S3 and the residual approach.

Further theoretical research into the consequences of the misspecification of the model on

the high-scoring Bayesian networks found by the algorithm is required. Although it appears

for the small example considered here that each score metric that takes account of a complex

mean structure performs similarly no matter what the true distribution of φi is, this may

not be the case for a larger example with a more complex Bayesian network.
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7.3.1 The Effect of Model Misspecification on Posterior Estima-

tion

The consequences of the misspecification of the prior distribution of φi on posterior inference

for the random effects are now investigated. Posterior inference for the data sets generated

as described in Example 7.7 is conducted, with posterior samples for each data set generated

assuming each of the following models for the variance of the random effects:

M1 : φi = 4;

M2 : φi = ψi;

M3 : φ
1
2
i ∼ Uniform (0, 2) ,

i = 1, 2, . . . , 20.

Recall from Section 4.4 that to obtain samples from the joint posterior distribution of

γi, ψi, bi, φi|xPi
via Gibbs sampling, the required conditional posterior distributions are

γi|xi, ψi, bi,xPi
,

ψi|xi,γi, bi,xPi
,

bi|xi,γi, ψi, φi,xPi

and φi|bi.

We will assume that the true directed acyclic graph underlying the Bayesian network from

which the data sets were generated is known. In this case, the true directed acyclic graph is

the graph with no edges. The required conditional posterior distributions are then

ψi|xi, bi

bi|xi, ψi, φi

and φi|bi.

For any of the three assumptions M1, M2 or M3,

bi|xi, ψi, φi ∼N6

((
ψi

φi

I +QTQ

)−1
QTxi, ψi

(
ψi

φi

I +QTQ

)−1)
.
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Note that for Q as given in Example 7.7, QTQ = 3I6, so that

bi|xi, ψi, φi ∼N6

(
φi

3φi + ψi

QTxi,
φiψi

3φi + ψi

I

)
,

and

bij|xi, ψi, φi ∼N

(
φi

3φi + ψi

3∑
k=1

xijk,
φiψi

3φi + ψi

)
. (7.5)

Under assumption M2, ψi = φi, implying that this distribution may be written as

bij|xi, ψi ∼N

(
1

4

3∑
k=1

xijk,
ψi

4

)
. (7.6)

Under the assumptions M1 and M3,

ψi|xi, bi ∼Inv-Gamma (α, β) ;

α =
n+ δ

2
,

β =
τ

2
+

1

2
(xi −Qbi)

T (xi −Qbi) .

On the other hand, under M2,

ψi|xi, bi ∼Inv-Gamma (α∗, β∗) ;

α∗ =α +
m

2
,

β∗ =β +
1

2
bTi bi.

The final conditional posterior distribution only exists for φ
1
2
i ∼ Uniform (0, 2):

φi|bi ∼ Inv Gamma

(
m− 1

2
,
1

2
bTi bi

)
.

Note that for the data sets generated according to Example 7.7,

n = 18,m = 6, δ = 2, τ = 1.

For each of the 30 data sets generated according to Example 7.7, posterior samples are

obtained assuming each of M1, M2 and M3. In this way, the effect of the misspecification of

the prior distribution of φi on posterior inference may be assessed.
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The sampling proceeds as described in Section 4.4.5, given the conditional posterior distri-

butions presented above and using the R code given in Appendix B.3. Under each of the

three prior assumptions on φi, for each of the thirty data sets, 2500 samples are simulated

from the joint posterior distribution, with the first 500 samples discarded as burn-in.

For each of these 90 simulations, the posterior samples from the marginal posterior distri-

butions

φi

ψi|xi and

bij|xi i = 1, 2, . . . , 18, j = 1, 2, . . . , 6.

are of the most interest. Samples from these marginal posterior distributions are obtained

by looking at the samples from the joint posterior distribution f (ψi, bi, φi|xi,xPi
), and, for

example, in the case of bi, ignoring the sampled values of ψi and φi.

In this analysis of the effect of prior misspecification on posterior inference for Example 7.7,

only the parameters associated with a few variables will be considered. In particular, for

the data sets generated under assumption M1, parameters associated with X1 and X7 are

considered. For the data sets generated under assumption M2, parameters associated with

X5 andX11 are considered, and for data sets generated underM3, parameters associated with

X6 and X17 are considered. It should be noted that the posterior samples of the parameters

of the variables selected for analysis are not extreme in any way, but are representative of

the general trends that may be observed across the posterior samples for all variables.

For each of the thirty data sets generated, posterior samples assuming each model M1, M2

and M3 are simulated. For the data sets generated under each model, the posterior samples

when the correct model is used for posterior simulation are discussed, then the consequences

of misspecifying the prior distribution of φi on posterior inference is dicussed.

When the correct model is assumed in the generation of posterior samples, histograms of

the samples from selected marginal posterior distributions given the first data set generated

under that model are displayed. For example, Figure 7.3 displays histograms of the posterior

samples from the marginal posterior distributions of b11, φ1, b71 and φ7 given the first data

set generated under M1, when the correct prior distribution for φi is assumed.
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For each of the thirty data sets generated, the posterior samples from selected posterior

marginal distributions given these data sets are summarised using the sample median and

the 90% posterior interval. For example, Figure 7.4 summarises the posterior samples of

b11|x1, ψ1|x1 and φ1 when the data x1 is generated under assumption M1. The red bars on

these plots indicate the true values of the parameters that were used in the generation of the

data.

These figures allow investigation into the consequences of the misspecification of the distribu-

tion of φi on posterior inference, through the comparison of the posterior intervals obtained

for each of the data sets under each of the assumptions M1, M2 and M3.

Analysis of the data generated under M1 : φi = 4

Here, the posterior analysis of the ten data sets generated under M1 is discussed. Initially,

the posterior analysis when the correct model is assumed is presented, then the consequences

of the misspecification of the prior distribution of φi is discussed.

Figure 7.3 displays the histograms of the simulations from the marginal distributions of

b11, ψ1, b71 and ψ7 given the first data set generated under M1. Note that the histograms

given the other data sets generated under M1, and those for other parameters, are similar.

These histograms show that given the true prior distribution of φi, the marginal posterior

distributions for the bij are centered quite closely to the value of bij used in the generation

of the data. The marginal posterior distributions for the ψi behave similarly.

Figure 7.4 summarises the marginal posterior samples of b11, ψ1 and φ1, and Figure 7.5

summarises the marginal posterior samples of b71, ψ7 and φ7 given each of the data sets

generated under M1, assuming each of M1, M2 and M3 in turn.

These figures show that for each of the data sets generated taking φi = 4, the 90% posterior

intervals for b11, ψ1, b71 and ψ7, are similar when either M1 or M3 is assumed.

The posterior intervals obtained when M2 is assumed in the simulation of posterior samples

of b11 and ψ1 are similar to those obtained when M1 or M3 are assumed. However, when M2

is assumed in the simulation of posterior samples for b71 and ψ7, the posterior intervals are
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Figure 7.3: Histograms of the samples from the marginal posterior distribution of (a) b11,

(b) ψ1, (c) b71 and (d) ψ7, for the first data set generated under M1, assuming M1. The true

values are marked in red.
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Figure 7.4: Medians and 90% posterior intervals for b11|x1, ψ1|x1, and φ1 when x1 is gener-

ated under M1. The red vertical bars indicate the true values.
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Figure 7.5: Medians and 90% posterior intervals for b71|x7, ψ7|x7, and φ7 when x7 is gener-

ated under M1. The red vertical bars indicate the true values.
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quite different, and these parameters tend to be overestimated.

Note that posterior estimates of φi are only available when M3 is assumed. Figures 7.4(c)

and 7.5(c) display the tendency of posterior samples to overestimate φi.

Analysis of the data generated under M2 : φi = ψi

Figure 7.6 displays the histograms of the simulations from the marginal distributions of b51,

ψ5, b11,1 and ψ11 given the first data set generated under M2. The histograms given the

other data sets generated under M2 are similar. These histograms indicate that posterior

estimates of the parameters when M2 is correctly assumed are, in general, reasonably close

to the true values of the parameters.

Figures 7.7 and 7.8 summarise the posterior simulations assuming each of M1, M2 and M3

given each of the ten data sets generated under M2. Figures 7.7(a) and 7.8(a) indicate that

the posterior simulations of bij behave similarly for each of the three models assumed. Figures

7.7(b) and 7.8(b) show that when M1 or M3 are incorrectly assumed, the posterior intervals

for ψi may be slightly wider than when M2 is correctly assumed. Apart from this, posterior

inference for ψi seems quite unaffected by incorrect specification of the prior distribution of

φi.

Again, Figures 7.7(c) and 7.8(c) show that posterior estimates of φi, obtained when M3 is

assumed, tend to overestimate the true value of the parameter quite dramatically.

Analysis of the data generated under M3 : φ
1
2
i ∼ Uniform(0, 2)

Figure 7.9 displays the histograms of the simulations from the marginal distributions of b61,

ψ6, φ6, b17,1, ψ17 and φ17 given the first data set generated under M3. Again, the histograms

given the other data sets generated under M3 are similar to those displayed.

It can be seen that posterior estimation for bij and ψi when M3 is correctly assumed performs

similarly to when M1 or M2 are correctly assumed. Posterior estimation of φi performs quite
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Figure 7.6: Histograms of the samples from the marginal posterior distribution of (a) b51,

(b) ψ5, (c) b11,1 and (d) ψ11, for the first data set generated under M2, assuming M2. The

true values are marked in red.
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ated under M2. The red vertical bars indicate the true values.
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Figure 7.9: Histograms of the samples from the marginal posterior distribution of (a) b61,

(b) ψ6, (c) φ6, (d) b17,1, (e) ψ17 and φ17 for the first data set generated under M3, assuming
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poorly, due to the paucity of information available for the estimation of this parameter.

Figures 7.10 and 7.11 show that when M3 is the correct model, the posterior samples for bij

and ψi are quite similar when M1 or M3 is assumed.

When M2 is assumed, the posterior medians of the samples from the marginal posterior

distribution of ψi tend to be much larger than the value of ψi used in the generation of the

data, and the posterior intervals tend to be wider than when eitherM1 orM3 is assumed. The

posterior intervals for b61 obtained assuming M2 are much wider than those obtained under

M1 or M3. The posterior intervals for b17,1 are similar under each of the three assumptions.

Figures 7.10(c) and 7.11(c) indicate that even when M3 is the correct model, posterior

estimates of φi tend to be much larger than the value of φi used in the generation of the

data.

Conclusions

Several conclusions may be drawn from the analysis of Section 7.3.1. The first conclusion is

that no matter what the true prior distribution of φi, posterior estimates of φi, necessarily

obtained when M3 is assumed, are quite poor. Given the small number of random effects in

this example, such poor estimation is to be expected.

Second, it seems that the posterior samples of bij and ψi obtained when M1 or M3 are

assumed behave similarly, no matter which distribution of φi was used in the generation of

the data sets.

When M2 is assumed in the analysis of data generated under M1 or M3, it was observed that

the posterior samples obtained were, on occasion, quite different to those obtained when M1

or M3 were assumed. These observed differences are probably due to the difference between

the prior magnitude of the φi assumed when M2 is assumed, and the true magnitude of the

φi.

From the above, it can be concluded that, for this example, misspecification of the prior

distribution of φi does not have a substantive effect on the posterior estimation of bi, provided

the magnitude of the φi is apriori estimated accurately. However, it seems that posterior
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Figure 7.10: Medians and 90% posterior intervals for b61|x6, ψ6|x6, and φ6 when x6 is

generated under M3. The red vertical bars indicate the true values.
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estimates of ψi are sensitive to the prior distribution used. It also seems that posterior

estimation of φi will typically be poor, due to the small number of exogenous variables

generally included in analyses.

7.4 Conclusions and Recommendations

In this chapter the score metrics S1, S2, S3 and the residual approach to the estimation

of Bayesian networks, in conjunction with the High-dimensional Bayesian Covariance Selec-

tion algorithm, were used to estimate Bayesian networks for example data sets with known

network structure.

The necessity of such score metrics was shown in Section 7.1. It was shown that ignoring a

more complex mean structure may result in the generation, by the High-dimensional Bayesian

Covariance Selection algorithm, of high-scoring Bayesian networks with many spurious edges.

The use of score metrics that take account of the presence of a complex mean structure was

shown to produce high-scoring Bayesian networks with structures much closer to the true

structure.

In Section 7.2, the sensitivity of the high-scoring Bayesian networks obtained through the

use of S1 and S2 in conjunction with the High-dimensional Bayesian Covariance Selection

algorithm to changes in φ and υ was assessed for some examples. It was found that provided

the selected values of φ and υ are within an order of magnitude or two of the true parameter

values, the high-scoring networks are not particularly sensitive to changes in these values.

The sensitivity of the high-scoring Bayesian networks obtained to the misspecification of the

prior distribution of the random effects was investigated in Section 7.3. For the example

considered, it was demonstrated that such prior misspecification did not affect the high-

scoring Bayesian networks obtained to a great degree. It is conjectured that no matter what

prior distribution on φi is assumed, the number of spurious edges in the highest-scoring

Bayesian network obtained will be limited by the number obtained when random effects are

ignored.

In Section 7.3.1, the effect of the misspecification of the prior distribution on posterior

inference was investigated. The forms of the conditional posterior distributions obtained
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under each assumption on the form of the prior distribution of φi were first considered.

It was then noted that due to the similarity of these distributions, prior misspecification

should not have a great effect on posterior inference. Such a result was demonstrated for an

example.

A more thorough theoretical treatment of the effects of the misspecification of the prior

distribution of the random effects on estimated Bayesian networks and on posterior inference

would be of interest but is beyond the scope of this thesis.

When analysing a data set with a complex mean structure, it is recommended, in the first

instance, to appeal to the residual approach to the estimation of Bayesian networks, as no

assumptions on the form of the prior distribution of the variance of the random effects are

made. Then, if posterior estimates of the parameters that make up this complex mean

structure are desired, the use of S2 is recommended. The reasons for the recommendation

of S2 over either S1 or S3 is the computational speed of S2 compared to the computational

speeds of S1 and S3, and the results of this chapter that imply that results obtained should

be quite robust to the misspecification of the prior distribution of φi.
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Chapter 8

Analysis of the Grape Gene Data

This chapter considers the estimation of Bayesian networks for a gene expression data set

that contains a complex mean structure. In the initial analysis of the data set, the samples

of gene expression values are supposed to be independent and identically distributed. Given

this assumption, the High-dimensional Bayesian Covariance Selection algorithm is used to

estimate a Bayesian network for the gene expression data. The complex mean structure of

the data is then considered, and the residual approach is used to control for such complexity

in the estimation of a Bayesian network for the data. The Bayesian networks so obtained

are then compared, and their biological plausibility discussed.

The gene expression data set considered in this chapter, discussed in more detail in Section

8.1, consists of fifty samples of gene expression levels for 26 grape genes. The grape berry

tissue samples from which the gene expression levels were derived were taken from three

different vineyards, in three different regions of South Australia. Note also that for each of

the samples of gene expression, the temperatures at each vineyard in the hours leading up

to the picking of the grape berries were recorded.

Table 8.1 provides information about the 26 genes considered here. The first column of Table

8.1 gives the reference number of each gene, used to refer to the genes in the following analysis.

The second column of the table gives the Affymetrix probe set references. The third column

gives the NCBI name of the gene, where Vvi stands for Vitis vinifera. Note that several of

the genes with distinct Affymetrix probe set references have the same NCBI name. This is

because these probe sets were later found to be targeting the same gene; different primers

136



that bound to different regions of the same gene were used in the Affymetrix microarrays.

Note that the following discussions are framed in terms of expression levels for the 26 genes,

instead of referring to the expression levels of the 26 probes.

Descriptions of the proteins these genes code for are provided in the fourth column of Table

8.1. These 26 grape genes are known to code for heat shock proteins, [86], hereafter termed

Hsps. These Hsps are responsible for protecting grapes against heat-induced stress, [86],

hence, it is known that the expression levels of these genes are related to temperature, [87].

For a more detailed description of the functions of these proteins, see [86] and [87].

Given the known functions of the genes considered here and the climatic and geographic

disparities between the regions where grape berries were sampled from, it would be remiss to

ignore the effects of vineyard and temperature in the estimation of a Bayesian network for the

grape genes. If the expression levels of these genes are strongly influenced by temperature,

it follows that if the variation in the expression levels due to temperature is accounted for

in the estimation of a Bayesian network, the resulting network should be much sparser than

that obtained when such variation was not accounted for.

After a detailed description of the grape gene data set in Section 8.1, the effects of vineyard

and temperature on the expression levels of the genes are ignored, and in Section 8.2, the

High-dimensional Bayesian Covariance Selection algorithm is used to estimate a Bayesian

network for the grape genes.

The effects of vineyard and temperature on the expression levels of the genes are then

explored in Section 8.3. In Section 8.3.2, the residual approach is used to take account of

these effects in the estimation of a Bayesian network for the genes. In Section 8.3.3, the S2

score metric is used, and in Section 8.3.4, a combination of the residual approach and S2 is

used in the estimation of Bayesian networks for the grape genes. The networks so obtained

are then compared to the one obtained when the effects of vineyard and temperature were

ignored, and the biological plausibility of these networks is discussed.

Posterior estimation of the effects of different vineyards on the expression levels of the genes

is considered in Section 8.5.

Note that the data set considered in this chapter consists of gene expression data for a

very limited set of genes. As such, in the analysis of this data set, while it is hoped that
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the associations discovered will provide some insight into relationships between the genes,

given the data set used, the methods applied could not be expected to find actual genetic

regulatory pathways. The data available could not support any such conclusions. Instead,

the focus is on the investigation of the conditional independence structure of these genes.

Importantly, this chapter demonstrates the utility of the approaches presented in this thesis

in the analysis of a real data set with an unknown network structure.

8.1 The Grape Gene Data

The grape gene data set considered in this chapter consists of expression values for each

of the 26 grape genes, taken from 50 grape berry tissue samples. The grape berries from

which gene expression levels were derived were all of the same variety and grown in three

different vineyards: a vineyard in Clare, a Wingara vineyard, and a vineyard in Willunga,

all located in South Australia. Twenty of the grape berry tissue samples were taken from

the Clare vineyard, 20 were taken from the Wingara vineyard, and 10 were taken from the

vineyard in Willunga. Note that all of the analysis was performed at the same laboratory.

At each vineyard, temperatures at various times leading up to the picking of the grapes were

recorded.

This data set is actually a subset of a larger set of data that consists of gene expression values

obtained from 174 grape berry tissue samples, where 68 of the samples were taken from the

Clare vineyard, 68 from the Wingara vineyard, and 38 from the Wingara vineyard. At the

Clare and Wingara vineyards, four grape berry tissue samples were selected each week for

17 weeks. At the Willunga vineyard, 2 grape berry tissue samples were selected each week

for 19 weeks. At each of the vineyards, the first samples were taken at fruit set, when the

fertilised grape flowers began to form grape berries. Samples were then taken each week for

a pre-specified number of weeks. In this way, gene expression levels were measured over the

course of the development of the grape berries.

The data set from the Willunga vineyard consists of 34 grape tissue samples, with 2 samples

taken on each of 19 sampling dates, roughly a week apart, occurring between November 20,

2003 and March 25, 2004. The times at which the samples were taken was recorded, with
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the samples on the first sampling date being taken at midday. On each of the remaining

sampling dates the samples were taken at 11am. Air temperatures on each of the sampling

dates were recorded 5.5 hours before the grapes were picked, and then every hour up until

half an hour before the picking of the grapes. On the sampling day in the fourteenth week

of the observation, the temperature at 2.5 hours before the grapes were picked was not

recorded, and on the sampling date of the sixteenth week, temperatures at 3.5, 2.5 and 1.5

hours before picking were not recorded. This leaves 34 samples of gene expression levels

taken from the Willunga vineyard with complete air temperature records.

The data set from the Clare vineyard consists of 68 grape tissue samples, 4 samples of which

were taken on each of 17 sampling dates, roughly a week apart, occurring between November

23, 2004 and March 16, 2005. Two of each of these 4 samples were picked using spur pruning,

while the other two were picked using machine pruning. However, it is not thought that the

method of pruning affects the expression levels of any gene. In any case, for the purposes

of the analysis that will be conducted here, any difference between the different methods of

pruning used is inconsequential.

For the Clare data set, for most sampling days, the times of the picking of the grapes

were recorded, as were air temperatures in degrees Celsius every 10 minutes from 6 hours

before the grapes were picked to the time of picking. To avoid missing data problems, only

temperatures recorded 5.5, 4.5, 3.5, 2.5, 1.5 and 0.5 hours before the picking of the grapes

will be considered. No temperatures were recorded for the first sampling day, and on the

second sampling day, very few temperatures were recorded, leaving 60 samples with complete

temperature records.

Like the sample from Clare, the sample from the Wingara vineyard consists of 68 grape

tissue samples, 4 samples of which were taken on each of 17 sampling dates. These sampling

dates occurred roughly a week apart from November 10, 2004 to March 2, 2005. Two of

each of these 4 samples were control samples, while the other 3 had a treatment known as

“partial deficit”. It is not thought that this treatment should affect gene expression levels.

Again, note that any difference in expression levels due to these different treatments has no

bearing upon the results obtained in the current chapter.

For the Wingara data set, on the first sampling day, all samples were collected at 12.30pm,

while on all remaining sampling days, samples were collected at 11.30am. For all sampling
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Figure 8.1: A schematic representation of the development of grape berries.

days, temperatures were recorded every ten minutes from 6 hours before the grapes were

picked until the time of picking. Again, only the temperatures recorded 5.5, 4.5, 3.5, 2.5, 1.5

and 0.5 hours before the picking of the grapes will be considered in this analysis of the data.

The reduced data set considered here, consisting of 50 gene expression samples for each gene,

consists of the samples from each vineyard taken in the third to seventh weeks of sampling,

inclusive. Note that each of these samples have complete temperature records. The reason

for the use of only these samples relates to the developmental cycle of grape berries. As

discussed above, the expression levels of the grape genes in Table 8.1 were measured over

the course of the development of the grape berries. Grape berries follow a double sigmoidal

pattern of growth, that consists of two distinct growth phases with a lag period between these

phases, [11, 68]. Figure 8.1 provides a schematic representation of grape berry development,

displaying this double sigmoidal pattern.

Figure 8.1 shows that the second phase of grape berry growth commences upon the oc-

currence of an event known as “veraison”. Veraison is the term used to describe the com-

mencement of the colour change of grape berries. Robinson and Davies, [68], suggest that

at veraison and during ripening, there are many changes in the expression levels of many

different genes in grape berries. The relationships between the expression levels of genes
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during these changes are not well understood. It is for this reason that only data gathered in

weeks 3 to 7 is considered. This time period occurs after fruit set, but well before veraison.

It is thought that the relationships between expression levels of genes are quite stable during

this time period. Hence, the assumption of identically distributed samples of gene expression

values is more likely to be valid if only the data from this time slice is considered.

mRNA expression for each of these grape tissue samples was measured using Affymetrix

Vitis vinifera oligonucleotide arrays. Background subtraction and normalisation was carried

out using robust microarray analysis (RMA), as described in Irizarry et al [43].

8.2 Initial Analysis of the Grape Gene Data

In the initial estimation of a Bayesian network for the grape gene data, no attempt is made

to account for the effects of vineyard and temperature on the expression levels of the genes.

That is, if xi is the 50-vector of the log-scale expression levels for grape gene i, it is assumed

that

xi|xPi
,γi, ψi ∼ N50 (xPi

γi, ψiI50) ,

γi|ψi ∼ Nai(0, τ
−1ψiIai),

ψ−1i ∼ Ga

(
δ + ai
2

,
τ

2

)
. (8.1)

where ai = |Pi| and xPi
is a 50 × ai matrix. The columns of this matrix consist of the

expression levels of the grape genes in the data set that the expression level of gene i is

dependent upon and γi = (γij)j∈Pi
. γij is the effect of the expression level of gene j on the

expression level of gene i. Following Dobra et al ’s analysis of Affymetrix gene expression

data, [23, 25], τ = 1 and δ = 2.

Note that in what follows, references to expression levels of the grape genes should be taken

to mean the log-scale expression levels of the genes.

The application of High-dimensional Bayesian Covariance Selection to the grape gene data

set results in the estimation of a Bayesian network for the grape genes in Table 8.1. Given

that the grape gene expression levels available here are observational, causal interpretations

should not be applied to the directed edges present in any network estimated given this
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Figure 8.2: The moral version of the highest-scoring graph obtained for the grape genes,

when vineyard and temperature are not accounted for.

data. Hence, the moralised version of the directed acyclic graph is used to summarise the

conditional independence relationships of the grape genes.

The highest scoring Bayesian network found through the application of High-dimensional

Bayesian Covariance Selection has 43 edges. The moralised version of the directed acyclic

graph has 84 edges, and is displayed in Figure 8.2. Note that the placement of the vertices is

arbitrary, and that the edges alone provide information about the conditional independence

relationships of the genes.

Graphs were also estimated separately for the data from each vineyard. The highest scoring

graph found for the Clare data had 22 edges, the highest scoring graph for the Wingara data

had 23 edges, and the highest scoring graph for the Willunga data had 17 edges. These

highest-scoring graphs were all quite different: only two edges were common to all three

graphs (the edges between genes 21 and 25 and between genes 22 and 24), with the Clare

and Wingara graphs sharing 8 edges, the Willunga graph having three edges in common

with both the Wingara graph and the Clare graph. Given the paucity of the data, and

the complexity of the models being analysed, the lack of concordance between the graphs

obtained separately for each vineyard is not surprising.

When these vineyard-specific graphs are compared to the graph of Figure 8.2, however, it is
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seen that many of the edges in each of these individual graphs are contained in the graph

obtained through the use of all of the data. The graph in Figure 8.2 has 18 edges in common

with the Clare graph, 16 edges in common with the Wingara graph, and 9 edges in common

with the Willunga graph. It seems that the sparsity constraints of the HdBCS algorithm will

prevent more of the edges in the individual vineyard graphs being contained in the graph

based on all of the data. In an effort to make the most efficient use of the data, in what

follows, we will concentrate on models that incorporate data from all three vineyards.

In the estimation of the graph for the full data set, no attempt to account for the effects of

vineyard and temperature was made. However, it is reasonable to assume that the expression

levels of different genes will be differently affected by conditions such as soil type, solar

radiation, rainfall, etc., that are present at each of the different vineyards. Also, since the

genes in Table 8.1 are heat shock genes, it is known that the expression levels of these genes

will be affected by changes in temperature. Hence, the effect of temperature and vineyard

should be accounted for in the estimation of Bayesian networks for the grape gene data.

In Chapter 7, it was demonstrated that when the presence of a complex mean structure is

ignored in the estimation of Bayesian networks for a data set, the highest-scoring networks

obtained through the application of High-dimensional Bayesian Covariance Selection may

differ quite remarkably from the true network from which the data set was drawn. Hence,

it can reasonably be assumed that ignoring the effects of vineyard and temperature on the

grape gene expression levels may result in estimated Bayesian networks that do not encode

the same conditional independence relationships as are present in the true inverse covariance

matrix of the genes. As a result of this, the graph obtained above may not provide an

accurate representation of the conditional independence structure of the grape genes.

In Section 8.3, how to appropriately include temperature and vineyard effects in the model

for the grape genes is discussed. Such effects are then included in the model, and Bayesian

networks given this model are generated. In Section 8.4, the Bayesian networks so obtained

are compared with the network obtained above.
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8.3 Taking Account of Vineyard and Temperature Ef-

fects in the Analysis of the Grape Gene Data

The dependence of the grape gene expression values on changes in vineyard and temperature

is now considered. As demonstrated in Section 7.1, if a data set has a complex mean

structure, such a structure should be accounted for in the estimation of a Bayesian network

for the data, lest spurious edges be included in the highest-scoring network. Hence, if it

is found that the expression levels of the grape genes differ significantly from vineyard to

vineyard, or that there is a relationship between expression level and temperatures at times

before the picking of the grapes, such effects should be accounted for in the estimation of a

Bayesian network for the genes.

Since the genes being considered here are known heat shock genes, the expression levels of

these genes are expected to be dependent, in some way, upon temperature. That is, some

of the variation in the gene expression values sampled is expected be due to the different

temperatures on the different sampling days. For this reason, the relationship of each gene

to temperature must be taken into account in the estimation of a Bayesian network for the

grape genes. It also seems reasonable to assume that the mean expression levels of genes will

differ from vineyard to vineyard. For visual summaries of how the expression levels of each

gene differ from vineyard to vineyard, see the boxplots in Appendix C.1. Note also that the

temperature profiles at each of the vineyards for each of the samples are displayed in Figure

8.3.

The question of how best to include temperature and vineyard effects in the model for

gene expression is investigated using linear regression models with forward and backward

selection.

It could be argued that instead of including each of the temperatures for each sample, average

temperatures, or the average of the first three temperatures and the last three temperatures,

could be used instead. However, the sharp increases in temperature displayed for some

samples in Figure 8.3 would not be captured by such data reduction. Hence, from this point,

only models containing the raw temperatures are considered.
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Figure 8.3: The temperatures at each vineyard at the times leading up to the picking of the

grapes.

The largest model for each gene that will be considered contains separate intercepts for the

data from each vineyard, terms for each of the temperatures recorded {30, 90, 150, 210, 270, 330}
minutes before the grapes were picked, and all 2-way interactions of these temperatures, ex-

cepting the interaction between the temperatures 270 and 330 minutes before picking. This

interaction is excluded as the resulting vector happens to be linearly dependent upon the

set of the remaining vectors. This model contains 23 covariates: 3 vineyard effects, 6 main

temperature effects, and the 14 second-order temperature interactions.
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Figure 8.4: Histogram of the adjusted r2s obtained after regressing the gene expression values

on vineyard, temperature, and all 2-way interactions of the temperatures.

For each of the 26 genes, a step-wise approach is taken to finding the best regression model.
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The step-wise procedure used is the stepAIC function from the MASS package, [84], in R, [76].

Examination of the results of this step-wise procedure indicate that the model containing all

of the terms should be used. That is, there is not a single backwards elimination step that

would apply to all genes. Summaries of the regressions of the expression levels of each gene

on the vineyard and temperature covariates are shown in Appendix C.3. The adjusted r2s

for these regressions are all very high, and are summarised in Figure 8.4.

The selected model, containing 3 vineyard effects, 6 main temperature effects and 14 second-

order temperature interactions is required because it is the simplest model that fits every

gene. Of course, as a consequence, overfitting does occur for some genes, as can be seen

in the regression summaries in Appendix C.3. For example, for gene 2, a highly significant

F-statistic is observed, but none of the regression coefficients are individually significantly

different from zero. While this indicates that separate models for each gene should be

considered, such work is beyond the scope of this thesis.

In Figure 8.5, histograms of the marginal standard deviations of the expression data for each

gene and the residual standard errors from the regressions containing vineyard, tempera-

ture and the two-way temperature interactions are shown. The histogram of the marginal

standard deviations shows how variable the expression levels of each of the genes were be-

fore temperature or vineyard effects were taken into account. The histogram of the residual

standard errors shows how much variation remains in the data after the relationships with

temperature and vineyard have been accounted for in this way. The histograms show that

for the genes considered here, changes in temperature and vineyard account for most of the

variation in the expression levels.

Hence, it is clear that both vineyard and temperature need to be considered in the estimation

of a Bayesian network for the grape genes. Given the amount of variation in the expression

levels accounted for by these covariates, accounting for them in the estimation of a Bayesian

network for the grape genes should result in a high-scoring Bayesian network with fewer

edges than the one obtained in Section 8.2, the moral graph if which is shown in Figure 8.2.

Note that in order to estimate a Bayesian network for these gene expression levels under the

assumption of a joint Gaussian distribution, the scatter plots of the residuals after fitting

the above model, with vineyard, main temperature and two-way temperature interactions
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Figure 8.5: Histograms of the marginal standard deviations of the grape gene expression

levels and the residual standard errors after regressing the expression levels on temperature

and vineyard.

should show roughly linear relationships. Four such plots are displayed in Figure 8.6, and it

can be seen that, for these pairs of genes at least, this requirement is satisfied.

8.3.1 Inclusion of the Effects of Vineyard and Temperature in the

Model

The question is now how to include the effects of vineyard and temperature in the estimation

of a Bayesian network for the grape genes. When the residual approach to the estimation

of Bayesian networks is taken, as it is in Section 8.3.2, no assumptions on the form of the

prior distribution of the effects of vineyard and temperature are made. However, if posterior

estimates of such effects are desired, prior distributions on these effects need to be assumed.

In Bayesian analyses, there is little distinction between fixed and random effects, as prior

distributions are placed on all unknown parameters. However, it is still worth considering

whether it makes sense to treat vineyard and temperature effects as random effects in the

analysis, and it is necessary to discuss which prior distributions are appropriate.
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(b) Gene 6 vs. Gene 12
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(c) Gene 3 vs. Gene 23
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(d) Gene 25 vs. Gene 26

Figure 8.6: Scatterplots of the residuals after fitting the above model, with vineyard, main

temperature and two-way temperature interaction effects for some pairs of genes.
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Consider first the effects of different vineyards on the expression levels of the various genes.

The vineyards from which grapes were sampled for this data set can be thought of as a

random sample from the population of all vineyards. Alternatively, the effect of a particular

vineyard upon the expression level of a gene could be thought of as a combination of the

effects of soil type, solar radiation, and other such variables on the expression level of that

gene. Either way, the effect of a particular vineyard upon the expression level of a particular

gene can be thought of as a random effect. We make the further simplifying assumption

that for each gene, the variance of the vineyard effects is related to the conditional variance

of the expression levels of that gene in the same way. That is, the prior distribution of the

effect of the vineyards on the expression levels of gene i is assumed to be⎛
⎜⎜⎝
bVi1

bVi2

bVi3

⎞
⎟⎟⎠ ∼ N3(0, υ

−1ψiI3), (8.2)

where bVij is the effect of vineyard j on the expression level of gene i, j = 1 = Clare, j = 2 =

Wingara, j = 3 = Willunga, υ is constant from gene to gene, and ψi is as in Equation (8.1).

These vineyards can be considered to be blocking factors, and are not of intrinsic interest.

The inclusion of temperature effects then needs to be considered. If analysis was being

conducted in a non-Bayesian setting, the effects of temperature on gene expression levels

would best be included as fixed effects, as these parameters are meaningful, and the true

values of these parameters are of interest. However, given that analysis is being conducted

within a Bayesian framework, the effects of temperature are necessarily treated as random.

The simplest way to include the effects of temperature is to assume that, for each gene, these

effects are independent and distributed identically to the vineyard effects of that gene. That

is, if bi is the vector of vineyard and temperature effects for gene i it is assumed that

bi|ψi ∼ N24

(
0, υ−1ψiI24

)
.

Under this assumption, the appropriate score metric to use in the estimation of Bayesian

networks for the grape genes is the S2 score metric.

This assumption, while certainly convenient, is probably not valid. It seems unlikely that

temperature effects are distributed identically to vineyard effects, and the effects of vineyard
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and temperature may not be independent. Additionally, if temperature effects are considered

in isolation, it is unlikely that the effect of temperatures at different times are independent.

Alternatively, the temperature vectors could be replaced with an orthonormal basis, and the

effects of these orthonormal basis vectors assumed independent and identically distributed.

This approach is more reasonable than assuming the effects of the temperatures themselves

are independent and identically distributed, but is still not entirely realistic. Such an ap-

proach is beyond the scope of this thesis.

Assuming a more complex covariance structure for the random effects would be more realistic.

The assumption of such a covariance structure and the implications for the calculation of

score metrics was discussed in Section 5.1. In this case, while more realistic, the score metric

arising from such an assumption would be very computationally intensive to compute. For

example, if a wholly unknown covariance matrix for the random effects was assumed, 301-

dimensional numerical integration would be required to compute the associated score metric.

An alternative approach is available, combining the residual approach and the S2 score

metric. The residual approach could be used to remove the effects of temperature, and the

prior distribution in Equation (8.2) could be placed on the vineyard effects. S2 could then be

used in conjunction with the High-dimensional Bayesian Covariance Selection algorithm to

estimate Bayesian networks for the grape gene data. In this way, the only assumption made

about the variance structure of the temperature effects is that these effects are independent of

the vineyard effects. This approach allows the use of the S2 score metric, given a model more

realistic than assuming vineyard and temperature effects are independent and identically

distributed.

8.3.2 Using the Residual Approach to Estimate a Bayesian Net-

work for the Grape Genes

Using the residual approach, the association between the expression levels of the grape genes

and vineyard and temperature is accounted for in the estimation of Bayesian networks for the

genes. With this approach, no assumptions about the distribution of the effects of vineyard

and temperature on gene expression need be made.
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Four distinct models are assumed in the estimation of Bayesian networks for the grape genes.

In the first model considered, only vineyard effects are accounted for. In the second model,

only temperature effects are considered. In the third model, vineyard and main temperature

effects are included, while in the fourth model, vineyard, main temperature effects and two-

way temperature interactions are included. The resulting moral graphs are discussed in

Section 8.4.

Vineyard Effects Only

When only vineyard effects are considered, the following model for the expression levels of

each gene is assumed:

xi|xPi
,γi, ψi, b

V
i ∼ N50

(
xPi

γi +QV b
V
i , ψiI50

)
,

γi|ψi ∼ Nai(0, τ
−1ψiIai),

ψ−1i ∼ Ga

(
δ + ai
2

,
τ

2

)
. (8.3)

where

QV =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
...

...
...

1 0 0

0 1 0
...

...
...

0 1 0

0 0 1
...

...
...

0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and bVi =

⎛
⎜⎜⎝
bVi1

bVi2

bVi3

⎞
⎟⎟⎠ . (8.4)

Note that xi is the vector of length 50 consisting of the expression levels for gene i: first the

20 gene expression levels from samples taken at Clare, then 20 from Wingara and 10 from

Willunga. Here, bVi1 is the effect of the Clare vineyard on the expression level of gene i, bVi2 is

the effect of the Wingara vineyard on the expression level of gene i, and bVi3 is the effect of

the Willunga vineyard on gene i.
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The highest-scoring Bayesian network obtained when the residual approach given this model

is applied to the grape gene data set has 37 edges, and the corresponding moral graph has

68 edges. The moral graph is shown in Figure 8.7(a).

Temperature Effects Only

When only the effects of temperature on gene expression are considered, it is assumed that

xi|xPi
,γi, ψi, b

Temp
i ∼ N50

(
xPi

γi +QTempb
Temp
i , ψiI50

)
,

γi|ψi ∼ Nai(0, τ
−1ψiIai),

ψ−1i ∼ Ga

(
δ + ai
2

,
τ

2

)
. (8.5)

where

QTemp =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

qT
1,1

...

qT
1,20

qT
2,1

...

qT
2,20

qT
3,1

...

qT
3,10

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and bTemp
i =

⎛
⎜⎜⎜⎜⎜⎝

bTemp
i1

bTemp
i2

...

bTemp
i,23

⎞
⎟⎟⎟⎟⎟⎠ . (8.6)

qkl is the vector of length 20 of temperatures associated with sample l from vineyard k, where

k = 1 codes for Clare, k = 2 for Wingara, and k = 3 for Willunga. Let qtkl be the temperature

t minutes before the picking of sample l from vineyard k, t ∈ {30, 90, 150, 210, 270, 330}.
Then qkl is the following vector:

qT
kl =

(
q30kl , . . . , q

330
kl , q30kl × q90kl , q

30
kl × q150kl , . . . , q210kl × q330kl

)
.
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(a) Vineyard only.
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(b) Temperature only.

Figure 8.7: The moral graphs of the highest-scoring Bayesian networks found for the grape

genes, when the residual approach is taken.
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(a) Vineyard and main temperature effects.
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(b) Vineyard and temperature (including temperature interactions).

Figure 8.8: The moral graphs of the highest-scoring Bayesian networks found for the grape

genes, when the residual approach is taken.
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For example, for the first sample taken from Clare,

qT
11 = (23.70, 22.70, 22.10, 23.10, 23.10, 23.70, 537.99, 523.77, 547.47, 547.47, 561.69,

501.67, 524.37, 524.37, 537.99, 510.51, 510.51, 523.77, 533.61, 547.47).

Hence, bTemp
i1 is the effect of the temperature 30 minutes before the grape was picked on the

expression level of gene i, and bTemp
i,7 is the effect of the interaction between the temperatures

30 minutes and 90 minutes before the grape was picked on the expression level of gene i.

The highest-scoring Bayesian network obtained via this approach has 18 edges. The corre-

sponding moral graph has 36 edges, and is displayed in Figure 8.7(b).

Vineyard and Main Temperature Effects

When vineyard and main temperature effects are included in the model for the expression

levels of the genes, the following model is assumed:

xi|xPi
,γi, ψi, b

VT
i ∼ N50

(
xPi

γi +QVTb
VT
i , ψiI50

)
,

γi|ψi ∼ Nai(0, τ
−1ψiIai),

ψ−1i ∼ Ga

(
δ + ai
2

,
τ

2

)
.

where the first three elements of bVT
i are the same as bVi , and the last six elements are

bTemp
i1 , bTemp

i2 , . . . , bTemp
i6 . Similarly, QVT consists of the matrix QV and the first six columns of

QTemp.

The highest scoring Bayesian network obtained via this approach has 23 edges, and the

corresponding moral graph, displayed in Figure 8.8(a), has 41 edges.
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Vineyard and Temperature Effects

When both vineyard and temperature effects are included, the following model for the ex-

pression levels of each gene is assumed:

xi|xPi
,γi, ψi, bi ∼ N50 (xPi

γi +Qbi, ψiI50) ,

γi|ψi ∼ Nai(0, τ
−1ψiIai),

ψ−1i ∼ Ga

(
δ + ai
2

,
τ

2

)
. (8.7)

where

Q =
(
QV , QTemp

)
and bi =

⎛
⎝ bVi

bTemp
i

⎞
⎠ . (8.8)

The highest-scoring Bayesian network obtained when both vineyard and temperature effects

are accounted for has 6 edges. The corresponding moral graph has 7 edges, and is displayed

in Figure 8.8(b).

8.3.3 Using the S2 score metric to Estimate a Bayesian Network

for the Genes

When vineyard and temperature effects are included as random effects in the estimation of

Bayesian networks for the grape genes, the S2 score metric is used in conjunction with the

High-dimensional Bayesian Covariance Selection algorithm to estimate a Bayesian network

for the genes. In this section, only the model containing both vineyard and temperature

effects will be considered.

The model in Equation (8.7) becomes

xi|xPi
,γi, ψi, bi, φi ∼ N50 (xPi

γi +Qbi, ψiI50) ,

γi|ψi ∼ Nai(0, τ
−1ψiIai),

ψ−1i ∼ Ga

(
δ + ai
2

,
τ

2

)
,

bi|ψi ∼ N23

(
0, υ−1ψiI23

)
. (8.9)
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Note that it is for convenience that the prior distribution on the random effects bi is selected.

As discussed in Section 8.3.1, this prior distribution is a poor approximation to the true

distribution of the vineyard and temperature effects. However, it is this prior distribution

that allows the use of the S2 score metric.

Bayesian networks are estimated for υ = 0.5, 1, 10. The moral graphs of the highest-scoring

Bayesian networks found for each of these values of υ are shown in Figure 8.9. The number

of edges in the highest-scoring Bayesian networks and the corresponding moral graphs for

each of these values of υ are summarised in the section of Table 8.2 headed by S2.

Table 8.2 shows that as υ increases, so too does the number of edges in the highest-scoring

Bayesian network, in accordance with the results obtained in Section 7.2.2. Figure 8.9 shows

that the moral graphs have a similar structure for each value of υ assumed. These graphs

are compared to those obtained through other methods in Section 8.4.

8.3.4 Using a Combination of S2 and the Residual Approach in

the Estimation of a Bayesian Network for the Grape Genes.

As discussed in Section 8.3.1, the assumption of independent and identically distributed

temperature effects is probably not valid. Even if these temperature effects did satisfy

such an assumption, it is almost certain that these effects are not distributed identically to

the vineyard effects. In an attempt to improve the inclusion of vineyard and temperature

effects in the model for the expression levels of the genes, a combination of the residual

approach and the S2 score metric are applied, in conjunction with High-dimensional Bayesian

Covariance Selection algorithm, to the grape gene data. This approach corrects for the effect

of temperature on the expression levels of the genes, and allows for the posterior estimation

of the effect of vineyard on gene expression.
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(a) υ = 0.5.
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(b) υ = 1.
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(c) υ = 10.

Figure 8.9: The moral graphs of the highest-scoring Bayesian networks found for the grape

genes when S2 is used, for different values of υ.
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The following model for the expression level of gene i is assumed:

xi|xPi
,γi, ψi, b

V
i , b

Temp
i , φi ∼ N50

(
xPi

γi +QV b
V
i +QTempb

Temp
i , ψiI50

)
,

γi|ψi ∼ Nai(0, τ
−1ψiIai),

ψ−1i ∼ Ga

(
δ + ai
2

,
τ

2

)
,

bVi |ψi ∼ N3

(
0, υ−1ψiI3

)
, (8.10)

where, as previously, bVi is the vector of vineyard effects and bTemp
i is the vector of tempera-

ture effects.

In this section, the temperature effects are considered to be nuisances, included in the model

to improve the estimation of Bayesian networks for the data. The residual approach is used

to remove the effects of temperature on gene expression levels. A 50× (50− 20) = 50× 30

matrix P is found such that

P TQTemp = 0

P TP = I30

PP T = I50 −QTemp

(
QT

TempQTemp

)−1
QT

Temp.

Taking yi = P Txi implies that

yi|yPi
,γi, ψi, bV,i, φi ∼ N30

(
yPi

γi + P TQV b
V
i , ψiI30

)
.

The S2 score metric is then used in conjunction with the High-dimensional Bayesian Covari-

ance Selection algorithm to estimate Bayesian networks for the grape genes, for υ = 0.5, 1, 10.

The moral graphs corresponding to the highest-scoring Bayesian networks found are dis-

played in Figure 8.10. The number of edges in the highest-scoring Bayesian networks and

the corresponding moral graphs are summarised in the section of Table 8.2 headed by “S2

and Residual”.

As was observed when S2 was used in the analysis of the grape gene data, Table 8.2 shows

that as υ increases, so too does the number of edges in the highest-scoring Bayesian network.

While there are similarities between the moral graph obtained for each value of υ, as displayed

in Figure 8.10, as υ increases, so too does the degree of most genes. These graphs are

compared to those obtained via the other methods in the next section.
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(a) υ = 0.5.
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(b) υ = 1.
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(c) υ = 10.

Figure 8.10: The moral graphs of the highest-scoring Bayesian networks found for the grape

genes, when a combination of the residual approach and S2 is used, for different values of υ.
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8.4 The Highest-Scoring Graphs Obtained

Table 8.2: Number of edges in the highest-scoring Bayesian network and the corresponding

moral graph for each of the four approaches taken.

Ignoring Residual Approach S2 S2 and Residual

Effects Covariates Included υ υ

V’yard Temp V’yard & V’yard & 0.5 1 10 0.5 1 10

Main Temp Temp

B. N. 43 37 18 23 6 24 25 33 8 10 16

Moral 84 68 36 41 7 44 40 73 12 11 32

The moral graphs of the highest-scoring Bayesian networks for the grape genes found in Sec-

tions 8.2 and 8.3.2–8.3.4 are here considered. These graphs are compared, and the biological

plausibility of highest-scoring graph obtained when the residual approach is used to remove

the effects of vineyard and temperature is discussed.

Table 8.2 summarises the number of edges in the Bayesian networks and moral graphs

obtained when the effects of vineyard and temperature are ignored and when the effects of

vineyard or the effects of temperature, or both, are included in the estimation of the graph,

using the residual approach, S2 or a combination of S2 and the residual approach. Figure

8.2 displays the moral graph obtained initially, when the effects of vineyard and temperature

were ignored. Figure 8.7 displays the moral graphs obtained when the effects of temperature

and vineyard are included individually in the model for gene expression, and Figure 8.8

displays the moral graphs obtained when vineyard and temperature are both included in the

model. Figures 8.9 and 8.10 display the moral graphs obtained when S2 and a combination

of S2 and the residual approach, respectively, are used in the analysis of the grape gene data,

with υ = 0.5, 1, 10.

As was expected, when the variation in the gene expression values due to changes in temper-

ature and vineyard is accounted for, the Bayesian networks obtained are much sparser than

that obtained when these sources of variation were ignored. The difference is most dramatic
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when the residual approach or a combination of the residual approach and S2 is used to

remove the effects of vineyard and temperature.

The table and the figures show that no matter which approach is taken, as more of the

variation in the gene expression values is accounted for, the fewer edges there are in the

highest-scoring Bayesian networks and corresponding moral graphs. Also apparent is that as

fewer assumptions about the covariance structure of the effects of vineyard and temperature

are made, the fewer edges there are in the highest-scoring Bayesian networks.

The results of the use of the residual approach indicate that not only do the main temperature

effects need to be accounted for in the estimation of a Bayesian network for the genes, but

so do the two-way temperature interactions.

Table 8.2 also shows that there are quite large differences between the highest-scoring graphs

found when S2 is used, and when a combination of S2 and the residual approach is used. For

all values of υ, far fewer edges are in the highest-scoring graphs obtained when a combination

of S2 and the residual approach is used, as opposed to when just S2 is used. This is probably

due to the fact that when S2 is used, the covariance structure of the temperature effects is,

without doubt, incorrectly specified, while no assumptions about this structure are made

when the residual approach is used to remove temperature effects.

Note the similarity of the moral graphs obtained when the residual approach is used to remove

the effects of vineyard and temperature and when a combination of the residual approach

and S2 is used, with υ = 0.5 or υ = 1. All three graphs have a connected component

consisting only of genes with reference numbers 10, 22 and 24, and all three have an edge

between gene number 3 and gene number 23. There are also edges involving genes 5, 6 and

12 in all three graphs.

Hence, the inclusion of temperature and vineyard effects in the estimation of Bayesian net-

works for the grape gene expression data results in much simpler networks than when such

effects are ignored. However, it seems that if the covariance structure of such effects is vastly

oversimplified, as it was when it was assumed the effects of temperature were independent

and identically distributed, the graphs obtained are not substantially more simple than those

obtained when such effects are ignored.
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1608164 at
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1610032 at

1612385 at

1609554 at 1616538 at

Figure 8.11: Connected components of Figure 8.8(b), with gene names included.

8.4.1 Biological Plausibility of the Graphs

The biological plausibility of these graphs is now discussed. These graphs represent condi-

tional independence relationships between the expression levels of different genes, and any

edges present may give information about biological association.

Given the relationship of the expression levels of the grape genes to vineyard and temper-

ature, it is thought that most of the edges in the graphs obtained when these effects are

not accounted for are spurious; not due to intrinsic biological association between genes, but

rather included because a complex mean structure was not incorporated in the model for

the expression levels of the genes.

Similarly, when the covariance structure of the effects of vineyard and temperature is over-

simplified, as it probably is when it is assumed that these effects are independent and iden-

tically distributed, most of the edges in the highest-scoring moral graphs are thought to be

spurious. This is also the case when the variance of the effects of vineyard and/or tempera-

ture is thought to be larger than the marginal variance of the data.

It is difficult to determine whether or not the edges in the moral graphs obtained when

temperature and vineyard effects are included in the model for gene expression have any

biological significance. Figure 8.11 displays the connected components of the moral graph

obtained when the residual approach is used, with the Affymetrix gene names included. This

moral graph has the smallest number of edges out of all the moral graphs obtained.
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There are two things worth noting about this graph. The first is that all of the genes in

the connected components code for proteins of the small Hsp group (see Table 8.1). Small

Hsps appear to be responsible for binding to proteins which have been denatured by heat,

preventing them from unfolding further, and clumping within the cell, [86, 87]. This may

indicate that these edges represent true biological association between pairs of genes.

The second point to be made about this graph is that there are two examples where probe

sets that are actually coding for the same gene are in different connected components. For

instance, probe sets with Affy numbers 1608164 at, 1610032 at, and 1611192 at are actually

three sections of the gene with NCBI reference Vvi.6787. These genes appear in different

connected components. The same is true for the probe sets with Affy numbers 1609554 at and

1620960 a at, which represent different sections of the gene with NCBI reference Vvi.7044.

It would be hoped that different probe sets that code for the same gene would have an

association. This result leads to the hypothesis that these edges are simply due to noise in

the data.

This hypothesis is supported by the amount of variation in the gene expression levels that is

explained by vineyard and temperature, and the plots presented in Figure 8.12. For example,

in Figure 8.12(a), the expression levels of the probe sets with Affy numbers 1609554 at,

known here as gene 5, and 1620960 a at, known as gene 22, are plotted against one another.

While these probes are ostensibly probing for the same gene, the expression levels obtained

are not exactly the same, as evidenced by this scatterplot. The other scatterplots in the

figure indicate the same thing for the other pairs of genes. Note that linear relationships

between the expression levels of gene pairs are required for edges between these genes to be

found. The fact that the relationships between the expression levels for these gene pairs are

not linear could be an explanation as to why edges between these genes were not found.

8.5 Posterior Estimation of Vineyard Effects

In this section, posterior samples of parameters are simulated for the parameters associated

with the Bayesian networks obtained in Section 8.3.4. Recall that three Bayesian networks

were estimated in that section; one each assuming υ = 0.5, 1, 10. Table 8.3 gives the parents
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Figure 8.12: Scatterplots of the expression levels of some of the probes coding for the same

genes.
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of each gene in each of these three Bayesian networks, and the corresponding moral graphs

are displayed in Figure 8.10. Note that posterior inference for the graphs obtained in Section

8.3.3 is not considered here, due to the (most likely) invalid assumption that the effects of

temperature are independent and identically distributed.

Given that the residual approach was used to remove the variation in the expression levels

of the genes associated with temperature, posterior estimates of the effect of temperature

on these expression levels is unavailable. However, posterior estimates of the effect of each

of the vineyards on the gene expression levels are available, as are posterior estimates of the

ψis and γijs.

Table 8.3: Parents of each gene in the highest-scoring Bayesian network found using a

combination of S2 and the residual approach, for υ = 0.5, 1, 10.

υ Gene Number

1 2 3 4 5 6 7 8 9 10 11 12 13

0.5 23 3 22,24 5,6,14

1 7 6,23 3 12 26 24 14

10 20 12,23,26 6,14

υ Gene Number

14 15 16 17 18 19 20 21 22 23 24 25 26

0.5 2

1 2 10

10 16,18,24,26 3 10 1,4,7,11

Gibbs sampling, as described in Section 4.4.5, is conducted for each of the three Bayesian

networks considered. For each of these three Bayesian networks, samples of size 50000 are

simulated from the joint posterior distributions of f(γi, bi, ψi|xi,xPi
) for i = 1, 2, . . . , 26,

with the first 10000 samples for each i discarded as burn-in.

The generation of posterior samples for υ = 0.5, 1, 10 allows an investigation into the effect

of υ on posterior inference. Recall that υ relates the variance of the vineyard effects of gene

i to the variance of the expression levels of gene i. When it is assumed that υ = 1, φi = ψi
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for each gene. That is, the variance of the effects of vineyard on each gene is the same as

the variance of the expression levels of that gene given these vineyard effects. When it is

assumed that υ = 0.5, φi = 2ψi, and when it is assumed that υ = 10, φi = 0.1ψi.

Figure 8.13 displays the 90% posterior intervals and medians for ψi, i = 1, 2, . . . , 26, obtained

given each of υ = 0.5, 1, 10. For the genes that have the same parent set in the Bayesian

networks obtained for each value of υ, the posterior intervals are quite similar for each value

of υ. For those genes with different parent sets in the different Bayesian networks, these

posterior intervals can vary markedly for the different values of υ. For example, gene 3 has

gene 23 as a parent in the Bayesian network obtained when υ = 0.5, has genes 6 and 23 as

parents when υ = 1, and has no parents when υ = 10. The 90% posterior intervals for ψ3

are quite similar for υ = 0.5 or 1, but the interval obtained when υ = 10 is quite different

from both of these.

The posterior samples of the vineyard effects are now discussed. Figure 8.14 displays the

90% posterior intervals and posterior medians for bVi1, the effect of the Clare vineyard on the

expression level of gene i, i = 1, 2, . . . , 26. Figure 8.15 displays 90% posterior intervals and

medians for bVi2, the effect of the Wingara vineyard on the gene expression levels. Figure 8.16

displays the 90% posterior intervals and medians for bVi3, the effect of the Willunga vineyard.

Most notable is that when υ = 10, the posterior intervals for bVi1, b
V
i2 and bVi3 are generally

much narrower than those obtained when υ = 0.5 or 1, and the medians tend to be closer

to zero. These differences are to be expected, given that assuming υ = 10 implies much less

variable vineyard effects than assuming υ = 0.5 or 1.

For many genes, the posterior intervals for bVi1, b
V
i2 and bVi3 are quite similar for υ = 0.5 or 1.

Differences arise when the parent set of a gene in the Bayesian network estimated for υ = 0.5

is different to that in the Bayesian network estimated for υ = 1.

For each of bVi1, b
V
i2 and bVi3, i = 1, 2, . . . , 26, most of the posterior intervals contain zero.

Despite this, vineyard has been shown to be an important factor influencing the expression

levels of genes, both in terms of the regressions discussed in Section 8.3, and in terms of the

graphs obtained. This disparity is due to the collinearity of the temperature terms in the
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(a) υ = 0.5.
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(b) υ = 1.
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(c) υ = 10.

Figure 8.13: 90% posterior intervals for ψi, i = 1, 2, . . . , 26, generated given the Bayesian

networks found assuming υ = 0.5, 1, 10. The posterior medians are displayed in red.
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(a) υ = 0.5.

-2 -1 0 1

0
5

1
0

1
5

2
0

2
5

G
e
n
e
 N

u
m

b
e
r

(b) υ = 1.
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(c) υ = 10.

Figure 8.14: 90% posterior intervals and medians (in red) for bVi1, i = 1, 2, . . . , 26, the effect

of the Clare vineyard on the expression level of gene i.
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(a) υ = 0.5.
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(b) υ = 1.
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Figure 8.15: 90% posterior intervals and medians (in red) for bVi2, i = 1, 2, . . . , 26, the effect

of the Wingara vineyard on the expression level of gene i.
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regressions.

8.6 Conclusions

In this chapter, the utility of the score metrics developed in Chapter 4, and the residual

approach developed in Chapter 6, in the estimation of Bayesian networks for a real data set

was demonstrated. The data set comprised expression levels for 26 different grape heat-shock

genes, where grape berry samples were drawn from three different vineyards. Temperatures

leading up to the time of the picking of the grape berries were recorded.

Initially, the possible effects of vineyard and temperature on the expression levels of the genes

were ignored, and the expression levels of each of the genes were treated as independent

and identically distributed samples. Under this assumption, the High-dimensional Bayesian

Covariance Selection algorithm was used to estimate a Bayesian network for the grape genes.

This network contained 43 edges, and the corresponding moral graph contained 84 edges.

The effects of vineyard and temperature on the expression levels of each of the genes were

then considered. Given that the genes considered here are known to code for heat-shock

proteins, it is well known that the expression levels of these genes are strongly influenced

by temperature. It was also shown that the mean expression levels of many of the genes

were significantly different when grape berry samples were taken from different vineyards.

As such, it seems that the assumption of independent and identically distributed samples of

gene expression levels is not valid.

In Sections 8.3.2–8.3.4, the residual approach and the S2 score metric were variously used

to account for the variation in the expression levels due to temperature and vineyard in the

estimation of Bayesian networks for the genes. When the residual approach was used to

remove the effects of temperature and vineyard on the gene expression levels, the highest-

scoring Bayesian network found had 6 edges, and the corresponding moral graph had 7

edges.

Hence, as was expected, when the variation in the gene expression levels that was due to the

effects vineyard and temperature was accounted for in the estimation of a Bayesian network
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Figure 8.16: 90% posterior intervals and medians (in red) for bVi3, i = 1, 2, . . . , 26, the effect

of the Willunga vineyard on the expression level of gene i.
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for the genes, the highest-scoring Bayesian network was much sparser than that obtained

when such effects were not accounted for.

The graphs obtained when a combination of the residual approach and S2 was used to control

for the effects of vineyard and temperature were then used in the simulation of posterior

samples from f
(
γi, b

V
i , ψi

)
, i = 1, 2, . . . , 26. These posterior samples did not display any

obvious patterns, and most of the 90% posterior intervals for the vineyard effects contained

zero.

This analysis has shown that the covariances observed between the expression levels of dif-

ferent genes can be explained by temperature and vineyard. When the effects of temperature

and vineyard are accounted for, the remaining variation in the expression levels of the genes

are due to noise.
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Chapter 9

Conclusions and Future Work

In this thesis, novel score metrics for the estimation of Bayesian networks for data sets that do

not consist of independent and identically distributed samples were developed. Through the

application of these score metrics to data sets with known and unknown network structure,

the score metrics were found to be very useful in the estimation of Bayesian networks for

data sets with complex mean structures.

Existing approaches to the estimation of Bayesian networks were discussed, with emphasis

on score-based methods. It was noted that all of these approaches assume the data consists

of independent and identically distributed samples. As such, these approaches were found

to be inadequate in the estimation of a Bayesian network given a data set with a complex

mean structure, or additional components of variance.

New score metrics that take account of the complex mean structure of a data set through

a suitable Bayesian model were then developed. These metrics were labelled S1, S2, S3

and S4, and can be used in conjunction with any score-based method for the estimation

of Bayesian networks. Here, these score metrics were implemented in conjunction with the

High-dimensional Bayesian Covariance Selection algorithm.

These new score metrics S1–S4 assume that the random effects that make up the addi-

tional complexities in the mean structure of the data set being analysed are independent

and identically distributed. In the analysis of real data sets, this assumption may not be

particularly satisfactory, so the consequences of assuming dependence and unequal variances
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of the random effects on the forms of the score metrics was explored.

A residual approach was then developed, allowing the estimation of Bayesian networks for

data sets with a complex mean structure without the need to specify the distribution of the

random effects that constitute the mean structure. It was noted that this approach is most

useful when the effect of variables that make up the mean structure of a data set are not of

primary interest, but are secondary to the estimation of a Bayesian network given the data

set.

The residual approach and the score metrics S1, S2 and S3 were applied to simulated data

sets with a complex mean structure. The results of these simulation studies showed the need

to account for the mean structure in the estimation of a Bayesian network for a data set,

and demonstrated the utility of the approaches developed herein. Further, it was found that

when the mean structure of a data set was accounted for, the highest-scoring networks found

were quite robust to changes in the score metric used.

The analysis of a gene expression data set with a complex mean structure illustrated the

effectiveness of the approaches developed herein in the analysis of real data sets. It was shown

that when the complex mean structure of this data set was accounted for, the resulting

Bayesian network was more biologically plausible than the network obtained when such

effects were ignored.

The approaches developed in this thesis increase the applicability of score-based methods for

the estimation of Bayesian networks, allowing the estimation of networks for data sets that

have complex mean structure. These approaches allow the variation in gene expression values

that is due to external factors, such as temperature, to be accounted for in the estimation

of Bayesian networks. Hence, the high-scoring Bayesian networks found will represent the

conditional independence relationships inherent in any underlying genetic regulatory network

more accurately.

While these approaches have been shown to be effective in the analysis of real gene expression

data sets, further work remains to be done. A deeper understanding of the implications of

the misspecification of the prior distribution of the random effects on high-scoring Bayesian

networks is required, as is an understanding of the implications of the misspecification of the

complex mean structure of a data set. Methods for the inclusion of prior information about
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the structure of any underlying genetic regulatory network also require investigation.

One shortcoming of the use of Bayesian networks in the analysis of gene expression data

is that they fail to capture the dynamic nature of genetic regulatory networks. Genetic

regulatory networks do not remain constant over time, but instead change depending upon

many different conditions, both extra- and intra-cellular. The approaches developed above

assume that, once such complexities have been accounted for, the relationships between

genes are constant for all samples of expression levels. Dynamic Bayesian networks provide

a method for the modelling of such dynamic relationships, and it seems logical that the work

presented here be extended to the estimation of dynamic Bayesian networks. However, it

must be noted that the associations dynamic Bayesian networks are able to detect depend

upon the time-scale on which the reactions that make up a genetic regulatory network occur,

a time-scale which is typically incompatible with experimentation.

More generally, it is important to make the techniques developed above accessible to biolo-

gists. It is also important to further the understanding of how these techniques may be used

to investigate genetic regulatory networks. How Bayesian networks estimated on the basis

of gene expression data can be used to shed light on genetic regulatory networks is a difficult

problem, and one that must be approached in collaboration with biologists.
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Appendix A

Gaussian Quadrature

This appendix provides a brief review of Gaussian quadrature; one class of methods for the

numerical integration of functions. For a comprehensive account of numerical integration

theory, the interested reader is directed to [15], and for a statistical perspective on the

approximation of integrals, the reader is directed to [30]. A brief account of numerical

integration, again from a statistical perspective, is given in Chapter 5 of [79], and Chapter

4 of [65] provides C++ code for many numerical integration routines.

Numerical integration involves the approximation of integrals such as∫ b

a

f(x)dx, (A.1)

where f : [a, b] → R. Often, the integral will be approximated by some linear combination

of values of the integrand:∫ b

a

f(x)dx ≈ w1f(x1) + w2f(x2) + . . .+ wqf(xq),

xi ∈ [a, b], wi ∈ R, ∀i, where the wi are known as the weights, and the xi known as the

abscissae of the numerical integration. The above equation uses q weights and abscissae,

and is hence said to be a q-point numerical integration. There are many different methods

for the choice of the weights and abscissae, and Gaussian quadrature is one such method,

with some particularly nice properties, of selecting such quantities.

For many numerical integration methods, the abscissae consist of equally-spaced points on

the region of integration. That is, the abscissae are specified in advance. Given such abscissae
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{x1, x2, . . . , xq}, weights {w1, w2, . . . , wq} may be found such that for any polynomial f(x)

of degree less than q,∫ b

a

f(x)dx = w1f(x1) + w2f(x2) + . . .+ wqf(xq),

a proof of which is given in [37].

Often, instead of considering an integral of the form in Equation (A.1), it is convenient to

consider an integral such as ∫ b

a

W (x)f(x)dx,

where W (x) is a weight function, distinct from the weights wi, and is called admissible if all

of the following conditions hold over the (possibly infinite) region [a, b]:

• W (x) ≥ 0, x ∈ [a, b];

• ∫ b

a
W (x)dx > 0;

• ∫ b

a
W (x)xkdx < ∞, k = 0, 1, . . .

Before Gaussian quadrature can be discussed, some properties of orthogonal polynomials

must be reviewed. First, define the inner product of functions f(x) and g(x) over A with

respect to W (x) to be

(f, g) =

∫ b

a

W (x)f(x)g(x)dx.

f(x) and g(x) are said to be orthogonal over [a, b] with respect to W (x) if (f, g) = 0. This

inner product induces a norm:

‖f‖ =
√

(f, f). (A.2)

Using this inner product and norm, the Gram-Schmidt process can be applied to the sequence

of polynomials 1, x, x2, . . . to give a sequence of orthonormal polynomials pi(x):

pi(x) =
xi − ∑i−1

j=0(x
i, pj)pj(x)∥∥∥xi − ∑i−1

j=0(x
i, pj)pj(x)

∥∥∥
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Often, the unnormalised orthogonal polynomials

Pi(x) = xi −
i−1∑
j=0

(xi, pj)pj(x) = pi(x)

∥∥∥∥∥xi −
i−1∑
j=0

(xi, pj)pj(x)

∥∥∥∥∥ (A.3)

will be considered.

The following theorem allows for an easier computation of these orthogonal polynomials:

Theorem A.1. The orthogonal polynomials Pi(x) satisfy the following three-term recurrence

relationship:

Pi+1(x) = (x− ai+1)Pi(x)− bi+1Pi−1(x),

where

ai+1 =
(xPi(x), Pi(x))

‖Pi(x)‖2
, bi+1 =

(Pi(x), Pi(x))

‖Pi−1(x)‖2
.

Proof. See [37] for a proof.

This theorem is important for Gaussian quadrature as the abscissae x1, x2, . . . xq for q-point

Gaussian quadrature associated with W (x) are the roots of the polynomial Pq(x). Hence,

the following theorem about these roots is required:

Theorem A.2. For q ≥ 1, the polynomial Pq(x) has q distinct real roots, {x1, x2, . . . , xq},
located in the interior of [a, b].

Proof. See [30].

Given this information about orthogonal polynomials, Gaussian quadrature can be defined.

Definition A.1. The q-point Gaussian quadrature with respect to the weight function W (x)

has as its abscissae the roots {x1, x2, . . . , xq} of Pq(x), and has as its weights {w1, w2, . . . , wq},
where

wi =

∫ b

a

Pq(x)

(x− xi)P ′q(xi)
W (x)dx. (A.4)
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That is,
∫ b

a
W (x)f(x)dx can be approximated by∫ b

a

W (x)f(x)dx ≈
q∑

i=1

wif(xi).

We then have the following theorem:

Theorem A.3. Let W (x) be an admissible weight function on [a, b], and let {x1, x2, . . . , xq}
be the zeros of Pq(x) given this weight function. Then the weights {w1, w2, . . . , wq} can be

calculated as in (A.4) such that for f(x) a polynomial of degree at most 2q − 1,∫ b

a

W (x)f(x)dx =

q∑
i=1

wif(xi).

Proof. See [30].

The following theorem provides a justification for the use of Gaussian quadrature.

Theorem A.4. For the q-point Gaussian quadrature with respect to the weight function

W (x), the following holds for continuous functions f(x):

lim
q→∞

q∑
i=1

wif(xi) =

∫ b

a

W (x)f(x)dx.

Proof. This proof is taken from [30].

By the Weierstrass approximation theorem, for all ε > 0, there exists a polynomial g(x) such

that |f(x)− g(x)| < ε/2 ∀x ∈ [a, b].

Since g(x) is a polynomial, ∃q0 such that ∀q ≥ q0

q∑
i=1

wig(xi) =

∫ b

a

W (x)g(x)dx.

Then∣∣∣∣∣
∫ b

a

W (x)f(x)dx−
q∑

i=1

wif(xi)

∣∣∣∣∣ ≤
∣∣∣∣
∫ b

a

W (x)f(x)dx−
∫ b

a

W (x)g(x)dx

∣∣∣∣
+

∣∣∣∣∣
∫ b

a

W (x)g(x)dx−
q∑

i=1

wig(xi)

∣∣∣∣∣ +
∣∣∣∣∣

q∑
i=1

wig(xi)−
q∑

i=1

wif(xi)

∣∣∣∣∣
≤ ε

2
+ 0 +

ε

2
= ε.

Hence, the result is proved.
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In the present work, numerical integration over two dimensions is often required. That is,

we require an estimate of the integral∫ b1

a1

∫ b2

a2

W1(x)W2(y)f(x, y)dx dy. (A.5)

We will use repeated one-dimensional integration in such situations. That is, the quantity

in Equation (A.5) will be estimated as follows:

q1∑
i=1

q2∑
j=1

w1iw2jf(xi, yj), (A.6)

where w1i are the weights and xi the abscissae for q1-point Gaussian quadrature with respect

to W1(x), and w2j are the weights and yj the abscissae for q2-point Gaussian quadrature

with respect to W2(y).

When W (x) = 1, −1 < x < 1, the Gaussian quadrature with respect to W (x) is known

as Gauss-Legendre quadrature, and the orthogonal polynomials of Equation (A.3) have the

following three-term recurrence relationship:

(i+ 1)Pi+1(x) = (2i+ 1)xPi(x)− iPi−1(x).

The Gaussian quadrature with respect to W (x) = e−x, 0 < x < ∞, is known as Gauss-

Laguerre quadrature, and the orthogonal polynomials satisfy

(i+ 1)Pi+1(x) = (−x+ 2i+ 1)Pi(x)− iPi−1(x).

Finding the weights and abscissae for such quadratures is not a particularly easy task.

However, the following theorem, from [37], provides a relatively simple method for finding

such quantities for q-point Gaussian quadrature with respect to weight function W (x):

Theorem A.5. The weights {w1, w2, . . . , wq} and the abscissae {x1, x2, . . . , xq} can be ob-

tained from the eigenvalue decomposition of the symmetric, tridiagonal Jacobi matrix:

Jq(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0
√
b1√

b1 a1
√
b2√

b2
. . . . . .

. . . aq−2
√
bq−1√

bq−1 aq−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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where ai and bi are as given by Theorem A.1. Let V be such that V TV = Iq. Then V TJqV =

Λ = diag(λ1, . . . , λq). It can be shown that xi = λi, and wi = v2i,1
∫ b

a
W (x)dx, where vi,j is

the (i, j)th component of V .

Proof. See [37] for a proof.

This theorem results in a method for finding the weights and abscissae for q-point Gaussian

quadrature with respect to W (x) that is simple to code. In fact, the code for finding the

abscissae and weights for Gauss-Legendre and Gauss-Laguerre quadrature is given in Section

A.1.

A.1 R code for Gaussian Quadrature

The following code is adapted for R [76] from the Matlab R© code given in [37].

The R code for q-point Gauss-Legendre quadrature requires as input q, and outputs the

weights and abscissae for such a quadrature:

legendrequad <- function(q)

{

L<-matrix(data=0, nrow=q, ncol=q)

u<-c(1:(q-1))

for(i in 1:(q-1)){

u[i]<- sqrt(1/(4 - i^(-2)))

}

#Setting up L

for(i in 1:q){

if(i+1<q+1){

L[i+1,i]<-u[i]

L[i,i+1]<-u[i]

}}

#xk are the abscissae, wk the weights
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xk <- sort(eigen(L)$values)

wk <- rev(eigen(L)$vectors[1,]^2)

t<-matrix(data=NA, nrow=2, ncol=q)

t[1,]<-xk

t[2,]<-wk

return(t)

}

The R code for q-point Gauss-Laguerre quadrature behaves just as the R code for Gauss-

Legendre quadrature:

laguerrequad <- function(q)

{

L<-matrix(data=0, nrow=q, ncol=q)

a<-2*c(0:(q-1))+1

u<-c(1:(q-1))

#Setting up L

for(i in 1:q){

L[i,i]<-a[i]

if(i+1<q+1){

L[i+1,i]<-u[i]

L[i,i+1]<-u[i]

}}

#xk are the values, wk the weights

xk <- sort(eigen(L)$values)

wk <- rev(eigen(L)$vectors[1,]^2)

t<-matrix(data=NA, nrow=2, ncol=q)

t[1,]<-xk

t[2,]<-wk

return(t)

}
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Appendix B

Random Effects Code

B.1 Code for S1

double CGibbsSampler::KnownPhi(int npred, CData& Data)

{

double laguerrex [25] = {0.05670478,0.2990109,0.7359096,1.369183,2.201326,3.235676,4.4

double laguerrew [25] = {0.1375260,0.2516453,0.256176,0.1862155,0.1031998,0.04471416,

int L = Data.NumberofCovs;

int N = Data.SampleSize;

double phi = Data.phi;

int i, j, k;

//Reading in the Q matrix

double w;

double Q [N][L];

FILE* in = fopen(Data.mstrQDataFile.c_str(),"r");

if(NULL==in) {

printf("Cannot open data file %s.\n",Data.mstrQDataFile.c_str());

exit(1);

}

for(i=0;i<N;i++) {

for(j=0;j<L;j++) {

fscanf(in,"%lf",&w);

Q[i][j] = w;

}}

fclose(in);

double* QTQ = new double[L*L];

memset(QTQ,0,L*L*sizeof(double));
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for(i=0;i<L; i++){

for(j=0;j<L; j++){

for(k=0;k<N; k++){

QTQ[i*L +j] += Q[k][i]*Q[k][j];

}}}

//Calculating the constants:

double logConstant = 0.0;

logConstant -= L*log(phi)/2.0+N*log(myPI)/2.0 +lgamma((deltaPrior + npred)/2.0);

logConstant += (npred-N)*log(tauPrior)/2.0;

//Begin the quadrature:

int b=0;

double NumInt = 0.0;

double temp = 0.0;

double x;

int quadsize = 25;

for(b=0; b<quadsize; b++){

x = laguerrex[b];

double logPost = 0.0;

//Need to calculate solve(R) = solve(I/phi + 2*x*QTQ/tauPrior)

double* R = new double[L*L];

memset(R,0,L*L*sizeof(double));

for(i=0; i<L; i++){

for(j=0; j<L; j++){

if(i==j){ R[i*L+i] = 1.0/phi + 2*x*QTQ[i*L+i]/tauPrior; }

else {R[i*L+j] = 2*x*QTQ[i*L+j]/tauPrior; }

}}

//inverting R, stored in R:

if(!Solve(L,R)){ return(DBL_MAX); }

//calculating log det of R

double logDetR = getlogdet(L, R);

//Now need J = I - 2*x*QRQT/tauPrior
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double* QR = new double[N*L];

memset(QR,0,N*L*sizeof(double));

for(i=0; i<N ; i++){

for(j=0; j<L ; j++){

for(k=0; k<L ; k++){

QR[j*N+i] += Q[i][k]*R[k*L +j];

}}}

double* QRQT = new double[N*N];

memset(QRQT,0,N*N*sizeof(double));

for(i=0; i<N ; i++){

for(j=0; j<N; j++){

for(k=0; k<L; k++){

QRQT[j*N +i] += QR[k*N +i]*Q[j][k];

}}}

double* J = new double[N*N];

memset(J,0,N*N*sizeof(double));

for(i=0; i<N; i++){

for(j=0; j<N; j++){

if(i==j){ J[i*N+i] = 1 - 2*x*QRQT[i*N+i]/tauPrior; }

else { J[i*N+j] = - 2*x*QRQT[i*N+j]/tauPrior; }

}}

//Now need yTJy, solve(tauI + ZTJZ), yTJZ, yTJZsolve(tauI + ZTJZ)ZTJy

double yTJy = 0;

//Calculating yTJy

for(i=0;i<N;i++) {

for(j=0;j<N;j++) {

yTJy += Data.Y[i]*J[i * N + j]*Data.Y[j];

}}

// Need ZTJZ, ZTJy, G = solve(tauI + ZTJZ),

// Start with JZ

double* JZ = new double[N*npred];

memset(JZ,0,N*npred*sizeof(double));
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for(i=0; i<N ; i++){

for(j=0; j<npred ; j++){

for(k=0; k<N ; k++){

JZ[j*N+i] += J[i*N + k]* Data.X[k][j];

}}}

double* yTJZ = new double[npred];

memset(yTJZ,0,npred*sizeof(double));

for(i=0; i<npred ; i++){

for(j=0; j<N ; j++){

yTJZ[i] += Data.Y[j]*JZ[i*N + j];

}}

//calculating G = tauI + ZTJZ

double* G = new double[npred*npred];

memset(G,0,npred*npred*sizeof(double));

for(i=0;i<npred;i++) {

for(j=0;j<npred;j++) {

for(k=0;k<N;k++) {

G[i*npred+j] += Data.X[k][i]*JZ[j*N + k];

}

if(i==j) {

G[i*npred + i] = G[i*npred+i]+tauPrior;

}

}}

//calculate the inverse of G, stored in G

if(!Solve(npred,G)){ return(DBL_MAX); }

//calculating the log determinant of G

double logDetG = getlogdet(npred, G);

//Now require yTJZGZTJy

double yTJZGZTJy = 0;

for(i=0;i<npred;i++) {

for(j=0;j<npred;j++) {

yTJZGZTJy += yTJZ[i]*G[i * npred + j]*yTJZ[j];

}}

//These are all of the required matrix operations.
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//Now calculate logPost

logPost += logConstant;

logPost += (N + npred + deltaPrior -2.0)*log(x)/2.0;

logPost += logDetR/2.0;

logPost += logDetG/2.0;

logPost -= x*(yTJy - yTJZGZTJy)/tauPrior;

NumInt += laguerrew[b]*exp(logPost);

delete[] R; R = NULL;

delete[] QR; QR = NULL;

delete[] QRQT; QRQT = NULL;

delete[] J; J = NULL;

delete[] JZ; JZ = NULL;

delete[] yTJZ; yTJZ = NULL;

delete[] G; G = NULL;

}

delete[] QTQ; QTQ = NULL;

return(log(NumInt));

}

double CGibbsSampler::KnownPhiZeroPredictors(int TargetGene, CData& Data)

{

double laguerrex [25] = {0.05670478,0.2990109,0.7359096,1.369183,2.201326,3.235676,4.4

double laguerrew [25] = {0.1375260,0.2516453,0.256176,0.1862155,0.1031998,0.04471416,

int L = Data.NumberofCovs;

int N = Data.SampleSize;

double phi = Data.phi;

int i, j, k;

//Reading in the Q matrix

double w;

double Q [N][L];

FILE* in = fopen(Data.mstrQDataFile.c_str(),"r");

if(NULL==in) {

printf("Cannot open data file %s.\n",Data.mstrQDataFile.c_str());

exit(1);

}

for(i=0;i<N;i++) {

for(j=0;j<L;j++) {
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fscanf(in,"%lf",&w);

Q[i][j] = w;

}}

fclose(in);

double* QTQ = new double[L*L];

memset(QTQ,0,L*L*sizeof(double));

for(i=0;i<L; i++){

for(j=0;j<L; j++){

for(k=0;k<N; k++){

QTQ[i*L +j] += Q[k][i]*Q[k][j];

}}}

//Calculating the constants:

double logConstant = 0.0;

logConstant -= L*log(phi)+N*log(myPI)/2.0 +lgamma((deltaPrior)/2.0);

logConstant += (-N)*log(tauPrior)/2.0;

//Begin the quadrature:

int b=0;

double NumInt = 0.0;

double temp = 0.0;

double x;

int quadsize = 25;

for(b=0; b<quadsize; b++){

x = laguerrex[b];

double logPost = 0.0;

//Need to calculate solve(R) = solve(I/phi + 2*x*QTQ/tauPrior)

double* R = new double[L*L];

memset(R,0,L*L*sizeof(double));

for(i=0; i<L; i++){

for(j=0; j<L; j++){

if(i==j){ R[i*L+i] = 1.0/phi + 2*x*QTQ[i*L+i]/tauPrior; }

else {R[i*L+j] = 2*x*QTQ[i*L+j]/tauPrior; }

}}

//inverting R, stored in R:
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if(!Solve(L,R)){ return(DBL_MAX); }

//calculating log det of R

double logDetR = getlogdet(L, R);

double* QR = new double[N*L];

memset(QR,0,N*L*sizeof(double));

for(i=0; i<N ; i++){

for(j=0; j<L ; j++){

for(k=0; k<L ; k++){

QR[j*N+i] += Q[i][k]*R[k*L +j];

}}}

double* QRQT = new double[N*N];

memset(QRQT,0,N*N*sizeof(double));

for(i=0; i<N ; i++){

for(j=0; j<N; j++){

for(k=0; k<L; k++){

QRQT[j*N +i] += QR[k*N +i]*Q[j][k];

}}}

double* J = new double[N*N];

memset(J,0,N*N*sizeof(double));

for(i=0; i<N; i++){

for(j=0; j<N; j++){

if(i==j){ J[i*N+i] = 1 - 2*x*QRQT[i*N+i]/tauPrior; }

else { J[i*N+j] = - 2*x*QRQT[i*N+j]/tauPrior; }

}}

//Now need yTJy

double yTJy = 0;

//Calculating yTJy

for(i=0;i<N;i++) {

for(j=0;j<N;j++) {

yTJy += Data.Y[i]*J[i * N + j]*Data.Y[j];

}}

//These are all of the required matrix operations.

//Now calculate logPost
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logPost += logConstant;

logPost += (N + deltaPrior -2)*log(x)/2.0;

logPost += logDetR/2.0;

logPost -= 2*x*(yTJy)/tauPrior;

NumInt += laguerrew[b]*exp(logPost);

delete[] R; R = NULL;

delete[] QR; QR = NULL;

delete[] QRQT; QRQT = NULL;

delete[] J; J = NULL;

}

delete[] QTQ; QTQ = NULL;

return(log(NumInt));

}

B.2 Code for S4

double CGibbsSampler::SiteEffectsWishartPosterior(int npred, CData& Data)

{

double laguerrex [25] = {0.05670478,0.2990109,0.7359096,1.369183,2.201326,3.235676,4.4

double laguerrew [25] = {0.1375260,0.2516453,0.256176,0.1862155,0.1031998,0.04471416,

double legendrex [25] = {-0.995557,-0.976664,-0.9429746,-0.894992,-0.8334426,-0.75925

double legendrew [25] = {0.005696899,0.01317749,0.02046958,0.02745235,0.03401917,0.04

int L = Data.NumberofCovs;

int N = Data.SampleSize;

int i, j, k;

//Reading in the Q matrix

double w;

double Q [N][L];

FILE* in = fopen(Data.mstrQDataFile.c_str(),"r");

if(NULL==in) {

printf("Cannot open data file %s.\n",Data.mstrQDataFile.c_str());

exit(1);

}

for(i=0;i<N;i++) {

for(j=0;j<L;j++) {

fscanf(in,"%lf",&w);
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Q[i][j] = w;

}

}

fclose(in);

double* QTQ = new double[L*L];

memset(QTQ,0,L*L*sizeof(double));

for(i=0;i<L; i++){

for(j=0;j<L; j++){

for(k=0;k<N; k++){

QTQ[i*L +j] += Q[k][i]*Q[k][j];

}

}

}

//Calculating the constants:

double logConstant = 0.0;

logConstant -= log(2.0) + L*log(kappa)+N*log(myPI)/2.0

+lgamma((deltaPrior + npred)/2.0);

logConstant += (npred-N)*log(tauPrior)/2.0;

//Begin the quadrature:

int c=0;

int b=0;

double NumInt = 0.0;

double temp = 0.0;

double u;

double x;

int quadsize = 25;

for(c=0; c<quadsize; c++){

for(b=0; b<quadsize; b++){

u = legendrex[c];

x = laguerrex[b];

double logPost = 0.0;

//Need to calculate solve(R) = solve((2/(kappa^2(1+u)))I + QTQ/x)

double* R = new double[L*L];
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memset(R,0,L*L*sizeof(double));

for(i=0; i<L; i++){

for(j=0; j<L; j++){

//if(i==j){ R[i*L+i] = 2.0/(kappa*kappa*(1+u)) + QTQ[i*L+i]/x; }

//else {R[i*L+j] = QTQ[i*L+j]/x; }

//Trying my new derivation:

if(i==j){ R[i*L+i] = 1.0/(kappa*kappa*(1+u)) + x*QTQ[i*L+i]/tauPrior; }

else {R[i*L+j] = QTQ[i*L+j]/x; }

}

}

//inverting R, stored in R:

if(!Solve(L,R)){ return(DBL_MAX); }

//calculating log det of R

double logDetR = getlogdet(L, R);

//Now need J = I - QRQT/x

double* QR = new double[N*L];

memset(QR,0,N*L*sizeof(double));

for(i=0; i<N ; i++){

for(j=0; j<L ; j++){

for(k=0; k<L ; k++){

QR[j*N+i] += Q[i][k]*R[k*L +j];

}

}

}

double* QRQT = new double[N*N];

memset(QRQT,0,N*N*sizeof(double));

for(i=0; i<N ; i++){

for(j=0; j<N; j++){

for(k=0; k<L; k++){

QRQT[j*N +i] += QR[k*N +i]*Q[j][k];

}

}

}

double* J = new double[N*N];

memset(J,0,N*N*sizeof(double));
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for(i=0; i<N; i++){

for(j=0; j<N; j++){

//if(i==j){ J[i*N+i] = 1 - QRQT[i*N+i]/x; }

//else { J[i*N+j] = - QRQT[i*N+j]/x; }

//Trying my new derivation:

if(i==j){ J[i*N+i] = 1 - x*QRQT[i*N+i]/tauPrior; }

else { J[i*N+j] = - x*QRQT[i*N+j]/tauPrior; }

}

}

//Now need yTJy, solve(tauI + ZTJZ), yTJZ, yTJZsolve(tauI + ZTJZ)ZTJy

double yTJy = 0;

//Calculating yTJy

for(i=0;i<N;i++) {

for(j=0;j<N;j++) {

yTJy += Data.Y[i]*J[i * N + j]*Data.Y[j];

}

}

// Need ZTJZ, ZTJy, G = solve(tauI + ZTJZ),

// Start with JZ

double* JZ = new double[N*npred];

memset(JZ,0,N*npred*sizeof(double));

for(i=0; i<N ; i++){

for(j=0; j<npred ; j++){

for(k=0; k<N ; k++){

JZ[j*N+i] += J[i*N + k]* Data.X[k][j];

}

}

}

double* yTJZ = new double[npred];

memset(yTJZ,0,npred*sizeof(double));

for(i=0; i<npred ; i++){

for(j=0; j<N ; j++){

yTJZ[i] += Data.Y[j]*JZ[i*N + j];

}

}

//calculating G = tauI + ZTJZ
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double* G = new double[npred*npred];

memset(G,0,npred*npred*sizeof(double));

for(i=0;i<npred;i++) {

for(j=0;j<npred;j++) {

for(k=0;k<N;k++) {

G[i*npred+j] += Data.X[k][i]*JZ[j*N + k];

}

if(i==j) {

G[i*npred + i] = G[i*npred+i]+tauPrior;

}

}

}

//calculate the inverse of G, stored in G

if(!Solve(npred,G)){ return(DBL_MAX); }

//calculating the log determinant of G

double logDetG = getlogdet(npred, G);

//Now require yTJZGZTJy

double yTJZGZTJy = 0;

for(i=0;i<npred;i++) {

for(j=0;j<npred;j++) {

yTJZGZTJy += yTJZ[i]*G[i * npred + j]*yTJZ[j];

}

}

//These are all of the required matrix operations.

//Now calculate logPost

logPost += logConstant;

logPost -= (L+1)*log(1+u)/2.0;

logPost += (N + npred + deltaPrior -2.0)*log(x)/2.0;

logPost += logDetR/2.0;

logPost += logDetG/2.0;

logPost -= x*(yTJy - yTJZGZTJy)/tauPrior;

NumInt += laguerrew[b]*legendrew[c]*exp(logPost);

delete[] R; R = NULL;

delete[] QR; QR = NULL;

delete[] QRQT; QRQT = NULL;
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delete[] J; J = NULL;

delete[] JZ; JZ = NULL;

delete[] yTJZ; yTJZ = NULL;

delete[] G; G = NULL;

}}

delete[] QTQ; QTQ = NULL;

return(log(NumInt));

}

double CGibbsSampler::SiteEffectsZeroPredictors(int TargetGene, CData& Data)

{

double laguerrex [25] = {0.05670478,0.2990109,0.7359096,1.369183,2.201326,3.235676,4.4

double laguerrew [25] = {0.1375260,0.2516453,0.256176,0.1862155,0.1031998,0.04471416,

double legendrex [25] = {-0.995557,-0.976664,-0.9429746,-0.894992,-0.8334426,-0.75925

double legendrew [25] = {0.005696899,0.01317749,0.02046958,0.02745235,0.03401917,0.04

int L = Data.NumberofCovs;

int N = Data.SampleSize;

int i, j, k;

//Reading in the Q matrix

double w;

double Q [N][L];

FILE* in = fopen(Data.mstrQDataFile.c_str(),"r");

if(NULL==in) {

printf("Cannot open data file %s.\n",Data.mstrQDataFile.c_str());

exit(1);

}

for(i=0;i<N;i++) {

for(j=0;j<L;j++) {

fscanf(in,"%lf",&w);

Q[i][j] = w;

}

}

fclose(in);

double* QTQ = new double[L*L];

memset(QTQ,0,L*L*sizeof(double));

for(i=0;i<L; i++){

for(j=0;j<L; j++){
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for(k=0;k<N; k++){

QTQ[i*L +j] += Q[k][i]*Q[k][j];

}

}

}

//Calculating the constants:

double logConstant = 0.0;

logConstant -= log(2.0) + L*log(kappa)+N*log(myPI)/2.0 +lgamma((deltaPrior)/2.0);

logConstant += (-N)*log(tauPrior)/2.0;

//Begin the quadrature:

int c=0;

int b=0;

double NumInt = 0.0;

double temp = 0.0;

double u;

double x;

int quadsize = 25;

for(c=0; c<quadsize; c++){

for(b=0; b<quadsize; b++){

u = legendrex[c];

x = laguerrex[b];

double logPost = 0.0;

//Need to calculate solve(R) = solve((2/(kappa^2(1+u)))I + QTQ/x)

double* R = new double[L*L];

memset(R,0,L*L*sizeof(double));

for(i=0; i<L; i++){

for(j=0; j<L; j++){

//Trying new calcs

if(i==j){ R[i*L+i] = 1.0/(kappa*kappa*(1+u)) + x*QTQ[i*L+i]/tauPrior; }

else {R[i*L+j] = x*QTQ[i*L+j]/tauPrior; }

//if(i==j){ R[i*L+i] = 2.0/(kappa*kappa*(1+u)) + QTQ[i*L+i]/x; }

//else {R[i*L+j] = QTQ[i*L+j]/x; }

}

}

//inverting R, stored in R:
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if(!Solve(L,R)){ return(DBL_MAX); }

//calculating log det of R

double logDetR = getlogdet(L, R);

double* QR = new double[N*L];

memset(QR,0,N*L*sizeof(double));

for(i=0; i<N ; i++){

for(j=0; j<L ; j++){

for(k=0; k<L ; k++){

QR[j*N+i] += Q[i][k]*R[k*L +j];

}

}

}

double* QRQT = new double[N*N];

memset(QRQT,0,N*N*sizeof(double));

for(i=0; i<N ; i++){

for(j=0; j<N; j++){

for(k=0; k<L; k++){

QRQT[j*N +i] += QR[k*N +i]*Q[j][k];

}

}

}

double* J = new double[N*N];

memset(J,0,N*N*sizeof(double));

for(i=0; i<N; i++){

for(j=0; j<N; j++){

//Trying new calcs

if(i==j){ J[i*N+i] = 1 - x*QRQT[i*N+i]/tauPrior; }

else { J[i*N+j] = - x*QRQT[i*N+j]/tauPrior; }

//if(i==j){ J[i*N+i] = 1 - QRQT[i*N+i]/x; }

//else { J[i*N+j] = - QRQT[i*N+j]/x; }

}

}

//Now need yTJy

double yTJy = 0;

//Calculating yTJy
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for(i=0;i<N;i++) {

for(j=0;j<N;j++) {

yTJy += Data.Y[i]*J[i * N + j]*Data.Y[j];

}

}

//These are all of the required matrix operations.

//Now calculate logPost

logPost += logConstant;

logPost -= (L+1)*log(1+u)/2.0;

logPost += (N + deltaPrior -2)*log(x)/2.0;

logPost += logDetR/2.0;

logPost -= x*(yTJy)/tauPrior;

NumInt += laguerrew[b]*legendrew[c]*exp(logPost);

delete[] R; R = NULL;

delete[] QR; QR = NULL;

delete[] QRQT; QRQT = NULL;

delete[] J; J = NULL;

}}

delete[] QTQ; QTQ = NULL;

return(log(NumInt));

}

B.3 Posterior Sampling Code

B.3.1 Posterior sampling when φ fixed

posteriorSamplesS1<-function(samplesize, phi, data.matrix, Q){

# data.matrix is the matrix containing the data

# Q is the Q matrix

p <- ncol(data.matrix)

n <- nrow(data.matrix)

m<-ncol(Q)

tau<-1
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delta<-2

b.samples<-matrix(data=NA, nrow=samplesize, ncol=m*p)

psi.samples<-matrix(data=NA, nrow=samplesize+1, ncol=p)

#initial guesses to start the Gibbs Sampling:

psi.samples[1,]<-rinvgamma(p, delta/2 ,tau/2)

#start sampling from joint distribution:

for(j in 1:p){

for(i in 2:(samplesize+1)){

mean.b<-solve(diag(psi.samples[i-1,j]/phi,m)+t(Q)%*%Q)%*%t(Q)%*%data.matrix[,j]

var.b<-solve(diag(1/phi,m)+ t(Q)%*%Q/psi.samples[i-1,j])

b.samples[i-1,((j-1)*m+1):(j*m)]<-rmvnorm(1,mean=mean.b, sigma=var.b)

beta.psi<-tau/2+ t(data.matrix[,j]-Q%*%b.samples[i-1,((j-1)*m+1):(j*m)])

%*%(data.matrix[,j]-Q%*%b.samples[i-1,((j-1)*m+1):(j*m)])/2

psi.samples[i,j]<-rinvgamma(1,shape=(n+delta)/2, scale=beta.psi)

}

}

results<-NULL

results$b<-b.samples

results$psi<-psi.samples

return(results)

}

B.3.2 Posterior sampling when φi = υ−1ψi

posteriorSamplesS2<-function(samplesize, upsilon, data.matrix, Q){

# data.matrix is the matrix containing the data

# Q is the Q matrix

p <- ncol(data.matrix)

n <- nrow(data.matrix)

m<-ncol(Q)

tau<-1

delta<-2
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b.samples<-matrix(data=NA, nrow=samplesize, ncol=m*p)

psi.samples<-matrix(data=NA, nrow=samplesize+1, ncol=p)

# initial guesses to initialise the Gibbs sampling:

psi.samples[1,]<-rinvgamma(p, delta/2 ,tau/2)

# start sampling from joint distribution:

for(j in 1:p){

for(i in 2:(samplesize+1)){

mean.b<-solve(diag(upsilon,m)+t(Q)%*%Q)%*%t(Q)%*%data.matrix[,j]

var.b<-solve(diag(upsilon,m)+ t(Q)%*%Q)*psi.samples[i-1,j]

b.samples[i-1,((j-1)*m+1):(j*m)]<-rmvnorm(1,mean=mean.b, sigma=var.b)

beta.psi<-tau/2

+upsilon*t(b.samples[i-1,((j-1)*m+1):(j*m)])%*%b.samples[i-1,((j-1)*m+1):(j*m)]/2

+t(data.matrix[,j]-Q%*%b.samples[i-1,((j-1)*m+1):(j*m)])

%*%(data.matrix[,j]-Q%*%b.samples[i-1,((j-1)*m+1):(j*m)])/2

psi.samples[i,j]<-rinvgamma(1,shape=(n+m+delta)/2, scale=beta.psi)

}

}

results<-NULL

results$b<-b.samples

results$psi<-psi.samples

return(results)

}

B.3.3 Posterior sampling when φ
1
2

i ∼ Uniform (0, κ)

posteriorSamplesS4<-function(samplesize, data.matrix, Q){

# data.matrix is the matrix containing the data

# Q is the Q matrix

p <- ncol(data.matrix)

n <- nrow(data.matrix)

m<-ncol(Q)

tau<-1
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delta<-2

b.samples<-matrix(data=NA, nrow=samplesize, ncol=m*p)

psi.samples<-matrix(data=NA, nrow=samplesize+1, ncol=p)

phi.samples<-matrix(data=NA, nrow=samplesize+1, ncol=p)

#initial guesses to start the Gibbs Sampling:

psi.samples[1,]<-rinvgamma(p, delta/2,tau/2)

phi.samples[1,]<-(runif(p, min=0, max=2))^2

#start sampling from joint distribution:

for(j in 1:p){

for(i in 2:(samplesize+1)){

#samples of b

mean.b<-solve(diag(psi.samples[i-1,j]/phi.samples[i-1,j],m)

+t(Q)%*%Q)%*%t(Q)%*%data.matrix[,j]

var.b<-solve(diag(1/phi.samples[i-1,j],m)+ t(Q)%*%Q/psi.samples[i-1,j])

b.samples[i-1,((j-1)*m+1):(j*m)]<-rmvnorm(1,mean=mean.b, sigma=var.b)

#samples of psi

beta.psi<-tau/2+ t(data.matrix[,j]-Q%*%b.samples[i-1,((j-1)*m+1):(j*m)])

%*%(data.matrix[,j]-Q%*%b.samples[i-1,((j-1)*m+1):(j*m)])/2

psi.samples[i,j]<-rinvgamma(1,shape=(n+delta)/2, scale=beta.psi)

#samples of phi

beta.phi<-t(b.samples[i-1,((j-1)*m+1):(j*m)])%*%b.samples[i-1,((j-1)*m+1):(j*m)]

phi.samples[i,j]<-rinvgamma(1,shape=(m-1)/2, scale=beta.phi)

}

}

results<-NULL

results$b<-b.samples

results$psi<-psi.samples

results$phi<-phi.samples

return(results)

}
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Appendix C

Grape Gene Data

C.1 Boxplots of Gene Expression Levels
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Figure C.1.1: Boxplots of the expression levels of genes 1 to 9 for grapes sampled at each of
the vineyards.
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Figure C.1.2: Boxplots of the expression levels of genes 10 to 18 for grapes sampled at each
of the vineyards.
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Figure C.1.3: Boxplots of the expression levels of genes 19 to 26 for grapes sampled at each
of the vineyards.

205



C.2 Differences Between Vineyards

Anova for each of the genes: testing to see if there are differences in mean gene expression

levels at each vineyard.

> for(i in 1:26){

+ write(i,"", sep="\n")

+ print(anova(lm(Go_heat_ALL_wks3_7[,i]~0+Q.wks3_7[,1:3])))

+ }

1

Analysis of Variance Table

Response: Go_heat_ALL_wks3_7[, i]

Df Sum Sq Mean Sq F value Pr(>F)

Q.wks3_7[, 1:3] 3 4659.4 1553.1 3546 < 2.2e-16 ***

Residuals 47 20.6 0.4

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

2

Analysis of Variance Table

Response: Go_heat_ALL_wks3_7[, i]

Df Sum Sq Mean Sq F value Pr(>F)

Q.wks3_7[, 1:3] 3 7265.2 2421.7 24455 < 2.2e-16 ***

Residuals 47 4.7 0.1

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

3

Analysis of Variance Table

Response: Go_heat_ALL_wks3_7[, i]

Df Sum Sq Mean Sq F value Pr(>F)

Q.wks3_7[, 1:3] 3 1009.45 336.48 63.054 < 2.2e-16 ***

Residuals 47 250.81 5.34

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

4

Analysis of Variance Table

Response: Go_heat_ALL_wks3_7[, i]

Df Sum Sq Mean Sq F value Pr(>F)

Q.wks3_7[, 1:3] 3 5667.3 1889.1 22753 < 2.2e-16 ***
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Residuals 47 3.9 0.1

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

5

Analysis of Variance Table

Response: Go_heat_ALL_wks3_7[, i]

Df Sum Sq Mean Sq F value Pr(>F)

Q.wks3_7[, 1:3] 3 2404.54 801.51 115.05 < 2.2e-16 ***

Residuals 47 327.43 6.97

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

6

Analysis of Variance Table

Response: Go_heat_ALL_wks3_7[, i]

Df Sum Sq Mean Sq F value Pr(>F)

Q.wks3_7[, 1:3] 3 2805.11 935.04 109.78 < 2.2e-16 ***

Residuals 47 400.30 8.52

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

7

Analysis of Variance Table

Response: Go_heat_ALL_wks3_7[, i]

Df Sum Sq Mean Sq F value Pr(>F)

Q.wks3_7[, 1:3] 3 6019.0 2006.3 13153 < 2.2e-16 ***

Residuals 47 7.2 0.2

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

8

Analysis of Variance Table

Response: Go_heat_ALL_wks3_7[, i]

Df Sum Sq Mean Sq F value Pr(>F)

Q.wks3_7[, 1:3] 3 655.10 218.37 86.782 < 2.2e-16 ***

Residuals 47 118.26 2.52

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

9

Analysis of Variance Table

Response: Go_heat_ALL_wks3_7[, i]

Df Sum Sq Mean Sq F value Pr(>F)

Q.wks3_7[, 1:3] 3 200.193 66.731 79039 < 2.2e-16 ***
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Residuals 47 0.040 0.001

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

10

Analysis of Variance Table

Response: Go_heat_ALL_wks3_7[, i]

Df Sum Sq Mean Sq F value Pr(>F)

Q.wks3_7[, 1:3] 3 4738.7 1579.6 119.52 < 2.2e-16 ***

Residuals 47 621.2 13.2

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

11

Analysis of Variance Table

Response: Go_heat_ALL_wks3_7[, i]

Df Sum Sq Mean Sq F value Pr(>F)

Q.wks3_7[, 1:3] 3 5588.1 1862.7 12505 < 2.2e-16 ***

Residuals 47 7.0 0.1

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

12

Analysis of Variance Table

Response: Go_heat_ALL_wks3_7[, i]

Df Sum Sq Mean Sq F value Pr(>F)

Q.wks3_7[, 1:3] 3 3518.2 1172.7 101.39 < 2.2e-16 ***

Residuals 47 543.6 11.6

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

13

Analysis of Variance Table

Response: Go_heat_ALL_wks3_7[, i]

Df Sum Sq Mean Sq F value Pr(>F)

Q.wks3_7[, 1:3] 3 3379.2 1126.4 3979.6 < 2.2e-16 ***

Residuals 47 13.3 0.3

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

14

Analysis of Variance Table

Response: Go_heat_ALL_wks3_7[, i]

Df Sum Sq Mean Sq F value Pr(>F)

Q.wks3_7[, 1:3] 3 5580.1 1860.0 272.53 < 2.2e-16 ***
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Residuals 47 320.8 6.8

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

15

Analysis of Variance Table

Response: Go_heat_ALL_wks3_7[, i]

Df Sum Sq Mean Sq F value Pr(>F)

Q.wks3_7[, 1:3] 3 7970.3 2656.8 17805 < 2.2e-16 ***

Residuals 47 7.0 0.1

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

16

Analysis of Variance Table

Response: Go_heat_ALL_wks3_7[, i]

Df Sum Sq Mean Sq F value Pr(>F)

Q.wks3_7[, 1:3] 3 2947.68 982.56 83.675 < 2.2e-16 ***

Residuals 47 551.90 11.74

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

17

Analysis of Variance Table

Response: Go_heat_ALL_wks3_7[, i]

Df Sum Sq Mean Sq F value Pr(>F)

Q.wks3_7[, 1:3] 3 4476.1 1492.0 15076 < 2.2e-16 ***

Residuals 47 4.7 0.1

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

18

Analysis of Variance Table

Response: Go_heat_ALL_wks3_7[, i]

Df Sum Sq Mean Sq F value Pr(>F)

Q.wks3_7[, 1:3] 3 6508.0 2169.3 31209 < 2.2e-16 ***

Residuals 47 3.3 0.1

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

19

Analysis of Variance Table

Response: Go_heat_ALL_wks3_7[, i]

Df Sum Sq Mean Sq F value Pr(>F)

Q.wks3_7[, 1:3] 3 4354.2 1451.4 9183.3 < 2.2e-16 ***
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Residuals 47 7.4 0.2

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

20

Analysis of Variance Table

Response: Go_heat_ALL_wks3_7[, i]

Df Sum Sq Mean Sq F value Pr(>F)

Q.wks3_7[, 1:3] 3 7720.4 2573.5 11723 < 2.2e-16 ***

Residuals 47 10.3 0.2

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

21

Analysis of Variance Table

Response: Go_heat_ALL_wks3_7[, i]

Df Sum Sq Mean Sq F value Pr(>F)

Q.wks3_7[, 1:3] 3 156.731 52.244 97728 < 2.2e-16 ***

Residuals 47 0.025 0.001

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

22

Analysis of Variance Table

Response: Go_heat_ALL_wks3_7[, i]

Df Sum Sq Mean Sq F value Pr(>F)

Q.wks3_7[, 1:3] 3 4768.7 1589.6 165.83 < 2.2e-16 ***

Residuals 47 450.5 9.6

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

23

Analysis of Variance Table

Response: Go_heat_ALL_wks3_7[, i]

Df Sum Sq Mean Sq F value Pr(>F)

Q.wks3_7[, 1:3] 3 867.33 289.11 150.39 < 2.2e-16 ***

Residuals 47 90.36 1.92

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

24

Analysis of Variance Table

Response: Go_heat_ALL_wks3_7[, i]

Df Sum Sq Mean Sq F value Pr(>F)

Q.wks3_7[, 1:3] 3 4220.0 1406.7 111.63 < 2.2e-16 ***
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Residuals 47 592.3 12.6

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

25

Analysis of Variance Table

Response: Go_heat_ALL_wks3_7[, i]

Df Sum Sq Mean Sq F value Pr(>F)

Q.wks3_7[, 1:3] 3 329.54 109.85 50217 < 2.2e-16 ***

Residuals 47 0.10 0.002187

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

26

Analysis of Variance Table

Response: Go_heat_ALL_wks3_7[, i]

Df Sum Sq Mean Sq F value Pr(>F)

Q.wks3_7[, 1:3] 3 4609.6 1536.5 378.09 < 2.2e-16 ***

Residuals 47 191.0 4.1

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

C.3 Regressing the Gene Expressions on Temperature

> summary(lm(Go_heat_ALL_wks3_7[,] ~ 0 + Q.wks3_7[,1:23]))

Response Y1 :

Call:

lm(formula = Y1 ~ 0 + Q.wks3_7[, 1:23])

Residuals:

Min 1Q Median 3Q Max

-2.986e-01 -7.290e-02 -1.830e-14 7.225e-02 2.986e-01

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Q.wks3_7[, 1:23]1 23.926454 10.396930 2.301 0.0293 *

Q.wks3_7[, 1:23]2 23.847902 11.119684 2.145 0.0411 *

Q.wks3_7[, 1:23]3 25.246854 11.027896 2.289 0.0301 *

Q.wks3_7[, 1:23]4 -0.564532 0.636569 -0.887 0.3830
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Q.wks3_7[, 1:23]5 1.673556 1.242142 1.347 0.1891

Q.wks3_7[, 1:23]6 -5.840206 4.754277 -1.228 0.2299

Q.wks3_7[, 1:23]7 3.259146 3.874966 0.841 0.4077

Q.wks3_7[, 1:23]8 -0.074284 1.542317 -0.048 0.9619

Q.wks3_7[, 1:23]9 0.324949 1.041299 0.312 0.7574

Q.wks3_7[, 1:23]10 0.029958 0.064698 0.463 0.6470

Q.wks3_7[, 1:23]11 -0.056699 0.128115 -0.443 0.6616

Q.wks3_7[, 1:23]12 0.200990 0.361875 0.555 0.5832

Q.wks3_7[, 1:23]13 -0.092370 0.151641 -0.609 0.5475

Q.wks3_7[, 1:23]14 -0.072968 0.090809 -0.804 0.4287

Q.wks3_7[, 1:23]15 0.206047 0.335091 0.615 0.5438

Q.wks3_7[, 1:23]16 -0.471765 0.383496 -1.230 0.2292

Q.wks3_7[, 1:23]17 0.132232 0.121581 1.088 0.2864

Q.wks3_7[, 1:23]18 0.035681 0.099686 0.358 0.7232

Q.wks3_7[, 1:23]19 0.125065 0.192208 0.651 0.5208

Q.wks3_7[, 1:23]20 -0.002469 0.195302 -0.013 0.9900

Q.wks3_7[, 1:23]21 -0.056914 0.133873 -0.425 0.6741

Q.wks3_7[, 1:23]22 -0.049160 0.139301 -0.353 0.7269

Q.wks3_7[, 1:23]23 0.098352 0.141443 0.695 0.4928

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.178 on 27 degrees of freedom

Multiple R-squared: 0.9998,Adjusted R-squared: 0.9997

F-statistic: 6422 on 23 and 27 DF, p-value: < 2.2e-16

Response Y2 :

Call:

lm(formula = Y2 ~ 0 + Q.wks3_7[, 1:23])

Residuals:

Min 1Q Median 3Q Max

-4.963e-01 -7.192e-02 -1.487e-13 8.754e-02 3.675e-01

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Q.wks3_7[, 1:23]1 10.6425299 12.9479803 0.822 0.4183

Q.wks3_7[, 1:23]2 9.7262569 13.8480735 0.702 0.4885

Q.wks3_7[, 1:23]3 10.6074089 13.7337631 0.772 0.4466

Q.wks3_7[, 1:23]4 0.4150867 0.7927613 0.524 0.6048

Q.wks3_7[, 1:23]5 -2.8761773 1.5469214 -1.859 0.0739 .

Q.wks3_7[, 1:23]6 7.0696355 5.9208140 1.194 0.2429

Q.wks3_7[, 1:23]7 -5.3424229 4.8257498 -1.107 0.2780
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Q.wks3_7[, 1:23]8 2.0093160 1.9207486 1.046 0.3048

Q.wks3_7[, 1:23]9 -1.2535260 1.2967983 -0.967 0.3423

Q.wks3_7[, 1:23]10 0.0278538 0.0805725 0.346 0.7322

Q.wks3_7[, 1:23]11 0.1589988 0.1595505 0.997 0.3278

Q.wks3_7[, 1:23]12 -0.4490539 0.4506663 -0.996 0.3279

Q.wks3_7[, 1:23]13 0.2600650 0.1888487 1.377 0.1798

Q.wks3_7[, 1:23]14 -0.0195580 0.1130905 -0.173 0.8640

Q.wks3_7[, 1:23]15 -0.3794159 0.4173106 -0.909 0.3713

Q.wks3_7[, 1:23]16 0.6855058 0.4775932 1.435 0.1627

Q.wks3_7[, 1:23]17 -0.3059023 0.1514127 -2.020 0.0534 .

Q.wks3_7[, 1:23]18 0.1130594 0.1241455 0.911 0.3705

Q.wks3_7[, 1:23]19 0.0008476 0.2393688 0.004 0.9972

Q.wks3_7[, 1:23]20 0.1535135 0.2432220 0.631 0.5332

Q.wks3_7[, 1:23]21 -0.2489243 0.1667206 -1.493 0.1470

Q.wks3_7[, 1:23]22 -0.1981405 0.1734806 -1.142 0.2634

Q.wks3_7[, 1:23]23 0.2030699 0.1761483 1.153 0.2591

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.2217 on 27 degrees of freedom

Multiple R-squared: 0.9998,Adjusted R-squared: 0.9997

F-statistic: 6432 on 23 and 27 DF, p-value: < 2.2e-16

Response Y3 :

Call:

lm(formula = Y3 ~ 0 + Q.wks3_7[, 1:23])

Residuals:

Min 1Q Median 3Q Max

-1.058e+00 -5.951e-02 8.633e-14 5.625e-02 1.058e+00

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Q.wks3_7[, 1:23]1 108.0462 26.1538 4.131 0.000313 ***

Q.wks3_7[, 1:23]2 118.4763 27.9720 4.236 0.000237 ***

Q.wks3_7[, 1:23]3 118.6709 27.7411 4.278 0.000211 ***

Q.wks3_7[, 1:23]4 9.4618 1.6013 5.909 2.69e-06 ***

Q.wks3_7[, 1:23]5 17.9080 3.1247 5.731 4.31e-06 ***

Q.wks3_7[, 1:23]6 -119.2291 11.9596 -9.969 1.52e-10 ***

Q.wks3_7[, 1:23]7 96.7334 9.7476 9.924 1.67e-10 ***

Q.wks3_7[, 1:23]8 -33.3215 3.8798 -8.589 3.34e-09 ***

Q.wks3_7[, 1:23]9 19.0994 2.6194 7.291 7.65e-08 ***

Q.wks3_7[, 1:23]10 -1.3058 0.1627 -8.023 1.27e-08 ***
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Q.wks3_7[, 1:23]11 -2.4716 0.3223 -7.669 3.00e-08 ***

Q.wks3_7[, 1:23]12 8.1734 0.9103 8.979 1.36e-09 ***

Q.wks3_7[, 1:23]13 -3.9017 0.3815 -10.228 8.73e-11 ***

Q.wks3_7[, 1:23]14 -0.7612 0.2284 -3.332 0.002507 **

Q.wks3_7[, 1:23]15 7.3462 0.8429 8.715 2.49e-09 ***

Q.wks3_7[, 1:23]16 -8.8293 0.9647 -9.152 9.16e-10 ***

Q.wks3_7[, 1:23]17 1.4184 0.3058 4.638 8.06e-05 ***

Q.wks3_7[, 1:23]18 0.5813 0.2508 2.318 0.028266 *

Q.wks3_7[, 1:23]19 -3.6161 0.4835 -7.479 4.80e-08 ***

Q.wks3_7[, 1:23]20 1.9861 0.4913 4.043 0.000395 ***

Q.wks3_7[, 1:23]21 1.7900 0.3368 5.315 1.31e-05 ***

Q.wks3_7[, 1:23]22 2.0165 0.3504 5.755 4.05e-06 ***

Q.wks3_7[, 1:23]23 -2.2400 0.3558 -6.296 9.75e-07 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.4477 on 27 degrees of freedom

Multiple R-squared: 0.9957,Adjusted R-squared: 0.992

F-statistic: 272.2 on 23 and 27 DF, p-value: < 2.2e-16

Response Y4 :

Call:

lm(formula = Y4 ~ 0 + Q.wks3_7[, 1:23])

Residuals:

Min 1Q Median 3Q Max

-2.432e-01 -4.628e-02 1.087e-14 5.841e-02 1.739e-01

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Q.wks3_7[, 1:23]1 24.955477 6.064807 4.115 0.000326 ***

Q.wks3_7[, 1:23]2 25.400742 6.486409 3.916 0.000552 ***

Q.wks3_7[, 1:23]3 25.916738 6.432866 4.029 0.000410 ***

Q.wks3_7[, 1:23]4 0.061075 0.371328 0.164 0.870581

Q.wks3_7[, 1:23]5 -1.341997 0.724575 -1.852 0.074973 .

Q.wks3_7[, 1:23]6 1.033236 2.773297 0.373 0.712380

Q.wks3_7[, 1:23]7 -2.060551 2.260371 -0.912 0.370048

Q.wks3_7[, 1:23]8 2.103096 0.899675 2.338 0.027068 *

Q.wks3_7[, 1:23]9 -1.213053 0.607418 -1.997 0.055989 .

Q.wks3_7[, 1:23]10 0.003769 0.037740 0.100 0.921184

Q.wks3_7[, 1:23]11 -0.094216 0.074733 -1.261 0.218203

Q.wks3_7[, 1:23]12 0.204576 0.211091 0.969 0.341081

Q.wks3_7[, 1:23]13 -0.035539 0.088456 -0.402 0.691013
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Q.wks3_7[, 1:23]14 -0.085914 0.052971 -1.622 0.116445

Q.wks3_7[, 1:23]15 0.094041 0.195467 0.481 0.634315

Q.wks3_7[, 1:23]16 -0.125502 0.223704 -0.561 0.579413

Q.wks3_7[, 1:23]17 -0.012323 0.070921 -0.174 0.863348

Q.wks3_7[, 1:23]18 0.109520 0.058150 1.883 0.070458 .

Q.wks3_7[, 1:23]19 -0.020771 0.112120 -0.185 0.854409

Q.wks3_7[, 1:23]20 0.135339 0.113925 1.188 0.245192

Q.wks3_7[, 1:23]21 -0.177928 0.078092 -2.278 0.030830 *

Q.wks3_7[, 1:23]22 -0.185291 0.081258 -2.280 0.030707 *

Q.wks3_7[, 1:23]23 0.224270 0.082507 2.718 0.011326 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.1038 on 27 degrees of freedom

Multiple R-squared: 0.9999,Adjusted R-squared: 0.9999

F-statistic: 2.287e+04 on 23 and 27 DF, p-value: < 2.2e-16

Response Y5 :

Call:

lm(formula = Y5 ~ 0 + Q.wks3_7[, 1:23])

Residuals:

Min 1Q Median 3Q Max

-8.700e-01 -1.155e-01 -1.464e-13 1.039e-01 8.381e-01

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Q.wks3_7[, 1:23]1 71.4174 22.1854 3.219 0.003336 **

Q.wks3_7[, 1:23]2 77.6566 23.7276 3.273 0.002914 **

Q.wks3_7[, 1:23]3 78.5476 23.5317 3.338 0.002471 **

Q.wks3_7[, 1:23]4 6.4611 1.3583 4.757 5.86e-05 ***

Q.wks3_7[, 1:23]5 0.6796 2.6505 0.256 0.799589

Q.wks3_7[, 1:23]6 -56.7707 10.1449 -5.596 6.17e-06 ***

Q.wks3_7[, 1:23]7 54.0640 8.2685 6.539 5.19e-07 ***

Q.wks3_7[, 1:23]8 -18.6473 3.2911 -5.666 5.12e-06 ***

Q.wks3_7[, 1:23]9 7.8124 2.2220 3.516 0.001568 **

Q.wks3_7[, 1:23]10 -0.8736 0.1381 -6.328 8.96e-07 ***

Q.wks3_7[, 1:23]11 -0.8356 0.2734 -3.057 0.004998 **

Q.wks3_7[, 1:23]12 3.8549 0.7722 4.992 3.11e-05 ***

Q.wks3_7[, 1:23]13 -1.7255 0.3236 -5.332 1.25e-05 ***

Q.wks3_7[, 1:23]14 -0.6042 0.1938 -3.118 0.004295 **

Q.wks3_7[, 1:23]15 3.6059 0.7150 5.043 2.71e-05 ***

Q.wks3_7[, 1:23]16 -3.3167 0.8183 -4.053 0.000385 ***
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Q.wks3_7[, 1:23]17 -0.1649 0.2594 -0.636 0.530401

Q.wks3_7[, 1:23]18 0.7671 0.2127 3.606 0.001241 **

Q.wks3_7[, 1:23]19 -2.9209 0.4101 -7.122 1.17e-07 ***

Q.wks3_7[, 1:23]20 1.9774 0.4167 4.745 6.05e-05 ***

Q.wks3_7[, 1:23]21 0.5530 0.2857 1.936 0.063412 .

Q.wks3_7[, 1:23]22 0.7582 0.2972 2.551 0.016730 *

Q.wks3_7[, 1:23]23 -0.9373 0.3018 -3.105 0.004430 **

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.3798 on 27 degrees of freedom

Multiple R-squared: 0.9986,Adjusted R-squared: 0.9974

F-statistic: 822.3 on 23 and 27 DF, p-value: < 2.2e-16

Response Y6 :

Call:

lm(formula = Y6 ~ 0 + Q.wks3_7[, 1:23])

Residuals:

Min 1Q Median 3Q Max

-1.548e+00 -1.425e-01 3.986e-13 1.425e-01 1.284e+00

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Q.wks3_7[, 1:23]1 94.5840 34.5008 2.742 0.010717 *

Q.wks3_7[, 1:23]2 102.0390 36.8991 2.765 0.010128 *

Q.wks3_7[, 1:23]3 101.7750 36.5945 2.781 0.009754 **

Q.wks3_7[, 1:23]4 3.6336 2.1124 1.720 0.096852 .

Q.wks3_7[, 1:23]5 8.9007 4.1219 2.159 0.039867 *

Q.wks3_7[, 1:23]6 -72.6286 15.7764 -4.604 8.84e-05 ***

Q.wks3_7[, 1:23]7 63.3529 12.8585 4.927 3.71e-05 ***

Q.wks3_7[, 1:23]8 -22.6167 5.1180 -4.419 0.000145 ***

Q.wks3_7[, 1:23]9 11.2088 3.4554 3.244 0.003135 **

Q.wks3_7[, 1:23]10 -0.9754 0.2147 -4.543 0.000104 ***

Q.wks3_7[, 1:23]11 -1.3151 0.4251 -3.093 0.004564 **

Q.wks3_7[, 1:23]12 5.2491 1.2008 4.371 0.000165 ***

Q.wks3_7[, 1:23]13 -2.3475 0.5032 -4.665 7.49e-05 ***

Q.wks3_7[, 1:23]14 -0.6761 0.3013 -2.244 0.033259 *

Q.wks3_7[, 1:23]15 4.6493 1.1120 4.181 0.000274 ***

Q.wks3_7[, 1:23]16 -5.1987 1.2726 -4.085 0.000353 ***

Q.wks3_7[, 1:23]17 0.5166 0.4034 1.281 0.211246

Q.wks3_7[, 1:23]18 0.6634 0.3308 2.005 0.055036 .

Q.wks3_7[, 1:23]19 -2.9110 0.6378 -4.564 9.83e-05 ***
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Q.wks3_7[, 1:23]20 1.7365 0.6481 2.679 0.012405 *

Q.wks3_7[, 1:23]21 0.9126 0.4442 2.054 0.049753 *

Q.wks3_7[, 1:23]22 1.0893 0.4623 2.356 0.025959 *

Q.wks3_7[, 1:23]23 -1.2222 0.4694 -2.604 0.014796 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.5906 on 27 degrees of freedom

Multiple R-squared: 0.9971,Adjusted R-squared: 0.9946

F-statistic: 398.3 on 23 and 27 DF, p-value: < 2.2e-16

Response Y7 :

Call:

lm(formula = Y7 ~ 0 + Q.wks3_7[, 1:23])

Residuals:

Min 1Q Median 3Q Max

-4.123e-01 -5.966e-02 -3.208e-15 1.044e-01 3.196e-01

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Q.wks3_7[, 1:23]1 6.33019 10.12357 0.625 0.537

Q.wks3_7[, 1:23]2 4.92645 10.82733 0.455 0.653

Q.wks3_7[, 1:23]3 6.49027 10.73795 0.604 0.551

Q.wks3_7[, 1:23]4 -0.48003 0.61983 -0.774 0.445

Q.wks3_7[, 1:23]5 0.29334 1.20948 0.243 0.810

Q.wks3_7[, 1:23]6 3.93049 4.62928 0.849 0.403

Q.wks3_7[, 1:23]7 -4.73579 3.77309 -1.255 0.220

Q.wks3_7[, 1:23]8 1.90476 1.50177 1.268 0.216

Q.wks3_7[, 1:23]9 -0.49542 1.01392 -0.489 0.629

Q.wks3_7[, 1:23]10 0.07366 0.06300 1.169 0.252

Q.wks3_7[, 1:23]11 -0.03071 0.12475 -0.246 0.807

Q.wks3_7[, 1:23]12 -0.01960 0.35236 -0.056 0.956

Q.wks3_7[, 1:23]13 -0.11995 0.14765 -0.812 0.424

Q.wks3_7[, 1:23]14 0.11673 0.08842 1.320 0.198

Q.wks3_7[, 1:23]15 -0.22710 0.32628 -0.696 0.492

Q.wks3_7[, 1:23]16 0.20680 0.37341 0.554 0.584

Q.wks3_7[, 1:23]17 -0.03797 0.11838 -0.321 0.751

Q.wks3_7[, 1:23]18 -0.04733 0.09707 -0.488 0.630

Q.wks3_7[, 1:23]19 0.04334 0.18715 0.232 0.819

Q.wks3_7[, 1:23]20 0.25319 0.19017 1.331 0.194

Q.wks3_7[, 1:23]21 -0.17753 0.13035 -1.362 0.184

Q.wks3_7[, 1:23]22 -0.16028 0.13564 -1.182 0.248
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Q.wks3_7[, 1:23]23 0.11874 0.13772 0.862 0.396

Residual standard error: 0.1733 on 27 degrees of freedom

Multiple R-squared: 0.9999,Adjusted R-squared: 0.9998

F-statistic: 8722 on 23 and 27 DF, p-value: < 2.2e-16

Response Y8 :

Call:

lm(formula = Y8 ~ 0 + Q.wks3_7[, 1:23])

Residuals:

Min 1Q Median 3Q Max

-5.043e-01 -1.698e-02 1.353e-14 2.118e-02 5.043e-01

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Q.wks3_7[, 1:23]1 -35.52468 11.77779 -3.016 0.005521 **

Q.wks3_7[, 1:23]2 -40.36369 12.59653 -3.204 0.003462 **

Q.wks3_7[, 1:23]3 -39.35459 12.49255 -3.150 0.003963 **

Q.wks3_7[, 1:23]4 -0.40828 0.72111 -0.566 0.575952

Q.wks3_7[, 1:23]5 10.83501 1.40712 7.700 2.79e-08 ***

Q.wks3_7[, 1:23]6 -22.17063 5.38571 -4.117 0.000325 ***

Q.wks3_7[, 1:23]7 18.59820 4.38962 4.237 0.000236 ***

Q.wks3_7[, 1:23]8 -10.37697 1.74716 -5.939 2.48e-06 ***

Q.wks3_7[, 1:23]9 7.90261 1.17960 6.699 3.43e-07 ***

Q.wks3_7[, 1:23]10 -0.12366 0.07329 -1.687 0.103084

Q.wks3_7[, 1:23]11 -0.17215 0.14513 -1.186 0.245885

Q.wks3_7[, 1:23]12 1.21339 0.40994 2.960 0.006337 **

Q.wks3_7[, 1:23]13 -1.64608 0.17178 -9.582 3.52e-10 ***

Q.wks3_7[, 1:23]14 0.80609 0.10287 7.836 2.00e-08 ***

Q.wks3_7[, 1:23]15 0.65083 0.37960 1.715 0.097890 .

Q.wks3_7[, 1:23]16 -0.85200 0.43443 -1.961 0.060247 .

Q.wks3_7[, 1:23]17 0.43108 0.13773 3.130 0.004169 **

Q.wks3_7[, 1:23]18 -0.71920 0.11293 -6.369 8.05e-07 ***

Q.wks3_7[, 1:23]19 -1.01871 0.21774 -4.679 7.22e-05 ***

Q.wks3_7[, 1:23]20 0.94478 0.22124 4.270 0.000216 ***

Q.wks3_7[, 1:23]21 0.77054 0.15165 5.081 2.45e-05 ***

Q.wks3_7[, 1:23]22 0.85405 0.15780 5.412 1.01e-05 ***

Q.wks3_7[, 1:23]23 -1.25199 0.16023 -7.814 2.11e-08 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.2016 on 27 degrees of freedom
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Multiple R-squared: 0.9986,Adjusted R-squared: 0.9974

F-statistic: 826 on 23 and 27 DF, p-value: < 2.2e-16

Response Y9 :

Call:

lm(formula = Y9 ~ 0 + Q.wks3_7[, 1:23])

Residuals:

Min 1Q Median 3Q Max

-4.342e-02 -8.557e-03 -4.083e-05 8.313e-03 4.342e-02

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Q.wks3_7[, 1:23]1 2.919876 1.346744 2.168 0.0391 *

Q.wks3_7[, 1:23]2 3.044390 1.440364 2.114 0.0439 *

Q.wks3_7[, 1:23]3 2.922446 1.428475 2.046 0.0506 .

Q.wks3_7[, 1:23]4 0.061339 0.082457 0.744 0.4634

Q.wks3_7[, 1:23]5 0.129719 0.160898 0.806 0.4272

Q.wks3_7[, 1:23]6 -0.913068 0.615835 -1.483 0.1497

Q.wks3_7[, 1:23]7 0.767532 0.501935 1.529 0.1379

Q.wks3_7[, 1:23]8 -0.240670 0.199781 -1.205 0.2388

Q.wks3_7[, 1:23]9 0.109755 0.134882 0.814 0.4229

Q.wks3_7[, 1:23]10 -0.013932 0.008380 -1.662 0.1080

Q.wks3_7[, 1:23]11 -0.020772 0.016595 -1.252 0.2214

Q.wks3_7[, 1:23]12 0.071905 0.046875 1.534 0.1367

Q.wks3_7[, 1:23]13 -0.033063 0.019643 -1.683 0.1039

Q.wks3_7[, 1:23]14 -0.005003 0.011763 -0.425 0.6740

Q.wks3_7[, 1:23]15 0.065339 0.043405 1.505 0.1439

Q.wks3_7[, 1:23]16 -0.071417 0.049675 -1.438 0.1620

Q.wks3_7[, 1:23]17 0.007644 0.015749 0.485 0.6313

Q.wks3_7[, 1:23]18 0.006850 0.012913 0.530 0.6001

Q.wks3_7[, 1:23]19 -0.037382 0.024897 -1.501 0.1448

Q.wks3_7[, 1:23]20 0.020080 0.025298 0.794 0.4343

Q.wks3_7[, 1:23]21 0.011048 0.017341 0.637 0.5294

Q.wks3_7[, 1:23]22 0.016235 0.018044 0.900 0.3762

Q.wks3_7[, 1:23]23 -0.015768 0.018322 -0.861 0.3970

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.02305 on 27 degrees of freedom

Multiple R-squared: 0.9999,Adjusted R-squared: 0.9999

F-statistic: 1.638e+04 on 23 and 27 DF, p-value: < 2.2e-16
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Response Y10 :

Call:

lm(formula = Y10 ~ 0 + Q.wks3_7[, 1:23])

Residuals:

Min 1Q Median 3Q Max

-6.819e-01 -1.397e-01 1.932e-13 1.692e-01 4.830e-01

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Q.wks3_7[, 1:23]1 50.5622 18.1601 2.784 0.009682 **

Q.wks3_7[, 1:23]2 57.8483 19.4225 2.978 0.006058 **

Q.wks3_7[, 1:23]3 54.1999 19.2622 2.814 0.009022 **

Q.wks3_7[, 1:23]4 5.4504 1.1119 4.902 3.96e-05 ***

Q.wks3_7[, 1:23]5 -0.2265 2.1696 -0.104 0.917614

Q.wks3_7[, 1:23]6 -60.5969 8.3042 -7.297 7.54e-08 ***

Q.wks3_7[, 1:23]7 69.7684 6.7683 10.308 7.38e-11 ***

Q.wks3_7[, 1:23]8 -32.1010 2.6939 -11.916 2.91e-12 ***

Q.wks3_7[, 1:23]9 13.9749 1.8188 7.683 2.90e-08 ***

Q.wks3_7[, 1:23]10 -1.0788 0.1130 -9.546 3.81e-10 ***

Q.wks3_7[, 1:23]11 0.2803 0.2238 1.253 0.221070

Q.wks3_7[, 1:23]12 2.2462 0.6321 3.554 0.001422 **

Q.wks3_7[, 1:23]13 -0.9689 0.2649 -3.658 0.001086 **

Q.wks3_7[, 1:23]14 -0.6005 0.1586 -3.786 0.000778 ***

Q.wks3_7[, 1:23]15 3.1500 0.5853 5.382 1.09e-05 ***

Q.wks3_7[, 1:23]16 -2.2087 0.6698 -3.297 0.002739 **

Q.wks3_7[, 1:23]17 -0.3002 0.2124 -1.414 0.168872

Q.wks3_7[, 1:23]18 0.5140 0.1741 2.952 0.006463 **

Q.wks3_7[, 1:23]19 -3.2196 0.3357 -9.590 3.46e-10 ***

Q.wks3_7[, 1:23]20 0.7393 0.3411 2.167 0.039205 *

Q.wks3_7[, 1:23]21 1.5867 0.2338 6.786 2.75e-07 ***

Q.wks3_7[, 1:23]22 1.9335 0.2433 7.947 1.53e-08 ***

Q.wks3_7[, 1:23]23 -2.0088 0.2471 -8.131 9.83e-09 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.3109 on 27 degrees of freedom

Multiple R-squared: 0.9995,Adjusted R-squared: 0.9991

F-statistic: 2410 on 23 and 27 DF, p-value: < 2.2e-16

Response Y11 :
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Call:

lm(formula = Y11 ~ 0 + Q.wks3_7[, 1:23])

Residuals:

Min 1Q Median 3Q Max

-1.921e-01 -6.634e-02 1.767e-15 5.513e-02 2.453e-01

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Q.wks3_7[, 1:23]1 28.46115 7.45361 3.818 0.000714 ***

Q.wks3_7[, 1:23]2 30.39943 7.97176 3.813 0.000724 ***

Q.wks3_7[, 1:23]3 28.53249 7.90595 3.609 0.001233 **

Q.wks3_7[, 1:23]4 1.22104 0.45636 2.676 0.012519 *

Q.wks3_7[, 1:23]5 -1.21778 0.89050 -1.368 0.182738

Q.wks3_7[, 1:23]6 -9.02639 3.40837 -2.648 0.013346 *

Q.wks3_7[, 1:23]7 9.40741 2.77798 3.386 0.002185 **

Q.wks3_7[, 1:23]8 -2.93838 1.10570 -2.657 0.013062 *

Q.wks3_7[, 1:23]9 0.86939 0.74651 1.165 0.254366

Q.wks3_7[, 1:23]10 -0.17838 0.04638 -3.846 0.000664 ***

Q.wks3_7[, 1:23]11 -0.01763 0.09185 -0.192 0.849207

Q.wks3_7[, 1:23]12 0.29290 0.25943 1.129 0.268831

Q.wks3_7[, 1:23]13 0.13945 0.10871 1.283 0.210484

Q.wks3_7[, 1:23]14 -0.28061 0.06510 -4.310 0.000194 ***

Q.wks3_7[, 1:23]15 0.64026 0.24023 2.665 0.012828 *

Q.wks3_7[, 1:23]16 -0.55724 0.27493 -2.027 0.052657 .

Q.wks3_7[, 1:23]17 0.00489 0.08716 0.056 0.955675

Q.wks3_7[, 1:23]18 0.18099 0.07147 2.533 0.017446 *

Q.wks3_7[, 1:23]19 -0.23563 0.13780 -1.710 0.098734 .

Q.wks3_7[, 1:23]20 -0.35059 0.14001 -2.504 0.018623 *

Q.wks3_7[, 1:23]21 0.29079 0.09597 3.030 0.005339 **

Q.wks3_7[, 1:23]22 0.30196 0.09987 3.024 0.005422 **

Q.wks3_7[, 1:23]23 -0.19503 0.10140 -1.923 0.065038 .

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.1276 on 27 degrees of freedom

Multiple R-squared: 0.9999,Adjusted R-squared: 0.9999

F-statistic: 1.494e+04 on 23 and 27 DF, p-value: < 2.2e-16

Response Y12 :

Call:

lm(formula = Y12 ~ 0 + Q.wks3_7[, 1:23])
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Residuals:

Min 1Q Median 3Q Max

-6.736e-01 -1.320e-01 -2.673e-13 1.309e-01 5.728e-01

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Q.wks3_7[, 1:23]1 41.18000 19.96496 2.063 0.048890 *

Q.wks3_7[, 1:23]2 44.23740 21.35284 2.072 0.047968 *

Q.wks3_7[, 1:23]3 44.84897 21.17658 2.118 0.043539 *

Q.wks3_7[, 1:23]4 5.41697 1.22239 4.431 0.000140 ***

Q.wks3_7[, 1:23]5 -0.33743 2.38525 -0.141 0.888552

Q.wks3_7[, 1:23]6 -52.77004 9.12952 -5.780 3.78e-06 ***

Q.wks3_7[, 1:23]7 60.32648 7.44100 8.107 1.04e-08 ***

Q.wks3_7[, 1:23]8 -28.49325 2.96167 -9.621 3.23e-10 ***

Q.wks3_7[, 1:23]9 12.86614 1.99958 6.434 6.79e-07 ***

Q.wks3_7[, 1:23]10 -0.85130 0.12424 -6.852 2.32e-07 ***

Q.wks3_7[, 1:23]11 0.10926 0.24602 0.444 0.660498

Q.wks3_7[, 1:23]12 2.11356 0.69490 3.042 0.005188 **

Q.wks3_7[, 1:23]13 -1.05495 0.29119 -3.623 0.001189 **

Q.wks3_7[, 1:23]14 -0.46220 0.17438 -2.651 0.013276 *

Q.wks3_7[, 1:23]15 2.79388 0.64347 4.342 0.000178 ***

Q.wks3_7[, 1:23]16 -2.28189 0.73642 -3.099 0.004505 **

Q.wks3_7[, 1:23]17 0.02237 0.23347 0.096 0.924382

Q.wks3_7[, 1:23]18 0.38420 0.19142 2.007 0.054853 .

Q.wks3_7[, 1:23]19 -2.59236 0.36909 -7.024 1.50e-07 ***

Q.wks3_7[, 1:23]20 0.52103 0.37503 1.389 0.176100

Q.wks3_7[, 1:23]21 1.36693 0.25707 5.317 1.30e-05 ***

Q.wks3_7[, 1:23]22 1.74641 0.26750 6.529 5.32e-07 ***

Q.wks3_7[, 1:23]23 -1.76357 0.27161 -6.493 5.83e-07 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.3418 on 27 degrees of freedom

Multiple R-squared: 0.9992,Adjusted R-squared: 0.9986

F-statistic: 1511 on 23 and 27 DF, p-value: < 2.2e-16

Response Y13 :

Call:

lm(formula = Y13 ~ 0 + Q.wks3_7[, 1:23])

Residuals:

Min 1Q Median 3Q Max

-3.842e-01 -7.952e-02 1.247e-13 9.909e-02 2.566e-01
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

Q.wks3_7[, 1:23]1 12.59495 10.72366 1.175 0.250

Q.wks3_7[, 1:23]2 13.77066 11.46912 1.201 0.240

Q.wks3_7[, 1:23]3 13.95991 11.37445 1.227 0.230

Q.wks3_7[, 1:23]4 0.04151 0.65657 0.063 0.950

Q.wks3_7[, 1:23]5 1.15612 1.28118 0.902 0.375

Q.wks3_7[, 1:23]6 -6.96323 4.90368 -1.420 0.167

Q.wks3_7[, 1:23]7 6.30598 3.99674 1.578 0.126

Q.wks3_7[, 1:23]8 -1.29134 1.59078 -0.812 0.424

Q.wks3_7[, 1:23]9 0.19306 1.07402 0.180 0.859

Q.wks3_7[, 1:23]10 -0.09998 0.06673 -1.498 0.146

Q.wks3_7[, 1:23]11 -0.10577 0.13214 -0.800 0.430

Q.wks3_7[, 1:23]12 0.44544 0.37325 1.193 0.243

Q.wks3_7[, 1:23]13 -0.12117 0.15641 -0.775 0.445

Q.wks3_7[, 1:23]14 -0.10953 0.09366 -1.169 0.252

Q.wks3_7[, 1:23]15 0.43306 0.34562 1.253 0.221

Q.wks3_7[, 1:23]16 -0.44710 0.39555 -1.130 0.268

Q.wks3_7[, 1:23]17 -0.01231 0.12540 -0.098 0.922

Q.wks3_7[, 1:23]18 0.08077 0.10282 0.786 0.439

Q.wks3_7[, 1:23]19 -0.27761 0.19825 -1.400 0.173

Q.wks3_7[, 1:23]20 0.10798 0.20144 0.536 0.596

Q.wks3_7[, 1:23]21 0.14376 0.13808 1.041 0.307

Q.wks3_7[, 1:23]22 0.08720 0.14368 0.607 0.549

Q.wks3_7[, 1:23]23 -0.11098 0.14589 -0.761 0.453

Residual standard error: 0.1836 on 27 degrees of freedom

Multiple R-squared: 0.9997,Adjusted R-squared: 0.9995

F-statistic: 4376 on 23 and 27 DF, p-value: < 2.2e-16

Response Y14 :

Call:

lm(formula = Y14 ~ 0 + Q.wks3_7[, 1:23])

Residuals:

Min 1Q Median 3Q Max

-5.288e-01 -6.257e-02 1.475e-15 8.927e-02 5.288e-01

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Q.wks3_7[, 1:23]1 18.14671 16.07258 1.129 0.268810

Q.wks3_7[, 1:23]2 20.35633 17.18988 1.184 0.246653
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Q.wks3_7[, 1:23]3 21.43305 17.04799 1.257 0.219441

Q.wks3_7[, 1:23]4 1.38182 0.98407 1.404 0.171660

Q.wks3_7[, 1:23]5 -0.07492 1.92022 -0.039 0.969165

Q.wks3_7[, 1:23]6 -20.47375 7.34962 -2.786 0.009649 **

Q.wks3_7[, 1:23]7 24.03799 5.99030 4.013 0.000428 ***

Q.wks3_7[, 1:23]8 -10.42288 2.38426 -4.372 0.000165 ***

Q.wks3_7[, 1:23]9 4.43870 1.60974 2.757 0.010321 *

Q.wks3_7[, 1:23]10 -0.35664 0.10002 -3.566 0.001379 **

Q.wks3_7[, 1:23]11 0.21800 0.19805 1.101 0.280735

Q.wks3_7[, 1:23]12 0.59325 0.55942 1.060 0.298325

Q.wks3_7[, 1:23]13 -0.22401 0.23442 -0.956 0.347761

Q.wks3_7[, 1:23]14 -0.25897 0.14038 -1.845 0.076066 .

Q.wks3_7[, 1:23]15 0.98173 0.51802 1.895 0.068823 .

Q.wks3_7[, 1:23]16 -0.57158 0.59285 -0.964 0.343539

Q.wks3_7[, 1:23]17 -0.24841 0.18795 -1.322 0.197376

Q.wks3_7[, 1:23]18 0.23215 0.15410 1.506 0.143564

Q.wks3_7[, 1:23]19 -1.13012 0.29713 -3.803 0.000743 ***

Q.wks3_7[, 1:23]20 0.30095 0.30192 0.997 0.327706

Q.wks3_7[, 1:23]21 0.47966 0.20695 2.318 0.028282 *

Q.wks3_7[, 1:23]22 0.61091 0.21534 2.837 0.008536 **

Q.wks3_7[, 1:23]23 -0.60046 0.21866 -2.746 0.010601 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.2751 on 27 degrees of freedom

Multiple R-squared: 0.9997,Adjusted R-squared: 0.9994

F-statistic: 3388 on 23 and 27 DF, p-value: < 2.2e-16

Response Y15 :

Call:

lm(formula = Y15 ~ 0 + Q.wks3_7[, 1:23])

Residuals:

Min 1Q Median 3Q Max

-1.433e-01 -4.584e-02 -3.181e-14 3.674e-02 1.836e-01

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Q.wks3_7[, 1:23]1 -5.35159 5.34565 -1.001 0.325662

Q.wks3_7[, 1:23]2 -5.29977 5.71726 -0.927 0.362151

Q.wks3_7[, 1:23]3 -5.36999 5.67007 -0.947 0.352000

Q.wks3_7[, 1:23]4 0.19374 0.32730 0.592 0.558822

Q.wks3_7[, 1:23]5 -1.13470 0.63866 -1.777 0.086887 .
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Q.wks3_7[, 1:23]6 4.43386 2.44444 1.814 0.080830 .

Q.wks3_7[, 1:23]7 -1.48442 1.99234 -0.745 0.462671

Q.wks3_7[, 1:23]8 -0.54909 0.79299 -0.692 0.494578

Q.wks3_7[, 1:23]9 0.07464 0.53539 0.139 0.890155

Q.wks3_7[, 1:23]10 0.02745 0.03326 0.825 0.416469

Q.wks3_7[, 1:23]11 0.21763 0.06587 3.304 0.002694 **

Q.wks3_7[, 1:23]12 -0.51839 0.18606 -2.786 0.009638 **

Q.wks3_7[, 1:23]13 0.22805 0.07797 2.925 0.006901 **

Q.wks3_7[, 1:23]14 0.03239 0.04669 0.694 0.493747

Q.wks3_7[, 1:23]15 -0.37842 0.17229 -2.196 0.036829 *

Q.wks3_7[, 1:23]16 0.63377 0.19718 3.214 0.003377 **

Q.wks3_7[, 1:23]17 -0.24524 0.06251 -3.923 0.000542 ***

Q.wks3_7[, 1:23]18 0.01372 0.05125 0.268 0.790936

Q.wks3_7[, 1:23]19 -0.02064 0.09882 -0.209 0.836113

Q.wks3_7[, 1:23]20 0.03212 0.10042 0.320 0.751534

Q.wks3_7[, 1:23]21 -0.03859 0.06883 -0.561 0.579661

Q.wks3_7[, 1:23]22 0.01656 0.07162 0.231 0.818840

Q.wks3_7[, 1:23]23 -0.03262 0.07272 -0.449 0.657344

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.09151 on 27 degrees of freedom

Multiple R-squared: 1,Adjusted R-squared: 0.9999

F-statistic: 4.142e+04 on 23 and 27 DF, p-value: < 2.2e-16

Response Y16 :

Call:

lm(formula = Y16 ~ 0 + Q.wks3_7[, 1:23])

Residuals:

Min 1Q Median 3Q Max

-5.011e-01 -1.615e-01 -4.816e-14 1.615e-01 5.376e-01

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Q.wks3_7[, 1:23]1 20.9981 21.5030 0.977 0.337474

Q.wks3_7[, 1:23]2 24.7925 22.9978 1.078 0.290554

Q.wks3_7[, 1:23]3 23.5659 22.8079 1.033 0.310662

Q.wks3_7[, 1:23]4 5.3008 1.3166 4.026 0.000413 ***

Q.wks3_7[, 1:23]5 2.9640 2.5690 1.154 0.258719

Q.wks3_7[, 1:23]6 -50.2544 9.8328 -5.111 2.26e-05 ***

Q.wks3_7[, 1:23]7 54.0744 8.0142 6.747 3.03e-07 ***

Q.wks3_7[, 1:23]8 -25.7251 3.1898 -8.065 1.15e-08 ***
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Q.wks3_7[, 1:23]9 12.3009 2.1536 5.712 4.54e-06 ***

Q.wks3_7[, 1:23]10 -0.8019 0.1338 -5.993 2.16e-06 ***

Q.wks3_7[, 1:23]11 -0.2581 0.2650 -0.974 0.338664

Q.wks3_7[, 1:23]12 2.4850 0.7484 3.320 0.002585 **

Q.wks3_7[, 1:23]13 -1.2753 0.3136 -4.066 0.000371 ***

Q.wks3_7[, 1:23]14 -0.2694 0.1878 -1.435 0.162882

Q.wks3_7[, 1:23]15 2.7834 0.6930 4.016 0.000424 ***

Q.wks3_7[, 1:23]16 -2.5185 0.7931 -3.175 0.003722 **

Q.wks3_7[, 1:23]17 0.2580 0.2515 1.026 0.313932

Q.wks3_7[, 1:23]18 0.1719 0.2062 0.834 0.411732

Q.wks3_7[, 1:23]19 -2.3354 0.3975 -5.875 2.94e-06 ***

Q.wks3_7[, 1:23]20 0.6217 0.4039 1.539 0.135431

Q.wks3_7[, 1:23]21 1.3392 0.2769 4.837 4.72e-05 ***

Q.wks3_7[, 1:23]22 1.5256 0.2881 5.295 1.38e-05 ***

Q.wks3_7[, 1:23]23 -1.7090 0.2925 -5.842 3.21e-06 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.3681 on 27 degrees of freedom

Multiple R-squared: 0.999,Adjusted R-squared: 0.9981

F-statistic: 1122 on 23 and 27 DF, p-value: < 2.2e-16

Response Y17 :

Call:

lm(formula = Y17 ~ 0 + Q.wks3_7[, 1:23])

Residuals:

Min 1Q Median 3Q Max

-2.545e-01 -4.073e-02 4.520e-15 4.664e-02 1.715e-01

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Q.wks3_7[, 1:23]1 28.86275 6.65419 4.338 0.000180 ***

Q.wks3_7[, 1:23]2 29.73603 7.11676 4.178 0.000276 ***

Q.wks3_7[, 1:23]3 29.45126 7.05802 4.173 0.000280 ***

Q.wks3_7[, 1:23]4 0.30263 0.40741 0.743 0.464010

Q.wks3_7[, 1:23]5 1.06632 0.79499 1.341 0.190999

Q.wks3_7[, 1:23]6 -8.74650 3.04281 -2.874 0.007798 **

Q.wks3_7[, 1:23]7 5.82827 2.48004 2.350 0.026331 *

Q.wks3_7[, 1:23]8 -1.11169 0.98711 -1.126 0.269989

Q.wks3_7[, 1:23]9 0.95967 0.66645 1.440 0.161366

Q.wks3_7[, 1:23]10 -0.08665 0.04141 -2.093 0.045905 *

Q.wks3_7[, 1:23]11 -0.21069 0.08200 -2.570 0.016023 *
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Q.wks3_7[, 1:23]12 0.61150 0.23161 2.640 0.013599 *

Q.wks3_7[, 1:23]13 -0.19370 0.09705 -1.996 0.056133 .

Q.wks3_7[, 1:23]14 -0.12944 0.05812 -2.227 0.034473 *

Q.wks3_7[, 1:23]15 0.62910 0.21446 2.933 0.006761 **

Q.wks3_7[, 1:23]16 -0.83218 0.24544 -3.391 0.002162 **

Q.wks3_7[, 1:23]17 0.18814 0.07781 2.418 0.022632 *

Q.wks3_7[, 1:23]18 0.06369 0.06380 0.998 0.326982

Q.wks3_7[, 1:23]19 -0.09921 0.12302 -0.806 0.427018

Q.wks3_7[, 1:23]20 -0.13392 0.12500 -1.071 0.293468

Q.wks3_7[, 1:23]21 0.16350 0.08568 1.908 0.067039 .

Q.wks3_7[, 1:23]22 0.17526 0.08915 1.966 0.059687 .

Q.wks3_7[, 1:23]23 -0.10983 0.09053 -1.213 0.235527

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.1139 on 27 degrees of freedom

Multiple R-squared: 0.9999,Adjusted R-squared: 0.9999

F-statistic: 1.501e+04 on 23 and 27 DF, p-value: < 2.2e-16

Response Y18 :

Call:

lm(formula = Y18 ~ 0 + Q.wks3_7[, 1:23])

Residuals:

Min 1Q Median 3Q Max

-1.952e-01 -4.445e-02 -5.670e-14 4.445e-02 1.952e-01

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Q.wks3_7[, 1:23]1 9.909333 7.022891 1.411 0.16966

Q.wks3_7[, 1:23]2 9.157078 7.511095 1.219 0.23334

Q.wks3_7[, 1:23]3 10.004246 7.449094 1.343 0.19045

Q.wks3_7[, 1:23]4 0.274855 0.429988 0.639 0.52807

Q.wks3_7[, 1:23]5 -2.446399 0.839039 -2.916 0.00706 **

Q.wks3_7[, 1:23]6 6.935713 3.211407 2.160 0.03984 *

Q.wks3_7[, 1:23]7 -5.505424 2.617452 -2.103 0.04489 *

Q.wks3_7[, 1:23]8 2.084277 1.041800 2.001 0.05558 .

Q.wks3_7[, 1:23]9 -1.353108 0.703374 -1.924 0.06499 .

Q.wks3_7[, 1:23]10 0.045482 0.043702 1.041 0.30723

Q.wks3_7[, 1:23]11 0.103405 0.086539 1.195 0.24252

Q.wks3_7[, 1:23]12 -0.385221 0.244438 -1.576 0.12668

Q.wks3_7[, 1:23]13 0.222389 0.102430 2.171 0.03888 *

Q.wks3_7[, 1:23]14 -0.001671 0.061339 -0.027 0.97847
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Q.wks3_7[, 1:23]15 -0.345677 0.226346 -1.527 0.13834

Q.wks3_7[, 1:23]16 0.577015 0.259043 2.227 0.03444 *

Q.wks3_7[, 1:23]17 -0.243188 0.082125 -2.961 0.00632 **

Q.wks3_7[, 1:23]18 0.080989 0.067336 1.203 0.23951

Q.wks3_7[, 1:23]19 0.049490 0.129832 0.381 0.70605

Q.wks3_7[, 1:23]20 0.126722 0.131922 0.961 0.34529

Q.wks3_7[, 1:23]21 -0.235110 0.090428 -2.600 0.01493 *

Q.wks3_7[, 1:23]22 -0.198231 0.094095 -2.107 0.04457 *

Q.wks3_7[, 1:23]23 0.207254 0.095542 2.169 0.03904 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.1202 on 27 degrees of freedom

Multiple R-squared: 0.9999,Adjusted R-squared: 0.9999

F-statistic: 1.958e+04 on 23 and 27 DF, p-value: < 2.2e-16

Response Y19 :

Call:

lm(formula = Y19 ~ 0 + Q.wks3_7[, 1:23])

Residuals:

Min 1Q Median 3Q Max

-2.462e-01 -2.438e-02 4.074e-14 3.390e-02 2.037e-01

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Q.wks3_7[, 1:23]1 -0.61898 7.41318 -0.083 0.9341

Q.wks3_7[, 1:23]2 -0.73365 7.92851 -0.093 0.9270

Q.wks3_7[, 1:23]3 -0.64265 7.86307 -0.082 0.9355

Q.wks3_7[, 1:23]4 0.31316 0.45388 0.690 0.4961

Q.wks3_7[, 1:23]5 0.71785 0.88567 0.811 0.4247

Q.wks3_7[, 1:23]6 -0.46070 3.38988 -0.136 0.8929

Q.wks3_7[, 1:23]7 0.40892 2.76291 0.148 0.8834

Q.wks3_7[, 1:23]8 -0.69475 1.09970 -0.632 0.5329

Q.wks3_7[, 1:23]9 0.59000 0.74246 0.795 0.4337

Q.wks3_7[, 1:23]10 -0.01981 0.04613 -0.429 0.6710

Q.wks3_7[, 1:23]11 -0.16611 0.09135 -1.818 0.0801 .

Q.wks3_7[, 1:23]12 0.35817 0.25802 1.388 0.1764

Q.wks3_7[, 1:23]13 -0.25305 0.10812 -2.340 0.0269 *

Q.wks3_7[, 1:23]14 0.07945 0.06475 1.227 0.2304

Q.wks3_7[, 1:23]15 0.13970 0.23893 0.585 0.5636

Q.wks3_7[, 1:23]16 -0.15380 0.27344 -0.562 0.5784

Q.wks3_7[, 1:23]17 0.02131 0.08669 0.246 0.8076
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Q.wks3_7[, 1:23]18 -0.03522 0.07108 -0.496 0.6242

Q.wks3_7[, 1:23]19 -0.19560 0.13705 -1.427 0.1650

Q.wks3_7[, 1:23]20 0.23325 0.13925 1.675 0.1055

Q.wks3_7[, 1:23]21 0.04431 0.09545 0.464 0.6462

Q.wks3_7[, 1:23]22 0.05709 0.09932 0.575 0.5702

Q.wks3_7[, 1:23]23 -0.12943 0.10085 -1.283 0.2103

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.1269 on 27 degrees of freedom

Multiple R-squared: 0.9999,Adjusted R-squared: 0.9998

F-statistic: 1.177e+04 on 23 and 27 DF, p-value: < 2.2e-16

Response Y20 :

Call:

lm(formula = Y20 ~ 0 + Q.wks3_7[, 1:23])

Residuals:

Min 1Q Median 3Q Max

-8.385e-01 -4.491e-02 -3.331e-15 3.747e-02 4.674e-01

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Q.wks3_7[, 1:23]1 4.15964 13.09689 0.318 0.753

Q.wks3_7[, 1:23]2 2.55406 14.00734 0.182 0.857

Q.wks3_7[, 1:23]3 3.47299 13.89171 0.250 0.804

Q.wks3_7[, 1:23]4 -0.49151 0.80188 -0.613 0.545

Q.wks3_7[, 1:23]5 0.72155 1.56471 0.461 0.648

Q.wks3_7[, 1:23]6 1.24666 5.98891 0.208 0.837

Q.wks3_7[, 1:23]7 -0.94388 4.88125 -0.193 0.848

Q.wks3_7[, 1:23]8 -0.37079 1.94284 -0.191 0.850

Q.wks3_7[, 1:23]9 0.71336 1.31171 0.544 0.591

Q.wks3_7[, 1:23]10 0.03672 0.08150 0.451 0.656

Q.wks3_7[, 1:23]11 0.14169 0.16139 0.878 0.388

Q.wks3_7[, 1:23]12 -0.24514 0.45585 -0.538 0.595

Q.wks3_7[, 1:23]13 -0.03492 0.19102 -0.183 0.856

Q.wks3_7[, 1:23]14 0.12118 0.11439 1.059 0.299

Q.wks3_7[, 1:23]15 -0.23784 0.42211 -0.563 0.578

Q.wks3_7[, 1:23]16 0.32844 0.48309 0.680 0.502

Q.wks3_7[, 1:23]17 -0.09573 0.15315 -0.625 0.537

Q.wks3_7[, 1:23]18 -0.07690 0.12557 -0.612 0.545

Q.wks3_7[, 1:23]19 -0.03307 0.24212 -0.137 0.892

Q.wks3_7[, 1:23]20 0.10887 0.24602 0.443 0.662
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Q.wks3_7[, 1:23]21 -0.01161 0.16864 -0.069 0.946

Q.wks3_7[, 1:23]22 0.05594 0.17548 0.319 0.752

Q.wks3_7[, 1:23]23 -0.07851 0.17817 -0.441 0.663

Residual standard error: 0.2242 on 27 degrees of freedom

Multiple R-squared: 0.9998,Adjusted R-squared: 0.9997

F-statistic: 6685 on 23 and 27 DF, p-value: < 2.2e-16

Response Y21 :

Call:

lm(formula = Y21 ~ 0 + Q.wks3_7[, 1:23])

Residuals:

Min 1Q Median 3Q Max

-3.889e-02 -1.096e-02 -9.901e-15 1.222e-02 3.873e-02

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Q.wks3_7[, 1:23]1 2.621272 1.356409 1.933 0.0639 .

Q.wks3_7[, 1:23]2 2.699846 1.450701 1.861 0.0737 .

Q.wks3_7[, 1:23]3 2.593648 1.438726 1.803 0.0826 .

Q.wks3_7[, 1:23]4 0.067007 0.083048 0.807 0.4268

Q.wks3_7[, 1:23]5 -0.011326 0.162053 -0.070 0.9448

Q.wks3_7[, 1:23]6 -0.508065 0.620255 -0.819 0.4199

Q.wks3_7[, 1:23]7 0.446710 0.505538 0.884 0.3847

Q.wks3_7[, 1:23]8 -0.136379 0.201214 -0.678 0.5037

Q.wks3_7[, 1:23]9 0.066695 0.135850 0.491 0.6274

Q.wks3_7[, 1:23]10 -0.011169 0.008441 -1.323 0.1969

Q.wks3_7[, 1:23]11 -0.011772 0.016714 -0.704 0.4873

Q.wks3_7[, 1:23]12 0.048224 0.047211 1.021 0.3161

Q.wks3_7[, 1:23]13 -0.023193 0.019783 -1.172 0.2513

Q.wks3_7[, 1:23]14 -0.003664 0.011847 -0.309 0.7595

Q.wks3_7[, 1:23]15 0.043022 0.043717 0.984 0.3338

Q.wks3_7[, 1:23]16 -0.037598 0.050032 -0.751 0.4589

Q.wks3_7[, 1:23]17 -0.002309 0.015862 -0.146 0.8853

Q.wks3_7[, 1:23]18 0.009121 0.013005 0.701 0.4891

Q.wks3_7[, 1:23]19 -0.034209 0.025076 -1.364 0.1838

Q.wks3_7[, 1:23]20 0.021662 0.025480 0.850 0.4027

Q.wks3_7[, 1:23]21 0.002002 0.017465 0.115 0.9096

Q.wks3_7[, 1:23]22 0.010513 0.018174 0.578 0.5677

Q.wks3_7[, 1:23]23 -0.009123 0.018453 -0.494 0.6250

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1
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Residual standard error: 0.02322 on 27 degrees of freedom

Multiple R-squared: 0.9999,Adjusted R-squared: 0.9998

F-statistic: 1.264e+04 on 23 and 27 DF, p-value: < 2.2e-16

Response Y22 :

Call:

lm(formula = Y22 ~ 0 + Q.wks3_7[, 1:23])

Residuals:

Min 1Q Median 3Q Max

-5.283e-01 -1.323e-01 1.264e-13 1.344e-01 5.235e-01

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Q.wks3_7[, 1:23]1 15.5326 17.9247 0.867 0.39383

Q.wks3_7[, 1:23]2 20.2086 19.1708 1.054 0.30116

Q.wks3_7[, 1:23]3 17.6566 19.0125 0.929 0.36128

Q.wks3_7[, 1:23]4 3.7921 1.0975 3.455 0.00183 **

Q.wks3_7[, 1:23]5 -0.5216 2.1415 -0.244 0.80940

Q.wks3_7[, 1:23]6 -41.8799 8.1966 -5.109 2.27e-05 ***

Q.wks3_7[, 1:23]7 53.1504 6.6806 7.956 1.50e-08 ***

Q.wks3_7[, 1:23]8 -26.3224 2.6590 -9.899 1.76e-10 ***

Q.wks3_7[, 1:23]9 11.3010 1.7952 6.295 9.76e-07 ***

Q.wks3_7[, 1:23]10 -0.7741 0.1115 -6.940 1.85e-07 ***

Q.wks3_7[, 1:23]11 0.5822 0.2209 2.636 0.01374 *

Q.wks3_7[, 1:23]12 0.9473 0.6239 1.518 0.14054

Q.wks3_7[, 1:23]13 -0.5179 0.2614 -1.981 0.05786 .

Q.wks3_7[, 1:23]14 -0.3132 0.1566 -2.001 0.05558 .

Q.wks3_7[, 1:23]15 1.8670 0.5777 3.232 0.00323 **

Q.wks3_7[, 1:23]16 -0.9571 0.6612 -1.448 0.15924

Q.wks3_7[, 1:23]17 -0.3228 0.2096 -1.540 0.13516

Q.wks3_7[, 1:23]18 0.2438 0.1719 1.418 0.16754

Q.wks3_7[, 1:23]19 -2.3784 0.3314 -7.177 1.02e-07 ***

Q.wks3_7[, 1:23]20 0.3786 0.3367 1.124 0.27078

Q.wks3_7[, 1:23]21 1.3051 0.2308 5.654 5.28e-06 ***

Q.wks3_7[, 1:23]22 1.6214 0.2402 6.751 3.00e-07 ***

Q.wks3_7[, 1:23]23 -1.6855 0.2439 -6.912 1.99e-07 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.3069 on 27 degrees of freedom

Multiple R-squared: 0.9995,Adjusted R-squared: 0.9991
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F-statistic: 2409 on 23 and 27 DF, p-value: < 2.2e-16

Response Y23 :

Call:

lm(formula = Y23 ~ 0 + Q.wks3_7[, 1:23])

Residuals:

Min 1Q Median 3Q Max

-8.603e-01 -7.831e-02 -2.235e-13 7.682e-02 8.603e-01

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Q.wks3_7[, 1:23]1 125.3643 22.4820 5.576 6.51e-06 ***

Q.wks3_7[, 1:23]2 136.7157 24.0449 5.686 4.86e-06 ***

Q.wks3_7[, 1:23]3 137.5655 23.8464 5.769 3.90e-06 ***

Q.wks3_7[, 1:23]4 9.2512 1.3765 6.721 3.24e-07 ***

Q.wks3_7[, 1:23]5 2.5891 2.6860 0.964 0.34363

Q.wks3_7[, 1:23]6 -76.5064 10.2805 -7.442 5.26e-08 ***

Q.wks3_7[, 1:23]7 61.6692 8.3791 7.360 6.45e-08 ***

Q.wks3_7[, 1:23]8 -15.8569 3.3351 -4.755 5.89e-05 ***

Q.wks3_7[, 1:23]9 6.9450 2.2517 3.084 0.00467 **

Q.wks3_7[, 1:23]10 -1.1024 0.1399 -7.880 1.80e-08 ***

Q.wks3_7[, 1:23]11 -2.3648 0.2770 -8.536 3.77e-09 ***

Q.wks3_7[, 1:23]12 7.1561 0.7825 9.145 9.32e-10 ***

Q.wks3_7[, 1:23]13 -3.0668 0.3279 -9.353 5.85e-10 ***

Q.wks3_7[, 1:23]14 -0.9084 0.1964 -4.626 8.31e-05 ***

Q.wks3_7[, 1:23]15 5.9409 0.7246 8.199 8.36e-09 ***

Q.wks3_7[, 1:23]16 -6.6286 0.8293 -7.993 1.37e-08 ***

Q.wks3_7[, 1:23]17 0.6612 0.2629 2.515 0.01817 *

Q.wks3_7[, 1:23]18 1.0648 0.2156 4.940 3.58e-05 ***

Q.wks3_7[, 1:23]19 -3.3559 0.4156 -8.074 1.13e-08 ***

Q.wks3_7[, 1:23]20 2.7359 0.4223 6.478 6.06e-07 ***

Q.wks3_7[, 1:23]21 0.2140 0.2895 0.739 0.46624

Q.wks3_7[, 1:23]22 0.3692 0.3012 1.226 0.23091

Q.wks3_7[, 1:23]23 -0.4492 0.3059 -1.469 0.15346

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.3849 on 27 degrees of freedom

Multiple R-squared: 0.9958,Adjusted R-squared: 0.9923

F-statistic: 279.9 on 23 and 27 DF, p-value: < 2.2e-16
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Response Y24 :

Call:

lm(formula = Y24 ~ 0 + Q.wks3_7[, 1:23])

Residuals:

Min 1Q Median 3Q Max

-0.942533 -0.037939 0.004024 0.088803 0.908841

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Q.wks3_7[, 1:23]1 10.29033 27.66191 0.372 0.712794

Q.wks3_7[, 1:23]2 15.39203 29.58486 0.520 0.607118

Q.wks3_7[, 1:23]3 11.30940 29.34064 0.385 0.702923

Q.wks3_7[, 1:23]4 3.58336 1.69365 2.116 0.043732 *

Q.wks3_7[, 1:23]5 1.14944 3.30482 0.348 0.730682

Q.wks3_7[, 1:23]6 -50.17912 12.64915 -3.967 0.000483 ***

Q.wks3_7[, 1:23]7 63.93174 10.30967 6.201 1.25e-06 ***

Q.wks3_7[, 1:23]8 -33.27613 4.10346 -8.109 1.04e-08 ***

Q.wks3_7[, 1:23]9 15.11591 2.77046 5.456 8.97e-06 ***

Q.wks3_7[, 1:23]10 -0.91796 0.17213 -5.333 1.25e-05 ***

Q.wks3_7[, 1:23]11 0.75741 0.34086 2.222 0.034850 *

Q.wks3_7[, 1:23]12 1.10791 0.96280 1.151 0.259936

Q.wks3_7[, 1:23]13 -0.75406 0.40345 -1.869 0.072505 .

Q.wks3_7[, 1:23]14 -0.24413 0.24161 -1.010 0.321242

Q.wks3_7[, 1:23]15 2.18248 0.89154 2.448 0.021149 *

Q.wks3_7[, 1:23]16 -1.23543 1.02032 -1.211 0.236455

Q.wks3_7[, 1:23]17 -0.12767 0.32348 -0.395 0.696177

Q.wks3_7[, 1:23]18 0.06699 0.26522 0.253 0.802504

Q.wks3_7[, 1:23]19 -2.77582 0.51138 -5.428 9.66e-06 ***

Q.wks3_7[, 1:23]20 0.09042 0.51962 0.174 0.863157

Q.wks3_7[, 1:23]21 1.87796 0.35618 5.273 1.47e-05 ***

Q.wks3_7[, 1:23]22 2.26524 0.37062 6.112 1.58e-06 ***

Q.wks3_7[, 1:23]23 -2.32495 0.37632 -6.178 1.33e-06 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.4735 on 27 degrees of freedom

Multiple R-squared: 0.9987,Adjusted R-squared: 0.9977

F-statistic: 931.9 on 23 and 27 DF, p-value: < 2.2e-16

Response Y25 :

Call:
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lm(formula = Y25 ~ 0 + Q.wks3_7[, 1:23])

Residuals:

Min 1Q Median 3Q Max

-8.728e-02 -1.503e-02 -2.673e-15 1.889e-02 6.528e-02

Coefficients:

Estimate Std. Error t value Pr(>|t|)

Q.wks3_7[, 1:23]1 3.396684 2.519204 1.348 0.189

Q.wks3_7[, 1:23]2 3.497972 2.694329 1.298 0.205

Q.wks3_7[, 1:23]3 3.288651 2.672088 1.231 0.229

Q.wks3_7[, 1:23]4 0.118955 0.154242 0.771 0.447

Q.wks3_7[, 1:23]5 0.097042 0.300974 0.322 0.750

Q.wks3_7[, 1:23]6 -1.132783 1.151974 -0.983 0.334

Q.wks3_7[, 1:23]7 1.082533 0.938915 1.153 0.259

Q.wks3_7[, 1:23]8 -0.463950 0.373707 -1.241 0.225

Q.wks3_7[, 1:23]9 0.237339 0.252310 0.941 0.355

Q.wks3_7[, 1:23]10 -0.021782 0.015676 -1.389 0.176

Q.wks3_7[, 1:23]11 -0.015922 0.031043 -0.513 0.612

Q.wks3_7[, 1:23]12 0.087089 0.087683 0.993 0.329

Q.wks3_7[, 1:23]13 -0.053753 0.036743 -1.463 0.155

Q.wks3_7[, 1:23]14 0.002111 0.022003 0.096 0.924

Q.wks3_7[, 1:23]15 0.076300 0.081193 0.940 0.356

Q.wks3_7[, 1:23]16 -0.063909 0.092922 -0.688 0.497

Q.wks3_7[, 1:23]17 -0.005837 0.029459 -0.198 0.844

Q.wks3_7[, 1:23]18 0.010878 0.024154 0.450 0.656

Q.wks3_7[, 1:23]19 -0.074711 0.046572 -1.604 0.120

Q.wks3_7[, 1:23]20 0.057675 0.047322 1.219 0.233

Q.wks3_7[, 1:23]21 0.004216 0.032438 0.130 0.898

Q.wks3_7[, 1:23]22 0.024543 0.033753 0.727 0.473

Q.wks3_7[, 1:23]23 -0.026036 0.034272 -0.760 0.454

Residual standard error: 0.04313 on 27 degrees of freedom

Multiple R-squared: 0.9998,Adjusted R-squared: 0.9997

F-statistic: 7705 on 23 and 27 DF, p-value: < 2.2e-16

Response Y26 :

Call:

lm(formula = Y26 ~ 0 + Q.wks3_7[, 1:23])

Residuals:

Min 1Q Median 3Q Max

-4.318e-01 -5.707e-02 6.383e-14 5.342e-02 4.318e-01
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Coefficients:

Estimate Std. Error t value Pr(>|t|)

Q.wks3_7[, 1:23]1 15.63872 11.50050 1.360 0.185132

Q.wks3_7[, 1:23]2 14.12681 12.29997 1.149 0.260826

Q.wks3_7[, 1:23]3 16.84279 12.19844 1.381 0.178685

Q.wks3_7[, 1:23]4 0.33687 0.70414 0.478 0.636209

Q.wks3_7[, 1:23]5 2.23375 1.37399 1.626 0.115622

Q.wks3_7[, 1:23]6 -18.22929 5.25892 -3.466 0.001781 **

Q.wks3_7[, 1:23]7 18.61194 4.28627 4.342 0.000178 ***

Q.wks3_7[, 1:23]8 -7.75734 1.70602 -4.547 0.000103 ***

Q.wks3_7[, 1:23]9 4.40869 1.15183 3.828 0.000697 ***

Q.wks3_7[, 1:23]10 -0.17111 0.07157 -2.391 0.024037 *

Q.wks3_7[, 1:23]11 0.26717 0.14171 1.885 0.070192 .

Q.wks3_7[, 1:23]12 0.34069 0.40029 0.851 0.402192

Q.wks3_7[, 1:23]13 -0.50451 0.16774 -3.008 0.005637 **

Q.wks3_7[, 1:23]14 0.06538 0.10045 0.651 0.520620

Q.wks3_7[, 1:23]15 0.56697 0.37066 1.530 0.137743

Q.wks3_7[, 1:23]16 -0.47543 0.42420 -1.121 0.272257

Q.wks3_7[, 1:23]17 0.08524 0.13449 0.634 0.531543

Q.wks3_7[, 1:23]18 -0.11164 0.11027 -1.012 0.320325

Q.wks3_7[, 1:23]19 -0.70360 0.21261 -3.309 0.002657 **

Q.wks3_7[, 1:23]20 0.10433 0.21603 0.483 0.633036

Q.wks3_7[, 1:23]21 0.56956 0.14808 3.846 0.000664 ***

Q.wks3_7[, 1:23]22 0.66898 0.15409 4.342 0.000178 ***

Q.wks3_7[, 1:23]23 -0.69917 0.15646 -4.469 0.000127 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 0.1969 on 27 degrees of freedom

Multiple R-squared: 0.9998,Adjusted R-squared: 0.9996

F-statistic: 5384 on 23 and 27 DF, p-value: < 2.2e-16
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