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Abstract. In the noiseless context, it has long been known that the average encoded
word length of an instantaneous or uniquely decipherable code can be made to lie
between the source entropy and that value plus unity. We address the question of
finding sufficient conditions on the code-word probabilities for it to be possible to
make the average code-word length approximate the entropy by a smaller prescribed
amount.

INTRODUCTION

The nomenclature noisy coding and noiseless coding tends to obscure relations
between the two, both of which in fact exhibit order-disorder phenomena. The
central role of entropy in both is testimony to this. An analogy may be drawn with
molecular behaviour in solid and fluid phases. Disorder in the former manifests itself
in such aspects as crystal-packing problems, which correspond to word packing in
noiseless coding.

Suppose there are n code words, the i-ih having length ^ letters drawn from
an alphabet of r letters, and suppose that_the z-th word occurs with probability
Pi. Then the average code word length is 1 = ]C?=ipA and the r-ary entropy or
uncertainty of the message source is

n
Hr = Hr(pi,...,pn) := ^pilo

i=l

where, as subsequently, logr refers to logarithms taken to base r. The following
theorem is well-known in the literature (see, for example, [1, p. 62]).

Theorem A. In an instantaneous or uniquely decipherable code we have
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Hr < i, (1)

with equality if and only if ^ = logr I/pi for all i = 1,..., n.

Here equality reflects ideal word packing in which the theoretical minimum value,
the entropy of the word source, is achieved with optimal word packing. For efficient
transmission we desire that the difference between the two sides of (1) be as small
as possible.

We adopt the notation Ar(p±,... ,pn) for the minimum average codeword length
over all r-ary instantaneous encoding schemes for the probability distribution
fe)?=i- The noiseless coding theorem (see for example [1, Theorem 2.3.2, p. 64])
states the following.

Theorem B. For any probability distribution (Pi)^ we have

Hr(pl, . . . ,Pn) < A-(Pi, ». ,Pn) < #r (Pi, » . ,Pn) + 1- (2)

With the use of coding in blocks of k words, this relation can be improved to

(3)

where Ay* refers to the average length per word when the coding is effected in
blocks of k.

These are generic results that take no account of any special structure that may
exist in a coding situation. By analogy with crystal packing, we would expect that
special structure could be used to improve the result. This leads to the following.

Question 1. Under what conditions can the additive constant unity in (2) be
replaced by a given e £ (0,1) without the use of block coding?

A natural parameter in the examination of such questions is Kraft's number,
which is defined by

Thus by a result due to Kraft and McMillan (see [2, Chapter 2]) the condition
Kr < I (known as Kraft's inequality) is necessary and sufficient for the existence
for the existence of an instantaneous code with code words of lengths ̂  (1 < i < n).

Some preliminary ideas have been developed in [3], where the authors have de-
rived the following improvement of (1).

Theorem C. For an instantaneous code,

0 < —— (1 — Kr) < 1 — Hr < —— irPi (pirli — l] (4)
~~ In r ~~ r ~~ In r ~rf * ^ * '

Equality holds if and only if li = logr(l/pi).
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In this paper we extend this work. In particular, we address the question of
finding sufficient conditions on the distribution (pi)^ for the difference between
the two sides of (1) to be no more than e for a given 6 G (0,1).

In the following section we present a basic mathematical tool useful for deriving
such results as Theorem C. This we then use in the subsequent section for addressing
Question 1.

BASIC INEQUALITY

Proposition 1. Suppose r is an integer exceeding unity and p^, ^ are strictly
positive real numbers (i — 1, ...,n). Then we have the double inequality

Both inequalities reduce to equality if and only if Pi — ̂  for each i.

Proof. The mapping f(x] = logr x is concave on (0, oo) and satisfies

f ' ( y ) ( x - y ) > f ( x ) - f ( y ) > f ' ( x ) ( x - y )

for all positive x, y. Since / (x) = l/(xlnr), we have
1 z - y \ i i \ * x~y>logrx-logry> —— ——

Inr y

for all x, y > 0.
The choices x — l/qi and ?/ = I/pi provide

I Pi-to ^i 1 i I 1
> logr - - logr - >In r qi r qi r pi In r pi

for alH G {1, ..., n}.
Multiplication by pi and summing over i yields the desired inequalities. The

statement on equality follows from the strict concavity of the mapping logr(-). n

In particular, if (pi)"_l3 (^)^Li are probability distributions, then we have

o < io
with equality if and only if pi = qi (1 < i < n).

This is a refinement of the fundamental lemma of information theory.
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BOUNDS

McMillan has shown that for there to exist an instantantaneous or uniquely
decipherable r-ary code with code words of lengths ^, Kraft's inequality Kr < I
must be satisfied (see [1, pp. 47-49]). This is, of course, implicit in the first
inequality in (4). The following result therefore gives nontrivial upper and lower
bounds for the difference between the two sides of (1).

Theorem 1. For an instantaneous code,

(5)r r r Inr

with equality if and only if

Pi = r-^/Kr (6)

for i G {!,..., n}.

Proof. The choice q± := r~^ / Kr in Proposition 1 yields

i / n0= -H i - A:-1 y
Inr V i^{
n

^ ~ ^2 Pi logr 1 1 Pi

which is equivalent to (5). The statement about equality follows directly from that
in Proposition 1. n

The following result holds also.

Theorem 2. Suppose (pi)f=i is a probability distribution and (ci)f=l a set of code
words, Ci occurring with probability pi. Let r > 2 be a positive integer. If e > 0 is
fixed and there exist positive integers £1, . . . ,£n such that

lo&.(l/Pi) <ti< logr(r£M) (7)

for all i G {1, ...,n}; then there exists an instantaneous r-ary code in which Q has
length li and

Hr<1<Hr + e. (8)
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Proof. We rewrite (7) as
I/Pi < /* < re/Pl

(1 < i < n). Since r~i{ < Pi, we deduce that

By Kraft's Theorem [1, Theorem 2.1.2, p. 44] there exists an instantaneous r-ary
code in which Q has length ^.

The first inequality in (8) holds by Theorem A. By choosing ^ = r~il £ (0, 1)
we have

and ]Cr=i Qi < 1- Further by Proposition 1
n

0< ̂
i=l

= Eft A - l o g , -

since, by (7), we have that 0 < ^ — logr(l/pj) < logr re — c. n

We may now give a partial answer to Question 1.

Theorem 3. Let r > 2 be a positive integer and e G (0,1). // the probability
distribution (pi)f=l satisfies the condition that every closed interval

I, := [logr(l/Pi),logr(^/P*)] » i ^ {1,-,™}

contains an integer, then

Hr(pi, ...,pn) < AT(p^ ...,pn) < H^p^ ...,pn) + e. (9)

Proof. Suppose that l{ G /^ (^ = 1, ...,n) are these integers. Then

and by Kraft's theorem there exists an instantaneous code in which Ci has length
li. For that code we have condition (7) and by Theorem 2, (8) holds. Taking the
infinum over all r-ary instantaneous codes yields (9). n
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The following reformulation of Theorem 2 can be useful in practice.

Practical Criterion: Let (ai)f=l be positive integers and fe)™=1 such that

for all i = l , . . . ,n and Y^i=iPi — 1- Then there exists an instantaneous code in
which GI has length a^ such that (8) and (9) hold.

CONCLUSION & OPEN QUESTIONS

We have found conditions under which the constant unity in (2) can be replaced
by a given e G (0, 1) and recast these in terms of a practical criterion. In prac-
tice block coding is usually employed. So a natural follow-up to our work is the
following.

Question 2. Do our results have manageable extensions in block coding in which
the final term in (3) can be replaced by e/k for given c G (0, 1)?

Kraft's inequality, or rather its extension to (infinite) recursively enumerable
sets, the Kraft-Chaitin inequality ( [4], [5], see also [6]) has important ongoing
ramifications in connection with the theory of program size, which Chaitin has
shown to have a structure identical to information theory. Accordingly we may
also foreshadow a rather more general question.

Question 3. What implications do our discussion in the previous section have for
the Kraft-Chaitin inequality and the theory of program size?
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