PUBLISHED VERSION

Allison, Andrew Gordon; Abbott, Derek.
Stochastically switched control systems, Proceedings of Unsolved Problems of Noise and Fluctuations UPON'99
Second International Conference, 2000 / D. Abbott and L. B. Kish (eds.): pp.249-254.

© 2000 American Institute of Physics. This article may be downloaded for personal use only. Any other use
requires prior permission of the author and the American Institute of Physics.

The following article appeared in AIP Conf. Proc. -- March 29, 2000 -- Volume 511, pp. 249-254 and may be
found at http://link.aip.org/link/?APCPCS/511/249/1

PERMISSIONS

http://www.aip.org/pubservs/web posting guidelines.html

The American Institute of Physics (AIP) grants to the author(s) of papers submitted to or
published in one of the AIP journals or AIP Conference Proceedings the right to post and
update the article on the Internet with the following specifications.

On the authors' and employers' webpages:

e There are no format restrictions; files prepared and/or formatted by AIP or its vendors
(e.g., the PDF, PostScript, or HTML article files published in the online journals and
proceedings) may be used for this purpose. If a fee is charged for any use, AlIP
permission must be obtained.

e An appropriate copyright notice must be included along with the full citation for the
published paper and a Web link to AIP's official online version of the abstract.

31% March 2011

http://hdl.handle.net/2440/60127



http://link.aip.org/link/?APCPCS/511/249/1
http://hdl.handle.net/2440/60127
http://www.aip.org/pubservs/web_posting_guidelines.html
a1065908
Typewritten Text

a1065908
Typewritten Text

a1065908
Typewritten Text

a1065908
Typewritten Text

a1065908
Typewritten Text

a1065908
Typewritten Text

a1065908
Typewritten Text

a1065908
Typewritten Text


HThL ABSTEACT

Stochastically Switched Control Systems

Andrew Allison and Derek Abbott

Department of Electrical and Electronic Engineering
University of Adelaide, South Australia, 5005.

Abstract. Stability is a global property of a system. It is concerned with the behaviour
of whole systems over indefinitely long periods of time, for all admissible inputs and
uncertainties. Stability and instability are ultimately topological properties. They
depend on the topology of the space defined by the equations that govern the system. It
follows that that instability is not linear. It is possible to construct a linear combination
of two unstable systems which will be stable. The operation of linear combination can
be performed using time averaging. The switching can be periodic or stochastic. In the
stochastic case, the variance plays an important role. It is possible to drive a system
into instability by making the variance sufficiently large. The behaviour near the limit
of stability is quite complex, even for very simple “toy” systems.

The stochastically switched system is not the same as a stationary linear filter,
although we show that the power spectral densities of the two systems can appear to
be very similar.

We show that variation in the strength of a feedback loop is a new mechanism
introducing noise into a system.

DESIGN OF A SIMPLE SWITCHED SYSTEM WITH A
NON-CONVEX UNSTABLE REGION

The central task of control theory [1,2] is to direct and regulate the behaviour
of a system! in order to make it conform to a specified set of standards.

Our immediate aim is to design a simple “toy” system in the s domain ? which
has two unstable modes of operation that can be combined, using switching, to
create a single stable mode of operation.

If a linear plant is placed inside a feedback control loop then a new system with
new properties is created. A simple system topology is shown in Figure 1.

We can write the equations for this new system as:

F(s) ' =G(s) ' + K (1)

1) In control theory the system is often called the “plant”.

2) The variable, s, is a generalised complex frequency. It is used in the Laplace transform.
Multiplication by s in this domain corresponds to differentiation in the time domain [3] as long
as we have zero initial conditions.
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FIGURE 1. General plan of a simple system with one feedback loop

G(s) is called the open loop transfer function and F'(s) is called the closed loop
transfer function. The loop gain, K, is a free ® parameter and is usually a positive
real number.

It is customary to analyse the stability of closed loop systems in terms of the
poles * of the closed loop transfer function, F(s). These poles will generally move
about in the complex plane in response to changes in the loop gain, K. A graph
of the positions of the poles, as a function of gain, is called a “root locus” plot.
An example is shown in Figure 2. Some choices of gain may cause one, or more,
of the poles to move into the unstable region, which would mean that the closed
loop system would then be unstable. In general, there will be stable and unstable
values for the gain, K.

We make a rather arbitrary choice for G(s). It is an unstable system with three
real poles.

1
(s —1)(s+2)(s+4) 2)

The open loop system is unstable because one of the poles lies in the unstable
region ®. A root locus plot for this system is shown in Figure 2.

The general behaviour of the closed loop system changes as we vary K. We can
apply classical control theory and we can determine a number of critical values for,
K. If we examine the locations of the poles of F(s), as we vary K, then we find
that the stable region for K is the union of two open intervals, (—oo, 8) U (18, c0).
It is not a convex set, so we could choose one value of gain from each sub-interval
and form a time average, using switching, and the resulting expected value of gain,
(K) would be in the stable region. We could switch rapidly between two unstable
control systems and the result would be a stable control system!

G(s) =

3) The designer is free to choose a value.

4 The poles of F(s) are the zeros of F(s)~!.

5) The unstable region is the right is the hand side of the s plane. Any pole in this region will
cause an exponentially increasing term to occur in the time domain response of the system.
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FIGURE 2. Root locus for an unstable three pole system

PERIODICALLY SWITCHED SYSTEM

The most simple switching regime is periodic. The expected value of the gain,
(K), is controlled by altering the duty cycle of the switching waveform °.

Periodic switching is frequently used in electronic systems. Switched mode power
supplies use switching to control an output voltage without dissipating excessive
power [2]. Some microelectronic integrated circuits use switched capacitors in order
to avoid the difficult fabrication of large integrated resistors, [4] and to allow the
properties of circuits to be altered through program changes rather than hardware
changes. In this sense, switched mode control is only an incremental change to
classical control.

STOCHASTICALLY SWITCHED SYSTEM WITH
“SMALL” VARIANCE

One problem with traditional periodic switched mode systems is that they tend
to generate uniform harmonics which are very undesirable from the point of view of
electromagnetic compatibility. There has been some investigation of random pulse
width modulation and random switching techniques for inverters and drive systems
[6]. A natural extension of this idea is to use a random binary variable to perform
the switching. We could still control the expected value of K by controlling the
probability of switching “high,” p. If the high value of the gain is K, and the low
value is K; then the expected value and variance are given by:

(K)=p=p-Kp+(1-p) K (3)

ol=p-(1—p)- (Kp~K;)? (4)

8) The period of the switching waveform must be much smaller than the smallest time constant
of the system or time “averaging” will no longer occur. The system could become unstable again.
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We could, for example, choose K; = 1 and K}, = 21. The exclusive use of either of
these values of gain would result in an unstable system but if we switched randomly
between these possibilities then the result would be stable. This can be verified
using simulation. Some results are shown in Figure 3.

(2) Simulation for gain = 1

H H i H : H H
5 20 25 30 35 40 45 50
10% {b) Simmirtjarotongain =21

10 15 20 25 30 35 40 45 50
(©) Simulation for rathtiedpcuitted gain, mean = 11

o 5 10 5 20 25 30 a5 40 a8 50
time, seconds

FIGURE 3. Outputs from periodically switched systems.

This result could be generalised still further by allowing K to be a continuous
random variable with a specific distribution. If the variance is small then the
deviation from the classical result is also small. The response is still very similar
to the classical result, but it now looks as though it has some narrow band noise ’
imposed on top of it.

STOCHASTICALLY SWITCHED SYSTEM WITH
“LARGE” VARIANCE

If a signal with increased variance is fed into a linear system then the result, at
the output, will be a signal with larger variance. The system will not suddenly
become unstable.

If the feedback variable, K, is chosen as a random variable and we make the
variance large enough then we can drive the system into instability using only
variance ®. This can be shown by simulation. The output from the system appears
to be made up of “bursts” of oscillation. The size of the “bursts” increases without
limit if we allow the simulation to run for long enough,

If we choose a value of the variance which is near the limit of stability then we
get an output dynamic which is very complex.

) Note that there is no noise signal being fed into the system at the input. The only “noise”

in the system is due to the randomised switching policy. The actual input is a Kronecker delta
function, §(¢) which is introduced in order to prevent the system from settling into the, degenerate,
zero solution.

8) We make no change to the mean value of K.
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Simulation in the discrete time domain Powar Spectral Density
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FIGURE 4. Response of a stocahstically switched system near the stability limit

It is difficult to reconcile this type of output with the narrow band noise that we
would expect from a linear system with stochastic input. In particular, the oscil-
lation seem to “die” completely, only to return again in “bursts” at later times. It
would appear that the randomly variable gain is a non-linear element that funda-
mentally alters the behaviour of the system.

The power spectral density of the response was calculated using the Fast Fourier
Transform, FFT. This was compared with the response which was calculated from
the closed loop transfer function F'(s). The results are similar.

The stochastically switched system is different to the stationary filter with a
white noise input, but it may be possible to use similar techniques to identify the
open loop transfer function of an unknown system.

If we choose the loop gain to have the same average value as the simulation
in Figure 4 and we keep this value fixed during the simulation then we have a
stationary filter. We can examine the response of this stationary filter to white
noise. It is shown in Figure 5.

Simulation in the discrete time domain Power Spectral
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FIGURE 5. Response of a stationary filter to white noise
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The power spectral density is also very similar to the theoretical transfer function
of the closed loop system. The similarity of the power spectra suggests that it
could be possible to use the theory of the Autoregressive Moving Average, ARMA,
to identify the transfer function of the closed loop system.

The time domain responses in Figures 4 and 5 are qualitatively very different.
This is further evidence that the two systems are different.

CONCLUSIONS AND OPEN QUESTIONS

The following questions require further investigation:

e [s it possible to derive exact criteria for the limits of stability as the mean
and variance of the loop gain are varied? The system was simulated using
a state-space formulation. Sufficient conditions for the stability of switched
state-space controller systems have been stated in the literature [6].

e Can the theory of stochastic signal processing be applied to stochastically
switched control? Given the similarity in the power spectral densities, it is
quite possible that we use autoregressive, AR, models ? to identify the closed
loop system [2].

o Is this type of model useful for modelling systems in the real world systems,
such as climate or the business cycle?

e Can we learn anything about other mathematical systems, such as Brown-
ian ratchets through studying systems which have variable structure and a
randomised policy °?
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