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Chapter 1

Introduction and
Motivation

T
ERAHERTZpattern recognition is a signal processing procedure

for extracting information from THz spectroscopic data. This is

an area of study that is intimately tied to the measurement of ter-

ahertz data sets.

A challenge for THz pattern recognition systems is to explore the avail-

able methods for the identification of specific materials based on the THz

responses. Most molecules show very complicated THz absorption spec-

tra with a multitude of absorption lines. Those absorption lines are subject

to thermal broadening at room temperature and are produced by classi-

cal electromagnetic interactions (Born and Wolf 2002). Some of the tradi-

tional spectral analysis methods, e.g. infrared spectroscopy, have greater

Rayleigh scattering and are unable to access lower frequency vibrational

modes, which motivates the current THz work.

The Thesis describes several novel pattern recognition algorithms, which

are applied to measured THz data. An algebraic reconstruction algorithm

based on wavelet transforms of a local image is also presented. Meanwhile,

since THz sources and detectors have developed to a point where high

signal-to-noise ratio and reasonable acquisition rates are possible, the com-

bination of two dimensional and three dimensional imaging with spectro-

scopic information capture is an important elaboration of the current THz

imaging system.
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1.1 Introduction

1.1 Introduction

This chapter introduces the field of THz (T-ray) spectroscopy and discusses the moti-

vation for this work towards THz imaging and identification systems. It provides a

road map for the Thesis and a concise summary of the novel contributions represented

by this work.

1.2 Background

1.2.1 Terahertz radiation

The terahertz (THz) part of the electromagnetic spectrum lying between the millimetre

wave and infrared (100 GHz-10 THz) is of significant importance to the biological sci-

ences, because complementary information to traditional spectroscopic measurements

on low-frequency bond vibrations, hydrogen bond stretching and torsions in liquids

and gases may be obtained. The vibrational spectral characteristics of bio-molecules,

which lie in this range (wavenumbers between 3.3-333 cm−1) make T-rays a promising

sensing modality for clinical diagnosis. Since THz photons, (or T-rays), have signif-

icantly lower energies (e.g., only 0.04 MeV at 100 GHz) than X-rays, they have been

considered by many as non-invasive. Although non-linear interactions between bio-

logical tissue and coherent THz radiation have been predicted by Fröhlich (1980) and

experimentally verified by the careful work of Grundler and the analysis of Kaiser

(Grundler and Kaiser 1992) in the ’90s, the widely held view at the moment is that any

measurement technique that operates at THz frequencies should be considered as non-

invasive. Such a conclusion is based on the assumption that in the absorption processes

involved when THz pulses interact with biological tissue, the Gibbs free energy con-

veyed in the THz light beam is insufficient to drive chemical reactions. For example,

the molar energy at a frequency f of 100 GHz would be given from E = Nh f where

N = 6.023 × 1023 mol−1, (Avogadro’s number), and h = 6.626 × 10−34 Js (Planck’s

constant), the calculated value of only E = 0.04 kJ mol−1 is so low (approximately 100

times lower than the amount of molar energy required for ATP hydrolysis) that for

most practical purposes we may assume that the interference with biochemical pro-

cesses would be minimal. Fig. 1.1 illustrates the different parameters used to describe

where the T-ray frequencies, from 100 GHz to 10 THz, lie on the electromagnetic spec-

trum.
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Chapter 1 Introduction and Motivation

Figure 1.1. Electromagnetic spectrum. Illustration of Electromagnetic spectrum (Figure courtesy

of Sillas Hadjiloucas, Department of Cybernetics, The University of Reading, Reading,

UK).

Another advantage of performing imaging based on the optical properties of biological

tissue with THz radiation is lower scattering than infrared light. Organ differentiation

on the basis of tissue water content using microwave transmission or reflection mea-

surements is impractical because the diffraction limited minimum spot size for a free-

space beam is too large to avoid beam spill-over around most tissues and organs. From

a technological point of view, THz imaging needs to compete with positron emission

tomography (PET) imaging that has picomolar sensitivity but poor spatial resolution

and magnetic resonance imaging (MRI) that offers millimolar sensitivity with high spa-

tial resolution. Indeed, a diffraction limited imaging system operating at 1 THz would

have a spatial resolution of 300 µm, which should be considered sufficient for many

biomedical applications. Meanwhile, since 70% of the human body is composed of

water, a large part of the energy in the excitation pulse is attenuated, and the resultant

patterns of many biomedical samples can be identified via applying advanced signal

processing techniques.

Page 3

a1172507
Text Box
                                           NOTE:      This figure is included on page 3 of the print copy of      the thesis held in the University of Adelaide Library.



1.3 Outline of Thesis

1.2.2 THz pulsed imaging and continuous wave imaging

In this Thesis, THz pulsed imaging and continuous wave (CW) THz quantum cascade

laser (QCL) imaging are utilised for THz experiment data measurements. Following

Karpowicz et al. (2005a), the comparison between the two different types of imaging is

listed here to highlight their respective strengths and weaknesses.

First, we highlight the differences in hardware. Regarding the pulsed THz imaging

system, a standard pump-probe set-up using a femtosecond pulse laser is used. A

photoconductive antenna or a non-linear crystal through optical rectification is used as

a terahertz emitter. The THz response is detected via photoconductive antenna device

or electrooptic sampling driven by optical probe pulses. A continuous wave (CW) THz

imaging system may apply purely electronic sources, e.g. the Gunn diode, without

involving a pump-probe setup and a time delay scan. Photomixing techniques may

be used in the emission and detection of terahertz radiation. Quantum cascade lasers

and backward wave oscillators also allow for generation of THz radiation. In order to

recover depth resolution of target measurement, a THz CW imaging system does this

at the cost of decreased signal-to-noise ratio (Karpowicz et al. 2005a). Interferometry

is used to recover phase information; and multiple or tunable sources with sufficient

frequency range allow recovery of frequency-domain information.

Differences in data acquisition between CW and pulsed systems motivate us to de-

velop different algorithms for tomographic reconstruction. Pulsed THz time domain

imaging affords data richer in information but may require more advanced processing

techniques. Depth information can be recovered from pulse timing. The temporal lo-

cation of the reflected peak indicates a change in the optical path length, and the time

delay between these reflected pulses and the main pulse can easily be converted to

depth. For a CW THz imaging system, in the form of a raster, intensity image data are

yielded if only a fixed-frequency source and a single detector are involved.

1.3 Outline of Thesis

Chapter 1 introduces T-ray biosensing and the key contributions presented in this The-

sis, while Chapter 2 reviews the literature on T-ray generation and detection. Chap-

ter 3 reviews terahertz imaging modes, which are the platforms to achieve THz pattern

recognition, which is presented in Chapter 4. These Chapters provide a survey of the
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Chapter 1 Introduction and Motivation

state of most current research in the THz field. These reviews offer new perspectives on

THz issues, and identify areas in need of further research, which form the motivation

of this Thesis.

Chapter 5 develops a pattern recognition framework for the identification of materials

in pulsed THz images. Chapter 6 presents a review of the theory and practical tech-

niques regarding the application of wavelets to signal and image analysis. Wavelet soft

threshold denoising is also demonstrated in this Chapter, which attempts to isolate ma-

terial information present in the THz waveforms from systematic and random noise

data. It is shown that this contributes to improvements in THz pattern recognition

system performance. Chapter 7 describes five feature extraction algorithms for the res-

olution of different THz pattern recognition applications. In particular, ARMA models

for wavelet subband coefficients form one of a few novel contributions in this The-

sis. The final step for pattern recognition introduces the classifier, which is discussed

in Chapter 8. Several popular classification schemes are reviewed in this Chapter. A

number of THz case studies concerning THz pattern recognition with application of

the represented pattern recognition framework and relative algorithms are illustrated

in Chapter 9.

Radon transforms for tomographic reconstruction are introduced in Chapter 10. This

Chapter combines traditional computed tomography (CT) with conventional THz imag-

ing. The reconstruction formulae are expressed in both the time and frequency do-

mains. A novel segmentation technique using 2D wavelet transforms is illustrated

in Chapter 11, where polyethylene samples are used to achieve reconstructed tomo-

graphic images and extracted segments corresponding to different media. Chapter 12

highlights a local tomographic reconstruction of THz measurements using wavelets,

with aims to reduce measurement time in practical application. Chapter 13 further ap-

plies the local reconstruction algorithm on CW THz QCL imaging. The optical proper-

ties of the QCL on a cubic sample with complex contours are explored.

In the case of pulsed THz tomography our rationale for the use of wavelets is that both

THz pulses and wavelets are time localised—this matching results in a small num-

ber wavelet coefficients with high signal power, whereas noise is non-localised and

thus noise power is thinly spread over many wavelet coefficients. However, in the

present chapter where we adopt CW THz tomography, the rationale is mainly that

short wavelet filters have good 2D localisation in the computed DWT, which should
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1.4 Original contributions

limit the spatial extent of reconstruction artifacts. As in the CW case, we are consider-

ing local reconstruction, we aim to demonstrate that the wavelet localization feature is

advantageous for zooming into the finer details for local reconstruction.

Chapter 14 concludes the Thesis with a summary of its outcomes and conclusions, and

recommendations for extending T-ray pattern recognition and computed tomographic

reconstruction in future work.

Appendix A introduces the oblique projection operation. It is important to under-

stand subspace system identification algorithms. Appendix B provides further details

about back projection algorithms. Appendix C details on error analysis with respect to

wavelet based local reconstruction. Appendix D contains the details and specifications

of the components of both the pulsed THz imaging hardware and continuous wavelet

terahertz imaging QCL hardware, utilised in this Thesis. Appendix E lists some of

the key algorithms for the realisation of THz pattern recognition tasks and computed

tomographic reconstruction. These are used for THz data analysis and the code is writ-

ten using Matlab software. These algorithms are also found in the attached CD-ROM,

entitled X. X. Yin PhD Thesis/Matlab Algorithms.

The basic structural interconnections of the main Chapters are shown in Fig. 1.2. This

flow chart shows which Chapters contain original experimental work, and how they

are linked. The Thesis progresses along this chart from top to bottom and left to right.

1.4 Original contributions

This Thesis makes a number of significant contributions to the body of THz science

and technology.

On the material identification front, a classification framework for THz spectroscopy

is proposed. This framework encompasses preprocessing, feature extraction and clas-

sification techniques. The denoising of terahertz signals by modifying wavelet trans-

form coefficients (discrete wavelet transforms and discrete wavelet packet transforms)

is investigated experimentally (Section 6.5 and Section 9.2.4). Three feature extrac-

tion algorithms are developed. The first uses statistical modeling (AR/ARMA) using

wavelet coefficients to extract highly descriptive features, represented in Section 7.4.

The second uses oriented frequency components as classification features, illustrated

in Subsection 9.5.2. The third is to apply system identification for feature extraction,
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Ch.2 Terahertz Sources and Detectors

Ch.3 Terahertz Imaging Modes

Ch.4 Terahertz Imaging Analysis

Ch.5 Pattern and Pattern 

Recognition Using T-rays

Ch.6 Wavelet Transforms

Ch.7 Feature Extraction 

         and Selection

Ch.8 Pattern Classification

Ch.9 THz pattern recognition

         experiments

Ch.10 Computed Tomography and 

Terahertz Computed Tomography

Ch.11 2D Wavelet-based 

Segmentation by Fusion 

in 3D Terahertz Tomography

Ch.12 Wavelet-based Terahertz

Coherent Local Tomography

Ch.13 Local Computed 

Tomography Using a THz 

Quantum Cascade Laser

review

novel

Pattern

recognition

Image

analysis

Figure 1.2. Thesis structural flow chart. This flow chart indicates how the Chapters in the Thesis

fit together. Starting with the literature review, Chapters above the dotted line survey

existing work. The original contributions are found in the Chapters below the dotted

line. They are separated into two parts. One relates to the current pattern identification

system, and the other is associated with the image analysis research represented in this

Thesis. The review Chapters summarise the state-of-the-art and provide the foundation

for the experimental Chapters.

consisting of subspace and wavelet packet algorithms (Section 7.5), which is the re-

sult of research in collaboration with The University of Reading. Three classifiers are

applied for the final evaluation of classification, including Mahalanobis classifier (Sec-

tion 8.1), the Euclidean discrimination matric (Section 8.2), and the support vector ma-

chine (Section 8.3).

Finally, several experimental case studies are conducted to verify the performance of

the classification framework. The identification of cellular differences between normal

human bone cells and human osteosarcoma cells is demonstrated in Section 9.4.1, 2-

class RNA patterns & multiclass terahertz pulses are studied in Section 9.5, and the

identification of lactose and mandelic acid THz spectra, which are overviewed in Sec-

tion 9.3.
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1.4 Original contributions

The goal of THz material identification via a classification framework, is to achieve

a quantitative representation of THz spectroscopy. The goal of THz computed to-

mographic reconstruction is to achieve a description of the complete target of inter-

est (Duda et al. 2001) via applying T-ray imaging measurements of the whole object.

Chapter 11 represents a novel segmentation technique, which is derived based on THz

pulsed (i.e. broadband) computed tomographic reconstruction. According to the fact

that, with the incremental wavelet scale, noise is reduced and the target intensity (en-

ergy) is increased in an image, it turns out that, after extracting the low frequency 2D

subband of fused T-ray CT images, an increased signed energy with an increase in

wavelet scale is used as a cue to extract the target regions.

Terahertz Computed Tomography (THz-CT) is a form of coherent tomography. For

time-domain terahertz measurements, it is impractical to achieve full exposure data

for only local reconstruction of the subregion of interest. In order to overcome the ill-

posed inverse problem from traditional filtered back projection algorithms, we apply a

wavelet-based algorithm to reconstruct THz-CT images with a significant reduction in

the required measurements when the region of interest is small. The algorithm recov-

ers an approximation of the region of interest from terahertz measurements within its

vicinity, and thus improves the feasibility of using terahertz imaging to detect defects

in solid materials and diagnose disease states for clinical practice, etc. This is presented

in Chapter 12.

In collaboration with The University of Cambridge, the local reconstruction of the

region-of-interest (ROI) from a 3D terahertz imaging is obtained via a quantum cas-

cade laser (QCL), illustrated in Chapter 13. It is an important step in the understand-

ing wavelet based techniques and traditional filtered back projection (FBP) to map ter-

ahertz local measurements for resolution. In this experiment, a clown’s head (made

of polystyrene), with a hole inside with complex contours, is used as a sample to ex-

plore the ability of a QCL to image target object with complex contours. The resul-

tant analysis has shown that wavelet-based reconstructions offer robust reconstruction

performance in the local reconstructed shape of the target. Fuzzy c-means (FCM) seg-

mentation (Chuang et al. 2006) is used in post-processing to make measurements on

the target’s internal structure, which provides an iterative measurement to minimize

the classification error allowing each pixel to be the member of all the possible classes

with varying membership.
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Chapter 1 Introduction and Motivation

Perhaps the most significant contribution of this Thesis is to realise wavelet based T-ray

local computed tomography. From the optical design point of view, this technique is

validated via both THz broadband (pulsed) and narrow band (CW) tomographic imag-

ing schemes. The latter is the result in collaboration with The University of Cambridge,

with the use of an advanced THz quantum cascade laser emitting at 2.9 THz. The

THz QCL is a GaAs-AlGaAs bound-to-continuum superlattice design and mounted

on the cold finger of a continuous-flow helium-cooled cryostat. By contrast with THz

pulsed imaging, QCLs afford high power sources of continuous wave (CW) radiation

to achieve deeper penetration of samples. From the mathematical derivation point of

view, the development of reconstruction algorithms is to combine together the separate

wavelet transforms and ramp filters, which forms an improved version of traditional

filtered back projection. This is because the traditional filter back projection algorithm

introduces a discontinuity in the derivative of the Fourier transform at zero frequency.

This means that the traditional Radon transform inversion does not allow a comple-

ment of local reconstruction of a CT image. Our wavelet based algorithm used in this

Thesis realises actual local THz tomographic reconstruction. It turns out to be a rapid

tomographic reconstruction with reduced measurement time. Meanwhile, for local to-

mographic reconstruction using THz pulsed imaging (broadband THz imaging setup),

we consider to adopt different constants based on the different projection angles to re-

duce the loss of necessary information in the ROI. We obtain local tomographic recon-

struction with reduced artificial noise and a clear pattern boundary.

These contributions serve to advance the goal of the development of practical 3D THz

inspection systems. They provide substantial improvements over the existing state-of-

the-art and serve to extend THz applications to new and potentially ground-breaking

realms.

Page 9



Page 10



Chapter 2

Terahertz Sources and
Detectors

T
HIS Chapter describes techniques and systems regarding tera-

hertz sources and detectors, mainly reviewing basic concepts and

principles to help understand THz imaging instruments. The ter-

ahertz technologies outlined in this Chapter provide background knowl-

edge to the experimental work on the identification and reconstruction of

terahertz spectroscopy data later in the Thesis. This Chapter also covers the

imaging modes, which involve both ultrafast pulsed systems and terahertz

quantum cascade lasers. The literature review for terahertz imaging analy-

sis and imaging modes are reviewed in the Chapters 3 and 4, respectively.
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2.1 Introduction

2.1 Introduction

Terahertz science has become increasingly popular in the recent decade due largely to

the advent of time domain spectropy (TDS) with ultrashort-pulse laser sources, which

makes possible for researchers to carry out time-resolved ‘far-infrared’ (FIR) studies

and to explore spectroscopy and imaging applications in the submillimeter wavelength

regime.

Terahertz phenomena follow fundamental scientific interests. The goal of this Chapter

is to review the basic principles of different types of terahertz sources and detectors

that are now possible with terahertz spectroscopy. They are fundamental to the under-

standing and conducting of the terahertz experiments, described later in the Thesis.

This Chapter will be organized as follows. Section 2.1 briefly introduces the history of

terahertz radiation. Section 2.2 describes basic solid-state lasers, which are the prin-

ciple components to achieve pulsed and continuous modes of terahertz spectroscopy.

The topics range from conversion of ultrafast free space laser pulses, to free-electron

lasers, as well as quantum cascade lasers. Section 2.3 introduces hardware devices for

generating terahertz radiation. These terahertz emitters include on electrooptic (EO)

emitters; photoconductive (PC) antennas; planar antennas and magnetic field enhance-

ment devices, along with terahertz photomixing. Section 2.4 discusses different types

terahertz receivers based on different optical sampling methods. Electrooptic versus

photoconductive and synchronous versus asynchronous sampling techniques are in-

vestigated.

2.2 The history of T-rays

The term terahertz gained popularity among spectroscopists during the mid 1970’s,

(Kerecman 1973, Ashley and Palka 1973, Fleming 1974, Siegel 2002). A decade later, as

a result of the efforts of many researchers and scientists, advanced techniques in optical

rectification and photoconduction had been developed (Auston 1983, Smith et al. 1988)

(see Section 2.4). These techniques made it possible to produce THz radiation directly

using multimode lasers, (van Exter et al. 1989, Cantor et al. 1981), such as Ti:sapphire

based lasers and free-electron lasers (Section 2.3.1). In 1989, Martin van Exter intro-

duced a terahertz time domain spectroscopy system (TDS) (van Exter et al. 1989). This
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Chapter 2 Terahertz Sources and Detectors

added momentum to the field of T-ray generation and detection and some simple re-

search began, including the extraction of material parameters from THz-TDS measure-

ments.

Following this, Hu and Nuss in 1995 used a traditional scanned imaging system to

acquire two dimensional (2D) images. This was the beginning of geometric image for-

mation of an object in the T-ray frequency range. Terahertz pulsed imaging (TPI) was

viewed as a novel and promising method, especially applied to medical diagnostics

(Löffler et al. 2001).

Subsequently, much effort was devoted to system improvement (Löffler et al. 2002).

This included progress towards wavelet de-noising of terahertz pulse imaging data

(Ferguson and Abbott 2001b), de-noising techniques for terahertz responses of biologi-

cal samples (Duvillaret et al. 1996, Ferguson and Abbott 2001a), reducing measurement

time (Zhao et al. 2002) and improving spatial (Chen et al. 2000) and depth resolution

(Johnson et al. 2001). Improved systems made possible the development of new sys-

tematic approaches, such as time resolution of TPI in translation and reflection mode

(Mittleman et al. 1997), dark-field TPI (Löffler et al. 2001), THz pulsed near-field im-

age with good spatial resolution (Federici et al. 2002, Schade et al. 2004). In turn, T-

ray computed tomographic (CT) technology was applied (Wu et al. 1996, Jiang and

Zhang 1998a, Ferguson et al. 2002c, Ferguson et al. 2002b). A review of further imaging

modalities can be found in Chapter 3.

In the last five years, the rapid improvement of T-ray detectors and sources resulted

in many technical advantages in THz-TDS and therefore opened up new fields of ap-

plication. In particular, T-ray pulsed technology was used to image opaque objects.

One promising application is the inspection of biomedical tissue. Examples are the

separation of tumour cells from normal tissue (Woodward et al. 2002) ex vivo, and the

study of in vivo normal to pathological samples of human skin (Gladkova et al. 2000),

three dimensional detection of tooth decay (Arnone et al. 2000), together with optical

imaging and classification of a bird head (Löffler et al. 2002). More spectroscopy and

image analysis is reviewed in Chapter 4.

Time-domain TPI has the advantage of providing a broad frequency spectrum, but it

incurs the high cost of an expensive femtosecond laser. Continuous wave (CW) imag-

ing is attractive since it is a tunable, compact, and cost effective system.
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2.2 The history of T-rays

A coherent all-optoelectronic THz measurement system via photomixing techniques

is normally implemented to produce tunable CW THz radiation. It was first demon-

strated in 1998 by Verghese et al. (1998). Following this, Gu et al. (1999) pointed out that

a tunable dual-wavelength external cavity laser diode was a promising laser source for

the generation of tunable CW-THz radiation. Phase sensitive continuous-wave THz

imaging using diode lasers was introduced in 2004, with image capture rates compa-

rable with those from state-of-the-art pulsed THz systems (Gregory et al. 2004). These

diode lasers are cost effective for producing CW THz radiation. Additionally, we also

noted that in literature, Siebert et al. (2002) used two colour Ti:sapphire lasers to gen-

erate CW T-rays with an extension to biomedical applications. However, there exists

an obvious drawback in that two expensive Ti:sapphire laser sources are required. The

CW THz radiation mentioned above is generated by applying a pair of laser sources

and photomixing techniques to achieve a tunable frequency range. For comparison, an

entirely electronic generation and detection scheme is illustrated by Karpowicz et al.

(2005b), and is a relatively compact CW THz imaging system with a few components.

Such a system could easily be made portable, thus opening a much wider range of

possible applications. However, as it lacks depth and phase information, the system

only yields two-dimensional intensity images.

Photomixing techniques (in Section 2.4.3) applied to the generation of CW terahertz

radiation, very severely limit the output power to ∼ 1 µW at frequencies above 1 THz

(Kim et al. 2006), mainly because of intrinsic parasitic impedance of the device and the

impedance mismatch between the device and the radiating antenna (Darmo et al. 2004).

Quantum cascade lasers (QCLs) operating in the terahertz range, however, have re-

mained elusive for a long time until 2004, when the first terahertz QCLs were re-

ported (Köhler et al. 2001). This is because of an insuperable barrier that exists in the

phonon reststrahlen band, which causes difficulty in the further expansion to lower

emission terahertz frequencies. Further, the development of a suitable waveguide is

necessary (Sirtori et al. 1998a). It aims to confine light of the long wavelength within

terahertz range to an epilayer compatible with molecular beam epitaxy technology

and with low absorption losses onto the laser mode (Tredicucci et al. 2005). Recent

novel design concepts have led to continuous-wave operation and high output pow-

ers (Rochat et al. 2002). In the recent years, terahertz quantum cascade lasers have

made rapid progress. They depend on chirped superlattices (Köhler et al. 2002a) and

the surface plasmon concept (Köhler et al. 2002b) employed for a large optical confine-

ment with low propagation losses, to recently, bound-to-continuum transitions and
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Chapter 2 Terahertz Sources and Detectors

extraction of carriers via resonant phonon scattering (Williams et al. 2003). The low-

est emission frequency is now ∼1.39 THz. More recent progress of QCLs in terahertz

range is presented in Subsection 2.5.2. One of considerable advantages of QCLs is the

ability to tune the terahertz source to avoid regions with no water ‘window’. A relevant

experiment has been conducted (Lee et al. 2006) with the atmospheric window selected

at ∼4.9 THz, to achieve real-time imaging of a dried seed pod at a 25 m stand-off (see

the relevant image mode in Section 3.2.3). Another important application of terahertz

QCLs is in biomedical imaging; this is well illustrated by the work of Darmo et al.

(2004) in imaging a rat brain section at 3.4 THz (Section 4.2.2).

Emission of relatively strong continuous-wave terahertz radiation from cuprate super-

conductors is carried out by Ozyuzer et al. (2007). Josephson junctions are stacked

within the layered high-temperature superconductors. It is an important step toward

filling this ‘terahertz gap’ from 0.5 THz to 1.4 THz, which the photomixing techniques

and QC lasers can barely reach.

2.3 Laser sources

2.3.1 Ti:sapphire-based lasers

Ti:sapphire-based lasers were revolutionized in the 1990s, with the invention of self

mode-locking techniques. Currently, it is one of the most important laser sources

for generating terahertz radiation (Reid and Fedosejevs 2005). The Ti:sapphire-based

lasers are frequently applied for the generation of pulsed terahertz radiation used for

experiments conducted in this PhD Thesis.

The principle of Ti:sapphire-based lasers are simply presented as follows. It consists of

a rod of Ti:sapphire (titanium-sapphire), which can be pumped by a continuous wave

(CW) laser source. This light is focused into the Ti:sapphire rod collinearly with the

laser axis through the back of one of the mirrors. Dispersion arises from the variation

of the refractive index of the crystal material across the gain bandwidth of the laser. The

cavity dispersion output from the crystal material is Q-switched and self-mode-locked

with the use of a pair of Kerr lenses (Brabec et al. 1992) as a saturable absorber and a

Pockel’s cell modulator. The schematic diagram regarding the Ti:sapphire pulsed laser

oscillator is illustrated in Fig. 2.1(b). The output from the laser oscillator, in Fig. 2.1(a),

is taken from the end that is opposite the dispersion-compensating prisms. This align-

ment of the prism pair creates a longer path for red wavelengths propagating through

Page 15



2.3 Laser sources

the prism material, as compared with the blue, which yields a negative dispersion ef-

fect. It is illustrated in Fig. 2.1(c). If the prism separation, lp (defined tip to tip), is

sufficiently large, the positive dispersion of the material can be balanced. The prism

apex angle is cut to guarantee that at minimum deviation of the center wavelength,

the incident angle is the Brewster angle. Fig. 2.1(d) shows the optical path of the out-

put cavity dispersion through the prism pairs. The compressed output pulse is finally

achieved from chirped cavity dispersion by the application of prism pairs. The photo-

graph of the Ti:sapphire-based laser is shown in Fig. D.1.

2.3.2 Free-electron lasers

Terahertz free-electron lasers (FELs) feature high intensity, combined with short pulse

length, easy tunability and variable pulse structure. These features are essential for

biological and medical studies (Grosse 2002) and for the exploration of vibrational

and configurational molecular transitions (Kato et al. 2000, Xie et al. 2002) in terahertz

regime.

Unlike femtosecond lasers, i.e. Ti:sapphire-based lasers, where quantum-mechanical

characters are employed, the free-electron laser (FEL) (Krishnagopal et al. 2004), is a

classical laser and converts part of the kinetic energy of the electrons into coherent

electromagnetic radiation.

Fig. 2.2 shows a schematic of a terahertz FEL. Two major components of the device

are: electron accelerator and undulator. Generally, an undulator, such as in a linac or

a synchrotron, is used to produce magnetic fields, which then drive an electron beam

from an accelerator to achieve coherent terahertz pulsed radiation. Different from the

setup of conventional FELs, the terahertz FELs accelerate electrons directly after they

leave the photocathode (Volkov et al. 2000). A table-top device of the full terahertz

FEL system is an additional advantage as its shorter injector-accelerator combination

(Grosse 2002).
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Chapter 2 Terahertz Sources and Detectors

Figure 2.1. Ti:sapphire-based lasers. (a) Diagram of a basic self-mode-locked Ti:sapphire oscil-

lator shows the cavity layout. The output pulse is output from the end of the cavity

dispersion, and then is tuned by a pair of matching extracavity prisms. (b) The schemat-

ics for regenerative amplification in Ti:sapphire oscillator. Ti:sapphire rod, 5 mm or less

in length, is doped to absorb about 90% of the incident pump radiation. Two con-

cave focusing mirrors, a pair of Kerr lenses, allow passive mode locking, where M1 is a

high reflector and M2 is an output coupler. This pair of Kerr lenses form the optical

cavity. When light travels between the two lenses, the energy is accumulated in the

interval of the gain medium, which causes population inverse. The TFP indicates a

thin-film polarizing beam splitter. The Pockel’s cell (PC) is a Q switch and consists of

voltage-controlled wave plates. The voltage rotates the plane of polarization by 90◦,

which results in the light being able to pass the medium. If the laser is Q-switched, a

brief burst of light excites population inversion and produces a stronger pulse. (c) Prism

pairs are used in the control of dispersion; r and b indicate the relative paths of arbitrary

long- and short-wavelength radiation. The incident (Brewster) angle at the prism face

is labelled by ϕ1. The light is reflected in the plane p1 − p2 in order to remove the

spatial dispersion. (a)-(c): After Reid and Fedosejevs (2005). (d) Illustration of the

optical path of the output cavity dispersion through the prism pairs. After Kafka and

Baer (1987).
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Figure 2.2. A schematic of a THz free-electron laser. The schematic shows a short injector-

accelerator combination compared to a stand FEL. After Grosse (2002).

2.3.3 Terahertz quantum cascade laser

Recent advances in nanotechnology have also led to the development of semiconductor-

based THz sources: the terahertz quantum cascade laser (Tonouchi 2007). Terahertz ra-

diation is generated when electrons propagate the serial connection of coupled quan-

tum wells. Quantum wells are formed in semiconductors by having a material, like gal-

lium arsenide sandwiched between two layers of a material with a wider bandgap, like

AlxGa1-xAs. These structures can be grown by molecular beam epitaxy with choice of

the layer thickness, which determine the electron wave functions of the subbands. Un-

like conventional bandgap structure of semiconductor lasers, in QCLs, quantum con-

finement splits the conduction band into a number of distinct subbands (Köhler et al.

2002b, Faist et al. 1994). The energy spacing of the lasing sub-bands determines the

radiation frequency, allowing in principle to produce light at arbitrarily long wave-

lengths.

Since the first QC laser was demonstrated at the much shorter wavelength of 4 µm

(75 THz) at Bell Labs in 1994 (Faist et al. 1994), there have been over five types of ter-

ahertz QCLs since, due to the different mechanisms of electron energy relaxation pro-

cesses (Vitiello et al. 2006). They are, ‘chirped superlattice’ (Williams 2007, Köhler et al.

2002b), ‘interlaced’ (Köhler et al. 2004), and ‘resonant phonon’ (Williams et al. 2004),

‘bound-to-continuum’ (Vitiello et al. 2006), as well as a recent design of two-colour

quantum cascade laser with application of a magnetic field (Scalari et al. 2006).

The first THz QC laser with a photon energy less than the semiconductor optical

phonon energy was demonstrated at 4.4 THz (equivalent to a wavelength of 67 µm)

by Köhler et al. (2002b). A chirped superlattice (SL) technique was adopted to design
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the QCL active region, with advantage of the long interminiband relaxation time com-

pared to the intraminiband one, and with very large current carrying capabilities and

optical powers (Tredicucci et al. 1998).

The bound-to-continuum (BTC) QCL has been proved to be successful in produc-

ing terahertz radiation with the replacement of the original chirped SL (CSL) design

(Köhler et al. 2002b). The bound-to-continuum QCL takes place between an isolated

upper state and a miniband with a small well adjacent to the injection barrier (Faist et al.

2001). The design combines the advantages of the 3 QW and superlattice active regions.

It makes it possible to achieve selective injection into the upper state and fast extrac-

tion from the lower state. As a result, these designs display improved temperature

and power performance compared with the CSL designs (Williams 2007, Alton 2005).

A relevant experiment to use a BTC QCL for wavelet based local reconstruction of a

3D polystyrene object is represented in Chapter 13. Fig. 2.3(a) illustrates the design

and performance of a bound-to-continuum QCL emitting at 2.9 THz. The laser was

made at the University of Cambridge, by Jesse Alton, in collaboration with his col-

leagues (Alton 2005). The QC structure was grown by molecular beam epitaxy in the

GaAs/Al0.15Ga0.85As materials system on semi-insulating GaAs substrates. One pe-

riod of the conduction band profile for each active region is displayed along with the

calculated moduli squared of the most relevant wave functions.

Fig. 2.3(b) illustrates the waveguide design of the two BTC QCLs emitting at 2.9 THz.

Both active regions are embedded between identical cladding layers: top contact layer

is an 80 nm thick GaAs, and bottom contact layer is a 700 nm thick GaAs. The two con-

tact layers are designed regarding the surface plasmon waveguide. The former has the

same mode as a quasi-metallic layer (Köhler et al. 2002b) and the latter is completed by

a Ti/Au metallization layer on top of the ridge cavity (the top contact layer). Fig. 2.3(c)

shows the photography of the finished BTC QCL.

In addition, a THz quantum-cascade laser utilizing alternating photon- and phonon-

emitting stages has been developed to achieve efficient extraction of electrons from

the lower laser level (Köhler et al. 2004). Though the impact of this interlaced photon-

phonon cascade laser has been limited, they are particularly notable for achieving very

long wavelength operation (Williams 2007). The other major active region type is the

Resonant-phonon (RP) scheme. The key design is to use resonant LO-phonon scatter-

ing to selectively depopulate the lower radiative level, while maintaining a long upper
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Figure 2.3. Schematic diagrams of terahertz BTC quantum casecade laser designs. (a) One

period of the conduction band profile regarding a ‘vertical transition’ design of the

layer sequence. The upper, and lower state of the laser transition and the injector

miniband ground state are labelled 2, 1, and g, respectively. The transition energy,

given by the energy difference between 2 and 1, is 12 meV. At alignment the wave

functions of the upper and lower state are broadly overlapped. The upper state wave

function is concentrated mainly in the two quantum wells adjacent to the injection

barrier, reducing the overlap with the lower energy states in the injector miniband,

thereby enhancing the non-radiative upper state lifetime. Electrons are injected into

the upper state from state g through the injection barrier. The active region consists

of 85 identical repeat periods. (b) Schematic representation of completed wafer cross-

section (left) and computed optical mode profile (right) along the growth axis. This

waveguide is shown at λ = 103 µm (12 meV) and the yielded waveguide losses (αw) of

4.1 cm−1 and a confinement factor (τ) of 28%. After Alton (2005). (c) Photograph of

the BTC QCL. (Figure courtesy of Lynn Gladden, Department of Chemical Engineering,

The University of Cambridge, Cambridge, UK)
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Figure 2.4. Two-colour terahertz quantum cascade laser spectrum. Illustration of the measured

spectrum depending on the applied magnetic field. The blue solid line indicates the

emission frequency of 2.3-2.36 THz and the red solid red line corresponds to the emitted

laser frequency at 1.39 THz. After Scalari et al. (2006)

level lifetime. Owing to the lack of a miniband, the RP designs tend to have smaller

oscillator strength (Williams et al. 2004).

At present, a quantum cascade laser emitting at as low as 1.39 has been demonstrated

by Scalari et al. (2006). An electrically switchable, two-colour quantum cascade laser

emitting at 1.39 THz and 2.3 THz is realized by multi-wavelength operation. A mag-

netic field is applied perpendicularly to the layers to increase the gain enabling laser

action. The structure is based on a large single quantum well and multi-wavelength

operation is obtained by selectively injecting carriers via resonant tunneling into one

of the excited states of this large quantum well (Sirtori et al. 1998b). Fig. 2.4 shows the

measured spectrum depending on the applied magnetic field.

2.4 Terahertz semiconductor sources (THz Emitters)

All-optical techniques have been recognized as an alternative approach to produce

THz radiation (Davies et al. 2002) owing to the difficulties in fabricating solid-state THz

sources. Semiconductor surfaces are widely used in conjunction with femtosecond

visible/nearinfrared lasers as THz emitters. Bulk electrooptic rectification (difference

frequency mixing) and ultrafast charge transport techniques have been exploited. This
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Section will review how semiconductor structures can be used to convert ultra-short

(∼ 100 fs) near-infrared pulses into THz pulses, and then discuss one THz generation

mechanism based on the ultra-fast transport of electrons and holes at semiconductor

surfaces.

2.4.1 Bulk electrooptic rectification (optical rectification)

Optical rectification is viewed as one of the main mechanisms to generate terahertz

radiation using laser (Tonouchi 2007). When a semiconductor crystal is submerged

in a large peak electric field of visible/near-infrared pulse, it induces a second order

nonlinear susceptibility (χ(2)) of the crystal. Terahertz radiation can be achieved via

exploring the difference frequency of the second harmonic.

Considering a time-dependent polarisation induced in the THz frequency range, it is

proportional to the intensity of the incident pump pulse (Davies et al. 2002) and the size

of the second-order susceptibility. The generated THz frequency ωTHz is the difference

between the pump pulse frequency ω1 and the frequency of idling beam ω2. This result

holds when the energy conservation (sum frequency) ω1 = ω2 + ωTHz and the phase

matching condition k1 = k2 ± kTHz between the induced THz field and the optical

fields are satisfied (Schmuttenmaer 2004). The short duration of the incident pulse in

the time domain allows a broad bandwidth (> 10 THz) (Ma and Zhang 1993). Since

the optical pulses have a bandwidth of a few THz, the difference frequencies fall in the

THz range (Schmuttenmaer 2004).

As the ultra-fast pulse generates a polarisation transient p(t) in the EO crystal, accord-

ing to the Hertzian dipole model, the resultant THz magnitude, ETHz(t), is given by

the second time derivative of the polarisation transient, ETHz(t) ∝ ∂2p(t)/∂2t, where

the time domain polarisation transient is expressed by p(t) ∝ χ(2)E2
opt(t), and Eopt(t)

indicates the time series of optical pump pulse (Zhang et al. 1992). Fig. 2.5(a) illustrates

non-resonant optical rectification with an ultrafast laser pulse.

In a material with normal dispersion, the refractive index n increases with the fre-

quency. Since k = nω/c, it turns out that the k1-vector is too large, which causes diffi-

culty in satisfying the phase matching condition. An alternative approach to obtain the

phase matching condition is by exploiting the k-vectors of the extraordinary and the

ordinary axes (Kubler et al. 2005). Further research about the nonlinear phase matching

for terahertz generation has been conducted (Berger and Sirtori 2004, Sun et al. 2007).
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Figure 2.5. Optical rectification and ultra-fast charge transport schemes. (a) Optical Rectifi-

cation (OR) is a second-order nonlinear effect, whereby an ultra-fast electric field pulse

is rectified in a χ(2) medium, in this case an electrooptic (EO) crystal. The ultra-fast

pump pulse induces a transient polarisation, p(t), which in turn emits a T-ray-bandwidth

pulse. The time evolution of the T-ray pulse is given by the second time derivative of

the polarisation transient, ETHz(t) ∝ ∂2 p(t)/∂2t. (b) Illustration of schematic diagrams

regarding two THz emitters via applying the ultra-fast charge transport scheme. Pho-

toexcited carriers are generated by a focused visible/near-infrared laser pulse, and then

are accelerated and radiate in an electric field. On the left hand side, the field is pro-

vided by a lateral antenna structure, on the right hand side, the intrinsic semiconductor

surface depletion/accumulation field is exploited. After Davies et al. (2002).
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To date, this mechanism has been used to generate THz radiation in a number of in-

organic semiconducting materials including GaAs, GaSe, ZnTe (Ma and Zhang 1993,

Saeta et al. 1993, Rice et al. 1994), CdTe, DAST, and LiNbO3, although more effective

materials are being founded (Davies et al. 2002). Zinc Telluride (ZnTe) is regarded as

the most popular EO material due to its physical durability and excellent phase match-

ing properties (Rice et al. 1994). The organic crystal DAST has a very large EO coeffi-

cient (Zhang et al. 1992), but is difficult to use experimentally owing to its hygroscopic

character. Saturation of OR due to second harmonic generation of the pump beam at

high optical high optical fluences has been studied in ZnTe (Sun et al. 2000), LiTaO3,

LiNbO3 and DAST (Carrig et al. 1995).

2.4.2 Ultra-fast charge transport

In an absorbing medium, such as 〈110〉 or 〈111〉 oriented semiconductor, terahertz ra-

diation can be produced by means of ‘non-resonant’ optical rectification (L. Dakovski

and Shan 2005). But if the photon energy of the ultra-fast pulse is higher than the semi-

conductor bandgap, photons are absorbed, and electron-hole pairs are created close to

the surface of the generation crystal. The terahertz radiation is generated primarily as

the result of another process mechanism—ultra-fast charge transport. In this process,

an appropriate electric field is introduced to accelerate photoexcited electron-hole pairs

in semiconductor structures, and the yielding changing dipole leads to generation of a

THz pulse.

Typically, suitable surface fields are realized in two ways. On the left hand side of

Fig. 2.5 (b), a lateral antenna comprising two electrodes deposited onto a semicon-

ductor surface is shown. A large electric field is applied between the electrodes. The

incident laser pulse is focused between the two electrodes, and then creates electro-

hole pairs. The free carriers are accelerated by the static field along the field direction

and form a transient photocurrent (Zhang and Auston 1992). The emission bandwidth

can be modified by appropriate bands structure engineering (Leitenstorfer et al. 1999,

Davies et al. 2002).

A second mechanism is illustrated on the right hand side of Fig. 2.5(b). This was

first demonstrated by Zhang et al. (1990). A surface electric field is built up when

an ultra-fast laser pulse with the photon energy is greater than the semiconductor

band gap. The surface depletion field is vertical to the semiconductor surface, which
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Figure 2.6. Magnetic-field-enhanced generation of T-rays in semiconductor surfaces. An

femtosecond laser pulse is incident on the semiconductor surface at angle α, resulting

in a depletion field (ED) vertical to the surface of the semiconductor. The carrier

acceleration by the depletion field generates two components: the electric field Ex and

Ez of the THz pulse. Both components determine the measured THz signal, which is

polarized in the x-z plane. The emitted THz radiation is measured at angle θe. The

direction of the applied magnetic field is shown by the vector B. The emitted THz

radiation is collected parallel to the applied magnetic field and perpendicular to the

incident beam. The TM mode and the vertical TE mode are labelled by a yellow double

arrow line and a blue circle with a black dot inside. After Davies et al. (2002).

drives the ultra-fast charge transport. Compared to wide band-gap semiconductors,

narrow band-gap semiconductors show an enhanced photo-Dember effect, owing to

these characteristics with respect to high electron motilities and large amount of kinetic

energy of the photoexcited electrons. The efficient mechanism of the ultra-fast buildup

and relaxation of the photo-Dember field results in the generation of THz radiation in

narrow band-gap semiconductors (Gu et al. 2002). The emitted power and bandwidth

for this generation of terahertz radiation is determined by the temperature and prop-

erties of the semiconductor crystal, as well as the energy, pulse width and flux of the

incident laser pulse (Davies et al. 2002).

Recently, there has been enormous interest in this mechanism of the magnetic field en-

hancement of the terahertz (THz) emission from photoexcited carriers in the surface

depletion region of a semiconductor (Izumida et al. 1999, Weiss et al. 2000, McLaugh-

lin et al. 2000). In this case, optical rectification process is negligible owing to the crystal
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orientations and the large amount of excess photon energies in the excitation. The anal-

ysis of the THz emission process is based on the Drude-Lorentz model (Shan et al. 2001,

Weiss et al. 2000). In the absence of a magnetic field, the emitted THz radiation is com-

pletely polarized by transverse-magnetic (TM), caused by the surface depletion field.

As the magnetic field is increased, a transverse-electric (TE) component is introduced

and the emitted THz radiation becomes elliptically polarized. Both TE and TM power

are significantly enhanced in the additional magnetic field. The emission can be mea-

sured either by an incoherent bolometeric detection scheme or by coherent electrooptic

sampling (Davies et al. 2002). Fig. 2.6 illustrates the schematic of the experimental ge-

ometry based on the magnitude enhancement scheme.

2.4.3 Terahertz photomixing

Without requesting bulky and expensive femtosecond lasers, photomixing offers an

alternative method for generating terahertz radiation. Photomixing can be achieved

using two continuous-wave (CW) lasers, and interference produced between two CW

lasers (Brown et al. 1993, Brown et al. 1995) contains different above-bandgap (visible or

near-infrared) wavelengths. In these all-photoconductive systems, inexpensive, com-

pact and tunable diode lasers (Gregory et al. 2004, Vitiello et al. 2006) can be used as the

laser sources.

The photomixing techniques based CW-THz emitters and detectors mainly consist of

a photoconductor and an antenna. The photoconductor can be viewed as a combina-

tion of a photoconductive switch (semiconductor) and a photomixer. The electrodes

and photoconductive gap are generically termed the photomixer. The electrodes are

designed as the structure of interdigitated fingers coupled to a photoconductive gap.

A schematic of a typical CW-THz device is shown in Fig. 2.6(a).

As for a fully optoelectronic detection of the terahertz continuous wave radiation, a

component separated from the original laser beam can be used to gate the receiver. A

rapid-scan delay line allows collection of the detected terahertz waveforms. A stan-

dard 60◦ ‘bow-tie’ antenna, shown in the insets of Fig. 2.6(b) and hyper-hemispherical

silicon lenses can couple the radiation in and out of the semiconductors (Gregory et al.

2004).
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Figure 2.7. Photomixing schematics. (a) A schematic of a typical CW-THz device. (b) Two

insets are the micrographs of the actual structures: a 60◦ ‘bow-tie’ antenna structure

with a bare photoconductive gap, and the electrode structure linked to the antenna with

the design of interdigitated fingers. For both structures the antenna radiation impedance

is plotted as a function of frequency. After Gregory et al. (2004).

2.5 Terahertz optical sampling techniques

Optical sampling (also called optoelectronic sampling) refers to a class of techniques,

which are used to perform time-resolved measurements of terahertz responses (Schmidt-

Langhorst and Weber 2005). The optical signals, usually in the form of ultrashort

pulses, are used to probe the terahertz electrical field, and ultimately, extract sample

information from terahertz responses. In terahertz detection systems, there are four

main sampling techniques: free-space electrooptic sampling, antenna detection, syn-

chronous, and asynchronous optical sampling.

2.5.1 Coherent terahertz radiation detection

Coherent terahertz radiation detection techniques involve free-space electrooptic sam-

pling and antenna detection. The electrooptic sampling (EOS) shows good sensitivity

and a broad bandwidth, compared to antenna detection. Electro-optic sampling is an

optoelectronic technique of optical sampling, realised via exploiting the linear elec-

trooptic effect (also called Pockel’s effect). The electric field is exercised by an ultra-

short optical pulse, an electrooptic probe beam, and the influence between the electric

field and the terahertz radiation occurs during only a short time interval. This effect

is usually a change of polarisation, which is turned into a change of optical power by
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Figure 2.8. Sketch of an electrooptic sampling setup. The polarised T-ray electric field induces

a birefringence in the detector, according to the χ(2) coefficient of the specific crystal-

lographic orientation of the crystal (Chen and Zhang 2001). Produced birefringence in

turn rotates the polarisation of the probe beam, after the probe beam transmits through

the EO detector collinearly with the pump beam (incident T-ray responce), directed by

a pellicle beam-splitter. A Wollaston beam splitter, directs the two polarisations to

balanced photodiodes. A quarter-wave plate (QWP) is rotated to balance the difference

current to zero for zero T-ray field in the EO crystal. After Mickan (2003).

a polariser. A polarising beam splitter, which can be viewed as a second polariser ro-

tated 90◦ from the first polariser, is used to split and direct the polarisation rotation

that the THz field induces on the probe beam and to achieve intensity modulation

of the polarisation. This is a typical crossed-polariser detection method (Saleh and

Teich 1991, Yariv 1991). A pair of balanced silicon photodiodes is used to analyze the

split polarization rotations. The slow variation in the arrival time of the probe pulse,

i.e. sequential sampling of a repetitive signal, results in the measurement of a full

waveform of a periodic signal. It is observed that electrooptic detection is noise sen-

sitive and there exists a clear trade-off between the noise sensitivity and frequency

response. It is determined by the choice of crystal and its thickness (Cai et al. 1998).

Fig. 2.8 illustrates the sketch of an electrooptic sampling setup.

Photoconductive sampling is an optical sampling technique, which is achieved by

using photoconductive switches. It is found that the antenna detection scheme al-

ways has a better SNR than EOS, with the chopping frequency at a few kilohertz

(Cai et al. 1998). Photoconductive detection is similar to photoconductive generation.

A short probe laser pulse can close an electrical connection for a very short time. A
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Figure 2.9. Sketch of a PCA used for photoconductive sampling. This sketch shows a photo-

conductive dipole antenna used for T-ray detection. The large T-ray spot (shown as

a blue circle) biases the electrodes with a free-space electric field. The probe spot

is focussed into the biassed region of the antenna substrate. The fs-duration probe

switches the electrodes with transient photocarriers, allowing a current to flow, which

is detected by an ammeter. The current flow is proportional to the applied T-ray field.

After Mickan (2003).

bias electrical field across the antenna leads is generated by the electric field of the THz

pulse focused onto the antenna. The photoconductive antenna (PCA) directly detects

a photocurrent induced by the incident THz field. Fig. 2.9 is the sketch of a PCA used

for photoconductive sampling. The presence of the THz electric field generates current

across the antenna leads, which is usually amplified using a low-bandwidth amplifier.

This amplified current is the measured parameter which corresponds to the THz field

strength. Again, the carriers in the semiconductor substrate have an extremely short

lifetime. Thus, the THz electric field strength is only sampled for an extremely short

time interval (fs) of the entire electric field waveform, the temporal position of which

can be adjusted via an optical delay line (see Fig. 2.10).

2.5.2 Synchronous and asynchronous optical sampling

Synchronous optical sampling is an important implement in a terahertz pump-probe

system. In this system, data are recorded in the time domain via different delay times.

The varied delay time is achieved by several approaches: (i) traditional scanner with

a motorized scanning stage (ii) raster scanning (iii) mechanical scanning devices. This

Page 29

a1172507
Text Box
                                           NOTE:     This figure is included on page 29 of the print copy of      the thesis held in the University of Adelaide Library.



2.5 Terahertz optical sampling techniques

Figure 2.10. Pump-probe delay stage. The delay stage pictured here is the essential element

in pump-probe experiments, of which T-ray spectroscopy is one example. The stage

is used to sweep the ultra-fast probe pulses over the temporal profile of the free-

space T-ray pulse, thereby sampling the entire T-ray waveform. The stage motion

is coordinated with the detection electronics via a computer and General Purpose

Interface Bus (GPIB) interface. After Mickan (2003).

approach, called synchronous sampling, needs to guarantee correct match between

each acquired waveform and the location of the measured object.

Asynchronous optical sampling (ASOPS) is a technique for fast measurements of time-

domain spectroscopy (Yasui et al. 2005, Bartels et al. 2007). The application of this tech-

nique has been successfully demonstrated in the field of terahertz time-domain spec-

troscopy (TDS), i.e. for DNA analysis (Janke et al. 2005, Kistner et al. 2007) and water

vapor detection (Brown et al. 2006). This technique adopts two different mode-locked

lasers with a slight difference in pulse repetition rates. The two different pulses au-

tomatically provide a temporally varying delay. The scan rate is determined by the

different pulse repetition rates. Only the low enough scan rate is effective to allows for

a sufficient temporal resolution, which is then limited by the detection bandwidth (not

by the pulse duration). A high pulse repetition rate helps, as long as a sufficiently large

temporal range scanning is available. The large number of the recorded spectra makes

possible either to record data for many samples per second (e.g., to obtain position-

dependent transmission spectra or even two-dimensional transmission images), or to
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average many spectra data from a single sample within a few seconds, aiming to re-

duce detection noise to a very low level. Fast detection electronic devices allow for

recording thousands of transmission spectra, ranging from virtually zero to several

terahertz, within one second. Asynchronous sampling avoids mechanical noise of the

delay time and position-dependent mode size, but at the cost of requiring two lasers

instead of one (Chan et al. 2007).

2.6 Chapter summary

This Chapter has broadly described the common techniques and systems for terahertz

detection and generation. Several advanced T-ray sources which are primarily used for

current popular terahertz research, include (i) pulsed T-rays based on ultra-fast laser

sources; (ii) high frequency electronic sources, for their integration into existing elec-

tronic technology, to achieve low-power CW operation; (iii) Quantum Cascade Lasers

(QCLs), for their small size and tunability, to realise CW operation. The pulsed nature

of ultra-fast T-ray systems provides high signal-to-noise ratios, broad bandwidth and

low average power, making them ideal tools to study biological and medical materials.

However, QCLs as terahertz narrow band laser sources show deeper penetration, due

to higher average power, which complements THz pulsed imaging systems. Based

on instruments reviewed in this Chapter, the following Chapter reviews T-ray imag-

ing modalities, which underpins THz tomography. Such systems then open up the

possibility for imaging and pattern recognition of heterogeneous layers within a target

object (Chapter 4).
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Chapter 3

Terahertz Imaging Modes

T
HERE is significant interest in the study of terahertz spectroscopy

and imaging particularly dealing with the interaction of terahertz

radiation with biological molecules, cells, and tissues (Smye et al.

2001). These technologies are capable of revealing spatial and spectral fea-

tures, such as external and internal structures of a target object, with sub-

millimeter resolution. Since the first illustration of 2D terahertz imaging

by Hu and Nuss (2001), terahertz sources and detectors have made much

progress, leading to high signal-to-noise ratios and reasonable acquisition

rates. Terahertz instruments, especially in biomedical imaging, have the po-

tential to assist biochemists, biologists, medical scientists, and physicians to

see their objects of study and to obtain quantitative measurements.

This Chapter mainly provides a taxonomy of various terahertz imaging

techniques based on several criteria: operation within versus below the

diffraction-limit, pulsed versus continuous imaging, and spectral resolu-

tion versus temporal resolution, which are followed by the introduction to

a few key types of terahertz time domain spectroscopy (TDS).
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3.1 Three fundamental types of terahertz propagation

Terahertz imaging is a relatively new technique and has shown its potential in re-

search and commercial application. Terahertz imaging with high-power THz sources

is pulsed scanning and pulse-gated detecting, and the resultant measurement at each

pixel position of an image is an entire time-dependent waveform. Therefore, the result

from terahertz imaging is a three-dimensional (3D) data set, which then can be mapped

to two-dimensional (2D) images (Herrmann et al. 2000). Withayachumnankul et al.

(2007) illustrate such a 3D time-domain array for pulsed terahertz transmission time

domain imaging.

3.1.1 Transmission-type terahertz imaging

Terahertz image data contain a wealth of information. The Fourier transform of the

time domain waveform in a certain spectral range allows the extraction and display

of relevant information of target objects in real time (Mittleman et al. 1996), e.g. the

calculation of refractive index and absorption coefficients. Another important role of

terahertz time domain spectroscopy is to extract phase information; this is achieved by

varying the time delay between the THz wave and the probe beam (Mittleman et al.

1996). As many materials are transparent to terahertz radiation, it is feasible to mea-

sure transmitted responses and acquire spectral information for signal analysis and to

produce contrast images.

The time-resolved THz spectrometer used in most of the studies presented in this The-

sis utilizes a short coherence length infrared source (centered at around 800 nm) to gen-

erate a sub-100 femtosecond duration pulse train with repetition frequency of around

80 MHz. Each infrared pulse, is split into separate pump and probe beams. The pump

beam is used to excite an optical rectification crystal, which acts as a T-ray emitter, and

the T-rays produced (duration around 200 fs) are collimated and focused onto a sample

by a pair of parabolic mirrors. The T-rays emerging from the sample are re-collimated

by another pair of mirrors, before being combined with the probe beam in a T-ray de-

tector crystal. As a result, the modification by the sample T-ray and the probe beams

propagates through the THz detector crystal co-linearly. The pump beam, which is
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Figure 3.1. Transmission mode THz imaging. A schematic experimental setup for electrooptic

transmission terahertz imaging with ZnTe as EO generation and detection, illuminated

by a femtosecond laser. The inset on the bottom is the plot of a time domain THz

waveform before and after passing through pork-fat tissue, indicated by solid and dotted

curves, respectively. After Han et al. (2000).

also transmitted through a chopper, travels through an optical delay stage that is mod-

ulated accordingly, so that the pump and probe beams arrive at the detector in a time-

coincident manner. The electrooptic detector crystal produces an output that is pro-

portional to the birefringence observed from the interaction of the THz pulse with the

time-coincident infrared pulse replica within the crystal. This output is proportional

to the T-ray response of the sample and this signal is measured with the use of an op-

tical photodetection scheme. A lock-in amplifier is also used to demodulate the signal,

and this avoids 1/ f (flicker) noise problems that are present in this detector-limited

measurement scheme. Terahertz pulsed imaging (TPI) is achieved by performing a 2D

raster scan after translating the sample in both the x and y direction, while keeping it at

the focal plane of the parabolic mirrors. A typical setup (Ferguson et al. 2003) is shown

in Fig. 3.1.

The inset on the bottom in Fig. 3.1 is the plot of a time domain terahertz waveform

before and after transmitting through 0.5 mm pork-fat tissue. The dotted curve of

the target measurement reveals a phase shift, broadening, and amplitude attenuation.
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3.1 Three fundamental types of terahertz propagation

The phase shift results from the average refraction index of the sample, whereas the

broadening is caused by dispersion and frequency-dependent attenuation.

3.1.2 Reflection-type terahertz imaging

On the one hand, terahertz waves can penetrate most dry, nonmetallic and nonpolar

objects, such as teeth, foam, leaves, some fatty tissues, while on the other hand, certain

materials, such as metals, are completely opaque to terahertz radiation (Mittleman et al.

1996). A THz pulsed imaging (TPI) system operating in reflection mode might be a

better choice for a number of practical applications. For example, transmission ter-

ahertz spectral measurements show that large sucrose particle samples with an av-

erage thickness of approximately 0.5 mm are actually ‘opaque’ to terahertz radiation

(Mittleman et al. 1996). In contrast, as demonstrated by Shen et al. (2005), a TPI sys-

tem operating in reflection mode has no such limitation and can still be used to obtain

reliable terahertz spectra.

Fig. 3.2 is a schematic experimental setup for photoconductive reflective terahertz imag-

ing system using a pump-probe configuration. In this diagram, the path lengths be-

tween the pump beam and probe beam are adjusted by an optical delay stage to achieve

equal length of arms, therefore distance measurements are possible within the coher-

ence length of the THz radiation. Like optical coherent tomography (Huang et al. 1991,

Tearney et al. 1995), the correlation signal can then be measured to provide informa-

tion about the reflectivity of the sample. The ultimate spatial resolution achieved in

depth (i.e. the propagation direction of the reflected beam) is limited by the coherence

length of a terahertz pulse, which is determined by the pulse duration, and is to the

order of several hundred femtoseconds. The x-y stage is to achieve terahertz measure-

ments pixel by pixel. The transient electric field measured by the reflection-mode TPI

system using a photoconductive emitter and detector shows excellent signal-to-noise

ratio (S/N) and high dynamic range (Pickwell and Wallace 2006).

The inset on the left hand side of Fig. 3.2 illustrates a time domain terahertz wave-

form after reflection from a film-coated tablet. The dominant peak a corresponds to

the air-tablet surface interface. The negative peak b represents the interface between

film coat and tablet core. Since each peak in the terahertz waveform corresponds to

a different interface within the sample, by searching for peaks, the time delay of the
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Figure 3.2. Reflection mode THz imaging. A schematic experimental setup for photoconductive

reflective terahertz imaging, illuminated by a femtosecond laser. After Woodward et al.

(2003). The inset on the left hand side is the plots of a time domain terahertz (THz)

waveform after reflection from a film-coated tablet. After Zeitler et al. (2007b).

terahertz pulse can be calculated and the thickness information of the coating lay-

ers can be determined. Further forms of T-ray reflection imaging are illustrated by

(Mittleman et al. 1996, Woodward et al. 2002, Pearce et al. 2005).

Though terahertz reflection imaging permits us to achieve depth resolution of target

objects, the difficulty lies in the achievement of sufficiently accurate phase measure-

ments. The main problem is that the small misalignment with precision lower than

1 µm between the surfaces of the sample and a reference mirror can cause a consid-

erable error (Jeon and Grischkowsky 1998, Nashima et al. 2001). Therefore, terahertz

ellipsometry imaging is proposed by Nagashima and Hangyo (2001) to measure the

frequency dependence of the complex refractive index of samples without a reference

measurement. Although the S/N ratio of ellipsometry-type THz spectra is insufficient

in the high frequency region, illustrated by Hangyo et al. (2002), this can be improved

by changing the incident angle to be near the Brewster angle.
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3.2 Terahertz imaging within diffraction-limit

One of the clear limitations of all of the terahertz imaging techniques is the spatial

resolution (Chan et al. 2007, Johnston 2007). Spatial resolution, which is also called

angular resolution, describes the ability of an optical imaging device to measure the

angular separation at each point of an object in this context. The spatial resolution of

optical devices is ultimately limited by diffraction.

The applications of terahertz imaging within the diffraction-limit, represented in this

Chapter, cover topics ranging from time-of-flight imaging to tomography with pulsed

terahertz radiation; from an all-optoelectronic continuous wave THz imaging to imag-

ing using a THz quantum cascade laser. All the imaging setups in this Thesis are based

on terahertz time domain spectroscopy techniques.

3.2.1 Terahertz time-of-flight imaging

Temporal resolution is a term used to describe measurement precision with respect to

time. Often there exists a tradeoff between temporal resolution and spatial resolution.

Time-of-flight imaging enables the measurement of depth information. Time-of-flight

imaging in the terahertz range has been widely used (Mittleman et al. 1999, Han et al.

2000, Zeitler et al. 2007b, Pradarutti et al. 2007).

Time-of-flight imaging in biomedicine is well demonstrated by Han and Zhang (2001)

using a transmission-type TPI with onion cells as a sample. The THz image is achieved

by plotting the transillumination amplitude of the THz pulse at a fixed time delay

between the THz and probe pulse, which is shown in Fig. 3.3. Thus, the contrast in

the image is attributed primarily to differences in the water content of the cells and the

intercellular regions.

One disadvantage of the ultrashort pulse technique is that it takes usually several

hours to acquire the data in three dimensions (two lateral dimensions and one time

dimension) for image scanning. A fast scanning method for image acquisition is intro-

duced by Pradarutti et al. (2007), which depends on the refractive index of a sample.

The contrast is as good as the full time delay method and better than with ampli-

tude scanning, with reduced scan time. More techniques regarding terahertz time-

of-flight imaging are being introduced and improved to prompt the advancement in

biomedicine imaging (Pradarutti et al. 2007).
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Figure 3.3. Time-of-flight imaging. High resolution of THz image of onion cells is illustrated using

TPI. After Han and Zhang (2001).

3.2.2 Tomography with pulsed terahertz radiation

Different from terahertz time-of-flight imaging, the tomographic reconstruction modal-

ity has its own source-detector configuration and image reconstruction algorithms, ap-

propriate to the nature of the problem. It is suggested that the number of transmitters

and/or detectors is a criteria to distinguish tomographic reconstruction from the time-

of-flight images (Chan et al. 2007).

The time-of-flight measurements consist of a single transmitter and a single receiver,

both at fixed locations. As tomographic reconstructions view objects from multiple

angles, multiple illumination sources or multiple signal detectors are needed for the

measurements. But normally, a single transmitter-receiver pair, and a hardware con-

figuration for a series of measurements at multiple angles are employed to achieve the

description of an image (Ferguson et al. 2002b, Nguyen et al. 2006, Chan et al. 2007).

The first terahertz tomographic measurement was demonstrated by Ruffin et al. (2000)

using fiber-coupled techniques (Rudd et al. 2000). The shape of target objects is recov-

ered by reversing scattered fields mathematically. Single-cycle THz pulses are gener-

ated and detected for the object measurements according to the research carried out by

Cheville and Grischkowsky (1995).

Two steps are involved for the basic time-reversal reconstruction. (i) The time domain

Fresnel diffraction formula is applied for the diffraction of electromagnetic pulses from

given terahertz input field; (ii) the reconstructed diffracted field then can be recovered

as an input field from time-reversal symmetry of Maxwell’s equations. An example
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of reconstruction using 2-D apertures is accomplished via rotating the object about its

central normal axis and then back-propagating the measured fields using the Kirchhoff

diffraction integral. Fig. 3.4(a) illustrates the diffracted field at the off-axis position Pl,

which can be mathematically time-reversed and used as an input field to reconstruct

the field at the object’s position Po. Fig. 3.4(b) is the 2-D experimental setup. Diffracted

electric fields are measured at one off-axis position as the object (spiral) is rotated about

the z-axis (Ruffin et al. 2002). The rotation angle of the target around the z-axis is indi-

cated by θd.

Figure 3.4. Single-cycle THz tomography. (a) Illustration of the diffracted field at the off-axis

position Pl, which can be mathematically time-reversed and used as an input field to

reconstruct the field at the object’s position Po. (b) Illustration of the 2-D experimental

setup with θd of 12◦. The dashed circle represents the measurement points with θd of

12◦ on the spherical surface. After Ruffin et al. (2002).

The sparrow criterion (Sparrow 1916) is applied to derive the resolution resulting from

time-reversal reconstruction. It is attractive due to its low computational overhead.

Two peaks of measured waveforms are resolved if there is a clear local minimum be-

tween the principal peaks of the two waveforms. This resolution criterion allows the

high temporal resolution of THz-TDS systems to be leveraged to derive the spatial res-

olution. The resolution is given by the spatial separation of two points on the object

plane that give rise to THz pulses with an observable timing difference at the detector.

A star target is employed for the reconstruction experiment. It turns out that there is
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Figure 3.5. Terahertz multistatic reflection imaging. Illustration of a schematic of a common

shot experimental arrangement, emulated by a terahertz (THz) system. After Dor-

ney et al. (2002).

an obvious reduction in the number of measured pixels for recovery of the target ob-

ject compared to a conventional scanned image. It results in a considerable saving in

acquisition time and demonstrates the effectiveness of this technique.

At roughly the same time, Dorney et al. (2002) realises tomographic reconstruction for

geophysical applications. Like time-reversal reconstruction, a two dimensional Kirch-

hoff migration (Dobrin and Savit 1988, Scales 1995) process is employed to the solve

the inverse problem. The imaging algorithm is very simple to implement and is ex-

tremely robust against losses due to scattering or absorption of the propagating wave,

because only the time-of-flight, rather than the amplitude of the measured wave, is

used for image reconstruction.

The task of Kirchhoff migration is to transform this data set, containing the positions of

the transmitter and the receivers along with the delay times of the reflected pulses, into

a useful image of the subsurface. Fig. 3.5 is a schematic of a common shot experimental

arrangement, which can be emulated by a terahertz (THz) system. The horizontal

surface is the x-axis and the depth is the z-axis, and the goal is to transform data in the

(x, t) domain into the (x, z) domain.

T-ray holography is an extension of recent work in THz imaging using time-reversal

of the Fresnel-Kirchhoff equation (Scales 1995). Terahertz holographic reconstruction

has the advantage of utilising the multiple scattering features of terahertz radiation.

Both the transmitted and reflected waves can be employed for image reconstruction.

Compared to conventional continuous wave holography, THz holographic techniques,
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3.2 Terahertz imaging within diffraction-limit

in addition to the phase and amplitude information at each frequency, also contain

the temporal information that may be used to separate scattered waves with different

scattering orders. A method for studying such local spectra corresponding to each

separated scattered wave is to truncate the wave in the region of interest and perform

the windowed Fourier transformation (Kaiser 1994, Carin et al. 1997) with the Born

series used for a reconstruction of an image.

An example of combining holographic techniques and terahertz radiation, with a tar-

get containing two 3.5 mm thick polyethylene plastic sheets, is illustrated by Wang et al.

(2004a) and Wang et al. (2004b). A schematic of this experimental arrangement is

shown in Fig. 3.6(a). The two sheets are labelled S1 and S2, each having triple-hole

patterns.
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Figure 3.6. Terahertz holography. Illustration of the experimental arrangement. The distances

from S1 and S2 to the ZnTe sensor are 4.5 cm and 9 cm, respectively. The interval

between the holes on each sample (6 mm) is much larger than the peak value of the THz

beam (0.3 mm), and the hole diameters are 1.8 mm. The THz waveform is measured

at the centre pixel, and the corresponding plot is shown in Fig. 9(b). It consists of three

distinct pulses, W1, W2 and W3, and the start time of each pulse is at around 3.4 ps,

9.2 ps, and 15 ps, respectively. This waveform information is valuable for studying the

timing of these pulses at each pixel of the sensor. (b) Plots of the THz waveform

measured at the centre pixel. After Wang et al. (2004a) and Wang et al. (2004b).

Fig. 3.7 illustrates the holographic reconstruction using terahertz radiation. It shows

excellent correspondence with the target geometry (shown in (a) and (b)), although

the holes in the far plane S2 are slightly blurred. A similar principle can be applied to
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achieve images with more point scatterers on more than two target planes (Wang et al.

2004a, Wang et al. 2004b).

Figure 3.7. Holographic imaging reconstruction. Schematic of the target sample planes and their

reconstructed holograms. Schematic of sample S1 (a) and S2 (b) reconstruct hologram

of S1 (c) and S2 (d). The distances from the ZnTe sensor to two samples S1 and S2 are

4.6 cm and 9.3 cm, respectively. After Wang et al. (2004a) and Wang et al. (2004b).

A further development in holographic techniques has been made recently. Compact

imaging systems, which rely on viewing an electrooptic crystal using a charge-coupled

device (CCD) camera have been achieved. This system has the capability to capture

two- or three-dimensional images through holographic techniques, as illustrated by

Crawley et al. (2006).

The tomographic reconstructions mentioned above are realised with application of the

Kirchhoff propagation equation. Terahertz computed tomography in reflection mode

is also reported according to the work performed by Pearce et al. (2005). Compared

to the first demonstration of reflection mode of terahertz tomography, with only a sin-

gle viewing angle and the Fresnel coefficients for object estimation (Mittleman et al.

1997, Mittleman et al. 1999), terahertz wide aperture reflection tomography (WART)

is capable of detecting objects located behind strong reflectors using multiple viewing

angles. The principle of THz reflection tomography is the same as transmission THz

computed tomography, first illustrated by Ferguson et al. (2002b) (see Chapter 10), us-

ing techniques borrowed from X-ray imaging. The reflected waves from target objects
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can be viewed as parallel projections through the cross-section, and therefore com-

puted tomography (CT) reconstruction algorithms such as the filtered back projection

(FBP) algorithm, can be applied to retrieve an edge map of the object’s cross-section.

In the terahertz imaging community, more methods have been explored to achieve the

analogs of each of these imaging configurations. The study of tomographic techniques

using terahertz radiation has been discussed in a recent review (Chan et al. 2007). Com-

puted tomographic reconstruction using terahertz radiation is an important part of this

Thesis’ scope.

An another application of THz systems is in performing radar cross-section (RCS) mea-

surements of scale models of military vehicles and aircraft as an inexpensive alterna-

tive to operational trials (Cheville and Grischkowsky 1995, Cheville et al. 1997), which

was first realised by Pearce et al. (2005).

Fig. 3.8(a) is a schematic diagram of the THz impulse range. The receiver is fixed as

the target is rotated on a center axis. For the synthetic aperture imaging, the receiver

module measures the time dependent scattered field at various angles with respect to

the target space. The impulse range configuration shown in this figure collects two

dimensional array data (electric field as a function of time and angle) and images two-

dimensional target spaces in the x-z plane.

Fig. 3.8(b) shows a high contrast photograph of a metal model, with a scale indicating

length. Despite the image being created using a relatively low number of scans, the su-

perstructure with the antenna masts and the side of the ship are clearly observed in the

image. One notable aspect of THz impulse ranging is that while the lateral resolution

is typically limited by the Rayleigh criterion to the order of the peak THz wavelength,

the depth resolution is dependent on the spectral bandwidth of the THz pulses. For a

typical pulse with a rise time of ∆t = 0.8 ps the range resolution is ∆t/2c = 0.12 mm,

which is almost an order of magnitude smaller than the peak wavelength.

3.2.3 Terahertz continuous-wave imaging

The technique of using continuous-wave radiation for terahertz nondestructive test-

ing has been exploited for several decades (Karpowicz et al. 2005b). In recent years,

with the advancements in semiconductor technology, both compact and simple optic

hardware systems for terahertz CW imaging are possible. Such a low-cost, compact

system has image capture rates comparable with those from state-of-the-art pulsed
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Figure 3.8. Synthetic aperture radar algorithms using T-rays. (a) Schematic diagram of the

THz impulse range. The THz beam on the target is a 15 mm (1/e) wide Gaussian

THz wave. The target object is viewed as a superposition of point scatterers made at

each particular value of x0. The measured signal of the target object, at the increased

stage rotation angle ∆θ, is a superposition of the field from each point scatterer at a

fixed value of x0. The 2D target image is a superposition of point scatterers made at

each particular value of x0. To reconstruct the image of the target, after conducting

Fourier transforms, the complex amplitude is multiplied by a distance dependent phase

shift φ, for each particular position x0. The data are then inverse transformed into the

time domain, yielding a plot of scattering amplitude as a function of x0 and t = z/c.

(b) High contrast photograph of a 1:2400 destroyer model above a THz impulse SAR

image is taken with 20◦ angular range and 1◦ resolution. After Pearce et al. (2005).

THz systems (Gregory et al. 2004). There are a series of methods involved to generate

continuous wave terahertz radiation for imaging.

Siebert et al. (2002) report an all-optoelectronic THz imaging system based on pho-

tomixing, which is used for imaging a thin-cut canine basal cell tumour. It is an en-

couraging technique, especially applied to imaging biomedical samples, though it is

not cost effective due to its use of two expensive Ti:Sapphire lasers.

Fig. 3.9 shows the layout of this system. The optical system is similar to pulsed ter-

ahertz transmission measurement systems. Instead of one laser, a dual-colour CW

Ti:sapphire laser is used (Siebe et al. 1999) to generate two laser beams. A beam-splitter
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Figure 3.9. All-optoelectronic continuous wave THz imaging. Schematic of all-optoelectronic

continuous wave THz imaging. One optical beam is guided via a computer-controlled

optical delay line to the emitter antenna, and the other is used to gate the receiver

antenna. The two antennas are for photomixing. Lock-in detection of the THz signal

is adopted to avoid detrimental feedback into the two-colour laser source instead of

a mechanical chopper. After being coupled between the emitter and a Si substrate

lens, the THz radiation is collimated and focused onto sample by off-axis paraboloidal

mirrors. The detector antenna records the terahertz responses in transmission mode. A

biomedical sample is mounted on a computer controlled x-y stage. The relative phase

of the THz signal is varied by translating the optical delay line with variety over two THz

periods. A reference scan of the time delay is taken without the sample during a scan

of a row of pixels to compensate for any differences in the phase of the signal due to

the change of the scanning direction. The inset shows a logarithmic power transmission

image taken with the CW system at 1 THz with an object size of 32 mm × 24 mm ×
3 mm. The numbers from labels 1 to 4: skin, fat, tumour, and connective tissue. The

image consists of 11,248 pixels, which takes a 39 minute acquisition time. The image

noise for the relative power transmission turned out to be 13:1, corresponding to 26:1

for the field amplitude. After Siebert et al. (2002).
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cube combines the two laser beams and then produces a pump-probe configuration.

The intensity of the pump and probe beams is modulated at the difference frequency

of the two laser beams from 0 THz to 10 THz. Two photomixing antennas are used

as emitter and detector of terahertz CW radiation. This system produces high output

power and broad detection bandwidth with the growth of temperatures. It is found

that the extremely long coherence length of the two optical single-mode frequencies

allows the shortest possible imaging data acquisition time.

The CW imaging system is validated by a biomedical sample, a wax-mounted slice

through a canine skin tumour. A logarithmic power transmission image taken with

the CW system at 1 THz is illustrated in the inset of Fig. 3.9. The resultant experiment

is comparable in image capture rate and image noise to pulsed THz imaging systems

(Siebert et al. 2002).

However, there exists a drawback when solid-state electronic devices are used to gen-

erate terahertz radiation. The output power rolls off at high frequencies due to transit-

time and resistance-capacitance effects (Siegel 2002, Woolard et al. 2005). The lack of

appropriate materials with sufficiently small band gaps limits photonic approaches to

direct terahertz generation. Since the lack of appropriate interband materials, semicon-

ductor terahertz lasers, in the past, relied on more exotic gain mechanisms.

Terahertz quantum cascade lasers (QCLs) are appealing. Their intersubband-transition

nature implies that any desired frequency can be achieved by band gap and waveguide

engineering. Terahertz radiation, over a continuous frequency range from 1.59 THz to

5 THz, has been demonstrated (Williams 2007).

The special importance of terahertz narrow band sources lies in their ability to select

the source wavelength for optimum terahertz imaging capability. A considerable ad-

vantage of this QCL is the ability to minimize the atmospheric attenuation via tuning

the terahertz source frequencies within a water absorption window. Lee et al. (2006)

demonstrate a terahertz quantum cascade laser for real-time imaging in transmission

mode at a standoff distance of 25 meters. Lasing frequency at ∼ 4.9 THz is selected for

optimum transmission. It is observed that in the 25 m stand-off imaging experiment,

relative transmitted power is increased from 0.32% to 5.6%, if the atmospheric atten-

uation coefficient is decreased from 1 dB/m to 0.5 dB/m. Sensitivity of QCL imaging

could be improved by optimizing the microbolometer absorber for terahertz (about 10

dB improvement), or by moving to cryogenic direct detectors, such as quantum-well

infrared photodetectors (Luo et al. 2005).
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off-axis paraboloid (OAP)

object plane spherical mirror

24.5m
2m

320×320 pixel

microbolometer camera

1)

object  plane

OAP

2)
Si lens

(a)

(b)

Figure 3.10. THz QCL imaging at a standoff distance. (a) Schematic of experimental setup

for imaging over a distance of 25.75 m, where a QC laser mounted in a pulse-tube

cryocooler is used as the illumination source, and a room-temperature microbolometer

focal-plane array camera is used to perform imaging in two possible configurations,

(1) and (2). Also shown is a seed pod visible image, (b)-top, and terahertz image,

(b)-bottom, taken with a 1 s integration time in an imaging configuration (1). The

inset of (b) shows the terahertz image from configuration (2). After Lee et al. (2006).

Page 48



Chapter 3 Terahertz Imaging Modes

3.3 Terahertz imaging below the diffraction-limit

The size of smallest object that a lens can resolve is close to the wavelength, λ. More-

over, the smallest resolvable features in an image are not generally smaller than the

wavelength. In order to achieve the image of smaller objects that cannot be resolved

in detail, it is needed to break diffraction limit to push the resolving power below the

wavelength limit (Chan et al. 2007).

A limitation of THz imaging is poor spatial resolution due to the relatively long THz

wavelength. Terahertz near-field scanning can significantly improve the spatial reso-

lution. Various methods regarding terahertz near-field imaging have been explored

to improve the resolution to a few tens of microns (Mitrofanov et al. 1998, Mitro-

fanov et al. 2000, Chen et al. 2000). A dynamic aperture technique, used for the tera-

hertz near-field imaging, is capable of improving resolution to a subwavelength range

( λ/10). However, since the spatial resolution of the dynamic aperture is determined

by the diameter of the photocarrier layer, it is easily damaged by laser induced heating

(Chen and Zhang 2001).

An alternative approach is represented by Federici et al. (2002), where a micro ma-

chined near-field probe is fabricated by Lee et al. (2001). The near-field probe is cou-

pled through an aperture as small as λ/300. An efficient design of the probe allows

detection of terahertz electric field. The THz near-field imaging set-up is illustrated in

Fig. 3.11(a). It is similar to photoconductive terahertz pulsed imaging, in addition to

the important application of the probe design.

The probe structure is illustrated in Fig. 3.9(b). It is designed with an entrance sub-

wavelength aperture of size d (5-50 µm) on a thinned GaAs layer and a PC antenna

detector embedded between a GaAs and a sapphire substrate. A high refractive index

material is inserted in the space behind the aperture that reduces the effective wave-

length. The sapphire substrate supports the structure and allows the optical gating

pulses access the antenna from the substrate side.

The near-field probes based on coaxial transmission lines do not exhibit a cut-off fre-

quency, compared to near-field probes that depend on small apertures that produce

THz transmission. The spatial resolution of the near-field probe is defined by the aper-

ture size. It is found that the spatial resolution of larger apertures scales with the aper-

ture size and is independent of wavelength (Mitrofanov et al. 2001b).
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Figure 3.11. Near-field (NF) imaging. (a) A THz near-field imaging set-up. A mode-locked Ti-

sapphire laser beam is split to generate a pump beam (green line) and a probe beam

(red line). The pump beam excites a photoconducting (PC) switch. Generated THz

pulses (blue lines) are directed by two off-axis parabolic mirrors and focused on the

object through an aperture and a transparent substrate. The near-field probe is placed

behind the sample and nearly contacts with it. A PC antenna is integrated into the

near-field probe to detect the terahertz radiation, gated by probe beams. A lock-in

amplifier is used to improve the terahertz response. An automated x-y translation

stage scans an object perpendicular to the optical axis. A variable time delay stage

allows time-domain sampling of the THz pulse. The image can be constructed using

the detected THz signals either at a fixed time delay or at each position of the entire

time domain wave form. (b) Illustration of the probe structure, being coupled through

an aperture as small as λ/300. After Federici et al. (2002).
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Chapter 3 Terahertz Imaging Modes

Figure 3.12. THz near-field imaging employing synchrotron radiation. A part of a freshly cut

parthenocissus leaf is imaged in transmission. After Schade et al. (2004).

As the probe aperture alters the detected waveform, in the near-field, the target object

is not imaged directly based on the measurement of the instantaneous terahertz electric

field scattered by the object. In principle, the original waveform can be extracted if the

transfer function of the aperture is known. Finite-difference time-domain numerical

methods (Mitrofanov et al. 2001a, Bromage et al. 1998, Taflove and Hagness 2001) can

be used to analyse THz near-field image formation.

A spatial resolution of 7 µm has been achieved by using a 5 µm aperture probe (L =

4 µm, see Fig. 3.9(b)) (Federici et al. 2002). In order to maintain the best THz spatial

resolution, in the near-field, with under 7 µm spatial resolution thin sample sections

with less then 10 µm thick are used. Measurement of the THz optical properties or

spectra of isolated biomolecules (e.g., DNA) are examples of applications of THz near-

field imaging (Brucherseifer et al. 2000).

One more THz near-field imaging technique based on the broadband highly brilliant

coherent synchrotron radiation (CSR) has been reported by Schade et al. (2004) at the

BESSY synchrotron. This near-field imaging technique enables spectroscopic mapping

of strongly absorbing materials at spatial resolution well below the diffraction limit.

Fig. 3.12 shows a transmission image of a part of a freshly cut parthenocissus leaf. In

this THz near-field image the inner structure of the veins is revealed, which is formed

by spectrally broad water absorption and possible scattering at the structural bound-

aries. The contrast between the veins and leaf is shown via the 2D mapping. Since it
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is sensitive to the water concentration of the sample, THz scanning near-field imaging

(SNIM) enables studies of hydration dynamics with high spatial resolution.

3.4 Chapter summary

This Chapter gives an overview of basic terahertz imaging modes for terahertz imaging

systems, putting into the context some T-ray experiments conducted by international

THz groups. The image modes form a practical platform for image analysis with ap-

plication of detecting a wide variety of biosamples, for the aims of security screening,

quality control and biomedical diagnosis, which are represented in the next Chapter.
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Terahertz Imaging Analysis

A
DVANCES in THz technology have propelled terahertz

(THz) radiation to be an important part of the electromagnetic

spectroscopic region. The THz frequency range excites large

amplitude vibrational modes of molecules, and allows researchers to probe

weak interactions (Wallace et al. 2004b). Terahertz image analysis and pro-

cessing techniques make it possible to further analyse the interaction be-

tween T-rays and biological molecules, cells or tissues, to visualize small

particles and opaque objects, and to achieve the recognition of biomedical

patterns. These are topics of great importance to biomedical science, biol-

ogy, and medicines. In this Chapter, three techniques will be reviewed for

image analysis that utilize THz radiation: terahertz pulsed spectroscopy,

image recovery using THz-TDS techniques, and terahertz identification sys-

tems, all of which have a variety of possible applications in the biomedical

field.
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4.1 THz spectroscopy for biomedical signal identification

Imaging is a main application of THz-TDS. It is valuable for imaging applications not

only for observing the structure of the sample but also for performing spectroscopic

analysis and identification (Wang et al. 2003, Beard et al. 2002).

4.1.1 Time-resolved terahertz spectroscopy

Since THz-TDS is a time-domain technique, timing extraction is viewed as a simple

but important compression step, for example, by finding the time-delay of the wave-

forms after passing through materials. This is applicable in assessing thickness vari-

ations, in determining the position of unknown objects in reflection geometry, etc.

(Mittleman et al. 1996).

The non-contact measurement of burn depth and severity using terahertz radiation is

a topic of interest. Uncooked chicken breast is commonly used as a test sample for

observing the interaction with terahertz radiation in burn diagnostics research. In the

experiment represented by Mittleman et al. (1996), the reflected THz pulse trains are

measured at four different points with various levels of tissue damage on the sample.

The results show that a reflected pulse arises from a (buried) interface between tissue

layers with and without water content. Since reflected pulses contain a great deal of

information about the dielectric properties of the damaged tissue, terahertz radiation

can be viewed as a potentially valuable diagnostic technique in biomedical optics.

Pulsed terahertz (THz) wave technology has also been applied for biosensing. An

affinity biosensor has been reported using terahertz pulsed radiation in the far-field to

monitor binding between biotin and avidin molecules (Menikh et al. 2004). Amplified

detection of biotin-avidin binding is obtained on supported membranes composed of

biotin layers on a quartz surface, which is treated with octadecanol. A conjugation con-

sisting of agarose particles and avidin is applied. Through dithering the quartz slide

holder in the THz beam, the resultant THz difference signal between biotin and the

biotin-avidin complex is found to increase dramatically. This is due to the increased

contrast of refractive index resulting from the chemical binding, which enhances the

difference signal (Ferguson and Zhang 2002, Menikh et al. 2002). As avidin has a

very strong affinity for biotin and is capable of being bound to any biotin-containing

molecules, the developed detection technique can potentially be used to detect DNA
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hybridization and antigen-antibody interactions (Ferguson and Zhang 2002). A similar

technique is applied to DNA near-field imaging (Brucherseifer et al. 2000).

Equally important, the pulsed and time-resolved THz-TDS technique is capable of

identifing and separating standing waves from the fundamental signal in the spec-

trometer. This is because some molecular vibrations can be observed via terahertz

radiation at room temperature. Fischer et al. (2005b) suggest to distinguish two arti-

ficial RNA single strands, composed of polyadenylic acid (poly-A) and polycytidylic

acid (poly-C) via the different transmission spectra of the two measured terahertz re-

sponses. They observe that the poly-C sample shows stronger signal attenuation than

the poly-A sample.

4.1.2 Frequency depend terahertz spectroscopy

In the terahertz region, many molecules have a characteristic ‘fingerprint’ absorp-

tion spectra (Mittleman et al. 1996). At frequencies below approximately 6 THz, sub-

stances in the condensed phase are held together by either ionic, covalent or electro-

static forces, and therefore the lowest frequency modes will be associated with inter-

molecular motion (Fischer et al. 2005a). The interaction between THz radiation and bi-

ological molecules, cells, and tissues can be understood as a classical electromagnetic

(EM) wave interaction with materials. The medium is characterized in terms of its per-

mittivity ε (the ability of the medium to be polarized) and conductivity σ (the ability

of ions to move through the medium). On the other hand, at higher frequencies, tran-

sitions between different molecular vibrational and rotational energy levels become

increasingly important and are more readily understood using a quantum-mechanical

framework (Smye et al. 2001). Terahertz pulse spectroscopy provides information on

low-frequency intermolecular vibrational modes (Taday et al. 2003). In this Section, the

vibrational modes of the isolated molecules at low terahertz frequencies are reviewed

with related to several different substances and structures, including polarized water,

tissue, DNA strands and retinal molecules. Meanwhile, crystalline states of a drug are

investigated for pharmaceutical applications.

The absorption and detection in water, liquid and tissue

Terahertz radiation interacts strongly with polar molecules, a prime example being

water. Water molecules absorb terahertz waves, on the one hand limiting penetra-

tion of the radiation in moist substances, and on the other hand making it readily
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detectable even in very low concentrations (Mickan et al. 2000). Polar water molecules

are active in the infrared region and have various vibrational modes (Pickwell and

Wallace 2006). The top of Fig. 4.1(a) shows the vibrational mode of the gas phase of

water molecules. In the mid- to far-infrared, the vibrations involve combinations of

the symmetric stretch (ν1), asymmetric stretch (ν3), and bending (ν2) of the covalent

bonds. The vibrations of water molecules are thought of as restricted rotations, a rock-

ing motion, shown on the bottom of this figure. In liquid water, since hydrogen bonds

are much weaker than the covalent bonds (intra-molecular), their bond lengths are

much longer (1.97 Å versus 0.96 Å), which is shown in Fig. 4.1(b). This bond state

model plays an important role in the understanding of water molecule modes at THz

frequencies.

symmetric stretch asymmetric strecth bend

x,y and z librations

ν ν ν1 23

x y z

(a)

hydrogen

bond

length

1.97 

0.96

covalent

bond

length

o
A

o
A

(b)

Figure 4.1. Water molecule vibrational moles. (a) The main vibrational modes in water. (b) A

schematic diagram illustrating the differences between intra- and inter-molecular bonding

in water. After Pickwell and Wallace (2006).
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Studying liquids, such as water, with THz time-domain spectroscopy determines the

real and imaginary components of the permittivity, which is then related to the in-

termolecular dynamics. A Debye relaxation model can be used to analyze the strong

absorption of terahertz radiation in polar liquids at least up to 1 THz (Rønne et al. 1999,

Siegel 2004).

Solvation and liquid dynamics play a very important role in essentially all liquid phase

processes. Solvent effects are significant in photoexcitation, photoionization, electron

transfer, proton transfer, energy dissipation, and liquid phase reactions (American

Physical Society 2007). Probing the low-frequency solvent modes directly is a pro-

posed method for understanding the solvent response to the above processes. THz

time domain spectroscopy has been applied to explore low frequency intermolecular

dynamics and solvation in liquids (McElroy and Wynne 1997, Haran et al. 1997, Kindt

and Schmuttenmaer 1999, Giraud and Wynne 2003).

Biological tissue is generally dominated by polar liquids or preserved in polar liquids.

Due to the exceptionally high absorption losses of polar liquids at terahertz frequen-

cies, it is impossible for terahertz radiation to penetrate through biological materials

of any substantial thickness. However, the same high absorption coefficient that limits

penetration in tissue also promotes extreme contrast between substances with less or

higher degrees of water saturation (Siegel 2004). This property has proven advanta-

geous in the examination of the properties of water uptake and distribution in plants

(Hadjiloucas et al. 1999, Hadjiloucas and Bowen 1999), as well as in the severity of

burns on necrotic skin samples (Mittleman et al. 1999). In addition, Woodward et al.

(2003) and Wallace et al. (2004a) describe the application of TPI techniques for imag-

ing basal cell carcinoma (BCC) ex vivo and in vivo. The BCCs show an increase in

absorption of terahertz compared to normal tissue. The observed increase in terahertz

absorption is most probably due to either an increase in interstitial water within the

diseased tissue (Lahtinen et al. 1999) or a change in the vibrational modes of water

molecules with other functional groups. More research using terahertz radiation in

tissue identification has been reviewed by Siegel (2004).

Molecular signatures for the identification of full compounds

As for the identification of full compounds using molecular signatures with terahertz

time-domain systems, there exist several difficulties. The difficulties lie in the inher-

ently broad spectral signatures, relatively weak differential absorption compared to
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low pressure gasses. Nevertheless, there are a growing number of multiply confirmed

observations regarding particular resonant signatures for the identification of full com-

pounds (Choi et al. 2002).

It especially becomes interesting in recent years to observe the conformational struc-

ture, binding states, and vibrational or torsional modes of proteins and oligonucleotides

(Markelz et al. 2000, Martel et al. 1991) via analyzing spectral features in the terahertz

range (Siegel 2002). The reflection or absorption signatures of a sample can afford the

information about chemical or physical changes that the sample undergoes. These

changes may involve a difference in conformational state, a change of density or polar-

izability, dehydration, or denaturing or a temperature shift. The comparison of these

signatures of sample spectra is the most reliable method to achieve the identification

of target objects (Siegel 2004).

Nishizawa et al. (2005) illustrate a widely tunable coherent terahertz scanning system

to achieve an automatic measurement for terahertz (THz) transmission spectroscopy

using the samples consisting of nucleobases, nucleosides, deoxynucleosides, and nu-

cleotides, all of which are the components of RNA and DNA molecules. THz spectra

of those samples are measured in crystalline states in the range of 0.4-5.8 THz. The

experimental results show that the molecules have quite different characteristic spec-

tral patterns in this frequency region and the patterns are sufficient for identifying and

discriminating these molecules.

Pulsed terahertz spectroscopy was first reported by Markelz et al. (2000) for examin-

ing the low frequency collective vibrational modes of biomolecules, i.e. DNA, Bovine

Serum Albumin and Collagen between 0.1 and 2.0 THz. It is observed that broad-

band absorption increases with frequency and a large number of the low frequency

collective modes for these systems is suggested to be IR active. Herrmann et al. (2005)

carry out the measurements of THz spectra of Poly(dA-dT)-Poly(dT-dA) DNA and

Poly(dG)-Poly(dC) DNA based on the THz complex refractive index. The resultant

spectral features show that those samples are distinguishable in the range from 0.1 to

2.4 THz. Additionally, the absorption spectra of lactose, aspirin, sucrose and tartaric

acid are formed in THz pulsed transmission mode by Fischer et al. (2005a). The results

show the four different chemicals contained in the sample are clearly identifiable.

Long-wave absorption features are intrinsic properties of biological materials, which

are determined by phonon modes. The direct identification of terahertz phonon modes

in biological materials is very challenging. Globus et al. (2002) use Fourier-transform
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infrared spectroscopy to investigate the phonon modes in DNA macromolecules via

studying the structure of transmission and absorption spectra. Different DNA sam-

ples display multiple modes with sequence-specific uniqueness. It provides experi-

mental evidence confirming DNA samples to possess multiple dielectric resonances,

via their submillimeter-wave spectra (i.e. ∼ 0.01-10 THz), and establishes the initial

foundation for the future use of submillimeter-wave spectroscopy in the identification

and characterization of DNA macromolecules. Though the above study is based on

Fourier-transform infrared spectroscopy, it motivates the future research of phonon

modes in DNA macromolecules using terahertz time domain spectroscopy.

More terahertz research groups in Germany and Australia, have worked on the ter-

ahertz spectrum regarding the study of the photoisomerization of the retinal chro-

mophore (Walther et al. 2000, Jones et al. 2006). The conjugated polyene chain of the bi-

ologically important chromophore retinal in low-frequency torsional vibration modes

is investigated. The absorption and dispersion spectra of three different retinal isomers

(all-trans; 13-cis; and 9-cis retinal) in the far-infrared region between 10 and 100 cm−1

(0.3 ± 3.0 THz) are measured by terahertz time-domain spectroscopy at 298 and 10 K.

At low temperatures it is observed that the broad absorption bands resolve into narrow

peaks correlating to torsional modes of the molecule. The modes within the molecule

can be approximately localized by the comparison of the absorption spectra of different

retinal isomers. Fig. 4.2(a) illustrates a retinal isomer visualized in Molden (Schaftenaar

and Noordik 2000), optimized with Gamess (Guest et al. 2005). Fig. 4.2(b) shows the

mammalian retina with rod cells.

A very promising application for terahertz molecular spectroscopy in the pharma-

ceutical industry is being pursued by Teraview Ltd., Cambridge, U.K., for detect-

ing the presence of unwanted polymorphs in prepared drugs (Taday et al. 2003, Stra-

chan et al. 2004, Strachan et al. 2005). The crystalline structure of the Polymorphs of

Ranitidine Hydrochloride is investigated using terahertz pulse spectroscopy. The con-

siderable differences in the THz spectrum between two different forms of polymorphs

are especially observed at around 1.10 THz. It turns out to be the obvious identification

of the two structures of Ranitidine Hydrochloride. More work on the identification of

crystalline structure drugs using terahertz pulsed spectroscopy has been reviewed by

Zeitler et al. (2007b).

Page 59



4.1 THz spectroscopy for biomedical signal identification

(a)

(b)

Figure 4.2. Retinal isomer. (a) Illustration of a retinal isomer visualized in Molden (Schaftenaar

and Noordik 2000), optimized with Gamess (Guest et al. 2005). (b) Illustration of the

mammalian retina with rod cells. The stacks of membrane discs (middle) consists of the

outer segment of a cell with protein rhodopsin involved. A retinal chromophore in its

11-cis conformation is embedded in the rhodopsin molecule (right). The vision process

is eventually triggered by the isomerization of the retinal to the all-trans configuration.

After Walther (2003).
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Figure 4.3. Time-frequency domain features of THz signals. Contour plots of the real part (left)

and imaginary part (right) after conducting the db4 continuous wavelet transforms of

terahertz measurements corresponding to: (a) leather, (b) lycra and (c) the difference.

After Galvão et al. (2003).

4.1.3 Time-frequency domain features of terahertz signals

Time-frequency methods have been proven to hold great promise for optimizing the

extraction of the spectroscopic information contained in each terahertz pulse, for the

analysis of more complex signals using THz-TDS (Berry et al. 2005). The wavelet trans-

form (WT) is a popular technique suited to the analysis of short-duration signals,

especially signals with sudden and unpredictable changes that often carry the most

interesting information (Qian 2002). The WT decomposes time domain signals into

components of different magnitudes and position, which makes possible to modify

wavelet transform coefficients and keep the coefficients reflecting the relevant infor-

mation (Meyer-Base 2003). The robustness of wavelet transform (WT) can be applied

for the compressed measurements (Galvão et al. 2003) in terahertz pulsed imaging.

Currently, there are a few terahertz groups in the world which are performing the re-

search using wavelet transforms to achieve the analysis of terahertz pulsed responses.

In the University of Leeds, a wax embedded histopathological melanoma section and a

tooth slice are measured for the discrimination of cancer tissues from normal cells, and

classification between dentine and enamel, respectively. The separations are achieved

with acceptable error (Berry et al. 2005). At the University of Reading, leather and ly-

cra are used as samples to study data compression in terahertz pulsed imaging (TPI).

It is found that the estimates of refractive index and absorption coefficients are not
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significantly altered when the terahertz data are reconstructed from only 20% of DWT

coefficients (Galvão et al. 2003). Fig. 4.3 shows the contour plots of the real part (left)

and imaginary part (right) after conducting the db4 continuous wavelet transforms of

terahertz measurements corresponding to: (a) leather, (b) lycra, and (c) the difference.

The reconstructed signal after wavelet transforms shows improved classification per-

formance. Further examples exploiting the time-frequency domain for classification of

signals from biomedical samples will be reviewed later in Section 4.3.

4.2 2D and 3D terahertz biomedical imaging

The Rayleigh scattering of light is a major difficulty hindering image processing in the

terahertz regime (Han et al. 2000) and other optical based techniques. In order to im-

prove the image quality and overcome the Rayleigh scattering at greater depths, it is

expected to increase the wavelength of light used, since the degree of Rayleigh scat-

tering is inversely proportional to the fourth power of the wavelength, λ (Ferguson

and Abbott 2001a). However, relatively long wavelengths limit the spatial resolution

of the objects. In order to obtain higher resolution, a bright source of radiation at in-

termediate wavelengths is needed (Reid and Fedosejevs 2005). In other words, the

wavelength has to be sufficiently small to provide good resolution, yet large enough to

prevent serious losses by Rayleigh scattering. Though Rayleigh scattering still remains

an obstacle in many biomedical applications, recent advances have sought to address

these effects (Pearce and Mittleman 2003). It is expected that terahertz radiation should

produce less scattering than visible and near-infrared frequency, which is a major ad-

vantage for terahertz imaging (Berry et al. 2005). It has been borne out by experiments

that terahertz reveals generally higher image contrast than near-infrared, although the

near-infrared pulses posses high power (Cogdill et al. 2007).

As mentioned in Chapter 2, terahertz pulsed imaging can be achieved via a pump-

probe detection system. In pump-probe detection, terahertz pulses are focused on a

particular point on an object. The transmitted or reflected portion of each pulse is

then detected after a time delay. By measuring the length of this delay, a 3-D image

of the internal structure can be discerned. The target image can be built up via scan-

ning the beam, or reflecting from or transmitting through the sample at each position

of the sample. A variety of in situ measurements in various applications can be car-

ried out. Alternatively, a terahertz snapshot of the object can be achieved via using a
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charge-coupled device (CCD) for the measurement involving a moving target or source

(Arnone et al. 2000).

(a) (b)

Figure 4.4. Pulsed THz imaging of a human tooth and a sample of pork. (a) An image of a

human tooth formed from terahertz radiation in transmission mode. (b) Illustration of

the terahertz pulsed image of a sample of pork. After Arnone et al. (2000).

A major advantage of terahertz imaging is in its diagnostic capabilities. Fig. 4.4(a) is

an image of a human tooth formed from terahertz radiation in reflection mode. Due to

the different mineral content among the different layers of the tooth, a large difference

in the index of refraction can be observed for the different types of tissues. The dis-

tance between the different layers can be resolved readily from the reflected terahertz

radiation by measuring the time of flight. Furthermore, the spectral information from

terahertz pulses are used to distinguish different types of soft tissues, such as muscle,

fat, and kidney, because each has a characteristic ‘fingerprint’. Fig. 4.4(b) illustrates

the terahertz pulsed image of a sample of pork. The absorption spectrum at each pixel

highlights the regions of muscle and fat in detail.

4.2.1 Cancer cell detection

Since water has strong absorption at THz frequencies and tumours tend to have dif-

ferent water content from normal tissue, a terahertz image can be achieved by using a

contrast mechanism based on variations in water content.

Skin cancer

Terahertz pulse imaging of ex vivo basal cell carcinoma was reported first by the re-

search group in the University of Cambridge (Woodward et al. 2002). Basal cell carci-

noma is the most common form of skin cancer. The terahertz pulsed image is generated

Page 63



4.2 2D and 3D terahertz biomedical imaging

in reflection mode using a terahertz time-domain analysis technique (Woodward et al.

2003). The recovered terahertz image is shown in Fig. 4.5. The diseased tissue shows

an increase in absorption compared to normal tissue, which is attributed to either an

increase in the interstitial water within the diseased tissue or a change in the vibra-

tional modes of water molecules (Woodward et al. 2002, Woodward et al. 2003). This

result from Cambridge University motivates great interests in skin cancer detection

(Wallace et al. 2004a, Woodward et al. 2004, Pickwell et al. 2004) and makes a valuable

exploration using terahertz radiation.

(a) (b)

Figure 4.5. Skin cancer THz detection. A comparison is conducted between the visible image

(a) and the THz image (b). The diseased tissue, on the left of (a), is marked by a solid

boundary, the normal tissue on the right by a dashed boundary. The dotted white line

indicates the axis of the vertical histology section. The white ‘x’ marks the location of

the suture. In (b), d1 and d2 label the diseased tissue, with equal size areas, and n1

and n2 label the normal tissue. After Woodward et al. (2003).

Breast cancer

The feasibility of using terahertz pulsed imaging to map margins of exposed breast

tumors is investigated by Fitzgerald et al. (2006). The size and shape of tumour regions

on terahertz images are compared with those identified at histopathologic examina-

tion of the imaged section. The minimum of the terahertz impulse function (Emin)

as parameter is used to map the target measurement for the two dimensional image.

The THz pulsed image is achieved in reflection mode, as illustrated in Fig. 4.6. It is

observed that photomicrographs contained many more pixels than the terahertz im-

ages. Though, this resultant experiment demonstrates the potential of terahertz pulsed

imaging to depict invasive breast carcinoma in situ under controlled conditions.
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0.035

Figure 4.6. Breast cancer THz inspection. The shape of the tumour regions is compared via

photomicrographic scanning (a) and terahertz scanning (b) using a invasive ductal car-

cinoma as a sample. The tumour regions in (a) are bounded by the black outline. In

(b), the terahertz image is mapped via parameter Emin. A threshold is applied to delin-

eate regions (red) for (c) photomicrograph, and (d) terahertz image. Numbers of pixels

in the cancer regions have been summed in x and y directions to form profiles in (e)

and (f), respectively. The profiles consisting of circles are from a photomicrograph, and

black dots from a terahertz image. After Fitzgerald et al. (2006).

4.2.2 Brain section detection

Terahertz quantum cascade lasers as bright laser sources have been shown to be promis-

ing to image biomedical samples. It was first demonstrated by Darmo et al. (2004) to

image a specimen of dehydrated rat brain by using a terahertz QCL. This new opto-

electronic source of coherent terahertz radiation allows researchers to build a compact

imaging system with a large dynamic range and high spatial resolution. The image of

a brain section is obtained at 3.4 THz, and illustrated in Fig. 4.7. Distinct regions of

brain tissue rich in fat, proteins, and fluid-filled cavities are resolved showing the high

contrast of terahertz radiation for biological tissue. The Fabry-Pérot modulation of the

background in the image is suppressed by tilting the sample holder. The THz images
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4.2 2D and 3D terahertz biomedical imaging

Figure 4.7. Rat brain image using a THz QCL. White-light (a,b) and THz (c,d) images of rat

brain frontal sections. The samples are about 30 µm thick and fixed onto a gold-coated

flat mirror. The pixel size is 200 µm × 200 µm. The dark (high absorption) structures

in THz image are from white matter tissue (e.g., corpus callosum, hippocampus, capsula

interna, commisura anterior) which are more or less heavily myelinated and consisted

largely of lipids, i.e. fats. The different fat content thereby determines the differing

grey values. The grey matter of the brain (e.g. cortical cortex), which naturally has a

much higher content of water and proteins, gives higher signal intensities in THz images

(less absorption) than do tissues with high fat content. The brightest structures (the

lowest THz absorption) in the images correspond to the ventricular system, which in

vivo contain water and in vitro contain air. After Darmo et al. (2004).

are collected in transmission mode at scanning step size of 200 µm. The continuous-

wave terahertz imaging can provide valuable data on biological samples via carefully

selecting possible T-ray wavelength. These data appear complementary to those ob-

tained from white-light images.

4.2.3 Tablet coating detection

Three dimensional terahertz pulsed imaging is evaluated as a novel tool for the non-

destructive characterization of different solid oral dosage forms (Zeitler et al. 2007a).
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Chapter 4 Terahertz Imaging Analysis

The measurements using 3D TPI techniques are fast and fully automated and allow

to determine the spatial and statistical distribution of coating thickness in single and

multiple coated products. In soft gelatin capsules, TPI is able to measure the thickness

of the gelatin layer and to characterize the seal between the gelatin layers for qual-

ity control. The resultant mapping of a gelatin capsule from practical measurements

based on reflective mode TPI is shown in Fig. 4.8, which is obtained from experiments

performed by Zeitler et al. (2007a). The 3D THz pulsed imaging technique has the

potential for much wider applications in the process analysis field.
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Figure 4.8. Thickness measurements of soft gelatin capsules using THz 3D imaging. Spatial

distribution and histogram of the gelatine layer thickness (a) and interface index (b) over

the surface of the capsule. The time delay between the two peaks allows the thickness

calculation of the gelatin sheet for every single recorded pixel, shown in (a). One of the

two peaks is the signal from air-gelatin interface, and the other is from gelatin-liquid

interface. It reveals that the thicknesses of the two soft gelatin sheets are different,

which match to the original thickness of the target capsule. By illustrating the relative

peak strength of the reflection signals in the terahertz waveform rather than the time

delay, the area of the seam between the two gelatin sheets is clearly distinguished from

the rest of the capsule, shown in (b), which is much thinner than the two gelatin sheets

themselves. After Zeitler et al. (2007a).

4.3 Pattern recognition of biomedical samples

Automatic classification of data is a significant application of imaging techniques in

the signal processing research area. Such systems need to be capable of analyzing and

dealing with measure image statistics and automatically producing a correct inspection

outcome (Meyer-Base 2003, Yin et al. 2007b).
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4.3 Pattern recognition of biomedical samples

THz images are parametric images derived from the measured pulses (Löffler et al.

2002, Yin et al. 2007g). For instance, pulse height and shape, and delays in the time

domain carry contrast information. Additionally, the spectral content of the pulse can

be exploited for pixel by pixel spectroscopic analysis and material characterization,

including transmittance and absorbance parameters, as commonly used in Fourier

transform infrared spectroscopy (Lasch and Naumann 1998, Withayachumnankul et al.

2005). Combinations of parameters are useful for developing thickness-independent

parameters that allow differentiation between time delays due to refractive index vari-

ations or sample thickness. In many cases, the parameters can be compared to a ref-

erence pulse to obtain a relative measure (Fitzgerald et al. 2002). These parameters are

significant in pattern recognition for feature extraction. Via feature extraction, several

critical features of material from the complex T-ray spectral responses can be separated

to acquire a good classification performance (Yin et al. 2007h, Bow 2002).

To extract features and form accurate classification, it is possible to use system identi-

fication to estimate a system that best describes measured data. In order to estimate

a system, many methods suggest estimating linear model coefficients (Kalouptsidis

and Theodoridis 1993). These methods applied to terahertz imaging research mainly

include (i) k-means classification of skin cancer cells by applying multispectral clus-

tering techniques (Berryman and Rainsford 2004); (ii) the separation of the compo-

nent spatial patterns of chemical samples (Watanabe et al. 2003); (iii) the Euclidean

distance classifier by continuous wavelet transforms of THz transient spectrometers

(Galvão et al. 2003); (iv) support vector machines (Withayachumnankul et al. 2006) for

the classification of bone cancer cells. The following sections review the basic classifi-

cation principles and pattern processing techniques for terahertz pattern recognition.

The suggested parameter extraction methods along with linear and nonlinear classi-

fiers mentioned above are discussed.

4.3.1 Extracted parameters for terahertz pattern recognition

Parameter terahertz images for pattern recognition are well illustrated by Löffler et al.

(2002). This terahertz group map 2D images by light- and dark-field TPI techniques

with a thin-cut canary’s head as a sample. Both time- and frequency-domain methods

are applied for terahertz parameter extraction. This dark-field TPI technique is to ex-

plore the image mapping by using the deflected terahertz beams beyond the normal

beam-propagation direction, due to either diffraction or scattering effects in the sample
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(Löffler et al. 2001). Different parameter extraction methods in the time- and frequency-

domain are capable of achieving successful tissue classification after applying a suit-

able threshold (Ferguson et al. 2002c, Löffler et al. 2002).

4.3.2 Multispectral classification for terahertz pulsed imaging

The concept behind multispectral classification techniques is borrowed from multi-

spectral satellite imaging (Vohland et al. 2007). It allows labelling multispectral data

in terms of corresponding different physical properties of material and display of a

coloured multispectral image. Different colours overlaid in multispectral images rep-

resent different classes in which the image is classified (Defence Research & Devel-

opment Organization 2008). Multispectral classification composes of supervised and

unsupervised learning. The techniques are efficient for classifying heterogeneous ob-

jects (Zhang et al. 2004) and is well-suited to the analysis of terahertz pulsed imaging

data (Ferguson et al. 2002c, Berryman and Rainsford 2004). Multispectral classifica-

tion algorithms are commonly realised by applying current image processing software

systems (University of California 2008).

ISODATA and k-means classifications

ISODATA and k-means classifications are two most frequently used methods for un-

supervised classification, which means training data are not involved for the classifi-

cation procedure (Bow 2002). The two techniques were first employed in THz imaging

by Berry et al. (2004). Both of these algorithms are iterative procedures. The aim is to

repeatedly classify each pixel to the closest cluster till the change between the cluster

mean vectors is small. The iterative procedures start from an arbitrary assigned ini-

tial cluster vector. The ‘change’ can be defined either by measuring the distances the

mean cluster vectors have changed from one iteration to another or by the percentage

of pixels that have changed between iterations (Yale University 2008).

The ISODATA algorithm is similar to the k-means algorithm with the distinct differ-

ence that the ISODATA algorithm allows for different number of clusters and some fur-

ther refinements by splitting and merging of clusters (Duda and Hart 1973). In contrast,

the k-means assumes that the number of clusters is known a priori (MacQueen 1967),

and then attempts to minimise the total intra-cluster variance.
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4.3 Pattern recognition of biomedical samples

Figure 4.9. Multispectral clustering for THz classification. The resultant separated patterns are

based on two specimens: BCC on the top; melanoma on the bottom. Boundary regions,

are shown in a shade of blue. The sub-classifications are achieved within the innermost

regions for both BCC and melanoma. The ISODATA based images are shown on the left

hand. Results of K-means clustering into eight classes using the 64 time series values

are shown on the right hand. After Berry et al. (2004).

Fig. 4.9 shows the visualized multispectral clustering techniques based on the experi-

ment conducted by Berry et al. (2004). Pulsed terahertz imaging in transmission mode

is used for terahertz measurements. Two specimens are examined for study, one is

basal cell carcinoma (BCC) (on the top) and the other is melanoma (on the left bottom).

Cells are treated by dehydration and fixed with formalin, for the sample stability. The

unsupervised ISODATA algorithm is used for classifications resulting from three para-

metric images with two merge steps. The classified images from the ISODATA algo-

rithm are shown on the left hand side of Fig. 4.9. The internal structure of the BCC is

more organized than that of the melanoma, which is consistent with the appearances of

the original target slice. Results from a k-means classification using time series features

appear on the right hand side of Fig. 4.9. These show the same shapes as the ISODATA

classification using three features. For the BCC, the well-defined internal structures are

also shown. There are more classes defined in the background regions of these images

because the number of classes is fixed at eight, without the merging options used for

the ISODATA algorithm.
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Principal component analysis

Principal components analysis (PCA) is a technique used to reduce multidimensional

data sets to lower dimensions for analysis (Jolliffe 2002). Principal component analysis

algorithms are employed by Shikata et al. (2002) and Watanabe et al. (2003) to demon-

strate the separation of the component patterns of chemical samples in multispectral

THz images. The experiment setup uses a widely tunable coherent THz-wave para-

metric oscillator (TPO) (Kawase et al. 1996). The spatial patterns consists of two compo-

nents: Palatinose and 5-aspirin, both of which are fixed on a sample holder. The holder

is mounted on a x-y linear moving stage. All the samples are pressed into pellets with

thickness of 1.0 mm. The content is analyzed via applying five transillumination THz

spectroscopic images: palatinose and 5-aspirin are prepared in three (50%, 40%, and

20%) and two (50% and 20%) concentrations, respectively. The frequency range covers

from 1.3 to 1.8 THz in 0.1 THz steps.

The intensity of terahertz images keeps attenuated by absorption linearly, which is

caused by the concentration and the thickness of the chemical samples. Therefore, the

image F(x, y, f ) observed at each of the f THz is expressed as a linear combination of

absorbance spectra S( f ) and spatial pattern P(x, y), which satisfies a matrix equation

[F] = [S][P] for principal component analysis. Since [F] and [S] are measured directly,

a least-squares method allows the matrix equation to be solved. As a result, the ma-

trix [P] is described by [P] = ([S]T[S])−1[S]T[F], where T labels the matrix transpose

operation.

Fig. 4.10(a) shows the measurement of the spectral data of well separated samples

of 50% 5-aspirin and palatinose using the TPO, which corresponds to the one of the

columns of matrix [S]. A THz image at 1.5 THz is displayed in Fig. 4.10(b), which

corresponds to one of row vectors of matrix [F]. The resultant component analysis is

shown in Fig. 4.10(c) and (d). The estimated values of concentrations with respect to

palatinose and 5-aspirin approximately agree with the known concentrations.

Though the principle component analysis and linear discriminant analysis (LDA) are

commonly used for feature extraction (Jolliffe 2002, McLachlan 1992), these methods

do not offer a universal panacea. It has been recognised that there exists the prob-

lem of ‘overfitting’, where complex classifiers such as neural networks result in overly

detailed decision boundaries. The boundaries described match the training data too

closely and thus fail to generalise a accurate classification. It is the subject of extensive

research (Domingos 1999, Cubanski and Cyganski 1995, Fleming 2001).
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Figure 4.10. Principal component analysis of THz spectral. (a) Spectral data of 50% 5-aspirin

and palatinose. (b) THz images at 1.5 THz. Five mixtures are involved: 50%, 40%,

and 20% of 5-aspirin mixed with palatinose plus 50% and 20% of palatinose mixed

with 5-aspirin. The scale of the image is the logarithm of the observed image intensity.

Component spatial patterns with different calculated concentrations of (c) palatinose

and (d) 5-aspirin. After Watanabe et al. (2003).

4.3.3 Classification of THz spectra in the wavelet domain

The performance of a classifier based on the output of a filter bank was first illustrated

by Galvão et al. (2003) in terahertz optical research. It turns out to be considerably bet-

ter than that of the Euclidean distance classifier in the original spectral domain. An

optimal feature extraction in the wavelet domain is performed, by maximizing an ob-

jective function. The object function is achieved by dividing the power of the wavelet

coefficients by the noise amplification factor. The procedure is capable of enhancing
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Chapter 4 Terahertz Imaging Analysis

Figure 4.11. Optimal THz classification in the wavelet domain. Graphical illustration of the

transformations regarding the optimization process, by representing the discrimination

of two responses at four particular time, or two points in two four-dimensional spaces.

Considering the left half of the vectors after performing the Fourier transformation

of responses, each of the spectra pattern consists of real and imaginary parts at two

frequencies ω1 and ω2. In (a) and (b), the two patterns indicated by two points are

discriminated in two complex planes, each plane associated with one of the frequencies.

The noise associated with the patterns is represented by the larger circles. The noise

is equal in all directions because the Fourier transform is orthogonal. The difference

∆Xa as a vector is represented in each plane ((c) and (d)). The differences in complex

insertion loss ∆L are understood as ratioing against the background at each frequency,

which is equivalent to rotating and contracting the difference vectors ∆Xa. Since the

background intensity is different at each frequency, the noise level becomes different in

∆L(ω1) and ∆L(ω2). The result is that the noise is no-longer equal in all directions, as

shown in (e) and (f), which turns out to be a nonoptimal Euclidean distance classifier

(Raudys 2001, Hadjiloucas et al. 2002). The optimization of the objective function is

to find a single direction for the kth wavelet coefficient by performing a further rotation

of the four axes, with an aim to achieve the maximal projection OB of the difference

with respect to the projection AC of the noise. After Galvão et al. (2003).
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4.4 Chapter summary

the contrast or classifying spectra acquired by either continuous wave or THz tran-

sient spectrometers for increasing the dynamic range of THz imaging systems. This

optimal feature extraction is graphically demonstrated in Fig. 4.11.

4.3.4 Support vector machines for classification of the terahertz rel-

evant frequencies

In addition to the classifiers mentioned above, the nonlinear classifier known as a sup-

port vector machine has also been explored by Withayachumnankul et al. (2006), for the

classification of the T-ray response of normal human bone cells and human osteosar-

coma cells. The magnitude and phase responses within a reliable spectral range are

the extracted feature vectors, and a trained support vector machine allows correct clas-

sification of the two cell types with a consistent classification accuracy of 89.6%, with

only one fifth of the original features retained in the data set. Feature subset selection

methods are used to select only an optimal number of relevant features for inputs. The

resultant improvement in generalization performance is achieved, and the selected fre-

quencies are used for further describing different mechanisms of the cells, responding

to terahertz radiation. Further investigation using support vector machines will be

performed and demonstrated in Chapter 9.

4.4 Chapter summary

THz imaging analysis plays an important role in THz pattern recognition. The inten-

tion of the review represented in this Chapter is to provide a motivational setting for

further exploration of THz material identification, as carried out in this Thesis. These

experimental results reviewed in this Chapter are from work performed by interna-

tional terahertz groups, aimed at highlighting the potential of the application of var-

ious signal processing techniques and classification algorithms on THz spectroscopy

and pattern recognition. In the next Chapter, we discuss a pattern recognition frame-

work for application to terahertz radiation. We also point out the importance of signal

processing techniques for the THz identification system, especially the exploration of

feature extraction methods will result in a successful differentiation of THz pulsed

responses, which is of essential significance to achieve biomedical related THz classifi-

cation algorithms.
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Chapter 5

Pattern Formation and
Recognition Using T-rays

P
ATTERN formation using terahertz radiation can be defined as

the generation of a quantitative or structural description of an

object, especially an optically opaque object, via T-rays. It fol-

lows that a pattern class can be defined as a set of patterns that share some

properties in common. As common pattern properties belong to the same

class, it enables us to build different models for discrimination. Pattern

recognition is the process of categorising any sample of measured or ob-

served data as a member of a candidate class, several of which may be

allowed in each particular problem. For pattern recognition, applications

tend to be specific and thus require specialised techniques. In this Thesis,

sample responses from multiple terahertz experiments are used for pattern

recognition case studies.
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5.1 Significance of a terahertz pattern recognition sys-

tem

Pattern recognition techniques can be applied in many different areas to solve existing

problems. The various requirements arising from the process of resolving practical

problems motivates and expedites the development of pattern recognition. This is a

major reason why this discipline has grown so fast (Bow 2002).

One of important parts of this Thesis is the exploration of different approaches to deal

with and identify T-ray patterns. Since the output of the T-ray instruments is in the

form of raw numerical data, the pattern can be constructed from images in digital

format, records of time series, or measurement vectors describing the state of a physical

system.

The function of a THz pattern recognition system is to emulate the recognition ability of

human beings, while using T-ray imaging as the primary sensing mode. The procedure

involves automatic processing of acquired data and making the decisions of pattern

discrimination, effectively and efficiently.

Pattern recognition using T-rays differs from T-ray image processing. T-ray imag-

ing achieves the description of the complete target of interest (Duda et al. 2001) via

applying entire T-ray imaging measurements. In contrast, T-ray pattern recognition

aims to select a fewer number of significant features than in a complete image data

set, resulting in simpler representations without incurring a dramatic loss of informa-

tion. Through pattern analysis, any relations, regularities, or structures inherent in the

source of a T-ray response can be found. By detecting significant patterns in the avail-

able T-ray relevant data, a T-ray system can expect to make predictions about new THz

data coming from the same source (Shawe-Taylor and Cristianini 2004).

Automation of the laboratory examination of routine biomedical signals and images

is an important application area for T-ray pattern recognition. Pattern recognition can

involve optical property recognition, powder recognition of chemical substances, layer

thickness detection of drugs, and DNA sequence identification for example. It may

also be possible to screen out abnormal cells, from normal ones, for tissue analysis

applications.
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5.2 Mode of the THz pattern recognition system

The pattern recognition system in this Thesis is developed to transform target object in-

formation, in the form of T-ray time domain spectroscopic measurements, and then to

extract features and recognise patterns corresponding to the underlying sample. This

recognition system more easily allows humans to identify the structures or compo-

nents of the target substances. The difficulties with using THz for this type of work lie

in extracting useful information from empirical data. Changes in the THz pulse that

are caused by the sample can be difficult to distinguish from those caused by long-term

fluctuations in the driving laser source. In order to differentiate between terahertz pat-

terns in data, it is proposed to increase contrast in THz signals and images. For in-

stance, by applying signal processing techniques, the difference in the water content

of tissues, in the refractive indices and absorption coefficients of various media can be

detected. Alternatively, by tracking suitable molecular resonances, the different optical

characteristics possessed by different DNA components can be analysed.

Signal processing techniques have been used to improve the speed, resolution and

noise robustness of T-ray imaging systems (Ferguson et al. 2002c). These effective

processing methods facilitate T-ray signal or image recognition. This Thesis consid-

ers a number of signal processing techniques suitable for extracting information from

the data obtained in a terahertz pulse measurement system. A sequence of opera-

tions are performed on the T-ray responses of target objects in order to achieve de-

sired processing results. For example, in the case of a discrimination of two different

substances, chicken and beef, signal processing changes the original THz signal trans-

mitting through the chicken breast, via applying Finite Impulse Response (FIR) and

Auto Regressive (AR) fitting, into a modified version of the THz response, shown in

Fig. 5.1(a). This modification makes it possible to achieve sample recognition from

different classes of chicken and beef sample signals, shown in Fig. 5.1(b).
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Figure 5.1. Pattern recognition of chicken and beef. (a) Model output for second order FIR

and AR filters. The sample holder THz response is used as the model input and the

desired output of this model is viewed as the measured response after transmission

through the chicken breast. The Wiener-Hopf equation is adopted to calculate the least

squares model coefficients for second order Finite Impulse Response (FIR) and Auto

Regressive (AR) systems. The model outputs are compared with the desired output.

The models are modestly accurate, accounting for 43% and 32% of the actual response

respectively. (b) Scatter plot of T-ray transmission for chick and beef. This plot shows

the ability of the 2nd order FIR model coefficients to discriminate the two different

classes of samples. The optimal FIR model coefficients are calculated on 100 random

T-ray responses and plotted. The two classes show a significant difference in their

coefficients. After Ferguson et al. (2002c).
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Figure 5.2. THz scanner and data recognition system. The block chart shows the three steps

of data analysis for pattern recognition. In the data acquisition phase, analog data are

collected from a THz receiver, after passing through or reflecting from a target object.

The analog data are then converted to digital format suitable for computer processing.

Identification of the THz pattern is then achieved at the classification stage. After

Federici et al. (2007)

5.3 Configuration of the THz pattern recognition system

There are three steps that comprise a THz pattern recognition system: (i) data acquisi-

tion through THz imaging, (ii) preprocessing, and (iii) decision classification. Fig. 5.2

illustrates a data recognition system with the use of a THz scanner.

5.3.1 Data acquisition using T-rays

In the data acquisition phase, analog data are collected from a THz receiver, after pass-

ing through or reflecting from a target object. The analog data are then converted to

digital format suitable for computer processing. THz pulsed imaging setups for data

acquisition have been described in Chapter 2.
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5.3 Configuration of the THz pattern recognition system

5.3.2 Preprocessing

During preprocessing, input data vectors are grouped into a set of characteristic fea-

tures as output. One function of preprocessing is to convert a set of discrete data into

a mathematical pattern (feature vectors) so that those data are more suitable for com-

puter analysis (Bow 2002). Data preprocessing and feature extraction are two impor-

tant steps for carrying out the preprocessing procedure. Data preprocessing isolates

the real T-ray responses from the effects of the background noise, and supplies cleaner

signals for effective feature extraction.

System and random error are major sources of noise in a terahertz system. One method

to reduce the error is to average several measured sequences, but this comes at a cost

of time to perform the measurements. Signal processing potentially supplies an im-

proved solution to noise problems. Wavelets are believed to be of critical interest in

this research. They possess a range of extremely attractive properties for the denoising

preprocessing (Ferguson and Abbott 2001b). Another significant source of error and

ambiguity in THz systems is the system hardware itself, including electrical and optical

reflections from system components and numerous other effects (Mittleman et al. 1996).

The process of deconvolution is generally performed to isolate sample signal prop-

erty from system environment. Since deconvolution is noise sensitive, it can result

in a large amount of error when a significant amount of noise is present. Improved

methods can optimally remove the noise signal (Ferguson and Abbott 2001b). More

system noise from the THz emitter dominates all other noise contributions, which

results from random intensity fluctuations of the ultra-fast laser (Haus and Mecozzi

1993, Poppe et al. 1998). Other noise sources can be traced back to Johnson and shot

noise in the THz detector, as well as thermal background radiation in the THz regime

(Duvillaret et al. 2000). The noise is incoherent and adds randomly for successive op-

tical pulses, while the signal is coherent and scales linearly with the number of gating

pulses (van Exter and Grischkowsky 1990).

Each T-ray measurement with n data points can be viewed as a vector in a n dimen-

sional space, known as a pattern space. The time sequence then appears as a point in the

pattern space. The object of feature extraction is to reduce dimensionality. It converts

the preprocessed data to feature vectors.

By feature extraction, the inherent characteristics found within the measured THz re-

sponse are acquired, which are used to describe the object, or attributes of the object.

THz pulsed imaging is the measurement of a set of time series at each position of a
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target object. In this Thesis, the feature extraction operates on a one dimensional sig-

nal and produces a shorter feature vector. For THz imaging applications, this analysis

is carried out pixel by pixel, on the THz image. These feature vectors are grouped

together via a decision function and then are checked to see whether they provide

meaningful information. The features of interest can be a series of basic parameters,

reflecting the physical characteristics of target materials. They can be derived from the

measured THz pulses. Pulse height, shape, delays in the time domain, as well as the

spectral content of the pulse in the frequency domain, including transmittance and ab-

sorbance parameters, can all provide contrast information. Recognition between the

different time delays is available via the combinations of parameters due to refractive

index effects or sample thickness.

In this Thesis, the fast wavelet transform is adopted in some instances to achieve ef-

fective feature extraction. This wavelet based method especially deals with the assess-

ment of THz process parameters in a given application using the features extracted

from the wavelet coefficients of THz measurements (Pittner and Kamarthi 1999). Since

the parameter assessment using all wavelet coefficients will often turn out to be te-

dious or leads to inaccurate results, a preprocessing routine that computes robust fea-

tures that are representative in correlation with parameters of interest is highly desir-

able. In this Thesis, the use of Auto Regressive (AR) and Auto Regressive Moving

Average (ARMA) models on the wavelet transforms of measured T-ray pulse data are

investigated. The features of a processed THz signal are eventually classified by an

Mahalanobis distance classifier. The effectiveness of this method is demonstrated via

cancer cell discrimination from normal tissue and on the problem of recognising dif-

ferent kinds of powders.

5.3.3 Representation of patterns for machine recognition

The third phase is actually a classifier, which makes a final decision about the cluster

of the patterns that have the common features and the discrimination of the patterns

that have different properties. The classifier may be linear, piecewise linear, or nonlin-

ear. The data to be classified is the set of feature vectors input from the second phase

of preprocessing. The functions used for classification in this Thesis are adjusted dur-

ing a training phase, guided by knowledge about each pattern. In other words, prior

knowledge about correct classification of some data vectors is needed in the training

phase of the decision processing.
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The classification problem is simply to find a separating surface that partitions the

known vectors in to correct classes (Bow 2002). It is expected that the separating sur-

face is able to classify the other unknown patterns by applying the same criterion in

the classifier. Since patterns belonging to different classes will cluster into different re-

gions in the pattern space, the similarity between patterns in the feature space can be

measured by an inter-pattern distance matrix.

This work carried out in this Thesis is focused on developing feature extraction meth-

ods with application to several different classifiers. Since classification is problem de-

pendent, this is carried out in the hope that these pattern recognition algorithms ap-

plied in this Thesis, in addition to proving high classification accuracy, may add to

our relatively limited knowledge and understanding of the interaction between THz

radiation and common biomedical materials.

5.4 Chapter summary

This Chapter discusses a pattern recognition framework for application to terahertz

radiation. The design of an identification system emulates the recognition ability of

humans, where terahertz radiation is used to obtain the optical parameters of an ob-

ject. The open question of the identification system is to explore signal processing

approaches for automatic processing of terahertz measurements, obtaining effective

terahertz pattern recognition. The major difficulties lie in extracting useful informa-

tion from measured THz data, affected by the long-term fluctuations in the driving

laser source. Three strategies are used to realise such an identification system: data

acquisition through THz imaging, preprocessing, and decision/classification, where

the preprocessing procedure consists of two important steps: data preprocessing and

feature extraction. The exploration of feature extraction methods is a focus of this The-

sis, with application to several different classifiers and will appear in Chapters 6 to

9. They are successful in the differentiation of THz pulsed responses via applying di-

mensionality reduction to feature sets. In next Chapter, we present the mathematical

basis of wavelet transforms. Wavelet transforms are an important signal processing

technique, and the background theory underpins most of the work in this Thesis. It

is introduced by the link to Mallat’s pyramid algorithm and from the multiresolution

point of view. It is also an essential step towards the future goal of developing curvelet

based THz classification algorithms, which remains an important open question for

future research.
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Chapter 6

Wavelet Transforms

T
HE history of the wavelet transform can be traced back to Fourier

theory. The Fourier decomposition expands a signal as an integral

of sinusoidal oscillations over a range of frequencies (Ng 2003). A

major limitation of Fourier theory is mixing of temporal information in the

Fourier transform. Wavelets were first introduced in 1987, as the founda-

tion of a powerful new approach to signal processing, called multiresolu-

tion theory (Mallat 1999). Multiresolution theory incorporates and unifies

techniques from a variety of disciplines, including subband coding from

signal processing, quadrature mirror filtering from speech recognition, and

pyramidal image processing (Gonzalez and Woods 2002). Formally, a

multiresolution analysis (MRA) allows the representation of signals with

their wavelet transform coefficients. The theory underlying MRA allows a

systematical method for constructing (bi)orthogonal wavelets (Daubechies

1988) and leads to the fast discrete wavelet transform (DWT), also known

as Mallat’s pyramid algorithm (Qian 2002, Mallat 1989). In practice, the

DWT has been applied to many different problems (Meyer 1990, Strang and

Nguyen 1996, Daubechies 1992).

This Chapter aims to review wavelet transforms with a link to Mallat’s

pyramid algorithm and from the multiresolution point of view. It serves as

the background theory for most of the work in this Thesis. Wavelet denois-

ing will be considered later in this Chapter. In Chapter 7 and Chapters 10

to 12, wavelets will be used in the THz context for feature extraction, image

segmentation and reconstruction.
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6.1 Wavelet and multiresolution processing

6.1 Wavelet and multiresolution processing

Wavelet transforms are popular techniques suited to the analysis of very brief signals,

especially signals with sudden and unpredictable changes that often carry the most

interesting information (Qian 2002, Hubbard 1998). The wavelet transform technique

is particularly well-suited to problems such as signal compression, feature extraction,

image enhancement, and noise removal, which are especially related to biomedical

applications. They complement the traditional Fourier based techniques in THz sig-

nal analysis in providing superior time-frequency localisation characteristics that are

well-matched to the requirements for the short-duration T-ray pulse signals. Multires-

olution analysis (MRA), also called multiscale approximation (MSA), is viewed as a

most practical framework for understanding wavelet transforms and supplies the jus-

tification for discrete wavelet transform.

The first component to multiresolution analysis is function spaces. A multiresolution

analysis considers the space of finite energy functions, L2(R). This space contains all

real-world signals. It is assumed to consist of a sequence of indexed, nested subspaces

{Vj}j∈Z. The nested subspaces Vj satisfy the following conditions:

(i) Inclusion: each subspace Vj is contained in the next subspace. The function L2(R)

in one subspace is in all the higher (finer) subspaces.

· · · ⊂ Vj+1 ⊂ Vj ⊂ · · · ⊂ V1 ⊂ V0 ⊂ · · · ⊂ L2(R) (6.1)

(ii) Completeness: a function in the whole space comprises of the parts in each sub-

space.

• Upward completeness of the subspaces

⋃

Vj = L2(R) (6.2)

where X indicates the closed subspace of X

• Downward completeness
⋂

Vj = 0 (6.3)

(iii) Scale invariance

f (t) ∈ Vj ⇒ f (2t) ∈ Vj−1 (6.4)

(iv) Shift invariance

f (t) ∈ Vj ⇒ f (t − k) ∈ Vj ∀k ∈ Z (6.5)
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Chapter 6 Wavelet Transforms

(v) Basis-frame property: Multiresolution schemes require a basis for each space Vj.

That is, there exists a scaling function φ(t) ∈ V0

∃ φ(t) ∈ V0 , such that span {φ0,k|∀k ∈ Z} = V0 , where φ0,k = φ(t − k). (6.6)

It can then be shown that, for ∀j ∈ Z, the set

φj,k(t) = φ(2jt − k) (6.7)

forms an orthonormal basis for Vj. It follows from orthogonality that
∫

φj,k(t)φj,k′(t)dt = δk−k′ . (6.8)

This means that for the same scale j, the scaling functions are orthonormal in time

shifts. It is also an important feature for every scaling function φ(t), that there exists a

set of coefficients {h(k)}, which satisfy the two-scale equation

φ(t) =
√

2 ∑
k

h(k)φ(2t − k). (6.9)

It is built from translations of double-frequency copies of itself, φ(2t). This equation

is sometimes called a multiresolution analysis equation. This set of coefficients {h(k)}
are called the scaling function coefficients, and can be thought of as a lowpass filter in

discrete time.

Taking the Fourier transform of the both sides of the above equation, yields

Φ(ω) =
1√
2

H(
ω

2
)Φ(

ω

2
) (6.10)

therefore, the scaling filter in the Fourier domain is

H(ω) =
√

2
Φ(2ω)

Φ(ω)
. (6.11)

According to orthonormal multiresolution analysis, the scaling function φ(t) in the

frequency domain can also be computed by iterating equation (6.10)

Φ(ω) =
∞

∏
j=1

H(ω/2j)√
2

(6.12)

subject to the infinite product converging.

Define the approximation operation operator Pj on the functions f (t) ∈ L2(R) by

Pjφ(t) = ∑
k

〈 f (t), φj,k〉φj,k(t) (6.13)
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6.1 Wavelet and multiresolution processing

where 〈 f , φ〉 indicates the inner product between two integrable functions: 〈 f , φ〉 =
∫ +∞

−∞
f (t)φ∗(t)dt, and ∗ indicates the complex conjugate.

Similarly, the detail operator Qj on function f (t) ∈ L2(R) is defined by

Qjφ(t) = Pj−1 f (t) − Pj f (t). (6.14)

It is not difficult to show that, if {φj,k|∀j ∈ Z} is an orthonormal basis for space Vj

(Walnut 2001), then for all functions f (t) ∈ L2(R)

lim
j→−∞

||Pj f (t) − f (t)||2 = 0 (6.15)

and

lim
j→∞

||Pj f (t)||2 = 0 (6.16)

where || f ||2 =
√

〈 f , f 〉 = [
∫ +∞

−∞
f (t)2]1/2.

Given a scaling function that meets the MRA requirements, a wavelet function ψ can

be built from translations of φ(2t)

ψ(t) =
√

2 ∑
k

g(k)φ(2t − k). (6.17)

This is a fundamental wavelet equation. The wavelet function coefficients are repre-

sented by the coefficients {g(k)}, which behaves as a highpass filter.

In the frequency domain, the wavelet equation can be rewritten

Ψ(ω) =
1√
2

G(
ω

2
)Φ(

ω

2
). (6.18)

Eq. (6.9) and Eq. (6.17) show that both the wavelet function and the scaling function

are a weighted sum of scaling functions at the next finer scale. Let {Vj} is a multiscale

analysis with scaling function φ(t) and scaling filter h(k), the wavelet filter g(k) can be

defined

g(k) = (−1)kh(k)∗(1 − k) (6.19)

where h(k)∗ indicates the complex conjugate of h(k) in only the orthonormal case.

The Fourier transform of Eq. (6.19) is:

G(ω) = −e−iω H∗(ω + π). (6.20)
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A consequence of the above structure of an orthonormal MRA is that it is possible

to explicitly construct an orthonormal wavelet basis for L2(R). As the Vj is the real

subspace of Vj−1, there exists the orthogonal complement subspace Wj, which satisfies

Vj−1 = Vj

⊕

Wj (6.21)

where
⊕

denotes direct sum of vector spaces. Here, the vector spaces relate the scaling

and wavelet function subspaces. Since the orthonormal complement of Vj in Vj−1 is Wj,

all members of Vj are orthogonal to the members of Wj. Thus,

〈φj,k(t), ψj,k′(t)〉 = 0 (6.22)

where 〈φ, ψ〉 indicates the inner product between two integrable functions. The set

ψj,k(t) of wavelets is defined as

ψj,k(t) = 2j/2ψ(2jt − k). (6.23)

Several important facts that represent the key statements of multiresolution structure

of the wavelet function are as follows.

(i) Completeness

⊕

j∈Z

Wj = L2(R) (6.24)

(ii) Scale invariance

f (t) ∈ Wj ⇒ f (2t) ∈ Wj−1 (6.25)

(iii) Shift invariance

f (t) ∈ Wj ⇒ f (t − k) ∈ Wj ∀k ∈ Z. (6.26)

The MRA structure presented in equations Eq. (6.1)-Eq. (6.9) can be applied to con-

struct biorthogonal wavelets. A biorthogonal basis is composed from two mother

wavelets, ψ(t) and ψ̃(t), which are duals of each other. The biorthogonality refers

to the fact that dyadic dilations and translations of one mother wavelet is orthogonal

to the other. This biorthogonal process can be interpreted from the multiresolution

perspective. The analysis is specified by two hierarchical approximation subspaces:

· · · ⊂ Vn+1 ⊂ Vn ⊂ · · · ⊂ V1 ⊂ V0 ⊂ · · · ⊂ L2(R)

· · · ⊂ Ṽn+1 ⊂ Ṽn ⊂ · · · ⊂ Ṽ1 ⊂ Ṽ0 ⊂ · · · ⊂ L2(R). (6.27)

Page 87



6.1 Wavelet and multiresolution processing

The orthonormal complementary properties hold for Wj ⊥ Ṽj and W̃j⊥Vj. This leads

to

Vj−1 = Vj

⊕

W̃j and Ṽj−1 = Ṽj

⊕

Wj (6.28)

and the following scaling and wavelet functions:

φ(t) =
√

2 ∑ h(k)φ(2t − k)

φ̃(t) =
√

2 ∑ h̃(k)φ̃(2t − k) (6.29)

and

ψ(t) =
√

2 ∑ g(k)φ(2t − k)

ψ̃(t) =
√

2 ∑ g̃(k)φ̃(2t − k) (6.30)

where

g̃k = (−1)kh1−k

gk = (−1)k h̃1−k. (6.31)

The scaling and wavelet functions are interrelated for the biorthogonal case:

〈φ̃(t − k), φ(t − k)〉 = δk−1

〈ψ̃(t − k), ψ(t − k)〉 = δk−1 (6.32)

〈φ̄(t − k), ψ(t − k)〉 = 0

〈ψ̄(t − k), φ(t − k)〉 = 0. (6.33)

Based on the foregoing, any function x ∈ L2(R) can be written as

f (t) = ∑
j

∑
k

〈x, ψ̃j,k〉ψj,k(t)

= ∑
j

∑
k

〈x, ψj,k〉ψ̃j,k(t). (6.34)

The equations in the frequency domain regarding biorthogonal wavelets are omitted

for brevity.

To sum up, linear phase filters are one of the most important aspects achieved based

on biorthogonality, which is vital in applications such as image compression, because

phase distortions result in highly undesirable visual artifacts. Perfect reconstruction

is another important property of orthogonal and biorthogonal wavelets, which will be

discussed in Section 6.2.3. The filter relations for the orthonormal and biorthogonal

wavelets as derived in this Section form the basis for the development of the Discrete

Wavelet Transform (DWT).
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6.2 Wavelet transforms in one dimension

The wavelet transforms are based on wavelets, which are small waves of varying fre-

quency and limited duration. In subband coding, a transformation is computed by fil-

tering and subsampling. The signal is separated approximately into frequency bands

for efficient decoding.

6.2.1 Wavelet series expansions and discrete wavelet transforms

Wavelet series expansion of function f (t) ∈ L2(R) can be defined depending on wavelet

ψ(t) and scaling function φ(t). According to MRA, a set of time series function f (t) can

be approximated by projecting smooth information into multiple scaling subspaces

and projecting the details information into wavelet subspaces, as in

f (t) = ∑
k

cJ0
(k)φJ0 ,k + ∑

k

J0

∑
j=0

dj(k)ψ(j, k) (6.35)

where J0 is an arbitrary ending scale. The cJ0
(k)’s are called the approximation or scal-

ing coefficients, and the dj(k)’s are referred to as the detail or wavelet coefficients. This

is because the Eq. (6.35) is composed of two parts, the first uses scaling functions to

provide an approximation of f (t) at scale J0; for each higher scale j ≤ J0, the second

part is a finer resolution function, a sum of wavelets, which is added to the approxima-

tion to provide increased detail. If the expansion functions form an orthogonal basis,

the expansion coefficients of the time series function can be calculated as

cJ0
(k) = 〈 f (t), φJ0 ,k(t)〉 =

∫

f (t)φ∗
J0 ,k(t)dt (6.36)

and

dj(k) = 〈 f (t), ψj,k(t)〉 =
∫

f (t)ψ∗
j,k(t)dt. (6.37)

Compared to the wavelet series expansion presented above, which is to map a function

of a continuous variable into a sequence of coefficients, the discrete wavelet transform

(DWT) of f (t) expands the function in a sequence of numbers. In this case, Eq. (6.35)

can be rewritten as

f (t) = ∑
k

cJ0
(k)φ(2J0 t − k) + ∑

k

J0

∑
j=0

dj(k)ψ(2jt − k) (6.38)
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Figure 6.1. Block diagram for the analysis and synthesis stages of the Fast Wavelet Trans-

form (FWT). The analysis (a) and synthesis (b) stages of Mallat’s algorithm (FWT)

are illustrated.

where φ(t)’s are scaling functions and ψ(t)’s are wavelet functions; f (t), φJ0 ,k(t), and

ψj,k(t), all are functions of the discrete variable t = 0, 1, 2, ..., M − 1; j is the index of

scale in the range {0, J0}, k is the time shift factor, and M is usually selected as a power

of 2 (i.e. M = 2j). The transform is composed from M coefficients, and the starting scale

is 0, the ending scale is J0. For the biorthogonal case, the functions φ and ψ should be

replaced by their duals, φ̃ and ψ̃.

Since biorthogonal bases consist of the dual pairs of φ and ψ, care should be taken that,

if the expansion functions are the dual terms, the functions φ and ψ should be replaced

in these equations by their dual functions φ̃ and ψ̃.

6.2.2 The fast wavelet transforms

The fast wavelet transform (FWT) is a computationally efficient implementation of the

discrete wavelet transform (DWT) that exploits a the relationship between the coeffi-

cients of the DWT at adjacent scales. It is also called Mallat’s pyramid algorithm.

Given an orthogonal wavelet basis, the signal f (t) can be represented by scaling se-

ries coefficients {cj0(k)} and wavelet series coefficients {dj0(k)}, where J0 is a desired
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wavelet transform ending scale. Mallat’s algorithm (or FWT), states the coefficients

{cj(k)}j0
0 and {dj(k)}J0

0 can be calculated from coefficients at lower scales, by cascade

filtering and subsampling with a pair of filters. The pair of filters consist of low-pass

filter H(ω) and high-pass filter G(ω), which form a pair of mirror filters. The low-pass

and high-pass filters H(ω) and G(ω) are the frequency responses of predefined filter

coefficients {h(k)} and {g(k)}, which characterise the scaling function and wavelet

functions, respectively (Guo et al. 2001). The coarse and detailed coefficients at scale

j− 1 are calculated by applying the data at scale j and wavelet filtered banks as follows:

cj−1(k) = ∑
m

cj(m)〈φj,m, φj−1,k〉 = ∑
m

h(m − 2k)cj(m)

dj−1(k) = ∑
m

cj(m)〈φj,m, ψj−1,k〉 = ∑
m

g(m − 2k)cj(m) (6.39)

where m = 2k + n; h and g correspond to low- and high-pass filters, respectively, and

they satisfy Eq. (6.19).

The procedure is followed by discarding every second sample (downsampling by 2).

The downsampling preserves the total amount of coefficients. At each level, the data,

cj−1(k), is separated into two halves, or subbands: one contains the low frequency, or

coarse information (cj(k)), and the other half contains the high-frequency, or detailed

information (dj(k)). This is commonly known as the analysis (decomposition) stage,

and is illustrated in Fig. 6.1(a). A full j-level FWT re-iterates equations Eq. (6.39) j times

to yield a successive approximation to the original data c0(k). During this analysis

stage, the higher level coefficients are calculated by the data at lower resolutions, and

vice versa.

The inverse transform, can also be derived from the MRA structure. Reconstruction of

signals from their scaling and wavelet coefficients can be realised by reversing Mallat’s

pyramid algorithm

cj(k) = ∑
m

cj−1(m)〈φj−1,m, φj,k〉 + ∑
m

dj−1(m)〈ψj−1,m, φj,k〉

= ∑
m

h̃(k − 2m)cj−1(m) + ∑
m

g̃(k − 2m)dj−1(m) (6.40)

where h̃ and g̃ indicate the reconstruction low- and high-pass filters, respectively. For

orthogonal wavelets, the reconstruction filers are simply time-reversed versions of the

decomposition filters, that is, h(k) = h̃(−k) and g(k) = g̃(−k). In other words, h̃ and g̃

are often delayed versions of h(−k) and g(−k) to keep them causal. The net effect is a

finite latency through the system (analysis plus synthesis).
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Figure 6.2. Fast Wavelet Transforms. The Fast Wavelet Transform (or Mallat’s algorithm) is the

calculation of a DWT using a digital filter bank followed by wavelet decimation (down

sampling). This procedure operates on individual time frames at each wavelet scale.
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Figure 6.3. Time-frequency boxes of two wavelets ψj,k and ψJ0,K0
. With the decreased scale

j, the time support is reduced but the frequency spread increases and covers an interval

that is shifted towards high frequencies. After Mallat (1999).
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The one step reconstruction represented in Eq. (6.40) can be iteratively applied to mul-

tiple levels of wavelet reconstruction, until the original signal is recovered. Each re-

construction stage adds the detail subbands dj(k) back to the coarse approximation

subband cj(k) to form the finer approximation cj+1(k). Each synthesis (reconstruction)

stage needs interpolation of each subband by 2, followed by filtering with the synthe-

sis filters, h̃(k) and g̃(k), then summing up the two sets of resultant coefficients. This

synthesis processing is illustrated in Fig. 6.1(b). These operations are repeated over all

levels to reconstruct the original signal c0(k). The entire analysis process in a J-level

FWT is illustrated in Fig. 6.2. The number of computations is halved with an increase

in the level of the transform, as a direct consequence of the reduced data from down-

sampling. This reduction in complexity with levels leads to the high efficiency of the

algorithm. The fast wavelet transform of a length M = 2J0 sequence has an overall

computational complexity of O(MlogM). Since the analysis and synthesis stages em-

ploy two filters (low- and high-pass), the FWT system is commonly called a 2-channel

filter bank in the engineering literature. As for the practical application, the sampled

T-ray transients are a function of discrete time, to which the discrete wavelet transform

can be applied. To realize the DWT, simple digital filter banks are utilised in a recur-

sive structure to calculate wavelet transform coefficients of T-ray signals. As a result, a

representation of the original T-ray pulsed signals consisting of different scales or res-

olutions at different times (positions) is achieved. Fig. 6.3 shows time-frequency boxes

of two wavelets ψj,k and ψJ0,K0
. In the time-frequency plane, a wave atom ψk,j is sym-

bolically represented by a rectangle centered at (k, η/j). The energy of Ψk,j (Fourier

transform of ψk,j) is concentrated over a positive frequency interval of σω/j centered at

η/j. The time and frequency spread are respectively proportional to j and 1/j. When j

varies, the height and width of the rectangle change but its area remains constant.

6.2.3 Perfect reconstruction of 2-channel filter bank

A filter bank is a set of filters that mainly link to sampling operations. In a two-channel

filter bank, the analysis filters are lowpass H(z) and highpass G(z), where H(z) and

G(z) in the frequency domain are z-transforms of h(k) and g(k) in the time domain.

The synthesis bank for signal reconstruction performs the inverse procedure to analy-

sis, which means lowpass H̃(z) and highpass G̃(z) filtering (z-transforms of h̃(k) and

g̃(k)), and interpolating. In order to recover the discarded information by the down-

sampling in the analysis bank, the synthesis filter bank must be specifically adapt to the
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6.2 Wavelet transforms in one dimension

analysis filters for perfect reconstruction. This means that the filter bank is biorthogo-

nal. An orthonormal filter bank that the synthesis is the transpose of the analysis, is a

specific case of the more general biorthogonal filter bank.

There are two conditions which need to be imposed to achieve perfect reconstruction.

The first condition is to remove aliasing in the reconstructed signal, which leads to as

in

H̃(z)H(−z) + G̃(z)G(−z) = 0. (6.41)

The second condition is to eliminate amplitude distortion, which leads to

H̃(z)H(z) + G̃(z)G(z) = 2 (6.42)

where G̃(z) is a function of H(z) and G(z) is a function of H̃(z). Note that for Eq. (6.41),

if we define S(z) = H(z)H̃(z), then this equation becomes S(z) + S(−z) = 2. This im-

plies that s(k) is a half-band filter, with zeros for all its even coefficients excluding

s(0) = 1. The odd coefficients are then free design variables. In practice, the wavelet

filters are usually derived by first designing a particular half-band filter s(k). The anal-

ysis and synthesis low-pass filters are then obtained by applying spectral factorisation

to s(k).

The orthonormality condition for perfect reconstruction filter banks is defined in the

time domain as

〈gi(n), gi(n + 2m)〉 = δ(i − j)δ(m), i, j = {0, 1}. (6.43)

The biorthonormality condition is different from orthonormality condition, which is

given in the time domain

〈hi(2n − k), gj(k)〉 = δ(i − j)δ(n), i, j = {0, 1}. (6.44)

It is useful to note that the biorthogonality condition holds for all two-band, real-

coefficient perfect reconstruction filter banks.

It can be observed via the previous analysis that despite their central roles in the devel-

opment of wavelet theory, the FWT algorithm does not apply the scaling and wavelet

function for time series analysis. Instead, it is only necessary to explicitly construct

the analysis and reconstruction filters { h(k), g(k), h̃(k), g̃(k) } in order to compute the

wavelet transform coefficients.
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The drawback of the FWT is the different filter lengths in the decomposition part,

caused by an odd sample shift in the input signal in the downsampling operations.

It means that the signal spectrum is unevenly distributed over the low-band and high-

band segments. In many practical situations, this shift variance is an undesirable as-

pect of the FWT. Researchers have spent significant efforts in overcoming this problem,

leading to a variety of different approaches (Ng 2003). These will not be discussed fur-

ther in this Thesis.

6.3 Two dimensional discrete wavelet transforms

Wavelet transforms play an important role in many image processing algorithms. In

two dimensions, the discrete version of a wavelet transform can be realised by a 2D

scaling function, φ(x, y), and three 2D wavelets, ψH(x, y), ψV(x, y), and ψD(x, y), which

are calculated by taking the 1D wavelet transform along the rows of f (x, y) and the re-

sulting columns (Gonzalez and Woods 2002). The 2D scaling function and 2D wavelet

functions satisfy the following equations:

φ(x, y) = φ(x)φ(y) (6.45)

ψH(x, y) = φ(x)ψ(y) (6.46)

ψV(x, y) = ψ(x)φ(y) (6.47)

ψD(x, y) = ψ(x)ψ(y) (6.48)

where φ(t) and ψ(t) are the one-dimensional scaling and wavelet functions, respec-

tively. There exists the sequences cj−1(k, l), dH
j−1(k, l), dV

j−1(k, l), and dD
j−1(k, l) given by

the following equations:


































cj−1(k, l) = 〈 f (x, y), φj(k, l)〉
dH

j−1(k, l) = 〈 f (x, y), ψH
j (k, l)〉

dV
j−1(k, l) = 〈 f (x, y), ψV

j (k, l)〉
dD

j−1(k, l) = 〈 f (x, y), ψD
j (k, l)〉.

(6.49)

The coefficients dH
j−1, dV

j−1 and dD
j−1 correspond to horizontal, vertical, and diagonal

high frequency information, respectively, while cj−1 corresponds to coefficients repre-

senting low frequency information (Mallat 1999).

The 2D Wavelet Transform algorithm can be derived from Eq. (6.49). Simply, the 2D

DWT can be calculated by cascaded 1D DWTs along the rows and columns of the image
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(Mallat 1999). This process can be repeated a number of times to yield successively

lower resolution images. Mathematically, the process of taking one level of the 2D

wavelet transform is:


































cj−1(k, l) = ∑m,n h(2k − m)h(2l − n)cj(m, n)

dH
j−1(k, l) = ∑m,n h(2k − m)g(2l − n)cj(m, n)

dV
j−1(k, l) = ∑m,n g(2k − m)h(2l − n)cj(m, n)

dD
j−1(k, l) = ∑m,n g(2k − m)g(2l − n)cj(m, n).

(6.50)

Let h and g denote a pair of linear phase low- and high-pass wavelet filters and h̃, g̃

denote the corresponding reconstruction filters. The discrete approximation at resolu-

tion 2j can be obtained by combining the details and approximation at resolution 2j−1

using reconstructed wavelet filters:

cj(k, l) = ∑
m,n

h̃(k − 2m)h̃(l − 2n)cj−1(m, n) (6.51)

+h̃(k − 2m)g̃(l − 2n)dH
j−1(m, n)

+g̃(k − 2m)h̃(l − 2n)dV
j−1(m, n)

+g̃(k − 2m)g̃(l − 2n)dD
j−1(m, n).

Fig. 6.4 shows the block diagram of the 2D wavelet transform procedure. The block

diagram is for one step of the 2D discrete wavelet transform (2D DWT) and can be

implemented for recovery of an approximation at resolution of 1 step.

6.4 Discrete wavelet packet transforms

Discrete wavelet packet transforms are the link between multiresolution approxima-

tions and discrete wavelets (Mallat 1999). The detailed subspace Wj is spanned can

be calculated by the discrete wavelet basis ψj(2jt − k). The time and frequency spread

(window) of the discrete wavelet basis ψj(2jt − k) are respectively proportional to j

and 1/j. With the increase of the scale j, the width of the time-frequency window

of the wavelet basis has decreased, while its height is increased. This indicates that

wavelet basis has contracted in its space localisation, but with an expansion in the

frquency localisation. In order to overcome this problem, we need to decompose the

Wj further. Discrete wavelet packet transforms (DWPTs) apply the discrete wavelet

transform step to both the lower resolution and detail subspaces. This procedure is
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Figure 6.4. Illustration of the 2D discrete wavelet transform procedure. The 2D DWT can

be realised via digital filters and downsampling the T-ray image. A 2D scaling function,

φ(x, y) and three 2D wavelets, ψH(x, y), ψV(x, y), and ψD(x, y), are calculated via

taking the 1D fast wavelet transform of the rows of f (x, y) and the resulting columns.

The discrete approximation at resolution 2j can be obtained by combination of the

details and approximation at resolution 2j−1 using reconstructed wavelet filters. Here,

h & g and h̃ & g̃ indicate the low-pass and high-pass wavelet filters and reconstruction

filters, respectively. The down and up arrows indicate the downsampling and upsampling

procedures.

fulfilled by dividing the orthogonal basis {φj−1(2jt − k)}k∈z into two new orthogonal

bases: {φj(2jt − k)}k∈z of Vj and {ψj(2jt − k)}k∈z of Wj, where

φ(t) =
√

2 ∑
k∈z

h(k)φ(2t − k) (6.52)

ψ(t) =
√

2 ∑
k∈z

g(k)φ(2t − k). (6.53)

For the analysis of the wavelet packet function, new signs µ0(t) and µ1(t) are used

instead of φ(t) and ψ(t),

µ0(t) =
√

2 ∑
k∈z

h(k)µ0(2t − k) (6.54)

µ1(t) =
√

2 ∑
k∈z

g(k)µ0(2t − k). (6.55)

For a fixed decomposing scale, the wavelet packet function can be defined by µ0(t),

µ1(t), h, and g,
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Figure 6.5. The procedure of discrete wavelet packet transform. Time-localization tree after

wavelet package decomposition.

µ2n(t) =
√

2 ∑
k

h(k)µn(2t − k) (6.56)

µ2n+1(t) =
√

2 ∑
k

g(k)µn(2t − k) (6.57)

where n = 0, 1, 2...; g and h are a pair of conjugate mirror filters. The function µn can

be iteratively calculated based on the Eqs. (6.56) and (6.57). It can be derived according

to the orthogonal scaling function µ0 = φ.

This discrete wavelet packet can be represented by a time-localization tree. The proce-

dure of DWPT is shown in Fig. 6.5.

Several important properties of discrete wavelet packet transforms are: (i) For ∀n ≥ 0,

if the binary system of n satisfies the equation

n =
∞

∑
j=1

ε j2
j, ε j = 0 or 1 (6.58)

the Fourier transforms of wavelet packet µn

µ̂n(ω) = Π∞
j=1mε j

(
ω

2j
) (6.59)
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where

m0(ω) =
1√
2

∑
k

h(k)e−ikω

m1(ω) =
1√
2

∑
k

g(k)e−ikω (6.60)

where ∑ and ∏ present the sum and product of finite sequences.

(ii) For ∀n ≥ 0, µn satisfies translation orthogonality

〈µn(t − j), µn(t − k)〉 = δj,k, j, k ∈ z. (6.61)

(iii) For ∀n ≥ 0, µ2n and µ2n+1 satisfies translation orthogonality

〈µ2n(t − j), µ2n+1(t − k)〉 = δj,k, j, k ∈ z. (6.62)

(iv) The wavelet packet function {µn(t − k)| n ∈ z+ and k ∈ z} is composed of a group

of basis of L2(R). Let

U0
j = Vj

U1
j = Wj , j ∈ z (6.63)

and we can rewrite

Vj−1 = Vj

⊕

Wj , j ∈ z (6.64)

to

U0
j−1 = U0

j

⊕

U1
j , j ∈ z. (6.65)

For ∀n ∈ z+, we get

Un
j−1 = U2n

j

⊕

U2n+1
j , j ∈ z (6.66)

where U2n
j ⊥ U2n+1

j .

Now, we calculate discrete wavelet packet coefficients of the time series f (t) via the

pair of mirror filters of DWT, with the number of wavelet decomposition steps of N =

2L. The aim of the one step in the discrete wavelet packet transform is to calculate a

higher resolution subspace U2n
j and a detailed subspace U2n+1

j by the subspace Uj−1
n

of U0
0 , j = 0, 1, 2...L − 1, L. The orthonormal basis of subspace Un

j−1 can be constructed

as in

2(j−1)/2µn(2j−1t − k), k ∈ z. (6.67)
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So that the discrete wavelet packet coefficients of f (t) for projection onto subspace

Un
j−1 can be calculated

dn
j−1(k) = 〈 f (t), 2(j−1)/2µn(2j−1t − k)〉. (6.68)

The root node at j = 0 can be viewed as the approximation of the sampled signal f (t),

which can be represented by the discrete wavelet packet coefficients, noted as d0
0(k).

Similarly, the discrete wavelet packet coefficients for projections onto U2n
j and U2n+1

j

can be noted as d2n
j and d2n+1

j , respectively. Based on the discrete wavelet packet def-

inition, Eq. (6.66), we can achieve the discrete wavelet packet decomposition and re-

construction algorithms. At the decomposition:







d2n
j−1(k) = ∑l∈z h(l − 2k)dn

j (l)

d2n+1
j−1 (k) = ∑l∈z g(l − 2k)dn

j (l).

At the reconstruction:

dn
j (k) = ∑

l∈z

(h̃(k − 2l)d2n
j−1(l) + g̃(k − 2l)d2n+1

j−1 (l)). (6.69)

Here h̃ and g̃ are the reconstruction low- and high-pass filters, respectively. The discrete

wavelet package coefficients d2n
j−1 and d2n+1

j−1 are the subsampled convolutions of dn
j

with h and g, and dn
j−1(k) satisfies

dn
j−1(k) = 〈 f (t), ψn

j−1(2j−1t − k)〉. (6.70)

Here, j is the node depth in the wavelet packet binary tree and n denotes the number of

the note at the same node depth. Two scales of the wavelet packet tree in Fig. 6.6 results

in almost twice the number of decompositions and reconstructions that are available

from the two-scale DWT.

Different wavelet packet bases show different capabilities to achieve time-frequency

localisation and represent different properties of signals. It is important to select a best

wavelet packet basis from the dictionary of bases. A few questions arise: how to select

the best wavelet packet basis? What is the criteria to evaluate the good adaptability of

a wavelet packet basis? How to make a quick search within the dictionary for the best

basis?

Page 100



Chapter 6 Wavelet Transforms

h

h

h

h

h

˜

˜

h̃

g

g

g

g

˜

g̃

g̃

2

2

2

2

2

2

2

2

2

2

2

2

d 0
0

d 1
0

d 1
1

d 2
2

d 2
0

d 2
1

d  2
3

d 2
2

d 2
0

d 2
1

d 2
3

d 1
0

d 1
1

d 0
0

Figure 6.6. The procedure of discrete wavelet packet transform. Illustration of the two-level

discrete wavelet packet decompositions.

Wavelet packet bases are large families of orthogonal bases that include different types

of time-frequency atoms. The best wavelet packet basis decomposes signals over atoms

that are adapted to the signal’s time-frequency features. To evaluate the best basis, first

we perform wavelet series spread of the signal f (t) depending on an orthonormal

wavelet packet basis. It turns out to be wavelet packet coefficient series E = {Ek}
corresponding to f (t). We define an information cost function W on the series, and it

should satisfy two conditions:

(i) The additivity

W({Ek}) = ∑
k∈z

W(Ek), W(0) = 0. (6.71)

(ii) The value of the information cost function W should reflect the concentration de-

gree of wavelet packet coefficients. It can be explained as follows:

• If the energy of the coefficient series {Ek} is concentrated to a few coefficients

and the absolute value of a large number of the coefficients is small enough to

be ignored, the corresponding basis is considered to be better, as the value of the

information cost function should be smaller.
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• If the energy of coefficient series {Ek} is distributed uniformly, the correspondent

basis is not desirable, and the value of the information cost function W should be

larger. Generally, the wavelet packet basis B of L2(R) for effectively approxi-

mating a signal f (t) should be optimised by minimising the knowledge of an

information cost function.

The following are several frequently used information cost functions:

(i) Calculation of the number of the wavelet packet coefficients with magnitude larger

than a threshold.

We predefine a threshold T to calculate the number of the elements in the series {Ek}
with an absolute value over the threshold T,

W({Ek}) =







1 |Ek| ≥ T

0 |Ek| < T.
(6.72)

(ii) The concentration degree of the lp norm of the wavelet packet coefficients.

For ∀0 < p < 2, we define W(Ek)
p = |Ek|p, therefore, W(E) = ∑k∈z |Ek|p = ||E||p.

Usually, the Lp norm is defined as ||x||p = (∑ x
p
i )

1
p .

(iii) Logarithmic entropy.

For ∀E = {Ek}, we define W(E) = ∑k∈z log|Ek|2, and log0 = 0.

(iv) Information entropy.

For ∀E = {Ek}, we define W(E) = − ∑k∈z |Ek|2log|Ek|2, and log0 = 0.

A basis pursuit is computationally expensive because it minimises a global cost func-

tion over all dictionary vectors. Here, we introduce a dynamic programming approach.

Further discussion on the basis pursuit, i.e. matching pursuit, can be found in Mallat

(1999).

The dynamic programming calculation considers a discrete wavelet packet decompo-

sition in space V0 = U0. This decomposition can be presented using a dual tree, as

shown in Fig. 6.6. The wavelet expansion of f (t) produces wavelet packet coefficients,

which are used to calculate the value of information cost function at each node of the

dual tree. Finally we trace the best basis node by node from bottom to top of the tree.

The operation is as follows:

(1) We fix the maximum depth d allowed for the tree and initialize the search with a

complete tree with that depth.
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Figure 6.7. A quick searching of the best bases. The nodes with pink shade indicate the

best wavelet packet bases. The number at the bottom row (the maximum depth) are

supposed to be given, which are indicated by 1-8 digital numbers. We compare the

value of cost function at the parent node W f with the sum of the cost functions at its

two child nodes Wb. If W f ≤ Wb, we label the parent node with ‘∗’, viewed as a leaf

node. If W f > Wb, we bracket the value W f and put the value Wb beside the bracket.

In this case, the corresponding nodes are viewed as non-leaf. We consider only the value

outside the bracket and repeat the first and second step till the top layer of the tree.

(2) All nodes are candidates to be leaf nodes. For each node (i, j), leaf or non-leaf,

we compare the value of cost function W f at the parent node with the sum of the cost

functions Wb at its two child nodes.

(3) Initialize the costs at level d, the deepest level of the tree. If one node of this level is

kept in the tree, it will be necessarily a leaf node. This step is to first label the bottom

node via the notation ‘∗’.

(4) If W f ≤ Wb, we label the parent node with ‘∗’, to emphasize that the cost value at

the parent node is not changed, which is viewed as a leaf node. If W f > Wb, we bracket

the value W f and put the value Wb beside the bracket. In this case, the corresponding

nodes are viewed as non-leaf nodes.

(5) We consider only the value outside the bracket and repeat the first and second step

till the top layer of the tree.

(6) The final step is to select the labelled nodes that are close to the root. The procedure

is performed from top to bottom of the whole tree (any subnodes, including the nodes,

with and without a ∗, are not considered again). These selected nodes cover the space

V0 = U0
0 without overlapping, all of which are viewed as the nodes corresponding to
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the best bases. The Fig. 6.7 illustrates the linear searching procedure regarding the best

wavelet packet bases.

6.5 Wavelet denoising for THz-TDS pulses via the heuris-

tic SURE threshold

Wavelet denoising is an important application of wavelet transforms with respect to

multiresolution techniques. In principle, wavelet-based techniques are very well suited

to studies of non-stationary time-domain data sets, highlighting the variability of fea-

tures at different time-frequency scales (Mallat 1999, Donoho 1995). The main concern

with current T-ray TPI measurements is corruption by different types of noise which

limit the practical usefulness of this mode of imaging. One of the main problems is the

noise of the T-ray pulse as it propagates through the optical system. As a result, the re-

ceived T-ray signals are strongly dependent on the acquisition conditions, and similar

samples may produce variations in the measured signals in different portions of the

image (Ferguson and Abbott 2001a). In order to keep image acquisition within realis-

tic timescales, a short integration time per pixel is adopted as common practice, and

this makes the choice of the THz-transient de-noising process attractive for improved

signal conditioning.

The use of perfect reconstruction quadrature mirror filter banks has been extensively

discussed by Daubechies (1992) for the purpose of de-noising and generating bases of

compact support. The work of Vetterli and Kovacevic (1995) as well as that of Strang

and Nguyen (1996) further complement the above, elaborating more on sub-band cod-

ing, Sherlock and Monro (1998) discuss how to apply FIR filters of arbitrary length

to describe the space of orthonormal wavelets, further parameterizing the wavelet co-

efficients at each decomposed level, and Tuqun and Vaidyanathan (2000) propose a

state-space approach to the design of globally optimal FIR energy compaction filters.

Since, in our work, there is no requirement for adopting an algorithm with a perfect

reconstruction property, as our ultimate goal is feature extraction and classification, our

constrains are more relaxed compared to those used in filtering or signal compression

applications.

Divine and Godtliebsen (2007) suggest that for feature exploration purposes, it is pos-

sible to assume stationarity over some time interval and smooth the wavelet spectrum
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along the time axis using an Auto Regressive (AR) model. Recently, Paiva and Galvão

(2006) also discuss a wavelet packet decomposition tree algorithm that establishes fre-

quency bands where sub-band models are created. Both approaches propose the mod-

eling of the approximation and detail wavelet coefficients in order to further extract

statistically significant features and a similar approach is adopted in our work. A typ-

ical de-noising procedure consists of decomposing the original signal using DWPT

or DWT (Mallat 1999, Daubechies 1992, Jensen and la Cour-Harbo 2001, Percival and

Walden 2000), thresholding the detail coefficients, and reconstructing the signal by

applying the appropriate inverse transform (IDWT or IDWPT respectively). For the

de-noising of femtosecond THz transients, a three-level decomposition is usually suf-

ficient (Hadjiloucas et al. 2004) and unnecessary computational load associated with

more decomposition levels can be avoided. The Stein’s Unbiased Risk Estimate (SURE)

and the ‘heuristic’ SURE methods (Donoho 1995) are used separately to estimate the

soft threshold parameter (λS) for classification experiments.

In our T-ray project, each time domain measurement corresponding to data from a

single pixel is represented by a data vector x of length Lx, where the nth element of x,

denoted by xn, represents the measured signal at the nth sampling instant. The filter

bank transform can be regarded as a change in variables from RLx to RLx performed

according to the following operation

wm =
Lx−1

∑
n=0

xnvm(n), m = 0, 1, ..., Lx − 1 (6.73)

where wm is a transformed variable and vm(n) ∈ R is a transform weight. It proves

convenience to write the transform in matrix form as:

w1×Lx = x1×LxVLx×Lx (6.74)

where x = [xi : i = 0, 1, ..., Lx − 1] is the row vector of original variables, w is the row

vector of new (transformed) variables and V is the matrix of weights. Choosing V to

be unitary (that is, VTV = I), the transform is said to be orthogonal and it therefore

consists of a simple rotation in the coordinate axes (with the new axes directions deter-

mined by the columns of V). As described in wavelet literature, the discrete wavelet

transform can be calculated in a fast manner by using a filter bank structure. In this

filter bank, the low-pass filtering result undergoes successive filtering iterations with

the number of iterations j chosen by the analyst. The final result of the decomposition

of data vector x is a vector resulting from the concatenation of row vectors cj and dj
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(termed respectively approximation and detail coefficients at the jth scale level) in the

following manner:

w = [cj|dj|dj−1|...|d1] (6.75)

with coefficients in larger scales (e.g. dj,dj−1,dj−1,...) associated with broad features in

the data vector, and coefficients in smaller scales (e.g. d1,d2,d3,...) associated with nar-

rower features such as sharp peaks. Let h[0], h[1], ..., h[2N − 1] and g[0], g[1], ..., g[2N −
1] be the impulse responses of the low-pass and high-pass filters H and G, respectively.

Assuming that filtering is carried out by circular convolution, the procedure for gen-

erating the approximation coefficients from the data vector x consists of flipping the

filtering sequence and moving it alongside the data vector. For each position of the

filtering sequence regarding the data vector, the scalar product of the two is calculated.

Dyadic down-sampling is then performed to generate coefficients c[i]. The detail coef-

ficients d[i] are obtained in a similar manner by using the high-pass filtering sequence.

Filtering in the wavelet domain consists of changing some of the above elements of w

by applying soft thresholding so that a new vector w f is produced and then applying

the inverse transform. A soft threshold operation with threshold λs is employed:

w f (x, λs) = sgn(x) max(0, |x| − λs). (6.76)

Soft thresholding produces better continuity (Donoho 1995) than hard thresholding,

while at the same time, it provides shrinkage of the wavelet coefficients dominated by

noise. The nonlinear shrinking of coefficients in the wavelet domain is a nonparamet-

ric method. We adopt the heuristic Stein’s Unbiased Risk Estimate (SURE) (Florida

State University 2005) algorithm, which is estimated adaptively at each wavelet de-

composition level j. This operates on detail coefficients dj. Each detail coefficient dj is

composed of elements of the signal d f as well as superimposed noise series {ηj}, so

that dj = d f j
+ {ηj}.

The SURE approach assumes data series {µj} = (µj[i] : i= 1, ..., n) of length n =

Lx/(2× j), where dj[i] ∼ η(µj[i], 1) is multivariate normal observations with that mean

vector. The soft threshold estimator {µ̂j} of {µj} is given from µ̂ = µ̂(dj) = dj + g(dj)

with gj = (gj[i])
n
i=1. Assuming that gj(dj) is weakly differentiable, Stein’s method

calculates the energy loss ||µ̂ − µ|| in an unbiased fashion using the following

E ‖ {µ̂j}(dj) − {µj} ‖2= n + E{||gj(dj)||2 + 2∇ · gj(dj)} (6.77)

where ∇ · gj ≡ ∑i
∂

∂dj[i]
gj[i] E ‖ {µ̂j}(λs

j )(dj) − {µj} ‖2.
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By applying Stein’s results (Donoho 1995, Johnstone and Donoho 1995) at the jth de-

composition level, we have

SUREj(λs
j ; dj) = n − 2 · #{i : |dj[i]| < λs

j} +
n

∑
i=1

min(|dj[i]|, λs
j )

2 (6.78)

where µ̂j denotes the soft threshold estimator µ̂j[i]
(λs

j )(dj) = ηs
λj

(dj[i]). Thus the thresh-

old λs that minimizes SUREj(λs
j ; dj) is obtained. Here, # means the number of the

coefficients that are smaller than the threshold.

The denoised T-ray signal in the wavelet domain can be re-written as

w f = [ĉj|d̂ f j
|d̂ f j−1

|...|d̂ f 1
]. (6.79)

The equations derived above will be further taken advantage of in the next Chapter

for feature extraction and classification application. For wavelet packet SURE denois-

ing, we calculate the SURE threshold for each of WP coefficients, and then apply the

calculated thresholds to shrink the WP coefficients dominated by noise.

6.6 Chapter summary

The wavelet transform is a relatively recent mathematical development that has quickly

found a place in many engineering applications. The mathematical basis of wavelet

theory is presented in this Chapter, as well as several implementation issues. Ad-

ditionally, this Chapter also discusses heuristic SURE soft threshold shrinkage algo-

rithms for THz noise removal. This Thesis carries out wavelet transform analysis us-

ing predominantly Mallat’s pyramid algorithm. Wavelet packet transforms of THz

measurements discussed in Section 6.4 are especially favoured since wavelet packet

bases further improve the flexibility of space and frequency localisation, compared to

the critically subsampled DWTs. The performance of WPTs for THz signal recognition

will be experimentally illustrated in Chapter 9 (Sec. 9.3.1 and Sec. 9.4). In addition, two

dimensional DWTs described in this Chapter are desirable for THz image processing

and reconstruction due to its good time-frequency localisation feature, which are ex-

perimentally illustrated in Chapters 11-13. The next Chapter investigates a series of

different feature extraction methods to achieve the transformed signal characteristics

of THz measurements. It is the second phase of the pattern identification system to

process acquired THz measurements and to reveal important differences for discrimi-

nation between patterns associated with different classes.
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Chapter 7

Feature Extraction and
Selection

One of the tasks of pattern recognition is to convert patterns to features,

where these features are a description of the collected data in a compact

form. Ideally, these features only contain relevant information, which then

play a crucial role in determining the division of properties concerning each

class. Mathematical models of feature extraction lead to a dimensionality

reduction, resulting in lower dimensional representation of the information.

Following feature extraction, feature selection has an important influence

on classification accuracy, necessary time for classification, the number of

examples for learning and the cost of performing classification.

Generally speaking, for different pattern recognition problems, there are

various solution strategies. In this Chapter, we will discuss five mathe-

matical models for extracting features: Fourier transforms; AR modelling

over wavelet decomposition levels; a subspace identification algorithm; a

wavelet packet identification procedure; and optimized Mertz apodization

functions for system identification. These feature extraction methods have

been successfully applied to identify two- and multiclass biomedical sam-

ples from their THz measurements, which will be discussed in detail in

Chapter 9.
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7.1 Role of feature selection and extraction

A pattern recognition system includes feature extraction and selection. The collected

data are subject to the feature extraction and selection processing. The aim is to de-

termine the feature sets as input to the subsequent classifier. The pattern processing

in the Thesis is mainly about signals collected from THz imaging setups, which are

time series data at each pixel. A new question is to explore the identification decision

made with respect to these signal vectors, as being conducted in a 3D volume, instead

of conventional pattern recognition from 2D or 1D data.

Both feature selection and feature extraction can be applied to accomplish dimension-

ality reduction for classification. Feature selection omits redundant information and

irrelevant features from the available measurements. All the ignored features do not

contribute to class separability. Feature extraction, on the other side, considers all the

information content and maps the useful information content into a lower dimensional

feature space. In this Thesis, we use feature extraction methods to map useful infor-

mation and then apply feature selection to trace only significant input feature sets to

classifiers, which allows us to accomplish classification experiments on THz measure-

ments to desirable accuracy levels.

It is important to achieve dimensionality reduction for effective classification tasks. A

finite set of inputs are then applied for the design of a recognition system. A series of

mathematical methods have been investigated for optimal classification performance,

and is summed up in Table 7.1 from Meyer-Base (2003).

7.2 Feature extraction methods

There are three considerations in the extraction and selection of features: (i) feature

evaluation criterion, (ii) dimensionality of the feature space, and (iii) optimisation pro-

cedure.

A good feature should satisfy two criteria. Firstly, a feature should remain unchanged

when variations take place within a class. The second is the ability of the feature to

reveal important differences of the discrimination between patterns associated with

different classes. The result is that the good features allow a decision of the target

patterns with use of enough pertinent information.
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Table 7.1. Standard approaches in pattern recognition.

Measured features Transformation of features Structural features

Amplitude Polynomials Peaks

Bias Harmonic analysis Derivatives

Duration Fourier tansforms Lines

Phase Wavelet transforms Edges

Energy Haar transform LPC coefficients

Moments Karhunen-Loève Transform Parametric models

Singular value

Karhunen-Loève

Eigenvalues

Feature selection Classifiers Clustering methods

Discriminant analysis Euclidian distance Isodata algorithm

Chernoff bound Mahalanobis distance Fisher’s linear discriminant analysis

Bhattacharya divergence Linear discriminant functions Parsing

Exhaustive search Bayesian linear classifier

Dynamic programming Maximum likelihood

Production rules

Support vector machines

Density functions

Parzen estimator

k-NN algorithm

Histogram

There are two known categories in the literature for feature extraction, which are used

in THz pattern recognition: (i) nontransformed structural characteristics: moments,

power, amplitude information, energy, etc. (ii) transformed structural characteristics:

frequency and amplitude spectra, subspace transformation methods, etc.

The so-called curse of dimensionality (Duda and Hart 1973) is one of the most frequent

problems when applying any classification technique to pattern recognition. Methods

that are adequate for a low-dimensional feature space might be completely impractica-

ble for a high-dimensional space (number of features > 50). This shows that techniques

for dimensionality reduction in the feature space have to be developed in order to solve

practical problems.

We will tackle the problem of feature extraction applied to THz biomedical signal anal-

ysis. Our goal will be for a given collection of signals to generate the features that will

be the input to a classifier. These signals will have to be assigned labels to one of the

possible classes.

For the current Chapter, we will discuss the transformed signal characteristics. The

relevant feature extraction and selection methods will also be discribed.
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7.3 Fourier transform for signal analysis

The Fourier transform has been a standard analytical tool for engineers and scientists

over the past two centuries. The Fourier transform defines a relationship between

a signal in the time domain and its representation in the frequency domain. In this

specific case, both domains are continuous and unbounded. Being a unitary transform,

no information is created or lost in the process, so the original signal can be recovered

from its Fourier transform. The definitions for the Fourier transform and its inverse

are

F(ω) =
∫ +∞

−∞
f (t)e−jωtdt (7.1)

f (t) =
1

2π

∫ +∞

−∞
F(ω)ejωtdt (7.2)

where the pair of functions { f (t), F(ω)} is known as a Fourier transform pair. The

Fourier transform can be viewed as an expansion in the orthonormal basis {e−jωt|ω ∈
R}. These basis functions are the eigenfunctions for linear, time-invariant operators.

The Fourier transform is an ideal mathematical tool for the study of such systems. The

eigenfunction expansion on the signals of interest forms the theoretical foundations

for frequency domain analysis that is very important in the mathematical sciences.

A frequency orientation component algorithm is introduced later in Section 9.5.2 to

achieve THz signal identification.

However, Fourier basis functions are pure sinusoids, and they have infinite support in

time. This fact renders Fourier techniques unsuitable for describing signals containing

discontinuities and sharp spikes. In addition, in the inverse transform expression of

Eq. (7.2), the convolution kernel, ejωt, has unit magnitude, indicating equal contribu-

tions to the inverse transform from every frequency in the transform. The result leads

to a lack of compactness for non-stationary signals, which is a major disadvantage in

applications such as signal compression. This is the reason that in this Thesis, both

Fourier transforms and wavelet transforms are applied for the analysis of THz pulsed

signals, and the latter forms the majority of the work in the PhD project. Wavelet trans-

forms have been described in the previous Chapter.

The invention of the Fast Fourier Transform (FFT) has proved to be a significant mile-

stone in the development of Fourier analysis. Along with rapid advances in digital

computers, the FFT provides a practically feasible method to compute the Fourier

transform. Subsequently, Fourier analysis remains, to this day, an important technique
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for scientists and engineers. In this section, Fourier techniques are used for feature

extraction methods, allowing a acceptable classification performance in THz measure-

ments. Further applications, i.e. computed tomographic reconstruction algorithms,

will be introduced later in Chapter 10.

7.4 AR and ARMA parametisation of wavelet coefficients

In this Section, a novel technique involving the use of Auto Regressive (AR) and Auto

Regressive Moving Average (ARMA) models on the wavelet transforms of T-ray pulse

responses is used as feature extraction method for classification purposes.

7.4.1 AR model parameter estimation

Since the AR model is built on wavelet subbands, in the subsequent wavelet decompo-

sition, we denote the new approximation and detail coefficients with c̄ and d̄, respec-

tively.

At every level k of the DWT decomposition, we perform firstly auto-regressive (AR)

and then moving average (MA) modelling of the coefficients. We use the forward

linear prediction (Therrien and Oppenheim 1992, Proakis and Manolakis 1996) at the

jth wavelet transform depth given by the linear difference equation in the time domain:

ˆ̄cAR
j [n] = −aj[1]c̄j[n − 1] − aj[2]c̄j[n − 2]− ... − aj[P]c̄j[n − P] + wj[n] (7.3)

where ˆ̄cAR
k [n] represents the current prediction of wavelet approximation coefficients

through AR modelling, and P represents the prediction order of the model. The mod-

elling residual wk[n] is assumed to be a white Gaussian process. The least-squares form

of the Yule-Walker equation is used to estimate the corresponding AR model parame-

ters (Therrien and Oppenheim 1992, Jain and Deshpande 2004):

Rc̄j
aj = [Sj 0]T (7.4)

where, Rc̄j
is the covarianace matrix of the data, aj = [aj[0], ..., aj[P]]T is the vector of

the AR model coefficients and Sj is the minimum sum of squared errors. The data

vector c̄j of the autocorrelation method is determined by the selection of the end points

as nI = 0, nF = Ns + P − 1, and Ns is selected to be the length of the detailed wavelet

coefficient at the jth wavelet transform level, with Ns = n = Lx/(2 × j), where Lx
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labels the length of data vector x. The prediction error variance (PEV), which is used

to validate our AR model, is calculated as

σ2
ǫj,P =

1

nF − nI + 1
Sj. (7.5)

It should be noted that the prediction error variance is the theoretic criterion for any

AR/ARMA model order selection task. It measures the precision of a model’s pre-

dictions. The measurement errors are reduced by the model fitting process if the PEV

is less than 1, while any errors in the data measurements are multiplied if the PEV is

greater than 1. It is desirable for PEV to be close to zero, in which case, the predictive

power of the model would be more accurate. This is a crucial first step to estimate the

model parameters (Liang et al. 1993).

7.4.2 ARMA model parameter estimation

An ARMA model is a combination of AR and moving average (MA) models. The MA

model at the jth wavelet decomposition level, based on approximation coefficients c̄j is

developed from the following difference equation:

ˆ̄cMA
j [n] = c̄j[0]wj[n] + bj[1]wj[n − 1] + ... + bj[Q]wj[n − Q]. (7.6)

The MA prediction output ˆ̄cMA
j [n] is seen as a sum of weighted average of the past Qj

input samples of a white noise process wj(n). The full ARMA model can be obtained

by combining both AR and MA models, as below:

Pj

∑
i=0

aj[i]c̄j[n − i] =

Qj

∑
k=0

bj[k]wk [n − k] (7.7)

where, aj[0] is normalised to 1.

The MA parameters are estimated by Durbin’s method, which is an improvement of

the basic Prony method that assumes that ˆ̄cj[n] = c̄j[n] for n = 0, 1, ...Ns − 1, setting

Ns = Pj + Qj + 1 with Pj = Qj. The idea behind Durbin’s method is to turn a MA

modelling problem into a set of two normalised and significantly over-parametrised

AR modelling problems denoted by A and B and consequently solve them (i.e. adopt-

ing the condition Ns > Pj + Qj + 1). The purpose of this over-parametrisation process

is to facilitate the solution. In our work, the order of AR model (Pj) is selected to be five

times the MA model order Qj (Pj = 5Qj) as this has been found to provide a good fit
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(Therrien and Oppenheim 1992). Then the Yule-Walker matrix equation of the ARMA

model is partitioned as:
[

Rc̄jB
Rc̄j A

]T
aj =

[

bj ejA

]T
(7.8)

where bj = [bj[0]...bj[Q]]. Here ejA
is the prediction error that is defined as ejA

=

c̄j[n] − ˆ̄cj[n], with n = 0, 1, ...Ns − 1. The related AR coefficient vector aj is determined

from minimising Sj A
= |ej A

|2 and observing that Rc̄j A
aj = ejA

is equivalent to the

Yule-Walker equations for the AR model in Eq. (7.4). The difference between the two

formulations lies in the calculation of MA parameters bj. Instead of forcing bj to match

the left side of the equation Rc̄jB
aj = bj in Eq. (7.8), Durbin’s method considers the exis-

tence of an error term of this equation. A higher order AR model is used as a substitute

for an MA model. It is worth noting that (i) the coefficient vector aj is obtained from the

solution of the Yule-Walker equation normalised by the gain—first item of AR coeffi-

cients, before substituting Sj with unity in Eq. (7.4); (ii) we use the coefficient vector aj,

derived from setting Pj = 5Qj, to construct the data matrix that provides the new AR

modelling coefficients with the MA model order Qj. Durbin’s method also guarantees

the stability of the ARMA model eliminating windowing effects.

7.4.3 Feature extraction via AR models over wavelet decomposition

The objective of feature extraction is to isolate the relevant features mentioned earlier

from the T-ray signals to improve classification performance. Feature matrix calcula-

tions, assuming AR, MA and ARMA models of different order, are performed. The av-

erages of the modelling coefficients are computed over the three decomposition levels

of the wavelet transform employed on each data set. The model coefficient averages

are then joined to produce feature vectors with a dimension equal to the number of

subbands in the wavelet decomposition. The feature vectors obtained from two dif-

ferent AR orders, and MA orders are combined, respectively, to form the final AR and

MA feature matrices. The ARMA feature matrix is obtained by combining two differ-

ent orders of AR and MA vectors together. The extracted AR and MA feature vectors

are calculated at each decomposition level j by

〈aP∗
j 〉 =

1

P∗

P∗

∑
i∗=1

aj[i
∗], where 2 ≤ P∗ ≤ 7 (7.9)

〈aP
j 〉 =

1

P

P

∑
i=1

aj[i], where 3 ≤ P ≤ 8 (7.10)
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〈bQ∗
j 〉 =

1

Q∗

Q∗

∑
k∗=1

bj[k
∗], where 2 ≤ Q∗ ≤ 7 (7.11)

〈bQ
j 〉 =

1

Q

Q

∑
k=1

bj[k], where 3 ≤ Q ≤ 8 (7.12)

where 〈aP
j 〉, 〈aP∗

j 〉, and 〈bQ
j 〉, 〈b

Q∗
j 〉 denote the averaged value (DC value) of AR and

MA model coefficients at different model orders. The new feature matrix using the AR

modelling procedure is given from

DCAR
j = [〈aP∗

j 〉|〈aP
j 〉], where P∗ ≤ P. (7.13)

A similar procedure is adopted for the MA modeled data sets

DCMA
j = [〈bQ∗

j 〉|〈bQ
j 〉], where Q∗ ≤ Q. (7.14)

Finally, we obtain new feature matrices combining the coefficients from both the AR

and the MA modelling procedures

DCARMA
j = [〈aP∗

j 〉|〈bQ
j 〉]. (7.15)

This combination aims at improving the generalization ability of the classification pro-

cess. Additionally, since the feature matrices are the combination of the averaged co-

efficients matrix related to AR, MA, and ARMA modelling of wavelet approximation

coefficients at three decomposition levels, we relabel the wavelet decomposition level

j to a combination of all wave decomposition levels j. Therefore we obtain the new

feature matrices: DCAR
j , DCAR

j and DCAR
j .

The complete procedure for calculating DCARMA
j is depicted in Fig. 7.1. The imple-

mentation used in this Thesis is motivated by a desire to obtain fixed length feature

vectors to facilitate comparison. Since various AR/ARMA model orders are used, this

naturally leads to a varying number of model coefficients, and hence affects the di-

mensionality of the extracted feature vectors. Averaging the AR/ARMA coefficients

aims to transform the varying dimension of AR/ARMA model coefficients to a fixed

number of dimensions. Another parameter that can affect the feature matrix length is

the number of decomposition levels in wavelet transforms, since varying j leads to a

different number of subbands.
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Figure 7.1. Illustration of the DCARMA feature matrix calculated over three levels of wavelet

decomposition. In this modelling, H and G denote the low- and high-pass filters, re-

spectively, w f is the de-noised T-ray input. The arrow indicates the diadic downsampling

process. Similar illustration related to DCAR and DCMA feature matrix are assumed.

7.5 System identification for feature extraction

System identification refers to the problem of estimating a system that best describes

the measured data. System identification starts from experimental data, measure-

ments, and observations. The data are assumed to consist of two sets: the output

of the unknown system, which is excited by the input signal. We consider the system

whose output depends on the input signal and noise.

Prediction error minimization and subspace identification are two popular approaches

to evaluate an identification system. Predictor error methods, such as the ARMA

model, represented above, are based on local optimization algorithms, while subspace

methods are based on geometric operations on subspaces spanned by matrices ob-

tained from measurements without involving explicit optimization criteria (Van Over-

schee and De Moor 1994). Hence, in general, subspace methods are fast and numeri-

cally stable, however, less accurate than prediction error minimization methods.
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In addition to subspace model for system identification, this Chapter also explores two

more common models for the identification task. They are wavelet packet identifica-

tion models and optimized Mertz apodization functions.

For analysing the THz data, the THz pulse detected with no sample in place is con-

sidered to be the input, and the THz pulse detected after transmission through the

sample is taken as the system output. Via the calculation of system parameters, the

time domain pulse is reduced to a relative small number of features. It turns out to be

a classifier that can be trained and an unknown sample that can be identified.

7.5.1 A subspace system identification algorithm

The subspace identification approach to a state-space model adopts a time-invariant

process, which implies an unchangeable underlying physical system. The model or-

der, which is the only parameter that needs to be chosen, can be conveniently estimated

from a singular value plot. Efficient linear algebra tools such as singular value decom-

position are applied. The subspace identification algorithm, based on the work carried

out by Galvão et al. (2005) is applied for THz system identification in this Thesis. The

system identification algorithm consists of two modelling subsystems. One is called

deterministic modelling of the identification system, where the output of the system

only depends on the input signal. The other is called stochastic modelling of the sys-

tem, where the output depends on a noise signal. Since we consider the system with

output depending on the input signal and a noise signal, we derive the identification

system based on the combination of deterministic and stochastic models. They are

reviewed as follows.

The deterministic subsystem

Discrete-time state-space models are arranged with only one delay involved. This

leads to the introduction of extra variables, known as state variables. The state vari-

ables can be reconstructed from input-output data. The number of state variables

needed in the representation is equal to the order of the system. A single-input single-

output state-space model can be written as

x[k + 1] = Ax[k] + Bu[k]

y[k] = Cx[k] + Du[k] (7.16)
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where x[k] is an n-dimensional state column vector, u[k] and y[k] are the input and the

output, respectively. In addition, this equation is represented by a scalar parameter D

and matrices A, B, C with the dimensions (n × n), (n × 1) and (1 × n), respectively.

There is an equivalence between the state-space representation and the input-output

representation. The equation is described via taking the z-transform of the state-space

model with eliminating state variables

Gd(z) =
Y(z)

U(z)
= C(zI − A)−1B + D (7.17)

where I is an identity matrix. The estimation of the A, B, C matrices and the scalar

D is performed via applying the subspace approach. There are three steps: (i) the

determination of the model order via a singular value plot, (ii) the estimation of the

state sequence from the input-output data via a generalized observability matrix, and

(iii) the estimation of system matrices via a linear regression procedure, with use of the

input, output, and state sequences.

In order to achieve the possible representations of state matrices from the observed

input-output relationship, the decoupled modal realisations are of interest wherein

there is no energy exchange between the propagating modes.

In the subspace identification procedure, the input data are arranged in Hankel matri-

ces as

U0|2i−i =





































u[0] u[1] u[2] · · · u[j − 1]

u[1] u[2] u[3] · · · u[j]
...

...
...

...
...

−−−− −−−− −−−− −−−− −−−−
u[i] u[i + 1] u[i + 2] · · · u[i + j − 1]

u[i + 1] u[i + 2] u[i + 3] · · · u[i + j]
...

...
...

...
...

u[2i − 1] u[2i] u[2i + 1] · · · u[2i + j − 2]





































(7.18)

where the notation U0|2i−1 implies that the first row of the matrix begins with u[0] and

the last row begins with u[2i − 1]. There is an assumption that j → ∞ in the Hankel

matrix for identification. The past input is denoted with Up, and the future input is

denoted with U f , both of which are divided by a reference point k = i. The division i

is artificially imposed.
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In a similar fashion, the output data are arranged in a Hankel matrix Y, with Yp and

Y f . Using this matrix notation, the system equations are as follows:

Yp = ΓiXp + ΩiUp (7.19)

Y f = ΓiX f + ΩiU f (7.20)

X f = AiXp + ∆iUp (7.21)

where Xp = [x[0] x[1] · · · x[i − 1]], X f = [x[i] x[i + 1] · · · x[i + j − 1]], and Γi is an

extended observability matrix built as

Γi =
[

C CA CA2 · · · CAi−1
]T

(7.22)

(where T signifies transpose). This relates the state sequence with the input-output

data, and Ωi is the impulse response matrix given by

Ωi =



















D 0 0 0 0

CB D 0 · · · 0

CAB CB D · · · 0
...

...
...

. . .
...

CAi−2B CAi−3B CAi−4B · · · D



















(7.23)

and ∆i is an extended controllability matrix given by ∆i = [Ai−1B Ai−2B · · · AB B].

As the system is assumed to be observable and controllable, the unknown matrices Γi

and ∆i have full rank. The state sequence can be obtained from

Oi = ΓiX f (7.24)

where Oi is the oblique projection (see the Appendix A) of Y f onto Wp along the U f

direction, denoted

Oi = Y f /U f
Wp (7.25)

where matrix Wp is built by stacking the past input and output Hankel matrices as

Wp = [UT
p , YT

p]
T, Oi are the components of the system output, which result from exci-

tations that took place before the reference instant i. After Oi has been obtained, we

need to factorize it into two terms Γi and Xi.
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The singular value decomposition (SVD) of Oi can be implemented to achieve a nu-

merically stable factorization. Additionally, it also provides a way of determining the

order of a system, which is the rank of Oi. The SVD of Oi is written as

Oi = USVT =
(

U1 U2
)

(

S1 0

0 0

)(

VT
1

VT
2

)

= U1S1VT
1 (7.26)

where S1 is a diagonal matrix containing singular values different from zero and U1,

V1 are unitary matrices. From Eq. (7.26), it can be observed that any choice of Γi and

X f such that ΓiX f = U1S1VT
1 is a solution to the factorization. The diagonal elements

in S1 are related to the variance along the principal directions of Oi.

To balance the variance between Γi and X f , we split the S1 matrix into two equal

terms, and therefore, the balanced solution can be expressed Γi = U1S1/2
1 T and X f =

T−1S1/2
1 VT

1 . By choosing different matrices T we achieve different state space realiza-

tions of the input-output relation. By estimating the entire state sequence at once, the

subspace method avoids the propagation of errors that are associated with the recur-

sive computation of the states from an initial estimate. The geometric analysis for this

identification procedure via Hankel matrices can be referred to in Appendix A.

After the state sequence is obtained, it can be used in conjunction with the input and

output data to estimate the system matrices A, B, C, D. This is carried out by a matrix

linear regression procedure based on the following equation:

[

Xi+1

Yi|i

]

=

[

A B

C D

] [

Xi

Ui|i

]

(7.27)

where Yi|i = {y[i], y[i + 1] · · · y[i + j − 1]}, Ui|i = {u[i], u[i + 1] · · · u[i + j − 1]}, Xi = X f

and Xi+1 = {x[i + 1], x[i + 2], · · · , x[i + j]} is the shifted state sequence, which can be

obtained by an oblique projection procedure (see Appendix A) from the equation

Y−
f = Γi−1Xi+1 + Ωi−1U−

f (7.28)

where the minus superscript implies that the first row of the matrix has been removed.

Once Xi+1 has been estimated, Eq. (7.27) can be solved for A, B, C, D by a least-squares

procedure by post-multiplying both sides of the equation by the pseudo-inverse of

[XT
i , UT

i|i]
T . In the absence of noise, the system of equations described in Eq. (7.27) is

consistent and as a result there are no residuals in the least-squares solution.
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Stochastic subsystem

The stochastic state xs[k] and output ys[k] follow from the stochastic subsystem, which

describe the influence of the noise sequences ex[k1] and ey[k2] on the stochastic output:

x[k + 1]s = Axs[k] + ex[k] (7.29)

ys[k] = Cxs[k] + ey[k]. (7.30)

Here, ex[k] and ey[k] are assumed to be white, have zero mean and covariance matrices

satisfying the following equation

E

( [

eX[k1]

ey[k2]

]

[

eT
X[k1] ey[k2]

]

)

=

[

Q δ(k1, k2)S

δ(k1, k2)ST R

]

(7.31)

where δ(k1, k2) = 1 if k1 = k2 and 0 otherwise.

For the stochastic subsystem, we define

P def E{xs[k](xs[k])T}
G def E{xs[k](ys [k])T}

Λ0 def E{ys[k](xs[k])T}.

(7.32)

With Eqs. (7.29), (7.30), (7.31), and through stability of the controllable modes of the

system {A, Q1/2}, the following equations are satisfied

P = APAT + Q

G = APCT + S

Λ0 = CPCT + R.

(7.33)

This set of equations describe the set of all possible stochastic realisations that have the

same second order statistics as a given stochastic sequence ys[k]. More details can be

referred to in Faure (1976).

It is easy to derive

Λi def E{ys[k + i](ys[k])T} =



















CAi−1G if i > 0

Λ0 if i = 0

GT(AT)−i−1CT if i < 0.

(7.34)
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Associated with the stochastic subsystem, we define the following matrices: (i) the

matrix ∆
s
i

∆
s
i def

(

Ai−1G Ai−2G · · · AG G

)

, (7.35)

(ii) the block Toeplitz covariance matrix Ls
i

Ls
i def















Λ0 Λ−1 Λ−2 · · · Λ1−i

Λ1 Λ0 Λ−1 · · · Λ2−i
...

...
...

. . .
...

Λi−1 Λi−2 Λi−3 · · · Λ0















, (7.36)

and (iii) the block Toeplitz cross covariance matrix Hs
i

Hs
i def















Λi Λi−1 Λi−2 · · · Λ1

Λi+1 Λi Λi−1 · · · Λ2
...

...
...

. . .
...

Λ2i−1 Λ2i−2 Λ2i−3 · · · Λi















= Γ
′
i∆

s
i . (7.37)

For the stochastic subsystem, due to stationarity of ys[k], the following equations hold

true

lim
j→∞

1

j

[

Ys
0|i−1

Ys
i|2i−1

]

(

(Ys
0|i−1)

T(Ys
i|2i−1)

T

)

=

[

Ls
i (Hs

i )
T

Hs
i Ls

i

]

. (7.38)

The above derivation refers to the work conducted by Van Overschee and De Moor

(1994) and Van Overschee and De Moor (1995).

Deterministic-stochastic models

If the identification is carried out from noisy input-output measurements, the state-

space model can be described as the combination of deterministic-stochastic models,

which is formulated by adding noise terms to deterministic subsystem

x[k + 1] = Ax[k] + Bu[k] + ex[k]

y[k] = Cx[k] + Du[k] + ey[k] (7.39)

where column vector ex[k] is a state noise, and scalar ey[k] is an output noise. Here, ex[k]

and ey[k] satisfy Eq. 7.31. In this stochastic case, the noise covariance matrices Q, S, R

are calculated as a by-product of the identification of the system after the matrices

A, B, C, and scalar D are estimated.
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B +
xd [k+1]

z -1
xd

[k]xd[k]
C +

yd

D

A

+
xs [k+1]

z -1
xsx [k]

C

A

ex[k]

+

ey[k]

ys [k]

(a)

(b)

Figure 7.2. Block diagrams of noisy state-space models. (a) Deterministic and (b) stochastic

subsystems. Symbol z−1 denotes the unit time delay operator (with a slight abuse of

notation since the block diagrams depict time-domain signals and not z-transforms).

After Galvão et al. (2005).

The basic idea of the subspace identification in this stochastic framework is to split the

model into two subsystems: deterministic (Fig.7.2(a)) and stochastic. The stochastic

subsystem is purely driven by noise (Fig.7.2(b)). The stochastic state xs[k] and output

ys[k] follow from the stochastic subsystem, which describe the influence of the noise

sequences ex[k1] and ey[k2] on the stochastic output:

xs[k + 1] = Axs[k] + ex[k] (7.40)

ys[k] = Cxs[k] + ey[k]. (7.41)

Since the system is assumed to be linear, the two subsystems can be combined by

obeying the superposition principle. In this case, the system order is only equal to the

number of singular values different from zero, achieved via decomposing the oblique

projection Oi. The input-output data, in this case, should be acquired in an infinite

time. Compared to the value related to system dynamics, the noise associated singular

values are quite small. Therefore, statistical criteria can be used to estimate the system

order by counting the number of singular values that are significantly larger than zero.

In this sense, the identification can be seen as a de-noising process when the noise is

placed in a state space.

With superscripts d and s denoting the quantities associated with the deterministic and

stochastic subsystems, respectively, the relations between input, output and states can
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be expressed as

Yp = ΓiX
d
p + ΩiUp + Ys

p (7.42)

Y f = ΓiX
d
f + ΩiU f + Ys

f (7.43)

Xd
f = AiXd

p + ∆iUp. (7.44)

The observability matrix Γi and an estimate X̃ f of the state sequence can be obtained

in a similar manner to that in the deterministic framework, that is: Γi = U1S1/2
1 T and

X̃ f = T−1S1/2
1 VT

1 , where U1, S1, V1 result from the SVD of Oi = Y f /U f
Wp as

Oi = USVT =

(

U1

U2

)(

S1 0

0 S2

)(

VT
1

VT
2

)

. (7.45)

Owing to the presence of noise, the singular values in the diagonal matrix S will all be

different from zero. In this case, the separation between S1 (which contains singular

values related to the noise plus the system dynamics) and S2 (which contains singu-

lar values that are related to noise only) needs to be accomplished by inspecting the

singular value plot and choosing an appropriate threshold value on the basis of some

statistical criterion.

After the state sequence has been estimated, a least squares procedure can be used to

estimate the system matrices from the matrix equation

[

X̃i+1

Yi|i

]

=

[

A B

C D

] [

X̃i

Ui|i

]

+

[

ẽx

ẽy

]

(7.46)

where ẽx and ẽy are residual sequences which can be used to estimate the noise covari-

ance as
[

Q S

ST R

]

= E

[

ẽT
x

ẽy

]

[

ẽT
x ẽy

]

. (7.47)

7.5.2 Wavelet-packet identification of a system

The current work exploits the spectral partitioning flexibility of wavelet packets in a

subband system identification framework, with link to THz pulses as an illumination

source. It is an extension of the work performed by Paiva and Galvão (2006).
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Subband model identification

Defining the background and sample responses as the input and output signals, the

frequency response of an identified model would be an estimate of the complex inser-

tion loss (CIL). A wavelet packet decomposed tree is adopted to establish the frequency

bands at which the subband models will be created. Fig. 6.6 illustrates a wavelet packet

decomposition tree in the time domain. Its frequency response is suited to the current

wavelet packet scheme (a z-transform of input signals and relative filters). Fig. 7.3 is

a particular structure of the wavelet packet decomposition tree, with the application

of the proposed scheme. The sub-band model Mi,j(z) represents the plant in the fre-

quency band associated to the leaf node (i, j). If (i, j) is a leaf node, then signal ŭi,j is

defined as the output of model Mi,j for input u. If (i, j) is not a leaf node, then the

coefficients xi,j{ŭi,j} are defined as the reconstruction of the coefficients at the child

nodes of (i, j). The sub-band models Mi,j(z) are identified from the sample and back-

ground responses by following a least-squares procedure as indicated in Fig. 7.4. The

least-squares procedure consists of the input signal u used for identification, model

outputs of the plant y and subband ŭi,j, respectively. Residue ei,j denotes the wavelet

packet coefficients of the difference between y and ŭi,j, in the frequency band under

consideration.

The structure adopted for the subband model is a transfer function of the form

Mi,j(z) = Pi,j(z)Qi,j(z) (7.48)

where

Pi,j(z) =

(

1

1 − z−1

)si,j

si,j ∈ Z

Qi,j(z) = αi,j + βi,jz
−1 αi,j, βi,j ∈ R (7.49)

where, Pi,j(z) is aimed at roughly approximating the band-limited frequency response

of the plant, whereas the FIR term Qi,j(z) provides a fine-tuning for the approximation.

In order to improve the match between plant and model, only two taps are used in

Qi,j(z), represented in Eq. 7.49. This is reasonable since the system is only represented

on a limited frequency band.

A least-squares adjustment for the parameters of Mi,j can be carried out by minimizing

the following cost function Wi,j : Z× R
2 → R:

Wi,j(si,j, αi,j, βi,j) = ei,j(ei,j)
T (7.50)
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Sample Response

Estimated

Sample

Response

Figure 7.3. Wavelet-packet model structure. In this example, a complete two-level decomposi-

tion tree, which defines four frequency sub-bands, is employed. Here, H(z) and G(z)

denote low-pass and high-pass decomposition filters, respectively, with reconstruction

counterparts represented by Hr(z), Gr(z), which are the relabeled H̃ and G̃. The four

sub-band models are represented by the transfer functions M0,2(z), M1,2(z), M2,2(z),

M3,2(z). After Paiva and Galvão (2006).

where ei,j denotes the row vector of residues for the identification data, as in Fig. 7.4. If

si,j is fixed, the optimal real-valued parameters, αi,j and βi,j, are obtained by imposing

∂Wi,j

∂αi,j
= 0,

∂Wi,j

∂βi,j
= 0 ⇒

ei,j

(

∂ei,j

∂αi,j

)T

= 0, ei,j

(

∂ei,j

∂βi,j

)T

= 0. (7.51)

Let uP
i,j be the output of the P(z) term of the subband model for input u and let uPd

i,j be

the result of delaying uP
i,j by one sample. The model output ŭi,j can then be written as

ŭi,j = αi,ju
P
i,j + βi,ju

Pd
i,j and thus residue ei,j becomes

ei,j = xi,j({y} − αi,j{uP
i,j} − βi,j{uPd

i,j })
= xi,j{y} − αi,jxi,ju

P
i,j − βi,jxi,j{uPd

i,j }. (7.52)

From Eqs. (7.51) and (7.52), it follows that:

(xi,j{y} − α∗
i,jxi,j{uP

i,j} − β∗
i,jxi,j{uPd

i,j })(xi,j{uP
i,j})T = 0 (7.53)

(xi,j{y} − α∗
i,jxi,j{uP

i,j} − β∗
i,jxi,j{uPd

i,j })(xi,j{uPd
i,j })T = 0 (7.54)
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Figure 7.4. Model identification of a sample response for a given frequency sub-band. It

illustrates a least-squares procedure that can be applied to achieve the identification of

the sub-band models Mi,j(z) from the sample and background responses. After Paiva

and Galvão (2006).

which leads to
[

α∗

β∗

]

= M−1





xi,j{y}(xi,j{uP
i,j})T

xi,j{y}(xi,j{uPd
i,j })T



 , (7.55)

where

M =





xi,j{uP
i,j}(xi,j{uP

i,j})T xi,j{uPd
i,j }(xi,j{uP

i,j})T

xi,j{uP
i,j}(xi,j{uPd

i,j })T xi,j{uPd
i,j }(xi,j{uPd

i,j })T



 (7.56)

provided that the indicated inverse matrix M−1 exists.

To find the optimal value of si,j, the following search algorithm in Z is used: the value

of si,j is varied in a specified range. For each value of si,j , the optimal values α∗
i,j and β∗

i,j

are calculated using Eq. (7.55), and the corresponding value of Wi,j is noted. The value

si,j for which Wi,j is minimum is then adopted, as well as the corresponding values of

α∗
i,j and β∗

i,j.

Cost relations along the tree

As for a leaf node (i, j), signal ŭi,j is the output of subband model Mi,j for input u. Since

there is no defined subband model Mi,j for a non-leaf node, the coefficients xi,j{ŭi,j}
are defined as the reconstruction of the coefficients at the child nodes (2i, j + 1) and

(2i + 1, j + 1) (see Fig. 7.3 for an example), that is

xi,j{ŭi,j} = x2i,j+1{ŭ2i,j+1}Hr + x2i+1,j+1{ŭ2i+1,j+1}Gr (7.57)

where Hr and Gr are the time-domain reconstruction matrices corresponding to the

orthonormal filters Hr and Gr (Vetterli and Kovacevic 1995). Therefore, we define the
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matrix Vr as

Vr =

[

Hr

Gr

]

(7.58)

where Vr(Vr)
T = (Vr)

TVr = I , since it is orthogonal.

The reconstruction can be also applied to signal y

xi,j{y} = x2i,j+1{y}Hr + x2i+1,j+1{y}Gr . (7.59)

In Eq. (7.59), the coefficients ŭi,j, ŭ2i,j+1 and ŭ2i+1,j+1 indicate three different signals, the

last two of which are obtained independently. The modelling process, where (2i, j + 1)

and (2i + 1, j + 1) are leaf nodes, will be kept as a best wavelet packet basis, which will

be further discussed in the later subsection.

If (2i, j + 1) and (2i + 1, j + 1) are not leaf nodes, then the coefficients of these signals

are obtained through Eq. (7.57). Each of these coefficients is the function of its own

child nodes and calculated independently. The residue ei,j for a non-leaf node (i, j) is

defined with the same expression used for the leaf nodes. According to Eqs. (7.57),

(7.58) and (7.59), we have

ei,j = xi,j{y} − xi,j{ŭi,j}
= e2i,j+1Hr + e2i+1,j+1Gr

= [e2i,j+1|e2i+1,j+1]Vr. (7.60)

Therefore, the cost

Wi,j = ei,j(ei,j)
T = [e2i,j+1|e2i+1,j+1]VrVT

r

×[e2i,j+1|e2i+1,j+1]
T

= [e2i,j+1|e2i+1,j+1][e2i,j+1|e2i+1,j+1]
T

= e2i,j+1(e2i,j+1)
T + e2i+1,j+1(e2i+1,j+1)

T

= W2i,j+1 + W2i+1,j+1. (7.61)

That is, cost Wi,j at a non-leaf node (i, j) is equal to the sum of the costs at its child

nodes. As a result, it can be concluded that the cost W0,0 at the root node (0,0) is equal

to the sum of the costs of all leaf nodes.

It is worth noting that W0,0 = (y − ŷ)(y − ŷ)T, is the square of the 2-norm of the

prediction error, where ŷ = x0,0{ŭ0,0} = ŭ0,0 (see Fig. 7.3 for an example) is the model
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estimation for the plant output y. Since W0,0 is equal to the sum of the costs of all leaf

nodes, it can be seen that, for a given tree structure, the 2-norm of the prediction error

for the overall model can be minimized by adjusting each subband model separately.

Choice of the best wavelet packet tree

The choice of the best wavelet packet tree can be performed by applying the calculated

cost mentioned in Subsec. 7.5.2. Based on the method of the choice of the best wavelet

packet tree described in Section 6.4, for each node, we calculate the cost, the square

of the 2-norm of the residue ei,j and label this result W1
i,j. The superscript 1, which

stands for a leaf node, takes the same meaning as the notation ∗ used in Section 6.4,

and represents that W1
i,j is equal to the cost Wi,j at node (i, j) only if this node is chosen

to be a leaf. In order to decide if each node (i, j) should be a leaf or a non-leaf node, a

comparison of the cost W1
i,j (cost if (i, j) is a leaf node) with the sum W2i,j+1 + W2i+1,j+1

of the costs at its child nodes (cost if (i, j) is a non-leaf node) is carried out using the

decision rule,

Wi,j =

{

W1
i,j, W1

i,j ≤ ρ(Wi,j+1 + W2i+1,j+1)

Wi,j+1 + W2i+1,j+1 otherwise
(7.62)

where the penalty factor ρ ensures that node (i, j) will only be split into child nodes if

the cost reduction is large enough, aiming to justify the increase in model complexity.

Fig. 7.5 illustrates this rule.

In the present case, the penalty factor is required to avoid an overfitting of the iden-

tification data (Coifman and Wickerhauser 1992). The choice of the penalty factor ρ

is viewed as a model order determination problem, since the the number of nodes in

the resulting tree is changed with the value of ρ. Generalized Cross Validation (GCV)

techniques are adopted in the present work to address the determination problem and

to solve the value of ρ. The techniques estimate the generalization performance of the

model on the basis of the same signals used in its identification (Sjöberg et al. 1995),

following the same approach adopted in (Zhang et al. 1997).

The GCV index (GCVIn) for the wavelet packet model is defined as

GCVIn = MSE +
2ρ

N
σ2

e (7.63)

where MSE is the mean-square error between the model output and the measured

output, that is,

MSE =
1

N
ΣN

k=1(yk − ŷk)
2 =

1

N
W0,0 (7.64)
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Figure 7.5. The Choice of the best decomposition tree. Decision if node (i, j) will be a (a)

leaf or (b) non-leaf node. After Paiva and Galvão (2006).

where yk and ŷk denote elements of vectors y and ŷ (system and model outputs, respec-

tively), N is the number of elements of such vectors and p is the number of adjustable

parameters in the complete model. The measured output is assumed to be corrupted

with an additive white noise of variance σ2
e .

Since there is a subband model Mi,j with three adjustable parameters (si,j, αi,j and βi,j)

for each leaf node in the tree, it follows that p is equal to three times the number of leaf

nodes. The number of leaf nodes in the tree depends on the penalty factor ρ. Therefore,

the number of adjustable parameters p is a function of ρ.

The noise variance σ2
e is usually unknown and needs to be estimated. For the best

value of ρ (the value that minimizes GCVIn), the MSE between y and ŷ is a good ap-

proximation for σ2
e . Therefore, from Eqs. (7.63) and (7.63), it follows that

GCVIn = MSE +
2p

N
MSE =

1

N
W0,0

(

1 +
2p

N

)

(7.65)

in which both W0,0 and p depend on ρ.

Selecting the value of ρ that minimizes GCVIn provides a tradeoff between model par-

simony and identification accuracy. Such a procedure improves the ability of the model

to represent the behaviour of the system for input signals (Zhang et al. 1997).
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7.5.3 System identification via optimized Mertz apodization func-

tions

This subsection discusses use of optimized Mertz asymmetric triangular windows for

system identification. The design of this window is a trade-off of between minimizing

sidelobe levels in the calculated spectrum, which results in leakage of energy across

different frequency bins and main lobe width, which leads to a reduction in frequency

resolution.

The sample waveform is assumed to be the result of a discrete-time stochastic process

x[k], k = 0, 1, ..., 2L − 1, composed of a true signal term xr[k] and a zero-mean, ho-

moscedastic white-noise term e[k] so that x[k] = xr[k] + e[k], where xr[k] = E{x[k]},

E{e[k]} = 0, ∀k, E{e[k1]e[k2]} = 0, ∀t1 6= t2, and E{e2[k]} = σ2, ∀k, with E denoting

the expectation operator and σ the standard deviation of noise. The apodized wave-

form xa[k] is xa[k] = x[k]w[k], where w[k] is an Mertz window to be optimized. We

assume that w[k] is a linear combination of m functions {gi[k], i = 1, ..., m}, taken from

a given library, that is

w[k] =
m

∑
i=1

pigi[k] (7.66)

where pi, i = 1, ..., m, are the decision variables for the optimization problem. The cost

function adopted in this formulation is the expected value of the squared 2-norm of

the error between xa[k] and the true signal term xr[k], that is,

W[p] =
2L−1

∑
k=0

E[xa[k] − xr[k]]
2

=
2L−1

∑
k=0

x2
r [k] + σ2w2[k] − 2x2

r [k]w[k] + x2
r [k] (7.67)

where P = [p1p2 · · · pm]T. According to Eqs. (7.66) and (7.67), it follows that

W[p] = 0.5pT
Ωp + fTp + c (7.68)

where

Ω = 2
2L−1

∑
k=0

x2
r [k] + σ2Q[k]

f = −2
2L−1

∑
k=0

x2
r [k]r[k]

c =
2L−1

∑
k=0

x2
r [k] (7.69)
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with

Q[k] =















g2
1[k] g2[k]g1[k] · · · gm[k]g1[k]

g1[k]g2[k] g2
2[k] · · · gm[k]g2[k]

...
... · · · ...

g1[k]gm[k] g2[k]gm[k] · · · g2
m[k]















(7.70)

and

r[k] = [g1[k] g2[k] · · · gm[k]]. (7.71)

Since the true signal term xr[k] is unknown, the actual measurement x[k] for a partic-

ular realisation of the stochastic process can be used as an estimate x̂r[k] for xr[k]. An

estimate σ̂ for σ can be calculated as the standard deviation of the early part of the

measured time-domain signal before the arrival time of the pulse.

Without any constraints to be placed in the optimization process, the minimum of W[p]

would be obtained from the equation ∇W[p] = 0, which leads to p = −Ω
−1f provided

that Ω is nonsingular. However, constraints such as nonnegativity of the elements

of the windowing function (w[k] ≥ 0), monotonicity (dw[k]/dk ≤ 0), and endpoint

restrictions (w[0] = 1, w[2L − 1] = 0) must be imposed on the optimization process

to ensure that the function is well behaved in both time and frequency domains. To

satisfy the mentioned constraint conditions, the Mertz asymmetric triangular window

is designed with a maximum at the point corresponding to the absolute maximum of

the waveform and falls to zero at the borders.

The endpoint constraints w(0) = 1 and w(2L − 1) = 0 can be translated as the follow-

ing linear equality restrictions on the coefficient vector p:

[

1 1 1 · · · 1

1 g2[2L − 1] g3[2L − 1] · · · gm[2L − 1]

]

p =

[

1

0

]

. (7.72)

The positivity constraint for the Mertz window can be translated as

pi ≥ 0, i = 2, · · · , m. (7.73)

The first coefficient p1, which is associated with a constant term, is free to assume nega-

tive values to satisfy the endpoint constraints described in Eq. (7.72). The minimization

of the cost function W[p] given in Eq. (7.68) subjects to the constraints in Eqs. (7.72) and
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(7.73) is a quadratic programming problem, which can be solved by using efficient nu-

merical algorithms.

Fig. 7.6 shows a THz waveform with application of conventional the Mertz asymmetric

triangular window function.

(a) (b)

Figure 7.6. Plots of Mertz asymmetric triangular windows on the measured THz signals. (a)

THz waveform with application of conventional Mertz asymmetric triangular windows.

(b) Corresponding frequency domain plots of Mertz windowing functions (low-frequency

value normalized to 0 dB). After Galvão et al. (2007).

7.6 Chapter summary

This Chapter investigates different feature extraction methods to achieve the trans-

formed signal characteristics of THz measurements. It is important for pattern recog-

nition tasks to convert patterns to features and to describe the collected data in a com-

pact form. A series of signal processing techniques have been adopted to extract fea-

ture sets. The aim is to explore the ability of these extracted features to reveal impor-

tant differences for discrimination between patterns associated with different classes.

These feature extraction methods are summarised as follows:

(i) Fourier transform for signal analysis has been the standard analytical tool to be

adopted by engineers and scientists, which defines a relationship between a signal in

the time domain and its representation in the frequency domain.

(ii) Compared to Fourier basis functions with infinite support in time, wavelet trans-

forms afford good time-frequency localization features. Also AR and ARMA models
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on the wavelet transforms of T-ray pulse responses have been used as feature extrac-

tion methods for classification purposes. The correlation and Durbin’s methods are

optimal for the calculation of the AR and ARMA model parameters.

(iii) A subspace system identification algorithm as one of feature extraction algorithms

is based on geometric operations on subspaces spanned by matrices obtained from

measurements. Despite not using any explicit optimization criteria, such as in ARMA

processing, subspace methods are fast and reliable.

(iv) A subband model identification algorithm via the choice of best wavelet packet

tree holes great potential, especially for more spectrally rich samples, since it supplies

spectrum information with respect to the both space localisation and frequency local-

isaton. Additionally, the best wavelet packet tree choice provides a tradeoff between

model parsimony and identification accuracy.

(v) System identification via optimized Mertz apodization functions as a feature extrac-

tion method is also discussed. The tailored design of the Mertz window is specifically

applied to the asymmetric THz transient waveforms. It aims to afford more algorithms

for comparison with other signal processing techniques. Since pattern recognition

tasks are problem dependent, these feature extraction algorithms play an important

role in exploration of THz signal recognition for different biomedical specimens.

The last phase of the current THz pattern identification system is introduced in the

next Chapter, which describes different pattern classification schemes, falling within a

supervised learning strategy. These classification schemes are generally validated via

several different evaluation approaches, with aims to achieve the improvements on

classification components.
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Chapter 8

Pattern Classification

I
N signal processing, pattern classification refers to the separation

of patterns, measured or observed, into small classes, and then the

assignment of each new existing pattern to a particular class based

on the knowledge of the patterns. Classifying or describing observations

is realised via a classification or description scheme. The classification or

description scheme is usually based on training sets that have already been

classified or described. This is called a supervised learning strategy. Learn-

ing can also be unsupervised, but this is not within the scope of this Thesis.

The classification or description scheme in this Thesis is mainly concerned

with statistical (or decision-theoretic) approaches. They include the Maha-

lanobis distance classifier, the Euclidean discrimination matrix, and Sup-

port Vector Machines (SVMs).
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8.1 Mahalanobis distance

In this Section, the Mahalanobis distance classifier is introduced. An application of

this classifier to the extracted features using ARMA models over wavelet subbands

is provided. The other experimental instances regarding applying Mahalanobis dis-

tance classifiers on various THz measurements to evaluate classification performance

of different feature extraction techniques will be represented in the next Chapter.

8.1.1 Definition of Mahalanobis distance

One of the most common and versatile classifiers is the Mahalanobis distance classifier

(Schürmann 1996). It is a type of minimum distance classifier. It assumes that the data

for each class are normally distributed, thus the samples, xm, drawn from each class

will form a cluster in k dimensions, with a centre given by the mean vector, Am, cal-

culated by the expected value E of the mth entry in the vector x, and shape dependent

on the covariance matrix, C. Estimates are formed for these parameters regarding each

class m, using the training vectors,

Am = E[xm] (8.1)

Cm = E[(xm −Am)(xm −Am)T]. (8.2)

The Mahalanobis distance calculates the distance of a given vector x from the mean vec-

tor Am for a given class normalised by the variance Cm of training vectors in that di-

rection. For a given class, m, the distance is calculated by,

ρm(x) =
√

(x −Am)TC−1
m (x −Am). (8.3)

Classification is then performed by assigning a label to the given vector for which the

Mahalanobis distance is minimized. This classifier is illustrated as Fig. 8.1

The Mahalanobis-based classification scheme is optimal for normally distributed classes

with equal covariance matrices (linear discriminant) and equal a priori probabilities.

This Mahalanobis-based classifier is chosen because it is simple to implement and it

provides reasonable results for a variety of statistical properties, thereby highlighting

the performance of the associated feature extraction techniques. More complicated

classification algorithms abound and the appropriate choice for THz applications is an

open research area.
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Figure 8.1. A schematic of the Mahalanobis distance classifier. The Mahalanobis distance of a

given vector x from the mean vector Am for a given class is normalised by the variance

Cm of training vectors in that direction.

8.1.2 The Mahalanobis classifier via extracted features

For a practical application consideration, we formulate the Mahalanobis classification

scheme on a set of feature matrices of ARMA modeling over several variable wavelet

subbands, as described in Section 7.4. The corresponding classifier design based on the

feature extracted scheme is expressed herein. For a given class, m, the distance from a

feature matrix DCl
j to the class mean Am, is defined as

ρm(X) =
√

(DCl
j −Am)TC−1

m (DCl
j −Am) (8.4)

where Cm is the covariance matrix of the feature vectors regarding class m, DCl
j with

l = 1, 2, 3 represents the averaged coefficients matrix related to AR (l = 1), MA (l = 2),

and ARMA (l = 3) modeling of wavelet approximation coefficients at three decom-

position levels j, that is, DC1
j being DCAR

j , DC2
j being DCMA

j , DC3
j being DCARMA

j .

In practice, the covariance matrix is estimated from the training vectors. During clas-

sification, the minimum Mahalanobis distance from feature matrix DCl
j to each class

centre Am is used to assign the appropriate class label.
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8.2 The Euclidean discrimination metric

In what follows, the Euclidean discrimination metric is presented, which is applied to

evaluate how well multi classes can be distinguished within the THz frequency range

under consideration, illustrated in Section 9.3. This method is similar to the Mahalono-

bis discrimination. Its difference from Mahalanobis distance lies in that the Euclidean

discrimination is the measurement of all variables in the same units of length (Mullen

and Ennis 1987, McLachlan 2005). The Euclidean discrimination metric is described as

follows, with link to the current T-ray project.

Let xm,n be the THz frequency response of the mth object at the nth spectral bin. A row

vector xm is defined for each object in the form:

xm = [xm,1 xm,2 · · · xm,n]. (8.5)

Let A1,A2, ...,Aς denote the mean value of the objects belonging to classes 1, 2, ..., ς

respectively, that is:

Aς =
1

Nς
∑

m∈Iς

xm (8.6)

where Iς is the index sets of objects belonging to class ς, and Nς is the number of objects

in each class. A between-class dispersion metric is calculated as:

DB =
1

ς

ς

∑
ω=1

||Aω −A||2 (8.7)

where

A =
1

ς
(A1 + A2 + · · ·+ Aς). (8.8)

A within-class dispersion metric is calculated for each class ω as:

DW,ω =
1

Nω
∑

m∈Iω

||xm −Aω||. (8.9)

An overall within-class dispersion metric DW is calculated as:

DW =
1

ς
(DW,1 + DW,2 + ... + DW,ς). (8.10)

Finally, the discrimination metric F is defined as:

F =
DB

DW
. (8.11)

It is not difficult to see that the smaller value of within-class dispersion metric DW,

the larger value of the discrimination metric F. It expects to achieve a larger value of

resultant discrimination matric F, so as to obtain well discrimination of data points

from various classes.
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8.3 Overview of SVMs

Recent advances in statistical learning theory (Vapnik 1995, Vapnik 1998) have made

the Support Vector Machine (SVM) a popular machine learning algorithm. This algo-

rithm maps data into a high-dimensional feature space, then a separating hyperplane is

established, which maximizes the boundary margin between two classes. At its core, a

SVM is a two-class classifier. With the recent improvements, SVMs have been extended

to solve multiclass classification problems. The following subsections describe each in

turn.

8.3.1 Binary classification of SVMs

Support vector machines are binary classifiers, which classify data depending on a set

of support vectors (Cristianini and Shawe-Taylor 2000). The training data sets come

from a set of labelled samples called learning vectors. We denote such a set of learning

vectors as (xi, yi) ∈ RN × {±1}, i = 1, ..., l, and yi denote the class label corresponding

to each input vector xi. The support vectors are subsets of the training data sets and

are used to construct a l dimensional hyperplane in feature space, which acts as a

boundary separating the different classes. A decision function f (α) : RN → ±1 is

achieved based on a given class function f (α) : α ∈ Λ, with the aim to correctly assign

class labels to test samples x. The Vapnik-Chervonenkis (VC) dimension (Vapnik 1998,

Vapnik 1995, Muller et al. 2001) is a property of a set of functions f (α), which is defined

as the maximum number of training points that can be segmented by f (α). Note that

α corresponds to the weights and biases, which can be adjusted to label the output

f (x, α) based on the input x. The expectation of the test error for a learning machine is:

R(α) =
∫

1

2
|y − f (x, α)|dP(x, y) (8.12)

where, R(α) is called the expected risk. It is the quantity connected with density p(x, y)

that we are ultimately interested in. The ‘empirical risk’ Remp(α) is defined to be the

measured mean training error for a fixed, finite number of observations:

Remp(α) =
1

2l

l

∑
i=1

|yi − f (xi, α)|. (8.13)
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The quantity 1
2 |yi − f (xi, α)|, which is called the loss, takes on values equal to 0 or 1.

When we set the probability to 1 − η, we achieve the following bound:

R(α) ≤ Remp(α) +

√

(

h(log(2l/h)+1)−log(η/4)
l

)

. (8.14)

The non-negative integer h is called the VC dimension, and allows the measure of the

capacity that is suitable for the amount of available training data. When a sufficiently

small η is selected, the right hand side of the equation is minimized, the f (x, α) func-

tions give the lowest upper bound of the actual risk. It is the basic idea of structural

risk minimization.

Since minimizing the training error (the computation of VC-dimension) does not guar-

antee a small test error, in order to make the decision function f perform well on unseen

pattern, the principle of structural risk minimization needs to be applied to minimize

test error and achieve a capacity that is suitable for the amount of available training

data sets.

The learning algorithm is designed to allow the support vectors computed via per-

forming structure risk minimization. In other words, a VC-dimension bound is cal-

culated to identify the optimal hyperplane and maximizes the margin of the nearest

learning vectors. The decision hyperplane is calculated based on the following equa-

tion:

f (x) = sgn(
s

∑
i=1

yiαi(xi · x) + b) (8.15)

where xi, (i = 1, ..., s) are support vectors, which are the closest points from the train-

ing vectors (learning vectors) to the separate hyperplane and sgn is called the signum

function. The solution of this large-scale quadratic programming problem is applied

to calculate the coefficients αi and b. The procedure is to solve the dual problem, which

is to maximize

L(α) =
l

∑
i=1

αi −
1

2

l

∑
i,j=1

αiαjyiyj(xi · xj) (8.16)

subject to ∑
l
i=1 αiyi = 0 and 0 ≤ αi ≤ C for i = 1, ..., l.

The penalty parameter C is selected by the user, which is viewed as a regularization

parameter for the linearly inseparable learning vectors aiming to accept the possible

misclassifications.

Note that SVMs use a kernel function (Schölkopf and Smola 2002, Shawe-Taylor and

Cristianini 2004), which allows fitting the hyperplane to the data. Instead of a lin-

ear classifier, which is limited to producing linear decision surfaces, the hyperplane
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(Hearst 1998) needs to be augmented to fit the nonlinear decision surfaces. A dot prod-

uct space is constructed by mapping data, which is realised by performing a nonlinear

map φ : RN → F. The above linear algorithm then can be applied in the feature space

F. The solution satisfies the following function

f (x) = sgn(
s

∑
i=1

yiαiφ(xi) · φ(x) + b). (8.17)

This is a nonlinear function of the original input vectors x.

According to Cover’s theorem (Cover 1965), a new feature space F can be achieved

via transforming a multidimensional space, where the dimensionality of the feature

space is high enough to allow the target patterns to be linearly separable with a high

probability. The inner products (dot products) enable the high dimensional space to be

treated easily, which are indicated by the φ mapping. Accordingly, the kernel function

K is defined as:

K(x, y) = φ(x) · φ(y). (8.18)

The kernel production substitutes for all the occurrences of a dot product resulting

from two mappings.

There are four popular kernel functions:

• linear Kernel:

K(x, y) = xTy (8.19)

• polynomial kernel:

K(x, y) = (γxTy + r)p, γ > 0 (8.20)

• RBF (Gaussian) kernel:

K(x, y) = exp(−λ ‖x − y‖2), λ > 0 (8.21)

• Hyperbolic tangent kernel:

K(x, y) = tanh(γxTy + r), γ > 0 (8.22)

where x, y are SVM data vectors, T labels vector transpose, γ and r label the scale and

offset of the corresponding kernels (they are normally set to 1), p labels the degree of

polynomial kernel, and λ labels the width parameter of Gaussian kernel.
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In the instance of identifying RNA samples, presented in Section 9.5, the RBF kernel

function is proposed as a choice, and it is found to give good classification perfor-

mance. Meanwhile, it is found that polynomial kernels are best suited to achieve mul-

ticlass classification of powdered samples. Linear and hyperbolic tangent kernels are

not employed since they have been found to be unsuitable for the T-ray data set.

8.3.2 Pairwise SVM classification

The previous Section described a SVM for two-class pulsed signal classification, which

is also called a dichotomy. This is appropriate for the object detection application of

two-class T-ray pulses and discriminating an object from the background. However,

the majority of object recognition problems consist of more than two substances. Con-

sequently, extended SVMs are required for application to multiclass pulsed signals.

The optimal design of multiclass SVM classifier is an area of active research. One fre-

quently used method is a pairwise classifier, based on one-against-one decomposition

(Schölkopf et al. 1998), which works by using a decision function fkl . Here, kl indicates

each pair of classes selected from separated target classes. Since the symmetric prop-

erty of pairwise approach, it holds that fkl = − fkl , where fkl satisfies the following

equation:

fkl(x) = wklx + bkl (8.23)

where w is normal to the hyperplane between class k and class l, |b|/||w|| is the perpen-

dicular distance from the hyperplane to the origin, and ||w|| is the Euclidean normal

of w with a vector dimension of M.

The signum function is used for the hard threshold decisions:

sgn( fkl(x)) =







1, fkl(x) > 0

−1, fkl(x) ≤ 0.
(8.24)

The class decision can be achieved by summing up the according pairwise decision

functions:

fk(x) =
n

∑
k 6=l,l=1

sgn( fkl(x)) (8.25)

where n is the number of the separated target classes.

The pairwise classifier proceeds as follows: assign a label to the class, {arg max fk(x),

(k = 1, ..., n)}. The max number of votes for k classes holds {max k → fk = (k −
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1)}. If Eq. (8.25) is satisfied for {max k → fk < (k − 1)}, the x is unclassifiable. The

pairwise classification converts the n-class classification problem into n(n − 1)/2 two-

class problems which cover all pairs of classes.

The procedure for pairwise classification is illustrated in Fig. 8.2.

input pulse

orientated

frequency

selection

signal processing

kernel function
linear optimal 

feature vectors

 pairwise 

 classification

max pairwise 

votes

remaining pixels

from one class

to test SVMs

more than half of

pixels from each 

of the classes to 

train SVMs

class label ω

learning vector pattern

Figure 8.2. Illustration of the procedure for pairwise classification.

8.4 Classifier design

An important aspect of pattern recognition is the design of the classifier. This is because

perfect classification performance is often impossible, and therefore a more general

task is to determine the probability for each of possible classes. The probability is

provided by feature-vector representation of the input data, which allows a largely

domain-independent theory of classification (Duda et al. 2001).

Due to the complexity of a classification system and sources of random noise in THz

measure systems, some variability exists among feature values for objects in the same

category. This results in difficulties in finding the correlation between the variability

in the feature values from the same category and the difference between feature values
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for objects extracted from different categories. Therefore, it is important to find the

best way to design a classifier via extracted features, in order to cope with this vari-

ability and to achieve the best classification performance. This is known more simply

as ‘robustness’.

8.4.1 Learning and adaption

To design or create a classifier, there are two steps: positing some general form of

model, i.e. the network size and learning parameters, with input to some form of clas-

sifier, and then using training patterns to learn or estimate the classifier. In general,

training the classifier refers to the process of using data to determine the classifier’s

parameters. Learning is employed in the stage of training samples for design of a clas-

sifier. It refers to some form of algorithms for reducing the error on a set of training

data. Since it is difficult to guess the best classification decision ahead of time, it is com-

mon to expend great time to achieve proper learning. In this Thesis, supervised learn-

ing, as one of many different procedures for training classifiers and choosing models, is

used exclusively. In a supervised algorithm, a class label for each pattern in a training

set is provided, with aims to transform the pattern data in testing sets into a series of

different target classes. The Thesis for pattern recognition proves that the supervised

learning algorithm is powerful to learn the solution to a given problem and it is stable

to parameter variations in a THz frequency range. Fig. 8.3 illustrates the design of a

classifier for a pattern recognition procedure. A set of imaging data xi is automatically

transformed into a series of classes ως.

8.4.2 Evaluation

Evaluation implies measurement of the performance of a classification system and

identification of the need for improvements on classification components (Duda et al.

2001). There are different ways to evaluate a classifier, including different types of

cross-validation methods, the use of measure functions, and graphical analysis of lift

charts and Receiver Operating Characteristic (ROC) curves, etc. The choice of which

one to use depends on many attributes and, according to Mitchell (1997), there is no

method that satisfies all the constraint conditions. This subsection mainly talks about

former two evaluation methods, both of which are frequently used in this Thesis.
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Figure 8.3. Design of a classifier. A set of imaging data xm is automatically transformed into a

series of classes ως. This procedure is realised via positing some general form of model,

and then training patterns is input to learn or estimate the unknown parameter model.

The test data are subsequently evaluated based on the known training sets, the result

of which validates the classifier.

Cross-validation is a statistical technique widely used for estimating generalization

error based on ‘resampling’ (Weiss and Kulikowski 1991, Shao 1993, Kearns 1997). The

procedure is to divide the available data into a number of folds or partitions. Training

is then performed on all except one partition, which is left for testing. There are three

common types for cross-validation.

The holdout method is the simplest kind of cross-validation. The data set is separated

into two sets, called the training sets and the testing sets. In this method, the training

data are used to predict or estimate the output values of the test data. The errors it

makes are accumulated to give the mean absolute test set error, which is used to eval-

uate the model. This method is usually preferable to a residual method and takes no

longer to compute. However, its evaluation can have a high variance. The evaluation

may depend heavily on which data points are used in the training sets, and which are

used in the test sets, and thus the evaluation may be significantly different depending

on how the division is made. In this Thesis, we propose to iteratively apply the hold-

out method via halving the whole data sets with different compositions until a large

number of different sets are achieved, and then calculate the average value across all

runs of the holdout tests. The aim is to reduce the variation of resultant evaluation.

This evaluation method is used in the next Chapter in several THz discrimination ex-

periments.
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K-fold cross-validation is one way to improve evaluation accuracy over the holdout

method. The data set of N points can be partitioned into K sets (‘folds’) with size N/K

for a K-fold cross-validation. In this issue, the holdout method is repeated K times.

Each time, one of the K subsets is used as the test set and the other K − 1 subsets are put

together to form a training set. Then the average error across all K trials is computed.

The advantage of this method is that it is affected less by the division of the data. Every

data point appears in a test set exactly once, and appears in a training set K − 1 times.

The variance of the resulting estimate is reduced with increased K. The disadvantage

of this method is that it takes K times as much computation to make an evaluation, as

the training algorithm has to be re-run K times for an ultimate evaluation.

Leave-one-out (LOO) cross-validation is K-fold cross-validation, with K equal to N,

the number of data points in the data set. That means that for N times, the classifier

is trained on all the data except for one point and a prediction is made for that point.

This procedure is then performed until all points have been left out once. As before,

the average error is computed and used to evaluate the model. The evaluation given

by leave-one-out cross-validation error is good, but it is expensive to compute. More

methods like locally weighted learners simplify LOO validation, and further details

can be found in Atkeson et al. (1997).

In addition to the cross-validation, using measure functions (or metrics) as an alterna-

tive way of selecting and evaluating learned classifiers is proposed by Atkeson et al.

(1997), which allows one to define the learning problem as a computational problem.

The measure function, such as Euclidean discrimination, takes three aspects of the

classifier into account: (i) subset fitting, (ii) similarity, and (iii) simplicity. Subset fit-

ting is the most commonly used measurement of classifier performance. Subset fitting

measures classification correctness regarding known data points. It is evaluated via

performing the cross-validation (CV) method, and then an average value on the resul-

tant evaluations is calculated, which is helpful in tuning or choosing algorithms. Sim-

ilarity measures the discrimination capabilities of a classifier. Similar test data points

should then be clustered similarly. It should be expressed in terms of distances between

training instances and decision borders. That is, the correctly classified points should

preferably reside at ‘safe’ distances from decision borders. Because of the increased

complexity with the number of data attributes, the partitioning of the universe should

be as simple as possible, with the proposition of the good classification accuracy. This
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is related to simplicity. The measure metric (function) is applied in Section 9.3 to eval-

uate the ability of system identification to extract the significant features from THz

measurements.

8.4.3 Overfitting

The problem of ‘overfitting’ appears where a complex classifier, such as neural net-

works, that allows perfect classification of the training sample, fails to perform well on

new patterns (Duda et al. 2001). It is an important area of research in statistical pattern

classification to determine how to adjust the model complexity. One possibility is to

reduce the dimensionality, either by redesigning the feature extractor, by selecting an

appropriate subset of the existing features, or by combing the existing features. An-

other possibility is to assume that all ς classes share the same covariance matrix, and

to cluster the available data together. More details are in the book by Duda et al. (2001).

The current classification schemes represented in this Thesis are relatively robust to

overfitting problems. Since Mahalanobis distance displays near-optimum properties

for a wide class of input data, it does not require fine tuning of classifier parameters,

which reduces the risk of overfitting in classification problems (Ferguson 2004). In

SVM learning, a kernel function plays the role of the dot product in the feature space.

It allows a support vector machine to locate a separating hyperplane in the feature

space and classify points in that space without ever representing the space explicitly.

This technique avoids the computational burden of explicitly representing the feature

vectors (Vapnik 1998).

8.5 Chapter summary

This Chapter describes different pattern classification schemes, which fall within a su-

pervised learning strategy. These classification schemes are generally validated via

several different evaluation approaches that aim to improve on classification steps.

The Mahalanobis distance classifier is a quadratic classifier, and as the most common

and versatile classifiers it is simple to implement. The Mahalanobis distance takes into

account the covariance among the variables in calculating distances. It is a very useful

way of determining similarity of an unknown sample set to a known one. In contrast to

the Mahalanobis distance, the Euclidean discrimination metric measures all variables
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in the same units of length, and linearly evaluates how well the multiple classes can

be distinguished. Support vector machines as a recent advance have become a popu-

lar machine learning algorithm in statistical learning theory. SVMs map input vectors

to a higher dimensional space where a maximal separating hyperplane, or a maximal

boundary margin between two classes is constructed. With the recent improvements,

SVMs have been extended to solve multiclass classification problems. Therefore, in ad-

dition to a dual classification, this Chapter also discusses a pairwise extension strategy

for SVMs.

Classifier design is an important strategy to achieve pattern recognition. A supervised

algorithm is adopted, which needs to provide a class label for each pattern to a given

test set via applying training data. There are several evaluation algorithms to measure

the performance of these classification systems. Cross-validation is a statistical tech-

nique widely used for estimating generalization error, which consists of the holdout

method, K-fold cross validation, and leave-one-out cross validation. In addition, mea-

sure functions (or matrices) as an alternative way of selecting and evaluating learned

classifiers are also adopted in the Thesis for THz signal recognition. All of these clas-

sification schemes and evaluation algorithms will be experimentally illustrated in the

next Chapter by applying them to a series of THz measurements.

Overfitting is a problem induced during pattern classification is performed. Since there

is no requirement to finely tune Mahalanobis classifier parameters and to explicitly

represent the feature space that SVMs involve, neither Mahalanobis distance nor SVMs

are likely to be at risk of falling into the overfitting problem.

Feature extraction and classification algorithms described in these recent two Chapters

are validated by using specific THz experiments. The next Chapter represents several

important THz experiments and contains several central results of the relevant THz

pattern recognition.
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THz Pattern Recognition
Experiments

T
HE work described in this Chapter combines the different tech-

niques discussed in previous Chapters into case studies for the

biomedical specimen identification. Section 9.1 outlines the THz

experiment setup. In Section 9.2, an improvement in classification accu-

racy is demonstrated by applying wavelet-based techniques in the pre-

processing of T-ray pulsed signals. In Section 9.3, three system identifi-

cation schemes for discriminating between lactose, mandelic acid, and dl-

mandelic acid THz transients is proposed, with application of a discrimi-

nation metric for the evaluation of classification performance. Section 9.4

represents the implication of Auto Regressive (AR) and Auto Regressive

Moving Average (ARMA) models on the wavelet transforms of measured

T-ray pulse data for automatic classification of THz measurements, high-

lighting their potential in biomedical, pharmaceutical and security applica-

tions. Section 9.5 illustrates that support vector machine (SVM) learning al-

gorithms are sufficiently powerful to detect patterns within noisy biomedi-

cal measurements. Case studies show effective discrimination of RNA sam-

ples and various powdered substances.
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Figure 9.1. Illustration of a femtosecond laser-based T-ray functional imaging system. This

T-ray functional imaging system is based on a pump-probe configuration. PD=infrared

photodiode; P1,P2=polarizers; ITO=indium tin oxide coated beam splitter.

9.1 THz spectroscopy and imaging

T-ray time domain techniques allow the measurement of T-ray pulsed responses in

both amplitude and phase (time delay). The T-ray time domain response is obtained

via terahertz pulsed imaging (TPI).

Fig. 9.1(a) illustrates a schematic for a THz-TDS experiment setup for transmission-

type terahertz pulsed imaging (TPI) (Ferguson et al. 2003). A pair of electrooptic gener-

ator and detector crystals are employed. A typical TPI system consists of an ultra-fast

laser, an optical delay stage, a chopper, two optical rectification crystals, a photo de-

tector, and paraboloidal mirrors. An object sample can be moved for imaging in the

plane perpendicular to T-ray beam by an x-y computer-controlled translation stage. A

synchronous sampling technique is used to detect the transmission terahertz radiation

through the sample with collinear propagation between the pump and probe beams.

The T-ray imaging system recovers full amplitude and phase information due to the

ability to progressively alter the time delay between the pump and probe beams via

the optical delay stage indicated in Fig. 9.1.
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9.2 Enhanced T-ray signal classification using wavelet

preprocessing

This Section performs a case study of one dimensional discrete wavelet transforms

in the classification of T-ray pulsed signals. In our scheme, Fast Fourier Transforms

(FFTs) are used as a feature extraction tool and a Mahalanobis distance classifier is

employed for classification. Soft threshold wavelet shrinkage de-noising is then used

and plays an important role in de-noising and reconstruction of T-ray pulsed signals.

An iterative algorithm is applied to obtain three optimal frequency components and to

achieve good classification performance.

In this Section, we discuss the ability of the wavelet techniques to assist in effective

classification tasks, using T-ray measurement on a series of powder samples to illus-

trate our approach. It contributes to the field by demonstrating enhanced classification

of T-ray pulsed signals via the application of wavelet-based preprocessing techniques.

9.2.1 Feature extraction

Feature extraction is an important step in all classification problems. The objective

of feature extraction is to obtain the critical features from the T-ray signals to facili-

tate good classification performance. In this Thesis, the input features to the classifier

are the heuristic SURE soft threshold shrinkage denoised amplitude and deconvolved

phase frequency coefficients from the seven classes of T-ray data for different samples.

The deconvolution is realised via dividing the sample spectral response from T-ray ref-

erence pulses by the system frequency response, in order to isolate system and ambient

noise. To reduce the dimensionality and to simplify the computations, an iterative al-

gorithm is proposed to identify a subset of the three available frequency components,

which offer optimal classification accuracy. We used frequencies up to 1.5 THz in or-

der to keep linear phases for the extracted features. Fig 9.2(a) shows several measured

waveforms and Fig. 9.2(b) shows the phase plot corresponding to one of those wave-

forms.
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9.2.2 Classification

An important consideration in real-world detection problems is to test the ability of the

classifier to accurately classify powders at the different sample thicknesses at which the

classifier is trained.

In this Section, the classifier used is chosen to be a Mahalanobis distance classifier

(Schürmann 1996). To validate the effectiveness of wavelet shrinkage de-noising, lead-

ing to the enhanced ability of the classifier to classify powders, several different pow-

der samples are tested. The current powder experiment is to detect powders inside

envelopes, where six different powder samples are taped onto a sheet of Thesis and

then put inside an envelope. The traditional scanning imaging system is used to ob-

tain a 2D THz image of the sample. This imaging system allows differing scattering

paths and minor variations in powder thickness and density to be observed. Typically,

a 1D image is sufficient (i.e. raster scan in only one direction), and a 51 pixel image

(with a 100 µm spatial interval for one pixel) is acquired. For this experiment, seven

different powder samples were tested, which include: (i) wheat flour, (ii) baking soda,

(iii) sucrose crystals, (iv) finely powdered sucrose, (v) salt, and (vi) talcum powder. A

seventh trace acts as control data and is obtained with an empty holder. Each pow-

der had prepared samples at three different thicknesses: 2, 3 and 4 mm. The T-ray

responses of seven powder samples in the time domain are demonstrated as Fig 9.2(a);

these measurements were obtained from the 3 mm samples.

9.2.3 Leave-one-out error estimator

The leave-one-out error estimator is a form of non-parametric error estimation and

plays an important role in validation for pattern recognition problems. It evaluates

each unknown feature vector and provides a basis to evaluate classifier designs (Fukunaga

and Hummels 1989). Under the leave-one-out error estimation procedures, each of the

N samples Xω[i], i = 1, ..., N from class ω are tested using a nonparametric classifier, in

our case, the Mahalanobis distance classifier, trained on the remaining N − 1 samples

Xω[i], i = 1, ..., N − 1, ω 6= i (Fukunaga and Hummels 1989).
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Figure 9.2. Measured time domain T-ray signals and phase spectrum. (a) T-ray pulsed signals

after transmission through seven different types of powder and the holder. All powders

are pressed into 3 mm pellets and are as follows: baking soda, wheat flour, sucrose

crystals, finely powdered sucrose, sand, table salt, and talcum powder. (b) Phase plot

from the Fourier transform of the de-noised T-ray signal measured from a 3 mm baking

soda sample.

9.2.4 Results

Our classification experiments consist of two sets of results, which are chosen to em-

phasize the comparison of performance with and without wavelet preprocessing. For

both cases, two classification methods, labelled by Method (A) and Method (B), are

adopted and applied to the T-ray data from seven powder samples at thicknesses of

2 mm, 3 mm and 4 mm. In all cases, the frequency domain amplitude and phase at

discrete frequencies are used as features. With preprocessing, the T-ray data are pre-

processed using the wavelet techniques detailed in Section 6.5.

Method (A), represented in the Table 9.1, uses the following classification procedure.

First, the Mahalanobis distance classifier was trained using the responses from 25 ran-

domly chosen pixels of seven classes of powders at thicknesses of 2 mm and 4 mm.

Then, the trained classifier was tested with another 25 randomly chosen pixels from

all seven classes of powders, at a sample thickness of 3 mm. The computation pro-

cedure here is repeated 50 times to obtain an average accuracy. For Method (B), a

leave-one-out (LOO) method was performed 51 times to validate the classifiers. That

is, the classification experiment was repeated 51 times, with 50 pixels used for classifier

training and one pixel for testing in each case.
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In selecting the set of discrete frequencies for use in the experiments, we adopt a search

approach. To limit the search scope, we consider a small number of frequencies, and

then evaluate different combinations of frequencies. From our search, it is found that

only three optimal frequency components are sufficient to achieve very high classi-

fication accuracy after the application of de-noising preprocessing. Empirically, it is

observed that adding more frequency components to the dimensionality of the feature

vectors does not lead to improvements in classification accuracy. The frequency selec-

tion process is performed individually for the cases of measurements with and without

preprocessing, to ensure comparison between the best possible performances in both

cases.

There are four feature sets formed at optimal frequency combinations that are obtained

using an iterative algorithm that examines all frequency triplets available. For the

raw measurements, the three frequencies are 0.22 THz, 0.45 THz and 1.27 THz; for

the preprocessed signals, the three frequencies are 0.19 THz, 0.37 THz and 1.38 THz.

In addition to the three frequencies, the classification performance of two-frequency

subsets are also examined. As a result, there are four feature sets for each of the cases;

these are referred to as combinations 1–4 in the results below.

Experimental results for preprocessed signals

Table 9.1 shows the classification steps and the corresponding classification perfor-

mance mentioned above by applying an FFT of T-ray signals from the seven powder

samples at 2 mm and 4 mm after heuristic SURE soft threshold shrinkage de-noising

and deconvolution preprocessing. Two classification methods are compared. The clas-

sification accuracy using the leave-one-out error estimator for Method (B) is similar to

the results obtained in Method (A).

In order to better understand the current classification algorithm, both the classifica-

tion performance and the relative visual scatter plots after wavelet filter preprocessing

are examined. Two three-dimensional amplitude scatter plots (amplitudes only) in the

frequency domain are shown in Fig. 9.3(b). The seven different classes of powder sam-

ples are shown to cluster together, with just a small degree of overlap in the 3D plot.

The corresponding classification accuracy reaches 98.9%. To examine the effectiveness

of the chosen frequencies, the 3 frequency features are further divided into three differ-

ent subsets of 2 frequencies: amplitudes and phase at 0.19 THz and 0.37 THz, 0.19 THz

and 1.38 THz and 0.37 THz and 1.38 THz. The corresponding classification accuracies
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Table 9.1. The classification accuracies for the seven types of powder samples. Left re-

sultant column corresponds to the cases with wavelet preprocessing; the right most

column corresponds to raw signals. The wavelet preprocessing, here, adopts ‘heursure’

soft thresholding with a Daubechies 8 (db8) wavelet at 3 DWT levels. The detailed

subspaces are applied for the reconstruction of T-rays. Feature extraction identifies am-

plitude and phase feature subsets at 3 optimal frequencies and at the three different 2

frequency combinations. The four different frequency combinations are labelled as Com-

binations 1, 2, 3 and 4. The training samples are taken from 2 mm, 4 mm measurements

and the test sample has thickness of 3 mm. Two classification methods, Method (A)

and Method (B) are demonstrated for the classification accuracy at the four different

frequency combinations.

Experimental parameters Wavelet preprocessing Raw signals

feature Preprocessed amplitude and phase Raw amplitude and phase

method iterative algorithm iterative algorithm

training sample thickness (mm) 2, 4 2, 4

Feature test sample thickness (mm) 3 3

extraction 1 0.19, 0.37 and 1.38 0.22, 0.45 and 1.27

Selected comb. 2 0.19 and 0.37 0.22 and 0.45

frequencies (THz) 3 0.19 and 1.38 0.22 and 1.27

4 0.37 and 1.38 0.45 and 1.27

training vector dimensions 25 pixels 25 pixels

test vector dimensions 25 pixels 25 pixels

classifier Mahalanobis Mahalanobis

Method number of tests 50 time 50 time

(A) averaged 1 98.9 78.6

maximum comb. 2 85.4 51.37

classification 3 78.4 55.69

accuracy (%) 4 74.5 46.11

training vector dimensions 50 pixels 50 pixels

test vector dimensions 1 pixel 1 pixel

classifier Mahalanobis Mahalanobis

Method number of tests 51 times 51 times

(B) average 1 98.6 55.18

maximum comb. 2 89.9 52.94

classification 3 77.0 56.30

accuracy (%) 4 77.6 46.5
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obtained are 85.4%, 78.4% and 74.5%, respectively. Therefore, the classification accu-

racy achieved with only two frequencies is at least 15% inferior to the classification

accuracy achieved with three frequencies. These results are labelled in Table 9.1 as

Method (A). Fig. 9.3(a) projects the 3D scatter plot to a 2D plane with frequency com-

ponents consisting of 0.19 THz and 0.37 THz. It is clear that Fig. 9.3(b) shows better

clustering than Fig. 9.3(a).

A leave-one-out protocol, labelled by Method (B), is used for comparison to Method

(A). Recall that 50 pixels are randomly selected from the 51 pixels of the seven classes

of powder data at 2 mm and 4 mm thicknesses, which is used to train the Mahalanobis

distance classifier. Then the Mahalanobis distance classifier is tested by the one pixel

from the seven powder samples of 3 mm thickness. The procedure is iteratively per-

formed 51 times at each frequency combination—from combinations 1 to 4 (see Ta-

ble 9.1). The corresponding average maximal classification accuracies are calculated as

98.6%, 89.9%, 77% and 77.6%, respectively.

Experimental results for raw signals

For comparison, the feature sets are extracted for the classification of the raw signals

via a similar procedure as described above. A set of three frequencies are selected it-

eratively, with the amplitude and phase at these frequencies used as features; three

2-frequency subsets are further extracted for classification experiments to justify the

need for three frequencies. The averaged maximal accuracy with obtained from am-

plitudes and phase features at 0.22 THz, 0.45 THz and 1.27 THz is 78.6 %, which is

19 % lower than the averaged accuracy of 98.9% obtained with preprocessed signals.

For the other feature sets, the averaged accuracies of the raw signals corresponding to

the three 2D features are: 51.37%, 55.69% and 46.11%, respectively, which are inferior

to the preprocessed signals by approximately 20% across the board. Compared to the

best accuracy achieved with preprocessed signals and 3D features, the 2D raw signal

features are lower by 23% at least. The massive discrepancy between the two sets of

signals clearly favours the use of wavelet preprocessing when performing classifica-

tion experiments on T-ray signals.

When a leave-one-out error estimator, labelled by Method (B), is used to validate the

classifier obtained for the raw signals, the average classification accuracies are: 55.18%,

52.94%, 56.30% and 46.5%, for the 3D and three 2D feature sets, respectively. There
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is obviously a large reduction in classification accuracy compared to the results ob-

tained with wavelet preprocessing. The classification results of the raw signals are

summarised in the last column of Table 9.1.
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Figure 9.3. Amplitude scatter plot. (a) Amplitude scatter plots at 2 optimal frequencies:

0.19 THz and 0.37 THz with a classification accuracy reaching 85.4% and 89.9% cor-

responding to two types of classification methods (a) and (b). (b) Amplitude scatter

plots at 3 optimal frequencies: 0.19 THz, 0.37 THz and 1.38 THz with a classification

accuracy reaching 98.9%. This figure is plot after ‘heursure’ soft thresholding with a

Daubechies 8 (db8) wavelet at 3 DWT levels.

9.2.5 Conclusions

In this case study, an improvement in classification accuracy is demonstrated by apply-

ing wavelet-based techniques to the preprocessing of T-ray pulsed signals to achieve

enhanced T-ray classification. The results reveal that a higher level of accuracy can be

obtained after implementing heuristic SURE wavelet shrinkage de-noising and decon-

volution prior to classification.

9.3 Classification using subspace and wavelet packet al-

gorithms

This work compares classification results of lactose, mandelic acid, and dl-mandelic

acid, obtained on the basis of their respective THz responses. The performances of
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three different pre-processing algorithms applied to the time-domain signatures ob-

tained using a THz-transient spectrometer are contrasted by evaluating their classifier

performances. A range of amplitudes of zero-mean white Gaussian noise are used to

artificially degrade the signal-to-noise ratio of the time-domain signatures to generate

the data sets that are presented to the classifier for both learning and validation pur-

poses. This gradual degradation of responses by increasing the noise level is equiv-

alent to performing measurements assuming a reduced integration time. Three sig-

nal processing algorithms are adopted for the evaluation of the complex insertion loss

function of the samples under study: (i) standard evaluation by ratioing the sample

with the background spectra, (ii) a subspace identification algorithm, and (iii) a novel

wavelet packet identification procedure. Within class and between class dispersion

matrices are adopted for the three data sets. A discrimination metric evaluates how

well the three classes can be distinguished within the frequency range 0.1 - 1.0 THz

using the above algorithms.

The current work proposes the use of a novel system identification scheme imple-

mented in the wavelet domain and contrasts its ability to extract the important fea-

tures in the signal with that of the N4SID subspace identification method (Ljung 1999).

N4SID operates on Hankel matrix equations, illustrated in Eq. (7.18), in order to com-

pute an estimate of the state sequence metric X from the basic metric equation, Y =

ΓX + ΩU + e of the subspace algorithms. Here, Y, U and e are Hankel matrices formed

with the output samples, the input samples, and noise, respectively. Note that Ω is a

Toeplitz matrix. The state sequence metric X and extended observability metric Γ can

be solved via calculating the singular values. The mathematical details are given in

Eqs. (7.42)-(7.45).

The goal of this work is to demonstrate efficient and robust classification algorithms

that could be adopted by the biomedical and pharmaceutical communities (Zeitler et al.

2007b), which are envisaged to provide the technology pull required for the further

proliferation of THz-transient spectrometers.

9.3.1 Evaluation of complex insertion loss, subspace and wavelet

packet identification

In this experiment we use a commercial T-ray system, the Picometrix T-ray 2000, to

perform the THz measurements. The system does not use a lock-in technique, because
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it is designed to acquire data as fast as possible. This means that the THz data achieved

is noisier than if a lock-in technique were used, and this motivates the need for our

signal processing techniques described here.

As we used no lock-in technique, there was also no chopper wheel involved in this

experiment. A conductive antenna or Auston switch is used in both THz emitter and

detector, giving a bandwidth up to 1.7 THz. All time-domain data files are of the same

length starting from 50 ps finishing at 605.26 ps. The scan rate (speed) is 5 ps/second.

The time interval for each data point is 0.033890 ps.

All samples are pressed to pellets and mounted under the same pressure, with a thick-

ness of 1.67 mm ± 0.2 mm, in addition to mandelic acid with a thickness of 2.45 mm

± 0.2 mm. Powders of sample material are mixed with polyethylene (PE) at a ratio of

40:60 and then pressed together. We mix the samples with PE for two reasons. First,

it is needed to give the sample some stability, as most of these substances would not

be stable when pressed into pellets. The second reason is to dilute the pure sample in

order to prevent saturation effects of the peaks.

Time domain responses of lactose, mandelic acid, and DL mandelic acid are recorded

using a THz-transient spectrometer, with each response being co-averaged 10 times.

Typical background and sample signatures are shown in Fig. 9.4. Linear detrending of

the co-averaged experimental data sets using the detrend.m routine in MATLAB is also

shown. The aim is to remove the linear trend (the mean value) from the raw measured

experimental data.

After the pre-processing procedures, the background and sample responses are em-

ployed as input u and output y signals, respectively. The frequency response of an

identified model would be an estimate of the complex insertion loss (CIL). The sin-

gular value plot generated in the subspace identification procedure is presented in

Fig. 9.5. Following the default recommendation of the N4SID function, a 4th order

model is adopted. It is worth noting that when using MATLAB’s function n4sid.m,

different results are obtained by pre-establishing an order of 4 or by making such a

choice after testing orders 1 to 20. The results presented in this work are obtained by

testing orders 1 to 20. The resulting CIL, which corresponds to the frequency response

of the 4th order model, is presented in Fig. 9.5 (b) in the spectral range 0.1 - 1.0 THz.

The result obtained by ratioing the sample spectrum against the background spectrum

is also shown. This processing is realised via using an asymmetric (Mertz) triangular

apodization window for the FFT calculations. As can be seen, by using the subspace
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Figure 9.4. THz measurements of a lactose sample. Background (reference) and sample (lac-

tose) responses before and after the pre-processing procedures (detrending and align-

ment).

algorithm, the estimated position of the absorption band is slightly biased towards

higher frequencies, and its magnitude seems to be over-estimated.

Prior to the wavelet packet identification procedure, a 6th order Butterworth band-pass

filter is employed to band-limit the responses to the 0.1 THz - 1.0 THz range. The re-

sponses are then re-sampled in order to reduce the sampling frequency by a factor

of 8. This procedure is used to reduce the number of wavelet decomposition levels

required to attain an appropriate frequency resolution. The settings for the wavelet

packet identification procedure use a db12 wavelet with a maximum tree depth of 9

decomposition levels (including the root node); values tested for the s parameter (ex-

ponent of the integrator term in the sub-band models) are -1, 0, +1. Fig. 9.6(a) presents
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Figure 9.5. Subspace identification of lactose responses. (a) Singular value plot for the subspace

identification and (b) calculated magnitude of the complex insertion loss (CIL) for the

lactose sample as a function of frequency obtained by ratioing the sample spectrum

against the background spectrum (red line) and by subspace identification (blue line).

the resulting wavelet packet tree obtained by the generalized cross-validation proce-

dure. The tree is deeper in a particular frequency range, which actually corresponds to

the absorption valley, as shown in Fig. 9.6(b)—the segmentation is more refined in the

frequency region corresponding to deeper levels of the tree. It is worth noting that the

tree structure is automatically defined by the identification algorithm, with no prior

knowledge of the spectral features of the sample under consideration.

9.3.2 Signal processing assuming noisy background and sample re-

sponse

The standard deviation of the signal noise (white, zero-mean Gaussian) is varied in

software from 10−4 to 10−3 to evaluate the discrimination metric (described in Sec. 8.2)

for different signal-to-noise ratios. Ten noisy sample/background signals pairs are

generated for each species (lactose, mandelic acid, DL mandelic acid). Therefore, an

overall set of 30 complex insertion loss (CIL) functions are calculated for each noise

level and for each processing technique (FFT, subspace, wavelet packet). Each of these

calculated CIL functions are termed an ‘object’. As part of the pre-processing pro-

cedure, the time-domain responses are aligned with respect to each other. Fig. 9.7

compares the noisy responses (noise standard deviation of 10−3) before and after the

Page 163



9.3 Classification using subspace and wavelet packet algorithms

Low frequency High frequency

(a)

1 8 9 10

x 10
11

0

0.5

1

1.5

2

C
IL

2 3 4 5 6 7
Frequency (Hz)

Wavelet−packet identification

FFT ratio

(b)

Figure 9.6. Wavelet-packet identification of lactose responses. (a) Resulting wavelet packet

tree and (b) CIL for a lactose sample obtained by wavelet packet identification (blue

line). The FFT ratio result (red line) is also presented for comparison. The frequency-

domain segmentation automatically defined in the identification procedure is indicated

by vertical lines at the bottom of the graph. As can be seen, the segmentation is more

refined in the spectral region corresponding to the absorption band.

pre-processing procedures. Furthermore, an asymmetric (Mertz) triangular apodiza-

tion window is used for the FFT calculations.

The singular value plot generated in the subspace identification procedure is presented

in Fig. 9.8(a). A 4th order model is adopted, as required by the N4SID function. The

resulting CIL, which corresponds to the frequency response of the 4th order model is

presented in Fig. 9.8(b). As can be seen, the identification result is very sensitive to the

additional noise present in the time domain signatures.

Fig. 9.9 presents the resulting wavelet packet tree obtained after the inclusion of arti-

ficial noise. As can be seen, the tree has much fewer nodes as compared to the tree
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Figure 9.7. Degradation of lactose responses. Noisy background (a) and (c) and sample re-

sponses (b) and (d) before and after the pre-processing procedures, respectively.

obtained in the previous case (Fig. 9.6). Such a result is obtained because the gener-

alized cross-validation procedures tend to generate more parsimonious models (i.e.

tends to group frequency segments together in the identification procedure) when the

signal-to-noise ratio is worse. Again, it is worth noting that the segmentation in the fre-

quency domain is established in an automatic manner, and no prior knowledge of the

signal-to-noise ratio is required. This result is more clearly demonstrated in Fig. 9.10,

which presents trees obtained for different realizations of noise with standard devia-

tions of 10−3 and 10−4. The structure of nodes corresponding to the absorption feature

is always present, but the increase in the noise level leads to the pruning of other parts

of the tree.
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Figure 9.8. Subspace identification of noisy lactose responses. (a) Singular value plot for the

subspace identification after the inclusion of artificial noise and (b) the corresponding

calculated magnitude of the complex insertion loss for the lactose sample as a function

of frequency obtained by ratioing the sample spectrum against the background spectrum

and by subspace identification (4th order model).

9.3.3 Evaluation via the discrimination metric

In what follows, classes 1, 2, and 3 will refer to the objects corresponding to lactose,

mandelic acid, and dl-mandelic acid, respectively. For each noise level and for each

processing technique (FFT, subspace, wavelet packet), a discrimination metric is cal-

culated on the basis of the estimated CIL magnitude in the range 0.1 - 1.0 THz. To do

so, xm,n is viewed as the CIL magnitude of the mth object (m = 1, · · · , 30) at the nth

spectral bin, and assume 500 spectral bins uniformly distributed in the range 0.1 - 1.0

THz (that is, n = 1, · · · , 500).

The discrimination metric is a key issue in the current machine learning algorithm.

This work considers the general problem of learning from pairwise constraints in the

form of must-links and cannot-links. As one kind of side information, a must-link

indicates the pair of the two data points must be in a same class, while a cannot-link

indicates that the two data points must be in two different classes. Given must-link

and cannot-link information, our goal is to learn the Euclidean discrimination metric.

Under this metric, we desire the metric value of point pairs in must-links are as large

as possible and those of point pairs in cannot-links are as small as possible. The larger

value of resultant metric F, corresponding to these must-link point pairs, means that
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Figure 9.9. Wavelet-packet identification of noisy lactose responses. (a) Resulting wavelet

packet tree after the inclusion of artificial noise and (b) CIL for the lactose sample

obtained by wavelet packet identification after the inclusion of artificial noise (blue

line). The CIL result calculated using the ratio of sample and background FFTs is also

presented for comparison (red line). The frequency-domain segmentation automatically

defined in the identification procedure is indicated by vertical lines at the bottom of

the graph. As can be seen, fewer frequency segments were employed, compared to the

results in Fig. 9.6.
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(a) (b) (c)

(d) (e)

(f)

Figure 9.10. Wavelet-packet identification of lactose responses with different noise levels.

Trees obtained with different realizations of noise with a standard deviation of 10−3

((a), (b), (c)) and 10−4 ((d), (e), (f)).

these must-link point pairs can be well discriminated from those cannot-link ones, and

vice versa.

In order to observe the performance of discrimination metric with a variety of noise

levels, we plot resultant discrimination metric values versus different noise levels su-

perimposed on the THz-pulse data sets. According to this metric, the identification

methods are seen to be more robust with respect to noise than the standard ratioing

procedure. In particular, the proposed wavelet packet identification technique be-

comes slightly superior to the subspace method at larger noise levels. But for small

noise levels, the advantages of using the identification algorithm are unclear.
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Figure 9.11. Plots of resultant discrimination metric. Plots of the adopted discrimination metric

F for different noise levels (× 10−4) superimposed in the THz-transient data sets.

9.3.4 Conclusion

A wavelet packet identification scheme for discriminating between lactose, mandelic

acid, and dl-mandelic acid THz transients is proposed. After the subsequent evalu-

ation of the complex insertion loss using the output of the model as opposed to the

direct ratioing of the spectra, we observe that a ratio composed of the model output

smooths out the calculated value of the complex insertion loss function across the fre-

quencies range of interest and identifies more correctly the absorption bands of the

samples than the subspace algorithm. This is the case even when the time-domain sig-

natures are corrupted by additional noise. Within class and between class dispersion

discrimination matrices are adopted to evaluate the benefits of the proposed algorithm

in classification tasks. The results are more robust with respect to noise than those

obtained by the standard ratioing procedure, but the advantages of using the identifi-

cation algorithm for small noise levels are unclear. It is possible that greater benefits

could be obtained for more spectrally rich samples, as the wavelet packet technique

has been shown to be particularly suited to the identification of systems with several

spectral resonance features (Paiva and Galvão 2006).
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9.4 Application of AR models of wavelet sub-bands for

classification

Recent advances in T-ray sources and detectors have made it possible to image opaque

objects and discriminate tumour cells from normal tissue (Löffler et al. 2002). While

much effort has been devoted to improving the signal to noise ratio and repeatability

of measurements as well as reliability in the function of the spectrometers, the further

processing of THz transients has only recently received some attention in the literature

(Löffler et al. 2002, Yin et al. 2006). T-ray classification relies in observing changes in

pulse amplitude, phase as well as dispersion characteristics of the sample under study.

The pulsed nature of time-domain signals obtained in T-ray spectrometry justifies their

decomposition in the wavelet domain as it can provide better de-noising capabilities

(Ferguson and Abbott 2001a). Furthermore, compared to Fourier-based techniques, a

wavelet decomposition of the experimental signal can provide better time-frequency

localization characteristics (Donoho 1995), which better facilitates the subsequent clas-

sification task.

This Section introduces a novel parametric modelling procedure to the wavelet decom-

posed T-ray pulsed signals that improves feature extraction and classification. The suc-

cess of the proposed algorithm in classifying human bone osteoblasts (HBO) against

human osteosarcoma cells (HOS) as well as at differentiating between six types of pow-

der samples is presented as a case study. The choice of biological samples is made on

the basis that there have been suggestions that THz transient spectroscopy can be used

for the early detection of cancerous tissue (the contrasting mechanism being the en-

hanced blood circulation in the cancerous tissue). The reported work complements

previous work in classifying basal cell carcinomas, (a form of skin cancer), which has

been conducted by researchers at the University of Cambridge and TeraView Lim-

ited (Woodward et al. 2002). It needs to be emphasised that the rationale for picking

bone cancer cells is that techniques for culturing bone cells on a Petri dish are well-

established and readily accessible. Our positive results with T-ray detection of cancer-

ous bone cells will motivate future research to explore other classes of cancer cells.

We also present a case study using powder samples. The motivation for using THz

pulses for extracting information on densities, thicknesses, and number of absorber
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molecules per unit volume in different powder samples stems from the fact that sub-

stance detection is an increasingly important area in the pharmaceutical—drug poly-

morphs and isomorphs (Strachan et al. 2005, Zeitler et al. 2007b, Watanabe et al. 2003)—

as well as security industries, e.g. spectral fingerprinting of explosives and illicit drug

detection (Federici et al. 2005, Kawase et al. 2003). Our goal is to demonstrate a feature

extraction methodology that is non-specific to the data sets in hand. This is of sig-

nificant importance to the THz community as data driven classifiers prohibit proper

inter-comparison between results obtained in different labs and therefore preclude the

development of standards, guidelines and specifications that could be adopted by the

biomedical, pharmaceutical as well as security sectors, which are envisaged to become

emerging markets for THz-pulsed spectrometers.

9.4.1 Terahertz pulse measurements

A further advantage in using THz pulses instead of infrared as a measurement modal-

ity is the fact that the wavelengths are longer, and noise due to the motion of the trans-

lation stage is sufficiently small compared to the wavelength permitting the extrac-

tion of phase information. A limitation of current measurement techniques is the low

power per spectral bin and consequently, the small signal to noise ratio in the measured

complex insertion loss of the sample. It has previously been shown that a combination

of wavelet transform techniques and statistical models can mitigate the effects of noise

and extract effective features (frequency dependent dispersion, attenuation and phase

delay properties of the sample) for classification (Ferguson and Abbott 2001a). Normal

human bone (NHB) osteoblast cells were obtained from patients and cultured from

small pieces of trabecular bone for 4-6 weeks to obtain a confluent culture. Human

osterosarcoma (HOS) cells were cultured from an immortalised cell line. The confluent

culture was obtained within one week. A 25 ml polystyrene flask with flat bottom was

used to culture the cells under a 5% carbon dioxide environment and a temperature

of 37◦C. In order to perform T-ray imaging, the rectangular flasks were tipped and

placed in the T-ray (x-y) translation stage. A T-ray image was obtained at 10 different

positions to provide spectroscopic data, with a distance interval of 50 µm. The above

procedure was performed for each of the three flasks—normal cells, cancerous cells

and the container with media solution—and iterated a further 5 times until 50 pixels

of T-ray responses were obtained for all three flasks (Ferguson et al. 2004). This was
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regarded as a sufficient amount of data for a verification of classification effectiveness

for different cells.

For the powder sample classification experiment, six different powdered substances

are used: sand, talcum, salt, powdered sugar, wheat flour, and baking soda with thick-

nesses of 2 mm, 3 mm and 4 mm. The variations in thickness enabled investigation

into thickness-independent classification. A seventh set of measurements of an empty

sample holder was used as a reference to provide a background spectrum. The sample

holder consisted of two Teflon blocks separated by a translation-stage based control

mechanism. This guaranteed a consistent powder density. The Teflon sample holder

was mounted on an x-y translation stage. Since Teflon is dispersionless and has a very

low absorption coefficient at THz frequencies, there is minimal distortion of the T-ray

pulse as it propagates through the holder. A 2D T-ray image of the sample was ob-

tained via a raster scan; such an image allowed the effects of different scattering paths

and minor variations in powder thickness and density to be observed. The data in

this work was obtained from a truncated raster scan with measurements taken from

50 co-linear locations, or pixels (with a spacing of 100 µm). The integration time of 30

minutes per sample corresponded to an integration time of 36 s per pixel.

9.4.2 Motivation

Fourier transformation of the TPI data described in the previous section provides the

frequency dependent characteristics of a target sample. The sampled T-ray pulses are

a function of discrete time, to which the discrete wavelet transform (DWT) is applied.

To realise the DWT, simple digital filter banks are utilised in a recursive structure to

calculate wavelet transform coefficients of T-ray signals. For convenience we recall a

number of points already made in Chapter 6 and build on these. Formally, the repre-

sentation of signals with their wavelet transform coefficients is known as a multi res-

olution analysis (MRA). The theory undelying MRA allows a systematic method for

constructing (bi)orthogonal wavelets (Daubechies 1988) and leads to the fast wavelet

transform (FWT), also known as Mallat’s algorithm (Qian 2002, Mallat 1989). In prin-

ciple, wavelet-based techniques are very well suited to studies of non-stationary time-

domain data sets, highlighting the variability of features at different time-frequency

scales (Mallat 1999, Donoho 1995). The main concern about the current T-ray TPI mea-

surements is its corruption by different types of noise which limit the practical use-

fulness of this mode of imaging. One of the main problems is the distortion of the
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T-ray pulse as it propagates through the optical system. As a result, the received T-ray

signals are strongly dependent on the acquisition conditions, and similar samples may

produce variations in the measured signals in different portions of the image (Ferguson

and Abbott 2001a). In order to keep image acquisition within realistic timescales, a

short integration time per pixel is adopted as common practice, this motivates the need

for the THz-transient de-noising process. The use of perfect reconstruction quadrature

mirror filter banks has been extensively discussed by Vaidyanathan (1993) for the pur-

pose of de-noising and generating bases of compact support. The works of Vetterli

and Kovacevic (1995) as well as that of Strang and Nguyen (1996) further complement

the above, elaborating more on sub-band coding. Sherlock and Monro (1998) discuss

how to apply Finite Impulse Response (FIR) filters of arbitrary length to describe the

space of orthonormal wavelets, further parameterizing the wavelet coefficients at each

decomposed level. Tuqun and Vaidyanathan (2000) propos a state-space approach to

the design of globally optimal FIR energy compaction filters. Since, in our work, there

is no requirement for adopting an algorithm with a perfect reconstruction property, as

our ultimate goal is feature extraction and classification, our constraints are more re-

laxed compared to those used in filtering or signal compression applications. Divine

and Godtliebsen (2007) suggest that for feature exploration purposes, it is possible to

assume stationarity over some time interval and smooth the wavelet spectrum along

the time axis using an Auto Regressive (AR) model. Paiva and Galvão (2006) also dis-

cuss a wavelet packet decomposition tree algorithm that establishes frequency bands

where sub-band models are created. Both approaches propose the modelling of the

approximation and detail wavelet coefficients in order to further extract statistically

significant features and a similar approach is adopted in our work.

A typical de-noising procedure consists of decomposing the original signal using the

discrete wavelet packet transform (DWPT) or the discrete wavelet transform (DWT)

(Mallat 1999, Daubechies 1992, Jensen and la Cour-Harbo 2001, Percival and Walden

2000), thresholding the detail coefficients, and reconstructing the signal by applying

the appropriate inverse discrete wavelet transform (IDWT) or inverse discrete wavelet

packet transform (IDWPT). In our work we adopt (i) the bior6.8 (DWPT) and (ii) the

db20 (DWT) wavelet families for de-noising after comparing the classification results

obtained using the following: db1, db8, db20, sym1, sym2, sym4, sym8, sym12, coif2,

coif5, bior1.1, bior2.8 and bior6.8 and adopting a three level decomposition. These
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wavelets are chosen as representatives for general classes of non-orthonormal, or-

thonormal, and biorthogonal wavelets, respectively. For the de-noising of femtosec-

ond THz transients, a three-level decomposition is usually sufficient (Hadjiloucas et al.

2004) and unnecessary computational load associated with more decomposition levels

can be avoided. The Stein’s Unbiased Risk Estimate (SURE) and the ‘heuristic’ SURE

methods (Donoho 1995) are used separately to estimate the soft threshold parameter

(λS) for the cancer and powder classification experiments, respectively.

9.4.3 Resultant THz experiments

Wavelet preprocessing

Fig. 9.12 illustrates the performance of wavelet de-noising, after adopting the WP

SURE denoising procedure for both normal (NHB) and cancerous (HOS) cells and per-

forming de-convolution to eliminate the features due to the container. The background

reference signal is used for the de-convolution processing, which isolates the TPI sam-

ple response from that of the container. The de-convolution procedure is performed

by dividing the respective Fourier transforms of the sample signals with that of the

background time domain signal at the corresponding pixel.

The comparisons of the signals in the time domain are performed for one pixel of nor-

mal and cancerous cell responses together with their containers before and after em-

ploying WP SURE denoising. The effectiveness of wavelet package SURE soft thresh-

old shrinkage de-noising is demonstrated in the three visually separable T-ray pulsed

responses of Fig. 9.12(b), in comparison with the original measured T-ray signals of

Fig. 9.12(a).

Classification of NHB and HOS cells

For the classification of cancer cells, the averages of two different orders of AR co-

efficients are extracted for use as features. Wavelet transform depths of 2 and 3 are

compared, and the biorthogonal spline wavelet of order 6.8 is used to compute the

discrete wavelet packet transform. A Mahalanobis distance classifier is trained using a
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Figure 9.12. Comparisons of the time domain signals for NHB and HOS cells. The plots are

for a single pixel of T-ray images for a normal cell (NHB) and a cancerous cell (HOS)

together with the empty container (holder) (a) before and (b) after employing WP

SURE denoising of bior6.8 wavelet.

portion of the T-ray responses corresponding to each of the three classes—cancer cells,

normal cells and the reference signals—then the remainder of the pixel responses are

classified. The resultant classification accuracy is used to measure performance. In

addition, error prediction covariance at different orders of AR modelling and the dif-

ferent levels of wavelet transform are calculated and employed as another matrix for

comparison.

Fig. 9.13 is a block diagram specific to the algorithm for feature extraction and classi-

cization. This current algorithm is also validated again via the classification experiment

of powder specimens.

Table 9.2 shows squared error variances of seven orders of the AR model correspond-

ing to the approximation coefficients generated using a bior6.8 wavelet family with 3

levels of wavelet decompostion on an arbitrarily chosen T-ray response. The columns

of this table correspond to the AR model order, while the rows correspond to the lev-

els of DWPT prior to calculating the AR models. Data are scaled by a factor of 10−16,

demonstrating a very successful modelling. It can be seen that the value of the er-

ror variance decreases with increasing AR order. Increasing the DWPT depth tends to

increase the value of the error variance. The absolute error variance spans over two

orders of magnitude, demonstrating that the choice of the number of decomposition
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Figure 9.13. Illustration of the current classification algorithm. AR/ARMA modelling and

wavelet decomposition are applied on THz measurements.

levels and the AR model order adopted can have a significant effect on the validation

process of the model.

Table 9.3 shows the classification accuracy results obtained from two classification

methods, which are labelled Method (A) and Method (B) for notational simplicity. In

Method (A), the classifier is trained using half of the pixel responses (chosen in an

arbitrary manner) for the 3 data classes (normal, cancerous cells, and reference TPI

responses), and tested by the remaining half of the pixel responses. In Method (B), a
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Table 9.2. The calculated squared error variances on cell samples. Squared error variances of

AR models are fitted to DWPT subbands on cell samples, (results scale by a factor of

10−16).

DWPT depth AR model order

2 3 4 5 6 7 8

1 0.01155 0.00767 0.00759 0.00722 0.00426 0.00318 0.00316

2 0.1596 0.1403 0.0763 0.0685 0.0512 0.0480 0.0435

3 0.2202 0.2032 0.2013 0.2011 0.2010 0.2010 0.2010

leave-one-out (LOO) error estimator is used. The leave-one-out estimator uses the Ma-

halanobis distance classifier, which is trained using a randomly selected set of N − 1

responses, out of a total of N responses for the three classes and tested using the re-

maining response. The procedure is repeated N times to obtain the average classifica-

tion accuracy. In the experiments, all pairwise combinations of AR orders are consid-

ered, which implies a total of

(

7

6

)

= 42 combinations. From Table 9.3, it can be seen

that the classification accuracies obtained are in the 79.2% to 93.1% range for Method

(A) and 71.2% to 90.6% range for Method (B). Considering the results in Table 9.2,

Table 9.3 and Table 9.4 together, it can be observed that there is a trade off between

the classification accuracy and model complexity. Combinations of lower-order AR

models generally outperformed combinations with high-order models. The best clas-

sification accuracy is achieved by performing a combination of the features generated

from AR models of orders 3 and 5. The classification result after adopting the LOO

method reaches 90.85%.

Classification of powder samples

In the powder classification experiment, the responses are obtained from samples of

different thicknesses: 2 mm, 3 mm and 4 mm. All the data from the six-classes of pow-

ders plus the background reference signal at thicknesses of 2 mm and 4 mm are used to

train the classifier— Mahalanobis distance classifier, and all the data of powder sam-

ples at a thickness of 3 mm are used to test the classifier. After wavelet denoising using

the SURE procedure, a db8 discrete wavelet transform is applied to the denoised pow-

der data. Subsequently, ARMA modelling is performed to extract the relative feature

matrix. The performance of Durbin’s algorithm for ARMA modelling is characterised

by the squared error variances. These results are presented in Table 9.4. The correlation
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Table 9.3. Percentage classification accuracy of T-ray pulses travelling through cell samples.

The range of AR model orders considered is 2 to 8; 3 levels of DWPT with a bior6.8

wavelet are used throughout. Above the diagonal of this table are results from Method

(A); below the diagonal are results from Method (B). The bolded values show the best

and worst performance.

AR order AR order

2 3 4 5 6 7 8

2 88.9 91.7 90.3 91.7 87.5 87.5

3 90.6 90.3 93.1 86.1 87.5 88.9

4 87.7 90.6 83.3 88.9 84.7 87.5

5 87.0 90.6 84.1 86.1 80.6 87.5

6 87.7 90.6 87.7 84.8 86.1 84.7

7 87.7 86.2 86.2 83.3 82.6 79.2

8 87.0 85.5 84.8 84.1 86.2 71.7

method allows the lowest error variance among the methods investigated, shown in

Table 9.5. The error variance of Durbin’s method is much lower than the basic Prony’s

method, though a little higher than that of the correlation method. However, the low

variance achieved by the correlation method comes at a cost of a larger model order

(AR only).

The ARMA model produces features that separate the classes quite effectively. The

classification accuracy in Table 9.8 improves by at least 3% over either AR or MA mod-

els alone, as illustrated in Table 9.6 and Table 9.7, respectively. As mentioned in Chap-

ter 6 (Sec. 7.4.2), Durbin’s algorithm is used to estimate MA parameters, which is an

improvement of the basic Prony method. Compared to the correlation and normal

Prony’s methods used to fit an AR or ARMA model, that produces a maximum clas-

sification accuracy of 96 % and 95%, respectively, Durbin’s algorithm improves the

maximum classification accuracy by 2%.

Fig. 9.14 shows the scatter plots of the feature vectors for 700 random samples at thick-

nesses of 2 mm and 4 mm. In order to better understand the learning vectors and

show a better grouped data set for each powder sample, we choose the second and

fifth order ARMA model at three levels of wavelet decomposition to generate the scat-

ter plots. The seven classes (comprising of the six powder samples and a reference)

in Fig. 9.14(a), which uses AR model coefficients, are grouped together, although the

class populations show some degree of overlap. The scatter plot in Fig. 9.14(b), which

uses MA model coefficients, is not clearer than the case with the AR model coefficients.

However, it is found that the combination of the two model coefficients to generate an
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Figure 9.14. Scatter plots of learning vectors. Scatter plots show the learning vectors of dis-

criminating powders with the thickness of 2 mm and 4 mm, corresponding to (a)

second order AR model; and (b) fifth order of MA model, over three steps of wavelet

transforms.

Table 9.4. The calculated squared error variances on powder samples. Squared error variances

of ARMA are fitted to DWT subbands on T-ray signals of powder samples (scaled by a

factor of 10−17).

DWPT depth ARMA model order

2 3 4 5 6 7 8

1 0.2405 0.1397 0.1337 0.1147 0.0948 0.0935 0.0797

2 4.458 2.854 1.280 0.976 0.674 0.673 0.660

3 32.09 32.06 26.97 26.93 24.35 24.06 23.06

ARMA feature matrix at the two specified orders actually led to good classification

performance, with classification accuracy of 96%.

The ARMA classification experiments are performed on a computer equipped with a

2.4 GHz Pentium4 CPU. The average time spent classifying the six-classes powdered

samples and their reference is 51.2 seconds for 42 runs, or 1.2 s per run. It is therefore

feasible to use this ARMA modelling algorithm to perform near real-time classification

of pulses.
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Table 9.5. Squared error variances of ARMA on powder samples. Squared error variances of

ARMA are obtained from the correlation method, Prony’s method, and Durbin’s method,

as applied to powder samples.

Method Correlation Prony’s Durbin’s

Minimum value 0.3399 × 10−19 0.3581 × 10−4 0.797 × 10−17

Maximum value 0.1153 × 10−16 0.0115 0.3209 × 10−15

Table 9.6. Percentage classification accuracy of several powder samples. The percentages of

accuracies are obtained using an AR modelling matrix.

AR order AR order

3 4 5 6 7 8

2 88.8 75.9 96.1 92.7 95.0 92.7

3 85.4 89.1 88.8 81.8 96.9

4 88.2 96.6 85.2 96.9

5 81.2 75.6 86.0

6 75.9 91.3

7 75.63

9.4.4 Conclusion and future work

The use of an orthogonal transform such as the wavelet transform is well justified

for decomposing the time-domain signals obtained using a THz pulsed spectrome-

ter. The further modelling of wavelet coefficients to produce new feature vectors has

shown to produce new feature vectors rich in information content irrespective to the

morphology of the samples. The use of Durbin’s algorithm in estimating the ARMA

Table 9.7. Percentage classification accuracy of several powder samples. The percentages of

accuracies are obtained using an MA modelling matrix.

MA order MA order

3 4 5 6 7 8

2 84.9 84.9 81.5 84.9 85.2 84.0

3 85.7 78.7 72.0 77.0 79.8

4 73.4 79.8 80.1 81.0

5 72.0 81.0 79.3

6 70.6 77.9

7 73.1
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Table 9.8. Percentage Classification accuracy of several powder samples. The percentages of

accuracies are obtained using an ARMA modelling matrix.

AR order MA order

3 4 5 6 7 8

2 95.8 98.0 96.1 95.5 96.6 96.9

3 85.7 88.0 87.4 85.2 83.8

4 92.6 92.4 92.7 89.9

5 81.2 80.1 82.1

6 77.0 84.3

7 78.2

coefficients at each decomposition level yields small error variances ensuring that fea-

tures present in the wavelet domain are not lost with this modelling process. The

classification performance obtained for both the cellular samples as well as the pow-

der samples using the Mahalanobis distance classifier is encouraging and provides

further motivation to use more elaborate data-driven schemes in future work such

as multi-layer perceptrons or support vector machine classifiers. It is worth noting,

however, that classification work using an SVM classifier scheme without adopting a

wavelet decomposition step, but using four dimensional feature set based on ampli-

tude and phase data has had a 89% success rate, at correctly classifying cancer cells

(Withayachumnankul et al. 2005).

The adoption of a THz imaging system in a histopathology lab for the identification of

cancerous cells, in conjunction with our classification methodology that is capable of

differentiating between small differences in the transmission properties of the samples

under study, is expected to provide significant advantages as current techniques are

laborious, expensive and the results obtained are subjective to human interpretation.

A further advantage of the adopted methodology is that it can be implemented in real-

time so that measurements obtained with terahertz pulse imaging systems by practi-

tioners from other disciplines can be displayed directly as feature maps in a manner

that is transparent to the user. The work described will underpin the further prolifer-

ation of THz transient spectrometers in the biomedical, security, and pharmaceutical

technology sectors.
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9.5 Support vector machine applications in terahertz pulsed

signal feature sets

Support vector machine (SVM) learning algorithms are sufficiently powerful to detect

patterns within noisy signals. This Section introduces a frequency orientation com-

ponent method to extract T-ray feature sets for the realisation of two- and multi-class

classification using SVMs. Effective discriminations of ribonucleic acid (RNA) samples

and various powdered substances are demonstrated as case studies. The development

of this method is of important for in T-ray chemical sensing and image processing,

which results in enhanced detectability useful for many applications, such as quality

control, security detection, and clinical diagnosis.

As mentioned above, T-rays have promising potential both in in vivo and in vitro biosens-

ing applications (Woodward et al. 2002, Mittleman et al. 1999, Mittleman et al. 1996) ow-

ing to (i) their non-invasive property, and (ii) the fact that biomolecules have rich reso-

nances in the T-ray region (Withayachumnankul et al. 2005, Ferguson et al. 2002c, Siegel

2004). It is important to devise effective feature extraction methods to fully represent

the different characteristics of these signals (Trier and Jain 1996). Signal processing

methods are proposed for the current experiment. In the two experiments presented

in this Section, input measurements are decomposed based on specific properties of

their Fourier spectra (Wang et al. 2004a, Wang et al. 2004b). From the spectrum, a pair

of specific values are extracted as features, which take the place of a large amount of

spectral data. In doing so, the number of features is kept smaller than the number of

observations to prevent overfitting. In this case, there is the added benefit of reduced

computational complexity with low feature dimensionality.

The current experiments illustrate the potential of support vector machines (SVM) in

pulsed signal recognition. The classification of two different types of RNA samples is

of importance because it is a potential precursor for DNA sample classification in an in

vivo environment (Fischer et al. 2005b). We also classify six different types of powder

materials, to illustrate the validity of our approach to other applications, such as secu-

rity. We describe the methods for T-ray pulse classification. The system’s inputs are

the measured raw T-ray signals, with the only preprocessing being a deconvolution in

the Fourier domain. Feature extraction and classification are performed with the aim

of achieving high classification accuracy. In this work, we found that an SVM kernel-

based method can be directly applied to the specific features. The main advantage
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of the current approach is that it is not necessary to design an elaborate feature ex-

traction scheme (Kim et al. 2002), since even elementary feature extraction is sufficient

for the SVMs to perform well. A pairwise classification scheme (Schölkopf et al. 1998)

is applied to multiclass recognition problems, which leverages the good performance

of binary SVMs to solve complicated multiclass problems. Gaussian and polynomial

kernels have been found to give good performance for two-class and multiclass clas-

sification problems, respectively. Visual classification performance is also shown for

the two dimensional features of binary and multiple classification, which gives use-

ful demonstration of the effectiveness of the pattern learning problem and makes the

performance of SVMs more understandable.

9.5.1 Terahertz data representation

This Section describes the measurement of T-ray pulsed responses. Terahertz pulsed

imaging (TPI), or terahertz time domain spectroscopic functional imaging, is used for

the current experiment to detect RNA samples. The complete T-ray imaging system

results in T-ray waveforms for each position of the object in the x-y plane, therefore, a

T-ray image can be built up pixel by pixel. The image formed in this fashion affords

the T-ray pulsed response full information in both amplitude and phase (time delay).

There are two target data sets: one is for RNA samples and the other is for powdered

substances. The former contains two separate classes of biological specimen and the

latter contains six various types of powdered materials. The representation of data

measurement is detailed in the following subsections.

RNA data representation

Recently, it has been suggested that biological material can be detected by T-ray circular

dichroism (TCD) spectroscopy, because many biomolecular crystals exhibit strong and

specific absorption features in their dielectric spectra (Fischer et al. 2005b). Currently,

the identification of the binding state of DNA is an especially interesting topic, which

can be realised through applying T-ray techniques, i.e. loading a planar T-ray resonator

with the sample material, in spite of the lack of characteristic absorption features in the

T-ray region. In this experiment, it is investigated that frequency domain data from

two different RNA polymer strands, polyadenylic acid (poly-A) and polycytidylic acid

(poly-C) can be used for the recognition task with the potential to classify DNA.
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Commercially available poly-A and poly-C potassium salts were used for the experi-

ment (Sigma-Aldrich, product numbers P9403 and P4903), the data of which was mea-

sured at the University of Freiburg, Germany, and Fig. 9.15 illustrates the chemical

structures of the polymers.

Figure 9.15. Chemical structure of RNA samples. (a) polyadenylic acid (poly-A) and (b) poly-

cytidylic acid (poly-C). Potassium ions are applied to neutralize the negative charge of

the backbone. After Fischer et al. (2005b)

The sample preparation has been described in detail by Fischer et al. (2005b), and

the following steps are a short summary: (i) the carrier substrate was a commer-

cially available cyclic olefin homopolymer slide (Greiner Bio-One) with transparent

and dispersion-free properties in the T-ray frequency range; (ii) in order to achieve T-

ray imaging, small liquid volumes were spotted by hand in a 4 × 4 array of alternating

poly- A and poly-C on the slide. Each spot with a diameter of approximately 1 mm

consisted of 2 µl of deionized water containing 0.2 mg material. The spots were then

dried at room temperature and checked for homogeneity.

As a result, the terahertz image is illustrated in Fig. 9.16, which was achieved by tera-

hertz time-domain spectroscopy imaging system based on free-space propagation and

aperture-less focusing of the T-ray beam. Each pixel in the image represents the nor-

malized peak values corresponding to Poly-A and Poly-C. The sample consists of a 4 ×
4 array of spots. Two of the spots were removed from the substrate in order to identify

the orientation of the substrate in the image. The spot of Poly-A is shown at the top

Page 184

a1172507
Text Box
                                           NOTE:    This figure is included on page 184 of the print copy of      the thesis held in the University of Adelaide Library.



Chapter 9 THz Pattern Recognition Experiments

left corner of the image, with weak transmission, compared to the spots of poly-C. The

positions of poly-A and poly-C subimages are labelled in the diagram to the right of

the picture.

Based on the positions of poly-A and poly-C at the terahertz image, we select 8-neighbor

pixels around center position from each spot for the signal post-processing and classifi-

cation. The pixels lying on the boundaries of each class are excluded from training and

test vectors due to the difficulties involved in manually assigning the desired values

for pattern recognition.

Powder data representation

Another topical application of T-rays has been the classification of powdered samples

as a basis technology in substance detection for security (Ferguson et al. 2003). A gen-

eral question is to explore the ability of T-ray spectroscopy to detect different densities,

thicknesses, and concentrations of specific powders. To investigate this problem, we

conduct a preliminary exploration of different powder recognition tasks with 2 mm

thickness for six different powdered substances and their holder. They are: sand, tal-

cum, salt, powdered sugar, wheat flour, and baking soda.

The sample holder is shown in Fig. 9.17; this holder has an ability to accurately control

the thickness of the powders. There are two Teflon blocks, which can be separated

under control. They are mounted on a manual translation stage to provide the required

gap of 2 mm, where a plastic bag containing the powdered substances can be inserted

between the Teflon blocks. This procedure guarantees a relatively consistent powder

density and accurate control over the powder thickness of 2 mm.

A traditional T-ray imaging system is used to detect T-ray responses based on the THz-

TDS technique. There is an x-y translation stage involved for mounting the Teflon

sample holder and fixing its position in the T-ray beam. At T-ray frequencies, Teflon

is dispersionless. As Teflon has a very low absorption coefficient, there is minimal

distortion while the T-ray pulse propagates through the holder. A 2D T-ray image

of the sample can be obtained after inserting a powder sample. This image allows

the effects of different scattering paths and minor variations in powder thickness and

density to be observed. In general a 1D image is sufficient for substance detection

purposes, and 50 pixel responses (with a pixel spacing of 100 µm) can be acquired in

under 30 minutes.
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Figure 9.16. T-ray transmission image of poly-A and poly-C RNA samples on a biochip

substrate. It is illustrated that there exists stronger absorption in poly-C compared to

poly-A. Each spot contained 200 µg of either poly-A or poly-C in alternating order, as

indicated in the diagram to the right. The colour scale indicates the normalised peak

values of the two RNA samples. After Fischer et al. (2005b)

9.5.2 Terahertz feature extraction

This Section describes the classification system designed to assess the potential of

SVMs in T-ray pulsed classification. There are two target data sets, which need to be

separated by SVMs: one is for RNA samples and the other is for powder samples. The

former is to classify two classes of objects and the latter is to separate six various types

of powdered materials. RBF kernels and polynomial kernels are applied for statisti-

cal feature mapping. Signal processing is applied to track the key features of training

vectors for different classes of signals.

Feature extraction via frequency orientation components

The way to extract specific feature vectors in the frequency domain is realised by tak-

ing the Fourier transform after deconvolving measured signals with a reference pulse

(Ferguson and Abbott 2001a). The Fourier transform produces complex-valued spec-

tra, containing both phase and magnitude information. The magnitude and phase

at certain key frequency components constitute pairs of feature subsets on which the

classification is based. An important advantage of this approach is the small dimen-

sionality of feature vectors, allows the features to be directly extracted from pulsed
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Figure 9.17. Photo of a teflon sample holder for measurement fixed thickness of powdered

samples. One of the teflon blocks is fixed, while the position of the other is controlled

using the manual translation stage. The gap between the two blocks may be adjusted

to allow 2 mm thicknesses of powder to be considered.

responses with relatively low computational complexity. This obviously reduces the

computational resource requirements, which is attractive for possible hardware-based

implementations. Further, the sparse features help us avoid the over fitting problem

(Guyon et al. 2002, Withayachumnankul et al. 2005). The input vectors occupy a size

M × L matrix, where M is equal to the number of input vectors (training vectors) and

L is the dimensionality of each feature vector. If the limited measured dimensions of

the training subsets M is smaller than large scale of time series features L, it will cause

difficulty in correctly assigning labels to target samples. Fast and sparse features over-

come the computational disadvantages of SVMs.

Kernel selection and parameter tuning

Following feature extraction, the kernel operation is performed on the calculated fea-

tures in an SVM. An implicit nonlinear transformation Θ is used to map input pattern

φ(x) into a higher-dimension, yet linear, space. In the case of a Gaussian kernel, this

transformation is related to a Gaussian function K(x, y) = exp(−γ ‖ x−y ‖2), where γ

is the Gaussian kernel width parameter. Accordingly, an SVM classifier needs to be ap-

plied to produce learning vector patterns in two dimension feature space. The scatter

plot for learning vectors using a Gaussian kernel is illustrated in Fig. 9.19, which con-

siders a two-class pulsed signal classification problem for the recognition of two types
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of RNA samples—poly-A and poly-C. It serves as a useful comparison with plotting

machine learning realised via a polynomial kernel for classification tasks on multiclass

powder classification. The feature vectors consist of magnitude and phase, which are

plotted in a two dimensional plane: x axis is labelled by magnitude and y axis labelled

by phase.

The parameters that need to be tuned in the SVMs include the kernel parameters and

penalty parameter C (Weston et al. 2003, Hastie et al. 2003). The use of a validation data

set can be viewed as a straightforward method for tuning. This method reserves from

the training data set, a number of features for validation (Kim et al. 2002), which are

used to gauge the performance of the classifier trained on the remaining training data.

In our experiments on the RNA data, we have chosen the validation data set approach

for the RNA data. However, the use of validation sets becomes infeasible when the

number of feature vectors in the data sets is small. This is the case for the powder

classification experiments. In that case, we have chosen to forego the validation set,

and instead use the test error as a direct way of comparing against different parameter

values. In spirit, this approach is akin to an exhaustive search for optimal SVM pa-

rameters, while it is reasonable when there is a paucity of data and few parameters to

determine.

9.5.3 Performance assessment of classification

Cross-validation methods (Bengio and Grandvalet 2004, Cai and Li 2005) and a leave-

one-out (LOO) (Fukunaga and Kessell 1973, Fukunaga and Hummels 1989) estimator

within the deconvolved T-ray data set are utilized to provide a nearly unbiased esti-

mate of the prediction error rate. The performance of classifying the RNA samples is

evaluated using 8-fold cross-validation, while the powdered material classification is

validated using LOO. The data set of RNA is divided into eight subsets of approxi-

mately equal size. Sequentially, each subset is tested using the classifier trained on the

remaining subsets. The results from the eight runs are averaged to provide a statistical

estimate of the classifier performances. To tune the parameter C, we use small-and-

separate validation sets drawn from the test subsets, with the remainder of the test

subsets used for testing the classification performance.

In the approach outlined above, each RNA pixel label is predicted once so the cross-

validation accuracy is the percentage of data which are correctly classified. Similarly,
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LOO evaluates each unknown feature vector and then produces a basis to evaluate

classifier designs for powder classification (Fukunaga and Hummels 1989, Yin et al.

2007f). Therefore, LOO accuracy is also the percentage of correctly classified data sets.

The reason why LOO is used instead of 8-fold cross-validation for the powder experi-

ment is due to the relatively small number of measurements for the different powders.

With such a restriction, LOO is preferred as the overall classification experiment is

averaged over more runs. In this experiment, accuracy of classification is used as the

quantity for assessing the performance of all the classification tasks, and it is calculated

by:

accuracy =
NTP + NTN

NTP + NFN + NTN + NFP
(9.1)

where a true positive is labelled by NTP, a true negative is labelled by NTN , a false

positive is labelled by NFP, and a false negative is labelled by NFN.

9.5.4 The Fourier spectrum analysis

As mentioned above, the detection procedure works on a modified transmitted time-

series of T-ray pulsed responses. For isolation of system response, a pulse measured

from an empty substrate and an empty holder is employed as reference and is de-

convolved from the measured signals of RNA samples and powdered materials, re-

spectively, for the removal of the system response (Ferguson and Abbott 2001a, Duvil-

laret et al. 1996). The specific features relevant to magnitude and phase are extracted

from the RNA and powdered substances data, via a Fourier transform. The details are

described in the following subsections.

The Fourier spectrum analysis for the classification of poly-A and ploy-C T-ray pulses

RNA data occupies a size equal to 60 × 50 = 3000 pixels. For each pixel, the number

of time samples is 350, which was accordingly truncated at 175th frequency bin corre-

sponding to frequency of 4 THz because of the symmetry of spectrum. The 3000 pixel

data set consists of background data information—a TOPAS substrate image, and tar-

get object data sets—poly-A and poly-C image data. The population of pixels belong-

ing to the poly-A and poly-C classes is 48 for both classes. In order to obtain reduced

dimensions of feature subsets and make them discriminable for the different classes,

the magnitude and phase values of the pulse responses are first calculated, and then

those values corresponding to the frequency with the greatest magnitude (i.e. strongest
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Figure 9.18. Illustration of T-ray spectra of RNA. (a) Displays two obvious separate phase curves

for two classes of spectra—poly-A and poly-C, which are obtained by down sampling

the Fast Fourier Transform (FFT) of T-ray pulses with linear extrapolation. (b) The

plot of magnitude versus different frequency bins with largest magnitude at frequency

bin 19.

response) are used as the features. This process extracts a 2-dimensional feature vector

from the full spectral data with 350 non-redundant dimensions.

Fig. 9.18(a) displays two obvious separate phase curves for two classes of spectra—

poly-A and poly-C, which are obtained by Fast Fourier Transform (FFT) of the T-ray

pulses with linear extrapolation. Fig. 9.18(b) is the plot of magnitude versus different

frequency steps with cutoff frequency at the 175th frequency bin. It is observed that the

magnitude at frequency bin 19 reaches maximum value. Hence, we select frequency

bin 19 as the key frequency of interest and use the corresponding phase and magnitude

pair as the extracted features, which form the input to the SVM. A Gaussian kernel

is used for the final feature mapping from a non-linear feature space to a linear one.

Accordingly, we apply the SVM training algorithm to produce a learning vector pattern

in the two dimensional feature space (magnitude and phase form the axes), which is

illustrated in Fig. 9.19. SVMs with the width parameter of Gaussian kernel λ of 0.003

are trained by feeding 6 to 42 training vectors selected randomly from 48 patterns from

each class. The orientation frequency is selected at the 19th frequency bin in all cases.

The background colour shows the shape of the decision surface. Dark blue regions

represent the class belonging to the poly-C sample labelled by -1; and light blue regions

indicate the class related to poly-A sample labelled by 1. Separating hyperplanes for
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Figure 9.19. An illustration of binary classification for the recognition of RNA samples. .

A Gaussian kernel is used for mapping the training vectors to a 2D feature space.

The penalty parameter C is set to infinity and the width parameter of Gaussian kernel

λ equals 0.0006. The background colour shows the contour shape of the decision

surface. The learning vectors are approximately separated via applying Gaussian kernel

for mapping. This resultant mapping shows good discrimination of two-classes RNA

samples.

two classes are indicated by 0. The circles represent the calculated support vectors.

Compared to the training vectors, the number of support vectors are reduced, which

takes on an important role in achieving the ideal shape of hyperplanes and facilitating

computation of the classification algorithm. In this case, machine learning for two-class

samples—poly-A and poly-C denoted by white ‘+’ and black ‘×’ are approximately

separated by their own boundary lines though there is a little overlapping. Detailed

experimental results about classification accuracy are analysed in the next Section, after

200 random selections of training vectors are fed to the SVMs.

Fourier spectrum analysis for multiclass classification

The image statistics of powders consist of 6 × 50 = 300 pixels. For each pixel, the

number of time samples is 400. Fig. 9.20 shows the phase and magnitude plots in the

frequency domain from one pixel of salt image data, with a cutoff frequency equal to

4 THz. It is obvious that the subimage at the bottom of Fig. 9.20 shows a sharp change
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Figure 9.20. Illustration of Fourier spectrum. The top subimage shows phase versus terahertz

frequency and the bottom subimage shows magnitude versus terahertz frequency.

of magnitude at the second frequency bin. Accordingly, with the number of training

subsets of 49, we plot the phase and magnitude based on two classes learning vectors

and multi-classed learning vectors, by applying the pair of Fourier features at the sec-

ond frequency bin, then we produced the learning vector pattern for two-classes and

multiclass recognition, shown in Fig. 9.21 and Fig. 9.22, respectively. For powder clas-

sification, a polynomial kernel is employed for optimal classification performance. The

two-class powder samples, sand and salt samples, are linearly separable, with circles

describing the calculated support vectors, which decide the linear optimal hyperplane

between two classes. The solid lines above and below the hyperplane depict the ±1

range along the separating surface. The small number of support vectors greatly re-

duces the computational burden of the classification task. In two-class classification,

the penalty parameter C was chosen to be 10 and the polynomial kernel degree equals

3. All these parameters are tuned experimentally.

For the multiclass case, a polynomial kernel with degree of 3 is applied for linear map-

ping, with a truncated terahertz frequency of 4 THz. The penalty parameter C is set to

100. The relevant decision functions for the pairwise approach are shown in Fig. 9.22

with the number for the recognition of the various decision surfaces corresponding to

the different pairwise classes. The summing up of the pairwise votes yields the borders

easily. The small red region at the left hand outlined by border line 5 is an undecided
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Figure 9.21. Plot of learning vector pattern. The classifier is trained with 49 pixels from two-

class powder samples, sand and salt samples, with phase and amplitude as a pair of

coordinates. Polynomial kernel with degree of 3 is applied for linear mapping. The

penalty parameter C is set to 10.

class region. This is because the maximum number of votes (top scores) in the region

is smaller than (k − 1) = 5. The six classes are well clustered and therefore easily sepa-

rated. The undecided class region has no relevance for the class decision. It is obvious

that the number of the support vectors for the single decision is small, which results

in a fast adaption and better boundary shape to partly compensate the computation

increase brought on by needing to repeat (k − 1)/2 calculations for multiclass classi-

fication. The support vectors as the ‘most important’ data points are identified with

extra circles.

9.5.5 Resultant classification performance

To verify the effectiveness of the proposed method, resultant classification were per-

formed on the extracted features of T-ray pulsed data related to RNA samples and

several types of powder substances. ‘LIBSVM’ (Chang and Lin 2001) and with ‘SVM

and Kernel Methods Matlab Toolbox’ (Canu et al. 2005) are chosen as the toolboxes for

our experiments with two- and multiclass classification, respectively.
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Figure 9.22. Learning vectors for the six-class examples are plotted. It is for the illustration

of the linear decision function between the pairs of classes by applying a polynomial

kernel for mapping with a degree of 1. There are 49 pixels selected randomly from each

of six classes of powder samples. The small red region on the left hand side remains

undecided.

RNA classification via Fourier coefficient spectrum

For classification of RNA samples, Gaussian kernels are applied because of the pre-

ferred classification performance that fit the RNA data well. All the classification runs

are performed using a 2.4 GHz Pentium4 CPU. The average time spent classifying the

two-classes RNA samples is 2.74 seconds for 18 data sets.

To evaluate the effect of the Gaussian kernel on the RNA sample classification, suitable

values of C and λ are evaluated via parametric search using separate validation sets.

After training, the final error rate, the number of support vectors and the elapsed time

are compared. In the training phase, the training vectors are randomly selected from

a given proportion, varying from 1/8 to 7/8, of the input population of 48 pixel re-

sponses from each RNA class. The SVM parameter (C) is tuned by the remaining 1/16

to 7/16 of input data as validation vectors and tested with the last small-and-separate

subsets of 1/16 to 7/16 of available pixel responses. In principle, a similar procedure

can be applied to the tuning of parameter λ—in this Thesis, we illustrate the tuning of

C for brevity, since we have found the classification performance to be less sensitive on

the choice of λ. As discussed in Section 9.5.4, the key frequency is selected at the 19th
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Figure 9.23. Plots of classification accuracy regarding RNA samples. (a) Plot of classification

accuracy versus the number of input test vectors, corresponding to different values of

parameter C. (b) Illustration of the validation of classification accuracy, via the plot of

classification performance versus the number of input validation vectors, corresponding

to different values of parameter C.

frequency bin in all cases. In order to achieve effective classification, the repeated se-

lection of test and training vectors are conducted, and the number of repeated selection

approaches 200. The highest classification performance was obtained for the penalty

parameter C = 1 and λ = 0.003, with a classification accuracy of 72%.

It was found that the classification accuracy is similar throughout the range of val-

ues for C, from 0.001 to 104, in steps of 1 on a log scale. The classification accuracy

is improved with an increased number of training vectors, which is to be expected.

Fig. 9.23(a) and (b) show classification performance using our algorithm versus dif-

ferent sizes of test and validation data sets, respectively. The various value of C are

all plotted for direct comparison. It is clear that the two subfigures show the similar

behaviour, which implies that the validation and test sets do not exhibit very different

classification characteristics. In Fig. 9.23(a), the curve, related to C of 1, gives best per-

formance, especially when the number of training vectors is in the range from 48 to 84,

though in Fig. 9.23(b), the corresponding curve shows a slightly weaker classification

accuracy compared to the others.

The number of the computed support vectors is roughly one-third fewer than the num-

ber of training vectors. A small number of SVs is desirable for implementation since it

directly determines the computational complexity of the automatic classification task.
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Figure 9.24. Illustration regarding the variation with respect to the number of SVs and

classification accuracy. There are plots against the increment of the number of the

input training feature sets in the classification of RNA data, with C = 1 and λ = 0.003.

Fig. 9.24 below shows the variation of the number of SVs with the increment of the

number of the input training feature sets in classification of RNA data. The number of

the input training RNA samples varies from 12 to 84, with a step size of 12. The corre-

sponding number of SVs, shown in Fig. 9.24(a) shows an almost linear increment from

9.6 to 51.4. Similarity, the classification accuracy, shown in Fig. 9.24(b), varies with a

range from 56% to 72%. It can be approximately viewed as a linear increase with a 2%

improvement in accuracy for every 10 additional training vectors.

The feature extraction method realised by selecting key frequency components is par-

ticularly attractive when the input vectors come from large data sets. However, it

should be noted that the current classification results for RNA samples is limited by

laser fluctuation occurring in the measurement procedure between an RNA sample

and the substrate reference. In addition, the RNA data is measured on a very thin layer

of the substrate (around 40 µm). The propagation delay is often less than 1 sampling

period, which makes model fitting difficult.

Multi-class powder classification via Fourier coefficient spectrum

Table 9.9 to Table 9.11 show the multiclass classification performance via applying a

pairwise classification method, with the application of polynomial kernels, p from 1 to

3, and varying penalty parameter C from 0.1 to 1000 with step of 1 in a log scale, on

Fourier spectral features. Elapsed time of the SVM testing and the number of SVs are
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also shown in the tables. A leave-one-out estimator is used for the training and testing

of the SVMs. The total size of analyzed vectors of each target class is 50 × 400 = 20000

before feature extraction. For training, 49 × 6 = 294 pixels from all the classes are

input to SVMs. The remaining 1 pixel from each class is used to test the SVMs. The

SVM experiments are repeated 50 runs. Therefore, the test lapsed time indicates the

300 runs of SVMs testing time. All the powder classification runs are performed using

a 1.66 GHz Intel dual-core CPU.

Table 9.9. Varying penalty parameter C and the polynomial kernel p=1 are implemented

for the parameter calculation regarding SVMs. Classification rates (%), number of

SVs and elapsed time are illustrated. The Fourier spectral features were extracted. Here,

97.96% and 57.14% classification accuracy correspond to the number of the correct

classified test vectors equal to 48 and 28 with 1 and 21 test errors, respectively.

each class name and classification accuracy (%) ♯ of SVs elapsed time (s)

C salt sand talcum sugar flour soda

0.1 95.92 83.67 97.96 83.67 57.14 34.69 566 35.6

1 100 100 93.88 95.92 67.35 89.80 334 23.9

10 100 100 95.92 100 83.67 93.96 112 15.0

100 100 100 97.96 100 100 97.96 64 12.6

1000 100 100 97.96 100 100 97.96 46 11.9

Table 9.10. Varying penalty parameter C and the polynomial kernel p=2 are implemented for

the parameter calculation regarding SVMs. These parameters involving classifica-

tion rates (%), number of SVs and elapsed time are illustrated for powder classification.

Here, 97.96% and 67.35% classification accuracy correspond to the number of the cor-

rect classified test vectors equal to 48 and 33 with 1 and 16 test errors, respectively.

each class name and classification accuracy (%) ♯ of SVs elapsed time (s)

C salt sand talcum sugar flour soda

0.1 100 100 95.92 95.92 67.35 97.96 374 20.0

1 100 100 93.88 100 77.55 97.96 120 17.0

10 100 100 97.96 100 93.88 97.96 78 15.0

100 100 100 97.96 100 100 97.96 59 13.9

1000 100 100 97.96 100 100 97.96 50 12.8

The maximal vote is selected as a winner for the recognition of a target. The averaged

classification accuracy in relation to each powder sample is shown in the three tables

based on the various penalty parameter C and the degree p of three polynomial ker-

nels. Table 9.9 to Table 9.11 shows that the classification accuracy versus the penalty

parameter C of 0.1, 1, 10, 100 and 1000 for their corresponding kernel parameter value.

It is obvious that, with the increase of C and polynomial kernel of p, the classification
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Table 9.11. Varying penalty parameter C and the polynomial kernel p=3 are implemented

for the parameter calculation regarding SVMs. They are classification rates (%),

number of SVs and elapsed time for powder classification. Here, 97.96% and 71.43%

classification accuracy correspond to the number of the correct classified test vectors

equal to 48 and 35 with 1 and 14 test errors, respectively.

each class name and classification accuracy (%) ♯ of SVs elapsed time (s)

C salt sand talcum sugar flour soda

0.1 100 100 95.92 95.92 71.43 97.96 157 19.2

1 100 100 95.92 100 81.63 97.96 89 16.7

10 100 100 97.96 100 100 97.96 71 15.9

100 100 100 97.96 100 100 97.96 54 14.7

1000 100 100 97.96 100 100 97.96 51 14.9

accuracy improves, while the averaged number of support vectors and the elapsed

time both reduce. When the value of p is set to 1, 2, and 3, the classification perfor-

mance is satisfactory when C is set to be greater than 100, 100, and 10, respectively,

with the accuracy being a perfect 100% for all but two powders: talcum and soda sam-

ples, which scored 98%. The p of polynomial kernel of 3 is suitable for classification

of terahertz powder data, at which the C can be set to a small value—this is important

because if C is too large, there is the risk of over-penalising training error, and hence

over-fitting the SVM. It should be noted that in the three tables, the 97.96% and 57.14%

classification accuracy correspond to the number of the correct classified test vectors

equal to 48 and 28 with 1 and 21 test errors, respectively. In this case, 1 test error re-

duces the classification accuracy by 2.04%. Averaged classification accuracy over the

six classes is 99.32%.

It should be noted that the relatively few SVs when setting C >= 10, with an average

number of 65, are required when compared to the large number of input training vec-

tors equal to 50 × 6 = 300; once again, having fewer SVs reduces the computational

load of the testing phase. The average elapsed time is measured for each class classi-

fication, which is approximately equal to 9 seconds when using a polynomial kernel

with degree from 1 to 3.

For comparison with the proposed SVM-based powder classification performance, the

Mahalanobis classifier and a k-means classifier are selected to achieve supervised and

unsupervised classification, respectively. For the Mahalanobis classifier, an iterative

algorithm is employed to select two key frequencies among the first 50 frequencies

(Yin et al. 2007e). Half of pixels (25 pixels) from six types of powders at 2 mm are used
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to train the classifier, and the remaining part (25 pixels) at 2 mm are used to test it.

The classifier testing time is 682 s after 200 run testing on the same hardware. For the

unsupervised K-means classifier, the exact same feature set consisting of amplitude

and phase at the second frequency component is used as the input, and the number

of clusters is set to be 6. The algorithm is initialised using randomly selected cluster

centres; the training is repeated 100 times and the lowest mean square Euclidean dis-

tance clustering is used as the final result. Under these conditions, the unsupervised

classification accuracy is 75%.

9.5.6 Conclusion

This Section describes an SVM-based T-ray pulsed signal classification method to esti-

mate the potential of SVMs in the classification of RNA samples, poly-A and poly-C,

and the classification of six types of powder materials. Pairwise classification is em-

ployed for the multiclass powder samples. The suggested method is to put the original

T-ray pulses into SVMs, which does not involve any external feature extraction scheme

except for the adoption of the normalization and fast Fourier transform for signal and

spectrum analysis. The principle for this ability is that SVMs allow processing of sparse

features for machine learning in low-dimensional feature spaces. The validity of using

Gaussian and polynomial kernels is supported by effective classification performance

of the above two feature extraction procedures.

It is observed that SVM implementation is not too onerous on hardware, as long as

training is done off line. The testing is very fast and quite low on computational re-

source requirements. Since the classification performance is strong, implementing a

SVM-based classification system is both feasible and worthy of consideration.

Future studies for a SVM-based classification system will investigate further signal

processing techniques and statistical modelling (Schürmann 1996, Schalkoff 1992) based

methods for different feature extraction of T-ray pulses. Autoregressive modelling

(Therrien and Oppenheim 1992) can be employed as a technique to achieve the de-

composition of large number of measured time samples. Absorption coefficients and

refractive index are also suggested to be used as good choices for the key features ex-

traction, especially while analyzing the RNA spectrum data affected by obvious etalon

artifacts. Meanwhile, more experiments related to DNA need to be carried out for

the exploration of different feature configuration and different multiclass classification
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methods. Additionally, the powder classification experiment was conducted based on

the THz measurements with same thickness of powder samples to train and test a

classifier. It is in hope that different sample thickness can be taken advantage of for

training and testing purposes.

9.6 Chapter summary

This Chapter uses specific THz experiments to validate feature extraction and classifi-

cation algorithms described in previous Chapters, containing the central results of THz

pattern recognition.

These THz experiments take advantage of T-ray time domain techniques, which allow

the measurement of T-ray pulsed responses in both amplitude and phase (time delay).

The T-ray time domain response is obtained via terahertz pulsed imaging (TPI).

Section 9.2 highlights the ability of the wavelet SURE soft threshold to shrink the THz

signals dominated by system noise. It is validated via THz classification experiment of

different powder specimens. In this experiment, FFTs are used as a feature extraction

tool and the Mahalanobis distance classifier is employed for classification. Three op-

timal frequency components are selected via an iterative algorithm and the resultant

classification performance is satisfactory.

Section 9.3 explores ability of three different system identification algorithms in the dis-

crimination of three powder state materials: lactose, mandelic acid, and dl-mandelic

acid. Three signal processing algorithms regarding system identification techniques

are adopted to improve on the signal to noise ratio of the calculated spectra, and to

evaluate the complex insertion loss function of the samples under study. Complex in-

sertion loss functions of the samples as important experiment parameters are evaluated

for each processing technique. Compared to a subspace algorithm, a Mertz apodiza-

tion window for ratioing the sample performs well in terms of smoothness of the out-

put CIL, and shows correct identification of the absorption bands. However, after dis-

persion, discrimination matrices are applied for the evaluation of different sample dis-

crimination, the standard ratioing procedure are inferior with respect to noise than

those obtained by the other two identification algorithms. Wavelet-packet technique

has been shown to be particularly suited to the identification of systems with several

spectral resonance features.
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Section 9.4 introduces a parametric modelling procedure. The AR and ARMA mod-

elling of wavelet subband coefficients are applied for an effective feature extraction

algorithm. We discuss the success of the proposed algorithm in classifying human

bone osteoblasts (HBO) against human osteosarcoma cells (HOS) as well as at differ-

entiating between six types of powder samples. Our positive results motivate future

exploration of other classes of cancer cells via THz radiation. THz pulse transients of

different powder samples illustrate the ability of THz to classify different substances,

which potentially have important applications in the pharmaceutical and security in-

dustries.

Section 9.5 illustrates support vector machine learning algorithms that are sufficiently

powerful to detect patterns hidden inside noisy biomedical measurements. A fre-

quency orientation component method is applied to extract T-ray feature sets for the

application of two- and multi-class classification using SVMs. Effective discriminations

of ribonucleic acid (RNA) samples and various powdered substances are achieved. The

development of this method has become important in T-ray chemical sensing and im-

age processing, which are useful to enhance detectability for many applications, such

as quality control, security detection and clinical diagnosis.

With every technological advance that has opened up new areas of the electromag-

netic spectrum, there has been born a wealth of industries to apply that technology for

the advancement of mankind—such is the promise of the THz regime (Abbott 2000).

This Thesis presents significant and novel research on two parallel fronts towards pat-

tern classification and computed tomographic reconstruction. In addition to the pat-

tern classification (identification) system described in previous Chapters, from the next

Chapter, this Thesis contributes to the field by developing processing algorithms to ex-

tend THz imaging capabilities to new application domains. Chapter 10 introduces the

THz computed tomography, using a broadband THz source as an example, to illus-

trate the ability THz radiation to be used for computed tomographic reconstruction, in

a similar way to X-rays.
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Chapter 10

Terahertz Computed
Tomography

C
OMPARED to simple planar imaging, computed tomogra-

phy offers a more advanced mode of imaging, offering multi-

ple viewing angles and internal structural information. It can

be used to probe the nonlinear relationships between the signal strength,

depth, and material optical properties. For terahertz computed tomogra-

phy, a single point of a sample boundary is illuminated and the sample can

be viewed at multi angles via a rotation stage connected to a linear stage

on which the sample is mounted. Data is collected at the different posi-

tions and rotation angles around the boundary of the moving sample via a

photodetector or a CCD camera. These THz measurements are then com-

bined in a tomographic scheme, for reconstruction of intrinsic target con-

trast. Quantities used in reconstruction can be the absorption coefficients,

refraction indices, or time domain parameters, such as time delays.
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10.1 Brief review of THz imaging application

Terahertz Computed Tomography (THz-CT) is a form of optical coherent tomogra-

phy, which offers a promising approach for achieving non-invasive inspection of solid

materials, with potentially numerous applications in industrial manufacturing and

biomedical engineering. While one- and two dimensional applications with time-

domain terahertz spectroscopy have been well demonstrated in the past (Ferguson and

Abbott 2001a, Galvão et al. 2003), the ability to non-destructively probe the inner three

dimensional structure of optically opaque structures is less well studied. There has

been a relative scarcity of terahertz tomography work in the literature. Currently, most

THz pulsed imaging (TPI) schemes are based on the extraction of material parameters,

which are calculated based on (i) time-of-flight measurements in reflection and trans-

mission geometry or (ii) the variation in amplitude or phase of the transmitted wave-

form at certain frequencies (Mittleman et al. 1996). THz tomographic reconstruction is

another interesting application of T-ray imaging. It exploits methods from geophys-

ical, radar and optical diffraction techniques (Ferguson et al. 2002b). It is capable of

mapping the 2D and 3D distribution of scattering objects, but with a constraint to im-

age the shape profile of the target object. At present, three dimensional (3D) T-ray CT

imaging, described in Ferguson et al. (2002b), has been developed based on coherent

T-ray detection techniques, which allows the imaging of internal structure and extracts

frequency dependent properties in three dimensions. Along with a dimension in time,

THz-CT offers the possibility of rich 4D data sets describing the target sample.

10.2 Methodology of computed tomography

The advent of computed tomography (CT) in 1972 was a milestone in the history of di-

agnostic medicine (Kak and Slaney 1988). A tomographic slice, or the Radon transform

of an object, is a cross-sectional integration of some property of an object, such as the

attenuation coefficient in X-ray computed tomography. These measurements are col-

lected via transmission or reflection of radiation sources set up to illuminate the object

from many different angles. Computed tomography is based on the assumption that

the image to be reconstructed belongs to an identifiable ensemble of similar images

(Hanson and Wecksung 1983). A number of algorithms for inverting these measure-

ments back into a two-dimensional image exist, but perhaps the most popular is the

filtered back projection (FBP) method.
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The filtered back projection algorithm, is often used in the calculation of the inverse

Radon transform (Kak and Slaney 1988, Ferguson et al. 2002b, Yin et al. 2007e), which

reconstructs a target object. Typically, the quantities obtained are the object’s frequency

dependent optical properties, such as the refractive index and absorption coefficient.

Normally, a filtered back projection algorithm begins with a collection of sinograms ob-

tained from projection measurements. A sinogram is a collection of points in a projec-

tion space, see Fig.10.1(b), which reflects projection geometric paths in an image space,

see Fig. 10.1(a). A sinogram is generated using Radon transform data, denoted below

by ℜ and is simply a collection of the projections at all the projection angles. A 1D

projection operation at each projection angle is a linear integral of the image intensity

along projection offset ξ, which satisfies the following equation:

s(ξ, θ) =
∫

o(x, y)dξ = ℜ(o) (10.1)

where all points on projection offset ξ satisfy the equation: x cos θ + z sin θ = ξ and

o(x, y) denotes the measured image intensity of a target object, which is a function of

pixel position in an x and z plane.

The filtered back projection algorithm for terahertz CT reconstruction (Kak and Slaney

1988) is expressed as follows:

I(x, y) =
∫ π

0

[

∫ ∞

−∞
S(θ, β)|β|exp[i2πβξ]dβ

]

dθ (10.2)

where S(θ, β) is the spatial Fourier transform of the parallel projection data, defined as

S(θ, β) =
∫ ∞

−∞
s(θ, ξ)exp[−i2πβξ]dξ, (10.3)

here, s(θ, ξ) is the measured projection data, β is the spatial frequency in the ξ di-

rection. More details associated with the back projection algorithms are presented in

Appendix B. It should be noted that the operation of the ramp filter |β|, as illustrated

in Eq. (10.2), is equivalent to a differentiation followed by a Hilbert transform, which

introduces a discontinuity in the derivative of the Fourier transform at zero frequency.

It will cause an ill-posed inverse problem. This is the reason why a wavelet based

algorithm will be introduced in Chapter 11.

In the next Section, we will introduce the THz CT imaging setup and illustrate the

image mode for better understanding the THz CT reconstructions.

Page 205



10.3 Brief introduction to terahertz imaging for CT

Projection path

θ

ξ

θ

ξ

o(x,y)

x

y

(a)

ξ

θ

signal parallel

 projection

 

 

 

(b)

Figure 10.1. Illustration of general scheme for computed tomography. (a) A geometric

projection path in an image space is a point in a related projection space; and (b) A

projection space sample pattern.

10.3 Brief introduction to terahertz imaging for CT

The CT data that we will use in Chapters 11 and 12 is due to (Ferguson et al. 2002b)

and the hardware used is briefly reviewed as follows. A chirped terahertz time do-

main spectroscopy scanned imaging system is used for making the image data mea-

surements; such a system is illustrated in Fig. 10.2. The target is mounted on a motion

stage so that the object can be rotated and linearly moved. As seen in Fig. 10.2, tera-

hertz pulsed imaging (TPI) is achieved by repeating pulsed terahertz measurements in

a 2D raster scan. The ultrafast pulsed laser beam is split into separate probe and pump

beams. The path length of the pump beam is adjusted by a delay stage, then trans-

mitted through a chopper and enters one of the optical rectification crystals, which

operates as a terahertz emitter. A pair of parabolic mirrors are used to focus T-rays

onto the sample. The T-rays emerging from the sample are adjusted again by another

pair of parabolic mirrors, then combined with the probe beam co-linearly. For the cur-

rent chirped pulsed imaging system, the optical probe beam is linearly chirped by a

grating pair. The grating pair encodes the chirped signal in space and allows an elec-

trooptic crystal to sample the terahertz temporal profile simultaneously. The grating

pair (grating constant 10 µm) is setup so that the grating separation is 4 mm and the an-

gle of incidence is 51◦, giving a chirped probe pulse width of 21 ps. The probe pulse is

linearly polarised by P1 and the polarisation modulation is converted to an amplitude

modulation by polarizer P2 whose polarisation is perpendicular to P1. On transmis-

sion through the sample the THz radiation and optical probe beam are reflected by
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Figure 10.2. A chirped probe pulse terahertz imaging system. It is used to realise terahertz CT

imaging. In practice, the sample is placed on a rotational stage. After Ferguson et al.

(2002b).

and transmitted through an indium tin oxide (ITO) THz mirror, separately. The de-

tector crystal produces optical outputs that are proportional to the terahertz response.

A CCD spectrometer is used for signal measurement. For the current reconstruction,

we employ coherent spectrometry with a spectral resolution of 17 GHz and a detection

lock-in amplifier time constant of 10 ms.

This current terahertz imaging setup achieves point to point detection. A linearly mov-

ing stage enables parallel scanning and a rotating stage allows projections of an object

to be taken at a number of projection angles. Fig. 10.3(a) illustrates the terahertz sam-

pling pattern. Adding to these two spatial variables is the time variable which is as-

sociated with the transient terahertz pulse. The measurements gathered from such

a setup is organised as a three-dimensional (3D) data set, indexed by the variables

(θ, ξ, t), where θ is the projection angle, ξ is the perpendicular distance from projection

path to rotation axis, and t is the sampled time, as shown in Fig. 10.3(b). The optical

properties of the material are extracted in the Fourier domain. In this domain, the to-

mographic inversion process takes place, to yield a final reconstruction as a function of

the variables (x, y, ω), where ω indicates the frequency, and the x and y axes represent

standard Cartesian coordinates. The processing required to effect this transformation

is described in Section 10.2.
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Figure 10.3. Schematic of THz CT sampling and the relative coordinate systems. (a)

Illustration of data sample pattern of the current imaging. (b) Two sets of coordinate

systems for the reconstructed terahertz CT. A typical terahertz pulse spectrum is shown

as a function of time t in the inset. After Ferguson et al. (2002b).

10.3.1 Characteristics of diffraction grating pair

A conventional parallel grating pair is used to create a chirped pulse. A chirped pulse

imaging system greatly accelerates the image acquisition process, because it allows

one-shot acquisition removing the need for a delay stage. The different wavelength

components of the incident pulse traverse different path lengths due to the variation

in first order diffraction angle with wavelength.

According to Treacy (1969), for a parallel grating pair, if light of wavelength λ is inci-

dent on a grating with grating constant d at an angle γ (relative to the grating normal),

and a wavelength-dependent angle θ is the angle between incident and diffracted rays,

then the ray path length (ABCD in Fig. 10.4) is given by

p = b(1 + cos θ) = cτ (10.4)

where, b = G sec(γ − θ) is a slant separation between the two gratings, if G is the

perpendicular distance between the gratings, and τ denotes group delay.
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The variation of group delay with wavelength is defined as

δτ =
b(λ/d)δλ

cd[1 − (λ/d − sin γ)2]
. (10.5)

The group velocity dispersion (GVD) indicates the group delay dispersion per unit

length, which represents the phenomenon of the frequency (or wavelength) depen-

dent group velocity of a wave. Group velocity reflects the changes of the wave in

propagated amplitude (known as the envelope of the wave). It is an important factor

in controlling temporal pulse broadening.

The relation between γ and θ for first-order diffraction is

sin(γ − θ) + sin γ =
λ

d
(10.6)

here, d is the grating constant. Combined with Eq. (10.4), it is concluded that the optical

path through grating pair is longer for the longer wavelengths than that of the shorter

ones.
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Figure 10.4. The geometry of a diffraction grating for chirped pulsed compression. The grating is

used to impart a linear chirp to a laser pulse. The mirror M reflects the beam back

into the grating pair. The optical path length is greater for longer wavelengths. The

angle of incidence is γ and θ is the angle between incident and diffracted rays.

Fig. 10.4 shows a simplified pulse compressor via a pair of parallel gratings. The mirror

M reflects the beam back into the grating pair, and the pair of parallel and face-to-face

gratings is used to diffract light twice, so that the outgoing waves are parallel to, but

laterally displaced from, the incoming waves. That is, pulse stretching is essentially

the reverse of the pulse compression.
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According to the grating equation, the longer wavelength light (red line) is diffracted

through a smaller angle θ than the shorter wavelength light (green and blue line), so

that the red light strikes the second grating to the left of the green while the blue light

is to the right of the green. As a result, the total free-space path taken by a red ray is

longer than that of a green ray, which is in turn longer than the blue ray’s path. It turns

out to be that the output from the grating is a pulse with a longer pulse duration and

a wavelength that varies linearly with time. A negative group velocity is produced

via the pair of parallel gratings. Since the input pulse is positively chirped and travels

through the gratings, the output pulse becomes shorter due to partial cancellation of

the positive GVD effect by the negative GVD of the gratings (Treacy 1969).

Electrooptic (EO) detection of a terahertz pulse using a chirped probe pulse was first

demonstrated by Jiang and Zhang (1998b). This novel technique allows the full T-

ray waveform to be measured simultaneously rather than requiring a stepped motion

stage to scan the temporal profile. This provides a significant reduction in the acquisi-

tion time and greatly extends the applicability of T-ray systems in situations where the

sample is dynamic or moving. Indeed, single shot measurements have been demon-

strated for measuring a T-ray pulse using a single femtosecond light pulse (Jiang and

Zhang 1998c).

However, this method degrades the SNR by spreading the available THz power over

multiple pixels and diffraction effects can corrupt the temporal measurements. To

avoid these additional concerns, the current experiment concentrates on the use of

scanned imaging by focusing the THz pulses to a point and raster scanning the target.

10.4 Calculation of terahertz parameters for reconstruc-

tion of THz CT

One of the advantages that terahertz CT has over X-ray CT is that s(θ, ξ) may be one

of several parameters derived from terahertz pulses. Fundamentally, a terahertz CT

setup is capable of measuring the transmitted terahertz pulse as a function of time t,

for a given projection angle and projection offset. In principle, terahertz sinograms can

be obtained in both time and frequency domains.
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10.4.1 Frequency domain sinogram for terahertz CT

The measured terahertz pulse is a function of time t, at a given projection angle and

projection offset pd(t, θ, ξ). Let us denote the Fourier transform of this time domain

pulse by Pd(ω, θ, ξ). The reference pulse pi(t) and the corresponding Fourier response

Pi(ω) can be measured by removing the target object from background. If the target

is rotated and probed by terahertz beams, Pd(ω, θ, ξ) may be evaluated by adding suf-

ficient projection angles to allow the filtered back projection algorithm to be applied

at each specific frequency ω. This is based on the approximation that the detected

terahertz signal is viewed as a linear integral of the incident terahertz pulse,

Pd(ω, θ, ξ) = Pi(ω) exp

[

∫

L(θ,ξ)

−iωn̂(r)

c
dr

]

(10.7)

where Pd and Pi are the Fourier transforms of the detected and incident terahertz sig-

nals, respectively; c is the speed of light in free space, L is the projection path, a straight

line between the source and detector. The unknown complex refractive index of the

sample is denoted by n̂(ω, r) = nδ(ω, r) + ik(ω, r), where nδ(ω, r) is the real refractive

index deviation and k(ω, r) is the extinction coefficient, related to absorption coefficient

α via k(ω, r) = α/2ki (ki is the incident extinction coefficient). Let us define that,

Pn
.
=

[

Pd(θ, ξ)

Pi(θ, ξ)

]

/ki =
∫

L
nδ(r)dr = ℜ{nδ(r)} (10.8)

Pα
.
= −2

∥

∥

∥

∥

Pd(θ, ξ)

Pi(θ, ξ)

∥

∥

∥

∥

=
∫

L
α(r)dr = ℜ{α(r)} (10.9)

where arg(x) denotes the phase or argument of complex valued x, ‖x‖ denotes the

magnitude of the complex scalar x, and Pn and Pα are the projection data inputs to the

filtered back projection algorithm as required to reconstruct nδ and α, respectively, at a

specific terahertz frequency ω. The sign r denotes the position of the incident field (the

sensor). The frequency sinogram is applied to the vial and tube data sets (see Chap-

ter 11) for THz image reconstruction experiments.

10.4.2 Time domain sinogram for terahertz CT

This method is based on the assumption that the target is dispersionless and therefore

the THz pulse shape is unchanged after propagation through the target apart from

attenuation and time delay. A reference terahertz pulse pr(t) is measured without the
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10.4 Calculation of terahertz parameters for reconstruction of THz CT

target in place. To estimate the phase shift t of a terahertz pulse ps(t), the two signals

are resampled at a higher rate using bandwidth-limited interpolation,

pref(m) =
∞

∑
t=−∞

pr(t)sinc

[

1

q
(m − qt)

]

(10.10)

psample(m) =
∞

∑
t=−∞

ps(t)sinc

[

1

q
(m − qt)

]

. (10.11)

The two interpolated signals are then cross-correlated, and the maximised cross-correlation

product at each angle as the lag is taken as the estimation of the phase delay of ps(t).

Mathematically, this process is described by:

Rps pr [m] = psample(m) ⊗ pref(m)

=
∞

∑
t=−∞

psample(k)pref(k − m)

Td =

〈

psample ⊗ pref(m)

〉

maxlag

(10.12)

where Td is to estimate the delay time of terahertz phase, psample(m) and pref(m) are

equal to pd(t) and pi(t) after interpolation by a factor of q. For the current experiment,

q = 2 and m = 301 × 10 = 3010. As shown in Eq. (10.12), the operator R denotes

the cross-correlation and 〈 f (t)〉maxlag denotes calculating the value of t at which the

function f takes its maximum.

Timing sinogram can be calculated based on the following equation

ptime =
∫

L(θ,ξ)
Tdelaydr = ℜ{Tdelay(r)}, (10.13)

here, ptime denotes the sinogram image in the time domain, recovered from the maxi-

mum time delay.

Fig. 10.5 illustrate the cross-correlation algorithm. The truncated terahertz projection

response shown was interpolated and cross correlated with the reference pulse. The

lag (T) at which the cross-correlation is maximised provides an accurate estimate of the

delay between the two pulses. The algorithm is applied to cylinder data for terahertz

CT reconstruction.
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Figure 10.5. A cross-correlation algorithm. It is illustrated with the truncated projection of

cylindrical data sets after interpolation for clarity.

10.5 Chapter summary

This Chapter introduces computed tomography applied to terahertz imaging. We

present the difference between the conventional Radon transform reconstruction and

our modified Radon transform for terahertz computed tomography. It is an important

basis for the research with respect to THz segmentation application on a volume space,

presented in Chapter 11, and for wavelet based local tomography via pulsed THz de-

tection, and continuous wave THz reconstruction with a QCL, presented in Chapter 12

and Chapter 13, respectively. In next Chapter, the wavelet scale correlation segmenta-

tion technique is adopted to achieve material discrimination of THz measurements. It

turns out that only a segmenter parameter needs to be adjusted.
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Chapter 11

2D Wavelet Segmentation
in 3D T-ray CT

I
N this Chapter, segmentation techniques for terahertz (T-ray) com-

puted tomographic (CT) imaging are investigated. A set of lin-

ear image fusion and novel wavelet scale correlation segmentation

techniques is adopted to achieve material discrimination within a three di-

mensional (3D) object. The methods are applied to a T-ray CT image data

set taken from a plastic vial containing a plastic tube. This setup simulates

the imaging of a simple nested organic structure, which provides an indica-

tion of the potential for using T-ray CT imaging to achieve T-ray pulsed sig-

nal classification of heterogeneous layers. The wavelet based fusion scheme

enjoys the additional benefit that it does not require the calculation of a sin-

gle threshold and there is a single parameter to adjust.
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11.1 An introduction for THz segmentation experiments

Current two- and three- dimensional T-ray CT imaging is affected by different types

of noise, which can restrict its usefulness. These drawbacks have prevented successful

development of accurate and reliable edge detection and segmentation algorithms for

T-ray CT images. A reliable and automatic segmentation detection is of great impor-

tance in many applications of T-ray image processing, especially for the T-ray pulsed

signal classification of 3D objective CT imaging with heterogeneous layers. Hand-

ley et al. (2002) employed clustering techniques for segmentation with wavelet prepro-

cessing, on real and synthetic THz CT slices.

The current wavelet scale correlation based segmentation-by-fusion algorithms afford

another approach in 3D T-ray tomographic imaging to probe the interior regions of

objects. In conjunction with various edge detection techniques, our algorithm provides

quantitative information for measurement and classification applications. One of the

main advantages of the algorithm is that, in its simplest form, it requires only a single

segmentation parameter. In addition, a wavelet based segment-by-fusion detection

method for T-ray images is effective with respect to noise.

This Chapter contains two main Sections: methodology and experimental results. The

methodology Section describes the algorithms employed in this work. The chirped

probe pulse THz imaging system, described in Section 10.3, reviews the 3D T-ray CT

system that is used to acquire the data, after Ferguson et al. (2002b), used for our signal

processing experiments. CT reconstruction algorithms are discussed in Section 10.2.

In Section 11.3 a novel method is introduced to achieve reconstructed segmentation,

called wavelet scale correlation based segmentation-by-fusion. Section 11.4 consists

of the experimental segmentation results and the evaluation of segmentation quality.

Section 11.5 concludes this Chapter.

11.2 Representation of a target sample

The object photograph of a plastic vial containing a different plastic tube, simulates a

simple nested structure—as shown in Fig. 11.1(a). The target is imaged with a 1 mm

step size in the x and y dimensions, and at projections separated by 10o. First the recon-

struction is performed using the timing of the peak of the THz pulse in the time domain

to yield a reconstruction of the bulk absorption coefficients. For the current experiment,
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(a) (b)

Figure 11.1. A nested structure for the illustration of T-ray CT system. A vial containing a

plastic tube is used as a simple nested structure to test the T-ray CT system and to

demonstrate the resulting reconstruction and classification of the T-ray CT imaging.

(a) The optical image of the vial and the tube. (b) The 3D reconstruction of the vial

and tube based on the T-ray CT slices.

the real part, instead of using imaginary part, of the expression log[Pd(ω)/Pi(ω)] is

used to reconstruct T-ray CT at each sampled frequency, as the former shows the abil-

ity to reconstruct a relatively accurate and clear tomographic image. The central slice

is reconstructed at each of the ten lowest frequencies, from 0.0213 to 0.213 THz, (illus-

trated in Fig. 11.2). The 3D rendered image is illustrated in Fig. 11.1(b), which is the

combination of the reconstructed slices at a number of target heights. The resulting

isosurface is constructed using the pixels where the reconstructed absorption coeffi-

cients are evaluated. The reconstructed image dimensions are rather accurate, with

the vial and cylinder diameters being within 15% of the actual dimensions measured

with calipers. However, the vial thickness is much thicker than expected because of the

coarse reconstruction grid size of 1.5 mm. The grid size may be improved using more

projection angles at smaller angular intervals, but also needs improved ‘∆x’ resolution,

i.e. longer sinograms.

11.3 Wavelet based segmentation by fusion

As described above, T-ray CT extracts the frequency dependent 3D characteristics of

a target sample. This makes possible rich, four dimensional data sets that describe

the sample. To achieve the final T-ray CT image, an inverse Radon transform (IRT) is

computed on the Fourier coefficients of the measured signals. In order to obtain the

material discrimination within a three dimensional (3D) object, a set of linear image
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11.3 Wavelet based segmentation by fusion

Figure 11.2. Illustration of the reconstructed T-ray CT slices. These slices are reconstructed

at the first 10 frequencies, in increasing order from top left at the object height of

7 mm.
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Figure 11.3. Illustration of T-ray signals and spectra. (a) Detected T-ray signal and reference;

(b) their spectra in log scale with offsets of 2 a.u. and 4 a.u. corresponding to the

original and de-convolved spectra, respectively, for clarity.

fusion and novel two dimensional (2D) wavelet scale correlation segmentation algo-

rithms are adopted. The methods are applied to a T-ray CT image data set of a plastic

vial containing a plastic tube, with an aim to image a simple nested structure. The

setup is imaged at various heights, ranging from 5 mm to 9 mm (from the bottom),

in 1 mm increments. Image fusion algorithms are conducted on the low frequency re-

constructed T-ray CT images at different target heights for a smooth version of the CT

images. In turn, a 2D discrete wavelet transform (DWT) is taken on the fused image.

In order to reconstruct the same size of the approximate sub-images as the fused im-

age, the inverse discrete wavelet transform (IDWT) is performed after the appropriate
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Chapter 11 2D Wavelet Segmentation in 3D T-ray CT

subband is isolated. The target segments are localised by computing the correlation

between the subimages corresponding to the first two approximate scales.

11.3.1 Image fusion of T-ray CT images for a 3D target

A fused image can be created via merging two or more images, acquired from a single

source to obtain the sharp display of various materials and structures (Brown 1992). In

this case, much more meaningful visual information can be achieved in the combined

images than from the individual ones.

Our segmentation techniques are based on a plane fusion approach (Jan 2006) to match

and fuse multiple desirable slice images at various frequencies into a single slice image.

A linear combination of weighted slice images is used to perform plane image fusion

in the current experiment. The weights are selected based on the various intensities

for the different frequency of T-ray CT images. In this work, the weighting scheme

is empirically chosen to be 1/15 for the five lower frequencies and 2/15 for the five

higher frequencies to compensate for the attenuation in signal strength in the higher

frequency components. The resultant fused image has clear target contours and shows

strong contrast between the target regions and the background. Fig. 11.4(a) shows the

resultant fused image with image size of 89 × 89 pixels.

11.3.2 Discrete wavelet transforms in two dimensions

The 2D discrete wavelet transforms (DWT) can be realised by digital filters and down-

sampling the T-ray image. Expansion in a 2D scaling function, φ(x, y) and three 2D

wavelets functions, ψH(x, y), ψV(x, y), and ψD(x, y), are calculated by taking the 1D

fast wavelet transform (FWT) of the rows of an image and the resulting columns (Mallat

1999). This algorithm can be inverted via up-sampling the signals, filtering and adding

the output together to recover the low-frequency subband at the previous level of the

multiresolution analysis. The process is repeated for the depth of the DWT to ob-

tain the original image. In our work, however, the individual subbands at the lowest

resolution are isolated (i.e. all other subbands at the same level are set to zero) before

application of the inverse wavelet transform (IWT). This processing allows the wavelet

scale correlation based segmentation to be performed.

Fig. 11.5(a) and (b) are the reconstructed sub-images after taking 2D inverse wavelet

transform of approximate coefficients at the first and second wavelet decomposed
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Figure 11.4. (a) Fused image via merging T-ray CTs at ten lowest frequencies. (b) Final extracted

object segments from the background using wavelet based segmentation by fusion.
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Figure 11.5. (a) The reconstructed approximate sub-image after one-scale wavelet decomposition

of the fused T-ray CT. (b) The reconstructed approximate sub-image after two-scale

wavelet decomposition of the fused T-ray CT.

scales. The T-ray fused image at a 7 mm target height is used. A Daubechies 4 wavelet

transform is applied for this case. In each group of the two scales of reconstructed

T-ray CT sub-images, the first sub-image is the reconstructed approximate sub-image

and the other three are detail reconstructed sub-images. It can be seen that the approx-

imate sub-images are smoothed versions of original image.

11.3.3 2D wavelet scale correlation based segmentation

The aim of segment detection is to achieve differentiated subdivision of constituent

regions of an image. The method used in this Thesis is motivated by one dimensional

wavelet scale correlation denoising. Firstly, the target cross-sections are assumed to

be corrupted by additive white Gaussian noise, which is randomly distributed. The

target objects are separated by their absorption coefficients, which are indicated by
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the intensity in the images. With the incremental wavelet scale, the noise is reduced

and the target intensity (energy) is increased in an image. After extracting the low

frequency 2D subband of fused T-ray CT images, an increased energy with an increase

in wavelet scale is used as a cue to extract the target regions. This cue is consistent

with the procedure used in 1D wavelet de-noising, where the noise usually appears as

small coefficients in the wavelet subbands. By computing a correlation of two scales

of wavelet subbands, the signal components should survive in large coefficients while

the noise would be diminished as it would be spread over many small coefficients. The

wavelet scale correlation based segmentation algorithm is summarized as:

1. Calculate 2D reconstructed approximation images at first scale S1(m, n) and second

scales S2(m, n), i.e. for transform depths of 1 and 2, respectively.

2. Compute the correlation R1,2(m,n) for the two scales:

R1,2(m, n) = S1(m, n) × S2(m, n). (11.1)

3. Compute the energy of R1,2(m, n) and S1(m, n):

ES1 = ∑ S2
1(m, n) (11.2)

ER1,2 = ∑ R2
1,2(m, n). (11.3)

In order to make it comparable between the wavelet coefficients and the correlation

coefficients, it is necessary to normalise the coefficients:

R∗
1,2(m, n) = R1,2(m, n)

√

ES1/ER1,2. (11.4)

4. The wavelet energy |R∗
1,2(m, n)| and λ|S1(m, n)| is compared. If |R∗

1,2(m, n)| >

λ|S1(m, n)|, (λ is a parameter, chosen to be 1 for this experiment), the pixel at (m, n) is

extracted as part of a target segment, otherwise it is regarded as background.

The Canny edge detector, combined with Otsu’s threshold method (Gonzalez and

Woods 2002), is used to perform the final subtraction of each target function edge in

the T-ray CT image. It should be noted that the current algorithm only requires the

adjustment of a single parameter λ in the processing.
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Figure 11.6. Segmented images at different heights. These segmented image sets at heights of

(a) 5 mm; (b) 6 mm; (c) 7 mm; (d) 8 mm and (e) 9 mm from the bottom of the vial.

The four subfigures, clockwise from top left, illustrate the tube edges, tube segments,

the air segments (background) and vial segments, respectively.

11.4 Experimental result

11.4.1 Extracted object segments

The algorithm described in Subsection 11.3.3 is applied to extract segments corre-

sponding to the vial and tube. The extracted approximate sub-images, after compu-

tation of the 2D DWT of the 89 × 89 fused images, are shown in Fig. 11.5(a) and (b);

the Daubechies 4 wavelet is used in this case, as mentioned above. The result of the

correlation is shown in Fig. 11.4(a). Figures 11.6(a)-(e) illustrate the resultant segment

subimages corresponding to heights of 5 mm to 9 mm from bottom to top. The upper

left portion in each subfigure is the edge subimage of the tube; the upper right portion

is the segment subimage of the tube; the lower left portion is the vial segment region;

the lower right portion is the air segment region.
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Figure 11.7. Illustration of the centroid locations of the target tube segment. The centroids

correspond to five target heights, L1 to L5. The three dotted lines are the connections

of each of the two measured centroids from five target heights; the solid line is to fit

the five measured centroids. The X and Y axes represent the position of each pixel

with the unites of X and Y in ‘pixel’.

11.4.2 Segmentation quality

The segmentation quality cannot be directly verified since the ground truth is not

known. This situation is typical of tomographic applications, where it is often not pos-

sible to dissect the subjects to provide knowledge of the ground truth. Alternatively,

a comparison with manual segmentation is undesirable, since that depends on the se-

lected threshold, which cannot afford a standard resultant segment for comparison.

In this experiment, we exploit the fact that the internal structure, the tube, is straight.

This implies that the segmented plastic tube positions (see top right of each sub-figure

in Fig. 11.6) should be proportionally displaced from each other, since they correspond

to constant increments of 1 mm in height. To obtain this measurement, we find the

centroid of the extracted vial tube for each height (labelled L1-L5) and the resultant x

and y locations are plotted in Fig. 11.7. The achieved linear regression line, with slope

of -0.7 and an offset of 81.54 pixels, is used to fit the five measured centroids. The

mean square error of each point to the given solid line is 1.034. This indicates that our

algorithm is capable of locating the centroid of the plastic tube to within a handful of

pixels. Given the number of noise sources and the quality of the reconstructed images,

this error may be considered to be reasonable.
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11.5 Chapter summary

This Chapter investigates an application of wavelet based segmentation by fusion. It is

a first exploration of automatic T-ray CT target identification within 3D heterogeneous

structures. The algorithm successfully segments different target regions and is able to

correctly locate the regions to within a few pixels. This provides motivation for future

application of classification algorithms for material identification of 3D heterogeneous

layers. For future work, it is suggested that the algorithm be characterised further by

studying the effect of the segmentation parameter λ on the results. In addition, more

experimental work is needed to verify the general performance of this algorithm.

A further application of wavelet transform scheme to achieve wavelet based local to-

mography via broadband pulsed THz sources is experimentally illustrated in the next

Chapter, which shows how important wavelet transforms are for the achievement of

THz computed tomographic reconstruction, especially in the region of interest.
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Chapter 12

Wavelet-Based Terahertz
Coherent Local

Tomography

I
N the previous Chapter we explored wavelet-based coherent to-

mography and in this Chapter we now build on this approach to

specifically perform local tomography. With traditional CT tech-

niques such as X-ray tomography, full exposure data are needed for invert-

ing the Radon transform to produce cross sectional images. This remains

true even if the region of interest is a small subset of an entire image. For

time-domain terahertz measurements, the requirement for full exposure

data is impractical due to the slow measurement process. In this Thesis,

we apply a wavelet-based algorithm to reconstruct THz CT images with a

significant reduction in the required measurements when the region of in-

terest is small. Instead of inverting the Radon transform, the approach uses

modified wavelet and scaling ramp filters along with the traditional back

projection algorithm to obtain the resultant reconstruction.

The algorithm recovers an approximation of the region of interest (ROI)

from terahertz measurements within its vicinity, and thus improves the fea-

sibility of using terahertz imaging to detect defects in solid materials and di-

agnose disease states for clinical practice, to name a few applications. This

novel approach is illustrated in two terahertz imaging case studies.
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12.1 Motivation

The aim of our current work is to perform terahertz tomographic reconstructions, par-

ticularly localised reconstructions based on limited data. A curious and unfortunate

aspect of CT in two-dimensions is that the reconstruction of a small portion of an ob-

ject via traditional filtered back projection (FBP) requires a complete set of projection

data, which leads to increased measurements. Mathematically, the problem with the

conventional FBP algorithm for local reconstruction is that the Hilbert transform in

the inversion process de-localises the local measurements (Holschneider 1991, Rashid-

Farrokhi et al. 1997). In traditional X-ray CT, the implication of this fact results in

greatly increased exposure of patients to harmful radiation. Within the context of tera-

hertz CT, the time required to make complete measurements can render the technique

impractical, or even inaccurate, due to measurement errors running away with laser

drift, for instance.

In order to overcome this problem, the Soviet scientists Vainberg et al. (1981) invented

Λ-tomography in the 1980s. Strictly speaking, Λ-tomography is not true local tomog-

raphy, for it only provides a transformed version of the underlying distribution. In

the pursuit of true local tomography, a wavelet technique was first proposed for the

assistance of mapping arbitrary distributions by Holschneider (1991), who laid the

mathematical foundation for subsequent work on wavelet localised tomography. In

1994, Olson and DeStefano (1994) carried out a one dimensional wavelet transform on

the sparsely sampled projections, and then the standard FBP algorithm was used to re-

cover a region of interest (ROI) via a group of detailed coefficients and another group

of approximate coefficients for the remaining image. Similar to the method adopted

by DeStefano and Olson, Delaney and Bresler used a two-dimensional (2D) wavelet

transform in the projection domain and FBP was utilized for reconstruction of the lo-

cal image from the wavelet-filtered projections (Delaney and Bresler 1995). Neither of

these approaches are genuinely localised, for they both relied on the measurements

from outside of the ROI. A truly local CT reconstruction using wavelet is introduced

by Rashid-Farrokhi et al. (1997), where 2D discrete wavelet ramp filters are applied to

the local projection and resulted in the local reconstruction of both high- and low- fre-

quency features of an image. Later, Zhao (1999) suggest an efficient subband coding al-

gorithm for wavelet based filtered back projection; and Madych (1999) reconstruct local

images via simple modification of traditional FBP algorithms and especially emphasize
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that continuous wavelet transforms facilitate good performance for high-resolution lo-

cal reconstruction. More recently, a couple of novel methods related to wavelet based

local reconstruction are conducted via investigating a set of modified one-dimensional

projections as a function of the space variable by Smith and Adhami (2000) and via

suggesting a well chosen analysis ‘wavelet’ by Bilgot et al. (2004).

The main goal of this Section is to present a wavelet based reconstruction algorithm

for terahertz computed tomography and to show how this algorithm can be used to

rapidly reconstruct the region of interest (ROI) with a reduction in the measurements

of terahertz responses, compared with a standard reconstruction. The current algo-

rithm provides new insight into the relationship between local reconstruction, local

projection, and the resolution of terahertz coherent tomography.

The current algorithm achieves the reconstructed approximate and detailed portions

of an image via conducting back projection on ramp filtered scaling and wavelet func-

tions. Compared to previous algorithms in THz CT (Ferguson et al. 2002a, Nguyen et al.

2006), the current reconstruction algorithm accelerates terahertz image scanning and

reduced computation complexity, as only a small number of projections on lines pass-

ing close to the ROI are required. Therefore, it is computationally more efficient. Uni-

form exposure is adopted at all angles for simpler implementation in the hardware

setup. Reconstruction ability at off-centered and centered regions of interest are also

explored.

This Chapter consists of several Sections. This imaging experiment is based on a tera-

hertz functional imaging system. Based on the basics of the wavelet transform, men-

tioned in Chapter 6, a full-data reconstruction technique based on the wavelet trans-

form is also involved, represented in Section 12.2. Following this, local tomographic

reconstruction algorithms via wavelet transforms are introduced in Section 12.3. Then

Section 12.4 discusses the implementation of this method, and in Section 12.5, the to-

mographic results are presented.

12.2 Two dimensional wavelet based CT reconstruction

This Section briefly describes an algorithm, which is applied to obtain the wavelet coef-

ficients of a function on R
2 space, based on Radon transform data. This method enables

reduced computation compared to the wavelet coefficients obtained, after conducting

wavelet transforms in a reconstructed image. Moreover, the wavelet coefficients are
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Figure 12.1. Wavelet ramp filters. (a) Illustration of a traditional ramp filter. (b) and (c)

Illustrate the scaling and wavelet ramp filters at the sixth projection angle (43.2 degree)

using BiorSplines 2.2 wavelet, respectively, (d) Block diagram of wavelet reconstruction

from projection data. The 2D inversion of the traditional wavelet transform (2D IDWT)

is conducted on the back projection of the approximate and detail sinograms, after

downsampling by a factor of 2 (indicated by down arrow) is performed.

calculated locally allowing the local reconstruction to yield local computed tomogra-

phy (Rashid-Farrokhi et al. 1997). The main formulae for 2D DWT, on projection data,

for the reconstruction of a CT image are introduced, which are implemented via per-

forming separate wavelet transforms on 1D projection data.

The filtered back projection algorithm for terahertz CT reconstruction is expressed as

follows:

I(x, y) =
∫ π

0
dθ ·

[

∫ ∞

−∞
S(θ, β)|β|G2j (β cos θ, β sin θ) exp(i2πβξ)dβ

]

(12.1)
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where S(θ, β) and G2j(β1, β2) are the spatial Fourier transforms of s(θ, ξ) and g2j (a

wavelet ramp filter in the time domain), respectively.

The function enables image reconstruction as the conventional inversion of the Radon

transform method, while the ramp filter |β| is replaced by the wavelet ramp filter

|β|G2j(β cos θ, β sin θ).

As for a separable wavelet basis, the approximate and detail coefficients have been

given in Eq. (6.49). We rewrite it here



































cj(k, l) = 〈 f (x, y), φj(k, l)〉
dH

j (k, l) = 〈 f (x, y), ψH
j (k, l)〉

dV
j (k, l) = 〈 f (x, y), ψV

j (k, l)〉
dD

j (k, l) = 〈 f (x, y), ψD
j (k, l)〉

(12.2)

where

φj(x, y) = φj(x)φj(y) (12.3)

ψH
j (x, y) = φj(x)ψj(y) (12.4)

ψV
j (x, y) = ψj(x)φj(y) (12.5)

ψD
j (x, y) = ψj(x)ψj(y) (12.6)

where φ and ψ are the one-dimensional scaling and wavelet functions, respectively.

These coefficients can be calculated from the projection data via the first integral item in

Eq. (12.1), replacing Gj(a, b) by Φj(a, b) = φ̂j(a)φ̂j(b), ΨH
j (a, b) = φ̂j(a)ψ̂j(b), ΨV

j (a, b) =

ψ̂2j(a)φ̂j(b), and ΨD
j (a, b) = ψ̂j(a)ψ̂j(b), respectively, where a = β cos θ, b = β sin θ, and

the caret sign indicates Fourier transforms of the relative functions. For instance, the

approximate coefficients are obtained by

cj(k, l) =
∫ π

0
dθ ·

[

∫ ∞

−∞
S(θ, β)|β|Φj (β cos θ, β sin θ) exp(i2πβξ)dβ

]

. (12.7)

The detail coefficients can be found in a similar way as follows:

di
j(k, l) =

∫ π

0
dθ ·

[

∫ ∞

−∞
S(θ, β)|β|Ψi

j(β cos θ, β sin θ) exp(i2πβξ)dβ

]

. (12.8)
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This means that the filtered back projection method can be applied to the wavelet trans-

form of the projections for image recovery, while the ramp filter is replaced by,


































HC
θ = |β|Φj(β cos θ, β sin θ) = |β|Φj(β cos θ)Φj(β sin θ)

HDH

θ = |β|Ψh
j (β cos θ, β sin θ) = |β|Φj(β cos θ)Ψj(β sin θ)

HDV

θ = |β|ΦV
j (β cos θ, β sin θ) = |β|Ψj(β cos θ)Φj(β sin θ)

HDD

θ = |β|Ψd
j (β cos θ, β sin θ) = |β|Ψj(β cos θ)Ψj(β sin θ)

(12.9)

where HC
θ and HDi

θ , (i = H, V, D) are called scaling and wavelet ramp filters. Fig. (12.1)

(b) and (c) illustrate the scaling and wavelet ramp filters at the sixth projection angle

(43.2 degrees) using the BioSplines2.2 biorthogonal wavelet.

For the current image reconstruction, only one 2D wavelet transform step is used.

This is because the single level decomposition of scaling and wavelet ramp filters al-

lows clear reconstruction of an image in the ROI and it avoids more computational

complexity due to more levels of WT employed (Delaney and Bresler 1995, Rashid-

Farrokhi et al. 1997). The wavelet reconstruction formulae in Eq. (12.1) allow for such

reconstruct by setting j = 1. Fig. (12.1)(d) shows the block diagram of the wavelet

based reconstruction system. The 2D inversion of the traditional wavelet transform

(IWT) is conducted after the back projection of reconstructed approximate and detail

sinograms.

12.3 Local reconstruction using wavelets

A characteristic of many wavelets is a large number of vanishing moments. Hilbert

transforms of functions with many vanishing moments have been shown to decay

very rapidly at infinity (Delaney and Bresler 1995). In other words, a wavelet func-

tion with compact support allows a local basis to maintain its localised features af-

ter Hilbert transformation (Delaney and Bresler 1995, Berenstein and Walnut 1994).

Fig. (12.1) (a)-(c) illustrates the ramp filter over the full frequency domain, the Bior-

Splines biorthogonal scaling and wavelet filters and the ramp filtered version of the

BiorSplines biorthogonal wavelet and scaling filters, where the x axis means the num-

ber of time or frequency samples, and y axis means the relative amplitude. Fig. (12.1)(c)

essentially shows the essentially compact support after applying Hilbert transforms.

Therefore, the wavelet and scaling coefficients for some wavelet basis can be calculated

after applying the projections passing through the region of interest plus a margin for
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the support of the wavelet and scaling ramp filters. These reconstructed coefficients,

in this experiment, are then directly applied to the inverse wavelet transforms for ter-

ahertz image reconstruction.

12.3.1 Error analysis

As the Hilbert transform is nonlocal, in order to recover an image in the local region of

interest, the nonlocal data that is outside the ROI have to be considered for an accurate

local reconstruction. An upper bound for the reconstruction error, denoted by ǫub can

be calculated and therefore the relative error ǫrel is used in this Thesis for evaluation of

the current reconstruction. The principle for error analysis (Rashid-Farrokhi et al. 1997)

is to consider the measured projections divided into two parts: one is for the region of

exposure and another is its complement. We consider the original measurement of

target image I(x, y) with a support centered at the origin and within a radius of 1 unit.

Based on the Cauchy-Schwartz inequality and the assumption: |sθk
| ≤ 2 max |I(x, y)|,

where the support of I(x, y) is within a radius of 1, |sθk
| is the projection at the kth

projection angle, the relative error ǫrel can be calculated via dividing the upper bound

of the reconstructed error ǫub by the maximum intensity of the support max |I(x, y)|.
The relative error calculated in the frequency domain satisfies the following equation:

I(x, y) =
2
√

2π

k

√
R − re

R

K

∑
k=1

(

R

∑
|n|=−R

|[H̄θk
(n) − H̄T

θk
(n)]|2

)1/2

(12.10)

where H̄θk
is the inverse Fourier transform of Hθk

and Hθk
can be replaced by the ramp

filter |β|.

The truncated filter HT
θk

is defined as

HT
θk

(n) =







Hθk
(n) if |n| < re − ri,

0 otherwise ,
(12.11)

here, re and ri are the radii corresponding to ROE and ROI, both of which are centered

at the origin of the image.
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The upper bound of the relative error in the reconstructed sinogram of scaling and

wavelet coefficients can be obtained by replacing Hθk
in Eq. (12.10) with in Eq. (12.9)

and multiplying by a normalizing factor. Eq. (12.12) represents the relative error in the

reconstructed image from approximate reconstruction coefficients,

|ǫrel(x, y)| = NIg,lC
· 2

√
2π

k

√
R − re

R

K

∑
k=1

(

R

∑
|n|=−R

|[H̄θk
(n) − H̄T

θk
(n)]|2

)1/2

(12.12)

where NIg,lC
is the normalised scale factor of an image in relation to approximate re-

construction coefficients, which is calculated via dividing maximum intensity of global

reconstruction, denoted by {Ir(x, y)}, by maximum intensity of local reconstruction re-

garding approximate wavelet coefficients, denoted by {IC
local(x, y)}. The scale factor is

defined as

NIg,lC
= max |Ir(x, y)|/ max |IC

local(x, y)|. (12.13)

In the current experiment, for convenience, the error calculation is limited to the error

of the approximate image reconstruction. For the calculation of relative error using the

whole version of the wavelet reconstructed image, please refer to Rashid-Farrokhi et al.

(1997) or Appendix C.

12.4 Implementation

12.4.1 Experiments

The current research based on terahertz imaging is most closely related to Rashid-

Farrokhi et al. (1997). In this work, we experiment with the 2D wavelet technique

using terahertz tomographic data by modifying the measured projections. As we show

later, this modification involves an extrapolation technique to avoid edge effects due to

sinogram truncation. It is observed that approximate coefficients of a scaling function

show good localised features in the local reconstruction using our algorithm, where the

reconstructed intensity of an image varies much between different target materials. It

should be noted that, in the application of terahertz data for local reconstruction, it is

found that the intensity at the edges of the region of exposure (ROE), where nonlocal
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Figure 12.2. Target object photographs. (a) An optical image of a target with 2 mm diameter

holes drilled into a polystyrene cylinder with varying interhole distances. (b) Target

object photograph with simple nested structure. The line indicates the measurement

height of 7 mm. After Ferguson et al. (2002b).

data are set to zero, varies considerably after conducting either a traditional ramp filter

or scaling and wavelet ramp filters.

In local reconstruction, artifacts are common close to the boundary of the ROE, which

can readily be observed in the application to terahertz CT data. It is possible that recon-

struction after applying a constant linear extrapolation results in missing information.

This situation is illustrated in Fig. 12.5. In this experiment, there are two sets of tera-

hertz data considered for reconstruction: a cylinder with holes inside—see the target

photo in Fig. 12.2(a)—and a nested structure of a tube inside a vial. For the first set

of terahertz data (the sample photo in Fig. 12.2(b)), with 101 projections at each of 25

projection angles covering a 180◦ projection area in a 100 × 100 pixel image. The line

in the photo indicates the measurement height of 7 mm. Two situations are analyzed

for this target sample: (i) an ROE of diameter 42 pixels at the center of the image and

(ii) an ROE of diameter 67 pixels offcenter to the image. For the second set of terahertz

measurements, with 51 projections at each of 36 projection angles covering a 360◦ pro-

jection area in a 100 × 100 pixel image, an ROE of diameter 18 pixels at the center of

the image is explored. Each of data set has a pixel interval of 0.5 mm.

In order to recover the cross-sectional image in the region of interest, the values of

the sinograms outside of the ROE are set to zero. The traditional filtered back projec-

tion formulae, Eq. (10.2), and wavelet based reconstruction, Eq. (12.1), are applied to

the remaining projections, respectively for analysis and comparison. The original ter-

ahertz sinogram image for the first set of terahertz data can be calculated via applying

Eq. (10.9).
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12.4 Implementation

Case study ♯ 1: Polystyrene target

We consider reconstruction at the center of the image, based on the first set of data. A

cross correlation between the reference and signal is used to get the time-domain mea-

surement aiming for the calculation of Radon transforms of terahertz data. Fig. 12.3(a)

and (b) shows the original calculated projection and the projection with zero outside

of ROE at the 25th projection angle. Fig. 12.3(c) shows sharp variations along the bor-

ders of the ROE after applying wavelet ramp filters and ramp filter, respectively, on

each of the 1D projections, which result in an image appearing relatively weakened in

intensity when compared to a large constant bias that exists along the reconstructed

edges in the region of interest. The constant extrapolation we use is given by Eq. (25)

in Rashid-Farrokhi et al. (1997). In order to fit our signals, we replace re with (re − ra)

to diminish the artificial effect along the edge of ROE, where ra is the radius of the

region of artifacts (ROA) centered at the origin. Let us assume that projections sθ are

known, the ROE is the subset of the projection with a disc radius of re centered at polar

coordinates (r, θ0). We can rewrite the function as follows:

(ROE − ROA) : {p : p ∈ [r cos(θ − θ0) − (re − ra) : r cos(θ − θ0) + (re − ra)]}. (12.14)

The constant extrapolation satisfies

(sθ)local(p) =



















sθ(p) if p ∈ (ROE-ROA),

sθ(r cos(θ − θ0) + (re − ra)) if p ∈ [r cos(θ − θ0) + (re − ra) : +∞],

sθ(r cos(θ − θ0) − (re − ra)) if p ∈ [−∞ : r cos(θ − θ0) − (re − ra)].

(12.15)

Fig. 12.3(d) shows the extrapolated projection at the 25th projection angle after the ap-

plication of a scaling ramp filters and a ramp filter. The extrapolated projection re-

moves spikes at the edge of the ROE. Fig. 12.3(e) and (f) shows the resultant sinograms

after performing a scaling ramp filter and a ramp filter, respectively. The intensity

variation in the two different filtered versions of sinograms is clearly seen.

It should be noted that there are phase shifts observed in Fig. 12.2(c) and (d) and

Fig. 12.3(b) and (c), which are caused by the convolution of the ramp filter with the

wavelet/scaling filter(s). However, since the wavelet and scaling filters are designed

to satisfy the perfect reconstruction property, these shifts cancel out when the inverse

2D DWT is applied to yield the overall CT reconstruction.
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However, according to the following local resultant reconstruction examples, it is ob-

served that an approximate image has better resultant reconstruction than using in-

versed wavelet reconstructed subimages, in the current algorithm related to wavelet

based reconstruction. Consequently we only consider the approximate image recon-

struction to evaluate the algorithm validation. As we mainly deliver local information

for the back projection, the wavelet and scaling ramp filters show essentially same

support. But we have to recognise that having a scaling-only reconstruction means we

theoretically lose some accuracy in locating any edges.

The local CT algorithm is also used for the reconstruction of the off-center region. The

extrapolation algorithm is suitable for the reconstruction of the off-center region of in-

terest. In this example, one portion of the sinogram with 1/3 of all the projections is

truncated for recovery of an image within the ROI and the extrapolated filtered projec-

tions occur along only one edge of the ROE, where nonlocal data are set to zero.

Fig. 12.4(a) and (b) shows projection profiles at the 25th projection angle in the off-

center area, before and after extrapolated projection, with the application of a scaling

ramp filter and a ramp filter, respectively. It can be seen that the spikes at the edge

of the ROE have been removed. Fig. 12.4(c) and (d) show the resultant sinograms

corresponding to wavelet ramp filters and ramp filters at the off-centered region of

interest.

Case study ♯ 2: Plastic vial target

A second experiment is performed on a simple sample with a nested structure, a tube

inserted in a vial. The measured data are Fourier transformed and the phase of the

Fourier domain responses is used to reconstruct the sample. Eq. (12.1) is used to recon-

struct a local image using a scaling ramp filter, with G2j being multiplied by a shape

scaling factor λ. This shape factor is used to smooth wavelet ramp filtered cropped

sinograms. The Eq. (12.1) can be rewritten as,

I(x, y) =
∫ π

0
dθ ·

[

∫ ∞

−∞
ŝ(θ, β)|β|ĝ2j [β(cos θ · λ), β(sin θ · λ)]exp[i2πβξ]dβ

]

.
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Figure 12.3. Wavelet based ramp filtered projections with extrapolation. (a) A sample

projection with a polystyrene cylinder phantom with varying interhole distances. (b)

Projection when nonlocal data are set to zero. (c) Projection filtered by a scaling ramp

filter and a traditional ramp filter, respectively. (d) Projection extrapolation outside the

ROI after filtered projections. (e) The resultant sinograms after scaling ramp filtered

projections. (f) The resultant sinograms after ramp filtered projections.
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Figure 12.4. Projection in the off-center area. (a) Projection in the off-center area, when nonlo-

cal data are set to zero. (b) Projection in the off-center area, filtered by a scaling ramp

filter and a traditional ramp filter, respectively. (c) Projection of the off-center area

extrapolated outside the ROI after filtered projections. (d) The resultant sinograms at

the off-center area after scaling ramp filtered projections. (e) The resultant sinograms

at the off-center area after ramp filtered projections.

Fig. 12.5(a) shows the wavelet ramp filtered projection at the first sampled frequency

before a shape scaling factor is applied, where a large ‘S’ shape scaling ramp filtered

projection is observed. Fig. 12.5(b) shows and almost flat border along the projection

after applying a shape scaling factor of 1/3.
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Figure 12.5. Wavelet based ramp filtered projections after applying a shape scaling factor of

1/3. (a) Scaling ramp filtered projection before a shape scaling factor is applied. (b)

Scaling wavelet ramp filtered projection after a shape scaling factor of 1/3 is applied.

(c) Illustration of the resultant sinogram via extrapolation of scaling wavelet ramp

filtered projection.
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In this example, illustrated in Fig. 12.5(b), the boundaries of the sinogram are two

slowly ascend lines from left to right. Let us assume that the region of artifacts consists

of two parts: ROA1 and ROA2 with the radii of ra1 and ra2, and with the projection

angles of θ1 ∈ [0 : θa1] and θ2 ∈ [0 : θa2], respectively, in an image. To overcome the

problem of edge discontinuities, truncated regions in the sinogram are extrapolated

with a constant value, in the manner described by Eq. (12.16). Fig. 12.5(c) shows the

resultant sinogram via extrapolation of the scaling wavelet ramp filtered projection,

with the same number of the projections at each projection angles being kept for con-

venience in calculation of reconstructed image:

sθ local(p) =















































































































sθ(p), if p ∈ (ROE-ROA1), and θ ∈ [0 : θa1]

sθ(p), if p ∈ (ROE-ROA2), and θ ∈ (θa1 : θa2]

sθ(r cos(θ − θ0) + (re − ra1)), if p ∈ [r cos(θ − θ0) + (re − ra1) : +∞],

and θ ∈ [0 : θa1]

sθ(r cos(θ − θ0) + (re − ra2)), if p ∈ [r cos(θ − θ0) + (re − ra2) : +∞],

and θ ∈ (θa1 : θa2]

sθ(r cos(θ − θ0) − (re − ra1)), if p ∈ [−∞ : r cos(θ − θ0) − (re − ra1)],

θ ∈ [0 : θa1]

sθ(r cos(θ − θ0) − (re − ra2)), if p ∈ [−∞ : r cos(θ − θ0) − (re − ra2)],

θ ∈ (θa1 : θa2].

(12.16)

12.4.2 Algorithm summary

The wavelet based reconstruction algorithm assumes an image support of radius R,

and the radius of the ROI is ri. A radius re = ri + ra is exposed, where ra is the extra

margin with related to radius of ROA, which is produced by applying wavelet filters

on the project data. The algorithm is summarized as follows:

1. The original projections are calculated from time or frequency parameters from

terahertz measurements.

2. The region of exposure is truncated for the reconstruction of an image in the

region of interest.
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3. The region of exposure of each projection is filtered by modified wavelet filters at

all projection angles. This step is to recover an image related to wavelet detailed

coefficients.

4. The region of exposure of each projection is filtered by modified scaling filter

at all projection angles, which will lead to the recovery of the approximation

sub-image. A shape factor λ is used to adjust the shape of sinogram in order to

smooth the sinogram images.

5. The projections from Step 4 are extrapolated with tuning parameters to limit ar-

tifacts at the boundaries of the projections.

6. Filtered projections obtained in Step 3 and Step 4 are back projected to every

other point to obtain the approximate and detail at the higher resolution. The

remaining points are set to zero.

7. The image is reconstructed from the wavelet and scaling coefficients via a con-

ventional inverse 2D DWT.

12.5 Reconstruction results

12.5.1 Case study ♯ 1: Polystyrene target

A 83 × 83 pixel image of the polystyrene target is recovered from the wavelet and

scaling coefficients using global data, shown in Fig. 12.6(a), with interpolation in the

inverse wavelet transform for clarity and comparison. Each measured terahertz pulse

is a function of time with 401 samples at uniform time intervals of 0.067 ps. The time

domain signals from the sample and reference pulses are truncated at the second sam-

pled time step and applied for reconstruction. Wavelet and scaling coefficients after

back projection are shown in Fig. 12.6(b), where the BioSpline2.2 biorthogonal basis

is used. The quality of the reconstructed image is, as expected, almost indistinguish-

able from the reconstruction using traditional filtered back projection (FBP), shown in

Fig. 12.6(c), with interpolation for an equal sized image as for wavelet based recon-

struction. The differences between the wavelet based reconstruction and traditional

filtered back projection are evaluated using the reconstructed profiles at the 40th hor-

izontal row of pixels and 40th vertical column of pixels, illustrated in Fig. 12.6(d) and
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(e), where it is not difficult to see minor variations in detected hole positions using

wavelet version of reconstruction (dash line) compared to traditional FBP algorithm

(dash dot line).
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Figure 12.6. Wavelet and scaling ramp filtering of sinograms towards the polystyrene target.

(a) A 83 × 83 pixel image of the polystyrene target is recovered from the wavelet and

scaling coefficients using global data with interpolation for smoothness. This resul-

tant reconstruction has the similar reconstruction quality to traditional back projection

algorithm. (b) Wavelet and scaling coefficients after back projection. (c) A 83 × 83

pixel image of the polystyrene is reconstructed using traditional filtered back projection

with interpolation for smoothness. (d) Reconstructed profiles at the 40th horizontal

pixel row. (e) Reconstructed profiles at the 40th vertical pixels column.

Fig. 12.7 shows reconstructed images centered at a radius of 16 pixels using the local

reconstruction method outlined in subsection 12.4.2 and the traditional FBP algorithm.

Each reconstruction is evaluated on a 100 × 100 pixel image. Fig. 12.7(a) shows the

truncated projections with 46% of full data. Fig. 12.7(b) is the local reconstruction af-

ter extrapolation from wavelet and scaling filtered projection, with downsampling.

Fig. 12.7(c) shows four subimages reconstructed from wavelet and scaling coefficients
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46% truncated projection
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Scaling ramp filtered LCT in ROI
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Figure 12.7. Reconstruction results of the polystyrene target with 46% of full data at cen-

tered area. (a) Illustration of the truncated projections with 46% of full data

(b) Reconstructed image localised to a region of interest from the inverse wavelet

transform. (c) Centered approximate and three detail reconstruction subimages along

clockwise direction. (d) Cropped version of approximate subimage in (c). (e) and (f)

A cropped reconstruction using traditional filtered back projection on local data and

global data, respectively. (g) Reconstructed profiles at the 12th horizontal pixel row.

(h) Reconstructed profiles at the 12th vertical pixel column.
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after constant extrapolation and BP. The corresponding truncated version of the ROI

is illustrated in Fig. 12.7(d), with a relative reconstruction error of 26% using our al-

gorithm. A local reconstruction of the ROI using FBP is achieved in Fig. 12.7(e) for

comparison, which results in a bigger relative error, proportional to the wavelet based

error calculation. Fig. 12.7(f) is a truncated version of FBP based global CT. Fig. 12.7(g)

and (h) shows the reconstruction profiles at the 12th horizontal row and vertical col-

umn of pixels corresponding to each reconstruction. As illustrated in Fig. 12.7(g) and

(h), the profile taken from the image reconstruction specific to wavelet scaling subim-

age shows obvious contrast in reconstructed intensity for different media relative to

the remaining profiles from their reconstructed images.

Fig. 12.8(a)-(f) shows reconstructed images at an off-center area with a radius of 61 pix-

els using the current local reconstruction method and the traditional FBP algorithm.

Each of the subfigures illustrates, for comparison, 33% of full projection data; local re-

construction from extrapolated wavelet and scaling filtered projection after decompo-

sition; the reconstruction of extrapolated approximate and detail coefficients after BP,

with a reconstruction error at the off-center ROI of 24%; traditional local and global re-

construction in ROI; the reconstruction profiles at the 28th horizontal row of pixels and

the 12th vertical column of pixels are illustrated in Fig. 12.8(g) and (h), both of which

correspond to the reconstructions from approximate wavelet coefficients, FBP based

local and global recovery in the ROI. The reconstruction from wavelet approximate

coefficients shows strong contrast in intensity for different media and FBP based local

reconstruction shows a little higher intensity than FBP based global reconstruction.

According to the analysis mentioned above and the illustrations in Fig. 12.7(g) and

(h) and Fig. 12.8(g) and (h), it is reasonable to apply a wavelet approximate subimage

for the analysis of wavelet based LCT. On the one hand, because the filtered wavelets

have essentially the same support, we need only local information to perform the back

projection. On the other hand, it is a fact that a sharply, peaked scaling function may be

very good at isolating small scale image features, such as high-frequency system noise,

faint scattering and absorption around bright image features. It has been observed in

these reconstructed images via wavelets.
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Figure 12.8. Reconstruction results of the polystyrene target with 33% of full data at off-

centered area. (a) Illustration of the truncated projections with 33% of full data

(b) A locally reconstructed image from the inverse wavelet transform. (c) Off-centered

approximate and three detail reconstructed subimages along clockwise direction. (d)

Cropped version of approximate subimage in (c). (e) A cropped of FBP based local

reconstruction. (f) A truncated version of FBP based global reconstruction. (g)

Reconstructed profiles at the 28th horizontal row of pixels. (h) Reconstructed profiles

at the 12th vertical column of pixels.
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12.5.2 Case study ♯ 2: Plastic vial target

The nested structure of a tube inside a PET vial is imaged on a 100 × 100 grid. Its re-

construction from the wavelet and scaling coefficients using global data is shown in

Fig. 12.9(a). The ten images span the sampled frequency scope from ten lowest fre-

quencies, from 0.0213 THz to 0.213 THz. Again, the BioSpline2.2 biorthogonal basis is

used. The quality of the reconstructed image is similar to using traditional filtered back

projection (FBP), shown in Fig. 12.9(b), with a little increased recovered image inten-

sity in the reconstructed subimages and a little discontinuity in the third reconstructed

subimage compared to the traditional FBP algorithm.

Fig. 12.9(c) and (d) shows reconstructed images after extrapolation, evaluated on a

100 × 100 grid, at a center area with a disk radius of 6 pixels using the current local

reconstruction method and the traditional FBP algorithm. They are enlarged for clar-

ity. Each of the reconstructed subimages is illustrated, from 0.0213 THz to 0.213 THz,

relatively, with 59% of full projection data. The 59% of full projections is shown in

Fig. 12.9(e) at the 6th sampled frequency. The local reconstruction in the ROI from ex-

trapolated wavelet and scaling filtered projection is shown in Fig. 12.9(c). Fig. 12.9(d)

is the corresponding local reconstructions using FBP algorithm. The noise is reduced

in wavelet based reconstructed images at the first two frequencies of 0.0213 THz and

0.0426 THz. It is valuable in the exploration of biomedical images using terahertz

data. The wavelet approximate and detailed coefficients after BP at the 7th sampled

frequency is illustrated in Fig. 12.9(f), with a relative error of 29% from the approxi-

mate reconstruction.

12.6 Future work

Since the current work involves only the one level of 2D DWT, it will be interesting

to explore the reconstruction algorithm with more levels of decomposition. More-

over, a research area of much current interest is the development of statistical based

local tomography algorithm and techniques (Kolehmainen et al. 2003, Hanson and

Wecksung 1983). It aims towards the actual localised reconstruction with relation to

the terahertz measurement. The wavelet technique is useful for local reconstruction,

and the relative wavelet transform coefficients can be thresholded to reduce the com-

putation complexity (Meyer-Base 2003). In addition, the current resultant experiment
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Figure 12.9. Reconstruction results of a vial slice from the nested structure. (a) Illustration

of a 100 × 100 pixel global image of the tube inside a vial, with frequency range from

0.0213 THz to 0.213 THz. It is recovered from the wavelet and scaling coefficients,

after decomposition. (b) FBP based reconstruction from global measurement with

size of 100 × 100 pixels and the same frequency range of (a). (c) Corresponding

reconstruction FBP algorithm using local projection data. (d) A reconstructed image of

the tube from the inverse wavelet transform after decompostion. (e) Illustration of the

truncated projections with 59% of full data. (f) Approximate and detail reconstruction

coefficients after BP using local projection data.
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relies on the fact that the Hilbert transform (part of the inverse RT) does not really

change the compact support of scaling and wavelet functions.

12.7 Chapter summary

We have developed an algorithm to reconstruct the wavelet and scaling coefficients

of a function from its Radon transform of terahertz signals. Based on the observation

that for some wavelet bases, with sufficient zero moments, the scaling and wavelet

functions have essentially the same support after ramp filtering. An upper bound

for the local reconstruction error is obtained in terms of the amount of nonlocal data,

which is used in the reconstruction scheme. Two targets are recovered from terahertz

measurements, which demonstrates the current local reconstruction methods using a

wavelet based transform scheme.

The next Chapter extends the application of 2D wavelet based local reconstruction

to a 3D space, with the use of a narrow THz source, a THz quantum cascade laser

emitting at 2.9 THz. The continuous wave (CW) THz QCL is experimentally illus-

trated in the next Chapter, further illustrating the application of wavelet transforms

for THz computed tomographic reconstruction. The resultant segments from the local

reconstructed images are compared with the ground truth to explore the ability of a

QCL to image target object, polystyrene, with complex contours. It is an evidence that

local computed tomography via wavelets is suitable for the image reconstruction in

terahertz frequency range, which results in lower misclassification after segmentation,

than with traditional FBP algorithms.
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Chapter 13

Local CT Using a THz QCL

W
E study the local reconstruction of a region-of-interest

(ROI) from a 3D terahertz data set, obtained via a quan-

tum cascade laser (QCL). Difficulties with the limited pro-

jection angles and image noise make the development of accurate local re-

construction algorithms particularly challenging.

Segmentation algorithms are applied on the reconstructed images with low

contrast. The resultant segments from the local reconstructed images are

compared with the ground truth to explore the ability of a QCL to image

a polystyrene target object, polystyrene, with complex contours. In this

Chapter, we use a polystyrene clown’s head with a hole inside as a target.

It is found that 3D local reconstructions of the target (hole) using a QCL

take on a number of different shapes since the various contours of the tar-

get physically distort the measured optical parameters of the object. Local

computed tomography via wavelets is found to be more suitable for the im-

age reconstruction in terahertz frequency range in the case of lower image

quality. The wavelet based scheme was able to produce a lower misclassifi-

cation rate than the FBP-based algorithms.
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13.1 Introduction

The potential of high power THz QCLs for biomedical imaging and security detec-

tion is significant (Kim et al. 2004). Terahertz imaging either depends on terahertz

pulsed imaging (TPI) or continuous wave (CW) terahertz imaging. Time-domain TPI

has the advantage of providing a broad frequency spectrum, and resolving the ar-

rival of the photons as a function of time at different locations around the specimen

boundary. In contrast with THz pulsed imaging, QCLs afford high average power

sources of continuous wave (CW) radiation to achieve deeper penetration of samples,

which has been identified as one of the principal challenges for terahertz tomography

(Zhang et al. 2004). The CW terahertz imaging methods have the difficulty of resolv-

ing target material absorption from scattering (Ntziachristos et al. 2005). We have to

recognize that there are still challenges for QCLs to reach higher operating tempera-

tures and high signal-to-noise ratio (SNR), nevertheless, several tens of milliwatt peak

terahertz powers (Barbieri et al. 2004) and a few tens dB of SNR can already be very

useful for biomedical imaging and other applications. Meanwhile, QCLs retain coher-

ent detection properties. The Thesis aims to investigate the scattering of terahertz CW

radiation with a QCL via applying proposed reconstruction algorithms to the sample

with complex contours.

Quantum cascade lasers (QCLs) are semiconductor injection lasers, based on quantum

semiconductor structures that are grown by molecular beam epitaxy and designed by

band structure engineering (Faist et al. 1994). Quantum cascade lasers, in principle, are

realised via intersubband transitions in a multiple-quantum-well (MQW) heterostruc-

ture (Gmachl et al. 2001, Tonouchi 2007). In contrast to the conventional diode laser,

QCLs only involve electron transitions that occur between the conduction bands (in-

tersubband) instead of from the conduction band into the valence band (Köhler et al.

2001). As a result, the emission wavelength can be controlled by the thickness of the

MQW, and the intrinsic high-power capabilities of the lasers make possible the cascad-

ing process, in which each electron generates several tens of photons in superlattice

structures (Tredicucci et al. 2005). In addition, intersubband transitions are character-

ized through ultrafast carrier dynamics and band-structure engineering is available to

successfully control the electron flow and thus increases population inversion, which

ultimately controls the laser threshold (Gmachl et al. 2001, Ozyuzer et al. 2007).

Terahertz QCLs were first reported only recently (Köhler et al. 2001). This is because

an insuperable barrier exists in the phonon reststrahlen band (in the thermal infrared
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region, refers to strong polar phonon absorption of energy), which causes difficulty in

the generation of lower terahertz frequencies. Moreover, the development of a suit-

able waveguide (Sirtori et al. 1998a) is necessary to confine the long wavelength T-rays

to an epilayer with low absorption losses by applying molecular beam epitaxy tech-

nology (Tredicucci et al. 2005). New design concepts have led to continuous-wave

operation and high output powers (Rochat et al. 2002). Recently, terahertz quantum

cascade lasers have made rapid progress. Examples range from chirped superlattices

(Köhler et al. 2002a) to the surface plasmon concept (Köhler et al. 2002b) employed

for large optical confinement without imposing high propagation losses. Recently, the

technique of bound-to-continuum transitions and extraction of carriers via resonant

phonon scattering (Williams et al. 2003) has been used more frequently. In addition,

progress concerning terahertz single-mode operation and frequency extension has also

been reported (Tredicucci et al. 2005).

It should be emphasized that unlike X-ray imaging, which realises parallel scanning

using multiple point detection, point-to-point detection is the fundamental scheme of

terahertz scanning, though it is non-ionising compared to X-ray imaging. The main

goal of this Chapter is to present a wavelet based reconstruction algorithm and a

standard reconstruction techniques for terahertz computed tomography using a QCL

imaging system and to show how this algorithm can be used to rapidly reconstruct the

region of interest (ROI) with a reduction in the measurements of terahertz responses.

Recall from Chapter 1 (pp. 6-7) that the rationale for using wavelets in the context of

a CW system, is that we are performing local tomographic reconstruction, here, where

we take advantage of wavelet localization to enable zooming into locally reconstructed

features. We illustrate the filtered sinograms and reconstructed images in the region

of interests at four different measurement heights, using a clown’s head with a hole

inside as the target. The error is calculated via comparing segmentation of image re-

construction using FBP algorithms and wavelet based algorithms with the segments

from the ground truth, respectively. The resultant segments are evaluated by calculat-

ing the slope of each two centroids at two different slices. The results show that wavelet

based LCT has relative lower error in segmentation than FBP based LCT, and even bet-

ter than global computed tomography (GCT) using FBP algorithms, though there is a

slightly changed linear structure of the target using wavelet based local tomography

compared to FBP based global CT and local CT. Our results also show varying degrees

of optical distortion due to light scattering resulting from these various contours of the
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different slices within the specimen. Meanwhile, the current reconstruction is proof-

of-concept that it is necessary to develop a terahertz pulsed quantum cascade laser

(McManus et al. 2005)—high resolution laser spectroscopic techniques—for image re-

covery.

13.2 A T-ray quantum cascade laser
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Figure 13.1. Terahertz quantum cascade laser setup. (a) Experimental apparatus for a tera-

hertz QCL imaging system that is used to realise terahertz CT imaging. In practice,

the sample is placed on a rotational stage for multiple view angles, which is mounted

on a x-y-z linear stage to perform 3D scanning. (b) The photograph of a part of the

terahertz QCL imaging system. The numbers in the text-boxes from 1 to 5 indicate,

respectively, a QCL that is mounted on the cold finger of a continuous-flow helium-

cooled cryostat, a pair of parabolic mirrors, the rotational stage mounted on an x-z

translational stage, a Golay cell detector, and a detector controller.

As a visiting scholar, the author accessed the QCL setup described herein at the Univer-

sity of Cambridge. A schematic diagram of the current quantum cascade laser imag-

ing apparatus is illustrated in Fig. 13.1(a). The pulse generator supplies pulses at a

frequency of 80 kHz to the QCL. The output signal from the pulse generator is usually

gated with a 15 Hz, 50% duty cycle slow modulation by an electronic chopper (a func-

tion generator of pulses) to match the detector (the Golay cell) response time, and to

afford a reference frequency to the lock-in amplifier (LIA). The LIA is used to digitise

signals and to significantly improve the signal-to-noise ratio by setting a time constant,
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over which the input signal is integrated for each data point. The optimal time constant

is set to 50 ms and a threshold current density is set as 112 A/cm2.

The current terahertz QCL is a GaAs-AlGaAs bound-to-continuum superlattice design,

emitting at 2.9 THz (103 µm), and grown by molecular beam epitaxy (Barbieri et al.

2004). This device typically operates up to 95 K in pulse mode and delivering 70 mW

per facet peak power. The QCL is mounted on the cold finger of a continuous-flow

helium-cooled cryostat maintaining a heat-sink temperature of 4.2 K. The emission is

collected with a 2′′ f/1 off-axis parabolic mirror, then focused by a 2′′ f/6.43 parabolic

mirror onto the sample. The sample is mounted on a rotational stage, which is itself

mounted on a translational stage. This current terahertz imaging setup achieves point

to point detection. A linearly moving stage, labelled by x axis, enables parallel scan-

ning with linear velocity of 20 mm/s and a rotating stage, labelled by θ, allows pro-

jections of an object to be taken at a number of projection angles with a rotary velocity

of 4 degree/s. Another axis, labelled by y, is perpendicular to x axis, for a transform

of two sets of coordinates and image reconstructions. To perform a full 3D imaging,

another translational stage, labelled by z axis, allows the sample to move vertically in

order to obtain images of cross sections at various heights. The transmitted beams are

detected by a Golay cell. The power incident on the sample, including the effects of

the transmission of the cryostat window, is typically ∼35 mW (peak). The signal-to-

noise ratio in the absence of a sample in the beam is 20 dB (Nguyen et al. 2006). The

photograph of a part of the terahertz QCL imaging system is shown in Fig. 13.1(b).

13.3 Implementation

13.3.1 Experimental Considerations

The THz local reconstruction is an extended projection according to the resultant exper-

iment conducted by Nguyen et al. (2006). In this experiment, one set of terahertz QCL

intensity data is considered for Local Computed Tomography (LCT): a nested structure

of a polystyrene clown’s head with a hole inside, see the target photo in Fig. 13.2(a)

and (b). The target sample is imaged in 12 slices, from bottom to top at twelve differ-

ent heights, 5 mm apart. The diameter of the hole is 10.1 ± 0.2 mm, measured directly

from the target. For the local reconstruction, only the second to the fifth image slices

are considered with the hole going through at a tilted angle of 43◦ to the vertical. The

center of the hole at the first slice is also centered at the bottom cross-section. The first
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(a)

60mm

hole

(b) (c)

Figure 13.2. Photographs and image reconstruction of a clown’s head with a hole inside.

(a) The photograph of a nested structure of a clown’s head with a hole inside. (b)

The photography of the side face of the clown’s head. (c) The reconstructed slices

are stacked to recover the nested structure of the target object with a hole inside

(Nguyen et al. 2006). The lines in (a) and (b) indicate the current four sliced heights

for LCT in the hole area of interest.

three target layers (from the second to the fourth image slice), labelled Slices 1 to 3, are

imaged using 289 projections at each of 18 projection angles covering a 180◦ projection

area to produce a 250 × 250 pixel image (edge truncated), while the fifth slice (Slice 4)

is imaged using 268 projections at the same 18 projection angles. Fig. 13.2(c) shows the

reconstructed slices, which are stacked to recover the nested structure of the target ob-

ject, where the lines indicate that four sliced heights which are used for the exploration

of the current local reconstruction of the hole geometry.

13.3.2 Error analysis

In order to test the performance of the local imaging system, only binary grey-level

images are used via segmentation techniques, after back projection processes, includ-

ing (1) a truncated version of global CT via FBP, (2) LCT via wavelet transforms, and

(3) LCT via FBP, are carried out in the region of interest. The pixel count difference

is calculated between the ground truth and each of the resultant segments at four dif-

ferent measurement heights. The error ratio is regarded as the difference divided by
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the total number of pixels of the binary grey-level image from the target sample. For

further validation of our segmentation scheme, slopes computed from the centroids of

the segments at two different slices are used to compute the error of our reconstruc-

tion, by comparing with the true slope of the linear 3D (hole) structure. It is noticed

that, as the material of the target phantom is expanded Styrofoam, the surface of the

walls inside the hole is rough. But we consider that, since the roughness is uniform,

compared to the variety of the complex contours, the effect caused by the roughness

on reconstructed segments can be ignored.

Characteristics of the hole image

A typical local reconstruction, containing a single hole, is shown in Fig. 6(a). The

intensity histogram of the relative image is depicted in Fig. 6(b).
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Figure 13.3. Illustration of a typical local reconstruction. (a) Illustration of a typical local

reconstruction of a region of the target sample containing a single hole. (b) The

intensity histogram of the relative image of (a) is depicted.

The typical local reconstruction concerns a single hole through the sample. There are

several notable characteristics of this image, which are common to local reconstructions

of the hole embedded in a 3D target at the different slices by different image recon-

struction algorithms. Firstly, the contrast of intensities between the hole, the clown’s

head slice (object) and background is low. This is evident from the intensity histogram

in Fig. 13.3(b). However, the average intensity of the object and background is often

roughly uniform, separately, with a slightly darker region for the hole embedded on
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Figure 13.4. Segmented image via fuzzy c-means thresholding. Illustration of the result of

applying two calculated thresholds via the fuzzy c-means thresholding method on the

image of Fig. 13.3(a). (a) The image between the object region and background,

achieved via using one of the two calculated thresholds. (b) The segmented image

achieved via using the other threshold.

target across-section. Secondly, it is observed that the hole embedded in the target

physically distort the measured optical parameters of the target medium that are used

to reconstruct tomographic images correctly. The extent of shape distortion of a target

media of interest on measured intensity depends on the slice contour and hole distance

from the target boundary at each different measurement height. The varying exterior

boundaries of the different slices result in varying degrees of optical distortion due to

light scattering. In addition, a longer path length from the hole center position at each

slice to the laser results in larger absorption. The 3D local reconstruction of the hole

target takes on a number of different shapes in the different slices. As a result, the

boundary of the hole is potentially difficult to define. Due to variations in intensity,

both within the hole position and in the background, portions of the hole appear to

blend directly into the background, without creating a distinct boundary.

Segmentation strategy

The aim of segmentation is to separate an image into different meaningful regions, by

identifying the regions in an image with common properties and distinguishing dis-

similar regions (Levine 1985). A popular segmentation scheme is image thresholding
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Figure 13.5. A cropped sinogram image. Illustration of the truncated projections with 79% of

full data at the center area of interest.

(Haralick and Shapiro 1985, Gonzalez and Woods 2002), which can be regarded as a

form of per-pixel classification. Grey-level intensity is used as a feature value to char-

acterise each pixel of an image. The calculated threshold is compared with the feature

value in order to map the pixel onto one of two groups, object and background regions.

In this work, two threshold levels are used to segment the entire image, as the re-

covered image, e.g. Fig. 13.3(a), shows a gradual change in intensity from the three

regions: the hole, the clown’s head cross-section, and the background. Since separa-

tion of different clusters is not well-defined, with dependence on the local grey value

distribution, a fuzzy c-means technique is applied in this work, the selected set of fea-

ture vectors are strictly local in nature, that is, they depend on the 8-neighborhood of

the pixel concerned. Compared to traditional Otsu’s thresholding, the fuzzy c-means

(FCM) method is effective for automatically computing two or more optimal segmenta-

tion thresholds, and for achieving the separation of underlying distributions. A fuzzy

c-means threshold provides an iterative measurement to minimize the classification

error allowing each pixel to be the member of all the possible classes with varying

degrees of membership.

According to (Mukherjee et al. 1996, Chuang et al. 2006), the FCM algorithm assigns

pixels to each category by using fuzzy memberships. Let X = (x1, x2, ..., xN) denote an

image with N pixels to be partitioned into c clusters. The algorithm minimizes the cost

function iteratively to find the best location for each of the clusters. The cost function
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satisfies a least-squared error criterion

J =
N

∑
j=1

c

∑
i=1

um
i,j||xj − vi||2 (13.1)

where ui,j represents the membership of pixel xj in the ith cluster; vi, whose number of

components depends on the number of feature vectors (Mukherjee et al. 1996), is the

cluster center of ith class of fuzzy c-partitions, also called seed point for the particular

class. The results of the calculated error or cost function are updated in every iteration

according to ui,j and the distance ||xj − vi||. This continues till the cluster centers be-

come stable without significant difference between cluster centers in two consecutive

iterations. The weighting exponent m is a constant with m equal to or bigger than 1,

which controls the fuzziness of the resulting partition. The exponent of ui,j equal to

2 and maximum number of iterations equal to 100 are studied. The cost function is

minimized when pixels close to the centroid of their clusters and are assigned high

membership values, and vice versa. The membership function represents the probabil-

ity that a pixel belongs to a specific cluster. In the FCM algorithm, the probability is

determined by the distance between the pixel and each individual cluster center in the

feature domain. The membership functions and cluster centers are updated according

to the following:

ui,j =
1

∑
c
k=1(

||xj−vi||
||xj−vk||)

2/(m−1)
(13.2)

and

vi =
∑

N
j=1 um

i,jxj

∑
N
j=1 um

i,j

. (13.3)

The iterative procedures of FCM start from an arbitrarily assigned initial cluster center

vi, which leads to a solution that FCM converges to. For this experiment, we select

a 3-class fuzzy c-means clustering to simplify the program process, therefore, there is

no convergence involved. Fig. 13.4(a) and (b) are the resultant segments between the

hole region and the region of object (including background), as well as the segments

between object region and background, using two different calculated thresholds, sep-

arately. In practice, it is found that the threshold calculated via FCM results in loss of

pixels in the hole region. We adjust the resultant threshold based on the ground truth

to achieve the least error in the number of pixels between the resultant segment and

the ground truth. In this work, since we only consider a local segment of the hole re-

gion, we focus on thresholding just for the hole, which is followed by post-processing
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to clean up the segmented region. For convenience, in the following, we call the region

of object adjoined to background as generalised background.
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Wavelet Based Tomography
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Figure 13.6. Resultant local reconstructions at Slice 1. Illustration of the resultant local re-

construction at Slice 1. (a) Reconstructed image is localised to a region of interest

from the scaling function after constant extrapolation. (b) Cropped version of approx-

imate subimage in (a). (c) Reconstructed image is localised to a region of interest

via traditional FBP. (d) Cropped version of (c). (e) Centered approximate and three

detail subimages for reconstruction along clockwise direction. (f) Reconstructed im-

age is localised to a region of interest from the 2D inverse wavelet transform with

interpolation.

Generally, thresholding an image can incur two kinds of noise: background pixels mis-

classified as a hole pixel, which produce small disjoint hole components in addition to

the hole region, and hole pixels misclassified as the background, which produce gaps

in the hole region of interest, see Fig. 13.4(b). Misclassification of either target sample

of interest or background pixels near the hole boundary can also produce an extremely

coarse boundary. In order to obtain the boundary representation of the hole region,

region-based segmentation operations and morphological operations (Gonzalez and

Woods 2002) are combined to repair the gaps in the hole region of interest and im-

prove the smoothing of boundaries. This approach aims to apply region growing on
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Figure 13.7. Plot of the measured ground truth. The ground truth is computed from the

physical measurements of the target and using the planar projection of the tubular

hole structure—ellipses with semimajor axes of 13.2 ± 0.6 mm and semiminor axes of

10 ± 0.8 mm along with the rotation angle of 8 ± 2◦.

a typical local reconstruction, which is represented as follows. Eight neighbor pixels

are used as seed pixels. There are four starting points from four sets of seed pixels,

which are applied for segmentation. Those starting points are positioned at the central

point of the LCT in ROI or the point around the center. The four sets of seed pixels

move from pixel to pixel along four quadrants of the coordinates, separately, starting

from the four starting points. Predefined criteria are selected depending on the broken

characters that are shown in each reconstruction. The maximum length of the breaks

in the eight neighboring pixels is set to be two to four pixels. During the processing,

we assign 1 to the pixel satisfying the selection criteria, otherwise we set the pixel to

zero. This region growing is conducted repeatedly till a single connected hole region

of interest appears without gaps.

In some cases, artifacts can be mistaken for the ROI (i.e. the hole). After region growing

is used on regions obtained by thresholding the local reconstruction, a simple criterion

is adopted to examine the length feature of the segmented hole region of interest, to

ensure that the correct hole target region is selected. In this way, large artifacts can be

eliminated, and small artifacts can be removed by region growing.

To calculate the error of segmentation based reconstruction, we compare each of the

resultant segments with the ground truth. The error ratio is computed as the number

of different pixels between the resultant segment and the ground truth divided by the

number of pixels of the segment from the ground truth. The ground truth is computed
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Figure 13.8. Resultant segments and differences at Slice 1. Illustration of the resultant

segments and the differences from the ground truth at Slice 1. (a) The segment in the

ROI using traditional FBP and global data—We call it global computed tomography

(GCT). (b) The difference between the segment of (a) and the ground truth. (c) The

segment in the ROI using scaling function and local data. (d) The difference between

the segment of (c) and the ground truth. (e) The segment in the ROI using traditional

FBP and local data. (f) The difference between the segment of (e) and the ground

truth. The ground truth mentioned here is an image formed based on measured data,

illustrated in Fig. 13.7.
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from the physical measurements of the target and using the planar projection of the

tubular hole structure—ellipses with semimajor axes of 13.2 ± 0.6 mm and semiminor

axes of 10 ± 0.8 mm along with the rotation angle of 8 ± 2◦.

Fig. 13.8 illustrated the segmentation processes regarding the planar projection of the

tubular hole structure. It should be noted that in the error ratio calculation, what we

are concerned with is the difference of the number of pixels between the ground truth

and reconstructed segments at each layer. For uniformity, we try to match the recon-

structed segments with the ground truth. That is, the position of the centroid of the

ground truth is always moved to guarantee an overlapping with the centroid of each

reconstructed segment at every segment height. This procedure can be justified via

minimized the error between the ground truth and reconstructed segments.

13.4 Reconstruction Results

Four slices are analysed for this target sample: (i) the first slice (Slice 1) is reconstructed

with a circular Region of Exposure (ROE) with diameter of 189 pixels and a coincident

Region of Interest (ROI) of diameter 110 pixels, both centred in the image; (ii) the sec-

ond slice (Slice 2) has an ROE diameter of 230 pixels and an ROI diameter of 195 pix-

els, off-centred from the image centre for ramp filter application onto the image, but

an ROI diameter of only 160 pixels, also off-centred from the image centre for wavelet

based reconstruction; (iii) the third slice (Slice 3) with an ROE diameter of 209 pixels

and an ROI diameter of 150 pixels, off-centred from the image centre; (iv) the fourth

slice (Slice 4) with an ROE diameter of 196 pixels and an ROI diameter of 140 pixels,

off-centred from the image centre. Each of data set has a pixel interval of 0.5 mm.

13.4.1 Slice One

The reconstructed images at an off-center area with a radius of 95 pixels using the cur-

rent local reconstruction algorithms are observed. As described in Subsubsection 13.3.2,

a 250× 250 pixel image of the clown’s head target is recovered from scaling coefficients

using local data, and the BioSpline2.2 biorthogonal basis is used. This wavelet basis is

applied to all the slices for wavelet based reconstructions. A full wavelet reconstruction

requires computing the inverse wavelet transform from four images reconstructed us-

ing separable scaling and wavelet functions. However, it is found experimentally that
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Figure 13.9. Resultant local reconstructions at Slice 2. Illustration of the resultant local

reconstructions at Slice 2. (a) Illustration of the truncated projections with 79% of full

data at the centered area of interest. (b) Reconstructed image is localised to a region

of interest from the scaling function after constant extrapolation. (c) Cropped version

of approximate subimage in (b). (d) Reconstructed image is localised to a region of

interest via traditional FBP. (e) Cropped version of (d).

reconstructions using only the scaling function provides a good approximation in the

region of interest—such results are presented below for illustrative purposes.

The sinogram at Slice 1 with zero padding for nonlocal data is shown in Fig. 13.5.

The reconstructed images at an off-center area with a radius of 95 pixels using the

current local reconstruction algorithms. A 250 × 250 pixel image of the clown’s head

target is recovered from scaling coefficients using local data, shown in Fig. 13.6(a), and

Fig. 13.6(b) shows the truncated version of Fig. 13.6(a) showing only the region of in-

terest (ROI). Fig. 13.6(c) shows that the local image with same size is recovered via tra-

ditional filtered back projection while Fig. 13.6(d) is the truncated version of Fig. 13.6(c)

showing only the ROI. Wavelet and scaling coefficients after back projection are shown

in Fig. 13.6(e). Two dimensional inverse wavelet transforms are conducted on the four

reconstructed subimages to obtain the image with full package of wavelet based image
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Figure 13.10. Resultant segments and the differences at Slice 2. Illustration of the resultant

segments and the difference at Slice 2. (a) The segment in the ROI using traditional

FBP and global data (GCT). (b) The difference between the segment of (a) and the

ground truth. (c) The segment in the ROI using scaling function and local data. (d)

The difference between the segment of (c) and the ground truth. (e) The segment

in the ROI using traditional FBP and local data. (f) The difference between the

segment of (e) and the ground truth.
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reconstruction, shown in Fig. 13.6(f). It is found that in Fig. 13.6, the wavelet approxi-

mate subimage of (a) shows higher contrast in the reconstructed intensity than the full

inverse wavelet transform reconstruction in (f), which can be illustrated via the associ-

ated colour bars. Based on this observation, we only consider the approximate image

reconstruction to evaluate the algorithm validation in the current algorithm related to

wavelet based reconstruction, because only local information is to be mainly delivered

and both the wavelet and scaling ramp filters show essentially same support.

The segment of the reconstructed image via wavelet scaling sequence, Fig. 13.8(c),

shows smoother contours with reduced artifacts than the segmented image via the FBP

algorithm, Fig. 13.8(e). In addition, the scaling function leads to an LCT with small dif-

ference in segment from the ground truth, Fig. 13.8(d), compared to the difference in

segment, Fig. 13.8(f), between the traditional local CT and the truth data. But the resul-

tant difference in segmentation from the truth data is a slightly large compared with

the difference, Fig. 13.8(b), between traditional reconstructed segment in ROI using

global data, Fig. 13.8(a), and the ground truth. The relative error ratio using different

algorithms are shown in Table 13.1. Generally, for this slice, the segments show good

reconstruction performance whether from the traditional FBP algorithms using global

and local data or from the scaling function for LCT, owing to the uniformity in the

target sample and the short path length to the hole position.

13.4.2 Slice Two

Fig. 13.9(a)-(e) shows reconstructed images at an off-center area with a radius of 115

pixels using wavelet based local reconstructions and traditional FBP algorithms. It is

evident to achieve the same size of the hole feature, the radius of the ROE for local

objection reconstruction via FBP is larger than wavelet based reconstruction, both of

which result in similar reconstruction error to the corresponding global reconstruction

(see Fig. 13.10). Additionally, applying FBP-based LCT to this slice leads to significant

ringing problems, but the wavelet ramp filter performs much better in this regard.

Fig. 13.10(a)-(f) shows various reconstruction segments in the ROI and their differences

from the ground truth. It is found that localised reconstructions from both the scaling

function and the traditional FBP result in reduced reconstruction errors, compared to a

global FBP algorithm. However, we have to recognise that the greater scattering from
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Figure 13.11. Resultant local reconstructions at Slice 3. Illustration of the resultant local

reconstructions at Slice 3. (a) Illustration of the truncated projections with 72% of

full data at the center area of interest. (b) Reconstructed image is localised to a

region of interest from the scaling function after constant extrapolation. (c) Cropped

version of approximate subimage of (b). (d) Reconstructed image is localised to a

region of interest via traditional FBP. (e) Cropped version of (d).

the irregular shape of the target sample at this height yields more gaps after threshold-

ing; this in turn leads to greater difficulty in the post-processing to bridge the gaps to

obtain relatively smooth segments.

13.4.3 Slice Three

Fig. 13.11(a)-(e) shows a series of reconstructed images in an off-centered region of

Slice 3 with a radius of 105 pixels and 72% of full projection data. For this slice, the

scattering tends to be weakened due to stronger absorption caused by the longer dis-

tance between the hole position and the target boundary. As a result, compared to the

image reconstruction at Slice 2, Slice 3 shows improved reconstructed accuracy as de-

termined by the difference between the LCT and the ground truth; these are illustrated

in Fig. 13.12. In comparison with Slice 2’s segmentation performance, the segments
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from Slice 3 have smoother boundaries and also reduced misclassification and artifacts

due to the larger absorption counteracting scattering effects. Meanwhile, the local re-

construction via scaling function shows improved LCT segments in both smoothness

and classification accuracy.

13.4.4 Slice Four

Fig. 13.13(a)-(e) shows, at Slice 4, the reconstructed images at off-center areas and with

a radius of 197 pixels and 74% of full projection data.

For this slice, the exterior boundary contour of the target tends to be much smoother

than that for Slices 2 and 3. Scaling function reconstruction again shows the better

smoothing boundary and reduced misclassification, with stronger intensity contrast in

the reconstructed image than the traditional FBP. The local reconstructed segments in

Fig. 13.14(a)-(f) show much stronger absorption than scattering since the longer dis-

tance from the target boundary area to the hole position.

13.4.5 Segment Evaluation

In order to evaluate the segmentation performance of our experiment, we exploit the

fact that the internal structure, the hole, is linear with the same diameter from the top

to end. This implies that the segmented hole should have the same dimensions in all

slices, with only its centre displaced at various heights. To obtain this measurement, we

compute the centroid of the extracted hole for each height, L1-L5, and the resultant x

and y locations are recorded in Table 13.2. The slopes computed using centroids from

any of two successive slices are recorded in Table 13.3 below, along with the results

obtained from our three reconstruction algorithms: traditional global reconstruction,

scaling function used for LCT and traditional local reconstruction via FBP. For all the

Tables listed below, L1—L4 refer to Slices 1–4, respectively.

Table 13.1 shows the radii of the ROE and ROI at different heights via applying scaling

function and FBP algorithms for reconstruction. It is found that, at the height of Slice 1,

the radii of the ROE and ROI are the smallest among all the measured heights, owing to

the smaller optical distortion, but it also required the greatest value of (ROE-ROI). At

the height of Slice 2, the biggest radii of the ROE and ROI are applied to LCT, though,
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Figure 13.12. Resultant segments and the differences at Slice 3. Illustration of the resultant

segments and the differences at Slice 3. (a) The segment in the ROI using traditional

FBP and global data. (b) The difference between the segment of (a) and the ground

truth. (c) The segment in the ROI using scaling function and local data. (d) The

difference between the segment of (c) and the ground truth. (e) The segment in the

ROI using traditional FBP and local data. (f) The difference between the segment

of (e) and the ground truth.
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Figure 13.13. Resultant local reconstructions at Slice 4. Illustration of the resultant local

reconstruction at Slice 4. (a) Illustration of the truncated projections with 74% of

full data at the center area of interest. (b) Reconstructed image is localised to a

region of interest from the scaling function after constant extrapolation. (c) Cropped

version of approximate subimage of (b). (d) Reconstructed image is localised to a

region of interest via traditional FBP. (e) Cropped version of (d).

Table 13.1. Table of the radii of the ROE and ROI. The size of both the ROE and the ROI at

four target heights and via the three different reconstructed algorithms, in units of pixel

count. The values of ROE and ROI are selected iteratively till the reconstructed hole

segment with minimum error in size compared to the ‘true’ target.

Algorithms Radius L1 L2 L3 L4

scaling function LCT ROE 95 115 105 99

ROI 55 80 75 70

LCT via FBP ROE 95 115 105 99

ROI 55 99 75 70
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Figure 13.14. Resultant segments and the differences at Slice 4.. Illustration of the resultant

segments and the difference at Slice 4. (a) The segment in the ROI using traditional

FBP and global data. (b) The difference between the segment in (a) and the truth

data. (c) The segment in the ROI using scaling function and local data. (d) The

difference between the segment in (c) and the truth data. (e) The segment in the

ROI using traditional FBP and local data. (f) The difference between the segment

in (e) and the ground truth.

the scaling function for the reconstruction needs a smaller radius of ROI than for FBP

based reconstruction. In other words, it is possible for wavelets to acquire the same

quality in LCT reconstruction using a smaller exposure area. With the reduced optical

distortion and improved reconstruction accuracy at the heights of Slices 3 and 4, there

are reduced radii of the ROE and ROI to be employed for the local reconstruction of the

similar size of hole cross-section. In summary, less scattering means requiring smaller

areas of ROE to recover the same local ROI image, and vice versa.

Table 13.2 is the centroid coordinates of the extracted hole cross-section at each height,

which are used to calculate slopes at different target heights.
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Table 13.2. Illustration of the centroid coordinates. The centroid coordinates of the extracted

hole for each height, with units of pixel count.

Algorithms Coordinates L1 L2 L3 L4

GCT via FBP x 134 157 185 207

y 118 124 130 136

scaling function LCT x 135 156 184 198

y 116 126 132 138

LCT via FBP x 136 154 191 202

y 121 130 134 141

The slope calculated is a line segment that connects two centroids from any two re-

constructed segmented images. For convenience, we call it the reconstructed slope.

The error in the slope is calculated via the comparison of the value between the recon-

structed slopes and the slope of two ‘true’ centroids of the hole planar projections at

two different measurement heights.

For the local reconstruction, the ROI only contains the hole area. According to the

linear structure of tubular hole, the angled projections of the hole at various heights

onto x-y coordinate plane has the same x and y coordinates, the result of which is an

overlapping with the origin, with slope of 0. It is different from real hole structure

with slope of tan 43◦, as we only consider the cross-section of the hole with limitation

to local hole area, and only pixel measurements is involved. For the reconstructed

hole segments at different heights, due to only local data involved for reconstruction,

this causes difficulty in accurate recovery of an image. It turns out to be the changed

positions of reconstructed centroids at the different hole segments, therefore producing

altered reconstructed slopes. Subtracting the true slope of 0 from the reconstructed

slope, the error in slope can be viewed as the slope of the line that passes through

the centroids of any two reconstructed segments. The average slope is calculated via

summing up the slopes for any two different reconstructed segments, which then is

divided by the number of collected slopes. The average error in slope across all the

reconstructed segments is calculated.

The average slope obtained from scaling function-only local reconstructions is 0.3355,

with reduced average error of 0.0112 compared to FBP based local reconstruction. The

slope error of the latter is 0.3467. Since the amount of the image data used for the local

reconstruction is not complete, reconstruction performance should be inferior to FBP

algorithm using global data. The slope calculated using FBP algorithm on global data
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Table 13.3. Illustration of error ratio. The error ratio from each of the four heights and each

of the three reconstructed methods (It is simply defined as the number of misclassified

pixels/total number of pixels).

Applied algorithms L1 L2 L3 L4

GCT via FBP 0.1380 0.7112 0.3042 -0.3761

approx. LCT 0.1824 0.5306 0.2664 -0.3532

LCT via FBP 0.2136 0.5350 0.3824 -0.3552

yields an average value of 0.2450, which obviously means full reconstruction suffers

less distortion than the remaining two local methods.

Compared with the ground truth of a slope of 0, the global reconstruction causes the

smallest error in slope among the current reconstruction algorithms. Among the local

data algorithms, local reconstruction using scaling function achieves better recovery of

the target region than direct FBP on the same local data.

The optical properties are indicated in Table 13.3, via recording the calculated error ra-

tio with respect to the reconstructed segment images on various measurement heights

for different reconstruction schemes. Scattering occurs primarily with forward propa-

gation, which involves absorption. Since the only measurable quantity is the intensity

of light in the CW THz QCL imaging, and, due to multiple scattering, strong path-

length dispersion occurs, which results in a loss of localisation and resolution. The

scattering effect affects the image reconstruction, and it turns out that many back-

ground pixels are misclassified as hole pixels. The result is that the reconstructed

target segment has the size greater than the ground truth. Whereas, the absorption

effect results in weakened intensity around the reconstructed boundaries of an object,

the result of which is the size or the amount of pixels of a reconstructed object less than

the ground truth. The combined performance of absorption and scattering is such

that when scattering effect is obvious compared to absorption, the resultant segment

tends to have more reconstructed pixels than ground truth; when absorption effect is

stronger than scattering, the resultant segment tends to have less reconstructed pix-

els than the ground truth. Since the current tomographic reconstruction is scattering

dependent, generally, the difference between the number of reconstructed pixels and

the ground truth is larger than zero, in addition to the layer, where there is obvious

absorption effect.
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According to Table 13.3, the error ratio is the smallest at Slice 1 and the largest at Slice 2,

due to the difference in scattering caused by the variety in shape of external boundary

of the target sample at the different heights. The error ratio in Slice 3 is reduced com-

pared to Slice 2 since absorption counteracts the effect of the scattering; the error ratio

in Slice 4 is negative because the effect of optical absorption dominates optical scatter-

ing.

13.5 Chapter summary

We apply the wavelet based algorithm to reconstruct wavelet and scaling coefficients

of a target object image from its Radon transform, obtained experimentally using ter-

ahertz signals generated by a QCL. The algorithm is based on the observation that for

some wavelet bases, with sufficient zero moments, the scaling and wavelet functions

have essentially the same support after ramp filtering. Using experimental data ob-

tained on a 3D target with internal structure, we have shown that wavelet based recon-

structions offer robust reconstruction performance in the local reconstructed shape of

the target. Segmentation is used in post-processing to make measurements on the tar-

get’s internal structure, and the results are analysed to determine the effects of the opti-

cal distortion produced by varying exterior boundary at the different cross-sections. A

reconstruction utilising only the scaling function shows a slight structure distortion in

the reconstruction of a 3D structure compared to global CT, due to the use of less data,

but superior to traditional FBP algorithm using local data. For the future, a THz spiral

CT is an open area for THz tomographic reconstruction. It is promising in achieving

computed tomography on a voxel base, as in this case, not only shape information, but

structure information about a target object in the local area of interest can be recovered.
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Chapter 14

Conclusions and Future
Work

T
HIS Chapter draws together the conclusions from the work de-

scribed in this Thesis, and proposed directions for further re-

search. The Thesis is composed of two parts. One is for T-ray

signal and pattern recognition, and the other is for local terahertz computed

tomographic reconstruction. A classification framework was developed for

material identification based on THz spectroscopic data. Several different

feature extraction algorithms are explored with application on various cases

drawn from promising application fields. Combined, these tools pave the

way for the development of 3D THz inspection systems with broad appli-

cability. Local terahertz computed tomography has potential in achieving a

reduction in the number of THz measurements, in order to improve ability

of a THz system to rapidly image. This work solves the problem based on

wavelet theory and a novel modification of the inverse Radon transform.
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14.1 Introduction

Section 14.2 summarises the research conducted in this Thesis and describes the major

conclusions and novel contributions of this work. Section 14.3 then highlights a num-

ber of remaining open questions identified in the course of this research and details

research areas which form the logical next steps to build upon the contributions of this

Thesis.

14.2 Thesis summary

This Thesis is a logical combination of a number of areas, aiming to support two topics:

terahertz signal and pattern recognition as well as THz global and local computed

tomographic reconstructions. For the THz identification system, the theory scheme

mainly concerns a number of key areas of a classification framework, and the relative

cases for the validation of different identification strategies via applying THz pulsed

imaging systems. For the THz CT reconstruction, we review the methodology of back

projection algorithms, and address a segmentation strategy from the perspective of an

innovative approach, via a modification of 2D wavelet transforms. THz local coherent

tomography is achieved via the modification of a wavelet and scaling ramp filter, in

conjunction with the Radon transform. The THz measurements for validating these

schemes are obtained for both a THz pulsed imaging system and a CW THz QCL.

The Thesis conclusions are presented in the following categories: (i) THz radiation

and its sources and detectors, (ii) THz imaging modes, and (iii) THz imaging analysis;

methodology regarding THz pattern recognition; case studies for THz identification

systems; THz global computed tomography; wavelet based segmentation; pulsed THz

local computed tomography; CW THz local computed tomography.

14.2.1 Summary of THz radiation and its sources and detectors

Chapter 1 introduced the T-ray band, spanning frequencies from 0.1 to 10 THz, lying

between millimetre waves (mm-waves) and the far-infrared. In the past this has been

referred to as the THz Gap due to the lack of sources and detectors with sufficient

power and sensitivity. The Chapter addressed the importance of the T-ray band, a

theme developed in subsequent Chapters. The gradual development of science and

technology in the T-ray region promises to open up new applications, in the same way
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as other regions of the electromagnetic spectrum are richly populated with commercial

devices and systems.

The T-ray spectrometer in its various forms is described in detail in Chapter 2, includ-

ing its history, the sources and detectors available, and the tradeoffs in designing and

operating these systems. The THz laser sources reviewed in Chapter 2, based on dif-

ferent principles for THz pulsed generation, include Ti:sapphire-based lasers and free-

electron lasers. Terahertz quantum cascade lasers are also described as a significant

technique providing narrow band sources for THz CW imaging.

14.2.2 Summary of THz imaging modes

THz imaging modes are reviewed in Chapter 3 in three main sections: (i) operation

within versus below diffraction-limitations; (ii) pulsed versus continuous imaging tech-

niques; and (iii) time-of-flight imaging and tomographic reconstruction algorithms.

The main techniques are transmission and reflection spectroscopy, with both ultra fast

laser and THz quantum cascade laser sources.

The main advantages of pulsed T-ray systems over CW T-ray techniques are (i) their

high sensitivity, and therefore signal-to-noise ratio, (ii) their broad bandwidth, simulta-

neously generating all T-ray frequencies from 0.1 to 10 THz depending on the system,

and (iii) their ability of THz radiation to resolve the materials absorption from scatter-

ing.

The review of the current state-of-the-art in THz imaging surveys the current oppor-

tunities and limitations in the THz imaging field. Each imaging mode is a platform on

which to achieve further signal and pattern recognition using THz radiation. It then

motivates the development of a local tomographic imaging system, which is then de-

scribed in detail in this Thesis and validated by pulsed THz measurements and THz

QCL tomographic imaging.

14.2.3 Summary of THz imaging analysis

Terahertz image analysis is reviewed in Chapter 4. The processing techniques are used

to analyse the THz interaction with a target specimen, which enhance an image. The

techniques reviewed in this Chapter involve (i) k-means classification; (ii) the sepa-

ration of the component spatial patterns; (iii) the Euclidean distance classifier; (iv) a
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support vector machine for classification of the terahertz relevant frequencies. A num-

ber of target samples are considered, including DNA, RNA, and retinal isomers, to

biological tissues, cells, such as, tooth, brain tissues, skin and breast cancel cells; from

tablet coating to water, liquid, etc. Terahertz spectroscopy for biomedical signals is

analysed in the time domain, the frequency domain, the time-frequency domain, and

the wavelet domain. The review of the state-of-the-art in THz imaging analysis shows

the potential in the development of THz identification systems, and motivates the THz

pattern recognition research, which forms one part of this Thesis.

14.2.4 THz pattern recognition

We adopt pattern recognition algorithms in order to address the goal of differentiating

heterogenous layers within a target, via interaction between terahertz radiation and the

target medium. There are a series of potential applications for THz pattern recognition,

such as security screening, quality control, biomedical diagnosis, etc.

Chapter 5 develops a pattern recognition framework for the identification of materi-

als vial pulsed THz images. Chapter 5 is composed of three parts: data acquisition

through THz imaging, data preprocessing, and decision classification. The preprocess-

ing procedure is realised through two important steps including data preprocessing

and feature extraction. The exploration of feature extraction methods is a focus of this

Thesis. The extracted features then are input to numerical different classifiers.

14.2.5 Wavelet and preprocessing

Wavelet transforms are popular techniques suited to the analysis of signals that are

localised in time. They well suit to signals with sudden and unpredictable changes

that often carry the most interesting information. In this Thesis, wavelet transforms

provide important analytical techniques for most of the work carried out in this Thesis.

Chapter 6 presents a review of the theory and practical techniques of applying wavelets

to signal and image analysis. The focus of our review on wavelets is on their multires-

olution analysis and computational properties, with a link to Mallat’s pyramid algo-

rithms. These are the primary reasons for choosing wavelets as the analytical tool.

Discrete wavelet transforms and wavelet packet transforms are mainly represented by

this Chapter.
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Data preprocessing attempts to isolate material information present in the THz wave-

forms from systematic and random noise sources present in the data, which takes an

important role in THz pattern recognition. Wavelet soft threshold denoising is also

demonstrated in this Chapter for this purpose.

14.2.6 Feature extraction and selection

Feature extraction aims to extract key features from a pattern. Mathematically speak-

ing, this leads to a dimensionality reduction for the THz data set. Chapter 7 describes

five various feature extraction algorithms for the resolution of different THz pattern

recognition problems.

A novel technique involving the use of Auto Regressive (AR) and Auto Regressive

Moving Average (ARMA) models on the wavelet transforms of T-ray pulse responses

is applied to feature extraction methods for classification purposes. The correlation and

Durbin’s methods are viewed as optimal in the calculation of the AR and ARMA model

parameters. A prediction error minimization criteria is applied to achieve accurate

signal evaluation based on local optimization algorithms.

The subspace identification algorithms applied in this Thesis accord with the work car-

ried out by Galvão et al. (2005). The identification system determines state sequences

by projecting the input and output data sets. Since no explicit optimization criteria

is involved, subspace methods are found to be fast and numerically stable, but less

accurate.

A subband system identification framework is applied to explore the spectral parti-

tioning flexibility of wavelet packets with use of THz radiation. It is an extension of

the work performed by Paiva and Galvão (2006). The best wavelet packet tree is se-

lected by calculating the cost of each leaf node in a wavelet packet tree. The number

of leaf nodes in the best tree is adjusted by a penalty factor, calculated via minimising

generalized cross-validation (GCV) function.

System identification via optimized Mertz apodization functions is also discussed. The

design of Mertz asymmetric triangular window is a trade-off of minimizing sidelobes

of the calculated spectrum. It turns out to be an increasing main lobe width, which

leads to a reduction in frequency resolution. Tailored asymmetric apodization func-

tions are also necessary for the far more asymmetric THz transient waveforms.
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14.2.7 Pattern classification

The final step for pattern recognition is pattern classification. In this stage, the ex-

tracted and conditioned features are grouped together into different classes to produce

the final identified pattern. There are many pattern classification techniques in the pat-

tern recognition literature. Chapter 8 describes a few common ones. The Mahalanobis

distance classifier is a quadratic classifier. It is a very useful way of determining sim-

ilarity of an unknown sample set to a known one. Other examples of classifiers or

classification scheme described in this Chapter are: the Euclidean discrimination ma-

trix and Support Vector Machines (SVM).

A supervised algorithm is adopted to provide a class label for each pattern. Cross-

validation is a statistical technique widely used for estimating generalization error,

which consists of the holdout method, K-fold cross-validation, and leave-one-out cross-

validation. In addition, measure functions (or matrices) are as an alternative way of

selecting and evaluating learned classifiers.

14.2.8 THz pattern recognition experiments

With each element in our THz pattern recognition system having been discussed, the

system is tested through extensive experiments. Chapter 9 contains the detailed results

from the experiments performed.

The powder spectroscopy study demonstrated that Rayleigh scattering is a critical con-

cern in THz propagation through powdered substances. The aims of the current re-

search is to attain better understanding of THz scattering effects (Pearce and Mittleman

2001). The classification of materials independent of density, particle size and thickness

is a difficult problem and would benefit from advanced models of THz propagation in

random media. We design a number of models to explore the powder classification

performance with various thickness, density and particle size. (i) Frequency feature

selection via a simple iterative algorithm and the Mahalanobis classifier allows good

classification performance with identification accuracy reaching 98.6%. (ii) THz fea-

ture extraction via ARMA model of wavelet subband coefficients with Mahalanobis

distance as a classifier, permits a classification accuracy reaching 98.0%. This model

avoids to select features from over 100 sampled frequencies. From a computational

complexity point of view, the algorithm exploiting the ARMA model of wavelet sub-

band coefficients is advantageous. (iii) A multiclass classification is investigated via
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support vector machines. THz frequency features are selected via frequency orien-

tation component, which are then randomly selected as training sets and testing sets

are input to the support vector machines. Under this pattern identification system, we

consider several powder samples at a thickness of 2 mm. The initiate exploration of the

application associated with support vector machines may prove beneficial to further

development of THz identification systems.

Classification of lactose and mandelic acid THz spectra is also investigated. The goal of

this work is to demonstrate efficient and robust classification algorithms that could be

adopted by the biomedical and pharmaceutical communities. Three different system

identification algorithms are applied to achieve THz signal evaluation with gradual

degradation of responses by increasing the noise level. A Mertz apodization window

for ratioing the sample performs good in smoothness and in the identification with

respect to the absorption bands. Subspace identification system and wavelet packet

techniques, however, show superior performances of different sample discrimination

with respect to different noise levels. A wavelet packet technique is shown to be partic-

ularly suited to the identification of systems with several spectral resonance features.

The cancerous cell case study aims to complement recent work on the detection of basal

cell carcinoma tissue using THz spectroscopy. To isolate the cellular response of can-

cerous cells from the multitude of complicating factors encountered in in vivo studies,

an in vitro approach is adopted. Normal human bone cells and osteosarcoma cells are

cultured in polyethylene flasks. Once the cultures are imaged using a THz imaging sys-

tem and the spectra analysed under the developed classification framework—wavelet

packet SURE soft thresholding for preprocessing; AR modeling over wavelet packet

subband; Mahalanobis classification scheme. Once again, the results are promising

and form a foundation for future in-depth studies.

Application of T-ray techniques to identify the binding state of DNA is an especially

interesting topic. It is expected that the THz radiation is capable of differentiating the

different types of DNA, though there is lack of characteristic absorption features in

the T-ray region. The recognition of the frequency domain data from two different

RNA polymer strands, polyadenylic acid (poly-A) and polycytidylic acid (poly-C) is

achieved with a support vector machine. The classification performance is compara-

tive with unsupervised learning algorithms, which provides the technology required

for the further proliferation of THz-transient spectrometers.
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In all these case studies, high classification accuracies are demonstrated. These studies

highlight the performance of the pattern recognition strategies developed in Chapter 5

to Chapter 8, but they are, by nature, preliminary. Rather than attempting to perform

comprehensive studies in these application areas, these studies sought to highlight the

potential of THz inspection systems and to provide a basis for future work.

14.2.9 CT and THz CT

Computed tomography and terahertz computed tomography are overviewed in Chap-

ter 10. T-ray computed tomography provides spectroscopic 3D images with high fi-

delity. The Rytov approximation to the Helmholtz equation is adopted to derive a

series of experimental conditions under which the filtered back projection algorithm

(similar to X-ray CT applications) are utilised to reconstruct targets based on the mea-

sured THz field.

THz CT has slow acquisition time, but very high SNR and image quality. It is a

novel extension of terahertz time-domain spectroscopy with numerous potential ap-

plications. We extract the frequency dependent refractive index of a 3D target thereby

providing spectroscopic images of weakly scattering objects. T-ray CT provides the re-

fractive index of the sample without requiring a priori knowledge of the sample thick-

ness and allows the internal structure of objects to be revealed.

An interpolated cross-correlation algorithm is applied to estimate the phase shift of the

THz pulse after transmission through low-dispersion targets. The time domain algo-

rithm as an alternative approach to achieve Radon transform images can be utilised as

part of the reconstruction algorithm.

14.2.10 2D wavelet-based segmentation by fusion in 3D THz CT

Chapter 11 investigates a novel segmentation technique for terahertz (T-ray) computed

tomographic (CT) imaging. A set of linear image fusion and novel wavelet scale cor-

relation segmentation techniques is adopted to achieve material discrimination within

a three dimensional (3D) object. The methods are applied to a T-ray CT image data set

taken from a plastic vial containing a plastic tube. This setup images a simple nested

structure, with potential to achieve T-ray pulsed signal classification of heterogeneous

layers. The wavelet based fusion scheme does not require the calculation of a single

threshold and there is only a segmentation parameter to be adjusted.

Page 282



Chapter 14 Conclusions and Future Work

14.2.11 Wavelet-based terahertz coherent local tomography

Chapter 12 develops a local computed tomography algorithm according to global THz

computed tomography systems, which represents the culmination of this research on

THz imaging systems. A wavelet-based algorithm is applied to reconstruct THz-CT

images with a significant reduction in the required measurements when the region of

interest is small. Instead of inverting the interior Radon transform, the approach uses

modified wavelet and scaling ramp filters along with the traditional back projection

algorithm to obtain the resultant reconstruction.

The algorithm recovers an approximation of the region of interest from terahertz mea-

surements within its vicinity, and thus improves the feasibility of using terahertz imag-

ing to detect defects in solid materials and diagnose disease states for clinical practice.

Several test targets are fashioned from polystyrene and used to characterise the system.

14.2.12 Local computed tomography using a THz QCL

Quantum cascade lasers (QCLs) are semiconductor injection lasers, with the emission

wavelength controlled by the thickness of the MQW. Intrinsic high-power capabilities

of the lasers make possible the cascading process, with several tens of photons gener-

ated in superlattice structures.

Chapter 13 investigates local reconstruction of the region-of-interest (ROI) from a 3D

terahertz imaging obtained via a quantum cascade laser (QCL). The optical properties

of THz QCLs in ROI are also studied when interacting with materials having complex

contours (a clown’s head with a hole inside). This Segmentation algorithms are applied

on the local reconstructed images with low contrast to observe the QCL imaging ability.

It is found that 3D local reconstructions of the target (hole) using a QCL take on a num-

ber of different shapes since the various contours of the target physically distort the

measured optical parameters of the object. Local computed tomography via wavelet

is suitable for the image reconstruction in terahertz frequency range with lower image

quality, which results in lower misclassification after segmentation, than traditional

FBP algorithms. A wavelet scaling function allows to deliver local information for re-

construction, which shows a slight structure distortion in the reconstruction of a 3D

structure compared to GCT, due to the use of local data, but better than the traditional

FBP algorithm using local data.
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14.3 Future Directions

With any rapidly developing technology there are a vast number of open questions and

promising future research problems. THz inspection systems are no different. This

Section surveys the scope of the future work in this area and particularly highlights

promising extensions of the work presented in this Thesis.

14.3.1 Curvelet transforms

One focus of this Thesis is on the wavelet transform aspects of THz responses. How-

ever, more advanced mathematical models, such as the ridgelet and curvelet trans-

forms, have been proposed as alternatives to wavelet representation of image data.

Conceptually, the curvelet transform is a multiscale pyramid with many directions

and positions at each length scale, and needle-shaped elements at fine scales. It should

be very valuable to an image system. The main benefits reported by Candès et al.

(2006) are (i) enough frequency localization and spatial localization; (ii) the statistical

optimality of the curvelet shrinkage tends to well recover edges on ill-posed inverse

problems; (iii) curvelets also have special microlocal features which make them es-

pecially adapted to address certain reconstruction problems with missing data; (iv)

curvelets especially perform well in noise threshold, which was detailed represented

by Starck et al. (2002).

It is interesting to examine the effects of implementing curvelets into the THz imaging

system. In particular, THz imaging with different noise level, such as cancerous cell

images. Meanwhile, THz computed tomographic reconstructions via curvelets are also

attractive, since the improved time-frequency localisation feature.

It will be a challenge to identify a suitable measure or objective from the THz param-

eters, since sharp spectral features are not observed at room temperature using THz

radiation. Effective noise reduction from curvelets will lead to good identification per-

formance between different types of biomedical materials using T-rays. In addition,

this Thesis touches upon classification experiments with frequency domain transforms

and some types of statistics that can be extracted from wavelet transform coefficients

as the primary features for THz radiation separation. How about curvelets? It remains

to be investigated, which may lead to improvements in classification performance of

THz responses.
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14.3.2 Tomographic reconstruction

Tomographic reconstruction is another area of focus of this Thesis. There are many

techniques regarding computed tomographic processing.

Spiral computed tomography

Terahertz spiral computed tomographic (CT) scanning: is an improved version of ter-

ahertz CT imaging technology. Spiral CT (Brink et al. 1995, Kalender et al. 1990) is an

especially advanced technology in the reconstruction of an object in a volume space,

which allows continuous increments in measurement heights, with reduced system

movement, and centre point alignment of each image. It may be designed and applied

for 3D object reconstruction. Local tomography based on THz spiral CT scanning may

allow rapid measurements of THz volume data.

The development of spiral computed tomography (SCT), which uses a slip ring CT

scanning stage to obtain object rotations coupled with continuous increment of move-

ment, can permit volumetric acquisitions (Kalender et al. 1990). This may be a novel

and promising experimental contribution to terahertz imaging. During the course of

this study, several technical advancements will occur for performing spiral CT scan-

ning, including the exploitation of interpolative and extrapolative techniques.

Statistical reconstruction

THz local CT will be an enabling technology for terahertz functional imaging that al-

lows measurement of the target THz spectrum in the area of interest and in a limited

measurement space. Statistical reconstruction allows a stable solution of limited-angle

local tomography; a severely ill-posed inverse problem (Rantala et al. 2006). It is suit-

able for an improved inversion since a priori information about the unseen target can be

efficiently combined with limited image data (Hanson and Wecksung 1983). Bayesian

models (Kolehmainen et al. 2003, Herman 1980) are applied to achieve statistical recon-

structions to reduce the number of projection angles. Wavelet expansion is suggested

to reduce the dimension of the computational problem before reconstruction.

Currently, most reconstruction algorithms are based on an ideal deterministic relation-

ship between measurements and the reconstructed object. For local tomography, the

limited available data in number and range of viewing projection angles may not be

sufficient to specify any reconstruction uniquely. The special aim of Bayesian models,

Page 285



14.4 Summary of original contributions

here, is to achieve statistical reconstruction to reduce the number of projection angles.

Feasibility of the statistical methods has been demonstrated by numerical examples

using in vitro data via X-rays.

Molecular probes for in vivo THz fluorescence imaging

Fluorescence-based observation and imaging of living systems is one of the most rapidly

evolving fields in clinical and experimental biology today (Graves et al. 2004). It is

promising for sensitive and accurate THz detection of early stage cancer. Current

methods for cancer detection involve the differentiation of the diseased tissue from

normal cells via the contrast of different water content. However, this method does not

greatly differentiate between cancerous and normal cells, and is a late diagnosis with

cancer cells invading other parts of the body. Recent research in molecular imaging has

developed functional nanoparticles that are covalently linked to biological molecules

such as peptides, proteins, or small-molecule ligands (Alivisatos 2004, Alivisatos 1996).

It is helpful to understand THz inspection of cancer via imaging contrast medium.

Fluorescence tomography using T-rays: This work followed original observations that

THz has the depth resolution of 5 to 6 mm in moist tissue, and a maximum of 11 mm

in dry tissue (Mickan et al. 2000). Penetration depth of THz is comparable to OCT

(Woodward et al. 2003, Fitzgerald et al. 2005), but with reduced Rayleigh scattering

(Yin et al. 2007a). For imaging applications, a single point on the tissue boundary is

illuminated and the tissue can be viewed at multi angles via a rotation stage connected

with a linear stage on which the sample is mounted. Patterns that T-rays interact with

tissue are collected at the different position and different rotation angles around the

boundary of the moving sample via a photodetector or a CCD camera. These THz mea-

surements of appropriate fluorescent molecules are then combined in a tomographic

scheme, for reconstruction of intrinsic tissue contrast, that is, absorption or refraction.

This THz imaging mode with specificity to cellular and sub-cellular processes, will lead

to the development of fluorescence molecular THz tomography, a technology directed

towards non-invasive quantitative molecular imaging of live tissue.

14.4 Summary of original contributions

The original contributions represented by this work are discussed in Section 1.4. In

summary, they include:
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• This Thesis explores Multi Resolution Analysis (MRA) techniques, and illustrates

that MRA can be applied to (i) denoise terahertz signals by modifying wavelet

transform coefficients (discrete wavelet transforms and discrete wavelet packet

transforms) for accurate classification (Yin et al. 2007b); (ii) decompose terahertz

images to extract target segments for image enhancement (Yin et al. 2007e); (iii)

reconstruct local areas of an image due to the superior time-frequency localisa-

tion characteristics of wavelets (Yin et al. 2007c, Yin et al. 2008a).

• In the terahertz sensing area, the Thesis shows visualised classification of two-

class and multiclass terahertz responses via a series of different pattern recog-

nition strategies, highlighting the significance of terahertz spectral information

(See Section 9.5) (Yin et al. 2007g, Yin et al. 2007h).

• The Thesis designs a novel multiresolution based segmentation (Yin et al. 2007e)

algorithm. Chapter 11 performs initial investigations into the exploitation of (i)

the wavelet scale correlation approach to extracting important segments from

terahertz CT images; and (ii) the evaluation of terahertz CT segmentation tech-

nology from the geometric point of view.

• Statistical models presented in Section 9.4 for cancer cell identification are one of

the important contributions of the Thesis on THz pattern recognition. It is dis-

covered that statistical modelling (AR/ARMA) using wavelet coefficients can be

applied to extract highly descriptive features, and produce improved classifica-

tion performance of cancerous cells from normal tissue (Yin et al. 2007g). RNA

signal identification is investigated using support vector machines. Section 9.5

performs the very first study on support vector machines (SVMs) for classifica-

tion of 2-class RNA patterns & multiclass terahertz pulses (Yin et al. 2007h).

• Terahertz local computed tomography (LCT) is investigated in Chapter 12. The

analysis methods for the local reconstruction of terahertz CT data are realised

by applying separable wavelet ramp filters for mapping THz measurements in

the area of interest in an image. Realisation of terahertz CT by applying wavelet

theory is a novel approach to THz imaging (Yin et al. 2008a).

• Optical analysis of QCLs is an extension of the current terahertz LCT reconstruc-

tion. It is the result of collaboration with researchers at The University of Cam-

bridge. Chapter 13 performs initial investigations into the exploitation of the
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various contours of a dielectric target that physically change the optical proper-

ties of the object, when terahertz QCLs are used for CW imaging. It also exhibits

multiresolution based local CT has improved reconstruction properties over tra-

ditional CT reconstruction techniques (Yin et al. 2008b).

• In collaboration with researchers at The University of Reading, we realise the

identification of lactose and mandelic acid THz spectra using subspace and wavelet

packet algorithms, which are overviewed in Section 9.3. It mainly involves the

complex insertion loss function of THz transients of lactose, mandelic acid, and

dl-mandelic acid via three signal processing algorithms: (a) standard evaluation

by ratioing the sample with the background spectra, (b) a subspace identifica-

tion algorithm, and (c) a novel wavelet packet identification procedure (Yin et al.

2007d).

14.5 In closing

Pattern identification and image recognition have been important research topics in

computer science. This Thesis realises THz recognition and tomographic reconstruc-

tion with novel techniques. This Chapter gives an overview of the major conclusions

of this Thesis, and presents a number of recommendations for future work in the field.

With continued progress in the field, practical THz computed tomographic image and

pattern recognition systems are foreseeable in the near future.
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