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Synaptic signal transduction aided by noise in a dynamical saturating model
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A generic dynamical model with saturation for neural signal transduction at the synaptic stage is presented.
Analysis of this model of a synaptic pathway demonstrates its ability to give rise to stochastic resonance or
improvement by noise, at this stage of signal transmission. Beyond the case of the intrinsic threshold nonlin-
earity of the neuron response, the results extend the feasibility of stochastic resonance to neural saturating
dynamics at the synaptic stage. The present results also constitute the exposition of a new type of nonlinear
(saturating) dynamics capable of stochastic resonance.
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I. INTRODUCTION

Neural systems perform very efficient signal and informa-
tion processing [1-3]. They implement, as a basis, complex
dynamics that very often involve nonlinear processes [1-3].
Also, neural systems commonly have to operate in environ-
ments containing noise, either of external or internal origins
[4-9]. Tt is now known that nonlinear systems in the pres-
ence of noise can sometimes give rise to a cooperative effect
where the noise can play a part to improve signal processing.
This type of cooperative nonlinear effect is often called sto-
chastic resonance [10-17]. Stochastic resonance has mainly
been observed and analyzed in nonlinear systems with po-
tential barriers [10-12] or thresholds [14-22]. In these con-
ditions, noise essentially assists a usually small signal in
driving transitions of the system across thresholds or barriers
in a more efficient way. The possibility of this type of sto-
chastic resonance has been identified in neural processes
[4-8,11-18,20-23]. In this context, an essential nonlinearity
is the threshold nonlinearity in the response of the neuron,
and many studies of stochastic resonance have been pro-
posed for this case [13-18,20-23]. Also, interesting aspects
for neurons assembled in networks are analyzed in [24-32].

However, some studies have established another possibil-
ity for stochastic resonance in barrier-free or threshold-free
systems [33-35]. Also more recently, it has been recognized
that stochastic resonance can also occur in threshold-free
nonlinearities exhibiting saturation [36—40]. Improvement by
noise was reported with static or memoryless saturating non-
linearities in [36-38]. Such a result was applied to a model
for the saturation of the output firing activity of a neuron that
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was shown to exhibit stochastic resonance [41,42]. Very re-
cently, Refs. [39,40] reported stochastic resonance in dy-
namic systems with saturation, yet with no reference to neu-
ral processes. In the present paper here, we argue that an
essentially saturating dynamics can also be found in neural
processes at the synaptic stage. Then we demonstrate that
this saturating dynamics can elicit an effect of stochastic
resonance or improvement by noise of synaptic signal trans-
duction. The present results are of significance both for the
analysis and modeling of neural processes, and also for the
range and analysis of nonlinearities capable of stochastic
resonance.

II. SATURATING DYNAMICS
IN SYNAPTIC TRANSMISSION

An essential nonlinearity in neural signal transmission is
the threshold nonlinearity in the response of a single neuron
[13-18,20-23]. Another type of nonlinearity is also present
at several stages of neural signal transmission, which is es-
sentially a saturating nonlinearity [1,2,23,43].

For instance, in synaptic transmission at the presynaptic
stage, an incoming signal triggers the release of neurotrans-
mitter molecules in the synaptic cleft, of quantity g(r). The
evolution of ¢(¢) is returned to zero by the clearance pro-
cesses in the cleft. The evolution of g(z) also includes a
growth mechanism related to the intensity of the incoming
presynaptic signal. However, this growth of () draws upon
a finite population of neurotransmitter vesicles. This causes,
in case of a strong sustained presynaptic activity, a saturation
in the growth of g(r) as the population of vesicles exhausts.
A possible model for this dynamics is as follows:

1D | g g0 B, (1
dt 7
In Eq. (1), the input E(¢) is a non-negative quantity repre-
senting the firing activity down the presynaptic axon, as for
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instance a short-term average of action potentials or a firing
rate. Also in Eq. (1), the relaxation term —g(z)/7,, which
drives ¢(t) to zero, represents the clearance processes with
time constant 7,. The growth term [g,—q(t)]a,E(?) is pro-
portional to the presynaptic activity E(¢). However, a propor-
tionality factor with the form [g.,—q(t)]e, gradually extin-
guishes the action of the driving input E(r) as ¢()
approaches the saturation level g, thus preventing ¢(¢) from
growing above qq,. Here, @, is a positive dimensionless con-
stant measuring the efficiency of the conversion process of
E(?) into g(r). Equation (1) therefore describes the nonlinear
dynamics of a saturating type.

A similar picture exists at the postsynaptic stage. The neu-
rotransmitter molecules trigger the gating of ion channels in
the membrane of the postsynaptic neuron. The number of
open postsynaptic channels we denote as n(z). The evolution
of n(z) is also returned to zero as a consequence of the clear-
ing of the neurotransmitter out of the cleft. The evolution of
n(t) also includes a growth mechanism related to the quantity
q(t) of neurotransmitter present in the cleft. However, this
growth of n(r) draws upon a finite population of postsynaptic
channels. This causes, in the case of a large sustained ¢(7), a
saturation in the growth of n(z) as all channels become re-
cruited. A possible model for this dynamics is

B (= (00 @
dt T,
The terms in Eq. (2) have a similar interpretation to those in
Eq. (1). Equation (2) again represents nonlinear dynamics of
a saturating type, which prevents n(z) from evolving above
the saturation level ng,.

Each open ion channel of the postsynaptic membrane can
be assigned a fixed electric conductance g. The total conduc-
tance G(t)=gn(r) of the postsynaptic membrane at this syn-
apse, is therefore also governed by saturating dynamics as in
Eq. (2). The change of membrane conductance G(z) at this
synapse induces a somatic current /(¢) that directly drives the
evolution of the membrane potential V(z) of the postsynaptic
neuron, which fires an output spike each time V(r) reaches
the firing threshold Vy,. The driving current I(7) is expressed
as 1(t)=G(1)[ V,ey— V(2)], where V,., is the reversal potential
of the synapse (V,., is above the neuron resting potential V.
for an excitatory synapse and below for an inhibitory syn-
apse) [1,2,43]. For many synapses V., is such that the ex-
cursion of V(z), which takes place around the resting poten-
tial V. and at most up to the firing threshold Vy,, is small in
relation to the distance [V,,—V(¢)]; this allows one to ap-
proximate the synaptic current as 1(2)=G(1)[ V,ey = Viest)- With
this fixed proportionality constant [V,.,— Ve, it turns out
that the synaptic current I(z) is also governed by the saturat-
ing dynamics in Eq. (2). With several synapses on the same
postsynaptic neuron, the currents /(r) contributed by each
synapse simply add up to drive the membrane potential.

The transmission from the presynaptic activity E() to the
postsynaptic current I(z) directly driving the neuron is there-
fore essentially governed by saturating dynamics according
to Egs. (1) and (2). From E(¢) to I(¢) the cascaded dynamics
of Egs. (1) and (2) can be considered in a regime where only
one of the two saturations operates, while the other dynamics
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evolves sufficiently below its saturation to be purely linear.
This regime still provides a useful view on the impact of
saturation in signal transmission, yet with a simpler ap-
proach. We are thus led to study dynamics of the generic
form

d It

i % + [ = I(1) ]aE(). 3)

In this way, Eq. (3) can be viewed as a model for one stage
of the transmission either by Eq. (1) or by Eq. (2), or for the
two-stage cascaded transmission when only one of the two
saturations dominates, while the other dynamics is suffi-
ciently faster and remains below its saturation in a quasilin-
ear regime.

In the absence of noise, the solution to Eq. (3) with initial
condition I(¢,) =1, reads for r=1t,

t "
" —1,
It) =91+ Isalf aE(t”)exp{ 0
. T

0

f” -ty |
+ aE(t')dt' |di" pexp| - —— = | aE({")dt'|.
z T f

(4)

We will now investigate the possibility of stochastic reso-
nance or improvement by noise in synaptic signal transmis-
sion by the generic saturating nonlinear dynamics of Eq. (3).
A comparable but distinct saturating dynamic was shown in
[39,40] to exhibit stochastic resonance, but with no reference
to the neural context we examine here.

III. INPUT-OUTPUT CORRELATION MEASURE

Based on the neural interpretation of Eqs. (1)—(3), the
input signal E(¢) in Eq. (3) is non-negative, and represents
the presynaptic activity at the input of the transmission path-
way. The input signal E(r) of Eq. (3) is taken as the super-
position E(7)=s(r)+&(r) of a deterministic aperiodic wave-
form s(¢) and noise &(r). Both components s(7) and &(z) are
separately formed with the same neural substrate as E(f), and
share the same nature of non-negative signals that describe
presynaptic activity, be it a spontaneous random activity for
&(r) or a coherent activity for s(z).

Accordingly, &(r) is modeled as non-negative white noise,
with a probability density function fg(u) for which various
standard forms will be considered. For the non-negative &(z),
we will consider the uniform probability density

W) 1/b, O0<u<b 5)
fg W= 0, otherwise,

with mean b/2, variance b?/12, and root mean squared (rms)
amplitude &,,,=b/\3. We will also consider the Gamma
probability density of order a=1, as

1 1 ( u)
——u" exp|-—|, u=0
fdu)=\0b I'(a) b

0, u<o,

(6)

where I'(a)=[;x*! exp(—x)dx, the mean value of &(t) being
ab, its variance ab?, and its rms amplitude &.,,=bVa’*+a.
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FIG. 1. Ensemble-averaged correlation coefficient (p,;) between input s(7) and output I(7), as a function of the noise rms amplitude &,
at different values of the gain parameter « in Eq. (3). The input signal s(f) from Eq. (9) is with T,=10%7, A; =5, Ay=31, and A
=21, as represented in Fig. 2(a). The noise &() is (a) Gamma of order a=2, (b) uniform. Each point was averaged over 1000 trials. For
simplicity, we represent the origin tick 1073 of the logarithmic x axis as zero, and &, increases from zero actually.

With a deterministic aperiodic coherent input s(7), a useful
input-output measure of similarity, frequently used in sto-
chastic resonance studies, is the correlation coefficient
[15,16] of the input s(¢) with the output /(z), which we define
as

[s(6) = s(OJ[1(t + 7,) = 11 + 75)]
P57 = Max

— (7)
r {[s(0) = s PLIG + 70) — 1+ 7))}

o s(OI(t + 1) — s()I(t + 1) ®)

o LLs() = sOPG+ ) — 1+ 7P 1

where the overbar denotes a temporal average, and the maxi-
mum is taken over the time lag 7,=0. This time lag 7, is
introduced in order to take into account a possible propaga-
tion delay induced by the dynamic system of Eq. (3), and the
maximum corresponds to finding the optimal delay entailing
the best match between s(z) and I(z+ 7).

IV. STOCHASTIC RESONANCE
IN SATURATING DYNAMICS

When the noise input &(7) is absent, Eq. (4) represents the
system output exactly. In the noise-free case, the correlation
coefficient p,; between I(¢) and s(r) can then be computed
directly according to Eq. (8). When the noise &(z) is present
at the input, the system response I(r) will be simulated nu-
merically, and an ensemble averaging of the correlation co-
efficient py; will be performed over independent realizations
of the noise to yield {p,;), following the common practice in
stochastic resonance studies [15,16]. In numerical simula-
tions of Eq. (3), the Euler-Maruyama method is used [44],
with a sampling time step A much less than the time con-
stant 7 and the signal duration 7T, and which is fixed at Az
=0.17 throughout.

The coherent input signal s(z) is defined over ¢ € [0, T,] as
s(t) = A, sin(7t/T,) + A, sin(37t/T,) + Az sin(T 7t/ T,),
)

with s(z) being zero outside [0, T,]. An example of the wave-
form s(7) of Eq. (9) is depicted in Fig. 2(a). The purpose of
Eq. (9) is to have a non-negative signal s(z), which carries
some distinctive features in the upper part of the waveform
that can suffer from saturation in transmission by Eq. (3).

A. Influence of the gain parameter o

The transmission by Eq. (3) of s(r) added to the noise &(z)
is then studied. The influence of the rms amplitude &, of the
noise is examined, for different values of the gain parameter
a. Figure 1 shows the ensemble-averaged correlation coeffi-
cient {p,;) between the input s(r) and the output I(z).

The main feature visible in Fig. 1 is that, as the noise level
&ms Increases, the input-output correlation coefficient {p,,),
measuring the efficacy of signal transmission, can sometimes
experience a nonmonotonic evolution, depending on the gain
parameter «. For small gain =1 in Fig. 1, the system of Eq.
(3) operates in a quasilinear regime, away from saturation. In
this case, the correlation coefficient {p,;) is at a high value
close to unity at zero noise &,,,=0, and {p,;) degrades (de-
creases) as the noise level &, increases. The noise only acts
as a nuisance in this quasilinear regime.

For a larger gain parameter « in Fig. 1, the system of Eq.
(3) leads to the operation in the saturation region. In this
case, the output response I(r) gets distorted by the saturation,
and the correlation coefficient {p,;) is degraded at zero noise
&ms=0 because of this distortion. However, in this nonlinear
saturating regime, as the noise level &, is raised above zero,
Fig. 1 reveals the possibility of an improvement of {p,). The
correlation coefficient {p,;), measuring the efficacy of trans-
mission, culminates at a maximum for a nonvanishing level
of noise. This is an effect of stochastic resonance or improve-
ment by noise, which is shown possible in the neural satu-
rating dynamics of Eq. (3).
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FIG. 2. (a) Input signal s(r) from Eq. (9) as used in Fig. 1. (b)
System output /(¢) calculated from Eq. (4) at the Gamma noise rms
amplitude &,,,=0. Ensemble average of system output (/(z)) at the
Gamma noise rms amplitude of (¢) &me=1.051 and (d) &
=121, Respectively, (b), (c), and (d) correspond to the three points
Plows Pmax> and Prgy, in Fig. 1(a). Other parameters are the same as
in Fig. 1.

Beyond the feasibility of the stochastic resonance effect,
Fig. 1 also shows more detailed modalities: As the gain pa-
rameter « is further increased, the saturation in Eq. (3) gets
more pronounced, as well as the magnitude of the improve-
ment of {p,;), while the optimal noise level maximizing {p,;)
gets closer to zero, in the conditions of Fig. 1. We also ob-
serve that the feasibility of the stochastic resonance effect is
not critically dependent on the type of the noise &(¢). The
effect is preserved for Gamma or uniform noise, as illus-
trated in Figs. 1(a) and 1(b), respectively.

To further illustrate the constructive role of noise, three
points Pjoy, P, and Ppig, are selected in Fig. 1(a) from the
curve of {p,;) at the gain parameter =100, corresponding to
the Gamma noise rms amplitudes &,,,=0, 1.05/, and 12/,
respectively. The input signal s(¢) of Eq. (9) is plotted in Fig.
2(a). The system output I(z), at the noise rms amplitude
&ms=0, is deduced from Eq. (4) and plotted in Fig. 2(b). Also
superimposed in Fig. 2(b) is the same signal I(¢) yet com-
puted by numerical simulation of Eq. (3). This gives us the
occasion, with the conditions of Fig. 2(b), to verify that our
numerical integration scheme for Eq. (3) perfectly matches
the analytical solution of Eq. (4).

It is seen in Fig. 2(b) that the system response I(z), rela-
tive to the input signal waveform of s(¢), is mainly com-
pressed by the saturation of the dynamical system of Eq. (3),
and displays two relatively flat bumps separated by a very
narrow valley. By comparison with the input signal s(z) of
Fig. 2(a), I(¢) in Fig. 2(b) loses the high-amplitude variations
of the top bumps, and compresses the wide valley of s(¢) into
a narrow one. Thus, the correlation coefficient between the
input s(7) and the output I(z) yields {p,;)=0.6311 at the point
P, Next, when the noise rms amplitude is increased to
&ms=1.051,, it is observed in Fig. 2(c) that the waveform of
I(f) better matches the input signal s(z) and achieves the
maximum degree of similarity with s(z). The action of noise
raises and enlarges the valley of the system output I(z), re-
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FIG. 3. Optimal time lag 7, in Eq. (8) versus Gamma noise rms
amplitude &, corresponding to Fig. 1(a). Other parameters are the
same as in Fig. 1.

sulting in a more similar waveform to the input signal s(z).
Accordingly, the correlation coefficient between the input
s(t) and the output /(z) reaches its maximum (p,;)=0.7991 at
the point P,,,, of Fig. 1(a). Next, when the noise rms ampli-
tude is further increased to &, =12/, at the point Py, the
amount of noise becomes critical. This strongly degrades the
output I(r) that largely loses its similarity with the input s(z),
as visible in Fig. 2(d) where the response is dominated by
saturation. In this situation, the correlation coefficient be-
tween the input s(z) and the output I(rf) drops to {p,;
=0.2609. An interpretation of the sequence of Fig. 2 is that a
suitable amount of added noise has the ability, on average, to
pull the output I(¢) away from the strong saturation regime
and back into the more linear part of the response. This pro-
duces an output /() more similar to the input s(7) thanks to
an appropriate amount of added noise. This mode of action
of the noise illustrated in Fig. 2 can be interpreted as a form
of noise-induced linearization, as analyzed in [45,46] in
other different nonlinear systems. Nevertheless, stochastic
resonance appears as a complex phenomenon that contains
more than noise-induced linearization, since in nonlinear
systems stochastic resonance can produce effects that no lin-
ear system can achieve, for instance signal-to-noise ratio
gains above unity [47-49], although this aspect is not in
itself addressed in the present study.

Additionally, we plot in Fig. 3 the variation of the optimal
time lag 7, in Eq. (8) versus the noise rms amplitude &,
Upon increasing the noise level &, as observed in Fig. 3,
the optimal time lag 7, is rapidly reduced, this occurring
generally, for different values of the gain «. This manifests
another effect of the noise, which is to reduce the system
response time or propagation delay of the coherent input s(z)
across the dynamical system. A similar action of the noise to
accelerate the temporal response of the saturating dynamics
of Eq. (3) was also observed in the two-state bistable dynam-
ics constituting a very classic stochastic resonator [50].

B. Influence of the signal duration 7

In Fig. 4, we plot the ensemble-averaged correlation co-
efficient (p,;) as a function of the noise rms amplitude &,
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FIG. 4. Ensemble-averaged correlation coefficient (p,;) between input s(7) and output I(7), as a function of the noise rms amplitude &,
at =50 in Eq. (3), for different durations T of the input signal s(7) of Eq. (9) with A;=51, A;=31 and A3=2I,,. The noise &(¢) is (a)
Gamma of order a=2, (b) uniform. Each point was averaged over 1000 trials.

for different durations T, of the coherent input s(¢). Here, the
gain parameter a=50 in Eq. (3) is fixed, which makes the
system state mainly operate in a moderate saturating region.
At large duration T,=107, the increase of the noise level
improves the system response to the input signal s(¢), yield-
ing a marked resonant behavior of {p,;), as shown in Fig. 4.
As the time duration T, decreases to 10?7, the resonant evo-
lution of {p,;) is gradually reduced. At T,=10’ in Fig. 4, the
resonance peak of {p,;) is relatively low, and the resonance
region of the noise rms amplitude &, occurs closer to zero.
When the duration 7 is further reduced to 107 in Fig. 4, the
stochastic resonance effect disappears. The noise returns to
its traditional role as a nuisance, with the correlation coeffi-
cient {p,;) decreasing monotonically as &, grows. The non-
linear saturating dynamics of Eq. (3) incorporates an intrinsic
time constant 7, and the present analysis shows that the du-
ration T, of an aperiodic input signal s(¢) has to be suffi-
ciently large compared to 7, in order for s(z) to be able to
take benefit from a constructive action of noise to reduce
negative effects of saturation, which can occur in its trans-
mission by Eq. (3). In this situation, the optimal time lags 7,
in Eq. (8) for different durations 7T of the coherent input s(z)
are in the interval of [0.1,0.4]7 (not shown here). As the
duration 7 decreases from 1037 to 107, the same waveform’s
variations of s(7), as shown in Fig. 2(a), will be restricted
within the reduced duration T,. The system response I(z)
barely has time to catch the change of the coherent input s(z)
that is compressed by the saturating region of Eq. (3), even
by the help of noise at an optimal time lag 7, for computing
the best match between s(¢) and I(z+ 7).

V. CONCLUSION

In this paper, we studied a generic nonlinear dynamical
system with saturation, which offers a model for neural sig-
nal transmission at the synaptic stage. We especially studied
conditions where the gain « of the synaptic pathway is large,
or equivalently where the applied input signal s(z) is large. In
such conditions, saturation naturally occurs in the transmis-
sion, producing nonlinear distortion of the transmitted signal.

In this regime, we established the possibility of a stochastic
resonance effect, or an effect of improvement by noise of the
signal transmission under saturation. Conditions exist where
an optimal nonzero amount of noise maximizes the efficacy
of transmission as measured by the input-output correlation.
The effect of noise is to reduce the nonlinear saturating dis-
tortion experienced by the signal, and to restore conditions
closer to linear transmission. The beneficial action of the
added noise can be viewed as realizing, on average, a dis-
placement of the operating zone of the transmission system,
which is taken away from the saturating region to be pulled
back toward its linear region, resulting in a better input-
output correlation. The nonlinear saturating dynamics of Eq.
(3) is thus established as a new dynamical system capable of
stochastic resonance or improvement by noise.

It is interesting to note that, compared to more traditional
threshold or potential-barrier dynamics, the improvement by
noise in the saturating dynamics of Eq. (3) takes place in
more demanding conditions. The noise &(¢) here associated
with Eq. (3), is a non-negative noise, which fluctuates around
a nonzero mean (&(z)). This non-negative character of the
noise &(7) arises from the neural interpretation of the dynam-
ics of Eq. (3), where the noise &(r) describes fluctuations of
inherently non-negative quantities (such as rate of spontane-
ous firing or number of released neurotransmitter vesicles).
The level of the non-negative noise &(7) is increased here by
increasing the parameter » in Egs. (5) and (6). This in fact
produces both an increase in the standard deviation and in
the mean of &(7), and this is summarized by the increase of
the rms amplitude &, with its beneficial outcome observed
in Figs. 1-4. An increase in the positive mean (&(¢)) alone
has a detrimental impact on signal transmission, because it
acts in the direction of accentuating the saturation. So as the
noise is raised, the fluctuating part of the noise has reduced
benefit, because it also has to compensate the unfavorable
action of the increasing mean (&(z)). By contrast, in tradi-
tional stochastic resonance, with threshold or potential-
barrier nonlinearities, the noise usually keeps a zero mean,
and there is no antagonist action of an increasing unfavorable
noise mean to compensate, so the task of the noisy fluctua-
tion is in this respect easier. This reveals an especially pow-
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erful capability of the noisy fluctuation associated with the
saturating nonlinearity of Eq. (3) to induce the benefit im-
proving signal transmission. This is a contribution of the
present study, in the area of stochastic resonance, to expose a
new type of nonlinear dynamical system that is shown to
give rise to improvement by noise.

Now, in the area of neural modeling, the main character-
istic of the present study is that it concentrates on neural
signal transmission at the synaptic stage. The model essen-
tially describes the synaptic pathway from the firing activity
down a presynaptic axon to the synaptic current contributed
into a postsynaptic neuron. We have demonstrated that such
a synaptic pathway incorporates a saturating nonlinearity and
that this nonlinearity lends itself to stochastic resonance or
improvement by noise of signal transmission. Our demon-
stration is accomplished here based on a simple yet plausible
theoretical model of the synaptic pathway. Beyond this the-
oretical proof of feasibility, further studies will be necessary
to establish whether real neural processes in in vivo condi-
tions do exploit this possibility in actuality. This could re-
quire more refined modeling, but also essentially experimen-
tal studies.

On the modeling side, the present treatment of Eq. (3)
describes transmission through one single synaptic pathway.
This is a basic stage where improvement by noise is already
shown possible here. One could next consider several synap-
tic pathways, modeled through Eq. (3), each receiving an
excitatory or an inhibitory character as explained in Sec. II,
and converging upon a same postsynaptic neuron. More
elaborate dynamics could be accessible in this way, for ex-
amining how the beneficial action of noise evolves, upon
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transduction through multiple synaptic pathways.

Subsequent to the saturating dynamics of the synaptic
pathway, the threshold dynamics of the neuronal response
has been more often considered in relation to stochastic reso-
nance, and as such it is not part of the present study. This
leads to a natural extension for the present results, to com-
bine the saturating dynamics of the synaptic stage to the
threshold dynamics of the neuronal stage. This combination
offers a more detailed description of neural dynamics, and
allows one to investigate the richer capabilities of noise-
improved neural signal transmission, taking into account the
existence of both saturation and threshold in the processes.
Further, at a higher level of organization, association of such
neural units with saturation and threshold into networks
could also give rise to still richer possibilities of stochastic
resonance in neural signal transmission and processing. In
this  respect, the parallel arrays considered in
[27,28,30,31,42] could be investigated with the threshold and
saturating neural units, to analyze how their capabilities for
stochastic resonance evolve with such richer constituents. In
this way, the present results revealing stochastic resonance in
the saturating behavior of the synapse can contribute, at dif-
ferent levels, to the investigation of the complex and possi-
bly useful role of noise in neuronal dynamics for signal and
information processing in the nervous system.
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