
Lorikeet: An Efficient Multicast Protocol

for the Distribution of Multimedia

Streams

Justin Viiret

Thesi,s subm'itted for the degree oJ

Doctor of Phi,losophy

In

Electrical and Electron'ic Engineering

at

The Uni,uersity of Adelai'de

(Facutty of Eng'ineering, Computer and Mathemat'ical Sc'iences)

School of Electrical and Electronic Engineering

June 4,2007

Contents

Signed Statement

Acknowledgements

Abstract

1 Introduction

1.1 Background

1.1.1 Unicast Delivery

1.1.2 Multicast Delivery

1.1.3 Tlee Construction

1.1.4 Delivering Multicast Packets

1.1.5 Dynamic Trees

L2 Lorikeet

1.3 Thesis Structure

I.4 Major Research Contributions

2 State of the Art
2.I Internet Protocol (IP) Multicast .

2.2 Small Group Multicast

2.3 Application-Level Multicast and Overlay Networks

2.4 Topology-Aware Multicast

vlll

tx

xi

1

3

4

5

6

7

8

I
t2

14

16

T7

27

.'lD
L.)

27

3 The

3.1

3.2

tq().J

3.4

3.5

3.6

onr)- r

4 The

4.r

4.2

Steiner TYee Problem in Networks

Introduction

The Steiner Tree Problem in Networks

Exact Solutions

3.3.1 Spanning Tree Enumeration

3.3.2 Dynamic Programming .

Reductions

Suboptimal Heuristics

3.5.1 Shortest Paths (SP) Heuristic

3.5.2 Minimum Spanning TIee (MST) Heuristic

3.5.3 Shortest Paths Terminals (SP-T) Heuristic

3.5.4 Shortest Paths with Origin (SP-O) Heuristic

Performance Analysis

3.6.1 Exact Methods

3.6.2 Heuristics

3.6.3 Results

The Steiner Tree Problem in l\{ulticast

Lorikeet Protocol

A New Multicast Protocol

Design Goals

4.2.I Application Characteristics

4.2.2 Environmental Characteristics

4.2.3 Requirements

Network Assumptions .

Control and Delivery

The Lorikeet Protocol

4.5.I Notation

4.5.2 Joining the Tree

32

32

33

36

36

onÐt

Jf

39

40

40

40

47

42

42

43

44

47

4.3

4.4

4.5

49

49

50

50

51

52

56

58

61

62

63

,l

I

4.5.3

4.5.4

4.5.5

66

67

74

Leaving the Tree

Rearrangement

Data Delivery

d
ì,[j

q

I
I

ì.
¡

i

i

t

1

I

Ì.

t.
I
I

I

5 Performance Analysis

5.1 Introduction

5.2 Other Algorithms

5.2.1 Source-Join and Greedy algt-rrilhtns

5.2.2 ARIES

5.2.3 Delay-Sensitive Greedy (DSG)

5.2.4 REUNITE and HBH

5.2.5 HBH .

5.3 Simulation

5.3.1 Simulation ExPeriments

5.4 Complexity AnalYsis

5.5 TYee Cost

5.5.1 Lorikeet Join and Rearrangement Operations

5.5.2 Comparing Lorikeet and Other Algorithms

5.5.3 Incremental DePloYment

5.6 Summary

6 Directory Nodes

6.1 Motivation

6.2 Directory Nodes .

6.3 Joining the Tree .

6.3.1 Algorithm

6.3.2 Discussion

6.4 Results

6.5 Conclusions

77

77

78

79

79

81

81

87

88

89

90

95

95

99

r02

104

106

106

109

111

L12

116

I2T

124

hl

I

7 Implementation Concerns

7.I Accessing a Lorikeet stream

7.2 Implementing Lorikeet

7.2.7 Lorikeet Receivers

7.2.2 Lorikeet CaPable Routers

7.2.3 Lorikeet Sources

7.3 Systems Issues

7.3.7 Load and CaPacit¡'

7.3.2 Robustness and Failure Recovery

7.3.3 Multiple Simultaneous Operations

7.3.4 Handoff in Rearrangement

7.3.5 Security

7.4 Deployment

7.4.I Content Providers

7.4.2 Internet Service Providers

7.4.3 End Users

7.4.4 Placing CaPable Routers

8 Conclusions and Future 'Work

8.1 Summary

8.2 Potential Implementation-Related Research

8.3 Potential Protocol Extension

8.3.1 Layered Video DeliverY

8.3.2 Local RecoverY

8.3.3 Other Further Work

126

126

\28

728

t29

134

t34

135

136

138

742

r44

146

r47

148

r49

r49

151

151

156

757

r57

160

r62

#
,q
ItI

'ir

L
i

i

N

t
t
L

lr

I.
i¡

't".ï
f

rt

I

{
li
t
,l
t'

Bibliography t64

I

ì

List of Tables

1 Join Event Complexity

2 Leave Event Complexity

3 Average Messages Passed Per Event

4 Rearrangement Counts

5 Comparison of Rearrangement Techniques (events 500-2000)

93

94

94

95

98

,I

tr

r

:
L

¡

i

¡

t
I
t,

il
I
.t

'lI
t

.rt¡

I
i

2

3

4

6

List of Figures

1 Topology: Simultaneous Unicast vs' Multicast

2 Comparison of Simultaneous Unicast and Multicast

3 Unicast transmission over a packet-based network

4 A l\4ulticast Deliver)' Tree

5 Tree costs relative to optimal trees for heuristics ' ' ' 45

6 waxman data set: Tree costs for heuristics, relative to optimal sMT

cost 46
id

.l

J

7

8

q

10

Hierarchical Multicast Delivery 60

Path Rearrangement 69

Rejoin Rearrangement 72

Loop Detection and Subtree Inversion 73

Example illustrating REUNITE's tree creation protocol 84

comparison of Join Techniques: simple Join vs. Path-Greedy Join . 97

Comparison between Lorikeet and other Tree Management Heuristics 100

comparison of incremental deployment performance for Lorikeet and

REUNITE/HBH. . -.ro2

11

12

13

t4

15 capable Routers in the tree improve efficiency through link sharing.

16 Capable routers may be not on the shortest paths to receivers, but

can still reduce the cost of the tree if used.

77 Path-Greedy Join with Directory Nodes

707

L

¡

(

¡

4
t
¡r

s

ì\.

il
llt

I

-rt¡

I,

t_

I
t

VI

109

115

18 Two Approaches to sweetening the path

19 Selecting a sweetener

20 Average tree cost against sweetener value for Directory Nodes simu-

lations

27 Discovering capable routers that are on the shortest path to a new

recelver.

22 Dìscovering a capable router that is not on thc shortest path to a new

receiver, but has probe packets forwarded to it by a filtering rule on

a border router.

23 Path Rearrangement with Simultaneous Joins

24 Layered Video Delivery using a Lorikeet Multicast Tlee

118

119

r22

r32

t32

t4t

159

I

i

'I

i
I

I

,l

I

I

I

I
I

r
,i

{:

'f
I

I

;

Signed Statement

This work contains no material which has been accepted for the award of any other

degree or diploma in any university or other tertiary institution and, to the best of

my knowledge and belief, contains no material previously published or written by

another person, except where due reference has been made in the text.

I consent to this copy of my thesis, when deposited in the University Library, being

available for loan and photocopylng.

SIGNED za/or/æzDATE

vlu

Acknowledgements

A PhD is an enormous piece of work with a great many moving parts' and I have

been very fortunate to have so man)¡ people help me with my work on Lorikeet' I

am ver)/ grateful to all of them for sharing their experience, time and support; I

certainly wouldn't have got there on my o'ù/n.

Guiding rny wa)/ fiom the first step to the last have beetr tny supervist-xs at

the University of Adelaide, Nigel Bean, Michael Rumsewicz and Reg Coutts' Their

expertise and accessibility have prevented (or, at least' explained and corrected)

many missteps along the way and I thank them rvholeheartedly for their friendship

and support over last few years. I could not have asked for better mentors'

I have been generously supported by scholarships from both the University of

Adelaide and the CRC for Smart Internet Technology, without which I could not

have rvorked full-time on my research. Botlr organisations also offered invaluable

training, support and other facilities. The South Australian Partnership for Acl-

vanced Computing kindly gave me access to their Hydra cluster computing resources'

making the simulation of larger networks possible in units of time smaller than weeks.

Special thanks are also due to the staff of TRC N4athematical \4odelling, who have

looked after me and p¡ovided me with so much (the desk nearest the coffee machine,

for starters!) over the last four years.

Matthew Sorell taught me about multimedia coding and network applications

when I was a callow youth, and later was kind enough to bring me on board to mark

assignments, tutor and occasionally lecture with him on those topics' I enjoyed

myself immensely and appreciate his assistance and enthusiasm. Matthew Roughan

TX

and Olaf N4aennel ansrvered my questions about router design, BGP and many other

things besides.

\4y fellow students in the TRC provided comradeship and many other things:

fron a captivc auclic¡ce fbr- r¡5' expcisitions on technology. filnr and photogla¡;hy

through to much-needed moral support and academic assistance. Andre Costa pro-

vided a hclping hand and a voice of experience when I wa.s ner¡' to postgraduate

s,ork and still more than a little green; Jeremy N4cN4ahon's enviable ability to de-

construct and then calml¡, obliterate a problem helped me out of several tight spots;

and \4athcu, Kinghont r¡,as always rcady to discuss a protocol, talk fihn, eat luttclt,

or some combination of the above. Good luck with everything, guys, and thanks for

all ¡'6¡¡ ¡"10.

So many of my friends have helped me out in the last few years, remaining

supportive and understanding in the face of my occasional weird obsessions and

irregular hours. Milton Yates, Adrian Jones, Beth Nosworthy, Matthew Berryman,

Kit N4acfarlane, Jane \{iller and Bryn Roberts, thank you for all the lunches, coffees

and dinners. Nic Cottrell and Andrerv Clarke have remained good friends of mine

overseas) always been rvilling to talk or listen when I needed them. I would also

lìke to thank David Watts and Tom Long for all the coffee and photographs, Carl

Estella for his friendship and his patient instruction in the simplest elements of Bo

Gua Zhang, and N4arty Deveney for his willingness to share his vast experience in

both photography and postgraduate life.

My family have tirelessìy supported me throughout my yeaIS at University, prod-

ding me into action rvhen I ran out of steam and encouraging me when I needed

reassurance. I am inrìebted to my mother and father, m)¡ sisters and my grandpar-

ents for their love and dependability'

Aditi Rao has been a wellspring of enthusiasm and affection as I have worked on

my thesis, and I have always been inspired by her clarit¡, of thought and expression'

I am very grateful for her support rvhile she was in Adelaide, and for her confidence

and constant encouragement from afar.

Abstract

Internet Protocol multicast has been standardised since the late 1980's, but is yet to

be extensively deployed by most Internet Service Providers. Many organisations are

not willing to bear the additional router CPU load and memor)' requirements that

multicast entails, and the IP multicast suite of protocols requires deployment on ev-

ery router spanned by the multicast group to operate. Additionally, these protocols

are predominantly designed for the general case of multiple-source, multiple-receiver

transmission and can be complex and inefficient to use in simpler scenarios.

Single-source streaming of multimedia on the Internet is rapidly becoming a very

popular application, and is predominantly being served by content providers using

simultaneous unicast streams. A multicast transmission protocol designed for this

application that can operate without requiring a widely deployed IP multicast infra,s-

tructure has the potential to save content-providers and network service providers

significant amounts of bandwidth. This protocol should provide packet duplication

and forwarding capabilities on routers in the network, rather than pushing this func-

tionality to the receivers themselves, requiring them to become part of the multicast

infrastructure.

We describe Lorikeet, a new protocol for the multicast distribution of multimedia

streams from a single source. This protocol builds its multicast tree from the source,

discovering routers that support the protocol in the network and using them to

provide branching in the tree. The tree itself is managed in a decentralised fashion,

with joining receivers finding parent routers through a limited, recursive search of

the tree. On a participating node, information about the tree's structure is limited

xl

to the addresses of that node's children and its path through the tree back to the

source. Unlike most other multicast protocols, a new receiver is connected to the tree

using its forward path from the source and packets are delivered through the tree via

hop-by-hop delivery over unicast connections between nodes. Lorikeet also actively

maintains the tree structure using a localised rearrangement algorithm triggered by

a topological charrge in the tree structure. This rearrangcmcnt allows the tree to

remain efficient in the fa,ce of changes to the receiver population, which can change

the shape of the tree over time.

Lorikeet is designed to operate with no further protocol support than that pro-

vided by existing Internet unicast protocols. It requires none of the standard IP

multicast infrastructure, such as Class D group addressing. Its use of unicast con-

nections between nodes allorvs it to be deployed incrementally on the network' and

its behaviour will degrade to simultaneous unicast rvhen no routers that support the

protocol are present at all. Horvever. significant pcrformancc gains can be achievcd

even when there are only ¿ few supporting routers present in the network: Lori-

keet produces trees with half the cost of a unicast tree rvhen just 70Vo of routers

are Lorikeet-capable. Lorikeet's tree construction and rearrangement algorithms

generate multicast trees of comparable total cost to those created by algorithms

of considerably higher message compÌexit¡', such as those that employ exhaustive

searches of the tree during joins.

We develop the Lorikeet protocol from a set of requirements based on its target

application and the properties of the current Internet. After describing the protocol's

behavìour, we analyse its message complexity and its performance in terms of tree

cost. We also analyse several other multicast protocols from the research literature,

comparing their performance to that of Lorikeet in both complete deplovment and

incremental deployment scenarios.

Chapter 1

Introduction

"Multicasting" is the term used to describe group communication in rvhich a sender

or group of senders transmits information to multiple receivers. l\4ulticasting allows

senders to transmit a small number of copies of the information over a connected

network which are then reproduced at intermediate hops in the network path and

disseminated to all receivers in the group. This approach is signiflcantly more effi-

cient than the transmission of a separate, identical copy of the information for every

receiver. Consequentllr, more receivers can be supported with the same resources.

A pair of diagrams showing the topological difference between these two approaches

for a single-sender scenario are given in Figure 1.

Figure 1 is a diagram of the distribut'ion tree for a single source multicast trans-

mission this is a representation of the logical connections maintained between the

source and the other nodes (receivers and routers). In the simultaneous unicast

case of Figure 1(a), the source is sending five copies of the data stream through the

network to fir'e receivers, even if these streams tnay be tlavelling on the same net-

work path for much of the transmission, a situation which is obviously duplication

of effort. In comparison, the multicast tree in Figure 1(b) has the source sending

only two copies of the data stream into the network, which are then replicated at

routers elsewhere in the netrvork and delivered to the same five receivers. Although

the quantity of data received by the end receivers is identical, the amount of network

1

CHAPTER 1. I¡{?RODUCTION 2

(a) Sir-mrìtaneous Unicast: the sottrce

tlanslliits a sepa,t a,te iderltical data

strearn to every receiver.

b¡anching rouler

branching

(b) \4ulticast: the sottrce transmits a

srnall number of data strearrls u'hich ¿,re

replicated and sent to receivers by a tree

of intcrmediate routers in the network.

non-branch ng

Figure 1: Topology: Simultaneous Unicast vs. Multicast

câpacity required to serve those receivers using multicast is considerably reduced,

particularll, if there is a large amount of replication taking place'

In the context of passing data over the Internet, Internet Protocol (IP) Multicast

has been rlefinecl b), a selection of Internet Engineering Task Force (IETF) standards

for more than fifteen years [20]. It is still not widely used for dissemination of

multimedia content to home users [21, 25], despite the advantages of using multicast

techniques for transmission of popular real-time content.

Figure 2 shows the potential benefits of using multicast over simultaneous unicast

in terms of the cost of the complete distribution trec. The graph shows the total

cost of thc tree plotted against the event number, where an event represents either

a receiver- joining or leaving the multicast session. The tree cost is the sum of

the costs of the inrìividual links being utiliserl by the tree. Thc two approaches

shown (Shortest-Path and Greedy algorithms) are conceptually simple multicast

tree construction algorithms, and are described in Chapter 5. As the graph shows,

both multicast approaches maintain much cheaper distribution costs than using

CHAPTER 1. INTRODUCIrcN ,
t)

simultaneous unicast

4500

4000

3500

3000

2 500

2000

o
LJ
(u
OJ

t--

1500

1000

500

0
s00 1000

event
1500 2 0000

Path
eous [Jnicast

Figure 2: Comparison of Simultaneous Unicast and Multicast

Tltese results are generated by the "Wo,trrn&n" simulation descri,bed in Chapter 5

The aim of this thesis is to extend the state of the art in multicast communi-

cations over the Internet by proposing a new protocol that overcomes some of the

barriers to {eployment of existing protocols, uses the existing network efficientll',

and provides richer functionality to both receivers and senders.

1.1 Background

This section is a short introduction to many of the concepts underpinning multicast

transmission in general, ideas that are common to most multicast systems. After

I

CHAPTER 1. INTRODUCTION

this br-ief cliscussion, we present an overvicrv of Lorikcet, our proposed multicast

protocol.

1.1.1 lJnicast Delivery

The rnajorit)' of data, travelling âcross the Internet today is transmitted using what

are called unicast communications protocols. Unicast protocols send inforrnation as

a strean of packcts (srla,ll poll,ions of data that cau be reasscmbled after rcccp-

tion) between a single source and a single receiver- Since the Internet is a network

consisting of many computers (referled to here as hosfs) connected together, these

unicast packets must traverse a path through the network, moving hop-by-hop from

one host to the next. from the source to the destination.

4

Figure 3: Unicast transmission over a' packet-based netlvork

Figule 3 illustrates this idea. Inforrnation is sent from the source ,5 to the desti-

nation D through a series of intermediate nodes in the network that are connected

together. This series of nodes is referred to as the path or routethrotgh the network

for this (source, destination) pair. In an Internet network, each packet ma)¡ travel

via a different path, since each intermediate node selects the next hop in the pa,t,h

independentll' ¿""otd'ng to a routing protocol. This allows unicast transmissions to

recover from changes to the network structure, such as node or link failures.

In a unicast connection, the two end-points (the source and destination) are often

designated end-hosts. For the vast majority of Internet protocols, all the processing

CHAPTER 1. INTRODUCTION

that occurs happens at these end-hosts, rvith the routers along the path between

them simpl)¡ forwarding packets.

Not all Internet nodes are connected to each other rvith the same t5'pe of network

link: some nodes are connected via ver)¡ high-capacitS' links, such as nodes in the

core of the network through rvhich large a,mottnts of data are flowing, whìle others

are connected by lorver capacity links, such as home users conncctcd via slower

ADSL connections. In general, end-hosts tend to be connected to the Internet via

limited capacity links, and this capacit)' is referred to as the access bandwi.dth, of

those end-hosts; that is, the maximum bandu,idth that their access link is limitecl

to. Even if they are connecting to another host through a path that is otherwise

of very high capacity, the throughput betrveen them will be limited by the access

bandwidth of the slower host.

1.7.2 Multicast DeliverY

Unlike unicast, multicast transmission describes the sending of information to a

group: from a source or collection of sources to a group of receivers. This is done

b), having the sources send their data packets into the network, where they are

replicated b), hosts aìong the paths to their destinations, ensuring that all receivers

in the group receive copies of them. Hence, the idea of a single path through the

network is not sufficient: instead, multicast tlansmission can be visualised as a tree-

If rve consider the case of a single transmitting source ,5, sending information to a

set of five receivers 11 through 15, the resultant multicast tree might look like Figure

4. In this diagrarn we can see that the source is supplving five receivers rvith data,

but only sending two copies. When a packet reaches an intermediate host (which

we call a router, marked ,R in the diagrarn) that is participating in the multicast,

that host makes copies of the packet and sends one cop)¡ to each receiver that it is

supporting. Routers with more than one direct child in the tree are referred to as

branchzng routers, while routers with only single children are non-bra,nchzng'

5

CHAPTER 1. INTRODUCTION 6

branching rouler

branching

non-branching

Figure 4: A l\4ulticast Dcliver)' Tree

These multicast trees are \ogical trees overlaid on the underlying network struc-

ture. For exampÌe, the path from R t,o 11 in Figure 4 ma1' actually consist of a

path through several other routers in the network which are not participating in the

multicast group and are simply forwarding packets.

1.1.3 TYee Construction

As described in the previous section, a multicast tree is a tree, rooted at the source

or another "core" node, that connects the source to all of the receivers in the group.

Whcn a new receiver joins the tree, it connects to the tree along a path through

the network: the way that a path is chosen to join this receiver to the tree may be

charactelised as either a foruard-path jot'n or a reuerse-pat'h join.

J1t a reverse-path system, the receiver initiates the join by contacting its nearest

router. or a router on its path back to the source. That router connects to another

on its path to the source, ancl so on until the new receiver is part of the multicast

tree. We can see that the path through the tree to this receiver is therefore based on

the reverse path: that is, the path from the receiver to the source. Most traditional

router

CHAPTER 1. INTRODT]CTION

multicast protocols use reverse-path tree construction, since it reduces the load

on the source. The dou,nside of reverse-path systems is that many networks have

significant routing asl,mmsl¡5,: that is, the reverse path is often markedly different

from the forward path between two nodes, as discussed b)'Paxson 159]. If a reverse-

path join is being used for a multicast session in which all the data comes from the

source, the deliver), tree is being construclecl il LIte t-'pposite direction from that

which is to be used for the actual delivery of data. This tree is likely to be less

efficient for data delivery than one constructed in the forward direction.

A forward-path join is a join that bases a receiver's connection to the tree on the

path in the forward direction, from the source to the receiver. This requires some

collaboration from the source, but results in a multicast tree that is constructed in

the same direction as the deliverv of data.

I.7.4 Delivering Multicast Packets

Once constructed, the multicast tree is used to deliver packets of data from a source

to the rest of the group. Each packet is transmitted by the source and forrvarded

to a multicast router, which forwards a copy of the packet out each of its interfaces

that has known receivers attached, and so on. The direction of packet flow through

the network can be characterised as upstream (towards the source) or downstream

(towards the receivers), and multicast routers keep track of which interfaces are

upstream and which are downstream interfaces. Two types of multicast distribution

tree are generally used by multicast routing protocols: shortest path, trees and sho,red

trees.

In a shortest path tree approach, a multicast distribution tree is constructed us-

ing the model described above, rvith a source at the root of the tree and branches

extending out towards receivers. Every multicast router in the group stores informa-

tion about this source in its multicast forwarding table. In scenarios with more than

one source, separate shortest-path trees must be constructed for each source and an

7

CHAPTER 1. INTRODUCTION

entry stored for each tree in every participating multicast router. This approach is

sometimes also called a source-ba.sed approach.

Unlike shortest path trees, shared trees :use a single common node called the

rend,ezuous poznt (RP), sometimes also called à core node, as the root node of the

distribution t¡ee. AII sources send their traffic to the RP, which forwards it down

the shared tree to all of the receivers. This reduces the state information required in

routers, since only the RP needs to know the locations of alÌ the sources, and only

one multicast tree (rooted at the RP) needs to be constructed. Horvever, since all

data must be sent by the sources to the RP and then redistributed, this approach

will almost never be as efficient in terms of total tree cost as the use of shortest-path

trees. The onì¡, way for a shared tree to be as efficient is for the RP to lie on the

shortest paths between every source and receiver in the multicast group. Hence, the

selection of the RP's location in the network is critical to minimising the cost of a

shared tree multicast grouP.

1.1.5 Dynamic TYees

Many multicast protocols are designed for static scenarios, where the set of receivers

is known and will not change over the course of the transmission. One example is

a corporate videoconference. In such a case the set of receivers is known ahead of

time, so the delivery trees are constructed, the conference takes place, and then the

trees are torn down. The recciver set is fixed for the duration of the session, and

the trees could even be statically constructed ahead of time.

Many multicast applications, howevet, are more dynamic systems: the set of

users can change over the course of the transmission) causing new paths through the

tree and new branching points to become available. 'l'his can reduce the efficiency

of the distribution tree, particularlf in multicast protocols where the selection of a

branching point for a new receiver is dependent on the paths chosen through the

network by receivers that joined the tree earlier on.

B

CHAPTER 1. INTRODUCTION

As an example, consider the case of an "Internet TV" station, where a content

provider is multicasting content 24 hours a day, 7 days a week a news channel or

a music video channel, for example. In such a case) the composition of the receiver

set can change markedly over time for a number of reasons:

o Clients do not all watch the stream 24 hours a day. The vast majority of end

users will join the session, watch for a while, then leave the session. This is

referred to as dynam'ic mcmbcrshr'p.

¡ If the audience is worldwide, the locations of the majority of receivers will shift

depending on the time of day (for example, as an audience in one country goes

to sleep and an audience in another rvakes up), creating very diffcrent tree

topologies.

r Failures may occur in the network, removing individual receivers or entire

branches from the tree.

In these scenarios with dynamic membership, it is possible in some multicast

systems to perform maintenance of the tree, often called tree rearrangement. In

these systems, branching points or receivers (or both) are re-connected to the tree

when appropriatc in order to prune older, less efficient branches in the tree or lnake

use of new branches created by the addition of recent receivers. In some systems,

this rearrangement is triggered by participants randomly probing other points in

the tree to find better locations to connect. In others, rearrangement of the tree can

be triggered by an event counter threshold or a periodic timer. This maintenance

of the tree helps maintain eflìciency in the face of chauges to the tree's structure

caused by the addition and departure of receivers.

L.2 Lorikeet

We propose a new multicast protocol called Lorikeet. Lorikeet is designed to be a

practical, incrementally-deployable single-source multicast scheme that will operate

9

CHAPTER 1. INTRODUCTION 10

on the current Internet without requiring IP multicast to be deployed. The target

application for Lorikeet is single-source live audio and video distribution. In aclrìi-

tion, we use routers in the network to perform branching, enabling more efficient

use of the network and better performance than purely application-level protocols.

Lorikeet is capable of rearranging its distribution tree to cope rvith changing re-

ceiver populations, and maintains minimal stale information at individual nodes in

the tree. As is shown in Chapter 5, Lorikeet builds distribution trees rvith less than

half the cost of simultaneous unicast distribution when only l0%o of the routers in

the network support the Protocol.

Lorikeet uses a source-based joining procedure and a hop-by-hop delivery mech-

anism similar to the recursive unicast tree approach proposed in REUNITE [71] and

extended in HBH [18]. Unlike most other multicast protocols, including RtrUNITE

and HBH, Lorikeet employs a true forward-path tree construction technique' aÌways

joining new receivers to the multicast tree via a unicast connection from an existing

router in the tree. This ensures that the tree is optimised for data delivery, which

occurs in the forward-path direction from source to receivers. In the join procedure,

a new receiver contacts the source and the source begins a recursive search of the

current tree to find a close parent node for the receiver', or connects the receiver

directly if a close enough parent cannot be found. Routers in the network that

support the Lorikeet protocol are termed capable routers and are able to provicle

branching points in a multicast tree. Receivers in Lorikeet are always leaf nodes in

the tree and therefore support no children. This design decision was made in order

to simpìify leaving the tree, focus on branching in the core of the network where

capacity is not limited to access bandwidth and facilitate tree rearrangement. Lori-

keet's join operation is of low complexity compared to the joins proposed by other

multicast approaches which share some of Lorikeet's features, such as ARIES [8]

and DSG [32], while still generating trees of comparable cost.

Dynamic membership is supported by allowing the distribution tree to locally

rearrange capable routers. This rearrangement is triggered by a topological event,

CHAPTER 1. I¡ÙTRODUC'IION 11

râther than a timer or threshold, in order to reduce the likelihood of unnecessary

modifications to the tree.

Thus, Lorikeet has a number of advantages over traditional multicast and many

other proposed multicast protocols:

o it is designed specifically for single source transmissions to end receivers, re-

moving the communications overhead required to perform sender discovery or

manage multiple trees.

o it provides join and leave mechanisms that have low message complexity' en-

abling receivers to join and leave the tree rapidly.

o it is incrementally deployable: Lorikeet will operate even with no capable

routers in the tree - receivers will simply join directly to the source, in a

"simultaneous unicast" configuration.

o it has no dependency on IP multicast or special multicast addressing, using

stanrlard IP unicast addresses for source iclentification. It is still, however,

able to use routers in the network to perform branching'

o it is altle to make efficient use of the network: Lorikeet's trees are fbr-ward-path

trees constructed to make efficient use of the underlying network topology'

o it is able to effectiveÌy rearrange the tree to cope rvith changes to the receiver

set. In particular, these rearrangements are localised to the subtree under a

single router and no global calculations are required to achieve them.

Many of these features are also present in the REUNITE [71] protocol described

by Stoica ef al. There are some significant differences between the work done on

REUNITtr and Lorikeet, however:

o REUNITE claims to construct the tree in the forward-path direction but

clearly does not, instead using the reverse unicast shortest path from the

,l

T

F¡
,ti

I

CHAPTER 1. /¡\TTRODUCTION 72

receiver to the source to select parent routers in the tree. Lorikeet therefore

creates more efficient trees in scenarios with asymmetric unicast paths' This

issue is also addressed by the HBH protocol, which modifies REUNITE's join

procedure to better cope with asymmetric paths'

¡ Lorikeet explicitly searches the current tree for parent routers when connecting

a new receiver, while REUNITE only searches the reverse unicast path between

the new rcceiver anr] t|e soul'(:e. Hence, Lorikeet is able to morc effcctively

leverage the routers already in the tree, providing more branching and a lower

cost delivery tree.

o RtrUNITE uses soft state with periodic refreshment to maintain all forwarding

information in the tree, while Lorikeet manages joins and leaves with explicit

control messages, requiring much less control communication to maintain the

structure of the tree.

With the exception of the changes to its join technique that improve perfor-

mance in trees that traverse asymmetric paths' HBH shares these properties with

REUNITB. A discussion of both protocols and a comparison between them and Lori-

keet are presented in Section 5.2.4. Simulation data comparing RtrUNITE/HBH and

Lorikeet is presented in Chapter 5, in which we show that Lorikeet is able to out-

perform REUNITE/HBH by over 30% in terms of total tree cost in scenarios with

limited protocol deployment in the network. Even at higher levels of deployment,

Lorikeet consistentlv generates cheaper trees.

1.3 Thesis Structure

In chapter 2, we present a survey of other work on multicast. we begin by examining

the current state of Internet Protocol (IP) multicast, as standardised by the Internet

Bngineering Task Force. We then discuss difierent approaches to multicast protocol

design from the literature, including small-group multicast, application-level and

i.
i

{

1

rì

[.

f
I

{
I'
{

¿l

CHAPTER 1. INTRODUC'IION 13

1

overla)¡ multicast, and protocols that leverage information about the underlying

network topology.

Chapter 3 is a discussion of the Steiner Tree Problem in Networks, which is the

graph-theoretic problem that underlies multicast tree construction. We investigate

both exact algorithms for finding optìmal solutions and heuristics for finding ap-

proximate solutions. An analysis of the performalce of these heuristics is prescntcd.

In Chapter 4, rve describe Lorikeet, our new multicast protocol for single-source

multimedia streaming. We develop the ideas behind Lorikeet from the characteristics

of its target application and the network environment, then present a description of

each operation performed b1, the protocol

The performance of Lorikeet and several other multicast protocols is analysed

in Chapter 5. Here, we describe our simulation environment and analyse Lorikeet's

complexity and the behaviour of severa,l different operations described in the previ-

ous chapter. Lorikeet's perforrnance is compared to that of several other competitor

protocols, including ARIBS, DSG and REUNITtr. Finally, we analyse Lorikeet's

behaviour in an incremental deployment scenario and compare it directly with RE-

UNITE (which is also capable of incremental deployment')

In Chapter 6, we present an investigation into the use of directory nodes, a service

designed to enhance Lorikeet's ability to discover Lorikeet routers when they are

sparsely distributed throughout the network. We extend Lorikeet's join algorithm

to use this service. and present some results on its efficacy.

Chapter 7 is a discussion of issues related to the development of a physical imple-

mentation of Lorikeet. In this chapter, we describe issues that are not immediately

obvious from Chapter 4's description of Lorikeet's topological behaviour, such as

security concerns) resource management and the handling of multiple simultaneous

operations. We also describe the different ways in which Lorikeet can be deployed

and the likel)' drivers for this deployment'

Chapter B presents a summary of our findings in this thesis, and discusses several

possible avenues for future work on Lorikeet and research in multicast in general.

ü
r

It.
¡

I

+

l,

*
ï
1t

I

.tl

I
t'

CHAPTER 1. INTRODUCTION I4

L.4 Major Research Contributions

This section briefl1, outlines the ma,jor research contributions ma,de by this thesis

o We have developed and specified a new multicast protocol called Lorikeet,

designed for delivery of real-time content from a single source to a large set of

receivers on current Internet networks

o We have investigated the Steiner Tree Problern in Nelrvorks and developed

Lorikeet's join and tree maintenance algorithms from an understanding of the

underlying topological problem.

o Lorikeet is designed to be deployed incrementally and alÌorv receivers to access

content even in the absence of network routers that support the protocol'

Lorikeet's performance has been analysed at a range of network penetrations

ranging from zero to all routers in the network, and the level of deployment

required to make significant performance improvcments ha^s been identified.

o We have developed a rearrangement operation for Lorikeet's distribution tree

that is triggered by a topological event (a router becoming non-branching)

rather than forcing a rearrangement according to a periodic timer or a thresh-

old being reached. This rearrangement operation is localised to a single branch

of the tree and does not require any global calculations'

¡ We have analysed the complexity of Lorikeet and several other algorithms for

joining, leaving and rearranging the tree in terms of the control messaging

required, in both static (Steiner heuristic) and dynamic (online multicast)

ff
¡

scenarlos

I

¡ The performance of Lorikeet in a number of scenarios constructed to approxi-

mate receivers joining and leaving a tree on a number of Internet-like topolo-

gies has been simulated and compared to several other protocols, including

REUNITE [71], ARIBS [B] and DSG [32].
-{

I

¡

4

1

;

r
,t

{:

CHAPTER 1. II\I"RODUCTIOI'¡ 15

o We have examined the ways in rvhich Lorikeet could be deployed in the net-

work, either in the cole or out near the edges, in ISP access networks' For

the latter case, we have investigated the use of directory nodes as a capa-

ble router discovery service to improve performance rvhen capable routers are

concentrated at the edge of the network, as with web proxy servers.

¡ We have examined the barriers to widespread implementation of IP multi-

cast and other multicast schemes and described a plan for implementation of

Lorikeet that would overcome these obstacles.

¡ We have suggested several ways in which Lorikeet can be extended to provide

features that are difficult or not possible to implement with other multicast

protocols, including

- adaptation of the data stream as it flows down the tree to deal with

receivers' different capacity requirements; and

- local retransmission (between a parent router and child router or receiver)

of packets when they are lost but can be retransmitted before they are

due for playback.

This chapter has introduced the topic of multicast transmission over the Internet

and presented a brief discussion of some concepts that are basic to most multicast

protocols. We have also presented a summary of the major features of our protocol

for multicast transmission, called Lorikeet, and outlined the major research contri-

butions of our work. The following chapter will present a survey of existing research

in the fielcl ancì current Internet standards, ancl later chapters will desclibe Lorikeet

in further detail.

.{
tl
I
J

I

I
t

Chapter 2

State of the Art

This chapter presents an overview of the research literature and the existing stan-

dards for Internet multicast communication. First, we describe the existing IP

multicast protocols and their uses, the majority of which are sta,ndardised by the

Internet Engineering Task Force (IETF) and have implementations available for use.

Next, we present a, description of Source-Specific \4ulticast (SS\4), a simplifred set of

these protocols designed for single-source multicast only, and briefly give an accotrnt

of the state of IP muìticast deployment and the barriers preventing its use by many

end users.

The remainder of this chapter we devote to alternative approaches to multicast

that have appeared in the literature. First, we go through the srnall group multi-

cast approaches, which encode the destination lists in the packets themselves and

deliver them via unicast with router support. Second, we treat application-level and

overlay network approaches. Application-level multicast schemes perform all dis-

tribution of data on the end-hosts themselves, building the distribution tree solely

out of end-hosts and requiring only unicast transmission between member nodes.

Overlay network approaches take this idea one step further, building a generalised

overlay of participating nodes on top of an IP network (often introducing differ-

ent addressing and routing schemes) , then implementing multicast as a service on

this overlay network framework. Finally, we examine a group of multicast protocols

16

CHAPTER 2. STATE OF THE ART 17

that explicitly leverage information about the underlying network topology to btrild

efficient distribution trees.

This surve¡, of different protocols is not intended to represent a complete' rvell-

cìefulecl taxonornl, cif multicast techniques. we have grouped them into subsections

for ease of comparison and brevity in description, rather than attempting to explic-

itly categorise each system.

2.L Internet Protocol (IP) Multicast

The IETF maintains a set of standards that we group under the title "Internet Mul-

ticast", defining group communication over Internet Protocol (IP)' Internet \4ulti-

cast rvas initially defined in RFC 966 [20], which introduced the concept of "host

groups", sets of hosts identifiecì bv a single IP acklress to which packets could be

delivered. Further development led to RFC 1112 [19] in 1989, rvhich defined version

1 of the Internet Group Management Protocol (IGMP) and became the recom-

rnenr-lecl standard for Internet multicast transmissiolt. These initial RFCs defi.ne a

basic mechanism for group communication, based around the use of special-pulpose

multicast addresses. Every multicast group selects a single multicast address from

the pool of class D IP addresses, 224.0.0.0 through 239.255.255.255 in IPv4. Packets

sent to a group's multicast address are delivered by the network to every host in

the group. Many-to-many communication is supported; that is, a group can have

multiple senders as well as multiple receivers. Joining a group is achieved by an-

nouncing a desire to receive packets on that group's multicast address (for example,

bl, binding the host's ethernet interface to the multicast address and notifying the

local multicast router). Local routers use IGMP messages to discover when they

have members of multicast groups on their attached local networks, and use that

information to selectively forward multicast packets via only those interfaces. Shar-

ing of the multicast state information gathered by IGMP between routers in an

organisation is achieved through the use of multicast routi,ng algorithms, which are

CHAPTER 2. STATE OF THE ART 18

analogous to the routing algorithms employed for unicast. The current version of

IGMP is IG\4P version 3 [13]. In IPv6 netrvorks, a newer protocol called l\4ulti-

cast Listener Discovery (MLD) [75] serves the same function as IG\4P does in IPv4

netrvorks.

As described in Chapter 1, Internet multicast protocols can be characterised as

shortest-path and shared tree protocols. In a shortest-path prolocol, blie deliverl'

tree is constructed with the source at the root of the tree. IP Multicast routers

store information about this source as an (S, G) pair in their multicast forwarding

tables, rvhere S is the unicast address of the source and G is the multicast address

of the group. In multicast groups with more than one source? routers must build a

separate (S, G) shortest path tree for each one. In a shared tree protocol, the tree

is rooted a,t a rendezvous point (RP).All sources send their tra,ffic to the RP, which

forwards it down the shared tree to all of the receivers. Shared tree multicast groups

are commonly described with (*, G) notation, with the wildcard "*" representing

the sources and G as the multicast group address.

A number of difierent multicast routing protocols have been developed over the

years? beginning with the Distance Vector Multicast Routing Protocol (DVMRP) 176]

As its name suggests, DVMRP is a distance-vector routing protocol, similar to the

Routing Information Protocol (RIP) [36] developed for unicast routing. Distance-

vector routing protocols build routing tables for their participants in a distribrrted

mannerT based on the sharing of information about reachable hosts and their net-

work distances between neighbours. The approach to multicast routing and delivery

used by DVMRP is a "dense mode" approach, based on a flood-and-prune mecha-

nism: when a multicast router receives a packet, it sends that packet out on all of its

interfaces except the one it came in on (the upstream interface). If a router has no

receivers in its connected networks for a packet it has received? it sends a "prune"

message to the upstream router, requesting that it not be sent subsequent packets

for that group. Periodic re-flooding is used to refresh state (in case new interestecl

receivers appear on previously-pruned networks). Upstream and downstream paths

CHAPTER 2. STATE OF THE ART 19

a,re determined through Reverse Path Forrvarding (RPF) checks against rnulticast

route information maintained by routers. Routers running DVN{RP maintain this

inforrnation b)' exchanging distance vector updates lvith neighbouring routers.

A later protocol, Protocol Indepenrlent N4ulticast Dense N4ode (PIM-DX4) [i]

implements the same flood-and-prune approach, but does not build and maintain

its orvn routing table for RPF checks. Instearì, it is able bo use the routing table

provided by any underlying unicast routing mechanism. Both DVI\{RP and PIN4-

DN4 are shortest path tree approaches to multicast tree construction.

Dense protocols, while ver¡, simple and useful for group transmission lt'here re-

ceivers are common (that is, where there is likel¡' fs be at lea'st one receiver in every

connected netrvork) , are very inefficient in cases rvhere Leceivers are nuch lltore

sparsel5, distributed. To serve this scenario better, sparse protocols like Protocol In-

dependent l\4ulticast Sparse Mode (PIN4-SM) 126] rvere developed. PIN4-SN4 uses a

shared tree approach, with a rendezvous point (RP) that keeps track of the locations

of all the sources. Instead of flooding the netrn'ork) sources send their data to the RP,

which handles distribution to the group's receivers. The benefit of this approa,ch

when conpar-ed to PI\,I-DN,I is that no flooding is required to notif5' routers of the

locations of active sources; instead, the RP is the only node that needs to knorv the

sources' Iocations. Multicast routers in the group need only store one shared tree

rooted at the RP, rather than storing separate shortest path trees for each source-

The disadvantage of using a shared tree protocol is the inefficiency introduced by

using a single tree rooted at the RP if the RP is not optimally located (given

the locations of the sources and the receivers), traffic will flow along longer paths

through the RP than it would if it rvas travelling from the sources to the receivers

directly. An additional protocol called \4ulticast Source Discovery Protocol 127]

(MSDP) can be used to connect several PII\4-S\4 distribution trees together, with

each domain using its own independent RP.

CHAPTER 2. STATE OF THE ART 20

Source-Specific Multicast (SSM)

\4any of the issues described above (such as source discovery and the use of an RP)

onl¡' applt to multicast sessions u,here there can be more than one source trans-

mitting flata to the group. In the case of single-source groups, much of the extra

cornplexity associated with these standards is unnecessary. The Internet commu-

nit¡, þ¿. recognisecl this anfl devcloped a st,andard callccl Source-Specific Muìticast

(SSX4) [9] tor multicast groups with only a single sourcc. Consequentl¡', the origi-

nal standards for man)¡-to-man1, ¡¡rrlt,'"ust communication have come to be grouped

under the term Any-Source Mu,ltt'cast (ASN4).

SSl\{ represents a subset of the existing Internet multicast staudards, simplifled

for the one-to-many model. It shifts the problem of source discoverS' to the ap-

plication layer, and represents a multicast gloup with a single (S' G) tree: when

a new receiver wishes to join a group, it informs its local multicast router of the

unicast address of its source S, a,s rvell as the group address G. Routing of multicast

packets under SSI\4 is done with a subset of PIi\4-SM and IG\4Pv3, without the

need for separate multicast routing tables (as in DV\4RP), RPs or sender discover5''

However, SSM still uses the basic IP multicast delivery model and Class D group

addressing. SSM is derived from earlier rvork on EXPRtrSS l3B], which originally

clcfined the single sourcc mult,icast channel representerl bY an (s, G) pair.

Deployment on the Internet

All of the protocols described so far constitute "interior" multicast routing proto-

cols, designed to be used inside a single autonomous system (AS); that is, a single

organisation. Additional protocols are used to share information between ASes, per-

mitting multicast sessions to extend across larger areas of the netrvork. The most

common protocol used for this purpose is the Multiprotocol Border Gateway Pro-

tocol (MBGP) [6], an extension to the standard BGP protocol used for interdomain

routing. MBGP allows BGP to share information about rotttes other than unicast

CHAPTER 2. STATE OF THE ART 27

IP routes (in this case. multicast RPF information) between differcnt organisations'

These "traditional" IP multicast protocols all have a number of properties in

coìrmon that make them difficuìt to deploy on an Internet-wide scale: all the routers

betrveen the source and the receivers need to have multicast enabled; some protocols

require additional memory for routing tables in multicast routers, Class D group

addresses need to be assignetì; altl many organisations âre not rvilling to bear the

additionaÌ network and cPU load associated with multicast traffic.

For these reasons) IP multicast is not widely deployed across the Internet todal'.

Il is in use inside organisations for "local" applications (such as video-conferencing) ,

but is not generally available to end users connected to the Internet vja commer-

cial Internet Service Providers. In the early 1990s, a network of multicast-enabled

routers called the MBone was created, connecting together via unicast tunnels which

allorved these "islands" of multicast connectivity to appear seamlessly connected'

The N4Bone rvas used for multicast protocol research and a small number of applica-

tions, such as audio and video multicasting of IBTF meetings. In 2006' many ìarger

organisations have portions of their networks running native multicast, e\¡en across

AS boundaries, but it is still not available to end users. Toda¡', Internet 2 (a research

network connecting a large number of predominantly American universities) is rrsed

as a multicast research platform.

2.2 Small Group Multicast

IP multicast is not a particularly "lightweight" suite of protocols, presenting the

network user wil}¡ a lalge amount of infrastructure that is rcquired for group com-

munication to occur. Several potential multicast applications, however, involve

small groups of end receivers for which all this infrastructure can be considered

unnecessary oI over-engineered. For these applications' an area of research that has

attracted some attention is small group mult'icast, also termed erpli'ci't multzcast.

These systems are designed for multicast transmission of data between small groups

CHAPTER 2. ST'ATE OF THE ART 22

of hosts, facilitated b), the carrl,i¡g of lists of destinations in the data packets them-

selves. Examples of small group multicast protocols include Xcast [11], SBl\4 [12]

and LinkCast [3].

Xcast explicitÌ5, encocìes the list of destinations in the data packets, rather than

using a multicast group address or storing state information at member nodes. This

list is provided b), the multicast source) rvhich rrrust lnaintain a list of all receivers

in the session. When a router receives such a packet it reads the header, partitions

the destinations according to their next hops, and forrvards a copy of the packet

with appropriately rewritten headers to each next hop. This approach requires no

additional control communications in the network and requires no state information

to be stored at routers. Horvever, having each packet contain a full list of receivers

severely limits the size of the multicast group, making explicit multicast protocols

inappropriate for large-scale multimedia transmission. Xcast* [68] extends Xcast

by adding an IGMP join at the receiver side to the system and using a list of mul-

ticast routers, rather than receiver addresses, in the packets. Distribution of the

data packets to end-receivers is then handled by locallS'scoped IP multicast deliv-

ery from these multicast routers. Similarly, SEM 112] uses IGMP to manage joins

and has the source maintain only a list of participating multicast toutets, rvith which

it constructs a tree (storing some limited forwarding state in intermediate routers)'

Both these approaches still require that traditional multicast routing protocols be

deployed in the network, though they do succeed in reducing the state information

and control overhead required. LinkCast [3] improves upon XCast's storing of re-

ceiver lists in packet headers b)' encoding instead a set of link indices, generated

from the receiver join messages which are appended to by the routers which thel'

traverse. Though this approach can support a larger number of receivers than Xcast,

it still does not scale to large groups and requires deployment on ever)/ router in the

network in order for link index gathering to operate.

CHAPTER 2 STATE OF THE ART 23

2.3 Application-Level Multicast and Overlay Net-

works

Even explicit multicast techniques have the requirement that routers support the

protocol in order for them to operate: a router that does not support the protocol

cannot replicate and forward the packets correctl¡r' To overcome this obstacle' there

has heen considerable research in "application-level" or "end-host" rnulticast. In

these s),stems, all processing is done at the edge of the netrvork on the end-hosts:

ever¡, receiver participates in the tree as a branching nocìe, forlvarding packets to

other receivers further down the tree. Since all the branching is done at end-hosts,

there is no necessity for routers to support the protocol. Hence, simple unicast for-

u,arding is used for transmission from the source to receivers, and between receivers

themselves. N4an1, of these approaches also implemen|, rearra'ngement of the distri-

bution tree. to cope efÊciently rvith changes to the receiver population - if a new

receiver joi¡s the tree, other receivers may be able to improve their performance b¡'

becoming children of this nerv receiver. When a receiver leaves the tree, its children

must be re-parented to maintain their connection to the group'

Helder and Jamin's Banana Tree Protocol [37] is an application-level multicast

protocol designed to be the underlying control rnechanism fot a peer-to-peer' file

sharing application. It has a very simple approach to joining the tree: nodes simply

join the multicast distribution tree as children of the source of the tree (it is assumed

there is a bootstrapping mechanism by which they can discover the location of

the source). Optimisation of the tree is then taken care of through a periodic

rearrangement proceriure: a node periodically tests its siblings for closeness' and

srvitches its parent to one of these siblings if it is closer than its current parent

Helder and Jamin found that this approach worked rvell in ideal situations, but did

not perform adequately in more realistic scenarios: their conclusion was that a wider

rarìge of graph tralsfcilrnations was lequired to effectively optimise the distribution

tree.

CHAPTER 2. STATE OF THE ART 24

Chu el ¿1.'s Narada protocol [40] creates a rvell-connected mesh of hosts and then

constructs spanning trees from this mesh, rooted at each source of the transmission.

Rearrangement in Narada is based on members randomly probing each other and

adding new links based on a given utility function. Pendarakis et al.'s ALMI [60] uses

a centralised session controller (like an RP) to coordinate the multicast tree this

session controller constructs the tree by periodically ço1.u1utiug a minimum spanning

tree based on measurements from tree members. Similarly, El-Sayed and Roca's

HBX4 protocol [65, 24] uses a centralised RP that builds the multicast distribution

tree. This RP has complete information about all receivers in the group and is

responsible for calculating the tree's topology and disseminating that information to

all its participants. Data transmission between receivers happens directly, however'

rather than through the RP as in traditional shared tree protocols. An analysis

of the performance of the application-level approach has been presented by Chu eú

al. [39, 40]

In [51] , Mathy et al. present an application-level tree construction protocol

called TBCP (Tt'ee Buitding Control Plotocol). TBCP is designed to be an efficient

tree construction mechanism that operates with partial knowledge of the multicast

group membership and limited network topology information. It uses a tree joining

algorithm that fincls a parent node for a new receiver by recursively searching the

existing tree (and, if necessar¡,, re-parenting existing nodes to maintain a bound on

the number of children a tree node can support). TBCP constructs a tree with very

limited network information and no dependencies on IP multicast or special-purpose

routers in the network. However, it only specifies a tree construction mechanism,

designed to be combined with the delivery, tree maintenance and leaving operations

provided by another overlay or application-level protocol.

The NICtr application-level multicast protocol [5, 4] is designed for relatively

large receiver set, Iow-bandwidth real-time applications that can tolerate some loss'

such as news and stock tickers. NICB organises its member nodes into a hierarchical

control topology based on the separation of groups of nodes into layers, further

CHAPTER 2. STATE OF THE ART 25

partitioned into clusters of nodes that are close to each other in network terms. All

of the nodes in the group are in layer 0 and organised into clusters. Each cluster on

layer 0 (zero) has a cluster leader that becomes a member of a cluster at layer 1 (along

with other layer 0leaders), and so on. Nodes only maintain state information about

other nodes in their clusters, thereby limiting the amount of space required on each

node. Data transmission is performed orr a Lree derived frorn this control hierarchy,

where nodes retransmit received packets to all members of clusters for which the5'

are the leader. NICE periodically performs maintenance on this control hierarchy;

this maintenance consists of split and merge operations designed to maintain cluster

size between two bounds. In addition, a node periodicall¡, probes the leaders of other

clusters in a given layer looking for a more appropriate cluster allocation. Several

other proposals (SAHC [52] and ZIGZAG lZ4), for example) present similar schemes

based on dividing the receiver set into bounded-size clusters from rvhich a multicast

distribution tree can be constructed.

Several research projects have deveÌoped the idea of building ouerlay networks

where participant nodes are organised in a structured manner and nodes can be

addressed using, for example, their locations in a coordinate system. N4uch of this

research is in the related area of peer-to-peer networking, but several projects have

implemented application-level multicast as an application on a framework that pro-

vides an underlying overlay structure. The Narada system, described earlier' can be

considered an overlay network approach, since it organises its hosts into a mesh

before building distribution trees on it with a routing protocol. Ratnasamy eú

al. describe such a system built upon an overlay network framework called the

Content-Addressable Network (CAN) [63], called CAN-based multicast [64]. Sim-

ilarly, Zhuang et aL present Bayeux [83], a multicast system that leverages an

underlying overlay framework called Tapestry [82]. In [14], Castro et al. present

an evaluation of application-level multicast schemes built on several of these overlay

network frameworks, namely cAN, chord [70], Pastry [66] and Tapestry.

Chawathe's ScatterCast [15] protocol is an overlay multicast distribution system

CHAPTER 2. STATE OFTHE ART 26

that combines concepts from overla¡' network protocols, application-level systems

and traditional IP multicast. It builds an overÌay network of "ScatterCast proxies"

(special-purpose) strategically located servers) and receivers, using locally-scoped

IP multicast for delivery where possible, and direct unicast connections where IP

multicast is not available. The overlal' netrvork of proxies is built by creating a

strongllr connected mcsh first, therl rurrrring a st,autlalcl routrng protocol on top of thc

mesh to build shortest path trees (rooted at sources) for data distribution. Similarly,

Yoid l28l and HMTP lB1] are both application-level multicast proposals that leverage

existing IP multicast capability rvhere possible, and construct overlay netrvorks over

unicast elsewhere. H\4TP builds a shared tree of members representing each "island"

of local multicast connectivity (called Designated \4embers, or Dl\4s) and assumes

all end receivers are multicast-capable hosts within the same network as a DM'

In addition to the shared distribution tree, Yoid also creates a mesh topology for

control information and increased robustness.

Application-level multicast schemes solve the problem of requiring deployment

of the protocol across the whole network, since they only require unicast transport

between group members (which are all end-hosts). However, they do so at a perfor-

mance cost: all branching of the distribution tree happens at the edges rather than

in the core of the network. If branching in the core were possible, the system could

reduce path lengths significantl¡' ¿tt¿ hence build a more efficient tree'

Another issue with traditional multicast protocols that is addressed by many

application-level approaches is that of dynamic membership. IP multicast was

largely designed for well-behaved applications with a static list of hosts in the group,

where the list of receivers is fixed and does not change orrer the lifetime of the session.

The delivery tree is therefore very stable, and no further maintenance is required

after its construction. Many multicast applications, however, can invite potentially

very dynamic membership, with sets of users connecting and disconnecting over the

period of the transmission. Several application-level protocols tn, to maintain effi-

ciency during these changes by periodically rearranging the distribution tree. Often

CHAP'L'ER 2. STATE OF THE ART 27

([32, 5, 42, 40)) this is achieved by having receivers periodically attempt to rejoin

the tree at the source or a nearby node, searching for a better parent in the tree

than their current parent.

2.4 Topology-Aware Multicast

Most overlay and application-layer multicast systems are built to operate at the

edge of the netrvork on end-hosts, and their tree construction and maintenance

algorithms emphasise connectivity over performance. In this section rve present an

examination of research into multicast systems designed to more closely match the

structure of the underlying network, generating higher performance multicast trees

and even rearranging the tree when the current tree is inefficient due to changes in

the netrvork or the receiver population. We have chosen to describe these systems in

greater detail since this goal of building and maintaining efficient trees is one sirared

by our work on Lorikeet.

In ARIES (A Rearrangeable Inexpensive trdge-based on-line Steiner algorithm) [8,

7], Bauer et al. develop a multicast protocol designed to cope with d5,¡¿1-¡1ic mem-

bership by rearranging the distribution tree. In an ARIES tree, regions of the tree

maintain "damage counters" which are incremented when nodes are added or re-

moved from them. When the counter for a region exceeds a set threshold, that local

regionisrearrangedusingaSteinerheuristiclthatonll,modifieslirrksilrtlratregion,

and its counter is reset to zero.

In several respects, ARIES is impractical for use on the current Internet, but a

valuable piece of research in multicast tree construction and maintenance- The join-

ing method used is a greedy join, which has a new node join the tree by connecting

to the nearest tree node to it in the network this is an ideal operation that would

be much too expensive to perform on a current netrvork, due to the necessity of

lStei¡er heuristics are aìgorithrns designed to fild good approximate solutious to the Steilrer

TYee Problem in Networks, described in detail in Chapter 3.

CHAPTER 2. STATE OFTHE ART 28

measuring the cost of connecting via every node in the tree. ARItrS' rearrangement

algorithm also a,dds significant complexity and communications overhead to its pro-

tocoì. Each region's counters must be kept up to date b1' having newh-modified

nodes broadcast counter updates to their surrounding regions. ARIES' authors sug-

gest the use of the l{ruskal Shortest Path Heuristic (K-SPH) as the Steiner heuristic

to use for rearrangement: K-SPH operates by deleling all tìre links in a region, then

treating the individual nodes as 'fragments' to be re-connected, starting with the two

fragments that are closest together. It continues in this way until only one fragrnent

remains: that is, aìl the nodes in the region have been connected again. This opera-

tion requires a great deal of topological knowledge and measurement, even though it

is restricted to operating within a single region. Furthermore, we found that when

ARIES was implemented in our simulation environment, the shortest paths between

two fragments being connected by K-SPH could occasionally travel through a third

node currentll, in ¡¡" tree, which would result in a loop. The only way to avoid this

result is by f,¡s¿,¡ing the rest of the tree outside the region as an additional fragment,

extending the rearrangement of the tree from a local region-based calculation to one

that involves the complete tree.

Goel and N4unagala's Delay-Sensitive Greedy (DSG) algorithm [32] also uses â

greedy join. Ever1, node that joins the tree measures its stretch, the ratio of the

delay via its path through the tree to the delay on the shortest path from the

source. If the stretch for that node exceeds a set threshold, that node (and all of its

parent nodes that fail a second, tighter bound) is re-parented directly to the sourceT

thereby minimising its delay. This approach is designed to construct efficient trees

(through use of the greedy join), while satisfying asecond constraint on the rela,tive

delay: in a DSG tree, all receivers can be guaranteed a minimttm delay reìative to

their optimal shortest path delay. The stretch threshold check occurs during the

join operation, ensuring that the delay constraint is always met for all receivers;

DSG does not specify a leave operation, focusing solely on the tree construction

problem. As for ARIES, the use of a greedy join in DSG makes it impractica,l for

CHAPTER 2. STATE OF THE ART 29

large-scale deployment on the Internet. It does provide, hor','ever, an example of a

tree construction ¿nd maintenance system that balances several conflicting resource

requirements: in this case, total tree cost and the delay to individual receivers.

Stoica et al. have proposed a protocol called RtrUNITtr 171] (an acron)/m rep-

resenting "REcursive UNicast TrEe") based on hop-by-hop unicast transmission of

data between routers that support the proLocol. This approach solves a number of

the problems slowing widespread use of IP multicast: it is incrementally depÌoyable

on the network; it stores multicast forwarding state only on routers acting as branch

points (rather than all routers through which the multicast transmission passes); and

it has no requirement for separate multicast addresses, since the group is a single-

source group identified by the source's unicast address. REUNITtr uses a passive

tree construction method, relying on shared portions of unicast shortest paths from

the source to achieve branching (and therefore) more efficient network usage). The

tree is maintained by a constant exchange of messages between the source and the

receivers; the source sends TREE messages downstream, and the receivers send .lolr't

messages upstream (though these are discarded when they reach the first nulticast

router in that direction). Leaving the tree is accomplished by simply stopping the

transmission of .tolN messages, which results in a timeout at the parent router and

the tearing down of that branch of the distribution tree. This approach is ca,lìed

a soft-state approach, since state information in routers will "disappear" after a

timeout if it is not maintained through the periodic exchange of messages. While

simple to describe, this approach does require the constant exchange of messages

simply to maintain state information (even if that state is unchanging). Participat-

ing routers must also maintain timers on all information stored in order to Lilneoul

stale information.

The Hop-by-Hop (HBH) [18] protocol extends RtrUNITE's delivery mechanism

by proposing its combination with the single-source channel abstraction from EX-

PRtrSS [38], using class D multicast IP addresses to refer to its multicast groups.

It also refines the tree construction algorithm. focusing on the construction of for-

CHAPTER 2. STA'IE OF THE ART 30

rvard pa,th trees and dealing with some pathological cases that arise in asymmetric

networks that REUNITE does not treat as efficiently. \4ost of the properties de-

scribed above for REUNITE also hold true for HBH, and the two protocols build

identical multicast distribution trees in symmetric netrvorks. REUNITE and HBH

are discussed further in Section 5.2.4.

Jannottl et al. have developed a single-source, applicatiorr-level lnulticast ploto-

col called Ouercast [42], aimed at large-scale delivery of video content. Overcast is

designe{ to rvork with customised Overcast routers forming an overlay network, and

ur¡nojificd HTTP clie¡ts as etìd-reccivers. Trec constluctiort is desigrlcd to place

nodes in the tree as far downstream from the source in the tree as possible while

not sacr-ificing bandwidth from the source, measured on-line by transferring sn-rall

quantities of data. This approach is designed to ensure that as much branching as

possible takes place in the tree. Nodes periodically re-evaluate their position in the

tree and relocate themselves if appropriate-

In [46], Kwon and Fahmy present a new application-level multicast approach'

called Topology Aware Grouping (TAG). TAG constructs its (single-source) multi-

cast tree by exploiting information about the underlying network namely, using

the overlap among underlying unicast paths from the source to the group members

to construct the tree. A new node joining the tree wilÌ become a child of the current

tree node that shares the longest overlapping unicast shortest path from the source

through the network. The resultant distribution tree is a forward-path tree designed

to match the underlying network topology quite well, assuming that the underlying

unicast paths are of high quality TAG is, however, an application-layer approach

and thus cannot make use of routers in the core of the network. In addition, a

mechanism for determining the underlying unicast paths between the source and aìl

participating nodes is necessary - the approaches used in their implementation are

the use of traceroute and from publicly-accessible topologl' sources (such as OSPF

topology servers, monitors or Internet topology discovery projects). These sources

of route data are often incomplete, out of date or ver)¡ coarse-grained, compromis-

CHAPTER 2. STATE OF THE ART 31

ing thc efficiency with which TAG can constntct its distribution tree. In addition,

underl¡,ing unicast routes ma), be more a reflection of routing policy than the opti-

mal shortest paths that would provide the most efÊcient paths from the source to

recervers

R,esearch in multicast protocol design is clearìy a ìarge field, with a multitude

of different protocols expressing different application and network requirements. IP

multicast was designed initially to be a generic solution, offering a platform for

manSr-f,e-¡nany group communication rvith quite heav¡, network requirements' strch

as the necessity of complete deployment and special-purpose addressing. These re-

quirements, and other issues, led to a lack of widespread deployment of "native" IP

multicast and research into other approaches to solve these issues. Small group mul-

ticast s)'stems require no state information at rout,ers but have significant limitations

on group size and throughput. Application-level and overlay muÌticast protocols ad-

dress the problem of requiring complete deployment across the network by doing all

processing on end-hosts, but cannot match the performance of systems that are able

to do branching in the core of the network. Other protocols address the issues of

dynamic changes to the tree and directly exploiting the underlying network topology'

Our multicast protocol, Lorikeet, is designed to tdd."r, a single application, that

of the delivery of "live" streaming data (such as audio or video) across the Internet

to large groups. FYom this application arises a number of basic requirements, which

arc described in Chapter 4. From the man)¡ different systems described above,

horvever, it is obyious that man)¡ different wa)¡s of constructing a delivery tree are

possible: the join operation is critical to the efficiencl' of a multicast protocol. For

this reason, we examine the underlying problem of constructing a tree containing

a subset of the nodes in a network, the Stei.ner Tree Problem in Networks. The

following chapter presents a description of the problem and an analysis of several

approaches for solving it, as a basis for designing a multicast join operation.

hl

ì

Chapter 3

The Steiner Tree Problem in

Networks

3.1 Introduction

This chapter describes the underlying graph-theoretic problem in multicast tree

construction, the Steiner Tree Problem'in Networks. Briefly, this problem conccrns

the creation of a graph that connects a set of nodes with the smallest possible cost'

These nodes are a subset of the nodes that make up a larger network. The nodes in

this subset are called terminals, and the graph that connects them with minimal cost

is called the Stei,ner Minimal Tree. This problem is similar to that of the construction

of a minimum spanning tree, with the difference being that not all of the nocles in

the network need to be present in the resulting tree; only the terminals are required,

although other nodes may be included. The Steiner Tree Problem in Networks has

been shown to be NP-complete [41] and finding exact solutions to problems quickly

becomes intractable as the network size grows. Many heuristics have been proposed

for fincling good solutions to the problem with tractable complexity.

We begin by defining the Steiner Tree Problem in Networks and the Steiner

Minimal Tree. After that, we describe its relationship to multicast distribution tree

rl
r

i

I
1

i.

¡.
i"
,il

ï
,t

i

-rt/

ï¡
t-

32

CHAPTER 3. THE STEINER TREE PROBLEAI IN NETWORKS a)tr)tl

construction ancì its application in static (a fixcd set of r-cceivers) and d1'¡¿p1ç (u

changing set of receivers) situa,tions. Trvo techniques for' finding exa'ct solutions to

the Steiner Tree Problem in Netu'orks are presented, along rvith a set of reducti,on's

that reduce the size of the problem space rvhen applying these techniques. Ser'-

eral heuristics for finding approxirnate solutions to the problem are also described.

Finally, rve develop a fullher heulistic that is appropriate for low-complcxity con

struction of a,n efficient tree a,s the basis for a mrtlticast tree construction algor-ithn'

3.2 The Steiner TYee Problem in Networks

Consider an arbitrary graph G : (V, -8, c), rvhere V is the set of nodest in the graph,

E is the set of edges between nodes, and c '. E ---+ lR is an edge length function. The

Steiner Trec Problem in Networks is the problem of finding a subgraph of mininun'r

cost containing aú least a subset N çv of nodes (called terminals.)

Hwang et at. 147) formulate the Steiner Tree Problem in Networks as folìorvs:

o GIVEN: An undirected network G : (V, E,c) and a non-empty set -lú, N C V

of terrninals.

o FIND: A subnetwork T6,(,n/) of G such that:

- there is a path between every pair of terminals,

- total length l"c(¡i)l : D",er"(ru¡ c(e¿) is minimised.

The subnetwork T6(iV) is called the Steiner m'inimal network for lú in G. If all

edges in G have positive length, %(¡/) is called the Stezner minimal úree (SMT) for

NinG.
The Steiner Tree Problem and its variants have many applications in the sciences,

including group communication network routing in computer networks [8, 23]; circuit

lHwang et al. :use the word uerti,ces. We have chosen to use nodes instead for consistency with

otirer work on multicast and the rest of this thesis.

,.I
ltl
,iù

t

l
i

I

4

1

r{.
'rf

t,
I

I

'-{
tl,ì

I

CHAPTER 3. THE STELNER TREE PROBLEM /¡\r ¡'IBTWORKS 34

layout in electrical and chip design [33,50]; and infrastructure la5,e¡¡, such as the

design of networks of rvater pipes [80]. Garey et al. 130) have proven that the

Euclidean Steiner TYee Problem is NP-Complete. Consequently, a great deal of

research has been focused on the development of heurzst'ics for the problem which

are able to operate much more quicklS' and produce good results for problems that

are too large to solve optimally in reasortable bime.

In multicast tree construction) we build a logical distribution tree that con-

nects a set of receivers to a source (or multiple sources) in a larger network. The

pa,ths through the network between these nodes may traverse additional intermedi-

ate nodes. If we consider the receivers and sources to be the terminals in the Steiner

Tree Problem, then the optimal way to connect them so as to minimise network

load (using the costs of the network paths between nodes as the metric) will be b1'

filding the Steiner minimal tree for those terminals.

Furthermore, wc may catcgorise multicast scenarios into two cliffcrent groups,

stattc sitttations and dynamic situations. In a static situation, the set of nodes to

be connected and the underlying topology is fixed for the duration of the multicast

session. In this case, the tree can be constructed at the start of the session and will

not change for the duration of the multicast transmission. The minimal tree need

only be calculated once. A good example of a static situation is a pre-arranged

private video transmission, from the head office of an organisa,tion to all of its

regional offices over a private, fault-tolerant network. In this scenario, the source

and set of receivers is known at the beginning of the session and will not change

so the tree only needs to be calculated once, used for the transmission, and then

torn down.

In a dynamic situation, hou'ever, several of those parameters that are fixed in a

static situation may change:

o The receiver set may not be fixed: users might join and leave the session for

different periocls of time over its duration.

I

#
t$i

I

t.
i

t

't

1

i

["
ï

I

4
ì'
l_

{

t
I
I

i
t
t
I

ir
t

."(

T
,l

1

CHAPTER 3. THE STEINER TREE PROBLEM /N ATETIAIORKS 35

. The underlying network topolog¡' might change: Iinks may be added or re-

moved, or nodes in the tree ma)¡ fail.

An example of a dyna,mic situation is that of an Internet-based radio station.

The station operates constantll' and listeners connect when the5, r'r'ish to, listen for

as long as they wish, and disconnect. The size and distribution of the receiver

population in this scenario ma.)¡ var)¡ considerabl), with time. One way to approach

this scenario rvould be to construct a ne\Ä¡ distribution tree every time a change

occurred a receiver leaving or joining the tree, for example. This would ensure

that tìre tree rernained efficient, but u'ould be very likel¡, to involve significant control

overhead and disrupt existing users' transmissions while the old tree rvas torn down

and the new one constructed.

Another approach is to have the tree remain in place and then modify it locally as

receivers join and leave. New receivers can be grafted on to the tree at an appropriate

Ìocation, and leaving receivers can be removed. This reduces the complexity of

the system and minimises disruption to existing receivers, but rnay result in a less

efficient tree than one constructed dilectl)'for the current receiver set at a, particular

point in time. This is due to the continuing use of the pre-existing structure of the

tree, generated over time by other join and leave operations. Near-optimal decisions

made in the past may turn out to lead to significantly sub-optimal situations for

future receivers joining the tree.

In onh,ne situations, rvhere the distribution tree must be calculated on demand,

exact methods to find tlie SMT cannot be used because of their pr-ohibitive complex-

it1,. çul"rtution of the tree must happen quickly, so the receivers can join the session

and begin receiving data. Multicast is one such online application of the Steiner Tree

Problen in Netu'orks. and for this leason hculistics for finding approximate SMTs

are used instead of exact methods. Additionally, only limited information about the

under¡,i¡g network topology or even the presence or absence of other nodes in the

trec rnay be available, rnaking finding an exact solution very difficult ol irnpossiblc.

CHAPTER 3. THE STEINER TREE PROBLEM IN ¡\IETWORKS 36

{

3.3 Exact Solutions

\4any techniques for finding optimal solutions to the Steiner Tree Problern in Net-

works have been developed. In this section, we present two such techniques which

scale accgrding to difierent attributes of the graph being operatcd otr. Thc first

technique, Hakimi's Spanning Tree Enurneration algorithm [35] is a complete enu-

meration approach, solving the problem by considering every possible minimal span-

ning tree of every subset of the network's nodes that includes the terminal set. The

second technique is a dynamic programming approach proposed by Dre¡'f¡5 ¿tt¿

Wagncr 122) T,hat gcneratcs the SMT by finding ancl cornbitring the S1\4Ts of srnallcl

sub-graphs.

When describing the worst-case complexity of various algorithms in the following

sections, we use u to represent the number of nodes, e to represent the number of

edges and z to represent the number of terminals in the network'

Further approaches to solving the Steiner Tree Problem in Networks to optimality

are described by Hwang et al. 147) and Winter [79].

3.3.1 Spanning TYee Enumeration

Hakimi's Spanning Tree Enumeration method [35] frnds the S\4T for a graph G by

finding the minimum spanning tree for every set of nodes that contains at least the

terminal set. Every possible set of nodes is tested, and the connected minimum

spanning tree with minimum cost is an SMT for this terminal set on graph G.

There are several algorithms available for finding the minimum spanning tree of

a graph. We selected Prim's Algor"il,lurrt [61] for this implementation, which operatcs

as follows (given a set of nodes as described above):

o begin by adding an arbitrary node from the set to the output graph;

o add the smallest edge that would connect a currently unconnected node in the

set to the output graPh;

CHAPTER 3. THE STEINER TREE PROBLEM I¡\I ¡\TE"WORI(S taJI

o repeat the previous step until all nodes in the set are connected in the output

graph.

Assuming that shortest paths between all nodes have alread), been calculated,

the complexity of the algorithm as described here is O(n22" '). The spanning tree

enumeration method is polynomial in the number of terminaÌs and exponential in

the number of non-terminals, and hence it is most suited to solving problems rvhere

the majority of nodes in the graph are terminals.

3.3.2 Dynamic Programming

This approach, formulated by Dreyfus and wagner 1221, builds the sN4T by con-

sidering small subsets of the terminal set, finding and storing tìre SN4Ts for those

subgraphs, and iteratively forming larger Steiner minimal trees from minimal length

unions of these smaller SMTs until the SMT for the complete terminal set is found.

Assuming that shortest paths between all nodes have already been calculated,

the complexity of the algorithm is O(3'u l2'u2). Hence, this approach is polynomial

in the number of nodes, but exponential in the number of terminals. The dyna'mic

programming approach is therefore suited to solving problems where the number of

terminals is small compared to the total number of nodes in the larger graph.

3.4 Reductions

The task of finding the SMT can be made signifrcantly easier witli the use of pre-

processing reductions that reduce the size of the calculation. These reductions can

be broadly classified as'inclusion reductions and erclus'ion reductions.

Inclusion reductions reduce the complexity of the problem by identifying nodes

and edges lhat must be included in the SMT. Therefore, these nodes and edges can

be placed in the output graph before the main calculation begins, and removed from

consideration in the input graph. A simple example of an inclusion reduction is a

CHAPTER 3. THE STEINER TREE PROBLEM 1¡\r
^rETl4lORKS

38

test for terminal nodes of degree 1 (leaf nodes that are terrninaÌs). Since such a

terminaÌ must be in the output graph, so must the single node connected to it and

the link betu'een them.

Exclusion reductions identify nodes and edges that could not possibly be in the

S\4T, therebl, enabling their removal frorn consideration by the main calculation.

A simple example is a test for non-terrninal rrocles t-r[deglee 1. SucÌr nodes cannot

errer be on the shortest path connecting turo terrninals and hence rna¡r þs removed

rvithout affecting the SMT being calculated.

These reductions can have an enormous impact on the running time of exact

algorithms, such as the spanning tree enumeration and dynamic programrning ap-

proaches described earÌier. In many cases) simple Steiner tree problems can be solved

through the use of reductions alone. In other cases) the set of nodes and edges in the

input graph can be drastically reduced, decreasing the number of calculations nec-

essary to (for exarnple) enumerate all possible minimum spanning trees containing

the terminal set, or calculate SMTs on smaller subgraphs of the terminal set.

We employed a number of reductions to facilitate the faster calculation of exact

SN4Ts in our simulations. The list of reductions used is as follows:

Non-Terminals of Degree 1 Remove any node of degree 1 that is not in the

terminal set, along with its connecting edge.

Non-Terminals of Degree 2 Remove any node of degree 2 that is not in the

terminaÌ set which can be "b5,passed" by a shorter path between its neighbours.

If it cannot be bypassed, remove it and add an equal length direct path between

the tu'o neighbours.

Paths with Many Terminals Any edge (u¿, ur) with cost greater than tbe bottle-

neck Stei,ner d'istancez between u¿ alìd ui ma'! be removed-

2The path P bctween two nodcs u, and tr3 ir graph G is made up of onc or rrìore clementary

paths, wherc an elementary path is the subsct of P that coluccts u, and the ncxt terminal (or

?rj), two tcrrninals, or a tcrminal and u¡. The Stei.ner d'isto,nce is thc length of the ìongest such

CHAPTER 3. THE STEINER TREE PROBLEI\4 IN NETWORKS 39

Non-Terminals of Degree 3 For a given non-terminal u with degree 3, if the

minimum bottleneck Steiner distance betrveen a pair of u's neighbours is less

tha,n or equal to the sum of the u's edge costs, then u can be removed along

with its edges, and repla,ced by direct links of identical cost between its three

¡eighbouls. This is a specific case of a generalised "Non-terminals of degree

k" reduction.

Terminals of Degree 1 Any terminal node of degree 7 mu,st belong to every SMT,

and so may be removed (along with its connecting edge) from calculation a,nd

added to the frnal tree immediately. This is the only incluszon reduction we

use in our implementation.

Cut Reachability This exclusion reduction uses a tree spanning the terminal

nodes (such as the output from a fast Steiner heuristic) to identify non-

terminals that can be removed from consideration.

Detailed descriptions of these reductions (and several others) can be found in

[41]. In our simulations, we performed the above reductions in the given sequence,

¡epcating the sequence until rrone of the reductions rnodified thc graph. Such lepe-

tition is necessary as some of the reductions (such as the Non-Terminals of Degree 3

reduction) introduce additional edges that may be subject to exclusion by another

reduction.

3.5 Suboptimal Heuristics

Since fr¡ding the optimal solution fbr rnost graphs is so cotnputationall¡' intensive,

even rvith reduction preprocessing. various heuristics are used in pra,ctice to find a

good suboptimal solution. This is particularly true of multicast tree construction

algorithms, which must be able to run online very quickly'

elementary path for a path P. The bottleneck Steiner distance is the minimum Steiner distance

takcn over aìì possible paths from ui I'o uj in G.

CHAPTER 3. THE STEINER TREE PROBLEM I¡\I ¡úBTWORI(S 40

Other heuristics have also been developed for the Steiner Tree Problem in Net-

works - several are described in [41]. We chose to use a small subset of these, limiting

our analysis to the faster algorithms available, since we are focusing on algorithms

that could be used online to build multicast trees.

3.5.1 Shortesl. Paths (SP) Heuristic

The ShorLesl Paths heuristic operates as follows:

o Begin with an arbitrary terminal in the output graph'

o Find the closest terminal to the output graph that has not yet been added.

Connect this terminal to the output graph via its shortest path to the nearest

node in the output graph. Note that this node could be a terminal or a non-

terminal.

o Repeat until all terminals have been added-

This algorithm requires the shortest paths from every terminal to every other

node in the graph to be known. Consequently, its complexity is dominated by the

calculation of these shortest paths. If Dijkstra's algorithm using heaps is used to

calculate them, then the complexity of the SP heuristic is O(n(e+ulogu)) l 1].

3.5.2 Minimum Spanning Tbee (MST) Heuristic

The Minimum Spanning Tree heuristic operates by calculating the MST for the

complete graph, and then removing each non-terminal of degree one until no more

can be removed. In our implementation, Prirn's algulillulì was used to find the

MST. The complexity of the MST heuristic is O(e + ulogu) [41].

3.5.3 Shortest Paths Terrninals (SP-T) Heuristic

This operates similarly to the SP heuristic described above, but only connects new

terminals to terminals in the output graph, rather than to any node. Thus' it

CHAPTER 3. THE STEINER TREE PROBLEA,T IN NETWORKS 4I

only requires shortest paths betrveen pairs of terminals to be calculated. The SP-T

heuristic operates as follows:

r Begin with an arbitrary terminal in the output graph

o Find the closest terminal to the output graph that hasn't yet been added.

Connect this terminal to the output graph via its shortest path to the nearest

term'inal in the output graph.

r Repeat until all terminals have been added

This heuristic requires less information than the SP algorithm, as it only needs

the shortest paths from every terminal to every other terminal. In practice, horvever,

Dijkstra's algorithm must still be calculated on the whole input graph, as these

shortest paths traverse intermediate non-terminal nodes which must be considered

in the calculation. Hence, the complexity of the SP-T algorithm is the same as that

of the SP algorithm, O(n(e f ulogu)).

3.5.4 Shortest Paths with Origin (SP-O) Heuristic

The Shortest Paths with Origin heuristic further limits the SP algorithm by requiring

that all terminals connect to the tree via their shortest paths to an arbitrarily

selected terminal. This terminal is lhe ori,gi,n, or root of the tree. The algorithm

proceeds as follows, assuming an origin has been selected and added to the output

graph:

o Select an unconnected terminal ? and determine the shortest path P from it

to the origin.

o Add ? and all the nodes and links in the path P to the output graph (unless

they are already present).

o Repeat until alt terminals have been added to the output graph.

CHAPTER 3. THE S"E/¡\rER TREE PROBLEAI lN NETWORKS 42

This algorithm is similar to the SP and SP-T heuristics described above, but onl¡,

connects new terminals via their shortest path to the origin, rather than selecting the

nearest node or terminal. The complexity of the SP-O heuristic is O(e+ulogu) l 1].

3.6 Performance Analysis

All of the heuristics and both of the exact Steiner tree algorithms described in the

previous section have been simulated on a variety of input data. The simulation

softrvare used is a custom-rvritten package developed in the Python programming

Ianguage.

The first set of input data (graphs and sets of terminals) used to compare these

techniques came from the Steinlib Testdata Library3 [45], data sets B and C. Both

of these data sets contain sparse graphs with random edge weights and varying

numbers of terminals. Data set B consists of eighteen problems with 50-100 nodes,

and data set C consists of twenty problems with 500 nodes.

The second set of input data are the "\Maxman" topologies that are used later

for simulating dynamic multicast scenarios. These topologies consist of 500 nodes,

350 of which are leaf nodes, and are described in detail in Section 5.3.1. In these

simulations all of our terminals are leaf nodes, to more closely model receivers in an

lnternet multicast scenario.

3.6.1 Exact Methods

The two algorithms f'or' finding optirnal solutions both scale according to difierent

attributes of the network and terminal set, and are thus applicable to different classes

of problem.

The spanning tree enumation algorithm requires very little memory (since it need

only store one tree and the current minimum cost at any given time) but takes a

3Available on the Web at http : //el ib . zib . delsteinL j-blsteinLib. php

CHAPTER 3. THE STEINER TREE PROBLEM I¡\I NE"WORI{S 43

great deal of time to compute, and scales exponentially with the number of non-

terminals in the graph. Thus, it is suitable for denser graphs where the number of

terminals is large relative to the total number of nodes.

The dynamic programming a.pproach requires considerably more storage than

the spanning tree enumeration algorithm, since it must compute and store a large

number of subgraphs as it executes. In terms of computation tirne, however, iL sca,les

exponentiallv with the number of terminals rather than rvith the number of non-

terminals. Thus it is most suitable for finding the solution to large, sparse graphs

rvhere the number of terminals is small relative to the number of non-terminals.

We found that the memor)/ requirements of this algorithm were such that for larger

graphs we had to resort to the use of temporary disk storage, which considerably

slowed the execution of the program.

3.6.2 Heuristics

Four heuristics for finding approximate solutions to the Steiner Tree Problem in

Networks have been presented. All four complete in polynomial time, with their

complexity dominated by the shortest-paths calculations that they require.

Three of the heuristics (the Shortest-Paths, Shortest-Paths-Terminals and Shortest-

Paths with Origin heuristics) are path heurist'ics, building a tree spanning the ter-

minals by connecting unconnected terminals to nodes already in the tree until all

terminals are connected. The three heuristics differ in the number of nodes in the

tree available for connection and consequently in the size of the search required.

The fourth heuristic (the \4inimum Spanning Tree heuristic) is a tree heurist'ic,

which builds a tree spanning the netrvork first, then prunes norr-terrninals to form a

smaller tree that is an approximation of the SMT. This is similar to the approach

taken b)' the spanning tree enumeration technique for frncling the exact solution,

except that only one spanning tree is considered (the MST of all nodes) and then

reductions are applied to prune that tree.

CHAPTER 3. THE STEINER TREE PROBLEM /¡\r ¡\TETWORKS 44

3.6.3 Results

Two charts illustrating the competitiveness of the heuristics when run on the Stein-

Lib B and C data sets are included as Figures 5(a) and 5(b) respectively. These

charts shorv the cost of the final tree for each heuristic divided b), the cost of the

optimal S\4T against each network in the data set. Note that Figure 5(a) is plotted

on the same vertical axis as Figure 5(b) to simplify comparison.

For srnall graphs, the lieulistics shown performed fairly similarly ¿t ¿ quitc wcÌI,

occasionally even finding the optimal solution. As the problems grelv larger. how-

ever, theil perforrnance tcnded to fall ofi, particularly that of the MST heuristic.

The SP and SP-T heuristics performed remarkably similarly, despite the extra con-

straint that the SP-T heurìstic could only connect new terminals to terminals, rather

than to any node. Consistent rvith the requirement that it only join terminals to

the "source" of the graph, the SP-O heuristic performed less well, but still produced

a graph that was within 1.5 times the cost of the optimal graph in almost all cases.

The MST heuristic performs quite differently, since it operates by constructing

a larger tree and then removing nodes from it, rather than building the tree itera-

tively as in the other heuristics. Its performance in these scenarios is quite variable,

suggesting that it is sensitive to properties of the input data that do not have so

nuch of an effect on the performance of the other heuristics.

The MST heuristic performs much better on dense graphs, where the majority of

nodes are terminals, than sparse graphs, where there is a small number of terminals

relative to the total number of nodes. This is shown graphically by Figure 5(b),

where the three peaks in the MST heuristic's chart (data sets C06, C07, C11, C12,

c16 and c17) are all ver1, sparse graphs, with 500 nodes and 5 terminals each.

Figure 6 is a graph of the heuristics' competitiveness on the larger Waxman net-

work topologies. These results are the mean tree costs generated by each algorithm

averaged over fi.ve difierent Waxman network topologies. Fol each heuristic, three

different terminal sets were used, composed of 20, 50 and 100 terminals.

CHAPTER 3. THE STEINER TREE PROBLEM I¡\T ¡\IETWORKS 45

24

22

2

Ê

årt

! 16
!

ü

ts
t2

i
E

c
o
o

.¿

-!
g

oo

F

z4

22

08

08

b13 bt4 br5 b16 b17 b18

+ Shoñest Pàths lerminals +Shodest

b01 b02 bo3 bo4 bos bo6 b07 bo8 b09 b10 b11 b12

StelnLlb Ptoblem

c09 c10 cl1 c12 c13 c14

st€¡nLib Problem

(a) Steinlib data set B: TYee costs for heuristics, relative to optirnal SMT cost

18

16

t4

12

col co2 c03 c04 r05 c06 c07 .oB

+

c15 c16 c77 c1a l9 .2O

Pâths Term¡nåls +Shodest Pâths

(b) Sieinlib data set C: Tlee costs for heuristics, relative to optinral SMT cost

Figure 5: TYee costs relative to optimal trees for heuristics

CHAPTER 3. THE STEINER TREE PROBLEM IN I\TETWORI{S 46

140

080

20

00

E
.9

¡
ø
r
E

è
o
o
o
.ì
ß
q

o

o
U

F

Exãct M¡nimum Spanning Tree Shortest Paths with
Origin

Shortest Paths Shortest Paths Terminals

I20 Receivers 850 Rece¡vers 8100 Receivers

Figure 6: Waxman data set: Tree costs for heuristics, relative to optimal Sl\4T cost

In these results, all four heuristics maintain a tree cost u'ithin 1.2 times the

optimal tree cost. As in the Steinlib results, the SP and SP-T heuristics do very

well, u'ith the other algorithms producing more expensive trees. This is consistent

with the larger amount of freedom to choose connection points on the tree available

to those two algorithms. In contrast, the SP-O heuristic may only connect terminals

to one point (the source) in the tree, Ieading it to generate longer paths and hence

a more expensive tree. The MST heuristic once again shows that it performs better

in denser scenarios than it does in sparse ones, with its performance improving as

the number of terminals in the graph increases. It does not, horvever, outperform

the SP and SP-T algorithms and is only marginally better than the SP-O heuristic

in these examples.

CHAPTER 3. THE STEINER TREE PROBLEM IN ¡\TET\4iORKS 47

3.7 The Steiner Tree Problem in Multicast

Tlie Steiner Tree Problem in Networks is the underlying problem in the development

of algorithms for the construction of multicast distribution trees on a network. The

"terminals" in the Steiner Tree Problem represent the multicast group's members,

connected together by paths through other intermediate nodes (non-terminals) in

the network. The spccific application of large-scale dynamic multic¿st over the

Internet also adds a number of other constraints to the problem: in particular, the

construction of the tree must be fast and operate with minimal information about

the network topology. Centralised information about the topology of the whole

network (as assumed in this chapter) is not available, and gathering information

from large numbers of nodes online during a join is not feasible if the join is to

complete quickly.

In this chapter, we have presented two exact algorithms for solving the Steiner

Tree Problcm in Networks and four- heuristics for finding approximate solutions. The

exact algorithms are not appropriate for use in a real-time multicast system, for two

reasons: they require complete topological information, and they scale exponentially,

requiring a great deal of computational time to find the solution. Neither of these

requirements can be met in an online multicast tree construction scenario.

The four heuristics described earlier are the Shortest Paths (SP) heuristic, the

Shortest Paths Terminals (SP-T) heuristic, the Shortest Paths with Origin (SP-

O) heuristic and the N4inimum Spanning Tïee (\{ST) heuristic. The first three of

these are path heurisúics which construct a tree gradually by connecting unconnected

terminals to nodes already in the tree until all terminals are connected. The \zfST

heuristic is a tree lteurist'ic which constructs a spanning tree first ancl then prlrnes

unnecessary nodes. All four heuristics are able to produce approximate solutions

within 1.2 times the exact solution's cost on the Waxman topologies used to simulate

a multicast scenario, although the MST heuristic performs less well on the more

sparse data sets in the Steinlib tests. These heuristics operate in polynomial time,

CHAPTER 3. THE STEINER TREE PROBLEM /N NETWORKS 48

much faster than the exact approaches.

However, there are still obstacles to the use of such heuristics in an online mul-

ticast situation. These approaches require considerable topological information

complete information about the network in the case of the N4ST heuristic, and a

great many shortest-path measurements in the case of the others. Although it is

possible to implement an Internet-based tree corrstruclit-xt algoribìun based on the

SP heuristic, for example, such an algorithm would need to contact each node in the

tree for every new receiver that joined it, in order to find the closest parent node.

Such large amounts of control messaging are inappropriate for anl'fþl¡g but small

groups. At the other extreme, the SP-O heuristic requires no such calculations, but

limits the efficiency of the tree by connecting every receiver to the or-igin; this ap-

proach relies on the presence of shared portions of these paths to provide efficiency

savings through branching.

'We feel that the use of a path heuristic is an appropriate way to design a multi-

cast construction algorithm, but an appropriate compromise must be made between

control messaging and performance. The algorithm must consider more possible

parent nodes than the SP-O heuristic in order to promote branching in the tree and

thereby improve performance, while not exhaustively searching the existing tree as

is done in the SP and SP-T heuristics.

In the following chapter we will describe a multicast tree construction technique

that develops from these ideas. We begin by describing the characteristics of our

target application and the network on which it operates. From these attributes we

create a series of requirements, which are used to develop a complete protocol for

multicast tree construction and maintenance.

Chapter 4

The Lorikeet Protocol

4.L A New Multicast Protocol

In previous chapters rve have described some of the principles of multicast distri-

bution and presented an overview of current Internet standards and research work

in the area of multicast protocol design. We have also analysed the graph-theoretic

problem that underlies multicast tree construction, the Steiner Tree Problem in Net-

works. It is clear from the large variety of multicast systems in the literature that

there are many ways to approach the problem of tree construction and maintenance,

and that all of these approaches have both advantages and disadvantages depending

on the target application.

In this chapter we present a new multicast protocol, called Lorikeet. Lorikeet is

targeted at single-source distribution of live multimedia content over the current In-

ternet. It uses a hierarchical tree of unicast connections between the source, routers

and receivers to deliver this data, requiring neither deployment on every router in

the network nor traditional IP multicast infrastructure. Since this application is

likely to be used in quite d),namic situations, receiver join and leave are low com-

ptexity operations designed to complete quickly. Additional support is provided for

rearrangernent of the tlee to maintain efficiency as the receiver set changes.

49

CHAPTER 4. THE LORIKEET PROTOCOL 50

We commence our discussion with a description of the characteristics of the

application and the environment that we envisage for this protocol. From these

characteristics, we build a set of requirements for Lorikeet. Finally, we describe the

protocol itself and specify the behaviour of each operation it performs.

4.2 Design Goals

4.2.7 Application Characteristics

As clescribed in ChapteL 1, wc seek to create a new protocol designed to efficiently

deliver streaming multimedia content to home users using multicast over the current

Internet. At present, streaming multimedia is predominantly served by simultaneous

unicast applications, resulting in very inefficient use of network bandwidth which

could be significantly reduced if a multicast system were available.

This application has a number of properties that clirectly affect the clesign of a

multicast protocol built to facilitate it:

1. The data transmission can tolerate some loss, since the data being transmitted

is multimedia data and, depending on the application requirements, some small

loss of information will not be perceived by the user.

2. The application has a single source and only transmits content in one direction

from the source to the recetver.

3. People will request content manually and expect delivery to commence quickly,

hence ioin operations must complete in reasonable time.

4. The transmission may be continuous (such as for a 24 hour news broadcast)

or short-lived (for a live event, such as a music concert) .

5. The set of receivers is unlikely to be static; it will probably change over time

a.s new receivers join the session and other receivers leave.

CHAPTER 4. THE LORIKEET PROTOCOL 51

6. Content providers are likelS' to want to be able to authenticate receivers and

collect slatistics on receivers.

4.2.2 Environmental Characteristics

Our protocol is targeted at current Internet technology and is thus subject to the

properties of Internet netrvorks and deliver)' mechanisms' Some of these properties

that directl), influence the protocol design are as follows:

1. The current Internet generaìly only provides best-effort delivery of packets,

using a variety of underlying routing protocols. For a given stream of packets

transmitted from node A to node B, there is no guarantee that all packets

will be delivered, no guarantee that they will arrive in order, and no guar-

antee that they will all traverse the same path through the network from A

to B. Quality of Service mechanisms like DiffServ [57] are available on some

networks, generally for corporate use, but they are not yet widespread enough

to rely on for providing guaranteed delivery to home users.

2. It is unrealistic to assume that the protocol will be deployed on all routers,

everywhere. In order for a protocol to be practical on today's Internet, it mrtst

be incrementally deployable.

3. It is assumed that Internet routers can calculate an appropriate measure (hop-

count, for example) of the "cost" of the path between two nodes (routers or

receivers) in the network.

4. The current Internet does not necessarily provide symmetric links (with the

same capacity in both directions) or symmetric routes (through the same set

of links in both directions) through the network.

5. Access bandwidth (the capacity of the last link, between an end-user and their

Internet service provider) is generally very limited, and high-bandwidth mul-

timedia applications ca,n often consume a significant fraction of that capacity.

I

.I
u

r

CHAPTER 4. THE LORIKEET PROTOCOL 52

End-users usually only have a single link to the rest of the network, through

â consumer Internet service provider.

4.2.3 Requirements

I'rom these application and environmental characteristics arise a number of system

requirements, which we present and discuss in the following points.

1. Th,e s'¡1stem sh,ou,ld, a,ssum,e onl,y best,-e.ft'ort, tro,n'sm'i,ssion, o.f d,ata, a,n'd is n,ot re-

qui,red to deliuer all packets, or all packets 'in sequence.

This differentiates the systern fiom a reli,able multzcast system (for example, those

presented in[47,48, 58]), in which ¿ll of the data transmitted must be received by

all of the receivers. We are focusing specifically on streaming multimedia data,

which can tolerate some loss, and hence unreliable transport is acceptable, within

certain constraints. Damage to streams through packet losses can also be mitigated

through the use of application-layer or video coding mechanisms, like Forward-Error

Correction (FEC) and layered coding.

2. The system is designed for one way, s'ingle-source transmtsszon-

Multicast transmission should make more efficient use of network resources ln

delivering non-interactive content, such as streaming video. In such a case) the data

transmission flows only from the sender to the receivers.

This application has a compelling commercial driver, since large amounts of net-

work capacity are currently expended on single-source audio and video transmission

[69]. Examples include webcasts of live events, movie trailers, adult entertainment

and Internet radio stations.

Concentrating on the single-source case significantly simplifies the protocol, since

i.
¡

i

(

I
i,

s

ì.

t"
l
t
I

(

q

I,

i

:i

CHAPTER 4. THE LORIKEET PROTOCOL .),f

there is no need to do sender discover¡, (as in many traditional IP multicast pro-

tocols) and the tree ca,n be optimised for data coming from the single sender. A

similar idea has been appìied to traditional multicast in the form of Source-Specific

\4ulticast (SSN4) [9], currentl)'under consideration by the IETF'

3. Tree construct'ion should be "good" 'in tlt'e sender-rece'iuer dzrection-

\4ost traditional multicast algorithms are rece'iuer-driuen, where the receiver joins

the tree by contacting its nearest multicast-capable router. This means that the tree

is constructed from the bottom up (from the receiver to the source), while the actual

data flows in the opposite direction - from the sender(s) to the receivers. Such a tree

construction mechanism is called
^

reuerse-path join. This is inherently inefficient

in today's Internet, where routing can be (and often is) quite asymmetric due to

phenomena like hot-potato routing in the core 172) and the presence of asymmetric

links (such as ADSL and satellite links) in the access network.

We therefore construct our trees in the downstream , or forward-path, direction,

to match the direction of data transmission.

4. Recei,uers must haue no chi,ldren tn the tree.

As stated earlier, one of the properties of the current Internet is that the access

bandwidth (the capacity of the link between an end user and their Internet Service

Provider) is generally quite limited. In many cases) this link is also asymmetric,

with larger capacity available for transmissions to the user than fromlhe user. This

is one of the major issues faced by end-host multicast systems: the data rate of

the transmission is necessarily constrained by the upstream bandwidth available to

receivers, since receivers must re-send the data stream to other receivers. A second

problem faced by systems in which end-host receivers must support other receivers

is the fact that end-hosts generally have a single link to the network which must be

IJ
tn

'
i{ü

I

I

i
i

{

1

ri

t
(

.tt

I
{

I

,1,,
jr

i

ì

ül
r(i

,l

'{

I

CHAPTER 4. THE LORIKEET PROTOCOL 54

traversed twiceby the same data, whereas routers in the core generally have several

links to bhe network.

We therefore set the requirement that receivers must be leaf nodes of the tree. All

bralching takes place further upstream, which more accurately rcflects thc capacity

distribution and topolog), of the network and allows receivers to receive higher-

bandwidth streams. In adrlition, requiring receivcrs to be leaf nodes simplifles letrv-

ing the tree and tree maintenance, since a receiver can simply be pruned from the

tree without having to reconnect its children elsewhere.

5. People will request content manually and erpect deli,uerg to commence quickly,

hence jo'in operat'ions must completein reasonable ti'me.

In order for the system to be usable by people in real-time, it must be designed

to perform tree construction with enough speed to be responsive. For example, a

user should not need to wait for a significant amount of time between submitting a

request to join the tree and beginning to receive data.

6. The sgstem must effict,ently handle dynamzc membership

As described in Section 1.1.5, many modern applications for multicast trans-

mission can have dynamic membership, with nodes joining and leaving the tree

continually. The multicast protocol should be able to cope with these changes to

the distribution tree and perform maintenance on it when required, in order to main-

tain its efficiency.

7. The use of a multr,cast session (rather than a unicast transrn'ission) should be

transparent to receiuers.

I

I

I

i

I

4
I
¡ì

i

þ.

t
Ï
.t

,t

iI
t

Receivers should not be aware that they are participating in a multicast session,

fl

l

CHAPTER 4. THE LORIKEET PROTOCOL 55

only ¡þ¿¿ the¡' ¿¡s receiving data from the network. To put it another way, parttct-

pating in the multicast session should appear to the receiver to be no different from

receiving a unicast stream. Specifically:

o there should be no need to allocate a special multicast address (as in traditional

multicast);

¡ sessions can be identified using URLs that are acquired out-of-band (for exam-

ple. via a link on a M/cb page) - ttre URL identifìes the source and the "Iìalne"

of the stream;

o there is no need to worrl, about address collisions, because of the above two

points;

o a connection is established with a server, as in a client-server application like

the World Wide Web. This server may or may not be the source, as will be

discussed in Section 4.5.2.

8. Not all routers i.n the network need to support the protocol bei'ng used.

Not all routers in the network need to support the protocol the system should

degrade to simultaneous unicast in the case of no routers that support the protocol

being present (this is the worst-case scenario.) This is to maximise the utility of

such a protocol, making sure it is usable even in the case where no routers that

support the protocol are available in the network. In addition, the protocol should

be capable of incremental deployment in the network without requiring changes to

all of the routers across the Internet all at once.

l
L
i

I

f.

t

1

i,'

[.
ir

t"
1l
t
,t

(

4
I¡

{

CHAPTER 4. THE LORIKEET PROTOCOL 56

i

1

,t

{'t

4.3 Network Assumptions

As described in the requirements above, this protocol is designed to be deployed on

today's Internet network without requiring large-scale changes to existing routing

and transmission protocols. Hence, the use of standard UDP or TCP packets would

be the most appropriate method for carr)'ing control signalling, transmitted over

standard unicast paths provided by existing Internet routing protocols. We assume

that the network consists of a group of interconnectecì smaller networks, with limited

capacitl' on links to end users (corresponding to home DSL links or small business

Iinks, for example) and large capacity in the core.

Tree construction and rearrangement operations rvill involve the calculation of

the cost of the path between two nodes in the network. Both of these nodes will be

capable of supporting the protocol, since both will be either receivers, participating

routers or the source. Intermediate nodes on the path between the two nodes may

not necessarily support the protocol these nodes simply perform standard Internet

forwarding. The cost metric used to select between different paths through the tree

must be calculable at individuaì routers rvithout requiring the involvement of a large

portion of the multicast tree or the use of significant additional state information.

Ideally, we would Iike the cost metric to be chosen so that the protocol's multicast

trees are constructed with minimal total bandwidth usage.

Since we wish our protocol to be incrementally deployable, the only pieces of

infrastructure we can modify are the participating routers themselves. This require-

ment rules out the creation of modified routing protocols that rnust be run on cvery

(capable or not capable) node in the network. In addition, the only metrics that are

available are those that can be calculated between capable routers and receivers, us-

ing the underlying Internet infrastructure. Traditionally, the available metrics have

been hop count (the number of intermediate nodes) and delay (the round trip time,

or time taken for a packet to be transmitted from one node to the other and back).

Our application, as described earlier, is a one-way streaming application, sending

-.,{

CHAPTER 4. THE LORIKEET PROTOCOL 57

data from the source to the receiver set. Since there is no communication in the

other direction, it is not generalll, sensitive to delay: delay is only an important

factor if the application is time-sensitive or interactive. In our situation, promoting

branching in the network and minimising the bandwidth used is much more impor-

tant tha,n minimising the deìay to receivers. Therefore, we suggest the use of hop

count as the initial metric to use in l,ree colsLlucLiol aud learrangement operations:

it is easily calculable on the current Internet and requires no extension of existing

infrastructure. In addition, it allows the paths used by the protocol to match those

used fol today's unicast traffic. Note that although ltop count is an additive tnetric,

additivitf is not a required property for our metric: all that is necessar)¡ is a way

to select the minimum cost path through the netrvork from a set of candidate paths

without requiring information from a large number of nodes.

Although hop count provides an immediately available (though coarse) measure

of the cfficienc5, of a path between two nodes, it has at best only a limited correlation

with available capacity. If we wish our protocol to select its paths so that it minimises

the proportion of available bandwidth used by the tree, it is necLssary to discover the

bandwidth of intermediate links in the netrvork directly and use that as a cost metric.

Such discovery is not possible on a wide scale todaS'' However, this functionality may

be developed in the future due to its utility in helping control the next generation

of applications that have stricter quality of service and capacity requirements.

In such a scenario, we would propose the use of a cost metric based on the

bottleneck bandwi,dth (the bandwidth of the smallest capacity link on the path) or

auai,lable bandwi,dth (the proportion of the bottleneck bandwidth that is available at

a given instant) of the path between the trvo nodes.

In this thesis we use positive integer costs in our simulations, representing a

general cost, rather than restricting ourselves to the use of hop count in which the

cost of every link is unity.

{

CHAPTER 4. THE LORIKE,ET PROTOCOL 58

4.4 Control and Delivery

As described in Chapter 2, many different approacìres to multicast control and deliv-

ery have been developed. All of these approaches share the central idea of construct-

ing a logical tree of nodes, then using that tree to replicate data packets as they

pass dorvnstream from the source, in order to suppl5, them to all of the multicast

group's receivers. However, the mechanisms for constructing and maintaining the

tree and for managing the delivery of data vary considerably, depending on the re-

quirements of the intended application and the constraints imposed by the network

environment.

The concept of control of the multicast tree encompasses all of the mechanisms

used to manage the tree's structure: where state information about the tree is

stored, how it is modified and rvhich nodes should respond to events that occur in

the multicast group. XCast [tt], for example, is a small group multicast system

i¡ which the source manages all information about the tree, maintaining a Ìist of

receivers and transmitting that list in data packets to be replicated along with the

data payload by downstream routers. In this case, routers in the network maintain

no state information about the tree at all and merely "follow ordets" from the source.

In contrast, REUNITE [71] has no centralised list of receivers at all. Instead, each

node in the tree maintains information on its parent and its children and forwards

data from the former to the latter. These lists are soft state information, meaning

that they must be periodically refreshed b), regular communications from children

or discarded after a timeout. Traditional IP multicast in its simplest form relies

on an implicit tree, constructed from the bottom up by having receivers contact

their local multicast routers to register interest in a particular group. Routers then

share information rvith each other about the presence of group members and forward

packets to all neighbours connected (directly or indirectly) to known group members.

This approach is deliberately very decentralised in order to support multiple senders

and large, dense groups. However, it requires that it be universally deployed in order

CHAPTER 4. THE LORIKEET PROTOCOL 59

to operate, and provides very limited capabilities for management and measurement

of the multicast tree and its members. Multicast groups also require mechanisms to

identify them in the case of traditional IP multicast, this is a specially assigned

IP address from the Class D address space dedicated to multicast, while in man)/

other systems it is the address of the source or some other unique identifier.

Given the requirements enumerated in Section 4.2.3,\t is clear that our proLocol

cann,ot require universal deployment and need only support single-source groups.

Hence, the system must operate on top of current Internet protocols without re-

quiring large-scale changes, and no complex sender-discovery protocols are required.

Since we require tree construction to be in the downstream direction, the source

must have some involvement in joining new receivers to the tree, rather than having

new receivers join just by contacting their local router. In order to scale effectively

to very large trees, the multicast tree cannot be stored in a central node, but must

be storcd in a distributed fa^shion. Wc also require that the protocol efficiently han-

dle dynamic membership and complete join and leave operations quickly. To satisfy

these constraints, we propose the use of a hierarchical multicast tree.

In a hierarchical multicast tree, each participating node maintains as little infor-

mation as possible about the tree's structure it need only know the locations of

its children and its parent (and the source address in order to identify the partic-

ular multicast group.) This is similar to the scheme employed by REUNITE [71].

However, unlike REUNITE and most other algorithms, we have elected to connect

receivers to the tree using their forward paths from the source. This requires the

source to accept join requests from new receivers and search the tree for a nearby

parent router. This search must be pertbrmed quickly, surveying a path through

the current tree for a good match without exhaustively searching the tree (which

would be too slow) or maintaining large amounts of topological information at the

source (which would require a great deal of communications overhead to maintain).

To this end, we propose using a limited search of the tree structure, starting at the

source and examining a path through the tree, selecting the best parent from that

CHAPTER 4. THE LORIKEET PROTOCOL 60

limited search. This method allows us to retain only limited information about thc

tree at individual member nodes.

Since our protocol is limited to the use of current Internet protocoìs (as we

cannot require universal cleployrnent), our choices for delivery tnechanisms arc very

limited. Traditional IP multicast is not universa,lly deployed and hence cannot be

relied upon as a deliverv system. Thereforc, we have decitlctl t,cl use ir hop-ìly-hop

unicast delivery model, similar to the recursive unicast approach used by REUNITE.

A simple example of this mechanism is illustrated in Figure 7.

mult¡cast source

intermed¡ate
roulers

end receivers

Figure 7: Hierarchical Multicast Delivery

This multicast group's participants are shown as a delivery tree, rooted at the

source) with end-receivers as the leaf nodes of the tree. Data is transmitted hop-by-

hop down the tree from the source) using direct unicast connections between each

parent and child on the tree. When a node with children (a router) receives a packet

from its parent, it replicates the payload of the packet and tra,nsmits a new packet

with the same payload to each of its children, with the source set to its address and

the destination set to the appropriate destination address for each child. This hop-

CHAPTER 4. THE LORIKEET PROTOCOL 61

by-hop approach, rvhile "heavier" than traditional group-address-based multicast

protocols which can simply forrvard packets, has a number of advantages:

o No group addressing is necessary - the tree is identified purely by the source

address (and a path for selecting between different multicasts from the same

source)

o Packets can be explicitlv operatcd on for the benefit of receivers clorvnstream of

a router for example, packets can be cached until acknowledged to provide

local recovery) or streams can be stripped of detail to accommodate clients

with lower capacity.

o Tree maintenance and rearrangement can be implemented, since we have con-

trol over the tree's topology.

o Aggregate statistics can be easily gathered " for example, counting the number

of receivers in the network is straightforward and can be aggregated and passed

upstream by routers.

o Authentication and charging is possible, since a join request must ahvays reach

the source of the tree.

It is irnportant to note that cach packet's data payload is unmodified at blanchirrg

routers - replication of packets is done by simply copying packets and rewriting their

headers, with no further processing required.

4.5 The Lorikeet Protocol

Our protocol, Lorikeet, is a hierarchical multicast system. Data is transmitted by the

source to its children, who relay the data packets to their children. All receivers in

a Lorikeet multicast tree are leaf nodes - hence there is no requirement for receivers

to relay data to children. The relaying takes place in routers in the network that

CHAPTER 4. THE LORIKEET PROTOCOL 62

implement the Lorikeet protocol, here referred to as capable routers. AlÌ routers

maintain a very small amount of state information; for a given multicast tree, each

router knows the a,ddresses of all capabÌe routers on the path back to the source and

the addresses of its children only.

Aside from the transmission of data by the source, a single-source multicast

tree has a number of distinct events that carr occur. Il all trlulticast systems, a

neu, receiver can joi,n lhe tree and a participating receiver can leaue the tree. In

rearrangeable multicast s¡rs{,sm., local portions of the tree (or, in some cases, the

compÌete tree) can be rearranged periodically to itnprove cfÊcicrtc¡,. Thc following

sections describe how these three events are implernented by the Lorikeet protocol.

4.5.1 Notation

We consider a network represented by a graph G : (V,E) where V is the set of

nodes and B is the set of edges connecting pairs of nodes. Overlaid on this network

G a multicast distribution tree T : (Vr,E7) is constructed, where V7 C V and

Ej- C E The tree T is rooted at a source node S € Vr. Every node in V7 except

,S must have an edge in ,87 connected to a parent node in V7, ànd may have other

edges connected to nodes inV7.

This multicast distribution tree has a single source node S. The other nodes are

either routers or rece'iuers. Receivers must be leaf nodes that is, receivers cannot

have children in the tree. The cost ofthe shortest path from node X to node Y is the

total cost of all the links in the shortest path (X,Y) and is denoted by cost(X,Y).

The cost of the tree path from X to Y, where (X,Y) ÇV7 and X is upstream from

Y, is the total cost of the path (X, Y) using only links in E7 and is denoted by

tree(X, Y).

The degree of a node is the number of links it has to other nodes (either to its

parent or its children). Every node in the tree has one (and only one) parent node,

rvith the exception of the source node, which has no parent. Routers, other than

CHAPTER 4. THE LORIKEET PROTOCOL 63

the source, with degree > 2 are described as branch'ing routers, since the5, distribute

data to more than one child node. Routers, other than the sourcei rvith degree 2 or

less are referred to as non-branch'ing routers. As stated earlier, routers that support

the protocol are called capable routers.

4.5.2 Joining the Tree

A new receiver r joins the tree T via the following procedure:

1. The nerv receiver r contacts the source,S using a standard unicast connection

and tells ,S that it wishes to join the multicast tree for a given session (sources

can potentially serve multiple sessions/trees).

2. ,9 finds r a parent router R and returns that address to r.

3. 1? and r establish a unicast connection between them, and .1? begins to transmit

the data being distributed by the multicast session on that unicast connection

to r.

The path to a new receiver consists of an existing path through the tree from the

source to the selected parent, to rvhich is appended a unicast connection (using the

underlying routing framework) from the selected parent to the new receiver. Before

the receiver is connected to the parent, a probe packet using a defined Lorikeet port

number is sent along this ultimate unicast path. Any capable routers along this path

may sense this packet (by identifying its port number), announce their existence to

the parent router, and join the tree. The frrst capable router encountered via this

mechanism becomes a child of the parent router and the parent of the new receiver,

and the process continues until the probe packet finally reaches the receiver.

Note that the source ,S may be a "repeater" that accepts streams from one or

more other sources and redistributes them to a multicast tree using Lorikeet. This

arrangement is similar to the idea of a rendezvous point (RP) described in Section

1.1.4, and allows several sources to transmit data over a single, centrally-managed

CHAPTER 4. THE LORIKEET PROTOCOL 64

tree. These sources are also "hidden" from the tree, freeing them from having to

handle tree construction or deliver more than one stream.

Step 2 listed above (finding a parent for new receiver r) operates using one of

the two join algorithms described in the following sections.

Simple Join

The Simple Join algorithm is designed to select a good parent node by using a

decentralised, non-exhaustive searching procedure. It is conceptualll' similar to a

single iteration (adding a single terminal) of a Steiner Tree Problem heuristic like

those described in Chapter 3. This algorithm searches more potential parents in the

tree than the Shortest Paths with Origin heuristic, but does not search the entire

tree, like the Shortest Paths heuristic. Instead, it extends a single path downstream

from the source until a router that is closer to the new receiver than all of its children

is found.

Note that once the source hands off the scarch to one of its children, it is no

ìonger involved in the rest of the join.

The Simple Join algorithm operates as follows:

2a. The current router R.u,,"nt is set to the source, ,S and the initial tree path

contains only S.

2l). R.rrr.n¿ calculates cost(R¿¿y7¿p¿, T)

2c. If R"u,,.nt has no children in 7 which are capable routers and not receivers,

then 1ì",,,",¿ is ma,de the parent rotrter of r and Step 2 terminates.

2d. R.u,,.n¿ asks those of its children in T which are capable routers (and hcnce

not receivers) , denoted C1,C2,...,Cn, to each calculate cost(C¿, r).

2e. R.u,,.n¿ receives these costs from its children and determines the child with

minimum cost, identified as C-¿'.

CHAPTER 4. THE LORIKEET PROTOCOL 65

2f. If cost(R"u,,.nt,r) < cost(Ç'i', r) then R.,,,.nr is selected as the parent router

for r, terminating Step 2. If not, R.u,,.nt is added to the tree path and C^¿n

becomes the new R.rr,"nt.The process above repeats from step 2c, now being

executed on the new R.rrr"n1.

In implementation of this algorithm, of course, it is likely that some admisston

control would be necessary. A potential child router C¡, ma¡" wish to reject a new

receiver for a, variety of reasons, including router load or insufficient downstream

bandwidth on the next hop's interface. In these scenarios, the router C¿ rrrrould

reject its parent's request for a cost calculation and would thus be removed from

consideration as a parent for that receiver. In the case of failed authentication for

the multicast connection, the receiver would be rejected by the source upon making

its initial connection.

Path-Greedy Join

The Path-Greedy Join algorithm builds on the Simple Join algorithm and trades

further complexity for cost. It also searches a single downstream path through

the tree, but does not terminate until a router with no further routers for children

is reached. At this point, the ent'ire search path is examined and the lowest-cost

parent chosen from it. This approach requires slightly more management of the join

procedure (such as passing along the complete search path) but has two advantages

over the simple join: (1) it searches more tree nodes; and (2) it avoids terminating

at a local minimum along the search path when a cheaper parent could be found

furiher downslream.

In this algorithm, the join message that is passed down the tree also contains

the search path so far, comprising the list of capable routers traversed and their

associated costs to the new receiver.

The Path-Greedy Join algorithm operates as follows:

2a. The current router R.urr.nt is set to the source, S, and the initial tree path

CHAPTER 4. THE LORIKEET PROTOCOL 66

contains only ^9 and its associated cost, denoted by cost(,S, r).

2b. If R"u,,.nL has no children in ? which are capable routers (that is, its children

are all receivers), then go to Step 29.

2c. R.u,,"n¡ asks those of its children in ? which are capable routers, denoted

Ct,Cz, ...,Cn, to each calculate cost(C¡, r').

2d. R.u,,"nr receives these costs from its children, and determines the child with

minimum cost, identifred as C^¿n.

2e. R"urr.nl and cost(.Rcurrenltr) are added to the tree path.

2f. C*¿n becomes the new R.r,r"nr.The process above repeats from Step 2c-

29. The frnd- R"u,,.n¿ examines the tree path passed down to it and determines

the router R*¿n in the tree path for which cost(.R-¿', r) is minimised. This

router is returned to the source ,9, which notifies the new receiver r that its

parent in the tree is .R-¿,.

4.5.3 Leaving the TYee

The process for a receiver r leaving the tree is as follows

1. The leaving receiver r contacts its parent router R and informs it that it wishes

to terminate its connection to the tree.

2. The parent router ,1? disconnects r from the tree

3. If the parent router l? has no remaining children after r's departure, it notifies

its parent that it wishes to leave the tree and is subsequently disconnected by

the parent. This process repeats recursively towards the source until a parent

router with other children is encountered.

CHAPTER 4. THE LORIKEET PROTOCOL 67

In addition to the above join and leave processes, Lorikeet can also perform

rearrangement of the tree. Rearrangement in the Lorikeet protocol is described in

more detail in the next section.

4.5.4 Rearrangernent

Rearrangement of the tree is necessarl' to maintain efficienc¡' rvhen changes to group

membership occur. As described earlier in Requirement 6 (see Section 4.2.3),la,rge-

scale multicast sessions nìay experience significant changes in the locations of their

receivers. Since the construction of the tree is determined by the locations of re-

ceivers as they join, when those receivers leave and others join the tree rvill be un-

likel¡, ¡e be as efficient as a tr-ee constructed for Lhe new group of receivers. To allorv

the tree to improve its structure to suit new receiversT we employ a rearrangement

scheme that adapts the tree to cope with changes as receivers leave.

Rearrangement in Lorikeet is triggered when (as a result of a leave operation) the

parent router ofthe departing receiver changes status from a brønching router (router

with two or more children) to a non-branchzng router (router with one child). We

believe that this trigger for rearrangement based directly on a topological event is a

novel technique. Other approaches in the area include: (a) triggering rearrangement

by counting the number of join or leave events in an area and rearranging when a

threshold is reached, as in ARIES; (b) triggering rearrangement periodically with a

timer mechanism; (c) triggering rearrangement as part of a join event based on a

performance criterion, as in DSG.

Two rearrangement algorithms were developed in the creation of this protocol:

namely, the Path rearrangement strategy and the Rejoi,n rearrangement strategy.

Both are described below.

CHAPTER 4. THE LORIKEET PROTOCOL 68

Path Rearrangement

This rearrangement strateg¡r focuses on the consolidation of long chains of routers

with one parent and one child, b1, considering their replacement with direct uni-

cast paths between the "top" and "bottom" branching routers in the chain. The

algorithm operates as follows:

1. Router -R detects that it has become non-branching as a result of the departure

of one of its childrerr.

2. -R sends a message upstream via its parent towards the source looking for the

nearest upstream branching router (router with two or more children), referred

to as ß,o. This message is passed from router to router (hop-by-hop) until

a candidate is found. If no branching occurs upstream of 11, the source ,S is

selected as A,o.

3. .R also sends a similar message downstream via its single remaining child look-

ing for the nearest downstream branching router in that direction, referred to

as R¿o-n. If no branching occurs downstream of .R, the final capable router on

the path (which will be supporting a single receiver) is selected as R¿o-n'

4. If cost(1ìu*Rdo-n) < tree(1?ro,Rdo-n), then R¿o-n is re-parented to -R,o via

the unicast path, and intermediate routers (including ,R) are removed from

participation in the tree.

5. If a rearrangement has taken place, new parent router 1?,o transmits a re-

arrange message down the new path lo R¿o.n, containing its path from the

source. Each downstream capable router uses this path to update its tree path

(used for loop detection), appends its own address to the path in the message

and forwards it on to its children.

Note that in the case that no branching routers are discovered downstream of .rB,

the furthest downstream capable router is selected aß R¿o-n, rather than the receiver

CHAPTER 4, THE LORIKEET PROTOCOL 69

it supports. This is due to the likelihood that the ãccess bandu'idth available to the

receiver is likell' to be considerably smaller than the upstream bandwidth of its

parent router. Therefore, the parent router will be able to perform a rearrangement

with less of an interruption to the flow of clata, siuce it may rnaintain both the old

and new connections while the rearrangement takes place. In addition, this allows

the rcceiver's implementation of the protocol to remain simple, retluiritrg only join

and leave operations.

Figure B illustrates the Path Rearrangement approach.

Rup

Rdo*n

F igure 8: Path Rearrangement

Receiver r leaves the tree, turning its parent lR from a branching router into a non-

branching router. The current tree path (Rrr, R, R¿o-n) is then replaced with the

shortest path from R,, to Rdo-n if a shorter path is available.

CHAPTER 4. THE LORIKEET PROTOCOL 70

Rejoin Rearrangement

Rejoin rearrangement allows a branching router to be reconnected to the tree at a

parent rvith a lower parent-to-branching-router cost. It also allows the path to be

shortened as in Path rearrangement, described above. The algorithm operates as

follows:

1. Router ,R detects that it has become non-branching as a result of the departure

of one of its children.

2. 1ì sends a message upstream via its parent towards the source looking for the

nearest upstream branching router, referred Lo as Ru, If no branching occurs

upstream of -1?, the source ,S is selected as 1?,o.

3. 1ì also sends a message downstream via its single child looking for the nearest

downstream branching router, referred io as R¿o-n. If no branching occurs

downstream of J?, the final capable router (a router supporting a single re-

ceiver) is selected às R¿o-n.

4. Run calculates the cost of the shortest path to Rdo-n, cost(1?,o, R¿o-n) and the

cost of the current path through the tree, tree(Ru, Rao.n) and returns both

results to R¿o-n.

5 . Rdo-n contacts the source of the multicast tree and finds a new parent toutet,

Il', using the join procedure described in Section 4.5.2.

6. Rdo-n considers two types of rearrangement:

(a) If cost(1?', R¿o-n) < cost(.R,o,R¿o-n), then the path (.R,o, -..,R¿o-n) is

removed and R¿o-n is connected to .R' instead.

(b) Otherwise, if cost(Ä,', R¿o-n) < tree(Ru,Rd.o-n), then we set -R¿o-''s

parent to Ru, and remove the intermediate links and routers from the

tree.

',i

CHAPTER 4. THE LORIKEET PROTOCOL 71

ilúi
,tì

(c) Otherwise, no change is made

7. If. a rearrangement has taken place, the new parent router (-R' or ,R,o, depend-

ing on which learrangement is performed) propagates a rearrange message

down the new path to R¿o-n, containing its path from the soulce. Each down-

stream capable router uses this path to update its tree path (used for loop

detection), appends its own address to the path in the message and forwards

it on to its children.

Figure 9 illustrates this approach

Loop Detection and Subtree Inversron

Unfortunately, several problems are encountered when rearrangement is implemented

on suboptimal trees, where paths through the tree may not be the underlying short-

est paths. Since there is no global state information maintained in Lorikeet (for

scalability reasons), routers have very limited knowledge of which nodes are in the

tree a given router knows of the source, its parent and its direct children, but ha,s

no further knowledge of the tree. This creates the possibilit¡, ¡þ¿¡ loops may be

created, whereby a router r tries to rejoin to the tree (as part of a rearrangement

operation) and the underlying shortest path between the tree and r goes through

a router which is one of r's descendants. Figure 10 (a) and (b) illustrate this be-

haviour: the new path chosen for the router r goes through u, which is a child node

of r.

Note that in the Lorikeet protocol loops cannot occur during join or leave oper-

ations, as all Lorikeet receivers are leaf nodes and do not therefore have child nodes

in the tree. Loops are only possible when nodes that are already in the tree are

discovered on the shortest paths between capable routers.

This problem is solved by having routers (not receivers, of course) maintain a

little more state information. Rather than simply storing the identity of its parent

node, a router must store the complete tree path back to the source? that is the

f'

q

i'

',

CHAPTER 4. THE LORIKEET PROTOCOL 72

rl

r

Rup

Rdo*n

Figure 9: Rejoin Rearrangement

Receiver r leaves the tree, turning rR from a branching router into a non-branching

router. We search downstream from 1ì for thc first downstream branching touter,

Rdo-n, and upstream for the first upstream branching router, ,R.,o. cost(-Rur, Rd"o-n)

is calculated. R¿o-n then contacts the source,9, which finds a potential new parent

R' . lf cost(,R', R¿*n) is less than cost(R,r, Rr.u-n), Rd.o,,,, becomes a child of ,R' and

,R is pruned from the tree. Otherwise, if cost(-R.,o, Ra*n) is less than the current

value of tree(-Rrr. R¿o-n), Rdo.n becomes a direct chìld of Ru, and l? is pruned from

the tree.

j
L
i

I

4

ft
lr

'l
t'.

1,

't"r
.f

,t

I

-{
lì
I
I
J

fr
I,

CHAPTER 4. THE LORIKEET PROTOCOL 73

I

1.'

(a) Origina,l Tree, with r

to be rearranged. The

rrode m¿r'ked 'r is R¿o-n

as described earlier. Only

routers (not receivers) are

shown.

culrcnl
path

(b) New path to r from

new parent p goes through

u, a child ol r in the orig-

inal tree. Da,ta is aJready

flowing from r t,o u, so a,

loop occurs at the network

level.

(c) Perform a subtree rn-

version, with u becom.ing

the palelt of r and a child

of p. The link from r's

old parent 1,o r is renoved,

and the old pareut of r will

also be removed if it has no

other children.

new
path

ü
r

J

L
¡

í

h

+
t
+

L

r
,t

I

Figure 10: Loop Detection and Subtree Inversion

{

-rq

1'

I

fü
:\g

,l

CHAPTER 4. THE LORIKEET PROTOCOL 74

ordered list of upstream capable routers in the tree. This information is propagated

down the tree as routers join it, constructed by taking their parent's path and

appending their parent. The tree paths of affected routers are also updated on

modification of thc trce due to rearrangernent.

With this extra information, router u is able to detect when one of its ancestors r"

wishes to become one of its children and perform a subtree inuers'ion. This situatiolr

onl¡, 6çs¡t. when u is discovered on the underl¡,ing unicast path between a selected

new parent node p and r. In this case, the process that occurs is as follows:

1. u disconnects from its parent and becomes a child of p.

2. r then becomes a child of u.

The end result of this operation is shown in Figure 10(c).

4.5.5 Data Delivery

Data transmission in Lorikeet is performed by forwarding copies of packets after

rewriting their headers. When a capable router in the tree receives a packet from

its parent, it rewrites the packet's source address to match its own address. One

copy of the packet is then sent to each of its children, with the destination address

set to each child node's address accordingly.

This approach only requires the rewriting of fixed size headers and is therefore

relatively cheap computationally. Since connections are only maintained between

parent and child nodes, local acknowledgement of packets can be performed on a

link-by-link basis if necessary without acknowledgements travelling further up the

tree and swamping upstream routers or the source.

Since Lorikeet maintains explicit control of the tree by having its routers maintain

direct connections rvith their parents and children, routers could potentially perform

operations on the data being distributed through the tree. Such modification of

content is difficult to achieve in other systems where topological information about

the tree is not available at routers. Some examples of this functionality include:

{

4
i'
I

I

I

I
¿

l

,t

ï

{:

CHAPTER 4. THE LORIKEET PROTOCOL 75

o Local retransmission of packets on a link-by-link basis: for example) across a

parent-child link. The parent may cache packets and require positive acknowl-

edgement of every packet from the child. Then, the parent can retransmit a

packet if it is not acknowledged within a set time period, without having to

require the source to retransmit to the whole group or swamping the source

with acknowledgements.

o Seìective rnodification of the data as it traverses the tree. For example, the

data being transmitted by the source could consist of a layered video stream,

consisting of a low-bandwidth base layer and additional lower-priority la¡,s¡s

that add detail to the base layer (as described in [55]). Each layer would be

identifred by a tag in the packet's header. It rvould be possible to have routers

discard layers according to the demands of their children: a router whose

children only have the capacity for 256kb/s of the video can only forrvard

enough layers of the stream to satisfy that requirement, rvhile another router

further upstream might forward the complete 1Mb/s stream. Obviously, this

system would require some minor modifications to the join algorithm in order

to treat capacity as another component of the metric, thereb5, constructing

trees with higher-capacity nodes placed nearer the source.

A more detailed discussion of Lorikeet's implementation and additional features

that it potentially enables is presented in Chapter 7.

In this chapter we have described our target application, large-scale single-source

multimedia transmission, and our network environment, the current Internet. From

the properties of this application and the constraints imposed by the environment,

we developed a set of requirements for a multicast protocol. The Lorikeet multicast

protocol is designed to meet these requirements, providing a single-source group

.,ti

!

CHAP'I:ER 4. THE LORIKEET PROTOCOL 76

communication protocol that can support a large number of receivers and operate

using unicast transmission on the current Internet, thus allowing it to be deployed

incrementally. In addition, it provides support for rearrangement of the tree to

maintain effrciency r¡'ith a chalging receiver set, using a novel topological trigger for

these rearrangement operations.

The following chapter describes the simulation environrnetrl developed for the

analysis of Lorikeet, and presents an analysis of Lorikeet's performance. Lorikeet's

performance is analysed at various levels of deployment in the network and compa'red

to the performance of other multicast protocols.

{

¡
I

Chapter 5

Performance Analysis

5. 1 Introduction

In Chapter 4, we presented a definition of the Lorikeet protocol for multicast tree

construction, maintenance and data transmission. In this chapter, we analyse Lori-

keet's performance in simulations of a number of different multicast scenarios-

First, we describe several other competitor algorithms that have been imple-

mented in topological simulation for the purposes of comparison. These include

two simple algorithms as baselines for comparison (the Source-Join and Greedy

algorithms) and several other approaches from the literature (ARIES [8,7], Delay-

Sensitive Greedy (DSG) [32] and REUNITE/HBH [71, 18]), as discussed in Chap-

ter 2. We investigate worst-case and average case message complexity of these

algorithms in order to quantify the overhead they impose on the network.

We begin the perforrnance analysis by examining tìre diffcrent approaches to

Lorikeet tree construction (the Simple and Path-Greedy join aìgorithms) and tree

rearrangement (the Path and Rejoin rearrangement algorithms) in order to deter-

mine u'hich combination of these is most appropriate for general-purpose use.

The selected version of Lorikeet is then compared against other multicast al-

gorithms in equivalcnt environrnents. Specifically, the simulations are of networks

77

CHAPTER 5. PERFORA/IAN CE AATA¿YS/S 78

where all of the routers present are capable routers, rather than a mix of capable

and non-capable routers. This property of universal deployment is a requirement of

most of the other algorithms being simulated.

Finally, we analyse the performance of Lorikeet and the RtrUNITE/HBH proto-

col (neither of which require universal deplo5'rns¡t) at different levels of deplovment

in the network, from zero capable routers to 100% capal,rililS,. This allows us to con-

firm their performance in an incremental deployment situation, and predict '¡'hat

level of depÌoyment yields a significant benefit from the use of multicast compared

to simuìtaneous unicast.

5.2 Other Algorithms

The collection of algorithms described in this chapter are discussed here in enough

detail to describe their behaviour in tree construction and maintenance. In imple-

menting them for simulation, we found that in several cases their descriptions in the

literature were incomplete or ambiguous where this is the case, we have discussed

these issues and their resolution. In particular, the ARIES protocol did not account

for loops occurring as a result of its rearrangement process, an issue we addressed by

modifying its rearrangement heuristic. We also present a more detailed discussion of

the REUNITE algorithm and its extension HBH, as we feel that they are the most

appropriate competitor protocols to compare to Lorikeet. Both REUNITE/HBH

and Lorikeet share several basic properties, such as targeting unicast delivery over

the current Internet, minimising the storage of state information and permitting

irrcrernerrlal tìeplt-rylrelL. However'? we shor¡/ that the approaches employed by these

protocols for tree construction and maintenance are quite different, as is their mes-

sage complexity.

CHAPTER 5. PERFORMANCE A¡üA¿YSIS 79

5.2.7 Source-Join and Greedy algorithms

The Source-Join algorithm is the simplest algorithm implemented. It performs a

join operation b5, ahvays connecting a new receiver to the source of the multicast

b)'the shortest path (as selected b), the underlS'ing routing algorithm). Branching

occurs rvhen several of these paths share a router, r'hich will request that it onl5'

receive one copy of the stream from the source. This algorithm is anaÌogous to the

Shortest Paths wi,th Origin heuristic described in Chapter 3.

The Greed¡' algorithm performs a join operation by alwa¡'s connecting the new

receiver to the nearest node in the existing multicast tree. This is done b), exhaus-

tively searching the tree, calculating the cost of the path betrveen the new receiver

and each capabìe router, and selecting the minimal cost path. This algorithm is the

decentralised analogue of the Shortest Paths heuristic described in Chapter 3.

Both the Source-Join and Greedy algorithms in our implementations perform

Ieave operations in the same way, b¡' removing the leaving receiver and pruning

upstream nodes recursively until a router with other children is found.

5.2.2 ARIES

ARIES (A Rearrangeable Inexpensive Edge-based On-line Steiner Algorithm) [8, 7]

is a rearrangeable multicast algorithm designed to maintain efficiency in the face of

changes to the multicast tree. Join operations are performed in the same way as the

Greed¡' algorithm described above, using an exhaustive search of the current tree.

Tree maintenance is done by rearranging a localised reg'ion of the tree whenever

that legion has enough receivers join or leave the tree within it. The definìtion of a

region is quite complex it is a portion of the tree that contains at least one mod-

ified node, or M-node (a node that has joined or left since the last rearrangement)

and is bounderì b)'stable nodes, or Z-nodes (nodes that harre not been moclified).

Ever)' Z-node keeps a counter for each region in which it participates which is in-

cremented whenever a node joins or leaves that region. When this counter reaches

CHAPTER 5. PERFORALANCE AATA¿YSIS BO

a set threshold, a rearrangement of the region is triggered. When a node leaves the

tree, it is marked as a deleted node, but not removed this removal happens on the

next rearrangement. Since both join and leave operations increment the counter,

rea,rrangements can occur as a result of either type of event.

The following section describes the issues that arose while implementing ARIES

in sinulation, and the modifications made to arltlress t,hcltt.

Loop Detection in ARIES rearrangement

To rearrange a region, ARItrS employs the Kruskal Source-Join Heuristic (K-SPH),

aÌthough any static Steiner tree heuristic could be used, such as those in Chapter

3. K-SPH operates by deleting all the links and deleted nodes in the region, and

then joining the remaining fragments together, joining the trvo closest fragments b¡,

the underlying shortest path in each iteration until onll' one fragment remains. To

start with, the fragments are all individual Z-nodes, since N4-nodes become Z-nodes

on rearrangement. After the rearrangement the region ceases to exist, since it no

longer contains any N4-nodes.

We found that this approach presented a problem. Upon implementing it, we

found that our trees would develop loops. This occurs because although K-SPH

constructs a local connected graph, that graph is part of a larger overlay tree. Some

of the paths between fragments being joined may contain nodes that are part of the

larger tree, but not part of the region being rearranged.

Solving this problem requires expanding the initiaÌ fragments so that nodes in

the region that are connected to the rest of the tree form one large fragment (or

several large fragments, if the tree is partitioned by the region) that consists of the

remainder of the tree. Unfortunately this operation requires à search of the ent'ire

tree, which somewhat reduces the advantage of limiting rearrangement to individual

regìons in the frrst place. Although changes to the tree only take place in this smaller

region, the operation itself requires the participation of the whole tree.

For these reasons) we have limited our analysis of ARItrS to a centralised, topo-

CHAPTER 5. PERFORMA¡\rCE AIüALYSß B1

logical model, where its performance in terms of tree cost can be compared to that

of other algorithms.

5.2.3 Delay-Sensitive Greedy (DSG)

The Delay-Sensitive Greedy (DSG) algorithm [32] is another more complex tree

construction algorithm designed to also maintain the efficiency of the tree over time.

It uses a Greedy join as described above, but allows for the re-connection of a node

along the shortest path to the source if a dela¡' constraint is not met by its initial

location in the tree. This delay constraint is described in terms of the stretch of a

node u, which is defined as stretch(u) : tree(,S, u)/cost(,S, u), rvhere tree(. . .) and

cost(...) arc the multicast tree cost and sholtcst-path cost as defined in Section

4.5.1. If the stretch of node u exceeds a threshold. the first upstream node o' that

satisfies a tighter bound is found and that that node is rerouted to the source along

the shortest path from ,S to u'. Thus, DSG only performs tree maintenance as

part of its join operation. Goel and Munagala [32] do not address the behaviour of

leaving nodes, so we have implemented it in our simulations as described earÌier for

the Source-Join and Greedy algorithms.

5.2.4 REUNITE and HBH

In [71], Stoica et al. proposed the REUNITE (REcursive UNIcast TreE) protocol

for multicast over recursive unicast trees. Later, in [18], Costa et al. developed

HBH (Hop-By-Hop), a protocol that improves upon some of REUNITE's behaviour

in as¡'m¡lstric networks. In this section, we discuss first the salient features of thc

RBUNITE protocol and subsequently the modifications proposed by HBH's authors.

As described in Chapter 2, Lorikeet shares many of REUNITE's advantages over

both traditional IP multicast and many application-level approaches; the following

points are paraphrased from the introduction to the REUNITE article 171] and are

common to both REUNITE and Lorikeet

CHAPTER 5. PERFORMA¡\rCE AIVA¿YSIS 82

. Reduction of forwarding state: information about nodes participating in the

multicast tree is only ¡¡¿itr¡ained at a small number of nodes;

o No need for class D addresses: REUNITE uses unicast forwarding for both

control and data transmission, identif¡,ing the multicast group b), a source

address (and port, or path);

o Incrementally deployable: the protocol will operate even if only a subset of

netrvork nodes deploy the protocol, rather than requiring complete deployment

or tunnelling (as for IP multicast);

o Load balancing and graceful degradation: routers may choose to ignore control

messages and the protocol will automatically use other routers to handle new

Jorns or groups;

o Support for access control: since the source handles joins, access control can

be implemented by authenticating receivers at the source.

However, there are a number of differences between the approaches used for tree

construction and maintenance in REUNITE and Lorikeet. REUNITtr's multicast

tree for a group is stored (in a distributed fashion) in Multicast Forwarding Tables

(MFTs) in routers participating in the tree. Each MFT contains a list of receivers

that are downstream of that router, to which the router will send duplicate copies

of any packets for the group that it receives. These MFTs are soft súale: that is,

they are maintained through the periodic reception of "rolN messages from these

receivers. If a receiver does not send a JoIN message for a specified amount of time,

its entry in the router's MFT is marked as "not alive" and eventually removed. A

second table stored by routers in the tree is the Multicast Control Table (MCT).

The MCT is used to keep track of which trees a non-branching router (one that

merely forwards packets, rather than duplicating them) is a member of.

Lorikeet works differently in that its management of the tree is more explicit;

state in routers is not soft, but is instead modified through explicit join and leave

CHAPTER 5. PERFORMA¡\ICE A¡\TA¿YSIS 83

messages communicated between a node and its parent. State information is limited

in a similar way, in that a router onl¡r ¡¡¿i¡¡ains information about its children and

its path back to the source, which is necessary to facilitate rearrangement of the

tree.

we now discuss RtruNITB',s join and leave behaviour in more detail.

Joining the Group

REUNITE's join mechanism is similar to the Shortest Path approach described in

Section 5.2.1. A receiver r wishing to join the group sends a JOIN message through

the network, towards the source ,S. If there are no existing routers in the tree along

the path (", S), S creates an entr5, in its \4FT for r and begins sending r data, along

the path (,S, "). However, if there does exist a router rB that is already a member

of the tree on the path (r, S) traversed by the .loln message, .R will intercept this

message and join r to itself, creating an MFT entry for r at router 1?. The authors

of REUNITE describe this approach as constructing the multicast tree based on the

forward, di,recti,on un,icast routing torvards the receiver. This is correct for the first

receiver in the tree, since it is by necessity connected directly to the source. However,

subsequent receivers may be connected to tree routers found on their reuerse unicast

path back to the source using the process described above, rather than through a

forward-path search originating from the source. We illustrate this behaviour with

two examples, given below.

The example dìagram shown in Figure 11 is taken from page 4 of the paper

by Stoica et al. 171) that proposes the REUNITE protocol. In this scenario, the

following asymmetric unicast routes are gtven:

o ,S --- ly'l ---+ ffl --+ /?1;

o lB1 -r N2 -.,n/1 --- ,S;

o ,S ---+ N4 ---+ R2; and

CHAPTER 5. PERFORMA¡ÙCE A¡\IALYSIS B4

o R.2 - /{3 -- -fú1 + $

R1 R1 B1

(,) (b) (.)

Figure 11: Examplc illustrating RtrUNITE's tree creation protocol. from Stoica ef

al. l7I], page 4.

In this example, the receiver rR1 is the first receiver to join the group (Fig-

ure 11(a)). Since no router in the network is aware of the group; the.loltl message

sent by rl1 is propagated all the way to the source ,S, which adds an entry for -R1

to its MFT and begins to send data to .R1. In addition to sending data, ,5 also

sends perioclic rRpp messages clown the delivery trce (Figure 11(b)). When these

messages arrive at routers ,^ú1 and 1y'3, thel' update their MCTs to indicate that

they are part of the multicast tree. These routers do not duplicate packets at this

stage: they merely forward packets to ,81.

In Figure 11(c), a second receiver rB2 joins the group b), sending a JOIN message

towards ,S. When this message reaches l/3 (the first router on the retterse pat,h

towards S that is a member of the delivery tree), 'lú3 becomes a branching node: it

removes its MCT entry for the group and creates an MFT entry for R2. Thus, a

rlata packet that arrives at /V3 (on its way to receiver rB1) will be duplicated ancl

also sent to R2 by ,n/3.

This join has clearly been made on the reuerse path from R2 to ^9
through I/3,

rather than on the forward path ,S ---+ l/4 --+ R2. If N4, the only router on the

aeS

N4N4N4

R2R2R2

CHAPTER 5. PERFORMA¡\ICE A¡\IA LYSß 85

forward path from S to R2, were a member of the group it would still not be used

to supply /?2 since the forward path from S to RZ is never examined during the

Jott,t procedure.

Consider the case where the forward and reverse paths between ,5 and R2 are

exchanged with each other, giving the following routes:

. ,S --- ly'1 --l 1f$ ---+ 111;

o 111 ---+ N2 --,4/1 ---+ $'

o ,5 * ,Ày'1 ---+ lü3 -- rR2; and

. R2-- l/4-+$

In this scenario, 1ì1 joins as it did in the first example. and N1 and 1ú3 once

again become non-branching routers in the tree. This time, however, the forward

path to .R2 is via 1y'3, which is aÌready a participant in the tree. However, in this

case, the JOIN message from .R2 passes via the reverse path through ,Aú4, and (since

lú4 is not in the tree) R2joins directly to the source, just as .¿ì1 did. Here, the use of

the reverse path to join the second receiver has meant that the source must maintain

two separate unicast connections directly to end receivers, rather than branching at

N3 as would be done if a true forward-path delivery tree were constructed.

Broadly, REUNITE's join mechanism will only allow a receiver to join the tree

at a router currently participating in the tree that is on the reverse path from that

receiver to the source. If there are no such routers, the receiver will be joined to the

source directly. This means that in multicast groups where receivers are sparsely

distributed, the likelihood of discovering a participat'ing rottter on the shortest pa,th

back to the source from a given receiver is low. In such a situation, not as much

branching will take place and the total cost of the tree will be greater than in systems

that promote branching by using the existing tree to join new receivers.

CHAPTER 5. PERFORMANCE A¡üA¿YSIS B6

Leaving the Group

A receiver .1ì1 leaves a RtrUNITE multicast group b), simply stopping the sending

of .lolN messages. This causes the router which has -Rl in its \4FT to timeout the

entr¡, fe¡ /?1 (since it is not being refreshed any longer by periodic.lolN rnessages)

and conclude that Ã1 has left the tree. The router cannot immediately stop sending

packets to 1ì1, however. Considcr the first cxample dcscribed abovc, when.Rl and

R2 have joined the tree. If .81 now decides to leave, ,S cannot stop sending packets

to -R1 without interrupting the transmission to R2 as well, since .R2 is supplied b¡,

N3 wzthout S's d'irectknowledge. The approach to solving this issue that is used b1'

RtrUNITE is to allorv these receivers (that are dependent on the path to the leaving

receiver) time to discover new branch points in the tree to receive packets frorn.

When A1 Ìeaves, therefore, ^9
marks its entry in its MFT as not alize, and keeps

sending data and TRtrtr messages dorvn the deliver)¡ tree as before. These TREE

messages are marked with a stalebit, indicating that the branch is to be removed in

the near future. When downstream routers receive these stale TREE messages, the¡r

mark their MFTs as stale also (in the case of branching routers) or remove their

lr4CTs for the group (in the case of non-branching routers). In our example, taking

place after the situation shown in Figure 11(c), router.ly'l rvould remove its N4CT

and router 1y'3 rvoulcl mark its N4FT as stalc. This has the effect of causing later

JoIN messages from downstream receivers to propagate further up the tree, to be

intercepted b), either the nearest non-stale participating router, or the source itself.

Thcse receivels eflcctively rejoin the tree further upstreatn on thc satne patìr to the

source) at a partìcipating router that is not on the stale branch. After a further

timeout, the stale \4FT entries at routers on the stale branch are removed, and the

leaving receiver is removed from the tree. The result in our example scenario would

be that the .lolN messages from /?2 would propagate further up the shortest path,

past the routers N3 and -lü1, which are stale or no longer participants, and reach,9.

1?2 would become a child of ,5 along its forward path, ,5 --. N4 ---' R2, and router

CHAPTER 5. PERFORMA¡\ICE AT\TA LYSß B7

1y'4 rvould create an MCT indicating it rvas part of the group.

This approach to handling receiver leaves is necessary because REUNITtr's de-

sign makes the stream being delivered to a particular router dependent on the pres-

ence of the receiver that established that branch. In Figure 11, for example, routers

l/1 and N3 are in the tree because theS' are supporting 1?1, rvhich is a child of 'S'

Later receivers that join those branches, however, join to "lower" roulers itt bhe tree,

such as 1y'3, without ,5's knowledge. This way of storing the tree leads to interde-

pendencies between the receivers supported by a given branch of the tree: if this

"first" rcceiver leat'es and its branch is pruned, all thc other receivels that depend

on that branch must be re-parented.

Since REUNITtr limits receivers to connecting to the delivery tree via sub-paths

of their shortest paths to the source) it does not allow for rearrangement of the tree

to improve its efficiency.

In contrast, Lorikeet's receivers have no interdependencies: a receiver can be

simply pruned from the tree without affecting any other receivers, since its pa'rent

always maintains a direct connection with its child. If this pruning of a receiver leaves

its parent with no further child nodes, we also prune the parent recursively. This

approach requires no constant exchange of messages or timer-based mechanisms.

Lorikeet provicles mechanisms for rearrangenent of the tree to implove efficiency

as its participants change, such as the Path and Rejoin rearrangement techniques

described in Section 4.5.4.

5.2.5 HBH

In [18], Costa et al. describe HBH (Hop-By-Hop), an extension of the REUNITE

protocol that is designed to address several deficiencies in REUNITE's tree man-

agement. Their work makes a number of modifications to the the protocol:

o The authors suggest the use of Class-D multicast IP addresses (as in traditional

IP multicast) for identification of groups, using the source-specific channel

CHAP,I:ER 5. PERFORMA¡\ICB A¡üA LYSß 8B

abstraction introduced in trXPRtrSS [38].

o HBH stores the next branching node in the MFT table, rather than the des-

tination receiver. This modifica,tion makes the tree more stable than those

constructed by REUNITE with respect to leaving receivers.

¡ HBH adds a third message type in addition to REUNITE's JoIN and lRPp

messages) the FusIoN message' This message is sent b)' a router that receives

several different TREE lnessages referring to different end receivers, and enables

it to take orrer control transmissions to these receivers from the source.

The integration of IP multicast addressing into the protocol is not treated in

detail in [18], and the authors list the formal definition of the interfa,ce between HBH

and IP multicast addressing a,s future work. The other modifications to the protocol

allorn' HBH to cope better with receivers for which tìre leverse path is different

from the forward path (as in asymmetric networks), using the n'uSION message

to move management of these receivers further down the tree to the appropriate

branching routers. In symmetric networks, HBH produces the same multicast trees

as REUNITE does.

Since our simulations use only symmetric networks, the REUNITE and HBH

protocols generate identical results in these scenarios; therefore the two protocols

are referred to collectively for the remainder of this thesis'

5.3 Simulation

In order to analyse the behaviour and performance of Lorikeet and the other algo-

rithms described in this chapter, we wrote implementations of each of them designed

to operate on a simulation of a network. This simulation is a discrete event simu-

lation of the network topology only, since we have chosen to focus on the critical

issues of construction and maintenance of an efficient multicast tree, rather than on

other aspects of the protocols.

CHAPTER 5. PERFORMAÌVCE AATA¿YSIS B9

Our simulation is a complete software package written in the Python program-

ming language. A typical simulation follows the follorving sequence of steps:

1. Load a pre-calculated network graph from disk and initialise a multicast tree

containing the source alone.

2. Calculate (or load from disk) the shortest-path information for the network

consisting of the shortest paths between all nodes.

3. Calculate (or load from disk) a sequence of join and leave events for the receiver

set. A sequence is an ordered set of events, rvhere each event consists of a single

identified node joining or leaving the tlee.

4. Iteratively run the sequence of events according to the selected multicast al-

gorithm. For each event, we:

(a) Determine the new multicast tree by simulating the operation of a mul-

ticast protocol for this event-

(b) Write the resulting (intermediate) multicast tree to disk for analysis.

(c) Calculate and write to disk a number of measurements (for example: tree

cost, capable router count, receiver count).

AII of the parameters used in simulation may be saved and re-run in order to

ensure that (f'or exarnple) the sarne scquencc of events is used to simulate diff'erent

protocols for comparison. The following section describes the two basic environments

rrsed for our simulations.

5.3.1 Simulation Experiments

To generate our results, two types of experiment are used

o "Waxman" topologies (generated by the BRITtr tool [56]) with 500 nodes,

and 650 links. 350 of these nodes are leaf nodes (receivers), and the other 150

CHAPTER 5. PERFORMA¡{CE A¡\TALYSß 90

are routers. The sequences used on these topologies are randomly generated:

for each event, a node is selected. The event is a join event if the node is not

currently a member of the multicast tree and a leave event if it is. In all cases

shotvu here, the results are averagcd ovcr five diflêrerlt "\Maxmatt" tclpologies

(urith the same number of nodes and edges).

¡ The "Windowed" topology is also generated by the BRITtr tool (using its "2-

level" topology support), rvith 2500 nodes and 3020 links. 2000 of the nodes

are leaf nodes, and 500 are routers. The sequence used is generated by giving

ever), ¡6¡ls a geographical location on a 2D grid measuring 1000x1000 units

(this data is provided by BRITE), then having a "join window" travel from left

to right across the grid selecting nodes to join to the tree. A second window,

travelling behind the first, selects nodes to leave the tree. This approach is

used to simulate the correlation of network joins in some situations, such as

a 24hr broadcast where receivers are likely to be correlated by timezone. The

windowed simulation has several parameters: (a) the initial count of receivers

in the tree; (b) the rate at which the window moves across the plane; (c) the

rvindow size; and (d) the departure lag, or lag between the joining and leaving

windows.

5.4 Complexity Analysis

The complexity of distributed algorithms like these multicast tree construction al-

gorithms is very difficult to quantify because of their dependence on the network

and overlay topologies. Algorithms ma5, perform very differently on networks where

receivers are clustered close to each other compared to when they âre more sparsely

distributed, for example. In addition, the ordering of join and leave operations is

quite signiflcant: the addition of new routers to the overlay tree can affect the selec-

tion of parent nodes in later joins, as can the pruning of routers that are not needed

at the time.

CHAPTER 5. PERFORMA¡\¡CE ANALYSIS 91

We feel that the best way to describe these protocols is in terms of message com-

plerity, rvhere we analyse the number of messages betrveen nodes that an algorithm

takes to perform an operation. All algorithms presented in this chapter have tu'o ba.-

sic operations: the join operation and the leave operation. Tables 1 and 2 present the

lower- and upper-bounds for the message complexity of these operations. As shown

in the tables, the Lorikeet algorithms have much smaller lower-boulds olt courplexity

than the Greedy-join based algorithms, while maintaining the same upper-bound.

Two special cases in analysing these algorithms for complexity are the Source-

Join and RtrUNITE algorithms. As shown, both of these have very lorv message

complexity for both join and leave operations, since all receivers join at and leave

from the source via the (already known) underlying shortest path. However, this

approach trades this reduced complexity for increased tree cost: it relies on receivers

sharing portions of their paths from the source, rather than explicitly making use of

routers that are in the tree but not on that receiver's shortest path from the source.

An implementation of the Source-Join algorithrn would require additional complex-

ity to achieve this path sharing, either by having the source maintain a cop)¡ of the

topology, or by having routers detect and consolidate duplicate streams. REUNITE

is effectively an implementation of the Source-Join algorithm: it operates using ad-

ditional periodic messaging to maintain its soft state forwarding tables at routers,

thereby facilitating multicast branching. For this reason: the complexitl' fig.tt".

given for Source-Join and REUNITE are signifrcant underestimates, since either ad-

rlitional functionality or periodic messaging (which is difficult to compare to rrrore

explicit control systems) is required in real implementations of these algorithms.

These lower- and upper-bounds only present the behaviour of the algorithm in

the trivial and worst-case scenarios; thus, they do not represent the behaviour of

the system in the vast majority of cases. To give a more complete picture of the

behaviour of Lorikeet against other algorithms we counted the messages passed over

the course of a simulation and present the results as averages in Table 3. The sim-

ulation used to generate these results is the "Windowed" experiment described in

CHAPTER 5. PERFORMA¡\ICE A¡\TALYSIS 92

Section 5.3.1, rvith the following parameters: the initial count of receivers is 100,

the rate at which the windorv moves is 0.5 unitsf event, the window size is 200 and

the departure lag is 100. Results for ARIES are omitted from this table because

of the difficulty irr developing a distributed implementation of ARIES, as describcd

in Section 5.2.2. However, the number of messages passed by the ARItrS algorithm

will be at least as great as the number passed by Lhe Greedy algorithm, plus the

additional cost of the messages required to maintain ARItrS' counters and perform

rearrangement. Results for REUNITE are also omitted due to its dependence on pe-

riodic messaging to maintain its soft state information; this time-dependence makes

REUNITE's message complexity difficult to compare to the other event-driven pro-

tocols presented here.

It can be seen from the table that the exhaustive join technique's higher com-

plexity gives rise to a much larger average number of messages passed on join events

for both the Greedy and DSG algorithms, and also for ARIES (as noted above).

This makes these algorithms unsuitable for real-time use on multicast transmissions

with more than a trivial number of receivers, since this control overhead rvill grow

at least linearly with the number of receivers. It is also rvorth noting that the join

complexity is more significant than the leave complexity in multicast protocols, as a

receiver must wait for a join to complete before it can begin receiving data. Hence,

we feel that only algorithms which do not perform exhaustive searches on join, but

instead limit the size of their searches further, are candidates for real-world use.

Although Lorikeet has the same worst-case complexity as the Greedy algorithm,

its best case is an order less complex, and in the average case each join onl5r f,¿ksg

a small number of messages. This is due to the way that Lorikeet performs its join

operations, only s¡tmding one branch of the tree at each branch point. Table 3

also shows that the difference between Simple and Path-Greed1, join in terms of

the number of messages passed is marginal, with only an increase of between three

and four messages on average for Path-Greedy join in this scenario. Rearrangement

in the Lorikeet variants is onl5' ever performed on leave operations, because of the

'\
frt
l.e

¡

i.
¡

I

t

1

G

I'
T

I

{
i'
1'

'1.

CHAPTER 5. PERFORMAT\iCB A¡\TALYSß 93

Algorithm Lower Bound Upper Bound

Simulta,neous Unica,st

Greedy

Source-Join

REUNITE

DSG

Lorikeet Simple

Lorikeet Path-Greedy

r¿(1)

CI(¡t/)

f¿(1)

CI(1)

c)(¡/)

CI(1)

f¿(1)

o(1)

o(¡/)

o(1)

o(1)

o(N)

o(¡ü)

o(¡/)

d,:il
',t

Table 1: Join Event Complexity

trigger that is used (a router becoming non-branching).

The values given for the standard error in these results are quite large for most

of the algorithms. This is due to the fact that the number of messages passed per

operation vary a great deal from one operation to the next and are highly dependent

on the topology of the tree at the time. For example, a join operation that takes place

shortly after the creation of a tree requires fewer messages to find a good location

compared to a join on a tree which already has several hundred participating nodes.

Table 4 shows the number of attempted and successful rearrangements for the

simulation used to calculate the data given in Table 3. It shows that rearrangement

is more often successful with Path-Greedy join than with Simple join, and moreover

that Rejoin rearrangement is slightly more often successful than Path rearrangement.

It is obvious from the data that Rejoin rearrangement is more expensive than

Path rearrangement, since it requires an additional join operation. However, we feel

that the extra cost for Rejoin rearrangement is acceptable since rearrangements are

performed in the background; in other words, "hidden" from the user.

i.
i

I

t

1

il'
I
I

I

-{
li

r
{

CHAPTER 5. PBRFORÀ,TAN CE A¡{A¿YSIS 94

Algorithm Lower Bound Upper Bound

Simulta,neous Unicast

Greedy

Source-Join

REUNITE

DSG

Lorikeet (either) without Rearratrgenent

Lorikeet (either) with Path Rearrangement

Lorikcet Simple with Rcjoin Rearrangement

Lorikeet Path-Greedy with Rejoin Rearrangement

r¿(1)

CI(1)

r¿(1)

CI(1)

f¿(1)

0(1)

r¿(1)

c¿(1)

c¿(1)

o(1)

o(¡\r)

o(1ú)

o(1)

o(1ú)

o(¡ú)

o(¡ú)

o(1ú)

o(/ú)

Table 2: Leave Event Complexity

Algorithm Join Leave Rearrange
H
i\{i

,.1 Simultaneous Unicast

Source-Join

Greedy

DSG

Lorikeet Simple

Lorikeet Simple, Path rearrangement

Lorikeet Simple, Rejoin rearrangement

Lorikeet Path-Greed¡'

Lorikeet Path-Greedy, Path rearrangement

Lorikeet Path-Greedy, Rejoin rearrangement

1.00 + 0.00

6.98 + 2.45

178.47 + 33.74

182.16 + 33.63

16.88 + 4.49

16.88 + 4.49

16.85 + 4.49

79.52 + 5.57

19.06 + 4.97

19.04 + 5.29

1.00 + 0.00

1.94 + 1.32

1.64 + 0.96

1.67 + 1.00

1.86 + 1.17

2.23 +r.23

2.2r + 1.20

7.74 + r.24

1.98 + 1.19

1.97 + 1.18

2.09 + r.r7

17.75 + 4.73

3.79 t 4.7r

19.48 + 6.82

i.
i

i

4

f

¡.

r
rt

I

4
i'
t'

I
I

Table 3: Messages Passed Per Event

In thi,s table, th,e Jo'in column li,sts th.e message count for joi,n euents, the Leaue col-

umn I'ists the message count for leaue euents where no rearrangement talces place, and

the Rearrange column lists the rrLesso,ge count for leaue euents where rearrangement

takes place. The mean and standard error are g'iuen for each count-

CHAPTER 5. PERFORMA¡\rCE A¡\rA¿YSIS 95

1

'I

i
i

i

t
1

i

).

ilr
I

I

.r{

I
st

l'

{

Algorithm Attempts Successful

Lorikeet Simple, Path rearrangement

Lorikeet Simple, Rejoin rearrangement

Lorikeet Path-Greedy, Path rearrangement

Lorikeet Path-Greedy, Rejoin rearrangement

29r

29r

296

297

0

q

42

54

Table 4: Rearrangement Counts

Number of attempted and successful rearrangements. The total number of leaue

euents i,n thi,s s'imulation was 961.

5.5 TYee Cost

In this section, we analyse Lorikeet's performance in terms of the total cost of the

tree; that is, the sum of the costs of the individual links connecting nodes in the tree.

We begin by anaìysing the different variants of Lorikeet described in Chapter 4: the

Simple and Path-GreedS' join algorithms and the Path and Rejoin rearrangement

algorithms. The next section compares Lorikeet's performance to that of the other

algorithms described earlier, in a complete deployment scenario (where all routers

in the network support the protocol.) Finally, we anall,ss Lorikeet and REUNITtr

at difierent levels of router capability, to determine how they respond to incremental

deployment in the network.

5.5.1 Lorikeet Join and Rearrangement Operations

This section presents a comparison of the different variants of the Lorikeet protocol.

These can be divided into two categories: different join algorithms and different

rearrangement algorithms.

Joining the TYee

As presentecl in Section 4.5.2, we have examined two different approaches to joining a

Lorikeet multicast tree, the Si,mple and Path-Greedy joining algorithms. The Simple

{

CHAPTER 5. PERFOR IANCE A¡\¡A¿ySIS 96

join algorithm is the initial algorithm developed to selectively search the existing

tree for a parent for a new receiver. The Path-Greedl' approach extends the Simple

join to terminate the search later and avoid local minima. Both algorithms were

simulated, and Figure 12 shows the total tree cost over an event sequence, averaged

over five sequences on the same topology, with all routers being capable routers.

The Greedy joining algorithm is included as a baseline for comparison'

We can see that the Path-Greedy algorithm provides approximately a \Vo írn-

provement over the Simple algorithm in the total cost of the tree once the system

reaches a stable number of receivers. This improvement comes at a small additional

cost in terms of message passing and implementation complexit¡,, as shorvn in Ta-

bÌe 3. Both algorithms are rvithin 12% of the cost of the Greedy algorithm, which

has much higher complexity than either Lorikeet approach'

Rearranging the TYee

Section 4.5.4 presents trvo differ-ent tcchniques for pcrforming rearrangcment of the

tree in order to mainta,in efficiency with a changing popula,tion of receivers. The

simplest approach is path reo,Trangernent, which optimises the patli betrveen two

branching routers in the tree, and the more complex approach is rejozn reorr&nge-

ment, which rejoins a branching router to the tree to take advantage of new parent

routers, falling back to path rearrangement if a rejoin would not improve the cost

of the tree.

Table 5 shows the tree cost averaged over the stable portion of an event sequence

(events 500-2000) measured for all of these rearrangement techniques. The cost is

shown relative to the tree cost with no rearrangement. In this simulation, the

"Windowed" experiment (described in Section 5.3.1) is used, as rearrangement is

more effective when node joins and leaves are correlated. The parameters used here

are as follows: the initial count of receivers is 100, the rate at which the window

moves is 0.5 units/event, the window size is 200 and the departure lag is 100.

These results show that rearrangement of the tree provides a cost improvement

CHAPTER 5. PERFORMANCE A¡\IA¿YSIS 97

.';'ì r

-Jr , ...)ii:i' ù

600

1

500 1 000
event

1500 2000

-

GreedY

Lor¡keet (Path-Greedy join)

Lorikeet (Simple join)

Figure 12: Comparison of Join Techniques: Simple Join vs. Path-Greedy Join

ooo
oo
l-

0
0

{

CHAPTER 5. PERFOR /IANCE A¡\rA¿ySIS 9B

Simple Join

Algorithm Mean Min Max

No rearrangement

Path rearrangement

Rejoin rearrangement

1.00

i.00

1.00

1.00

1.00

098

1.00

1.00

1.01

Path-Greedy Join

Algorithm

No rearrangement 1.00 i.00 1.00

Path rearrangement 0.94 0.85 1.00

Rejoin rearrangement 0.91 0.80 0.98

Table 5: Comparison of Rearrangement Techniques (events 500-2000)

of up to 207o over no rearrangement in this scenario. The addition of rearrangement

to the Path-Greedy join algorithm provides a significantly greater reduction (up

to 20%) in the cost of the tree than the addition of rearrangement to the Simple

join (up to 2%). This improvement in tree cost is more evident in the Rejoin

rearrangement results, since the Rejoin algorithm inherits the join mechanism as part

of its operation: using the more effective join algorithm improves the performa,nce

of the rearrangement.

From these results, we find that the combination of the Path-Greed¡, join al-

gorithrn with the Rejoin rearrangement mechanism offers the best performance in

terms of total tree cost. The Path-Greedy join does not add significantly to the

message complexity of the system compared to the Simple join algorithm, and the

complexity of performing rearrangement is no more expensive than performing an

additional join. Since these rearrangements occur infrequently and can be performed

asynchronously without affecting receivets directly, we feel that this additional cost

is justified.

For the remainder of this chapter, we use the Path-Greedy join with Rejoin

Mean Min Max

CHAPTER 5. PERFORÀ,TANCE A¡\IALYSIS 99

rearrangement for all Lorikeet results

5.5.2 Comparing Lorikeet and Other Algorithms

AIl of the other algorithms except REUNITE referenced in this chapter make the

assumption that the protocol is supported by ever"5' router in the network; effectively,

every node in the network is a, capable router. In addition, they make no distinc-

tion between end-receivers and routers, thus allowing end receivers to support child

nodes.

Thus, to make a "fair" comparison, we test a simulation of Lorikeet against

simulations of the ARItrS, DSG, RtrUNITE, Greedy and Source-Join algorithms

with all routers in the network marked as "capable" for Lorikeet's purposes. Our

network topology is constructed in such a way that receivers are nodes with degree

1 (leaf nodes) so as to address the second restriction. The simulation used is the

"Waxman" experiment described in Section 5.3.1.

The graph in Figure 13 shows the tree cost relative to the Greedy approach

for each algorithm during a sequence of events, where an event constitutes a new

receiver joining the tree or a currently-joined receiver leaving the tree. The graphs

of the cost of all of the algorithms except ARItrS follow a similar shape to each

other, with the Greedy algorithm consistently having the smallest cost and the

Source-Join algorithm having the largest cost. This is consistent with the expected

behaviour of both algorithms, since the Greedy algorithm uses an exhaustive search

of the multicast tree for the optimal parent node on join, while the Source-Join

algorithm always joins to the source. The Source-Join and REUNITE algorithms

produce identical results, since they both perform a join along the shortest path to

the source for each receiver.

Note that the difference between the best- and worst-ca"se algorithms on this

graph is approximately t\Vo, and that (as shown in Figure 2 in Chapter 1) all of

these algorithms are far more efficient than using simultaneous unicast, which has a

CHAPTER 5. PERFORMAIVCE ANALYSIS 100

Þo
E(t
a

dõ
o()
oo
F

1.14

1.12
BEUNITE and Source-Join

Lor¡keel

DSG

Greedy
AHIES

038

event

ARIES (threshold 50)

DSG (alpha=1 5, bela='1.2)

Greedy

Lorikeet (Palh€reedy jo¡n, Rojoin r€aÍangem€nt)

REUNIIE
Source.Join

Figure 13: Comparison between Lorikeet and other Tree Management Heuristics

08

06

04

D2

J)

CHAPTER 5. PERFORÀIANCE AATA¿YSIS 101

tree cost of more than.fi,ue t,i,mesthe Source-Join algorithm's cost in this simulation.

Lorikeet and DSG fall between these two algorithms, which is also consistent

with their expected behaviour. Both of them consider more options when choos-

ing a parent node for a nerv receiver than the Source-Join approach, but are not

considering âs many nodes as the Greedy algorithm. In DSG, this is because DSG

needs to rejoin nodes directìy to the source wltel [hey fail the stretch test, and in

Lorikeet this is due to the use of a join algorithm that does not perform exhaustive

search. However, Lorikeet's join algorithm does perform significantl)' bettel than

simpl¡, joining all receivers directly to the source) as in Source-Join or RtrUNITE.

The ARIES algorithm uses an exhaustive join as described earlier and prunes

deleted nodes not rvhen the¡r ls¿,vs the tree, but as part of a periodic tree rearrange-

ment process. This process also rearranges parts of the tree to form local minimal

Steiner trees. In this example, the rearrangement threshold is 50, meaning that 50

join/leave events must happen in a region of the tree before that region is rear-

ranged. This behaviour gives the "sawtooth" pattern shown on Figure 13, which

straddles the Greedy line since ARIES essentially uses the Greedy joining approach.

ARIES is able to improve on the cost of the Greedy algorithm's tree through the

use of rearrangement.

This figure shows that Lorikeet's performance falls between that of the Source-

Join algorithm and the algorithms based on exhaustive joining heuristics (Greedy,

DSG, ARIES). This demonstrates the trade-off between algorithm complexity a,nd

tree cost Lorikeet's complexity is higher than that of the Source-Join algorithm,

which only considers one parent node for a new receiver, but considerably lower than

that of the exhaustive algorithms, which consider all possible parent nodes during a

join operation. It is also interesting to note that Lorikeet with Path-Greedy joining

is competitive with the Greedy algorithm (within 8%) despite its considerably lower

complexity.

These figures show that Lorikeet is able to approa,ch the performance in terms

of total tree cost of algorithms that have much higher complexity and perform

CHAPTER 5. PERFORMA¡\rCE AI\¡A¿YSIS 702

exhaustive searches of the tree on join operations. Due to this lorver complexity,

Lorikeet scales much better to large groups of receivers and ensures that joins to the

tree (for which the user has to wait) are completed quickl¡,. This makes Lorikeet far

more appropriate for large-scale use.

5.5.3 Incremental Deployrnent

One of Lorikeet's design requirements, as described in Section 4.2.3, was that not

all routers need knorv the protocol being used. In other rvords, the protocol should

work even in a network that has only some capable routers present, or in a network

rvith none at all. This property gives the system the ability to be incrernentally

deployed, a property that is effectivel¡, required to achieve broad usage across the

Internet.

5000

4500

4000

140

120 (,
a,
L
l-
E

roo 'i
L
c,

¡
803

g
¡¡
IE

60è
t!()

o
40b¡

E
f

20Z

3500

o
I 3000
C¡I zsoo
F

[,ooo
t-

1500

1000

500

0 0

0 0.1 o.2 0.3 0.4 0.5 0.6 0.7 0.8

Proportion of routers in network that are capable
09

ILorikeet: Tree Cost r---_.] REUNITE

REUNITE

Tree Cost

- - Lorikeet: Ca Router Count ble Router Count

Figure 14: Comparison of incremental deployment performance for Lorikeet and

REUNITE/HBH.

CHAPTER 5. PERFORMA¡\TCE A¡\TA LYSIS 103

Figure 14 sho.n's two sets of data from a simulation of the "Waxmå,n" experiment

described in Section 5.3.1 for both the Lorikeet and REUNITB/HBH protocols. The

first (the column glapli) shows the cost of the tree after 2000 events for a selection

of values representing the proportion of capable routers in the network. The second

(the line graph) shorvs the number of those capabÌe routers being used in the tree

after 2000 events.The simulation was run with ten different event sequences on five

different Wa,xman topologies and the results averaged to generate the graphs shorvn.

The error bars on both graphs represent 95% confidence intervals.

As the graph shows, RtrUNITE/HBH and Lorikeet generate distribution trees

of exactly the same total cost rvhen no capable routers are present; in this situation,

all receivers are connected to the source by direct unicast connections. With the

introduction of capable routers in the network, however, Lorikeet makes much better

use of them, outperforming RtrUNITtr/HBH by more than 30% when routers are

sparsely distributed Even at higher penetrations, Lorikeet constructs significantly

cheaper trees.

For Lorikeet, the cost of the multicast tree when no routers are capable is more

than double the cost ofthe tree when I0% of the routers in the network are capable.

The efficiency of the total system clearll, increases with capable router deployment,

but the graph suggests that even a small amount of capability in the network makes

a large improvement over the use of simultaneous unicast (which is exactly the

same as Lorikeet with no capable routers). Approximately 75To of the improvement

possible at full deployment is achieved when only 20To of the network's routers are

capable, in this simulation.

'l'he graph of the number of capable routers in the tree is linear, representing

about 85% of the capable routers in the network at each point. This is unsurprising

as capable routers, once discovered, remain in the tree while they still have child

nodes to support, and there is a significant population of rcceivers in the tree by

the end of the simulation. Some routers, of course) do not get discovered or do

not remain long in the tree, as they are on the edge of the network on rarely used

CHAPTER 5. PERFORMA¡\rCE A^TALYSß 104

paths. The count of capable routers in the multicast tree is very similar for both

algorithms. This is due to the fact that both Lorikeet and REUNITE/HBH discover

capable routers in the same way? along the shortest paths between the source and

recervers

In a REUNITE/HBH multicast tree, the paths betrveen nodes that are used are

always sub-paths ofthe unicast shortest paths between the receivers and the source.

Since Lorikeet places no such restriction on the path used by a receiver to join the

tree, additional branching may be enabled. For example, a receiver may choose to

join the tree through a router off the shortcst path to the soulcc rvhose path frorn

the source is slightl¡' longer than the receiver's direct path, but whose path to the

receiver is ver1, short. This ability to select from a wider range of potential parents

allou's Lorikeet to construct more efficient (in terms of total tree cost) multica,st

trees.

5.6 Summary

In this chapter, we presented a series of results and simulations designed to quantify

the performance of Lorikeet's different components and compare that performance to

other multicast algorithms. Since our focus in this work is on tree construction and

maintenance, a topological simulation was designed to facilitate analysis of Lorikeet

(and other systems) in terms of the trees it constructs.

To begin with, we described several competing multicast algorithms, namely

ARItrS, DSG and REUNITE/HBH. Two simple algorithms (the Source-Join and

Greedy algorithms) were also irrcluded as b¿xelines for cornparisol. The messil,ge

complexity of these different approaches was discussed, showing both analytically

and with empiricaì measurements the difference between algorithms that cxhaus-

tively search the tree (using Greedy joins) and algorithms that perform more limited

searches, like Lorikeet.

The pelfolrnarìce of Lorikeet's different join and rearrangement algorithms was

CHAPTER 5. PERFORMA¡\rCE A¡\IALySIS 105

examined through simulation. FYom our results, we concluded that the Path-Greedy

join rvith Rejoin rearrangement rvas the most effective variant of Lorikeet for genera,l

purpose use, and rve selected that version of the algorithm for further comparison.

Next, we compared Lorikeet to the other algorithms discussed earlier, simulating all

of the different systems on a network in which all the routers supported the proto-

cols being used. This comparison showed that Lorikeet performs well in comparison

to other algorithrns, improving on REUNITE/HBH and the naive Source-Join al-

gorithm and approaching the performance of the algorithms based on exhaustive

join techniques, which are not practically deployable for large-scale use due to their

message complexity.

Finally, we examined the performance of the only algorithms in our comparisons

above that support use with only partial deployment in the network, Lorikeet and

REUNITE/HBH. These results shorved that Lorikeet makes much more effective

use of sparsely-distributed capable routers, outperforming REUNITE/HBH by more

than 30% in situations with limited deployment. Lorikeet's advantage was reduced

at higher levels of deployment, but it was still able to generate cheaper trees in all

CASES.

The following chapter will describe our attempt to improve Lorikeet's perfor-

mance further in networks where capable routers are sparsely distributed, through

the use of a directory service for locating capable routers.

Chapter 6

Directory Nodes

6.1 Motivation

To efficiently distribute the data being transmitted by the multicast source) a, Lori

keet multicast tree requires capable routers (routers that support the Lorikeet proto-

col) to be present in the tree. These capable routers facilitate branch'ing, or copying

of data packets to more than one downstream node. Capable routers are discovered

when new receivers join the tree, by searching the underlying shortest path between

the new receiver and its point of connection to the rest of the tree.

If capable routers are scarce or not present on these shortest paths, then the

multicast tree ends up as effectively a "simultaneous unicast" scenatio, with every

receiver receiving a separate unicast stream from the source. A simple diagram

illustrating this situation is shown in Figure 15.

In Figure 15(a), no capable routers are present and the source must therefore

connect to all of the receivers directly. Consequently, the source maintains four

connections, one for each receiver, and sends the same data to each. In Figure

15(b), a single capable router /l has been discovered and is being used to support

three of the receivers. Therefore, the source need only transmit two copies of the

data, one to the first receiver (which is still directly connected to the source) and

106

CHAPTER 6. DIRECTORY NODBS 707

the other to the router 11, which copies the data to its three child receivers. Such

branching reduces the load on the networ-k and allows the network to support many

more receivers without overloading the source.

(a) No capable routers in the tree;

every receiver has its owÌr connec-

tion from S.

(b) R is a, ca,pabÌe rout.er and

shares the link (S, R) between its

children. reducing network load.

Figure 15: Capable Routers in the tree inprove efficiency through link sharing.

The Lorikeet protocol. a,s described in earlier chapters, makes an important as-

sumption: that capable routers are present on the shortest paths between parent

routers and receivers, where they s¿11 be discover-ed and used for branching. How-

ever, it is possible that capable routers may be present in the network btú not on the

shortest paths to receivers: in this situation it is desirable to dtscouer them through

some other mechanism and add them to the tree. Some exampìe scenarios in which

these conditions may arise include:

o multicast trees where the source has just started transmitting and the tree

contains no capable routers at all;

o networks where capable routers are few in number and sparsely distributed;

¡ networks where routers on the shortest path are large backbone routers that

may not be capable or do not want to "snif[" fbr Lorikeet join packets for

performance reasons. Hence, any capable routers present will not be on the

shortest path. A simpìe diagram showing this situation is presented in Figure

16.

CHAPTER 6. DIRECTORY ¡\TODES 108

Once a capable router is added to the tree to support a receiver, however, it

can be reused by other receivers that join the tree after its addition. Such reuse

may lead to a tree that is of lower cost than it would have been had that capable

router not been added, thus justifying the capable router's addition even if its use

is initially rnore expensive than directly connecting the first receiver to the sollÌce.

In these situations, an alternative mcthod nust be used to find capable routers in

the netrvork that are not present on the shortest paths to receivers, but are close

enough in network terms to reduce the cost of the tree through increased branching.

For example: in the situation shown in Figure 16(a) the multicast stream is being

transmitted from the source to a capable router 1ì1 . Router .Rr is then transmitting

the stream to three receivers via shortest paths that are largell' the same but contain

no further capable routers. Hence, the path through the non-capable routers (shown

as dashed nodes) is not being shared, but is instead carrying three copies of the

stream, one for each receiver. Those links carrying multiple copies of the stream are

shown in bold. Capable router ß6: is close enough to the three receivers to provide

a net decrease in the cost of the tree if it were used, by reducing the burden of the

path to Rç to a single copy of the stream.. This scenario is illustrated in Figure

16(b), and it can be seen that the number of links carrying multiple copies of the

stream is reduced to just one. Since -R6: is not on the shortest path to any of the

three receivers, however, it rvill not be discovered by Lorikeet's join mechanism and

will remain unused.

It is important to note that multicast transmission using the Lorikeet protocol

should n,ot be dependent on an)¡ additional discover¡, procedure to operate such

a system should only provide a wa)¡ to improve performance in some scenarios. As

discussed in earlier chapters, Lorikeet is designed to operate with very few (or even

no) capable routers in the network, in order to permit incremental deplo),ment of

the protocol. We feel that this support for incremental deployment is a strong

requirement for new Internet protocols designed for wide use.

CHAPTER 6. DIRECTORY ¡\TODES 109

, 1 ,r--;

capable router nol
on the shortest path

.\-
;-+'

(a) Capable router ,?o is present. but not on the shortest pa,ths to receivers

capable rouler nol
on the shortest path

shortest path from S to rcccivcrs

t---------'
'. ;
t

shortest palh from S lo rece¡vers

(b) If ,Rc is discovered and used for branching, 1;he number of links carryitrg

duplicatc strearns is leduced.

Figure 16: Capable routers may be not on the shortest paths to receivers, but can

still recluce the cost of the tree if userl.

6.2 Directory Nodes

The solution proposed for the problem of finding capable routers that are off the

shortest path is the conccpt of a directo'ry node. A directory node is a node within the

network that can be queried b), Lorikeet sources and routers. When it is queried, it

returns a set of capable routers from a database that it maintains - thereby provicling

a way for the algorithm to introduce more capable routers (and hence more potential

for branching) into the multicast tree.

CHAPTER 6. DIRECTORY ¡üOD,ÐS 110

Such directory services for discovering the addresses of hosts providing desired

information are used in man¡, other Internet protocols, the most obvious example of

which is the use of the Domain Name Service (DNS) to support name resolution and

email deliver)/. Many peer-to-peer protocols also use directory services to discover

the locations of other nodes or data rvithin the network overla¡,, such as the trackers

used by the BitTorrent 110] proLocoì ancl lhe GWebCache [34] soflwat'e used b¡, soure

clients to bootstrap a connection to another node in the Gnutella [31] netrvork. These

applications rel;' on directory techniques to operate.

In our proposal for Lorikeet, directory nodes will exist at well-known addresses

within the network (perhaps defined in a specific DNS zone, for example) and can

share information with each other about known capable routers. Capable routers

should be administratively configured to periodically notify a directot'¡, node a,bout

their location, information which can then be propagated to other directory nodes

and used in responses to querying routers

When a join operation is underway, a router may query a directory node for a

list of "adopted ch'ildren" (additional capable routers) to consider in addition to its

own children in the tree. Paths through these adopted children rviìÌ, by definition,

have an equal or higher network cost than the shortest path to the receiver. In order

to bias the system towards the addition of new capable routers, the cost of a path

through an adopted child is reduced, or "sweetened", for the purposes of comparison

in order to make it more likely to be selected. Using a sweetened path is a decision

to use a higher-cost path through a new capable router in the short term, rvith a

vierv to recovering the cost difference by sharing it in subsequent operations.

We have not addressed the system by which directory nodes rvould maintain or

share with each other the information that they store such topics have been ad-

dressed in the literature, particularly in the design of peer-to-peer network protocols,

such as CAN [63] and Tapestry [82], and content replication systems such as those

described by Kangasharjtt et al. [44), and used by the commercial flrm Akamai 12]

and the research project Coral 1I7,29).

CHAPTER 6. DIREC'|ORY ¡\IODES 111

The focus of our interest in this area is the improvement of Lorikeet's perfor-

mance, with the service provided by directory nodes being a logical approach to

achieving that goal.

6.3 Joining the TYee

DirectorS' nodes are used to enhance Lorikeet's existing join operation, described

in Section 4.5.2. They are designed to provide additional potential parent routers

for consideration during the join. As the join operation proceeds, routers in the

tree (including the source) can query a directory node and ask for a list of capable

routers (adopted children) to be considered for inclusion in the tree.

When a list of capable routers is returned to a querying router by the director¡'

node, these adopted children are queried to ensure that they are not already par-

ticipants in the tree (which could otherwise cause the formation of loops). Adopted

children that are not yet participants in the tree are then used as additional children

in the join's path calculation. The cost of using one of these adopted children is the

marginal cost: the cost of adding the new capable router to the tree, plus the cost

of the link between that router and the new receiver. In order to bias the system

towards the inclusion of new capable routers, since the cost can be no less than that

of the shortest path, we decided to use a "sweetener" to reduce the cost of paths

containing adopted routers, dividing the marginal cost by a factor a greater than

one.

It is important to note that this approach requires the cost metric used by

Lorikeet for selecting links be additiue, since this addition to the algorithm relies on

being able to add two partial path costs together and use the result for comparison.

Although initially we applied the sweetener to the entire marginal cost, we soon

found that a more appropriate way to apply the sweetener was on a link-by-link

basis, rather than to the whole marginal cost. Therefore, only those links for which

the destination node is a capable router not currently in the tree have their cost

I

'1.

É

f
Í

CHAPTER 6. DIRECTORY ¡\IODES II2

divided b)' the sweetener value, while other links in tlie path remain at full cost.

The motivation behind this approach is to only bias the slrs¿sm towards the inclusion

of nodes that can be reused (namely, new capable routers) and not the cost of the

link to the new receiver, which is a link that cannot be shared with other receivers.

A more detailed discussion of path sweetening is given in Section 6.3.2.

6.3.1 Algorithm

In this section, we present a description and example of our mechanism for the use

of directory nodes in Lorikeet's join operation.

This algorithm builds on the Path-Greedy join technique described in Section

4.5.2. At every step of the search through the tree for a, parent, each selected router

is able to query a directory node for adopted children. The marginal costs of these

adopted children are calculated, and the cheapest of them is stored in the join

message that is passed down the tree as the tree path is calculated by the Path-

Greedy join aÌgorithm. Adopted children are not used in the tree path itself, as

selecting an adopted child would mean terminating the search early (since adopted

children have no children themselves).

When the Path-Greedy search terminates, having found the tree path, the cheap-

est router in the tree path is compared to the cheapest adopted child, and the option

with the smallest cost is chosen to be the parent of the new receiver. If the tree path

router is chosen, the system behaves as the regular Path-Greedy algorithm does. If

the adopted child router is chosen, the final path to the new teceirrer will consist

of the path through the tree to the parent of the adopted router, then the adopted

router, and then the new receiver itself.

Pseudocode for the algorithm is shown below. The following state variables are

passed down the tree with the join message, and their initial values are as shown.

The sweetener value is denoted by a.

P ,: [] {the tree path, initially an empty list}

lt

CHAPTER 6. DIRECTORY ¡\TODES 113

Rro.", :: S {the current best candidate parent router in the tree}

Crn.",:: cost(,S,r) {the cost of the path from.R1i.,, to the new receiver r}

RAo.", '.: None {the best adopted child router}

CAo.",'.: oo {the marginal cost of using rB¡r.",}

Parent¡."",:: None {the tree router which is the parent of 1?¡0.,,}

R, :: S {the router on which the processing is currently taking pla,ce}

loop

{this processing occurs on the current router, Iì"}

-R. calculates cost(??", r).

append 11" and its cost to the tree path P.

for each child ,R¡ of 1ì. do

R. contacts J?¡ and instructs it to calculate cost(rB¡,r).

A¡ sends its calculated cost to R..

end for

Rchitd :: child 1ì¡ with minimum cost(1ì¡, r).

1?. requests adopted children for receiver r from a directory node.

for each adopted child .R" do

Æ" queries Ilo and discards R, if it is already a participant in this multicast

tree.

.1?o calculates marginal cost: marginal(Ro) :: jcost(r?",l?") + cost(,R", r)

1ìo sends its calculated cost to Il".

end for

Radopted.:: adopted child lR, with minimum marginal(-R").

if marginal(Roaopt.¿) 1 C40",, tlten

{there is a new best candidate adopted router}

RAo"", l: Radopted.

C A0"., t: marginal(Rodopt.d,)

Parentto"", :: R"

end if

r¡
l{S

I

L

i

ì

i
,l

1

ì.

il
a
{
rt

I

,tit
It
t
J
J.

:i

CHAPTER 6. DIRECTORY ¡üODES 714

I

i

ü
1q

t1

'{
i,'

I

I

i

i

t
I
!

i.
ii
'¡ll

ï
,t

f
{

if ,l?" has tree children then

if cost(-1?"¡¡t,ttr) I C70",, tlten

{there is a new best candida,te tree router}

R7r.,, :: R.¡¿¿¿

CTo"", :: cost(R.¡¡¿¿, r)

end if
R.'.: R.n¡u {pass control to the minimum cost child}

else

{there are no further tree children; now we choose the parent for r}
if C¡0.,, (Cro"", then

{the best parent is the best candidate adopted router}

return (subset of P from S to Parentao.",)llBao.",,rl

else

{the best parent is the best candidate tree router}

return (subset of P from ^9 to /1a.",)+fr]

end if
end if

end loop

Using dìrectory nodes in this way adds only a veÐ/ small amount of extra state

information to the join message used by the Path-Greedy Join. In addition to the

data required by the Path-Greedy aÌgorithm already, the join message must carry

RAo.,,, the location of the best adopted child, CAo",,, the marginal cost of that

adopted child, and Parent¡o."r, the location of the router that "found" the best

adopted child.

An example of this procedure operating is shown in Figure 17. The node marked

r is the new receiver, ,S is the source of the multicast tree and Rt,. .., Ã6 are capable

routers that are already in the tree. The shaded nodes are nodes that were asked to

calculate their cost to the new receiver, while the unshaded nodes were completely

CHAPTER 6. DIRECTORY ¡\TODES 115

uninvolved in thc tree search

ì'Ro'

tree path

\ --ì'i.^r't
\/

jRmì

Figure 17: Path-Greedy .Ioin with Directory Nodes

The tree path after performing the first part of the join operation (searching the

tree) is (S,/ìr,1?s,Êe), as shown in bolcl. As the tree path was constmcted, each

router contacted a directorl, node and queried for adopted children. Ra1, R¡2 and

R¡s àre the best adopted children returned by directory nodes to queries from ,R1,

,R3 and A6 respectively. ,S did not receive any adopted children in this case.

As the join traverses the tree path, the marginal costs of the adopted children

are calculated and used to determine the best adopted child. The marginal costs for

the three in our example are as follows:

I

_ì

I
i

¡

I

i
,t

!
*
i:

'l
t.

r
rt

i
{

marginal(Æa1)

marginal(rla2) :

marginal(rR¡3) :

lcost(Ar, Rt)* cost(R¡1, r)
o
lcost(-R3, Rn) t cost(Ra2,r)

lcost(186, R¡s) * cost(Ra3, r)

4
t'

I

{

CHAPTER 6. DIRECTORY ¡\TODES 116

These values are compared as the tree path is traversed, and the adopted child

with the minimum marginal cost is chosen as -R¡r.,,. If we assume that in this case

the minimum cost adopted child is R¡2 and the minimum cost tree router is Iì3,

then the final part of the join opelation procecds as follows:

When the tree path calculation reaches the final router .R6, which has no further

tree children, a comparison is made betrveen the two possible cases; either tree router

1?3 becomes the parent of r, or adopted child router R,cz does. If the path from 1?3

has the lowest cost, the path to the new receiver rvill become (,S,1?1 ,Rt,r). If the

adopted router 1l¡2 has the lorvest cost, it will be added to the tree as a child of 1?3

and the final path to the neu'receiver will become (,9,.R1 ,R3,R¡2,r).

6.3.2 Discussron

In our application of directo4, nodes to the Path-Greedy join algorithm above, we

defer the use of adopted children until after the end of the tree search, similarly

to horv we traverse the complete tree path before deciding on a router to be the

new receiver's parent. Initially, we did investigate the immediate use of an adopted

router if its cost is the minimum cost found during a step in the search process.

This approach, however, created unexpected problems. Since an adopted child is

a router that was not present in the tree before it was discovered, it has no tree

children. This results in the join procedure terminating when one of these routers

is selected in a round of the join operation. If the sweetener value is high and/or a

large number of adopted children are used, it becomes very likely that an adopted

child will be selected, rather than a child from the existing tree. This has the effect

of terminating the join operation quickly, when a particularly cheap adopted child

is encountered early in the search. Consequently, this reduces the number of nodes

considered in each search and over- time results in a higher cost tree. The effects

can be illustrated topologically as well: if all join operations are terminated early

then the resultant tree is short and fat, consisting of a large number of receivers

CHAPTER 6. DIRECTORY ¡\TODES T17

connected to the tree by short paths through adopted children. Such a tree will

have less branching (and hence be less efficient) than a, tree generated by a join

process that exploits routers already in the tree more often.

To address this issue rve designed the technique described here, where the use

of adopted routers is deferred until the complete tree path has been calculated.

This approach allorvs the existing tree to be exploited as much as possible before

adopted children are considered and biases their use towards the bottom of the tree,

rather than the top. Adding additional nodes at the bottom of the tree ensures that

existing branching in the tree is leveraged, rather than simply adding additional

branches from the source or other routers high up in the tree.

The Cost of an Adopted Child

In the previous section, we briefl1, described the way in r¡r'hich the malgina,l cost of

a path involving an adopted child is sweetened in order to promote the addition of

more capable routers (and therefore, more potential for branching) to the tree.

Earl5' i¡ our work on directory nodes, u'e applied the sweetener to the entire

path through the adopted router, sweetening both the link between the adopted

router and its parent andthe link between the adopted router and the new receiver.

Later', we refined this approach, sweetening only those links that end in new capabìe

routers, while other links (such as the one between the adopted router and the nerv

receiver) were considered at "full cost". Note that a "link" in this description is

a link in the tree, which may consist of a path through a number of non-capable

routers, rather than a link in the underlying physical netrvork.

A sirnple example illustrating the difference between the two approaches to path

sweetening is shown in Figure 18.

In this example, the router .R is a router in the tree, while routers Rp1 and Rp2

are adopted child routers. We let the sweetener be 2 and the link costs be as shown.

When new receiver r joins the tree, the whole-path approach treats both paths

as identical, with the same sweetened path cost of (10 +1)12:5.5. However, the

CHAPTER 6. DIRECTORY ¡\TODES 118

10

10

Figure 18: Two Approaches to sweetening the path

links (rR,.B¿1) and (R,Ror) are reuseable. whereas the links (Rot,r) and (Rp2.r)

are not. It is possible to recover the cost of the reusable links through later join

operations to those routers. This is what our later approach does: in this example,

it gives the left-hand path asweetened cost of 7012+ 1:6 and the right-hand path

a sweetenecl cost of I l2 + I0 - 10.5, thereby sclecting the left-hand path as cheaper.

The rationale for our selected approach to sweetening paths is that it draws a

distinction between paths through the network that can be reused in the future (links

to capable routers) and paths that offer no possibility of reuse (links to receivers).

Therefore, given a choice of different paths to a receiver with similar costs, it is

logical to choose the one with the least cost final link, since that link cannot be

reused in subsequent joins.

The optimal value of the sweetener itself is very dependent on the topoìogy of the

network and the properties of the application. The selection of the swceterìer is based

on the probability that that router will be used by enough receivers joining later

to make its addition to the tree cheaper than connecting those receivers elsewhere.

This probability is affected by the proximity of receivers to each other and to capable

1

1

CHAPTER 6. DIRECTORY ¡\TODES 119

routels in the netu'ork and is thus difficult to determine a pri,on, without extensive

knowledge of the netu,ork and the popularity of the multicast transmission.

An anaìysis of the relationship between the selection of the sweetener value and

its effect on the total cost of the tree is given below.

distribution
tree

c

o,,

a2

b2
a1

Figure 19: Selecting a sweetener

In the diagram shown in Figure 19, we have a Lorikeet mult,icast tree containing

a capable router -R with no children. That router is selected as the final tree router

in the join algorithm for new receirrer 11. and has also received aclopted child r?¿

from a directory node. The costs on the paths between these nodes are as shown.

For a sweetener value a, the cost of connecting 11 to the tree via a direct connec-

tion tol? is ø1, whilc thc (sweetenecl) cost for connecting it through Rp is 9 + br.
a

Hence, -Rp will be added to the tree if:

9 +br. o, (6 1)
a

Assuming that the above inequality holds ancl ,Rt is added to the tree, we now

CHAPTER 6. DIRECTORY ¡\IODES r20

add receiver 12in a subsequent join operation where both /ì and -R¿¡ are candidate

parent nodes. 1?p will become the parent of 12 i|b2 1 a2.

Since Equation 6.1 allows the longer path through A¿ to be chosen even if its

actual contribution to the cost of the tree is greater than that of the direct path

(c-1fu) ar), the cost of adding 1?¡ must be recovered through subsequent joins to

1?¡ that would have otherwise joined elsewhere on the tree. If we take the value ø¿

to represent the cost of joining the receiver r¿ to the tree by a path other than that

through Iì¡, and the value b¿ to represent the cost ofjoining the receiver r¿ by the

path through ß¿, then the cost of adding .R¿ will be recovered when:

n

í:7

n

i-I

(6.2)

for n receivers 11 to r,. Rearranging for c yields,

c < !("n - br). (6 3)
i-1

As is plain from the diagram, this tells us that the cost of adding .R¿, the link

with cost c, will be recovered when we have added enough new receivers r¿ for which

the sum of the differences in their costs exceeds c.

It is difficult to make decisions based on the values of ø¡ and b¿, since we do

not know a pri,ori, the locations or path costs of new receivers. Let k represent the

average cost recovered per new receiver by joining n receivers through capable router

Rn:

k- Ð7:,@o - bn)
(6 4)

n

Then the minimum number of receivers required to recover the cost of adding .B¡

is given by n, which (by Equation 6.1) is equivalent to the smallest integer greater
c

denoted l9l - l.than or equal lo ;, , k,
Hence, l9ff - 1 is the number of additional receivers that must join the tree once

11 has introduced the adopted child router /?¡ in order to recover the cost of adding

CHAPTER 6. DIRECTORY NODES 12r

Rn

6.4 Results

The extended Path-Greedy join algorithm described in Section 6.3 rvas implemented

in the Lorikeet simulation environmcnt. In order to analyse its performance) we

created simulations on a Waxman topology (see Section 5.3.1) with sequences of

2000 events. These simulations are configured so that capable routers can either

be leaf nodes (nodes with degree one) or non-leaf nodes (nodes with degree greater

than one), and the proportions of capable leaf nodes and capable non-leaf nodes

can be controlled independently. Tree routers in these simulations are configured to

ask a directory node for all of the capable routers present in the network and then

consider them as adopted children. This exhaustive behaviour was chosen in order

to show the best possible performance improvement through the use of directory

nodes. In a real implementation, of course) query results would need to be limited

to a much smaller set of adopted children to avoid too large an increase in the

message complexity of the join.

Simulations were performed over a large range of different levels of capable router

penetration, with sweetener values varying from 1.0 through to 5.0. Figure 20

presents the results of three of these simulations, as follows:

1. A Waxman topology with no capable non-leaf routers and 10% of leaf nodes

as capable routers;

2. A Waxman topology with 70% of capable non-leaf routers and 10% of leaf

nodes as capable routers;

3. A Waxman topology with 50% of capable non-leaf routers and 50% of leaf

nodes as capable routers.

The figure shows a graph of the mean tree cost over the final 1000 events against

the sweetener value. Each of the three simulations was run 25 times, using different

1 600

8 1400

q)
E
F
8; 12oo
s
o)

1 000

CHAPTER 6. DIRECTORY ¡\TODES 122

sequences of events on the same topologl,, and the results shown are the means

calculated over all 25 runs.

2000

1 800

15 4 4.5 E

Sweetener

No core capable routers, 10% of leaf nodes are capable

1 0% ol core routers and 1 0% of leaf nodes are capable

50% of core roulers and 50% of leal nodes ate capable

Figure 20: Average tree cost against sweetener value for Directory Nodes simulations

The three situations simulated a,re very different. In our first scenario, all of

the capable routers present are configured as leaf nodes. Hence, thel' 1'vi11 not be

discovered on the shortest paths from the source (or other routers) to receivers;

instead, Lorikeet must rely on the use of directory nodes to discover new routers. In

this case, the only capable routers available are a randomly chosen I0% of the leaf

nodes in the network, with no capable routers at all in the middle of the network.

Our second scenario shows the result of introducing an equal proportion of capable

routers into the middle of the network, where they can be directly discovered on

800

600

2 35325

CHAPTER 6. DIRECTORY ¡\IODES r23

the paths between routers and receivers. In the third case, we simulate a situation

where a large number of capabÌe routers are present, comprising 50% of non-leaf

routers and 50% of leaf nodes.

Consider the fìrst case, where the onll' capable routers present ale leaf nodes'

With a sweetener of 1.0, no paths through capable routers are being discounted.

Since all of our capable routers are leaf nodes irr the nelrvolk, trotre of ther.r- are

on the shortest paths between the source and the receivers. Therefore, no capable

routers returned by a directory node will achieve a lower cost than the direct shortest

path, and the protocol will not discover any capable routers at all. However, as

the sweetener is increased, the cost of the tree drops significantìy. The total cost

of the tree is reduced by approximately 42To at a sweetener of 1.3, despite the

relatively small number of capable routers (only 10% of all leaf nodes) available. This

illustrates how valuable even the presence of a small number of branching routers

is, converting the system from simultaneous unicast to a branching multicast tree.

In the second case) we have added more capable routers to the network, making

70% of its non-leaf nodes into capable routers in addition to the l07o of leaf nodes

that were capable in the first scenario. Here, the chart clearly shows the beneficial

effects of having capable routers in the rniddle of the network, rather than lirniting

their availability to edge nodes alone. The average tree cost with a sweetener of 1.0

(where the join algorithm rvill not select new capable routers from directory nodes)

is almost 40% lower than that of the first scenar-io. This is a measure of the efficiency

improvements attributable to the placement of capable routers in the middle of the

network, rather than at the edge. The use of directory nodes with sweeteners above

1.0 only provides a small (about I4o/o at best) improvement in tree cost-

This trend is further demonstrated by our third scenario, in which half of all

non-leaf routers and half of all leaf nodes are made capable. Here, we can see that

the urrsweetened case is lower again , at, tilTo of thc uns'weetened tree cost of our fir'st

set of results. Increasing the sweetener (and therefore using directory nodes) has

very little additional effect, providing at most a 47o redtction in tree cost.

CHAPTER 6. DIRECTORY NODES 124

Our first scenario denonstrates that capable routers at the eclge of the network

can significantl¡r ¡scl¡.e Lorikeet's tree cost, providing that a mechanism like the

use of directory nodes is available to permit their discovery. However, as shown

by our second and third examples, the addition of capable routers to the middle

of the network (even only in limited numbers, such as I0% of non-leaf nodes in

the netrvork) provides a similar performance improvement without the additional

complexity. This is intuitive if the cost of using a capable leaf node is considered.

A capable router in the middle of the network rvhich is either on the shortest path

or already in the tree is likely to be considerably cheaper to use than a leaf node

that is further away from the direct path, where data transmitted through it must

traverse its single access link twice.

6.5 Conclusions

The last section sholved that the use of directory nodes is warranted in scenarios

when capable routers are not present on the shortest paths between the source

and receivers. Without the use of an alternative discovery mechanism (like the

use of directory nodes), the behaviour of Lorikeet degrades to simple simultaneous

unicast, with every receiver maintaining a unicast connection to the source. If even

a small number of capable routers at the edge of the network can be used to provide

branching, this is sufficient to reduce the total cost of the tree significantly.

However, the performance gains achieved through the use of capable routers

at leaf nodes in conjunction with directory nodes can also be achieved by placing

capable routers in the middle of the network, without the clileclory rtode rlrechanism.

Furthermore, adding directory nodes to this scenario does not significantly improve

performance further: branching in the middle of the network is much more efficient

than branching at the edge, where the network costs to end receivers are higher.

These results were obtained with an exhaustive search of the capable routers at leaf

nodes; in a practical implementation, performance improvements would necessarily

CHAPTER 6. DIRECTORY NODES 125

be reduced further. The simple case described in the introduction, with a capable

router placed in the network adjacent to the path on which multicast traffic is

flowing, can be addressed much more simply by having a conventional router on the

path filter and forward probe packets using standard IP filtering. This approach is

described in more detail in Section 7.2.2.

The increase in message complexity required by the addition of directory nodes

to the protocol is not negligible it potentially adds several extra messages to each

stage of the recursive join algorithm and an extra traversal of the tree path. This

could be minimised by intelligent selection of the adopted children returned by the

directory nodes, caching of query results in tree routers and other improvements,

but it still remains significant.

Lorikeet is envisaged for deployment in networks where there will be at least some

capable routers present on paths traversed by multicast joins, whether they are in

the middle of the network or on border routers, hosted by service providers nearer

the edge of the network. In these situations, the use of directory nodes to enable

discovery of other routers adds extra complexity to the protocol while delivering

very limited performance improvements, as shown in the previous section. For these

reasons, we feel that the use of directory nodes as a part of the core Lorikeet protocol

for general use is not warranted.

Chapter 7

Implementation Concerns

Previous discussion in this dissertation has largely focussed on the topological as-

pects of multicast and Lorikeet's design from a tree construction and maintenance

perspective. In the requirements given in Section 4.2.3, however) we stressed the ne-

cessity for Lorikeet to bc a practical, as well as efficient, multicast plotocol. In this

chapter, we discuss some issues of implementation that arise from those requirements

and from the hierarchical, unicast-based design we have proposed.

7.L Accessing a Lorikeet stream

Lorikeet is designed to be a multicast transmission protocol for live streaming mul-

timedia. It has no mechanism for locating available content on the Internet: we feel

that this functionality is better implemented in out-of-band mechanisms, as it is for

other transmission protocols like BitTorrent [10] and streaming protocols like those

used in Microsoft's Windows \4edia Player [78] or Apple's Quicktime [62]'

Since Lorikeet is a single-source multicast application, the address of the source

and an identifier to distinguish different streams originating at that source provides

enough information to identify and connect to a multicast group. To that end, we

propose the use of a Uniform Resource Identifier (URI) [73] mechanism to identify

Lorikeet streams, with the following syntax:

726

CHAPTER 7. IMPLEIIEIVTATION CO¡\rCER¡\¡S 127

\kt: / /host: port/path

rvhere hosf is the address of the source that is sending the Lorikeet stream, portis the

port number being used b1, the server on that host to accept receiver connections,

and path is a path that identifies the stLeâm, distinguishing it fiorn others being

distributed by the same source.

Using this scheme for describing a Lorikeet multicast stream allolvs easy issçr¡t-

tion and referencing of Lorikeet resources on the \Aiorld Wide Web as is currently

done with many other protocols, including email, teÌnet, F'I'P, Windorvs N4edia

strearns ("mms" streams), Quicktime streams, etc. Bxisting \A/eb browsers alreadl,

have mechanisms for defining handler appli,cati,ons and pl'ugtns to handle protocols

that are not supported nativeÌ), by the browser. This functionality could be used to

display streams inline in a Web page or hand over Lorikeet URIs to a video playing

application that supports the Lorikeet protocol.

The Lorikeet protocol itself can be decomposed into tlvo parts: control and trans-

m'iss'ion. Control messages are transmitted over TCP sessions established between

communicating nodes in the multicast tree: for example, between the source and a

child router, a parent router and a child router, or between a router and a receiver.

A TCP connection is also used for the initiaÌ part of a join operation, when a new

receiver contacts the source. These sessions are used for messages related to con-

struction and maintenance of the tree, such as the searches for a parent that occur

when a new leceiver joins and the notification of a parent louter during a lear¡e

operation.

Separately, Lorikeet uses UDP for transmission of the data stream itself through

the tree. Each stream being transmitted by a source (since a source can manage

several groups) can be identified by the source's IP address and a unique UDP

port number used b), the source for that stream. This (IP, port) tuple can be used

to uniquely identify a stream rvithin a capable router for forwarding purposes) as

described in the next section. The source sends UDP packets containing the data to

its direct children only. Those child nodes that are routers then rewrite the headers

CHAPTER 7. IMPLEMENTATION CO¡\ICER¡\rS 728

of these packets and forward copies to their children and so on, until the packets

have been transmitted to every receiver connected to the tree.

7.2 Implementing Lorikeet

Il Lhis seclior, we present a discussion of the necessary requirements for a physi-

cal implementation of the Lorikeet protocol on all three types of participant node:

receivers, capable routers and sources.

7.2.7 Lorikeet Receivers

In many ways, the client software used on end-users' computers to receive informa-

tion from a Lorikeet multicast tree is the simplest of the three components described

in this section. It does not need to do a great deal of control, since it supports no

child nodes, and only needs to connect to the tree and begin receiving the data

stream.

The client receiver software's operation is as follows:

1. Using a Lorikeet URI (as described earlier), identify and contact the source.

Request the stream described in the URI. The source will return the (source,

port) tuple identifying the group.

2. Wait for the source to provide a parent router Rp to connect to.

3. Connect to Rp, identifying the desired multicast group with the (source, port)

tuple, and begin receiving data.

4. When the user decides to leave the tree, notify .Rp that the receiver is leaving

and disconnect.

The codecs (compression/decompression algorithms) necessary to play the stream

back to the user will be application-dependent, and can be negotiated with the source

CHAPTER 7. IMPLEMENTATION CO¡\¡CER^¡S 729

in step 1 above. Most modern operating systems provide access to a variety of dif-

ferent codecs, and there are many third-party libraries available that could be used

to provide this functionality.

A Lorikeet client could be built as a stand-alone application or Web browser

plugin, as is done with many existing multimedia playback software packages 178,621.

Playback software could also be built for set-top box devices, for streaming video to

traditional television screens.

7.2.2 Lorikeet Capable Routers

The capable routers in Lorikeet provide branching to the multicast tree. Each router

receives a single copy of the data stream from its parent and retransmits a copy of

that data to each of its children. In addition to this, capable routers must handle

control operations: adding new children, removing leaving children, participating in

new receiver joins and performing rearrangements.

We envisage two different types of capable router implementation: a softrvare

implementation on a network-connected server and a router impìementation on a

core or border router. Which of these implementations is used wouÌd depend on the

requirements of the organisation deploying the capable router and the properties of

the network in which it is to be used. We describe both approaches in the following

sections.

Software Implementation

A software implementation of a Lorikeet capable router would be hosted on a

network-connected server running a general purpose operating system such as Linux.

AII functions would be implemented by a user-space server application, in much the

same wây that a World Wide Web server is usually implemented. It would listen on

a TCP port for control messages and use UDP for transmission of the stream itself.

Control operations on the router are facilitated by maintaining TCP connections

CHAPTER 7. IMPLEMEIVTAT/ON CONCER¡\IS 130

rvith the router's upstream parent in the tree (another capable router or the source

itself) and each of its children, rvhich could be either capable routers or receivers.

I\4essages received on these connections are either passed on further up (or dorvn) the

tree, or result in changes to the parent or receiver lists maintained by the router so

that packet forwarding can take place. When a request to participate in a join arrives

from the upstream router, the measurement of the cost to the new receiver is done

and passed upstream to be used in calculation. If the router is the cheapest option

at this stage of the calculation, it performs its stage by passing the join message to

its child routers, selecting the cheapest child from the results, and passing control of

the join to that router. If a request to add a child node arrives, a TCP connection

is established to that node and the router adds its address to the list of children to

rvhich it transmits copies of the stream. Leave operations are handled similarly, with

the router receiving a leave message over the control connection from the departing

child. In response, it removes that child from the list of children receiving the

stream and disconnects its control connection. Rearrangement requests are received

from downstream or upstream routers in the tree, depending on the direction of the

router triggering the rearrangement. If the current router is a non-branching router,

it passes the request on to the next router. A branching router must perform the

rearrangement as described in Section 4.5.4.

In order to participate in multicast branching, this capable router needs to be

discoverable on the paths traversed by messages between the source and new re-

ceivers, as described in Section 4.5.2: Capable routers on these paths sense a probe

packet sent along the unicast path from a parent router to a receiver, announce their

existence to the parent router and join the multicast tree. These probe packets are

sent on a defined, well-known port number assigned to Lorikeet. and are therefore

easily identifiable. An example of this behaviour is shorvn in Figure 21. In practice,

however, it is very unlikely that a software router like the one proposed in this sec-

tion could be placed on a critical path in the network, since it is unlikely to be able

to forrvard packets as efficiently as a standard touter can.

CHAPTER 7. IMPLEME¡\r1H"IO¡\¡ CO¡\TCERNS 131

In this situation, a different approach is nccclecl. Wc suggest a similar approach

to tliat employed in "transparent proxying" schemes, u'lìere World Wide Web re-

quests passing through a border router are redirected to a proxy server. That proxy

ser\¡er can then service the request using a cache if possible before contacting the

actua,l server? in order to reduce latency and save bandwidth. Using this approach,

the capable router need not be on the shortest path in a network: instead, a hard-

wa,re router on the initial path identifies these probe packets (based on the use of a

standard UDP port number used for Lorikeet path probesl, for example) and for-

wards them on to a capable router. That router is then able to contact the parent

router from rvhich the probe originated, announce itself and join the tree. No further

packet forwarding from the intercepting router is required, since the capable router

is able to participate in the tree on its orvn after the initial contact is made. This

behaviour is illustrated in Figure 22.

Such filtering based on port number is functionalìt¡, 1¡o¡ is alrcadl' available and

in heavy use for many other applications in currentl¡, depÌoyed routing infrastructure,

particularll' for firewall security in border routers. This technique frees capable

routers from the necessity of deplo¡,ment on ingress and egress points in the network,

allowing them to be placed at will as long as appropriate redirection filters are in

place. Load-balancing between capable routers could also be achieved trivially with

this technique, by redirecting packets to a pool of capable routers.

Router Implementation

Alternatively, the Lorikeet protocol could be impÌemented on a commercial router,

designed to be deployed directly in the network rvith no additional support. For

this to be possible, Lorikeet's copying and delivery of packets must be realistically

capable of implementation on line cards, rnost likely in hardware as is done currently

lNote that tÌris port worrld be a standarrì, defined UDP port usccl specificalì¡' f6. new receiver

probes. It is a difierent port from the one allocated to the stream by the source, as described jn

Section 7.1, which could be randomly selected

CHAPTER 7. IMPLEMEN7A"IO¡\I CONCER¡\rS 732

probe packel

torwardsd prob€

capable roulsr

(a,) A probe pa,cket arrives at

(non-capable) rotter .1?. l? fbr-

wards the probe to a nearby ca-

pable router, -r?1.

R

capable roúer

(b) Capable router rl1 joins the

tree and becomes the parent of

recelver r

multicast tree path

Figure 21

recelver.

(a) A probe packet arrives at (b) Router Il joins the tree

ca,pable router rR on the path and becomes the parent of re-

to receiver r. ceiver r.

Discovering capable routeïs that are on the shortest path to a' new

prob€ packel
mull¡casl [€e palh

_l

Figure 22: Discovering a capable router that is not on the shortest path to a rrew

receiver) but has probe packets forwarded to it by a filtering rule on a border router.

CHAP'I:ER 7. IMPLEME¡\TTATIO¡\I COI\ICER¡\¡S 133

d
i{ii

,f

with TCP/iP forwarding.

We feel that such an implementation is possible. When a Lorikeet data packet

arrives from the current router's parent (either the source or another capable router),

it must be copied, and a version of the packet sent to all of the current router's

children. For each copied packet, the source address and port are rervritten to

match the current router's address and port, and the destination address and port

are rewritten to match the child's address and port. This can be done without

manipulating any part of the packet other than the IP header, which is fixed-length

and can be operated on very quickly: indeed, it should require not many more

operations than forwarding a traditional IP multicast packet or copying a packet to

the monitor port on a switch.

In order for this branching operation to take place on a line card, it must be

possible to match an incoming packet to the correct multicast group and the corre-

sponding list of children from the packet's IP header alone. The forwarding tables

necessary for this can be prepared in the control plane when the router joins the

multicast group: it merely stores the transmitting address and port of its parent

router alongside the (source. port) tuple that identifies the group. When a new

chiìd joins the group, the router looks up the (source, port) tuple provided during

the join and irlentifies the appropriate parent router and port. This new child is then

added to the list of children that packets from that parent router are forwarded to.

Control behaviour would occur in the router in much the same '\¡/ay as described

f'or the sofTware implementation in the previous section, cxcept that rto filtering rules

would be necessary as the router could be deployed in a part of the network likely

to carry Lorikeet traffic. Since modifications to the tree are not as frequent a^s the

forwarding of data packets, they may be handled by the router's main CPU as are

other routing and control protocols.

q

i'
I

CHAPTER 7. IMPLEMEIVTA?IO¡\I COIVCER¡\IS r34

7.2.3 Lorikeet Sources

A Lorikeet source node is conceptually similar to a World Wide Web server: it

handles requests for information and transmits that information to receivers when

requested. The key r-liffcrerrce is that, unlike thc Web, a Lorikcct rnulticast group is

not a client/server situation in which a single client requests information and is sent

it directly b), the server. Instead, the source handles join requests from receivers,

organises their addition to the multicast tree, and transmits only to its direct children

(which handle further dissemination of the data via the tree themselves)'

We can think of the source as having trvo processes operating per stream (since

a source can serve multiple different streams). The first process listens for controì

messages) such as leave requests from the source's direct children or join requests

from new receivers in the network. When a join request from a new receiver is

received by the source) it begins the join operation described in Chapter 4 and finds

the new receiver a parent in the tree. The source's direct children are managed in

the same way as a capable router manages its children, described in the previous

section.

The second process running on the source handles the transmission of data to the

multicast tree. This process acts as a pipe, receiving the data stream from an input

device (such as a network connection, or a video capture mechanism), performing

any data encoding and packetisation that is necessary) and transmitting a copSr sf

the resultant stream of packets to each child node that is connected directly to the

source. Those child nodes that are routers will then re-transmit the packets to their

children, and so on.

7 .3 Systems Issues

In this section, we describe issues that affect the multicast tree at a system level,

resulting from the interactions of capable routers, receivers and the source. First,

we consider the issue of finite resource limits in capable routers and the necessary

I
FI
rT

-{
I'
i

1

I

i

i

t
t
¡,

il
\';
i.I

CHAPTER 7. IIIPLEMEIVTATIO¡\¡ COf\rCER¡\rS 135

behaviour to deal rvith situations in which those limits are reached. Second, rve

describe techniques for providing robustness against failure in the multicast tree.

Third, rve discuss Lorikeet's behaviour in situations where multiple operations that

modify the tree (joins, leaves and rearrangement) take place simultaneousÌy. ¡"r,¡,

we examine the question of 'handover' in Lorikeet's proposed rearrangement algo-

rithms, outlining horv to minimise disruption of the stream while a rouler is beilg

re-parented. Finally. we discuss the security ramifica,tions of our design, identify-

ing properties of the design that protect against typical rveaknesses in multicast

protocols, as u'cll as discussing somc possible attacks that are diffìcult to prevetlt.

7.3.L Load and Capacity

It is unrealistic to assume that unlimited resources are available on Lorikeet routers:

in practice, all routers have physical limits on their available CPU time, memory and

interface bandrvidth or link capacity. While our description of Lorikeet in Chapter

4 focuses on Lorikeet's topological behaviour, these physicaÌ limits have been con-

sidered and are easily addressed in implementation.

All three limits can be enforced by refusing to support additional child nodes

(receivers or routers undergoing rearrangements) when they are reached. For ex-

ample, a capable router that is approaching any of these resource limits ma¡r þs*it

returning a "router full" response as part of a join operation, when it is asked for

the cost of its path to a new receiver. This would result in that router's removal

from consideration as a parent in the join, and the nerv receiver or rearranged router

would consequently be parented elservhere in the tree, where sufficient capacity is

available. This approach does remove the branch of the tree downstream of the

"full" router from consideration as welll this is no different. however, from what

would have occurred if the router were available but simply more expensive than

one of its siblings.

These limits could be enforced by either monitoring the status of the resources

l
¡

!

I

t

i,

il
lr

{,.

--{

ï
t,

1'

t

1

)

il
ï

II
I

CHAPTER 7. IMPLEMENTATION CO¡\rCBR¡\rS 136

in question and entering "full" mode when they reach a threshold, or b¡r setting

administrative limits on the maximum number of groups and the maximum number

of children that the router is to support. Note that interface bandwidth is not a

global resource; it is quite possible to support a child connected via one network

interface when another downstream interface is saturated.

Clearing a router of the groups it is participating in (for a reboot or scheduled

dorvntime, for example) can be achieved gracefully through Lorikeet's join mech-

anism, as described for rejoin rearrangement. Children (both receivers and other

routers) ale sirnply notified that they rnust rejoin the group. Since the router itself

will not be accepting new children until the downtime is complete, these children

wilì join the group at different parent routers and continue receiving the stream.

7.3.2 Robustness and Failure Recovery

The data in a Lorikeet tree is delivered hop-by-hop from the source, down a tree of

routers, to the set of receivers. The failure of any router in the tree will therefore

necessarily partition the tree and prevent delivery to the subtree supported by that

router. In these circumstances, the tree must be able to detect and recover from

such a failure and provide an alternate delivery path to that subtree if possible.

Failure in a Lorikeet tree can occur at three different points;

1. Failure of the source.

2. Failure of a receiver

3. Failure of an intermediate router in the tree.

Each of these scenarios is treated in detail in the following sections

Failure of the source

Lorikeet is designed to support single-source live video transmissions, and its tree

structure is built upon the assumption that all data is transmitted from a single
.{

ï

I

{

CHAPTER 7. IMPLEME¡\r?H"1O¡\r CO¡\¡CER^¡S r37

source. Building in support for multiple sources) therefore, is not possibìe without

major modifications to the protocol's design. Other mecha,nisms may be usecl to

increase the robustness of the source to failure, much as is done for web servers:

for example, the multicast source could be made a "Iepeater", streaming the data

sent to it by multiple redundant "real" sources that are protected from the outside

network.

Failure of a receiver

In a Lorikeet tree, all receivers are leaf nodes. This property means that receivers

rrray fail witllout affccting any other nocìe in tltc tlcc, ultlikc ill othcl protocols u,lterc

a receiver can be required to support a subtree of other receivers. Hence, the failure

of a receiver in a Lorikeet tree does not require any explicit recoverl, to take pÌace

be¡re¡¿ the cessation of data transmission from its parent. Unfortunatell', because

data delivery in the tree only occurs in the downstream direction, extra message

passing must be added to the protocol to allow the parent to detect the receiver's

failure.

Our suggested implementation is to require routers to query their direct children

periodicall¡, with a status request, to which they must repl)/ within a defined timeout

period. If a child does not acknowledge three successive requests, the parent router

must treat them as having left the tree and remove them according to the procedure

described in Chapter 4. This allows a child node that has faiÌed, or whose leave

request has been lost, to be pruned from the tree.

Without this sort of recovery procedure, a failed receiver could prevent a router

from being rearranged (since we trigger rearrangement when a router becomes non-

branching) or being removed from the tree if appropriate. It is important to note,

however, that these exchanges need not occur very frequently; routers could check

their children for failures once every minute, for example. The presence of an unde-

tccted failed receiver cloes not affect thc distribution tlce or thc undellying rletwork

apart from the bandwidth required for a single copy of the data stream on the fina'l

CHAPTER 7. IMPLEME¡\rTA"IO¡\¡ CO¡úCBRI\rS 138

tree hop, and the resources that it consumes on its parent router

Failure of a Lorikeet router

The failure of a Lorikeet router is the most complex of the three cases described

here. Unlike a receiver, a router has a subtree to which it distributes data received

from its parent; therefore, its failure results in this subtree being disconnected from

the data source.

We propose the detection of router failure using the same mechanism as is used

for the detection of failed receivers described above. Each node participating in the

tree (both routers and receivers) must periodically exchange status request messages

u,ith its parent router, to ensure that each end of the "hop" in the tree is still active.

If a node does not receive a response to a status request within a defined tineout

period, the request must be repeated. If three successive requests time out without

a response, the node must assume that the other node has failed and must attempt

recovery.

If it is the parent node that has failed, the child node must rejoin the tree using

the standard join procedure as described in Section 4.5.2; the only difference being

that the node could be either a receiver or a router with a downstream subtree

already in place.

If it is the chi,ld node that has failed to respond, the parent router has no option

but to remove it from the tree. In the case of a genuine failure, the failed node's

children (if any) will also detect the failure and rejoin the tree using the procedure

above.

7.3.3 Multiple Simultaneous Operations

Lorikeet is designed to operate as a distributed system, with no centralised manage-

ment (beyond the source's initial involvement) of joins and other operations that

modify the multicast tree. In such a system, it is probable that these operations will

CHAPTER 7. IMPLEMEIV?äTIO¡\I COI\¡CER¡\IS 139

occasionally overlap or occur at the same time, since thel' are not being scheduled b1'

a central entity in the network. Lorikeet's hierarchical design ensures that changes

to the tree are localised, but care should still be taken in design and implementation

to ensure that simultaneous operations on the tree do not result in loops or parti-

tions in the tree, or other anomalies. In this section, we examine each topological

operation in the Lorikeet protocol and consider its behaviour in the event of multiple

simultaneous operations.

Joins

Join operations in Lorikeet follorv the following procedure:

1. A new receiver contacts the source and requests to join the tree;

2. The source finds the new receiver a parent router through a search of the tree;

3. The source connects to that parent router and begins receiving the data

stream.

Since this operation only adds new leaf nodes to the tree and does not modify the

connections between other nodes, multiple joins can proceed simultaneously without

requiring any sort of synchronisation.

Leaves

Leave operations in Lorikeet are performed by having the leaving receiver contact its

parent router in the tree and sending a 'leave' message. That router then disconnects

the receiver from the tree and stops sending it data packets from the multicast. Since

all receivers are leaf nodes, the disconnection of a receiver has no direct impact on

other receivers in the tree (as it would in a system where receivers can support other

receivers).

A leave operation in Lorikeet can, however, modify the topology of the tree to

a greater extent than the simple removal of a leaf node. If the leaving receiver was

CHAPTER 7. IMPLEME TTA"IOT\r CO¡\ICER¡\¡S 140

the only child of its parent router, then that parent router will also leave the tree,

and this will occur recursivelS' up that branch of the tree until a router with other

children is encountered. If the leaving receiver's parent had only one other child,

then the leave operation may trigger a rearrangement as the parent router changes

status from a branching router into a non-branching router.

Although these events involve changes to the struclure of Lhe tree, they can

be implemented rvithout requiring complex locking procedures. In the case of the

router u'ith a single child which is leaving the tree, that router may also leave the

tree as long as it is not currently negotiating a join with a nerv receiver. Similar

logic applies in the case of rearrangement, described in the next section.

The issue of how to determine when a router is not currently negotiating a

join rvith a new receiver requires some explanation. In the case of the Simple Join

technique, the question is easily answered: when a router in the tree passes the query

on to its cheapest child, it is no longer participating in the join. This is because

decisions in the Simple Join algorithm are taken locally and immediately. In the

Path-Greedy Join algorithm, however, a router may be called upon to become the

parent of a nerv receiver much later, after the complete tree path has been traversed.

In this case, the routers in the tree path (those that are being considered as potential

parcnts) must be notified when a parent is selected. This can be achievecl b), sencling

a message upstream from the last node in the tree path (where the decision is made),

announcing that the parent for the receiver has been selected and that those routers

can consider themselves free to leave if appropriate. A router with no children that

is involved in negotiating a join will leave after receiving this message.

Rearrangement

In Section 4.5.4we described two rearrangement techniques for Lorikeet: the Path

rearrangement algorithm, and the Rejoin rearrangement algorithm. Both rearrange-

ment algorithms are triggered by a receiver leaving the tree, changing its parent node

from a branching router to a non-branching router.

CHAPTER 7. IMPLEME¡\rTHTIOIV CO¡\ICER¡\¡S 1.47

In the Path rearrangement algorithm, we attempt to remove a chain of non-

branching routers from the tree. This is done by searching upstream and dorvnstream

for the nearest branching routers (or the source and a receiver) and comparìng theil

current path through the trcc to a direct contrection. If corutectirtg them directly

would improve the cost of the tree, a direct connection is made and the chain of

non-branching routers is disconnected. One approach to rlealilg u,ilh t'eceivel jt"lins

on the chain during such a reart'angement would be to disallow those routers from

accepting new receivers while the rearrangement is in progress. However, this is not

rìecessary: instead, ân¡r 1¡"* receivers rììa1r þe acceptcrì as normal. and the chain

of routers will be left in place if it is supporting a receiver, as is done in the leave

operation.

Rup

Rup

Rdo*n
Rdo*n

(a,) Before rearra,ngement. Receiver r Ìtas ìeft

the tree.

(b) After rea,rrattgernetrt. Receiver 12

joined the tree as the rearrangement of

R¿o-n wàs takirrg placc.

Figure 23: Path Rearrangement with Simultaneous Joins

Figure 23 illustrates this situation. In the figure shown, r'eceiver r has just

CHAPTER 7. IMPLE [E¡\r?äTIO¡\r CO¡\ICER¡\IS r42

left the tree, leaving its parent router Iì2 a non-branching router. This triggers a

rearra,ngement, and 112 sends out probes to identify the branching routers Ru, and

Rdo-,. It is determined that the direct path betweeÍt Rupand R¿o-n is cheaper than

thetree path(Ru,Rr,Rr,Rao-,), sotheyareconnectedbythedirectpath. Asthis

is occurring) a new receiver 12 joins the tree at our original non-branching router

R2. Consequently, we disconnect R¿o-, from -R2, but we tlo lol prune A2 âs it now

supports another receiver. The pruning of this "old" path should follow the same

behaviour as the recursive pruning done as part of a receiver leave.

The Rejoirì rearlangernent algorithm idettifies J?¿o-, in the same wa)¡ as the

Path algorithm, but offers R¿o-, a chance to rejoin the tree, using the standard

Lorikeet join operation. In this case, the link between Rdo-n, and its parent router is

disconnected and a new parent is connected, changing the tree path for R¿o-n and

all of the nodes in the tree downstream of R¿o-n.. This should not affect joins that

are in progress during a rearrangement, as the cost calculations that they perform

do not involve the tree path (onì¡' the marginal cost of connecting the receiver)

and no routers are being removed from the tree during the rejoin. If the rejoin is

successful, the old upstream path to Rdo-n will be pruned recursively according to

the logic already described; if new receivers have joined those routers in the interim,

they will be kept in place. If the rejoin is not successful, the algorithm falls back to

attempting Path Rearrangement.

7.3.4 Handoff in Rearrangement

Rearrangement of the multicast tree in the Lorikeet protocol was described in detaiÌ

in Section 4.5.4. It is triggered by a topoÌogical event (the change of a router from

branching to non-branching) and involves the potential migration of a single router

(the nearest downstream branching routcr) to a different location in the tree.

An even more efficient tree could potentially be created by making more complex

changes to the tree structure, as is done by the ARIES algorithm [8] with its use

CHAPTER 7. IMPLEMENTATION CO¡\rCER¡\¡S 143

of a Steiner heuristic to rebuild and optimise portions of the tree. This approach,

however, is quite invasive: it deletes and re-connects all of the links in a portion

of the tree, potentially disrupting the florv of packets being delivered thlough the

tree to those nodes and any nodes further downstream. In comparison, we feel that

the re-parenting of a single router is much simpler, requires less communication

overhearl, and is thereforc nrore easily achieved rvith minimal clisruption to the flow

of data to the branch of the tree downstream of that router.

In implementation, the most effective way to a,chieve the relocation rvithout

interrupting the packet flow is to pclforrn the steps trecessary for rcarralìgelnent in

the following sequence:

1. Signal -1?, the nearest downstream branching router, that it is to be rearranged.

,R continues receiving packets from R.,rr"'¿, its current parent router-

2. Using the chosen rearrangement strategy, locate Rn.-, the new parent rotlter

for -R.

3. Connect Rn.- as the parent of 1?, and have Rn"- begin sending packets to 1?.

4. J? remains connected to both R.,,,,ent and Rn.- until it is synchronised: that

is, it is receiving the same packets from both parents.

5. ,R sends a leave message to R.urr.n¿ and disconnects from it, completing the

rearrangement.

This ensures that .R is connected to at least one parent router at all times during

its relocation in the tree and that the flow of packets through the tree to /ì's chil-

dren is not interrupted. This description makes the assumption that the upstream

capacit5r availabìe to /? is at least twice the capacit5r required for the stream, which

we feel is a reasonable assumption for a router in the core of the network or even

one on the border of a network operated by a small ISP. Note that receivers are

never reaïranged, as such an operation would not benefit the rest of the tree and

CHAPTER 7. IMPLEA/IENTATION CO¡\ICER¡\rS 1.44

because their upstream capacity is more likely to be limited. Instead, as described

in Section 4.5.4, the last capable router on the path is rearranged in the event that

there is no dorvnstream branching router when a rearrangement is triggered.

In the case where two copies of the stream is sufficient to exccccl the upstreaut

capacitS' available to 1?, the rearrangement would have to be performed bf i¡¡s.-

rupting the flow of data. However, the effects of this intelruption dou'nstrcam coulrl

be mitigated by having 1ì cache enough packets, before disconnecting from its old

parent, to last the time taken to connect to its new parent.

7.3.5 Security

The major focus in this work is the topological behaviour of the Lorikeet protocol.

Horvever, security is a concern in the design of any practical network protocol. This is

particularly true of multicast protocols, since (unlike client/server protocols) misuse

of a multicast tree can potentially affect man)/ users simultaneousll'' In this section,

we briefl¡, outline some of the potential security implications of our design. We

do not provide detailecl solutions. but merely raise aud briefl¡, discuss sotne of thc

relevant issues.

The requirement that all receivers be leaf nodes in the tree effectivell, itt.rtut,"t

receivers from each other. Receivers can only receive data from routers in the tree,

and are not directly affected by other receivers. Allowing receivers to become tree

parents would allow malicious receivers to potentially modify the stream and deliver

different data to dorvnstream nodes, or simply not re-send the packets entirely. It

is less likely that routers in the network operated by service providers would engage

in such malicious activity.

Lorikeet's hierarchical structure for control protects the tree from man)' dis-

tributed attacks. No single node in the tree (not even the source) has complete

information about the topology of the tree, or even its population. Instead, nodes

store only the addresses of their children and the addresses of the nodes in their path

CHAPTER. 7. LMPLEI/IE¡ú1IATIO¡ú CO¡\¡CER^¡S r45

back to thc source. Modifications to thc tree's topologv are performed as directed

by messages sent up and down the tree, rvith join messages always originated by

the source. This allows some authentication of topological changes, since they must

aÌways be passed to a node from a direct neighbour in the tree.

Likewise, Lorikeet routers only forward data packets arriving from their upstream

parent router to their downstream children, so there is no possibility s¡ a new source

appearing in the tree and swamping the multicast group with false data packets.

Since Lorikeet's receivers have limited access to the tree and cannot affect each

others' access to the stream, malicious capable routers are the most likely source

of insecurity in the system. By their very nature, they are trusted to forward data

packets to child nodes correctly, and to handle joins and leaves as directed. If a router

were to attack or otherwise destabilise the tree, such behaviour could include:

¡ Dropping (not forwarding) packets, thereby denying all downstream nodes the

data stream;

o Feeding downstream routers a different data strean than the one tieing trans-

mitted by the source;

o Reporting an artificially low cost during a parent search for a new teceiver,

thus forcing that new receiver to join directly to that router, where it could

be denied the stream or fed different data:

o Reporting an artificially high cost duling a parent search for a new teceiver',

reducing the efficiency of the tree by forcing the receiver to join elsewhere.

Many of these attacks could be prevented or at least detected through the use of

digital signing of the data by the source. However, this would require that complete

data be delivered in order to each receiver, which means that additional complexity

in the protocol is necessary to provide reliability, as in the many reliable multicast

protocols (for example, 147, 48, 5B]) in the literature. Such "hijacking" or "man-

in-the-middle" attacks are possible with virtually any networked protocol that does

C H AP TER. 7 . II,I P LEI'I E¡\TTA"ION CO¡\ICER^IS 1,46

not use end-to-end encryption. We feel that the overhead of providing complete

reliabilitl, (with the associated re-sending of packets) and end-to-end signing or

encrl,ption in order to protect Lorikeet trees against malicious capable routers is

unjustifìed: it is il thc irrtcrest of servicc pr-oviders (u'ho rvould dcploy such routcrs)

to ensure that they are operating correctìy, much as it is in their interest to make

sure that the¡, s6r-r..tly forward iP packets and correctly announce BGP routes.

7.4 Deployment

As shown in Chapter 6, rvhen the concept of a director)¡ node service was introduced,

Lorikeet's efficiency is very dependent on its abilitl' to discover capable routers in

the netrvork. Capable routers are necessary for branching: if no capable routers can

be found betu,een the source and receivers joining the tree, those receivers will join

directl¡, to the source) resuÌting in a simultaneous unicast scenario.

A similar issue has plagued traditional IP multicast for man)/)¡€ars. IP multi-

cast protocols require complete multicast protocol deployment on all of the networks

spanned by a group in order for that group to operate. Deployment of native IP mul-

ticast across the wider Internet so that it can be accessed b), ordinary home users,

horvever, has not happened. There are a variety of reasons for this lack of deplo¡,-

ment, including the CPU and storage load such protocols impose on ISPs' routers,

the difficulty in provirliug an applopriate charging rnodel for rnulticast ttaffic, atrd

the lack of applications. The latter is a chicken-and-egg scenario: applications are

difficult to deploy rvhen the infrastructure they require is not wideìy available, and

ISPs were not willing to provide the infrastructure rvithout user demand, which is

generally fuelled by applications.

Lorikeet does not require complete deployment across the network to operate,

thus solving this issue. Horvever, for this sort of protocol to become used, there

must still be commercial and other drivers for its implementation and deployment

by content providers, ISPs and end users. We discuss each of these entities in turn

CHAPTER 7. IMPLEI,IENTATION COI\rCER¡\IS 747

in the following sections

7.4.7 Content Providers

At present, current providers of streaming multimedia content on the Internet pri-

marily rell, ¡pon simultaneous unicast transmission alone for their content. Si-

multaneous unicast operates everywhere) across the complete Internet, and can be

deployed with the reasonable expectation that all users interested in the content will

be able to access it.

However, the use of simultaneous unicast puts considerable pressure on content

providers to have enough server resources to support a large number of simultaneous

users and very high-capacity links to the outside world. Since every user receiving

the stream must have their own unicast connection to the source, the source must

be well-connected enough to support the number of receivers that are connected.

As the content provider's connectivity to the outside world approaches saturation,

newly arriving receivers will either degrade the quality of the transmission to all

rece'iuers, or (if some form of access control is used) be denied access to the stream

altogether. Very popular content on the Internet often exhibits this phenomenon

rvhen the content provider runs short of capacity or even CPU or memory on the

server hosting the content, resulting in long delays or server failure.

The use of a multicast protocol would alleviate this situation by allowing the

content provider to support the same number of receivers with a much smaller

capacity requirement, since only a small number of connections directly to the source

of the transmission would be required. Branching within the network would take care

of delivering the stream to the complete set of receivers. This scenario potentially

scales rnuch better than simultaneous unicast, as well: assuming that sufficient

branching routers are present in the network, a much larger number of receivers

could be supported with no additional impact on the capacity required by the content

provider.

CHAPTER 7. IA,LPLEME¡\r?HT/O¡\¡ CO¡\rCER¡\IS 148

Hence, the deplo¡,ment of a multicast protocol that will operate over the existing

Internet netrvork, such as Lorikeet, provides content providers u'ith a rvay to support

a, large number of users without a very high-capacit)/ link to the lnternet. It also

increases the likelihood that the¡r 1yil1 be able to cope rvith spikes in demand rvithout

dìsruption of service.

7.4.2 Internet Service Providers

In order for Lorikeet to offer improved performance over simultaueous unicast tlans-

mission, capable routers need to be present in the network. The presence of these

routers is largely dependent on Internet Service Providers having compelling reasons

for deploying them and supporting the Lorikeet protocol.

Obviously, the strongest reason for the deployment of a new service by an ISP

(and Lorikeet can be considered a new service, due to its requirement for changes

to routers) is demand, in this case from content providers and users. If a service

like Lorikcct r¡'ele to bc usecl by a significatrt fraction of an ISP's customers, that

ISP rvould be very likely to deploy capable routers in order to improve the qualitl.

of that service experienced by its customers. A second driver for ISP deployment

of capable routers in their networks is the cost savings such a deplo¡,¡¡snt could

provide. Once a capable router is present in the ISP's network, between its users

and the Lorikeet sources elsewhere on the Internet, that capable router will become

a Ìocal branching router for all users on that network. If the ISP has several users

subscribing to the same multicast stream, it can supply all of those users from the

single stream entering the branching router, rather than carrying a separate stream

from elsewhere on the Internet for each recerver.

This approach is similar in spirit to the many ISPs and other organisations

around the world carrying local mirrors of software repositories for their customers.

A rnore direct comparison can be made with the use of Internet radio relays by some

ISPs2 to provide better performance to customers and save bandwidth on popular

2For an Australian examplc, see Internodc's Online Streaming Radio page at http://utt¡w

CHAPTER 7. IMPLEMENTA,TION CO¡\ICER¡\IS r49

radio streams.

7.4.3 End lJsers

For end users) Lorikeet's advantages over simultaneous unicast are the same as those

provided by other multicast s)/stems, including traditional IP multicast. Multicast

streams offer better performance, as the stream is most likel¡' ts be coming from

a capable router that is closer in network terms than the source. They also offer

improved availability, as the source is less likely to be swamped by requests for pop-

ular content (as described in Section 7.4.I). Unlike IP multicast sysfsm., however,

Lorikeet is deployable immediatel¡', rvithout requiring any protocol support from the

users' ISPs.

In addition' Lorikeet is a less complex s)¡stem to deploy than other protocols

that require traditional IP multicast support or other new services at the network

layer. For end-users, Lorikeet requires only unicast connectivity to the outside world,

with no changes to users' routers or operating systems beyond the installation of

an application (such as a browser plugin or standalone player) that supports the

protocol.

7.4.4 Placing Capable Routers

The issue of the placement of capable routers in the network is highly dependent on

how they are implemented, as described in Section7.2.2. If a hardware router can

be developed that can handle Lorikeet forwarding with comparable speed to native

IP forwarding in current hardware, then these routers can be deployed near the

core of the network, where they can provide easily-accessible branching points for

multicast streams traversing the core. If, on the other hand, Lorikeet proves difficult

to implement with sufficient performance, then Lorikeet branching must take place

further out in the edge of the network, where traffic volumes are lorver. In that

internode . on. net/radi.o/

CHAPTER 7. IMPLEMEIVTA"IO¡\I CO¡\¡CER¡\IS 150

scenario, routers can be placed in ISPs' networks as described earlier, providing

support at least to those ISPs' customers and other nearby users. It is important

to note that once a capable router is discovered by a multicast source or other tree

router, it can be used for branching on subsequent joins for any receivers that are

appropriately close. Hence, even if it is not feasible to place capable routers on

direct paths in the core of the network, their discovery can be achieved through the

use of targeted filtering rules in standard routers or a directorl, service like the one

proposed in Chapter 6.

This chapter has endeavoured to discuss some of the issues involved in writing

a complete, practical implementation of the Lorikeet protocol. It is not a complete

protocol definition, but was rather intended to illustrate the reasoning behind some

of our design decisions, as well as to discuss the ramifications of wider deployment

of Lorikeet-based multicast. In the follorving chapter, we investigate several differ-

ent possible extensions to the Lorikeet protocol for future research, building on its

hierarchical structure and hop-by-hop delivery to provide additional functionality.

Chapter 8

Conclusions and Fbture Work

in this dissertation we have presented our work on the multicast transmission of

streaming multimedia over the Internet, from an analysis of existing work and the

underlying Steiner Tree Problem in Networks, through to the development of a new

protocol called Lorikeet. This chapter is a summâry of our finclings, followed by a

discussion of future work and further possible research in the area.

8.1 Summary

In Chapter 1 we introduced our topic of research and presented some background

material on multicast transmission, introducing a number of elements that are com-

mon to most currently available protocols anci research in the field. In particular,

we noted that the standardised IP multicast protocols are not in widespread use

on today's Internet, despite multicast's obvious advantages for the dissemination of

data to large groups. We also drew attention to the properties required by today's

multimedia applications, such as the need to cope with very large, dynamic receiver

populations.

This background material was extended in Chapter 2, where we examined the

current state of research in multicast as well as the protocols that have been stan-

dardised by the Internet Engineering Task Force (IETF). We began by describing

151

CHAPTER 8. CONCLUSIO¡\IS A¡\rD FUTURE WORK r52

the current suite of IP multicast standards from RFC 966 [20], which introduced

the concept of a "host group" identified by a single IP address, through to current

protocols like Protocol Independent Multicast Sparse \4ode (PIN'{-S1\4) [26], the

most popular current standard for IP multicast deliver¡'. Current work on Source

Specific Multicast (SSM) [9] was also described.

We then presented a brief overview of multicast research from the literature. Our

discussion was divided into three broad sections: Small-Group multicast protocols,

Application-Level and Overlay multicast protocols and Topology-Aware multicast

protocols. These groups do not represent a strict taxonomy of multicast protocols;

there is considerable overlap even between these broad groupings. Thel, ie, however,

present diffelent solutions to the problems associated witìr traditional IP multicast:

Small-group multicast removes the need for separate group addresses and multicast

routing protocols; application-level and overlay protocols remove the dependency on

protocol support in the network, relying on unicast transmission betrveen end-hosts;

and the topology-aware protocols attempt to construct efficient trees, ra,ther tha,n

relying on the simple reverse-path techniques used by IP multicast.

In Chapter 3 we investigated the graph-theoretic problem that underlies the

construction of multicast trees, the Steiner Tree Problem in Networks. We began by

clefining the Steiner TYee Problem anrl explaining its relationship to multica^st tree

construction, in both static situations (with a frxed set of receivers) and dynamic

ones (with a changing set of receivers). \Me investigated two algorithms for finding

optimal Steiner Minirnal Trees (S\4Ts) and four heuristics fbr'findirrg approximate

solutions to the problem. Since finding the SMT for an arbitrary network is NP-

complete, our primary focus (particularly with a view to applications in multicast)

was on the heuristics, which are able to operate in polynomial time. These heuristics

were compared in simulation, and their suitability as a basis for an online multicast

tree construction algorithm discussed.

Chapter 4 presented the core of our work on multicast, a description of the

Lorikeet protocol. We commenced with a description of a target application: the

CHAPTER B. CONCLUSIO¡\IS AND FUTURE WORK 153

streaming of muÌtimedia content from a single source. This is currently a very

popular application on the Internet that predominantly uses simultaneous unicast

streams for deliver¡,. In simultaneous unicast, each receiver connects directly to the

source of the content and receives their own unicast stream of packets. The devel-

opment of a nore efficient muìticast deliver), s)/stem could result in large reductions

in bandrvidth use and increased availability for live streaming content.

From this application and the properties of the network environment in which

it is to operate (the current Internet), we developed a set of requirements for a new

multicast protocol. These include a number which address the limitations of other

multicast protocols when used for single-source multicast, such as the requirements

that the multicast tree be constructed in the direction of data delivery from the

source) that the protocol cope effÊciently with dynamic membership of the group?

and that the protocol should operate even if not all routers in the network support

it. The latter property enables Lorikeet to surmount the chicken-and-egg problem

that has slowed the deployment of IP multicast, described in Section 7.4, while still

allowing routers in the network to provide branching to the tree (unlike application-

level multicast).

We developed two different algorithms for handling receiver joins in Lorikeet,

the Simple Join and Path-Greedy join algorithms. Both of these perform a limited

recursive search of the multicast tree, with the Path-Greedy join extending the

search further in order to improve the result. Both algorithms have significantly

lower complexity than exhaustively searching the tree. This explicit use of the tree

for joining is very different from what most other rnulticast protocols do, since it

builds the tree in the same direction as data delivery occurs (from the source to the

receivers) and attempts to maximise the chance of reusing existing paths through

the network. In contrast, traditional IP multicast and many other protocols build

trees based on the use of the paths from receivers to the source. Since many network

paths are as),mmetric in today's networks, this leads to a tree that is suboptimal

for data delivery in the forward-path direction.

CHAPTER B. CONCLUSIO¡\IS A¡\rD FUTURE WORK 154

Chapter 4 also described two rearrangement algorithms, called Path and Rejoin

rearrangement. These algorithms were designed to rna,intain the efficiency of the tree

in the face of changes to the receiver set. Both algorithms improve the quality of

thc trcc b)' rc-connccting a capable router to the t,rec via a differeut parent, thereby

taking advantage of changes made to the tree since the router was first connected.

To trigger a rearrangement, Lorikeet uses a topological euent a router changing

status from branching to non-branching which to the best of our knowledge is

a noveÌ technique. In other algorithms, rearrangements are triggered by periodic

timers or by counters, rather than directly by a change in the topology of the tree.

The Lorikeet protocol, with its two join operation variants and two rearrange-

ment algorithms, was implemented in simulation, along rvith several other protocols:

the Source-Join and Greedy algorithms, which are simple approaches to provide

baselines for comparison, and the ARIES [8, 7], DSG [32] and REUNITB/HBH 171,

1Bl protocols (described in detail in Section 5.2).

in Chapter 5 we performed a complexity and performance analysis of Lorikeet

and these other protocols. We examined all of the algorithms listed above (including

the different variants of Lorikeet) in terms of both analyliç¿l worst-case and empiri-

cal average-case message complexity. These results showed clearly that Lorikeet was

much morc cfficient than those competitors rvhich use exhaustive searches of the tree

as part of their join operations. We then investigated the relative performance of

the different variants of the Lorikeet algorithm, in order to determine rvhich join and

rearrangemelt algorithns were most effective. As a lesult, rve selected thc Path-

Greedy join with Rejoin rearrangement as the representative "version" of Lorikeet

for all further tests.

Next, we performed a series of simulations analysing Lorikeet's performance in

terms of total tree cost in comparison with other protocols. The results of these

simulations show that Lorikeet produces a tree with a total cost that falls between

those of the low cost trees produced by ARIES, Greedy and DSG, algorithms that

use an exhaustive search, and the high cost trees generated by REUNITE/HBH and

ü
r

{
I'
I

CHAPTER B. CONCLUSIO¡\IS A¡\rD FUTURE WORK 155

Source-Join, which both join new receivers directl¡, to the source and rely on shared

paths to provide branching. Lorikeet produced trees within 8To of the cost of the

Greedy tree (for all intents and purposes a lower bound for tree cost, due to its use

of an exhaustive search), while maintaining much lo'wer complexity.

Finally, we investigated the performance of the two protocols in our simulation

that support incremental deployment, Lorikeet and RtrUNITE/HBH. In our sim-

ulations, the total tree cost for both protocols rvas reduced as the proportion of

capable routers in the network increased. At low capable router proportions (10%

to 20%), Lorikeet outperformed REUNITE/HBH in terms of tree cost by more than

a third. Even a,t higher proportions, Lorikeet constructed significantly chea,per trees

until almost all routers were capabÌe, where both protocols approach the limit of

their performance. Lorikeet's better performance can be attributed to the fact that

Lorikeet searches the tree explicitly during joins and is able to select from a wider

range of potential parent routers. This enables Lorikeet to perform more branching,

and hence produce lorver-cost trees.

In Chapter 6 we explored the possibilit¡, of adding functionality to Lorikeet to aid

the discover)' of capable routers in networks where the majority of capable routers

are not present in the core of the network. Our solution was to add dzrectory nodes

to the network and to the protocol. The Path-Greecly join algorithm was modifierl

to query a directory node for additional "adopted routers" over the course of a join,

providing a mechanism for other capable routers to be discovered.

Upon simulation, we found that this addition improved Lorikeet's performance

in the case when all the capable routers were off the shortest paths. However, when

capable routers in the core of the network were introduced into the simulation, they

quickl¡' began to provide the bulk of the branching in the tree, rendering the gains

due to the use of directory nodes negligible. We concluded that while the use of

directory nodes has significant berrefits in networks with ferv capable routers, those

benefits decrease as deployment becomes more widespread. If such deployment is

to occur relatively rapidly, this negates the overall benefit of providing a directory

1

ì

(
t
I,

Í
ti

(

it

CHAPTER 8. CONCLUSIO¡\IS A¡\rD FUTURE I IORK 156

node service

8.2 Potential Implementation-Related Research

In this thesis, our primary focus has been on the analysis of the topological be-

haviour of multicast protocols and the development of Lorikeet's tree construction

and maintenance algorithms. All of our results and analysis, however, have been

gathered using a topological simulation of the protocol running on a discrete event

simulator. The development of a complete, working version of Lorikeet would allow

parts of the protocol that we have not investigated in depth to be tested. Examples

of these properties, which have been touched on brieflf in Chapter 7, include the

storage requirements on capable routers, the protocol's behaviour when multiple

simultaneous changes to the tree are taking place and the logistics of performing a

rearrangement without interrupting the data stream to downstream nodes.

Implementation of the system in software and on router line cards would allow

perfbrmance testing of Lorikeet in a valiety of diflerent locations in the nctwolk,

from small networks on the edge with lou' rates of traffic, through to core routers

in research networks that handle much higher throughput. It would be valuable to

ensure through real-world testing that the extra processing required to participate

in a Lorikeet multicast tree is practically achievable on current router hardware.

Once practical implementations of the protocol are available, performance testing

of Lorikeet through real use across the current Internet would provide information

on its performance on a wide-area network under real use. In particular, it would be

possible to show how appropriate our simulation topologies are for simulating real

Internet topologies and how the distribution of capable routers through the network

affects the efficiency of multicast trees built with them.

I
F¡
i4i

¡

:t.
¡

t
I
l¡

i.

I,

il
li
.t

,t

I

4
ì'
t
'l

CHAPTER B. CONCLUSIO¡\IS A¡úD FUTURE WORK r57

.

I

I

I

t

f

'i
1..

r
,t

ll
t

8.3 Potential Protocol Extension

There are several related areas of research that complement our work on Lorikeet

and could provide further improvements to the plotocol or application-specific ex-

tensions. In this section, rve outline a number of these possibilities for future rvork.

Layered Video Delivery and Local Recoverl, are both extensions that leverage Lori-

keet's control of the multicast trcc topology to providc different levels of sen'icc

or provide additional robustness. Subsequentìy, rve discuss several other topics of

interest: access control and authentication, calculation of the cost metric and the

collection of statistics from receivers.

8.3.1 Layered Video Delivery

In today's Internet, information is accessed by a huge variety of devices, ranging

from small, bandwidth- and display-constrained mobile phones through to com-

mercial users with large capacity netrvork links and high-resolution displa¡,s. This

heterogeneit¡, ¡* led to considerable interest in providing differentiated multime-

dia content, designed to serve each class of receiving device with its own optimised

stream 149,54,43]. For example, most movie trailers from large commercial studios

are now made available on the World Wide Web for viewing in a number of sizes,

from low resolution appropriate for viewing on mobile devices through to full high-

definition video with surround sound, to cater for users with different requirements.

This approach generally requires the user to select the appropriate stream manualll,,

or relies on a user-selected preference that is set in the client application.

A great deal of research in the literature addresses this issue of heterogene-

ity through the development of scalable video codecs (compression/decompression

algorithms) that perform what is termed layered or h'ierarchi.cal codinç These al-

gorithms code a video signal into a number of separate "layers", the complete set

of which can be decoded together to recover the complete video signal, or a sub-

set can be used to obtain a lower-quality video signal. This principle is applied in

{

ï

I

CHAPTER B. CONCLUSIONS AND FUTURE WORK 158

high-definition television (HDTV) br-oadcasts using thc MPEG-2 standard, u'here

the signal comprises a, standard-definition (SD) la1'e¡ and a second "enhancement

layer" tìrat provides the extra resolution to build the high-definition (HD) image.

In this case, layered encoding is employed primarily to provide reliability if the

channel is too noisy to recover the HD layer, the picture will drop back to SD [16],

which is transmitted with more robust error-correction. Several projects have sought

to use layered coding to provide similar benefits to multicast transmission over tìre

Internet [55,67,77], using multiple layers to tailor the picture to receivers or to

provide additional reliability through the use of error-correction layers. McCanne eú

¿1.'s RLM protocol [54], for example, distributes layered video via a set of multicast

groups, one per layer. Receivers can then adjust their receiving rate (according to

congestion and available capacity) by joining and leaving those groups.

Lorikeet's hierarchical, managed approach to tree construction can be combined

with layered video coding to provide support for heterogeneous receivers without the

overhead of maintaining separate multicast trees for each layer. Instead, we suggest

that the source makes available the complete set of layers and that capable routers

in the tree perform "layer stripping" when appropriate. Capable routers need only

provide their children with the number of layers thel' s¿¡ support, and the number

of layers being received from upstream can be "upgraded" to cope with the addition

of a new child that requires a higher rate than that which is currently being received.
b

Figure 24 shows a simple example of a 2MBls stream, partitioned into four

Iayers of 512kb/s each, being transmitted by source ,S to fir,e r-eceivers with varying

requirements. As the frgure shows, each of the routers in the tree needs onl¡r 1s

receive the number of layers requirecl by its highest-rate child, making more efficient

use of the network if many receivers in the tree do not require the full complement

of layers.

Implementation of the control mechanism for layered video could be done in a

number of ways. One option is a react'iue model, where capable routers react to the

capacity requirements of their children and upgrade their streams as required. A

I
I

CHAPTER 8. CONCLUSIO¡\¡S A¡\¡D FUTURE I4TORK 159

2Mb/s

1Mb/s

51

2Mb/s 51 2kbls

'1Mb/s

Figure 24: Lavered Video Deliver¡' using a Lorikeet Multicast Tfee

more complex rnetric-based model could also be used, where the required capacity

is considered as part of the join operation, and new receivers are joined to routers

which are (a) already receiving a stream of sufficient rate, or (b) can be upgraded to

the desired rate cheaply. Similarll', capable routers could downgrade the number of

layers being received rvhen a high-rate child leaves the tree, much like the recursive

pruning operation tha,t occurs when a router's last child leaves.

Adding the necessary control operations to Lorikeet's capable routers would not

be difficult, although tuning the join operation to use a modifierl metric may result

in the creation of very different trees. If this extension were to be implemented in

hardware routers, holever, delivery of these packets may present a challenge. The

layer identifier presents another piece of information that needs to be decoded from

incoming packets in order to forward them to the correct receivers: namely, those

that are receiving that layer of a particular strealn. In IPv6, this could be achieved

using the "flow label" field. designed for identifying different flows, but this solution

CHAPTER B. CONCLUSIO¡\rS A¡\ID FUTURE WORK 160

is not appropriate in today's largely IPv4-based Internet. In IPv4 we could use

the IP TOS (type of service) bits in the header to identif¡, a layer, as is done by

the Differentiated Services (DiffServ) [57] architecture used for providing different

lcvels of servicc for traffic. Howevcr', thc TOS bits are uscd fbr rììan)¡ difÌerent

pur-poses (including DiffServ) by different ISPs, and can not be relied upon to operate

correctll' across the wider Internet. An alternative approach would be for the source

to transmit ea,ch layer from a, different UDP port, allowing capabÌe routers to match

each port to a different la¡'s¡ of the stream. This approach u'ill operate correctly

across networks when the TOS bits cannot be relied upon, though it places more of a

limit on the number of layers and streams that a source can support. Nevertheless,

even two layers per stream (as for standard and high-definition television) could

provide significant extra flexibilitl, ¡st users.

8.3.2 Local Recovery

Lorikeet is designed for multicasting one-way streaming multimedia, such as live

broadcasts of events or news. For this application, perfectly reliable transmission is

not necessary: multimedia data is able to tolerate small amounts of packet loss or

damage to packets without becoming visibly or audibly distorted to the viewer. In

addition, the playback of received data need not be as immediate as it is required

to be in two-way voice communication, where a delay of more than a few hundred

milliseconds is very obvious to the participants. A constant dela¡, of a few seconds

would not be noticed when watching a cricket match or a news broadcast. Such a

delay could be introduced to allow receivers to cache the stream in order to cope

with transient network effects like congestion, as well as potentially perforrn recovery

of missed packets.

In f53], Maxemchuk et al. present a protocol for performing recovery of lost

packets on the Internet Multicast Backbone (MBONE), aimed at improving the

quality of video transmitted on multicast groups. Their design involves a subset of

CHAPTER B. CONCLUSIO¡\¡S AND FUTURE WORK 161

receivers in a group cooperating by detecting lost packets and querying a retransmit

server for them, which would retransmit the packets in question. After a fixed

time delay, the querying receiver then retransmits all of the packets it has received

(including the retransmitted ones) on another multicast group, referred to as the

repair channel. Receivers that wish to make use of this mechanism join the repair

channel instead of the main multicast group and are therebS, able to take advantage

of retransmitted data. The advantage of this approach is that it can be deployed

without changes to the source or to the receivers these retransmit and repair

servers merely need to be deployed in the group.

In Lorikeet, however, rve could deploy a packet recovery system without requiring

extra, multicast groups. Packet recovery could take place on a local, link-by-link

basis: for example, capa,ble routers could cache a defined number of packets (for

example, ten seconds' worth). When a lost packet is detected by a node, it could

send a negative acknowledgement to its parent, requesting the retransmission of the

missing packet. That packet would then be sent to that node only, rather than

retransmitting it to all of the receivers on a separate multicast tree or requiring the

creation of a new "repaired" tree.

This approach, like that of Maxemchuk et al., does not seek to provide complete

reliable delivery of all packets to all receivers. Instead, it seeks to improve the qualit¡,

of the stream delivered to receivers by providing a mechanism for retransmission of

packets that may not ysl have been played back to the user. Such retransmission

rnay have a considerable efiect on the user experience, particularly if the network is

suffering from congestion. If a receiver is caching several seconds of video in order

to minimise network effects such as iitter, then it is quite possible for a lost packet

to be recovered from that receiver's parent router before it is due for playback.

CHAPTER B. CONCLUSIO¡\¡S AND FUTURE WORK 162

8.3.3 Other F\rrther'Work

Another la,rge area of research applicable to Lorikeet is that of access control, au-

thentication and charging. Because of the highly distributed nature of a multicast

tree, the creation of appropriate methods for the implementation of access control

and authentication and the development of a charging model for multicast traffic

are not trivial. If a capable router somervhere in the network can simply make addi-

tiona,l copies of the strea,m for receivers at will, ho'u, is control of tìre traffic possible

in the case of a content provider that wishes to control and charge for access to its

contcnt? In Lorikeet's case, this is simplified someu'hat when compared to tradi-

tional IP multicast, since Lorikeet requires that joining the tree be done through the

source, which can also therefore authenticate and charge receivers. However, pro-

tecting the stream so that malicious users cannot receive it rvithout authenticating

is an interesting distributed security problem. SimilarÌy, there are other charging

models such as charging by the minute which would require changes to Lori-

keet's join and leave operations, and the development of a mechanism for tracking

the lengths of individual receiver sessions.

In Section 4.3, we wrote about the difficulty of finding a metric for use in Lori-

keet's cost calculations used to select routers in the tree during a join operation. This

metric should represent the cost of a path in terms of network bandwidth, must be

increasing and must be calculable at individua,l routers without requiring significant

communications or storage overhead. For use in Lorikeet initially, we have suggested

the use of hop-count as this metric, which, although a crude measure of the cost of

a path, is available already for use on the current Internet. There is a great deal of

interest in the research communit5r and in the commercial world in the provision of

guaranteed quality of service over IP networks, however, and it is very possible that

research in this area may furnish us with a more accurate metric for determining the

cost of a given path. We feel that research on easily making available measurements

of the bottleneck bandwi,dth (the bandwidth of the smallest capacity link on the path)

CHAPTER B. CONCLUSIO¡\rS AND FUTURE WORK 163

or auailable bandwi,dth (the proportion of the bottleneck bandwidth that is available

at a given instant) for a given path would be very beneficial to both Lorikeet and

other applications with specific netrvork resource requirements.

In the Lorikeet protocol there is very little feedback transmitted by receivers or

routers in the tree to upstream routers or the source. It is possible to use Lorikeet's

managed tree structure for collection and aggregation of information: for exampÌe,

routers could periodically count the receivers that they support directly, counts

that could be sent upstream and summed recursively until the source is provided

with summary information on which of its downstream branches are "heaviest" with

receivers. This aggrega,tion technique could be used to collect many different kinds

of information about the tree and its receiver population, which could be put to a

variety of uses: examples include lightweight statistics gathering by the source and

data collection for more advanced join and rearrangement strategies.

Our work on Lorikeet provides some of the groundwork for a new class of practical

protocols for large-scale multimedia transmission, protocols that can be deployed

without requiring universal changes to Internet infrastructure and make efficient use

of the networ-k's topology. Multicast offers an attractive way to significantly reduce

the bandwidth requirements of multimedia applications, something that will become

necessary as the use of streaming video over the Internet increases in prevalence.

Bibliography

[1] A. Adams, J. Nicholas, and W. Siadak. RFC 3973: Protocol Independent

Multicast - Dense Mocle (PII\a-DM): Protocol Specification (revised), January

2005.

[2] Akamai website. http: / /utwut.akamaÍ .com/

[3] l\4ozafar Bag-Mohammadi, Siavesh Samadian-Barzoki, and Nasser Yazdani.

Linkcast: Fast and scalable multicast routing protocol. In NETWORKING,

pages L2B2 7287 . Springer-Verlag, 2004.

[4] Suman Banerjee and Bobby Bhattacharjee. Anal¡,sis of the NICE application

layer multicast protocol. Technical Report UMIACS TR 2002-60 and CS-TR

4380, Department of Computer Science, University of Maryland, College Park,

\,{D, USA, 2002.

[5] Suman Banerjee, Bobby Bhattacharjee, and Christopher Kommareddy. Scal-

able application layer multicast. In ACM SIGCOMM, pages 205 277, Pitts-

burgh, Pennsylvania, USA, August 2002. ACM.

[6] T.Bates, R. Chandra,D.Katz, and Y. Rekhter. Multiprotocol extensions for

BGP-4, February 1998.

[7] Fred Bauer. Multicast Routtng zn Poi,nt-to-Poi,nt Networks Under Constra'ints.

PhD thesis, Computer Engineering, University of California, Santa Cruz, June

1996.

764

BIBLIOGRAPHY 165

[B] F]ed Bauer and Anujan Varma. ARIES: A rearrangeable inexpensive edge-

based on-line Steiner algorithm. In IEEE INFOCOM, pages 361 368, 1996.

[9] S. Bhatta,chary5'¿. RFC 3569: An overvierv of source-specific multicast (SSNI),

July 2003.

[10] BitTorrent website. http : / /www. bittorrent . com/

[11] R. Boivie, N. Feldman, Y.Imai, W. Livens, D. Ooms, and O. Paridaens. Explicit

multicast (Xcast) basic specification. July !965. Internet Draft, draft-ooms-

xcast-basic-spec-08.txt.

[12] Ali Boudani and Bernard Cousin. SBN4: A new small group multicast routing

protocol. In ICT 2003, volume 1, pages 450 455. IEEE, February 2003.

[13] B. Cain, S. Deering, I. Kouvelas, B. Fenner, and A. Thyagarajan. RFC 3376

Internet Group Management Protocol, version 3, October 2002.

[14] Miguel Castro, Michael B. Jones, Anne-N4arie Kermarrec, Antony Rowstron,

Marvin Theimer, Helen Wang, and Alec Wolman. An evaluation of scalable

application-level multicast built using peer-to-peer overlays. In IEEE INFO-

COM.IEEE, 2003.

115] Yatin Chawathe. Scattercast: an adaptable broadcast distribution framervork.

Multimedia Sy stems J ournal, 9(1) : 104 1 18, 2003.

[16] Tihao Chiang and Dimitris Anastassiou. Hierarchical coding of digital televr-

sion. IEEE Commun'icat'ions Magazine,32(5):38 45, May 1994.

[17] Coral content distribution network website. http: / /vtwvt. coralcdn .org/

[18] Luis Henrique M. I{. Costa, Serge Fdida, and Otto Carlos M. B. Duarte. Hop

by hop multicast routing protocol. In ACM SIGCOMM, pages 249 259, San

Diego, CA, USA, August 2001. ACM

BIBLIOGRAPHY 166

119] S. Deering. RFC 1112: Host extensions for IP Multicasting, August 1989

[20] S. E. Deering and D. R. Cheriton. RFC 966: Host groups: A multicast extension

to the Internet Protocol, December 1985.

[21] Christophe Diot, Brian Neil Levine, Bryan Lyles, Hassan Kassem, and Doug

Balensiefen. Deployment issues for the iP multicast service and architecture.

IEEE Network Special Issue on Multicasti,ng, T4(I):78 BB, January 2000.

[22] S. E. Dreyfus and R. A. Wagner. The Steiner problem in graphs. Networks,

I:I95 207, 1972.

[23] D. Z. Du and X. Cheng, editors. Ste'iner Tree Based Distributed Multzcast

Routzng tn Networks, pages 327 351. Kluwer Academic Publishers, 2001.

124] Ayman El-Sayed and Vincent Roca. Improving the scalability of an application-

Ievel group communication protocol. In ICT.IEEÐ, 2003.

[25] Ayman El-Sayed, Vincent Roca, and Laurent Mathy. A survey of proposals for

an alternative group communication service. IEEE Network Speci,al Issue on

Multicasti,ng: An Enabling Technology, TT(L):44 51, January 2003.

[26] D. Estrin, D. Farinacci, A. Helmy, D. Thaler, S. Deering, M. Handley, V. Ja-

cobson, C. Liu, P. Sharma, and L. Wei. RFC 2362: Protocol independent

nulticast-sparse morìe (PIM-SNII): Protocol specification, June 1998.

127) B. Fenner and D. Meyer. N4uìticast Source Discovery Protocol (\4SDP), Octo-

ber 2003

[28] Paul Francis. Yoid: trxtending the Internet Multicast Architecture, April 2000

[29] l\4ichael J. Freeclman, Eric Freudenthal, and David Mazièrcs. Dernocratizing

content publication with Coral. In Proceedzngs of the Fi,rst USENIX/ACM

Symposi,um on Networlced Systems Desi,gn and Implementat'ion, San Francisco,

CA, USA, March 2004.

BIBLIOGRAPHY r67

[30] M. R. Gare5', R. L. Graham, and D. S. Johnson. The complexity of computing

Steiner Minimal Trees. SIAM Journal of Appli,ed Mathemattcs, 32:835 859,

1977.

[31] Gnutella protocol development website. http : / /rf c-gnltella. sourcef orge

net/.

[32] Ashish Goel and Kameshrvar Ntlunagala. Extending greedl, multicast routing

to delay sensitive applications. Technical Report STAN-CS-TN-99-89, Dept. of

Computer Science, Stanford University, July 1999.

[33] l\4. Grötschel, A. Martin, and R. Weismantel. The Steiner tree packing problem

in VLSI design. Matlt emat'ical Programm'ing, 78(2):265-281, August 1997.

[34] GWebCache website. http : / /www. gnucleus . com/gwebc ache/

[35] S. L. Hakimi. Steiner's problem in graphs and its implications. Networks,

1:113 133, 1971.

[36] C. Hedrick. RFC 1058: Routìng Information Protocol, June 19BB

[37] David A. Helder and Sugih Jamin. Banana tree protocol, an end-host multicast

protocol. Technical Report TR-429-00, University of Michigan, July 2000.

[3S] Hugh W. Holbrook and David R. Cheriton. IP multicast channels: EXPRESS

support for large-scale single-source applications. In ACM SIGCOMM) pages

65 78, Cambridge, MA, USA, August 1999. ACM.

[39] Yang hua Chu, sanjay G. Rao, Srinivasan Seshan, and Hui Zhang. trnabling

conferencing applications on the internet using an overlay multicast architcc-

ture. In ACM SIGCOMM, pages 55 67, San Diego, CA, USA, August 2001'

ACM.

BIBLIOGRAPHY 168

[40] Yang hua Chu, Sanjay G. Rao, Srinivasan Seshan, and Hui Zhang. A case for

end system multicast. IEEE Journal on Selected Areas in Communicat'ions,

20 (8) : 1456-747 7, October 2002.

[41] Frank K. Hwang, Dana S. Richards, and Pawel Winter. The Steiner Tree

Problem, volume 53 of Annals of di,screte mathemaúics. Elsevier Science, 1992.

[42] John Jannotti, David K. Gifford, Kirk L. Johnson, N4. Frans Kaashoek, and Jr

James W. O'Toole. Overcast: Reliable multicasting with an overla¡, netrvork

In OSDI 2000, October 2000.

[43] J. Kangasharju, F. Hartanto, M. Reisslein, and K.W. Ross. Distributing layered

encoded video through caches. In IEEE INFOCOM, Anchorage, Alaska, USA,

April 2001. IEEB.

[44] Jussi Kangasharju, James Roberts, and Keith W. Ross. Object replication

strategies in content distribution networks. \n Proceedi'ngs of WCW'01: Web

Cachi,ng and Content D'istributi,on Worksh,op, Boston, I\44, USA, June 2001.

145] T. Koch and A. Martin. Solving Steiner tree problems in graphs to optimality

Networks, 32:207 232, 7998.

[46] Minseok Kwon and Sonia Fahmy. Path-aware overlay multicast. Computer

Networks, 47(l):23 45, January 2005.

[47] Li-Wei H. Lehman, Stephen J. Garland, and David L. Tennenhouse. Active

reliable multicast. In IEEB INFOCOM, pages 581 589, San Francisco, CA,

USA, March 1998.

[48] B.N. Levine and J.J. Garcia-Luna-Aceves. A comparison of reliable multicast

protocols. ACM Multimedia Systems Journal,6(5):$ 348, August 1998.

[a9] Bo Li and Jiangchuan Liu. Multirate video multicast over the internet: An

overview. Network Magaz'ine,I7(I):2a 29, January 2003.

BIBLIOGRAPHY 169

[50] Le-Chin Eugene Liu and C. Sechen. Multi-layer chip-level global routing using

an efficient graph-based Steiner tree heuristic. In EDTC '97: Proceedì,ngs of

the 1997 European conference on Des'ign and Test, pages 311 318, Washington,

DC, USA, 1997. IEEE Computer Society.

[51] Laurent \4athy, Roberto Canonico, and David Hutchison. An overlÐ' tree

building control protocoÌ. In J. Crowcroft and \4. Hofmann, editors, Networked

Group Communzcation: thzrd Internat'ional COST26I Workshop, NGC 2001,

pages 76 87, London, UK, November 2001. Springer-Verlag.

[52] Laurent l\4athy, Roberto Canonico, Steven Simpson, and David Hutchison.

Scalable adaptive hierarchical clustering. In NETWORKING '02: Proceed-

i:ngs of the Second Internat'ional IFIP-TC6 Network'i,ng Conference on Net-

workzng Technologies, Seru'ices, and Protocols; PerforTn&nce of Computer and

Communication Networks; and Mobi,le and Wtreless Commun'ications, pages

1172 1177, London, UK, 2002. Springer-Verlag.

153] N. F. Maxemchuk, K. Padmanabhan, and S. Lo. A cooperative packet recovery

protocol for multicast video. In Int. Conf . on Network Protocols, pages 259 266,

Atlanta, Georgia, USA, October 1997

[54] Steven \4cCanne, Van Jacobson, and \4artin Vetterli. Receiver-driven layered

multicast. In ACM SIGCOMM, pages 117 130, Stanford, CA, USA, August

1996. ACM.

[55] Steven R McCanne. Scalable compression and transmission of internet multicast

video. Technical Report UCB/CSD-96-928, EECS Department, University of

California, Berkeley, 1996.

[56] Alberto Medina, Anukool Lakhina, Ibrahim Matta, and John Byers. BRITE:

Universal topology generation from a user's perspective. Technical Report

BUCS-TR-2001-003, Computer Science Department, Boston University, April

2001.

BIBLIOGR.APHY 170

[57] K. Nichols, S. Blake, F. Baker, and D. Black. R.FC 2474: Definition of the

Differentiated Services field (DS field) in the IPr,4 and IPv6 headers, December

1998.

[58] Sanjoy Paul, Krishan K. Sabnani, John C. Lin, and Supratik Bhattacharyya.

Reliable multicast transport protocoÌ (RMTP). IEEE Journal on Selected Areas

'in C ommunications, 15(3) :407 42I, Aprll 1997 .

[59] Vern Paxson. End-to-end routing behaviour in the Internet. IEEE/ACM Trans-

actions on Networking, S(5):601 615, October 1997

[60] Dimitrios Pendarakis, Sherlia Shi, Dinesh Verma, and Marcel Waldvogel.

ALN4I: An application level multicast infrastructure. In Proceedings of the Srd

USENIX Symposi,um on Internet Technolog'ies and Systems (USITS), pages

49 60, March 2001.

[61] R. C. Prim. Shortest connection networks and some generalizations. Bell System

Tech. J.,36:1389 1401, 1957.

[62] Apple Quicktime website. http: / /www. appte. con/quicktine/

[63] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott

Shenker. A scalable content-addressable network. In ACM SIGCOMM, San

Diego, CA, USA, August 2001. ACM.

[64] Sylvia Ratnasamy, Mark Handley, Richard Karp, and Scott Shenker.

Application-level multicast using content-addressable networks. In Proceedings

of NGC 2001,200I.

165] Vincent Roca and Ayman trl-Sayed. A Host-Based I\4ulticast (HBl\4) solution

for group communications. In P. Lorenz, editor, 1Clü, pages 610 619. Springer-

Verlag, 2001.

BIBLIOGR.APHY 177

[66] Anton), Rowstron and Peter Druschel. Pastry: Scalable, distributed object

location and routing for large-scale peer-to-peer systems. In IFIP/ACM In-

ternational Conference on Di,stri,buted Systems Platforms (Mi,ddleware), pages

329 350, November 2001.

[67] Claudia Schremmer', Christoph Kuhmünch, ancl Wolfgang Effelsberg. Layered

wavelet coding for video. In 11th International Packet Video Workshop (PV

2001), page 42 ff., Kyongju. Korea, 2001.

[68] Myung-Ki Shin, Yong-Jin Kim, Ki-Shik Park, and Sang-Ha Kim. Explicit mul-

ticast extension (Xcast*) for efficient multicast packet delivcry. ETRI Journal,

ß(a):202 204, December 2001.

[69] Kunwadee Sripanidkulchai, Bruce Maggs, and Hui Zhang. An analysis of live

streaming workloads on the Internet. In IMC '0f : Proceedi,ngs of tlte lth ACM

SIGCOMM conference on Internet mea,suremenú, pages 47 54, New York, NY,

USA, 2004. ACM Press.

[70] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakr-

ishnan. Chord: A scalable peer-to-peer lookup service for internet applications.

In ACM SIGCOMM, pages 149-160, San Diego, CA, USA, August 2001. ACM.

[71] Ion Stoica, T. S. trugene Ng, and Hui Zhang. REUNITE: A recursive unicast

approach to multicast. In IBEE INFOCOM, Tel Aviv, Israel, March 2000.

IEEE.

[72] Lakshminarayanan Subramanian, Venkata N. Padmanabhan, and Randy H.

KaT,z. Geographic properties of internet routing. In Proceedi.ngs of USENIX

Annual Technical Conference, pages 243 259, Monterey, CA, USA, June 2002.

[73] L. Masinter T. Berners-Lee, R. Fielding. RFC 3986: Uniform Resource Identi-

fier (URI): Generic syntax, January 2005.

BIBLIOGRAPHY 172

[74] Duc A. Tran, Kien A. Hua, and Tai Do. ZIGZAG: An cfficient pecr-to-peer

scheme for media streaming. In IEEE INFOCOM, San Francisco, CA, USA,

April 2003. IEEE.

[75] R. Vida and L. Costa. RFC 3810: I\4ulticast Listener Discovery version 2

(MLDv2) for IPv6, June 2004.

[76] D. Waitzman, C. Partridge, and S. E. Deering. RFC 1075: Distance Vector

Multicast Routing Protocol, November 1988.

[77] Bin Wang and Jennifer C. Hou. QoS-based multicast routing for distribut-

ing layered video to heterogeneous receivers in rate-based networks. In IEEE

INFOCOM, pages 480-489, Tel Aviv, Israel, March 2000.

178] Windows Media Player website

windor^rsnedi a/.

http : / /w'¡vt. microsoft . com,/windows,/

[79] Pawel Winter. Steiner problem in networks: A survey. Networks,IT (2):129-167 ,

1987

[80] Guoliang Xue, Theodore P. Lillys, and David E. Dougherty. Computing the

minimum cost pipe network interconnecting one sink and many sources. SIAM

Journal on Opttmi,zat'ion,70(7):22 42, 1999.

[81] BeichuanZhang, Sugih Jamin, and Lixia Zhang. Host Multicast: A framework

for delivering multicast to end users. In IEEE INFOCOM,2002.

fS2] Ben Y. Zhao, John I{ubiatowicz, and Anthony D. Joseph. Tapestry: An tn-

frastructure for fault-tolerant wide-area location and routing. Technical Re-

port UCB/CSD-01-1141, Computer Science Division, University of California,

Berkeley, April 2001.

[83] Shelley Q. Zhuang, Ben Y. Zhao, Anthony D. Joseph, Randy H. Katz, and

John D. Kubiatowicz. Bayeux: An architecture for scalable and fault-tolerant

BIBLIOGRAPHY 173

\A¡ide-area data dissemina,tion. In IVOS,SDAI/'01, pâges \7 20, Port ,Icfferson,

NY, USA, June 2001. AC\4.

