Advanced Numerical and Experimental Transient Modelling of Water and Gas Pipeline Flows Incorporating Distributed and Local Effects

YOUNG IL KIM

Thesis for Doctor of Philosophy (PhD) School of Civil, Environmental and Mining Engineering July 2008

Copyright © 2008 by YOUNG IL KIM

To My Parents UNG YEOL KIM and SU JEONG PARK

and

To My Wife and Daughter CHAI YOUNG JEON and EUGENA EUGENE KIM

ABSTRACT

One of the best opportunities to reduce pipeline accidents and subsequent product loss comes from implementing better pipeline condition assessment and fault detection systems. Transient analysis model based condition assessment is the most promising technique because pressure transients propagate through the entire system interacting with the pipe and any devices in the system. Transient measurements embody a large amount of information about the physical characteristics of the system. The performance of this technique has its difficulties because a highly accurate transient model is required. Real systems have numerous uncertainties and flow system components that present a major challenge in the development of precise transient analysis models. To improve transient modelling for the performance of condition assessment, this research undertakes a comprehensive investigation into the transient behaviour of distributed and various local energy loss system components in water and gas pipelines. The dynamic behaviours that have been investigated in this research are the effect of unsteady wall resistance, viscoelasticity effects of polymer pipe, and local energy loss elements including leakages, entrapped air pockets, orifices, and blockages during unsteady pipe flow conditions. The dynamic characteristics of these system components are modelled based on a conservative solution scheme using the governing equations in their conservative form. Use of the conservative form of the equations improves the accuracy and applicability of transient analysis in both liquid and gas pipeline systems. The numerical model results are compared to laboratory experiments in water and gas pipelines to observe the interaction between transient pressure wave and system components and to verify the proposed models.

ii

STATEMENT OF ORIGINALITY

This work contains no material that has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Signed:

Date:

YOUNG IL KIM

iv

ACKNOWLEDGEMENTS

First of all, I would like to express my most sincere and genuine thanks to my supervisors, Associate Professor Martin Lambert and Professor Angus Simpson who have given me continuous encouragement and support. Their supervision based on extensive knowledge and experience have been a great source of inspiration and vital in the completion of this PhD.

I would like to thank a number of people who have made this thesis possible.

- Ex-research associate Dr. John Vítkovský, ex-postgraduate students Dr. Pedro Lee and Dr. Mark Stephens, ex-visiting postgraduate student Dr. Dalius Misiunas, and current postgraduate students Mr. Aaron Zecchin and Ms. Nicole Arbon for their friendship and many valuable discussions.
- Laboratory technical staffs Mr. Jeffrey Hiorns and Mr. Ian Cates for their technical support of experimental tests.
- Project manager of Australia-Asia Award Mrs. Cynthia Grant for her personal support.
- The research presented in this thesis was supported by the Australian Research Council (ARC) and the Australia-Asia Award funded by the Australian Government.

Finally, I would like to thank my wife Chai-Young Jeon, Daughter Eugena Eugene Kim, father Ung-Yeol Kim, mother Su-Jeong Park, brother Young-Geun Kim and sister-in-law In-Suk Jo for their love and support.

Thanks to all.

vi

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION	1
1.1 MOTIVATION	1
1.2 OBJECTIVES	2
1.3 OUTLINE OF THE THESIS	3

CHAPTER 2 REVIEW OF TRANSIENT ANALYSIS FOR PIPELINE CONDITION ASSESSMENT ⁷

2.1 PIPE CONDITION ASSESSMENT AND FAULT DETECTION	
2.1.1 Non-Hydraulic Based Techniques	10
1) Condition Assessment Based on Simple Techniques	10
2) Condition Assessment Based on Sensing Devices	11
Temperature Sensing Devices	11
Vapour and Gas Sensing Devices	12
Liquid Sensing Devices	12
3) Condition Assessment Based on Nondestructive Methods	13
Acoustic Techniques	13
Radioactive Techniques	14
Magnetic Flux Techniques	15
Electromagnetic Techniques	15
Ground Penetrating Radar Techniques	16

Ultrasonic Techniques	16
Micro-Cantilever Techniques	17
Internal Inline Inspection Tools Based on Robotic Pig	17
2.1.2 Hydraulic Based Techniques	18
1) Flow and Pressure Change Based Techniques	18
Single Point Pressure Analysis	18
Real Time Statistical Detection Systems	19
Mass or Volume Balance Methods	20
Pressure Analysis Method	21
2) Transient Model Based Techniques	22
Inverse Transient Method	23
Transient Damping Method	24
Frequency Response Method	24
Wave Reflection Method	24
2.1.3 Limitation of Fault Detection Techniques	25
2.2 TRANSIENT ANALYSIS	26
2.2.1 Waterhammer Analysis Models	30
1) Method of Characteristics (MOC)	30
2) Interpolation Schemes for a Fixed-Grid MOC	31
3) Wave Plan/Characteristic Method	33
4) Implicit Finite Difference Method (Implicit FDM)	33
5) Explicit Finite Difference Method (Explicit FDM)	34
6) Finite Element Method (FEM)	35
7) Finite Volume Method (FVM)	36
8) Two-Dimensional Model for Waterhammer Analysis	36
2.2.2 Transient Gas Flow Analysis Models	37
1) Method of Characteristics (MOC)	38
2) Finite Difference and Element Method (FDM and FEM)	39
3) Hybrid Scheme	39
2.3 SUMMARY AND CONCLUSIONS	40

CHAPTER 3 TRANSIENT ANALYSIS FOR GASES AND LIQUIDS BASED ON A CONSERVATIVE 43 SOLUTION SCHEME

3.1 GOVERNING EQUATIONS FOR TRANSIENTS	44
3.1.1 Continuity Equation	46
3.1.2 Momentum Equation	48
3.1.3 Energy Equation	50
3.2 FLUID COMPRESSIBILITY FOR LIQUIDS AND PIPE DEFORMABILITY	52
3.3 MATHEMATICAL MODELS FOR GAS TRANSIENTS	53
3.3.1 Perfect Gas Law	54
3.3.2 Specified Gas Transient Flows	55
3.4 VELOCITY OF WAVE PROPAGATION (WAVESPEED)	56
3.5 HEAT TRANSFER THROUGH THE PIPE WALL	58
3.6 SOLUTION BY THE METHOD OF CHARACTERISTICS	60
3.6.1 Simplified Governing Equations	60
3.6.2 Characteristic Equations	60
3.6.3 Stability and Accuracy	61
3.6.4 Disadvantages of MOC	62
3.7 DEVELOPMENT OF NEW TRANSIENT MODEL USING CONSERVATIVE SOULUTION SCHEME	63
3.7.1 Developed Liquid and Gas Transient Models	65
3.7.2 Characteristics of the Conservative Solution Scheme	67
3.7.3 Numerical Scheme	68
3.7.4 Method of Solution	71

3.	8 SUMMARY AND CONCLUSIONS	79
	3.7.8 Numerical Experiments for Heat Exchange Flows	78
	3.7.7 Stability and Accuracy	76
	3.7.6 Numerical Experiments for Gas Transients	75
	3.7.5 Numerical Experiments for Water Transients	74

CHAPTER 4 PIPELINE APPARATUS FOR EXPERIMENTAL VERIFICATION 81

4.1 PIPELINE SYSTEM	82
4.2 PRESSURE CONTROL SYSTEM	86
4.3 DATA ACQUISITION SYSTEM	88
4.3.1 Pressure Transducers	88
4.3.2 Temperature Meters	89
4.3.3 Signal Module and Data Acquisition Interface	90
4.4 CALIBRATION OF PRESSURE TRANSDUCERS	90
4.5 TRANSIENT GENERATION	95
4.6 CALIBRATION OF WAVESPEED	96
4.6.1 Theoretical Wavespeeds	96
4.6.2 Experimental Determination of Wavespeeds	97
4.7 MEASUREMENT OF FLOW DATA	98
4.7.1 Volumetric Methods	98
4.7.2 Use of Joukowsky Formula	100
4.7.3 Variable Pressure Tank Boundary Model for Gas	101
4.8 CONCLUSIONS	103

CHAPTER 5 UNSTEADY FRICTION IN THE CONSERVATIVE SOLUTION SCHEME	105
5.1 REVIEW OF FRICTION MODELS FOR TRANSIENT FLOW	106
5.1.1 Quasi-Steady Friction Models	106
5.1.2 Unsteady Friction Models Based on Correction Coefficients	108
5.1.3 Unsteady Friction Models Based on Convolution Weighting Functions	110
5.2 IMPLEMENTATION OF UNSTEADY FRICTION MODELS	113
5.2.1 Original Convolution Weighting Function Models	113
5.2.2 Approximated Weighting Function Models	115
5.2.3 Modified Weighting Function Models for Conservative Scheme	118
5.3 APPLICATION OF UNSTEADY FRICTION MODELS FOR GAS TRANSIENTS	119
5.4 NUMERICAL INVESTIGATION FOR UNSTEADY FRICTION	121
5.4.1 Numerical Experiments for Transient Flows in Water	121
5.4.2 Numerical Experiments for Transient Gas Flows	126
5.5 EXPERIMENTAL VERIFICATION FOR UNSTEADY FRICTION	133
5.5.1 Experimental Verification for Transient Water Flows	134
5.5.2 Experimental Verification for Transient Gas Flows	140
5.6 SUMMARY AND CONCLUSIONS	146

CHAPTER 6 THE EFFECT OF LEAKAGES ON TRANSIENT PIPE FLOWS

6.1 LEAKAGES IN PIPELINE SYSTEMS	150
6.2 LEAK DETECTION TECHNIQUES	151

6.3 NUMERICAL MODELS FOR LEAK ESTIMATION	153
6.4 NUMERICAL INVESTIGATION OF LEAKAGE	158
6.5 EXPERIMENTAL VERIFICATION FOR LEAKAGES	162
6.5.1 Leak Location Tests from Leaking Joints	162
6.5.2 Resonance (Auto-Oscillation) by a Leak	164
6.5.3 Comparison between Measured Data and Simulation Results	166
6.5.4 Leakages in Transient Gas Pipe Flows	170
1) Low Mach Number Flows	171
2) Higher Mach Number Flows	174
6.6 SUMMARY AND CONCLUSIONS	178

CHAPTER 7 THE EFFECT OF ENTRAPPED AIR POCKETS ON TRANSIENT PIPE FLOWS

7.1 GAS CAVITY IN LIQUID PIPELINE SYSTEM	182
7.1.1 Development of Air Pocket	182
7.1.2 Effect of Entrapped Air on Transients	184
7.2 NUMERICAL MODEL FOR ISOLATED GAS CAVITIES	188
7.3 NUMERICAL INVESTIGATION FOR ISOLATED GAS CAVITIES	190
7.4 EXPERIMENTAL SYSTEM AND TEST PROCEDURE	198
7.5 MEASURED TRANSIENT DATA WITH AIR POCKETS	201
7.6 SIMULATION RESULTS FOR AIR POCKET TESTS	219
7.7 SUMMARY AND CONCLUSIONS	227

CHAPTER 8 THE EFFECT OF ORIFICES AND	220
BLOCKAGES ON TRANSIENT PIPE FLOWS	229

8.1 INTRODUCTION	230
8.2 NUMERICAL MODELS FOR PIPE RESTRICTIONS	236
8.2.1 Steady-State Flow Models for Pipe Restrictions	237
8.2.2 Unsteady Minor Loss Models	239
1) Instantaneous Inertia Model	240
2) Frequency-Dependent Model	241
8.3 EXPERIMENTAL VERIFICATION	248
8.3.1 Measured Transient Data of Pipeline with Orifices	250
8.3.2 Measured Transient Data of Pipeline with Blockages	260
8.3.3 Comparison between Measured Orifice and Blockage Data	266
8.3.4 Measured Transient Data of Pipeline with Soft Blockages	266
8.3.5 Measured Transient Data in Gas Pipeline with Orifices and Blockages	269
8.4 NUMERICAL INVESTIGATION FOR THE PROPOSED MODELS	271
8.5 SIMULATION RESULTS FOR ORIFICES AND BLOCKAGES	277
8.5.1 Wavespeed Adjustment Method for Wavespeed Delay Phenomena	287
8.6 SUMMARY AND CONCLUSIONS	289

CHAPTER 9 THE EFFECT OF VISCOELASTIC PIPES ON TRANSIENT PIPE FLOWS 291

9.1 ADVANTAGES OF POLYETHYLENE PIPE	292
9.2 MECHANICAL PROPERTIES OF PLASTIC PIPE	294
9.2.1 Viscoelasticity	294

9.2.2 Linear Viscoelastic Models	296
1) Maxwell Model	297
2) Kelvin-Voigt Model	299
3) Standard Linear Solid Model	301
4) Generalized Maxwell or Kelvin-Voigt Model	302
9.3 VISCOELASTIC BEHAVIOUR ON PIPE FLOWS	303
9.4 MATHEMATICAL MODEL	305
9.5 NUMERICAL INVESTIGATION OF VISCOELASTIC PIPE RESPONSE	310
9.6 MEASURED TRANSIENT DATA WITH LOCAL POLYMER PIPES	314
9.7 SIMULATION RESULTS FOR EXPERIMENTAL TESTS	324
9.8 SUMMARY AND CONCLUSIONS	327

CHAPTER 10 CONCLUSIONS AND RECOMMENDATIONS 329

10.1 CONCLUSIONS AND ACHIEVEMENTS	329
10.2 RECOMMENDATIONS FOR FUTURE WORK	332

APPENDIX A TRANSFER FUNCTION OF UNSTEADY FRICTION FOR TRANSIENT LAMINAR FLOW 333

APPENDIX B TRANSFER FUNCTION OF UNSTEADY FRICTION FOR TRANSIENT TURBULENT FLOW 337

APPENDIX C MEASURED TRANSIENT DATA BY A FAST VALVE OPENING EVENT 345

APPENDIX D THE EFFECT OF JOINTS ON TRANSIENT PIPE FLOWS 351

APPENDIX E THE EFFECT OF A VALVE ON TRANSIENT PIPE FLOWS 353

APPENDIX F THE EFFECT OF ROUGH WALL BLOCKAGES ON TRANSIENT PIPE FLOWS 357

BIBLIOGRAPHY

359

LIST OF FIGURES

Figure 2.1	Electronic Listening Stick and Ground Microphone	11
Figure 2.2	Acoustic Leak Detection Method	14
Figure 2.3	Scattering of Gamma Rays	14
Figure 2.4	Schematic of Magnetic Flux Leak Detection	15
Figure 2.5	Electromagnetic Acoustic Transducer	17
Figure 2.6	Pipeline Monitoring Pigs	18
Figure 2.7	Model based Leak Detection Flow Diagram	23
Figure 2.8	Interpolations for a Fixed-Grid MOC	32

Figure 3.1	Control Volume for Deriving the Partial Differential Equations	46
Figure 3.2	The Forces Acting on a Control Volume	49
Figure 3.3	Temperature Distributions across the Pipe Wall	59
Figure 3.4	Characteristic Lines in x-t Plane	61
Figure 3.5	Computational Grid	68
Figure 3.6	Single Pipeline System for Numerical Experiments	71
Figure 3.7	Flowchart of Conservative Solution Scheme	73
Figure 3.8	Numerical Experiment in Water Pipeline	74
Figure 3.9	Numerical Experiment in Air pipeline	75
Figure 3.10	Convergence Behaviour according to Various Computational Grids	76
Figure 3.11	Simulation Results according to Various Courant Numbers	77
Figure 3.12	Numerical Oscillation	78
Figure 3.13	Numerical Damping	78
Figure 3.14	Temperature Variations due to Heat Transfer	79
Figure 3.15	Pressure Variations due to Heat Transfer	79

Figure 4.1	Pipeline Apparatus Schematic	82
Figure 4.2	Pipeline Apparatus Photographs	83
Figure 4.3	Pipeline System Layout	84
Figure 4.4	Adaptable Section Layout	85
Figure 4.5	Pipeline System Photographs	85
Figure 4.6	Pressurised Boundary Tanks	86
Figure 4.7	Pressure Control Devices	87
Figure 4.8	Transducer, Brass Block, and Amplifier	88
Figure 4.9	Temperature Meter and Amplifier	89
Figure 4.10	Data Acquisition Module and Interface	90
Figure 4.11	Pressure Testers	91
Figure 4.12	Pressure Measurement Noise (without Base Flow)	92
Figure 4.13	Frequency Spectrum of Measured Data with Random Noise	93
Figure 4.14	Pressure Measurement Noise (with Base Flow)	93
Figure 4.15	Solenoid Valve for Generating Transients	95
Figure 4.16	Estimation of Effective Valve Closure Time	96
Figure 4.17	Peak Times of Measurement Data	97
Figure 4.18	Wavespeeds by Peak Time Intervals	98
Figure 4.19	Wavespeed by Best Fit	99
Figure 4.20	Layout of Experimental Pipeline Apparatus	101
Figure 4.21	Measured and Computed Variable Pressure Tank Boundary	102
Figure 4.22	Computed Velocities by using Variable Pressure Tank Boundary Model	102

Figure 5.1	Computation Grid for Original Weighting Function Model	114
Figure 5.2	Computation Grid for Approximated Weighting Function Model	116
Figure 5.3	Computation Grid for Modified Weighting Function Model	118
Figure 5.4	Pipeline System for Numerical Experiments	121
Figure 5.5	Results for Transient Laminar Flow	123
Figure 5.6	Results for Transient Turbulent Flow in a Smooth Pipe	124
Figure 5.7	Results for Transient Turbulent Flow in a Rough Pipe	125
Figure 5.8	Pressure Variation in a Gas Transient Laminar Flow	127
Figure 5.9	Density Variation in a Gas Transient Laminar Flow	128
Figure 5.10	Pressure Variation in a Gas Transient Turbulent Flow	129

Figure 5.11	Density Variation in a Gas Transient Turbulent Flow	130
Figure 5.12	Pressure Variation under Different Polytropic Processes	131
Figure 5.13	Temperature Variation in a Isothermal and Adiabatic Process	131
Figure 5.14	Temperature Variation in a Steel Pipeline	132
Figure 5.15	Temperature Variation in a Copper Pipeline	133
Figure 5.16	Layout of Experimental Pipeline Apparatus	134
Figure 5.17	Measured Data and Simulation Results at the Downstream End	135
Figure 5.18	Measured Data and Simulation Results at the Middle of the Pipe	136
Figure 5.19	Measured Data and Simulation Results for Higher Reynolds Number Flow	140
Figure 5.20	Measured Pressure and Temperature during the Test for Condition 4	142
Figure 5.21	Measured Pressure Data at the End of Pipe	143
Figure 5.22	Measured Pressure Data at the Middle of Pipe	144
Figure 5.23	Simulation Results for Gas Transients	145

Figure 6.1	Accidental Gas Release through a Leak Hole	155
Figure 6.2	Single Pipeline for Numerical Experiments	159
Figure 6.3	Pressure Variations according to a Change of Leak Area in Water Pipe	160
Figure 6.4	Pressure Variations according to a Change of Leak Location in Water Pipe	160
Figure 6.5	Pressure Variations according to a Change of Leak Area in Gas Pipe	161
Figure 6.6	Pressure Variations according to a Change of Leak Location in Gas Pipe	161
Figure 6.7	Laboratory Pipeline System Layout	162
Figure 6.8	Pressure Profiles for Leaking Joints	163
Figure 6.9	Details of Sudden Pressure Drops in the First Pressure Rise	164
Figure 6.10	Measured Resonance Caused by Leaking Joint (at the end of pipe)	165
Figure 6.11	Measured Resonance Caused by Leaking Joint (at the middle of pipe)	165
Figure 6.12	Leak Component	167
Figure 6.13	Transient Damping Effects of Leaks	167
Figure 6.14	Simulation Result for a 0.5 mm Leak Bore	168
Figure 6.15	Simulation Result for a 1.0 mm Leak Bore	169
Figure 6.16	Simulation Result for a 2.0 mm Leak Bore	170

Figure 6.17	Measured Data at the End of Pipe for Low Mach Number Flows	172
Figure 6.18	Measured Data at the Middle of Pipe for Low Mach Number Flows	173
Figure 6.19	Measured Data at the End of Pipe for Relatively High Mach Number Flows	175
Figure 6.20	Measured Data at the Middle of Pipe for Relatively High Mach Number Flows	176
Figure 6.21	Comparison between Measured Data and Simulation Results	178
Figure 7.1	Air Chamber for a Gas Pocket	189
Figure 7.2	Pipeline System for Numerical Experiments	191
Figure 7.3	Pressure Waves at Node 5 according to the Change of Air Pocket Size Located at Node 3	192
Figure 7.4	Pressure Waves at Node 3 according to the Change of Air Pocket Size Located at Node 3	193
Figure 7.5	Wavespeeds according to the Change of Air Pocket Size	194
Figure 7.6	Pressure Waves at Node 5 according to the Change of Air Pocket Location	195
Figure 7.7	Pressure Waves at Node 5 according to Different Pressure Conditions	196
Figure 7.8	Pressure Waves (at Node 5) with Single and Multiple Air Pockets	197
Figure 7.9	Effect of Distributed Multiple Air Pockets	197
Figure 7.10	Pipeline System Layout	199
Figure 7.11	Air Pocket Devices	200
Figure 7.12	Comparison of Measured Wavespeeds according to Air Pocket Size and Flow condition	203
Figure 7.13	Measured Data at the End of Pipeline during Flow Condition 1	204
Figure 7.14	Measured Data at the Middle of Pipeline during Flow Condition 1	205
Figure 7.15	Measured Data at the End of Pipeline during Flow Condition 2	206
Figure 7.16	Measured Data at the Middle of Pipeline during Flow Condition 2	207
Figure 7.17	Measured Data at the End of Pipeline during Flow Condition 3	208
Figure 7.18	Measured Data at the Middle of Pipeline during Flow Condition 3	209
Figure 7.19	Measured Data at the End of Pipeline during Flow Condition 4	210
Figure 7.20	Measured Data at the Middle of Pipeline during Flow Condition 4	211
Figure 7.21	Measured Data at the End of Pipeline during Flow Condition 5	212
Figure 7.22	Measured Data at the Middle of Pipeline during Flow Condition 5	213
Figure 7.23	Measured Data at the End of Pipeline during Flow Condition 6	214

Figure 7.24	Measured Data at the Middle of Pipeline during Flow Condition 6	215
Figure 7.25	Comparison of Pressure Waves according to Different Flow Conditions (when the pipeline has air pocket #3)	217
Figure 7.26	Comparison of Pressure Waves according to Different Flow Conditions (when the pipeline has air pocket #4)	217
Figure 7.27	Comparison of Pressure Waves according to Different Sizes of Air Pocket under the Test Condition 2 (Low Pressure Condition)	218
Figure 7.28	Comparison of Pressure Waves according to Different Sizes of Air Pocket under the Test Condition 5 (High Pressure Condition)	218
Figure 7.29	Comparison between Measured Pressure Data and Simulation Results at the End of Pipeline (WE) under the Test Condition 2	220
Figure 7.30	Comparison between Measured Pressure Data and Simulation Results at the Middle of Pipeline (WM) under the Test Condition 2	222
Figure 7.31	Comparison between Measured Pressure Data and Simulation Results at the End of Pipeline (WE) under the Test Condition 5	224
Figure 7.32	Comparison between Measured Pressure Data and Simulation Results at the Middle of Pipeline (WM) under the Test Condition 5	226

Figure 8.1	Orifice Plate showing Variation of Pressure along the pipe	231
Figure 8.2	Blockages in a Pipeline System	234
Figure 8.3	Blockages as the Combination of a Sudden Contraction and Expansion	239
Figure 8.4	Linear Time-Invariant System	243
Figure 8.5	Numerical Inversion of Laplace Transformation	244
Figure 8.6	W _o for Various Orifice Bores	246
Figure 8.7	$W_{\rm o}$ for 3 mm Bore Blockage with Various Axial Lengths	247
Figure 8.8	Pipeline System Layout	248
Figure 8.9	Orifice Components	249
Figure 8.10	Blockage Components	249
Figure 8.11	Measured Pressure Data (at WE) of Pipeline with Orifices	252
Figure 8.12	Measured Pressure Data (at WM) of pipeline with Orifices	254
Figure 8.13	3 mm Orifice Data affected by Entrapped Air	257
Figure 8.14	Measured Data of Pipeline with 10 and 15 mm Orifices	257
Figure 8.15	Measured Data between WM and EM	259
Figure 8.16	Measured Pressure Data (at WE) of Pipeline with Blockages	261
Figure 8.17	Measured Pressure Data (at WM) of Pipeline with Blockages	264

Figure 8.18	Comparison of Measurements between Orifices and Blockages			
Figure 8.19	Comparison of Measurements between Hard and Soft Blockages			
Figure 8.20	Measured Data in Gas Pipeline with Orifices and Blockages (WE)			
Figure 8.21	Measured Data in Gas Pipeline with Orifices and Blockages (WM)			
Figure 8.22	Pipeline System for Numerical Experiments			
Figure 8.23	Pressure Waves for a Change of Orifice Location	272		
Figure 8.24	Pressure Waves according to the Length of Blockage	273		
Figure 8.25	Comparison of Steady Orifice and Instantaneous Inertia Models	274		
Figure 8.26	Comparison of Steady and Frequency-Dependent Models	275		
Figure 8.27	Comparison of Steady Blockage and Instantaneous Inertia Models	276		
Figure 8.28	Comparison of Steady and Frequency-Dependent Models	277		
Figure 8.29	Comparison of Measured Data and Simulation Results for the Frequency-Dependent Model at the WE under the Test Condition 5	279		
Figure 8.30	Comparison of Measured Data and Simulation Results for the Frequency-Dependent Model at the WM under the Test Condition 5	281		
Figure 8.31	Comparison of Measured Data and Simulation Results for the Frequency-Dependent Model at the WE under the Test Condition 5	284		
Figure 8.32	Comparison of Measured Data and Simulation Results for the Frequency-Dependent Model at the WM under the Test Condition 5	286		
Figure 8.33	Zones of Different Wavespeeds	288		
Figure 8.34	Simulation Result by Wavespeed Adjustment	289		

Figure 9.1	Stress-Strain Relationship	294
Figure 9.2	Creep and Stress Relaxation Diagrams of Maxwell Material Model	299
Figure 9.3	Creep and Creep Recovery of Kelvin-Voigt Material	300
Figure 9.4	Creep Response of Standard Linear Solid Material Model	301
Figure 9.5	Diagrams of Linear Viscoelastic Models	303
Figure 9.6	Pipeline System for Numerical Experiments	310
Figure 9.7	Numerical Results by Linear Elastic Model	311
Figure 9.8	Comparisons between the Results by Linear Elastic and Viscoelastic Model for Polyethylene Pipe	311
Figure 9.9	Viscoelastic Behaviour of Local Polyethylene Pipe (at the End of Pipe)	313
Figure 9.10	Viscoelastic Behaviour of Local Polyethylene Pipe (at the Middle of Pipe)	314
Figure 9.11	Pipeline System Layout	315

Figure 9.12	Measured Data at the End of Pipeline (WE) under Flow Condition 1	317
Figure 9.13	Measured Data at the End of Pipeline (WE) under Flow Condition 2	318
Figure 9.14	Measured Data at the End of Pipeline (WE) under Flow Condition 3	319
Figure 9.15	Measured Data at the End of Pipeline (WE) under Flow Condition 4	320
Figure 9.16	Measured Data at the End of Pipeline (WE) under Flow Condition 5	321
Figure 9.17	Measured Data at the End of Pipeline (WE) under Flow Condition 6	322
Figure 9.18	Measured Data when the Pipeline has a Rubber Pipe Section	324
Figure 9.19	Comparison between Measured and Simulation Data when the Pipeline has a 1.630 m Polyethylene Section	326
Figure 9.20	Comparison between Measured and Simulation Data when the Pipeline has a 0.895 m Polyethylene Section	326
Figure 9.21	Comparison between Measured and Simulation Data when the Pipeline has a 0.153 m Polyethylene Section	327

Figure A.1	Absolute Value of Transfer Function on the Complex Plane	334		
Figure A.2	Roots of the Equations, $\zeta_I(\eta) - 2 = 0$	335		
Figure B.1	Absolute Value of the Transfer Function in the Complex Plane			
Figure B.2	Absolute Value of the Weighting Function on the Complex Plane	343		
Figure C.1	Measured Transient Data at the Downstream End	347		
Figure C.2	Measured Transient Data at the Middle of Pipe	349		
Figure D.1	Effect of Pipe Joints During Transients	351		
Figure E.1	Pipeline System Layout	353		
Figure E.2	Gate Valve	354		
Figure E.3	Measured Data according to the Degree of Valve Open	356		
Figure F.1	Comparison between Measured Data with Smooth Wall Blockage (5 mm Blockage Bore) and with Rough Wall Blockage (5 mm Blockage Bore and 1 mm Roughness Height by Screw Thread)	358		
Figure F.2	Comparison between Measured Data with Smooth Wall Blockage (10 mm Blockage Bore) and with Rough Wall Blockage (10 mm Blockage Bore and 2 mm Roughness Height by Screw Thread)	358		

LIST OF TABLES

Table 2.1	Choices Used in the Derivation of the Models	
Table 3.1	ψ Values for Pipe Support Condition	
Table 4.1	Specification of Copper Pipe	84
Table 4.2	Specification of Tanks	86
Table 4.3	Standard Deviation at Pressure Transducers	94
Table 4.4	Specified Six Different Flow Conditions	100
Table 5.1	Best Fit Exponential Sum Coefficients	117
Table 5.2	Unsteady Friction Models for Water Transients	122
Table 5.3	Computational Time Ratios for Friction Models	126
Table 5.4	Specified Six Different Flow Conditions	134
Table 5.5	Flow Information for Higher Velocity Flows	139
Table 5.6	Flow Conditions for Gas Transient Tests	141
Table 6.1	Non-Hydraulic Based Leak Detection Techniques	151
Table 6.2	Hydraulic Based Leak Detection Techniques	152
Table 6.3	Flow Information and Lumped Leak Coefficients	168
Table 6.4	Flow Information for Low Mach Number Flow	171
Table 6.5	Flow Information for Relatively High Mach Number Flow	174
Table 7.1	Air Pocket Volumes and Void Fractions used for Numerical Tests	191
Table 7.2	Initial Flows and Pressure (at tank 1) used for Numerical Tests	191
Table 7.3	Test Conditions for Distributed Multiple Air Pockets	197

Table 7.4	Test Conditions	199
Table 7.5	Specification of Air Pocket Devices	200
Table 7.6	Measured Wavespeeds in Experimental Pipeline	202
Table 8.1	Contraction Coefficients	239
Table 8.2	Weighting Functions for Various Orifice Bores	247
Table 8.3	Weighting Functions for 3 mm Bore Blockage with Various Axial Lengths	247
Table 8.4	Beta Ratios for Orifices and Blockages	249
Table 8.5	Initial Steady-State Velocities according to Test Conditions	250
Table 8.6	Initial Pressure Drop by Orifices	256
Table 8.7	Measured Wavespeeds for 2 and 3 mm Orifices	256
Table 8.8	Measured Wavespeeds for 3, 5, 10 mm Blockages	263
Table 8.9	Wavespeeds and Initial Flow Conditions	269
Table 8.10	Wavespeeds according to the Zone	289
Table 9.1	Creep Compliance and Retardation Times for Polyethylene at Different Temperatures	309
Table 9.2	Three Different Local Viscoelastic Pipes	315
Table A.1	The First 20 Roots of the Equation, $\zeta_1(\eta) - 2 = 0$	335

NOMENCLATURE

Δ	Pine cross-sectional area
21 A	
A_p	Pipe cross-sectional area (in Chapter 8)
A^{*}	Coefficient for weighting function of unsteady friction
A_L	Area of the leak hole
A_o	Cross-sectional area of the restriction
а	Wavespeed
а	Pipe radius (in Chapter 8)
a^*	Wavespeed at the critical flow state (sonic flow)
a_m	Wavespeed of gas-liquid mixture
a_o	Radius of the orifice
В	Body force vector
\pmb{B}^{*}	Coefficient for weighting function of unsteady friction
$B_{x,y,z}$	Body forces
С	Correction coefficient for unsteady friction model
C_c	Contraction coefficient
C_d	Discharge coefficient
$C_d A_L$	Lumped leak coefficient
C_N	Courant number for Courant-Friedrich-Levy stability condition
C_p	Specific heat at constant pressure
C_v	Specific heat at constant volume
c_v	Calibrated volumetric constant for the tank

CV Control volume

CS	Control surface
D	Pipe inside diameter
d	Orifice bore diameter
$d \Psi$	Elemental volume inside the control volume
$d\mathbf{A}$	Vector element representing an surface area of the inflow and outflow
dQ_m	Bound of uncertainty in flow measurement
dL_s	Bound of uncertainty in line pack change over a time interval
E	Young's modulus of elasticity for the pipe wall
E	Flow coefficient (in Chapter 8)
E_T	Total energy of the system
е	Pipe wall thickness
e_t	Internal energy per unit mass
$\dot{e} + V^2/2$	Total energy per unit mass
\mathbf{F}	Force vector
F_p	Pressure force
F_{s}	Shear force
F_{ws}	Gravitational force
f	Darcy-Weisbach friction factor
f	Column vector in conservative equation form (in Section 3.7)
g	Gravitational acceleration
g	Column vector in conservative equation form (in Section 3.7)
Н	Piezometric head
H(s)	Transfer function for kinetic pressure difference across a restriction
H'(s)	Approximated transfer function
H_A	Absolute piezometric head
H_b	Barometric pressure head
H_L	Hydraulic head at the leak
h	Enthalpy per unit mass
h_c	Energy loss due to sudden contraction
h_e	Energy loss due to sudden expansion

h_f	Total energy loss due to pipe wall friction
h_o	Enthalpy through a leak hole
h_{sf}	Quasi-steady energy loss component
h_{uf}	Unsteady energy loss component
I_o	Modified Bessel function of first kind of order 0
I_o	Modified Bessel function of first kind of order 1
I_2	Modified Bessel function of first kind of order 2
i	Unit imaginary number
J(t)	Creep compliance function
J_0	Instantaneous elastic creep compliance
J_0	Bessel function of first kind and zero order
J_1	Bessel function of first kind and first order
j	Unit imaginary number
K	Bulk modulus of elasticity of fluid
K_0	Modified Bessel function of second kind and 0 th order
K_1	Modified Bessel function of second kind and 1 th order
K_{g}	Bulk modulus of elasticity of gas cavity
K_l	Bulk modulus of elasticity of liquid
K_m	Bulk modulus of elasticity of gas-liquid mixture
k	Thermal conductivity (heat transfer coefficient)
k _c	Compound coefficient of heat transfer coefficient
<i>k</i> ₃	Correction coefficient for unsteady friction model
l_o	Axial length of the blockage
М	Mach number
M_{g}	Mass of gas cavity
M_{o}	Mach number through a leak hole
'n	Mass flow rate
\dot{m}_{in}	Mass inflow to the system
\dot{m}_{out}	Mass outflow from the system
\dot{m}_L	Mass flow rate by a leak

m_g	Mass of gas cavity per unit volume of mixture
$\dot{m}_{ m max}$	Maximum mass flow rate
m_s	Fitted exponential sum coefficient for approximated weighting function
m^*s	Scaled fitted exponential sum coefficient for approximated weighting function
Δm_{out}	Change in mass from the tank during a test
Ν	Total amount of some extensive property within the system
N_R	Reynolds number
N_{Rd}	Reynolds number at the orifice bore
n	Polytropic gas process exponent
np	Total number of data points
n _{old}	Number of data points in the earlier part of the data
n_s	Fitted exponential sum coefficient for approximated weighting function
n^*s	Scaled fitted exponential sum coefficient for approximated weighting function
р	Fluid pressure
\overline{p}	Average of the pressure data
p^{*}	Pressure at the critical flow state (sonic flow) (in Chapter 6)
p^{*}	Total absolute pressure (in Chapter 7)
P_d	Downstream pressure from the orifice
p_g^*	Absolute partial pressure of gas cavity
P_i	Measured pressure at time <i>i</i>
Δp_t	Variation of tank pressure
p_o	Pressure through a leak hole
p_v^*	Absolute vapour pressure
p_R	Ratio of absolute downstream pressure to absolute upstream pressure
p_u	Upstream pressure from the orifice
Q	Flow rate
Q_H	Energy by heat transfer
Q_{in}	Measured inflow to the system
Q_L	Flow rate of the leak
Q_{out}	Measured outflow from the system

Rate of volumetric heat addition externally per unit mass q R Gas constant R_p Radius of Pipe S Entropy Laplace variable $(j\omega)$ S Т Absolute temperature T_o Absolute temperature through a leak hole T^* Absolute temperature at the critical flow state (sonic flow) Time (independent variable) t Time for water level change in tank $t_{\Delta z}$ u Column vector in conservative equation form (in Section 3.7) и *x* component of velocity Time used in the convolution integral (in Chapter 5) и V Velocity vector Velocity vector (in Chapter 3) v y component of velocity v V_0 Steady state velocity V_{o} Velocity through a leak hole V^* Velocity at the critical flow state (sonic flow) $V^{2}/2$ Kinetic energy per unit mass ₽ Volume V_a Volume of entrapped air pocket V_{g} Volume of gas cavity V_l Volume of liquid V_t Volume of the tank WEnergy by work done (in Chapter 3) WWeighting function for unsteady friction (in Chapter 5) z component of velocity w W_{app} Approximated weighting function for unsteady friction W_{app}^{*} Approximated and scaled weighting function

W_o	Weighting function for a restriction
x	Distance in the Cartesian space (independent variable)
Y	Isentropic gas expansion factor
у	Distance in the Cartesian space (independent variable)
z	Distance in the Cartesian space (independent variable)
Z.	Gas compressibility factor (in Eq. 3.32)
Z.	Complex number (in Appendix A and B)
z_L	Elevation at the leak
Δz	Change of water level in the tank

α Time ste	p weighting	coefficient	(in Chapter 3)
-------------------	-------------	-------------	----------------

- α Parameter function of pipe constrains (in Chapter 9)
- α_v Void fraction
- β Space step weighting coefficient (in Chapter 3)
- β Beta ratio (orifice bore diameter / pipe diameter)
- *γ* Ratio of the specific heat
- ε Pipe wall roughness height (in Chapter 5)
- ε Strain (in Chapter 9)
- ε_D Strain in the dashpot
- \mathcal{E}_e Instantaneous elastic strain at the initial state
- \mathcal{E}_r Retarded strain depending on time
- ε_S Strain in the spring
- ε_T Sum of the strains
- ε_{Total} Total strain
 - ε_0 Fixed strain at initial state
 - ζ_1 Modified quotient of Bessel function of first order
 - η Amount of intensive property per unit mass (in Chapter 3)
 - η Reflection time used in the convolution integral (in Chapter 8)
 - η Viscosity of the material (in Chapter 9)

$oldsymbol{\eta}_k$	Viscosity of each dashpot
θ	Angle of the pipe from horizontal
λ	The second viscosity coefficient
μ	Absolute viscosity (in Chapter 2)
μ	Poisson's ratio (in Chapter 3 and 9)
v	Kinematic viscosity
V_{c}	Kinematic viscosity at the pipe core region
V_{lam}	Laminar kinematic viscosity
${\cal V}_w$	Kinematic viscosity at the pipe wall
ρ	Fluid density
$ ho^{*}$	Density at the critical flow state (sonic flow)
$ ho_{g}$	Density of gas cavity
$oldsymbol{ ho}_l$	Density of liquid
$ ho_{\scriptscriptstyle m}$	Density of gas-liquid mixture
$ ho_{o}$	Density through a leak hole
σ	Stress
σ^2	Variance of the pressure data
$\sigma_{\scriptscriptstyle D}$	Stress in the dashpot
$\sigma_{\scriptscriptstyle S}$	Stress in the spring
$\sigma_{\scriptscriptstyle Total}$	Total stress
$\sigma_{\scriptscriptstyle T}$	Sum of the stresses
σ_{0}	Fixed stress at initial state
$ au$ or $ au_o$	Shear stress between the fluid and pipe wall
τ	Dimensionless time used for unsteady friction model (in Chapter 5)
$ au_k$	Retardation time of each dashpot
$ au_{xx,yy,zz}$	Normal stress in a fluid
$ au_{xy,xz,yz,}$	Shear stress
arphi	Orifice conical angle with pipe axis
Φ	Transfer function for transient turbulent shear stress
ϕ	Transfer function for transient laminar shear stress

- ϕ_L Sign operation for leak equation
- ψ Parameter for the pipe geometry and restraints
- Ψ_c Correction factor for different boundary conditions over the restriction
- ω Angular frequency