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ABSTRACT 

One of the best opportunities to reduce pipeline accidents and subsequent product loss 

comes from implementing better pipeline condition assessment and fault detection 

systems.  Transient analysis model based condition assessment is the most promising 

technique because pressure transients propagate through the entire system interacting with 

the pipe and any devices in the system.  Transient measurements embody a large amount of 

information about the physical characteristics of the system.  The performance of this 

technique has its difficulties because a highly accurate transient model is required.  Real 

systems have numerous uncertainties and flow system components that present a major 

challenge in the development of precise transient analysis models.  To improve transient 

modelling for the performance of condition assessment, this research undertakes a 

comprehensive investigation into the transient behaviour of distributed and various local 

energy loss system components in water and gas pipelines.  The dynamic behaviours that 

have been investigated in this research are the effect of unsteady wall resistance, 

viscoelasticity effects of polymer pipe, and local energy loss elements including leakages, 

entrapped air pockets, orifices, and blockages during unsteady pipe flow conditions.  The 

dynamic characteristics of these system components are modelled based on a conservative 

solution scheme using the governing equations in their conservative form.  Use of the 

conservative form of the equations improves the accuracy and applicability of transient 

analysis in both liquid and gas pipeline systems.  The numerical model results are 

compared to laboratory experiments in water and gas pipelines to observe the interaction 

between transient pressure wave and system components and to verify the proposed 

models. 
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NOMENCLATURE 

A Pipe cross-sectional area 

pA  Pipe cross-sectional area (in Chapter 8) 

*A  Coefficient for weighting function of unsteady friction 

LA  Area of the leak hole 

oA  Cross-sectional area of the restriction 

a Wavespeed 

a Pipe radius (in Chapter 8) 

*a  Wavespeed at the critical flow state (sonic flow) 

ma  Wavespeed of gas-liquid mixture 

oa  Radius of the orifice 

B Body force vector 

*B  Coefficient for weighting function of unsteady friction 

zyxB ,,  Body forces 

C Correction coefficient for unsteady friction model 

cC  Contraction coefficient 

dC  Discharge coefficient 

Ld AC  Lumped leak coefficient 

NC  Courant number for Courant-Friedrich-Levy stability condition 

pC  Specific heat at constant pressure 

vC  Specific heat at constant volume 

vc  Calibrated volumetric constant for the tank 

CV Control volume 
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CS Control surface 

D Pipe inside diameter 

d Orifice bore diameter 

Vd  Elemental volume inside the control volume 

dA Vector element representing an surface area of the inflow and outflow 

mdQ  Bound of uncertainty in flow measurement 

sdL  Bound of uncertainty in line pack change over a time interval 

E Young’s modulus of elasticity for the pipe wall 

E Flow coefficient (in Chapter 8) 

TE  Total energy of the system 

e Pipe wall thickness 

te  Internal energy per unit mass 

2/2Ve +&  Total energy per unit mass 

F Force vector 

pF  Pressure force 

sF  Shear force 

wsF  Gravitational force 

f Darcy-Weisbach friction factor 

f Column vector in conservative equation form (in Section 3.7) 

g Gravitational acceleration 

g Column vector in conservative equation form (in Section 3.7) 

H Piezometric head 

H(s) Transfer function for kinetic pressure difference across a restriction 

)(sH ′  Approximated transfer function 

AH  Absolute piezometric head 

bH  Barometric pressure head 

LH  Hydraulic head at the leak 

h Enthalpy per unit mass 

ch  Energy loss due to sudden contraction 

eh  Energy loss due to sudden expansion 
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fh  Total energy loss due to pipe wall friction 

oh  Enthalpy through a leak hole 

sfh  Quasi-steady energy loss component 

ufh  Unsteady energy loss component 

oI  Modified Bessel function of first kind of order 0 

oI  Modified Bessel function of first kind of order 1 

2I  Modified Bessel function of first kind of order 2 

i Unit imaginary number 

J(t) Creep compliance function 

0J  Instantaneous elastic creep compliance 

0J  Bessel function of first kind and zero order 

1J  Bessel function of first kind and first order 

j Unit imaginary number 

K Bulk modulus of elasticity of fluid 

0K  Modified Bessel function of second kind and 0th order 

1K  Modified Bessel function of second kind and 1th order 

gK  Bulk modulus of elasticity of gas cavity 

lK  Bulk modulus of elasticity of liquid 

mK  Bulk modulus of elasticity of gas-liquid mixture 

k  Thermal conductivity (heat transfer coefficient) 

ck  Compound coefficient of heat transfer coefficient 

3k  Correction coefficient for unsteady friction model 

ol  Axial length of the blockage 

M Mach number 

gM  Mass of gas cavity 

oM  Mach number through a leak hole 

m&  Mass flow rate 

inm&  Mass inflow to the system 

outm&  Mass outflow from the system 

Lm&  Mass flow rate by a leak 
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gm  Mass of gas cavity per unit volume of mixture 

maxm&  Maximum mass flow rate 

sm  Fitted exponential sum coefficient for approximated weighting function 

sm*  
Scaled fitted exponential sum coefficient for approximated weighting 
function 

outm∆  Change in mass from the tank during a test 

N Total amount of some extensive property within the system 

RN  Reynolds number 

RdN  Reynolds number at the orifice bore 

n Polytropic gas process exponent 

np Total number of data points 

oldn  Number of data points in the earlier part of the data 

sn  Fitted exponential sum coefficient for approximated weighting function 

sn*  
Scaled fitted exponential sum coefficient for approximated weighting 
function 

p Fluid pressure 

p  Average of the pressure data 

*p  Pressure at the critical flow state (sonic flow) (in Chapter 6) 

*p  Total absolute pressure (in Chapter 7) 

dp  Downstream pressure from the orifice 

*
gp  Absolute partial pressure of gas cavity 

ip  Measured pressure at time i 

tp∆  Variation of tank pressure 

op  Pressure through a leak hole 

*
vp  Absolute vapour pressure 

Rp  Ratio of absolute downstream pressure to absolute upstream pressure 

up  Upstream pressure from the orifice 

Q Flow rate 

HQ  Energy by heat transfer 

inQ  Measured inflow to the system 

LQ  Flow rate of the leak 

outQ  Measured outflow from the system 
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q Rate of volumetric heat addition externally per unit mass 

R Gas constant 

pR  Radius of Pipe 

S Entropy 

s Laplace variable (jω) 

T Absolute temperature 

oT  Absolute temperature through a leak hole 

*T  Absolute temperature at the critical flow state (sonic flow) 

t Time (independent variable) 

zt∆  Time for water level change in tank 

u Column vector in conservative equation form (in Section 3.7) 

u x component of velocity 

u Time used in the convolution integral (in Chapter 5) 

V Velocity vector 

v Velocity vector (in Chapter 3) 

 v  y component of velocity 

0V  Steady state velocity 

oV  Velocity through a leak hole 

*V  Velocity at the critical flow state (sonic flow) 

2/2V  Kinetic energy per unit mass 

V  Volume 

aV  Volume of entrapped air pocket 

gV  Volume of gas cavity 

lV  Volume of liquid 

tV  Volume of the tank 

W Energy by work done (in Chapter 3) 

W Weighting function for unsteady friction (in Chapter 5) 

w  z component of velocity 

appW  Approximated weighting function for unsteady friction 

*
appW  Approximated and scaled weighting function 



Nomenclature 

 

 xxxii 

oW  Weighting function for a restriction 

x Distance in the Cartesian space (independent variable) 

Y Isentropic gas expansion factor 

 y Distance in the Cartesian space (independent variable) 

 z Distance in the Cartesian space (independent variable) 

z Gas compressibility factor (in Eq. 3.32) 

z Complex number (in Appendix A and B) 

Lz  Elevation at the leak 

z∆  Change of water level in the tank 

 

 

 

α Time step weighting coefficient (in Chapter 3) 

α Parameter function of pipe constrains (in Chapter 9) 

vα  Void fraction 

β Space step weighting coefficient (in Chapter 3) 

β Beta ratio (orifice bore diameter / pipe diameter) 

γ Ratio of the specific heat 

ε Pipe wall roughness height (in Chapter 5) 

ε Strain (in Chapter 9) 

Dε  Strain in the dashpot 

eε  Instantaneous elastic strain at the initial state 

rε  Retarded strain depending on time 

Sε  Strain in the spring 

Tε  Sum of the strains 

Totalε  Total strain 

0ε  Fixed strain at initial state 

1ζ  Modified quotient of Bessel function of first order 

η  Amount of intensive property per unit mass (in Chapter 3) 

η Reflection time used in the convolution integral (in Chapter 8) 

η Viscosity of the material (in Chapter 9) 
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kη  Viscosity of each dashpot 

θ Angle of the pipe from horizontal 

λ The second viscosity coefficient 

µ Absolute viscosity (in Chapter 2) 

µ Poisson’s ratio (in Chapter 3 and 9) 

ν Kinematic viscosity 

cν  Kinematic viscosity at the pipe core region 

lamν  Laminar kinematic viscosity 

wν  Kinematic viscosity at the pipe wall 

ρ Fluid density 

*ρ  Density at the critical flow state (sonic flow) 

gρ  Density of gas cavity 

lρ  Density of liquid 

mρ  Density of gas-liquid mixture 

oρ  Density through a leak hole 

σ Stress  

2σ  Variance of the pressure data 

Dσ  Stress in the dashpot 

Sσ  Stress in the spring 

Totalσ  Total stress 

Tσ  Sum of the stresses 

0σ  Fixed stress at initial state 

τ  or oτ  Shear stress between the fluid and pipe wall 

τ Dimensionless time used for unsteady friction model (in Chapter 5) 

kτ  Retardation time of each dashpot 

zzyyxx ,,τ  Normal stress in a fluid 

...,,, yzxzxyτ  Shear stress 

φ Orifice conical angle with pipe axis 

Φ  Transfer function for transient turbulent shear stress 

φ  Transfer function for transient laminar shear stress 
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Lφ  Sign operation for leak equation 

ψ Parameter for the pipe geometry and restraints  

cψ  Correction factor for different boundary conditions over the restriction 

ω Angular frequency 
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