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APPENDIX A 

TRANSFER FUNCTION OF UNSTEADY 

FRICTION FOR TRANSIENT LAMINAR FLOW 

Unsteady wall shear stress for transient laminar pipe flow is expressed as a function of 

)(/ˆ stV ∂∂  in the Laplace domain with a transfer function )(ˆ sφ [Zielke, 1968].   
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(A.1) 

 

where the circumflex accent represents the Laplace transform of time variable, τo is the 

shear stress at the pipe wall, s is the Laplace variable, V is the mean velocity of fluid, ρ is 

the density of fluid, Rp is the radius of pipe, i is the unit imaginary number, ν is the 

kinematic viscosity, J0 is the Bessel function of first kind and zero order, J1 is the Bessel 

function of the first kind and first order, ζ1 is the modified quotient of Bessel function of 

the first order defined as ζ1(z) = z·J0(z)/J1(z), and z is a complex number. 

 

The inverse Laplace transform of Eq. A.1 is described as the inverse Laplace form )(uφ  of 

)(ˆ sφ  and its convolution with the rate of change of velocity and with the time u in the 

convolution integral.   
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To find the Laplace inversion of the transfer function, the complex inversion formula can 

be used 
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where ω is the angular frequency.  This complex inversion formula can be evaluated by 

using the residue theorem that is a powerful tool to evaluate path integrals of an analytic 

function over a closed curve.   
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The transfer function (analytic function) is holomorphic (differentiable everywhere within 

some open space) on all open subsets of the complex plane except a set of isolated points, 

which are poles for the function as shown in Fig. A.1.   
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Figure A.1 Absolute Value of Transfer Function on the Complex Plane 

 

The poles occur at the zeros of the denominator (DE) of the transfer function.  The first 

root is s = 0 and an infinite number of root is 22 / pjj Rs νη ⋅−= .  The constants jη  are 
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obtained by the evaluating of 02)(1 =−ηζ  as shown in Fig. A.2 and Table A.1.  The 

interval between them is approaching π. 
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Figure A.2 Roots of the Equation, 02)(1 =−ηζ  

 

Table A.1 The First 20 Roots of the Equation, 02)(1 =−ηζ  

j jη  j jη  

1 5.13562 11 36.86286 

2 8.41724 12 40.00845 

3 11.61984 13 43.15345 

4 14.79595 14 46.29800 

5 17.95982 15 49.44216 

6 21.11700 16 52.58602 

7 24.27011 17 55.72963 

8 27.42057 18 58.87302 

9 30.56920 19 62.01622 

10 33.71652 20 65.15927 

 

The function )(tφ  is given by the sum of all residues of stes)(φ̂  
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Differentiation of 1ζ  yields 
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which is constant for all residues except the one at the origin.  Therefore 
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By using Eq. A.4, 
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where the dimensionless time is, 2/ pRtντ = . 

 

Finally, the unsteady wall shear stress is expressed by  
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where ...)(
2
3

2
2

2
1 +++= −−− τητητητ eeeW  that  is a function of the dimensionless time τ.  The 

equation for energy loss by unsteady friction is 
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Eq. A.10 can be easily calculated by the first-order approximation in MOC or FDM 

(including a conservative solution scheme). 

 

 



APPENDIX B 

TRANSFER FUNCTION OF UNSTEADY 

FRICTION FOR TRANSIENT TURBULENT 

FLOW 

Unsteady wall shear stress for transient turbulent pipe flow is expressed as a function of 

)(/ˆ stV ∂∂  in the Laplace domain with a transfer function )(ˆ sΦ [Vardy and Brown, 2003].   
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They idealized the flow distribution by two different viscous regions.  One is annular 

region of width b ( )(2.0 pRradiuspipeb ×= ) adjacent to the wall where the viscosity is 

assumed to vary linearly from wν  at the wall to cν  at the interface between the annulus 

and an inner core region.  Another is the core region where the viscosity is assumed to be 

uniform and equal to cν .  )(ˆ sΦ  is a transfer function between the transforms of the mean 

velocity and the unsteady component of the wall shear stress.  It satisfies 
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where  
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where s is the Laplace transform variable, In is the modified Bessel function of the first 

kind and nth order, Kn is the modified Bessel function of second kind and nth order, G(s) is 

the function relating the driving force and the mean velocity, and Gs is the steady flow 

equivalent of G(s). 
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Similar to the transfer function of unsteady wall shear stress for transient laminar pipe 

flow, the transfer function of unsteady wall shear stress for transient turbulent pipe flow, 

Eq. B.2 with Eq. B.3a to B.3i, shows the set of isolated points that are poles for the 

function as shown in Fig. B.1.   

 

40000

0

Φ z( )

5050− z
 

Figure B.1 Absolute Value of the Transfer Function on the Complex Plane 

 

Although the inverse Laplace transformation of transfer function for laminar flow can be 

performed analytically to obtain an exact expression for the weighting function, there is no 

analytical solution to find inverse Laplace transform of Eq. B.2 because of the complexity 

of the equation.  Vardy and Brown [2003] proposed a different approach by approximating 

the weighting function.  The following part shows the procedure of the approximation. 

 

The inverse Laplace transform of Eq. B.1 also can be expressed as a convolution based on 

the weighting function derived for unsteady laminar flow in the time domain. 
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where T is the elapsed time since the beginning of the unsteadiness, tTt −=*  is backward-

measured time from the instant at which the integral is being evaluated, lamν  is the laminar 

kinematic viscosity, the weighting function W is a function of t* whereas the acceleration 

∂V/∂t is a function of t.  The Laplace transform of Eq. B.4 is  
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By comparison with Eq. B.1, the transformed weighting function is 
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Fig. B.2 shows the absolute value of the transformed weighting function on the complex 

plane. 
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Figure B.2 Absolute Value of Weighting Function on the Complex Plane 

 

The transformed weighting function is approximated by a simple function that is possible 

for application of an inverse Laplace transformation.   
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A
sWapp +
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where A and B is the coefficients for the approximated weighting function and the 

subscript app represent the approximation of weighting function. 

 

The inverse Laplace transform of the approximated weighting function, Eq. B.7, is  
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This is the weighting function of the unsteady shear stress for transient turbulent pipe flow 

in the time domain.  The weighting functions are defined in terms of the dimensionless 

time 2/4 Dtlamντ = .  A* and B* are the coefficients for the weighting function.  The values 

of these coefficients are determined by matching the asymptotic states of Eq. B.6 and Eq. 

B.7 at large and very small Laplace transform variables. 

 

 

 

 

 

 

 

 

 

 



APPENDIX C 

MEASURED TRANSIENT DATA BY A FAST 

VALVE OPENING EVENT 
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Figure C.1 Measured Transient Data at the Downstream End 

(Flow conditions are shown in Table 5.4) 
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Figure C.2 Measured Transient Data at the Middle of Pipe 

(Flow conditions are shown in Table 5.4) 
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APPENDIX D 

THE EFFECT OF JOINTS ON TRANSIENT 

PIPE FLOWS 

 

Figure D.1 Effect of Pipe Joints During Transients 
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APPENDIX E 

THE EFFECT OF A VALVE ON TRANSIENT 

PIPE FLOWS 

Laboratory experiments have been executed for the investigation of the effect of a gate 

valve during transient events.  The experimental apparatus described in Chapter 4 is used.  

The gate valve as shown in Fig. E.2 is inserted between J4 and J5.  Transients are 

generated at the middle of pipe (WM) by a side-discharge solenoid valve with a fast 

operating time after closing the east flow control valve.  The sampling frequency of 

measured data is 4 kHz and the water temperature is 23oC.  Fig. E.1 shows the pipe system 

layout for gate valve tests. 

 

East flow 
control ValveWest 

Tank

WM EM

Gate valve

Position of Transient Generation
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Tank
West 
Tank

WM EM

Gate valve

Position of Transient Generation

 

Figure E.1 Pipeline System Layout 

 

The pressure data are collected according to the degree of valve opening or closure by 

adjusting the hand-wheel of the gate valve as shown in Fig. E.2.  The fully open valve 

position is approximately 9 turns ( o3609× ) from the fully closed valve condition.  Fig. E.3 

shows the measured data.  The measured data present the state of transmission and 

reflection waves by the gate valve.  When the gate valve is fully closed, the measured data 

at the WM shows full transients as a single pipeline composed of west tank, pipeline from 
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west tank to gate valve, and downstream end valve, but the measured data at the EM has 

no propagation of pressure waves because the fully closed gate valve completely isolates 

the right-hand part of the gate valve.  The situation is similar for valve openings of 1/8 and 

2/8 turn opening.  When the gate valve is opened to 3/8 opening of the hand-wheel, the 

pressure waves are very slightly propagated into the right-hand part of the system across 

the gate valve.  The measured data of WM shows a large pressure damping when 

comparing the Fig. E.3 (a) to (c) but there is no wave reflection from the gate valve.  This 

case is very special because the right-hand pipe of the gate valve can be regarded as a 

lumped capacitance that severely reduces the pressure wave.  From the 4/8 turn open 

position (Fig. E.3 (e)), as the opening area of the gate valve increases the reflection of 

pressure wave by the gate valve decreases and the transmission of pressure wave through 

the gate valve increases.  Finally, the measured data of 1 turn open are almost identical 

with the data of fully open, although the opening area is very small when considering the 

area of the fully opened condition.  It may be noticed that the pressure wave can be easily 

or fully propagated through a small opening area.  Condition assessment for valves uses 

these kinds of transient data to analyse the dynamic characteristics of valves. 
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Figure E.2 Gate Valve 
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(c) 2/8 Turn Open (d) 3/8 Turn Open 
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(e) 4/8 Turn Open (f) 5/8 Turn Open 
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Figure E.3 Measured Data according to the Degree of Valve Open 

 

 

 

 

 

 

 

 

 

 



APPENDIX F 

THE EFFECT OF ROUGH WALL BLOCKAGES 

ON TRANSIENT PIPE FLOWS 

Natural blockages formed by solid deposition or pipe wall corrosion have large roughness 

height and irregular shape when compared to the pipe wall material.  For the natural 

blockage tests during transients, the surfaces of brass blockages presented in Chapter 8 

were artificially cut by a large drill bit to make coarse screw thread on the inside surface of 

blockage.  Fig. F.1 and F.2 shows the comparison of measured transient data between 

smooth wall blockages used in Chapter 8 and rough wall blockages with a 1 mm screw 

thread for 5 mm bore blockage and with 2 mm screw thread for 10 mm bore blockage.  All 

blockages have a 153 mm axial length and are installed at the middle of pipeline.  

Transients are generated at the WE by a side-discharge solenoid valve and pressure waves 

are also measured at the WE.  The results of blockages with rough wall are almost same as 

the results of blockages with smooth wall.  The dominant physical phenomena of 

blockages still seem to be the eddy inertia effect of the turbulent jet flow because the 

length of blockage may be too short to affect the transient pressure wave. 
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Figure F.1 Comparison between Measured Data with Smooth Wall Blockage (5 mm 

Blockage Bore) and with Rough Wall Blockage (5 mm Blockage Bore and 1 mm 

Roughness Height by Screw Thread) 
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Figure F.2 Comparison between Measured Data with Smooth Wall Blockage (10 mm 

Blockage Bore) and with Rough Wall Blockage (10 mm Blockage Bore and 2 mm 

Roughness Height by Screw Thread) 
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