EVALUATION OF TARTRATE STABILISATION TECHNOLOGIES FOR WINE INDUSTRY

by

LIN LIN LOW

School of Chemical Engineering Faculty of Engineering, Computer and Mathematical Science The University of Adelaide, Australia

> A dissertation submitted for the degree of Doctor of Philosophy

> > July 2007

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Signed:

Date:

(Lin Lin Low)

SUMMARY

In the Australian wine industry, cold stabilisation is a widely used industrial process to prevent tartrate instability in bottled wines. This process involves cooling the wine close to its freezing point for extended periods, thereby inducing tartrate precipitation. However, it has several important disadvantages. Consequently, alternative methods to cold stabilisation have been developed. This includes electrodialysis, nanofiltration and contact processes.

In this study, current knowledge regarding performance and cost of cold stabilisation and alternative technologies for tartrate stabilisation is reviewed. Whilst there have been occasional cost comparisons between cold stabilisation and alternative technologies, existing data is not suitable for properly evaluating the relative economics of the different process options. Therefore, alternative technologies to cold stabilisation, including the Westfalia process, nanofiltration and electrodialysis were compared for both technical and economic performance. Berri Estates Winery was used as the basis for engineering calculations and conceptual cost estimates. This is the first time that such a comprehensive evaluation has been undertaken of a broad range of alternative technologies for tartrate stabilisation during wine production. Product loss was a key cost driver in differentiating tartrate stabilisation processes. Cold stabilisation was found to be the most economic treatment process irrespective of scale or winery size. The Westfalia process and nanofiltration were the next most cost effective options.

Data for economic evaluation and environmental assessment were summarised in a survey form that was circulated to technical experts from Hardy Wine Company, the Australian Wine Research Institute (AWRI) and the University of Adelaide. The purpose of the survey was to obtain the experts' opinions on the merits of the alternative technologies. The results of this survey were used for comparison between current cold stabilisation and alternative technologies, by performing multi-criteria decision analysis (MCDA). This represents an original application of MCDA techniques to decision making in the wine industry. The MCDA analysis identified a strong preference by experts for nanofiltration combined with centrifugation as an alternative to cold stabilisation. As a consequence, laboratory investigations and field testing of nanofiltration were conducted to obtain new and practical information which was not presently available and relevant to understanding and implementing this process for tartrate stabilisation of wine.

The laboratory experiments were performed with a range of membranes and tartrate unstable wines (i.e. *Semillon, Colombard* and *Shiraz*) using a purpose-designed laboratory-scale continuously-stirred batch-test membrane cell. The results showed that a range of commercial nanofiltration membranes with a nominal molecular weight cut-off (MWCO) between 200 and 500 Daltons (Da) were able to achieve tartrate stabilisation of all wines tested. This was achieved at moderate pressures less than 20 bar with a recovery of at least 50 %. It was also observed that seeding of wine following nanofiltration might reduce the holding time required to achieve stability and also enable reductions in the recovery rate to values of less than 50 %.

The field testing was performed at Berri Estates Winery in the Riverland region of South Australia. The testing was performed using an existing commercial membrane system. This membrane system was already used for juice/wine concentration. The nanofiltration membranes had a nominal MWCO of 300 Da. The testing was conducted on *Colombard* and *Shiraz* wines. The field tests confirmed that nanofiltration could successfully tartrate stabilise *Colombard* and *Shiraz* wines at recoveries of 50 %; without seeding; within relatively short holding periods of less than four hours; and at flux rates between 5 and 10 L/m²/h. Crystallisation kinetics were also studied. At low recovery, the crystallisation was initially controlled by diffusion step, then surface integration. However, at high recovery, the crystallisation was controlled solely by surface integration.

Sensory testing (by duo-trio difference tests) produced adverse sensory outcomes when compared with treatment of the same wines by cold stabilisation. Unfortunately, it could not be established whether this problem was inherent to the process or arose from unrelated factors. Setting aside the adverse sensory result, this is the first time that technical feasibility of nanofiltration for tartrate stabilisation has been successfully demonstrated.

Further field testing and sensory evaluation of nano-filtered wines should be carried out to verify the effect of nanofiltration on wines. If the process is successful and favourable, the process design for implementation of a production scale nanofiltration for tartrate stabilisation should then be optimised.

ACKNOWLEDGMENTS

This dissertation is never a sole effort of the author. I am deeply indebted to everyone that has contributed to this dissertation in innumerable ways. Firstly, I would like to thank my principal supervisor, Dr. Chris Colby for his generosity with his time and advice. Without his encouragement and supervision, this project would not have been possible. I would like to acknowledge my co-supervisors: A/Prof. Brian O'Neill, Dr. Chris Ford (School of Agriculture and Wine, The University of Adelaide), Mr. Jim Godden (former Operations Manager, Berri Estates Winery) and Mr. Mark Gishen (former Quality Liaison Manager, The Australian Wine Research Institute (AWRI)) for their invaluable guidance and kind encouragement.

I am grateful to Faculty of Engineering, Computer and Mathematical Science for providing Divisional Scholarship Award and to Hardy Wine Company for providing additional scholarship and in-kind contributions to this project. I also like to acknowledge AWRI for supporting this research. This research also has been funded by Australia's grapegrowers and winemakers through their investment body the Grape and Wine Research and Development Corporation, with matching funds from the Australian government.

I am also thankful to the staff and students in the School of Chemical Engineering for their friendship, assistance and encouragement. Special thanks to Peter Kay, Mary Barrow, Elaine Minerds, Kyleigh Victory and Aning Ayucitra.

I am grateful to all of the personnel at different institutions (especially Berri Estates Winery, AWRI and Hickinbotham Wine Science Winery) who not only provided access to valuable resources throughout my studies but also valuable discussions.

I give my heartfelt thanks to my housemates - Khar Yean Khoo and Alice Zhu for their care and support throughout the years. Thanks to all my friends, you know who you are!

I would like to express my deepest gratitude to Greg Balkwill for everything from technical to emotional support. Thank you for being there for me all the time.

Last but not least, I would like to extend my deepest appreciation to my family. Thank you for believing in me. I would like to dedicate this dissertation to my beloved parents.

LIST OF PUBLICATIONS

Refereed Journal Papers

Low, L., Colby, C. B., O'Neill, B., Ford, C., Godden, J., Gishen, M. (2007). Economic evaluation of alternative technologies of tartrate stabilisation of wines. *Int. J. Food Sci. Technol. Accepted for Publication.*

Refereed Conference Papers

- Low, L., Colby, C., O'Neill, B., Ford, C., Godden, J., Gishen, M. (2005). Alternataive Technologies for Tartrate Stabilisation of Wines: Which is Better? In: *Proceedings of the 33rd Australasian Chemical Engineering Conference* (CHEMECA 2005), Brisbane, 25-28 September 2005, Hardin, M. (ed.). Institution of Engineers, Brisbane, paper no. 130, CDROM ISBN 1-86499-832-6.
- Low, L., Colby, C., O'Neill, B., Ford, C., Godden, J. & Gishen, M. (2006). Use of nanofiltration for tartrate stabilisation of wine. In: *Proceedings of the 34th Australasian Chemical Engineering Conference* (CHEMECA 2006), Auckland, 17-20 September 2006, Patterson, D. & Young, B. (eds.). CCE Conference Management, The University of Auckland, Auckland, paper no. 302, CDROM ISBN 0-86869-110-0.
- Low, L., Colby, C., O'Neill, B., Ford, C., Godden, J. & Gishen, M. (2007). Field Testing of Nanofiltration for Tartrate Stabilisation of Wine at Berri Estates Winery. In: *Proceedings of the 35th Australasian Chemical Engineering Conference* (CHEMECA 2007), Melbourne, 23-26 September 2007, paper no. 120. Accepted for *Publication*.

Other Non-Refereed Publications

- Low, L., O'Neill, B., Ford, C., Godden, J., Gishen, M. & Colby, C. (2004). Evaluating alternative tartrate stabilisation methods for wine. In: *Proceedings of 12th Australian Wine Industry Technical Conference*, Melbourne, 24 29 July 2004, Blair, R., Williams, P. & Pretorius, S. (eds.). Australian Wine Industry Technical Conference Inc., Adelaide, 324-325. ISBN 0-0577870-9-X.
- Colby, C., Low. L., Godden, J., Gishen, M. & O'Neill, B. (2006). Process engineering developments in wine production: Alternative technologies for tartrate stabilisation. In: ASVO Seminar Proceedings: Maximising the Value Maximising returns through quality and process efficiency, Adelaide, 12 October 2006, Allen, M., Cameron, W., Francis, M., Goodman, K. & Wall, G. (eds.). Australian Society of Viticulture and Oenology, Adelaide, 29-33. ISBN 0-9775256-1-9.
- Low, L., Colby, C., O'Neill, B., Ford, C., Godden, J. & Gishen, M. (2007). Poster summary: Field testing of nanofiltration for tartrate stabilisation of wine. In: *Proceedings of 13th Australian Wine Industry Technical Conference*, Adelaide, 29 July – 1 August 2007. *Submitted*.

TABLE OF CONTENTS

SUN	MMARY		iii
ACI	KNOWL	EDGMENTS	v
LIS	T OF PU	BLICATIONS	vi
CH	IAPTER 1 INTRODUCTION		
CH	APTER	2 LITERATURE REVIEW	4
2.1	Tartrate	Stabilisation Processes	4
2.2	Multi-c	riteria Decision Analysis (MCDA)	9
	2.2.1	Simple aggregation function – weighted average method (WAM)	13
	2.2.2	Outranking methods	15
2.3	Principles and Theory of Tartrate Stabilisation by Crystallisation		30
	2.3.1	Tartaric acid in juice or wine	30
	2.3.2	Solubility of bitartrate	32
2.4	Crystallisation of Potassium Bitartrate		33
	2.4.1	Degree of supersaturation	34
	2.4.2	Nucleation and crystal growth	34
	2.4.3	Factors affecting growth and nucleation	37
2.5	Determination of Crystallisation rate by Measuring Conductivity		
2.6	Potassium Bitartrate Stability Tests		42
	2.6.1	Hold-cold or freeze-thaw test	42
	2.6.2	CP test	43
	2.6.3	Conductivity test	45
	2.6.4	Other tests	45
2.7	Review of Nanofiltration Technology		46
	2.7.1	Introduction	46
	2.7.2	NF membrane and membrane modules	49
	2.7.3	NF process description	50
	2.7.4	Application to wine industry	52
2.8	Summa	ry and Research Gaps	53
			viii

CHAPTER 3		3 TECHNICAL AND ECONOMIC ANALYSIS OF	
		SELECTED TARTRATE STABILISATION	
		PROCESSES	55
3.1	Selection	on of Technologies for Evaluation	55
3.2	Technical and Conceptual Design		57
	3.2.1	The current cold stabilisation process	57
	3.2.2	Analysis strategy	58
	3.2.3	Tartrate content and removal during treatment	58
	3.2.4	Sensory attributes	60
	3.2.5	Process configuration and operational performance	61
3.3	Cost es	timation and Economic Analysis	69
3.4	Results and Discussion		71
	3.4.1	Technical performance	71
	3.4.2	Economic performance	76
	3.4.3	Retrofit scenario	79
	3.4.4	Greenfield scenario	80
	3.4.5	Implications for other HWC wineries	80
3.5	Conclu	sions	81

CHAPTER 4 CHOOSING AN ALTERNATIVE TARTRATE STABILISATION PROCESS USING MCDA METHODS

		METHODS	82
4.1	Introduction		82
4.2	Structuring the Problem		82
	4.2.1	Current practise and the alternatives	82
	4.2.2	Definition of objectives and criteria	83
	4.2.3	Selection of decision makers	84
	4.2.4	Determination of weights and scores by conducting survey	85
4.3	Selection of MCDA Methods		88
4.4	Results and Discussion		89
	4.4.1	Weights and scores	89
	4.4.2	Analysis using weighted average method	90
	4.4.3	Analysis using ELECTRE I	92
			ix

	4.4.4	Analysis using PROMETHEE	96
4.5	Sensitivity Analysis		99
	4.5.1	Changes in weights	100
	4.5.2	Changes in thresholds	102
4.6	Conclu	sions	106
CH	APTER	5 BENCH SCALE EXPERIMENTAL STUDY:	
		NANOFILTRATION	107
5.1	Introdu	ction	107
5.2	Materials and Methods		108
	5.2.1	Lab-scale NF stirred cell	109
	5.2.2	Preparation of wine samples	110
5.3	Selection of Membranes		111
	5.3.1	Screening study: Investigation of membrane performance with	
		Semillon wine	112
	5.3.2	Evaluation of tartrate stability and seeding requirement	113
5.4	Analyti	cal Methods	114
	5.4.1	Metal ions	114
	5.4.2	Tartaric acid	114
	5.4.3	Ethanol	114
	5.4.4	pH and conductivity	115
	5.4.5	Tartrate stability test	115
5.5	Results and Discussion		115
	5.5.1	Membrane characteristics	115
	5.5.2	Tartrate stability and requirement of seeding	121
5.6	Conclu	sions	127
CH	APTER	6 FIELD TRIALS: NANOFILTRATION	128
6.1	Introdu	ction	128
6.2	Materia	als and Methods	128
	6.2.1	Wine preparation	128
	6.2.2	NF system and testing arrangements	129
	6.2.3	Field testing	130
6.3	Analytical Techniques		133
	6.3.1	Phenolics and colour measurements	134
			Х

	6.3.2	Sensory evaluation	135
6.4	Results and Discussions		
	6.4.1	Wine quality	136
	6.4.2	Performance of NF system during trials	137
	6.4.3	Membrane rejection	143
	6.4.4	Effects of differing treatment on compositions and tartrate stability	145
	6.4.5	Conductivity measurement	153
	6.4.6	Analysis of crystallisation kinetics	156
	6.4.7	Outcome of sensory evaluation	163
6.5	Implicati	on of Field Testing on Cost Estimation	166
6.6	Conclusi	ons	166
CHA	APTER 7	CONCLUSIONS AND RECOMMENDATIONS	168
APF	PENDIX A	SUMMARY OF TECHNICAL & ECONOMIC	
		EVALUATION OF SELECTED TARTRATE	
		STABILISATION TECHNOLOGIES	170
A.1	Calculati	on of Technical Performance and Operating Costs	170
A.2	Calculati	on of Capital Cost	192
A.3	Calculati	on of Maintenance Cost	199
APF	PENDIX I	3 SURVEY FORM OF MCDA STUDY	204
APF	PENDIX (C DESIGN DRAWINGS OF STIRRED CELL	211
APPENDIX D		D REFRACTIVE INDEX (R.I) – ETHANOL	
		CALIBRATION CURVE	214
APF	PENDIX I	E DETERMINATION OF DEGREE OF	
		SUPERSATURATION OF WINE	215
APF	PENDIX I	TEMPERATURE CORRECTION FACTOR FOR	
		ESTIMATING MEMBRANE PERFORMANCE	217
REF	FERENCI	ES	218

xi