Radio Propagation in Fire Environments

by

Jonathan Alexander Boan

BACHELOR OF ENGINEERING,

UNIVERSITY OF WESTERN AUSTRALIA

Thesis submitted for the degree of

Doctor of Philosophy

in

Department of Electrical and Electronic Engineering, School of Engineering, Computer and Mathematical Sciences

University of Adelaide, Australia

2009

© Copyright 2009 Jonathan Alexander Boan All Rights Reserved

Typeset in $\ensuremath{\mathbb{E}} \mathrm{T}_{\ensuremath{\mathbb{E}}} \mathrm{X} \, 2_{\ensuremath{\mathcal{E}}}$ Jonathan Alexander Boan

Abstract

Radio propagation in the presence of fire is known to be problematic to communications. In this thesis we use both experimental and theoretical approaches to examine and understand radio propagation in fire environments. Propagation is examined for three small scale fires with broadband equipment operating from 50MHz to 1GHz. Results for line of sight propagation show a strong interaction of fire with electromagnetic propagation. The next section develops electromagnetic modelling of the fire environment. A model of the combustion induced plasma is developed, as well as a refractive index model of the surrounding atmosphere of a fire. Simple propagation calculations are undertaken, using the developed fire models, to provide an initial understanding of propagation in fire environments. The next portion of the thesis considers propagation using a more rigorous electromagnetic simulation technique. A modified Finite Difference Time Domain method is presented and is utilised to examine three dimensional propagation in the small scale fire experiments. The outcome is a more solid understanding of propagation and the contributing factors. The last portion of the thesis is the application of the above electromagnetic modelling and simulation methods to bushfire scenarios. Various scenarios that are problematic to radio communication are examined. Discussion and recommendations are made concerning radio communication frequency selection and considerations for propagation in fire environments.

This page is blank

Statement of Originality

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution to Jonathan Boan and , to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

I also give permission for the digital version of my thesis to be made available on the web, via the University's digital research repository, the Library catalogue, the Australasian Digital Theses Program (ADTP) and also through web search engines, unless permission has been granted by the University to restrict access for a period of time.

Signed

Date

This page is blank

Acknowledgements

The author would like to thank:

- Associate Professor Chris Coleman, for his academic guidance, financial support and encouragement.
- Claire Boan, for her loving encouragement and emotional support.
- School of Electrical and Electronic Engineering of the University of Adelaide for the opportunity to undertake post-graduate study.
- All those involved in experimental work including, the Freeman family of Pipers Creek and the Raukkan Farm and manager.

Jonathan Boan

This page is blank

BIBLIOGRAPHY

- J.A. Boan. FDTD for Tropospheric Propagation. IEEE Antennas and Propagation Symposium, Albuquerque, New Mexico, 2006.
- [2] J.A. Boan. Radio propagation in fire environments. Workshop Applications of Radio Science, WARS'06, Luera, Australia, 2006. Awarded Best Student Paper.
- [3] J.A. Boan. Radio Experiments with fire. IEEE Antennas and Wireless Propagation Letters, 6:411 – 414, 2007.
- [4] C. J. Coleman and J. A. Boan. A kirchoff integral approach to radio wave propagation in fire. IEEE Antennas and Propagation Symposium, Hawaii, Honolulu, 2007.

This page is blank

Abstrac	t		iii
Statem	ent of	Originality	v
Acknow	/ledgen	nents	vii
BIBLIO	GRAP	НҮ	ix
TABLE	OF C	ONTENTS	xi
LIST O	F ILLU	ISTRATIONS	kvii
LIST O	F TAB	LES x	xiii
SECTIO	ON 1.	Introduction	1
1.1	Backg	round and Literature	4
1.2	Propag	gation	5
	1.2.1	Refraction in Fire Environments	5
	1.2.2	Scattering	8
	1.2.3	Diffraction	10
	1.2.4	Plasma in Fire Environments	10
	1.2.5	Propagation in Forest Environments	12

1.3	Comb	ustion	14
	1.3.1	Flames	16
	1.3.2	Electrical Aspects of Combustion	17
	1.3.3	Chemi-Ionisation	17
	1.3.4	Alkali-Alkaline Thermal Ionisation	19
SECTI	ON 2.	Experimental Investigations	27
2.1	Broad	band Experiments	28
	2.1.1	Broadband Apparatus	29
2.2	Small	Scale Fires	30
	2.2.1	Fire A	30
	2.2.2	Fire B	31
	2.2.3	Fire C	37
	2.2.4	Processing of Results	37
	2.2.5	Discussion	39
2.3	Multi-	Transmitter Investigations	44
	2.3.1	Transmitters	45
SECTI	ON 3.	Electrical Modelling of a Fire Environment	47
3.1	Fire D	Dynamics Simulator - FDS	48
	3.1.1	Small Scale Physical Model	50
	3.1.2	Calculating the Partial Pressures and absolute moles	51
3.2	Fire A	tmosphere Refractive Index Model	51
3.3	Comb	ustion Induced Plasma Model	54
	3.3.1	Electromagnetic Field Interactions	55
	3.3.2	Electron Population	56

	3.3.3	Establishing the Fuel Rate, K, Ca, Mg	56
	3.3.4	Thermal Ionisation	60
	3.3.5	Collision Frequency	61
3.4	Mathe	matical Generic Modelling	65
	3.4.1	Core Fire Profile	65
SECTIO	ON 4.	Simple Propagation Treatment	69
4.1	Refrac	tion - Ray Tracing	69
4.2	Attenu	ation	72
4.3	Diffrac	ction	74
SECTIO	ON 5.	Propagation Algorithms	77
5.1	Introd	uction	77
5.2	Finite	Difference Time Domain (FDTD) Algorithm	78
	5.2.1	Cartesian Equations	81
	5.2.2	Stability	85
	5.2.3	TE_z formulation	86
	5.2.4	Boundary Conditions	87
	5.2.5	Numerical Dispersion	91
	5.2.6	Excitation	93
5.3	Algori	thm Additions	94
	5.3.1	Cold Plasma Mediums	96
	5.3.2	Moving Grid Wave Propagator	98
SECTIO	ON 6.	Numerical Experiments	101
6.1	Simula	tion Parameters	101

	6.1.1	Excitation	. 102
	6.1.2	Grid Resolution	. 103
	6.1.3	Propagation Factor	. 105
6.2	Fuel H	leap	. 106
	6.2.1	Ulaby and El-Rayes Vegetation Model	. 106
	6.2.2	Varying Fuel Height	. 110
6.3	Comb	ustion Induced Plasma	. 117
	6.3.1	Column Profile	. 117
	6.3.2	Temperature Profiles	. 124
	6.3.3	Mathematical Temperature Model	. 127
	6.3.4	FDS Temperature Model	. 129
6.4	Fuel a	nd Plasma Dynamics	. 135
SECTI	ON 7.	Large Scale Fire Numerical Experiments	149
7.1	Refrac	tive Index Effects	. 150
7.2	Diffrac	ation Problems	1 -
			. 157
	7.2.1	Summary	. 157 . 160
SECTI	7.2.1 ON 8.	Summary	. 157 . 160 163
SECTI 8.1	7.2.1 DN 8. Summ	Summary Summary Conclusions and Comments ary of Findings	. 157 . 160 163 . 164
SECTI 8.1 8.2	7.2.1 DN 8. Summ Future	Summary Summary Conclusions and Comments ary of Findings Work	 157 160 163 164 165
SECTI 8.1 8.2	7.2.1 DN 8. Summ Future 8.2.1	Summary Summary Conclusions and Comments ary of Findings Work Work Experimental Work	 157 160 163 164 165 166
SECTI 8.1 8.2	7.2.1 DN 8. Summ Future 8.2.1 8.2.2	Summary Summary Conclusions and Comments ary of Findings Work Work Experimental Work Modelling	 157 160 163 164 165 166 166
SECTI 8.1 8.2	7.2.1 DN 8. Summ Future 8.2.1 8.2.2 8.2.3	Summary	 157 160 163 164 165 166 166 167

A.1	Collisi	on Frequency Data	. 169
A.2	JANA	F-NIST Thermo-chemical Data	. 172
	A.2.1	Ca Chemical Data	. 172
	A.2.2	Ca^+ Chemical Data	. 172
	A.2.3	Cl Chemical Data	. 173
	A.2.4	Cl^- Chemical Data	. 173
	A.2.5	Cl^+ Chemical Data	. 173
	A.2.6	K Chemical Data	. 173
	A.2.7	K^+ Chemical Data	. 174
	A.2.8	Mg Chemical Data	. 174
	A.2.9	Mg^+ Chemical Data	. 174
	A.2.10	O Chemical Data	. 174
	A.2.11	O^- Chemical Data	. 175
	A.2.12	O^+ Chemical Data	. 175
A.3	Refrac	tive Index Data	. 175
	A.3.1	O_2 refractive	. 175
	A.3.2	CO refractive	. 176
	A.3.3	CO_2 refractive	. 176
	A.3.4	N_2 refractive	. 177
	A.3.5	Ar refractive	. 177
	A.3.6	CH_4 refractive	. 177
	A.3.7	N_2O refractive	. 177
	A.3.8	SF_6 refractive	. 178
	A.3.9	Dry Air Refractive	. 178
	A.3.10	H_2O refractive	. 178

B.1 Ash Analysis	179
B.2 Eucalypt Alaki Breakdown	181
APPENDIX C. Modelling Input Files	.83
C.1 Fire Dynamics Simulator - Small Scale Fires	83

1.1	Radio Communications Illustration	3
1.2	Refraction Illustration	6
1.3	Attenuation of the Atmosphere 1Hz-1THz	8
1.4	Attenuation of the Atmosphere 1Hz-10GHz	9
1.5	Scattering Illustration - Particle and Turbulent air movement	10
1.6	Diffraction Illustration	11
1.7	Plasma/Ionisation Illustration	11
1.8	Slab Model	13
1.9	Methane Reaction Flow [71]	15
1.10	Flame Regions and Temperature [14]	16
1.11	Chemi-Ionisation Zone $[15]$	18
2.1	Overall Setup, Antennas, HAMEG, MATLAB GUI	29
2.2	Measurement GUI	30
2.3	Fire Dimensions	30
2.4	Fire A. Photos - Time after Ignition	32
2.5	Fire A. Band 1 160MHz - 180MHz	33
2.6	Fire A. Band 2 400MHz - 450MHz	33
2.7	Fire A. Band 3 850MHz - 950MHz	34

2.8	Fire A Spectrum Plot	34
2.9	Relative Signal Strength - Fire B. Band 1 160MHz - 180MHz	35
2.10	Relative Signal Strength - Fire B. Band 2 400MHz - 450MHz	35
2.11	Relative Signal Strength - Fire B. Band 3 850MHz - 950MHz	35
2.12	Fire B Spectrum Plot	36
2.13	Relative Signal Strength - Fire C. Band 1 160MHz - 180MHz	37
2.14	Relative Signal Strength - Fire C. Band 2 400MHz - 450MHz	38
2.15	Relative Signal Strength - Fire C. Band 3 850MHz - 950MHz	38
2.16	Fire C Spectrum Plot	38
2.17	Cold Plasma Attenuation - Constant electron density $(N_e \text{ m}^{-3})$, Varying collision frequency $(\nu_e \text{ Hz})$	42
2.18	Cold Plasma Attenuation - Constant Collision Frequency (ν_e Hz , Varying Electron Concentration (N_e m ⁻³)	43
2.19	Bushfire Experimental Deployment	45
2.19 2.20	Bushfire Experimental Deployment	45 46
2.192.203.1	Bushfire Experimental Deployment	45 46 49
 2.19 2.20 3.1 3.2 	Bushfire Experimental Deployment	45 46 49 49
 2.19 2.20 3.1 3.2 3.3 	Bushfire Experimental Deployment	 45 46 49 49 50
 2.19 2.20 3.1 3.2 3.3 3.4 	Bushfire Experimental Deployment Mutli-Transmitter Trial FDS Examples Modelling Flow Small-Scale Model Selection of FDS Profiles	 45 46 49 49 50 52
 2.19 2.20 3.1 3.2 3.3 3.4 3.5 	Bushfire Experimental Deployment	 45 46 49 49 50 52 57
 2.19 2.20 3.1 3.2 3.3 3.4 3.5 3.6 	Bushfire Experimental Deployment	 45 46 49 49 50 52 57 58
 2.19 2.20 3.1 3.2 3.3 3.4 3.5 3.6 3.7 	Bushfire Experimental Deployment	 45 46 49 50 52 57 58 63
 2.19 2.20 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 	Bushfire Experimental Deployment	 45 46 49 50 52 57 58 63 64
 2.19 2.20 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 	Bushfire Experimental Deployment	 45 46 49 50 52 57 58 63 64 66

4.1	Ray Trace - Redistribution of radio energy for an unrealistic scenario using extreme refraction parameters	70
4.2	Column Cosine distribution	71
4.3	Ray Trace at 450MHz $N_{e_{max}} = 2 \times 10^{15} \text{m}^{-3}$	71
4.4	Cold Plasma Block - Attenuation	72
4.5	Knife Edge Geometry	75
4.6	Knife Edge Diffraction - Frequency Dependence	75
5.1	Yee Cell. Dark spots represent fields for one cell. Neighbouring fields in shaded spots	79
5.2	TE_z Yee Cell. Dark spots represent fields for one cell. Neighbouring fields in shaded spots	80
5.3	Calculation Steps	81
5.4	A representation of the bushfire symmetry	86
5.5	2D TE_z FDTD Cell	87
5.6	FDTD Dispersion - Direction	92
5.7	Dispersion of Pulse after 350m	93
5.8	FDTD Excitation Functions	95
5.9	Varying Electron concentration	98
5.10	Varying Collision Frequency	98
5.11	FDTD Wave Propagator. Space Numbering and Calculation grids	99
6.1	Simulation Volume - Location of Source (Green sphere), Fuel Heap (Red Hemi-sphere), Field Sensors (Small spheres)	02
6.2	Excitation Function	03
6.3	Spatial Excitation	04

6.4	Propagation Factor for different discretisation schemes (at 20m from source, height 2m)
6.5	Vegetation Dielectric ε' and ε''
6.6	Fuel Moisture 180MHz
6.7	Fuel Moisture 450MHz
6.8	Fuel Moisture 950MHz
6.9	Fuel Heap illustration
6.10	Fuel Cylinder illustration
6.11	Propagation Factor for Fuel Heap and Cylinder Profiles with varying height - 950MHz (20m from Transmitter)
6.12	Propagation Factor for Fuel Heap and Cylinder Profiles with varying height - 450MHz (20m from Transmitter)
6.13	Propagation Factor for Fuel Heap and Cylinder Profiles with varying height - 180MHz (20m from Transmitter)
6.14	Fuel Height Sensitivity 950MHz
6.15	Fuel Height Sensitivity 450MHz
6.16	Fuel Height Sensitivity 180MHz
6.17	Diffraction Plots: Propagation Factor of varying obstruction height - Taken from Section 4.3
6.18	Grid Resolution - Column Plasma profile 20m from source at height 2m 118
6.19	Column Plasma Profile - Various geometries
6.20	Propagation Factor versus Height for Column Plasma Profiles (See Ta- ble 6.1) - 180MHz (20m from Transmitter)
6.21	Propagation Factor versus Height for Column Profiles (See Table 6.1) - 450MHz (20m from Transmitter)
6.22	Propagation Factor versus Height for Column Plasma Profiles (See Ta- ble 6.1) - 950MHz (20m from Transmitter)

Diama Column Verying Height 180MHz 194
Flasma Columni varying neight follumz
Plasma Column Varying Height 450MHz
Plasma Column Varying Height 950MHz
Math. Flame Profile
Math. Flame Profile 1500°K
Math. Flame Profile 1700°K
Math. Flame Profile 2000°K
Math. Prop. Factor 180MHz
Math. Prop. Factor 450MHz
Math. Prop. Factor 950MHz
FDS Profile 1300°K
FDS Profile 1500°K
FDS Profile 1700°K
FDS Profile 2000°K
FDS Prop. Profiles 180MHz
FDS Prop. Profiles 450MHz
FDS Prop. Profiles 950MHz
Fuel and FDS 180MHz
Fuel and FDS 450MHz
Fuel and FDS 950MHz
Fuel FDS Plasma 180MHz
Fuel FDS Plasma 450MHz
Fuel FDS Plasma 950MHz
Fuel Column Plasma Profile 180MHz

6.48	Fuel Column Plasma Profile 450MHz
6.49	Fuel Column Plasma Profile 950MHz
6.50	FDS Collision Freq. 180MHz
6.51	FDS Collision Freq. 450MHz
6.52	FDS Collision Freq. 950MHz
6.53	Simulated Small Scale Fire
7.1	FDS Model of forest
7.2	Refractive Index Profile - N_r
7.3	Refractive Index Effects at 50m
7.4	Refractive Index Effects at 90m
7.5	Refractive Index Effects at 145m
7.6	Fire Atmosphere contribution at height 2m
7.7	Plasma Effects at 50m
7.8	Plasma Effects at 90m
7.9	Plasma Effects at 145m
7.10	Combustion Contribution over frequency at height 7m
7.11	Hill Profile
7.12	Hill and Fire Profile
7.13	Hill top fire -180MHz
7.14	Hill top fire - 450MHz
7.15	Hill top fire - 950MHz

LIST OF TABLES

1.1	Flame collision frequency	13
1.2	Ionisation Potential	20
1.3	Ash Analysis for Different Woods [116]	22
1.4	Plant Minerals	23
1.5	Range of measure concentrations of macro-nutients various components of eucalypts[4]	24
1.6	Trunk distribution	25
2.1	Fire Dimensions	31
2.2	Maximum Attenuation	39
2.3	Fire Attenuation Duration	40
2.4	'Pre - Post' Burn Signal Level Difference	40
3.1	Variables of fire and their extremes	51
3.2	Pyrolysis Coefficient - Π	58
3.3	Ionisation Energy for Elements of interest.	60
3.4	Effective Collision Frequency $\langle v_{eff} \rangle / N$ in $10^{-8} \text{sec}^{-1} \text{ cm}^3 \dots \dots \dots$	63
3.5	Measured Collision Frequency	65
3.6	Profile Parameters	67
3.7	Fire Variables and the extremes	67

LIST OF TABLES

4.1	Attenuation Table for Cosine Profile
4.2	Mineral Content
6.1	Column Plasma Profile Characteristics
6.2	Column Electron density Plasma with variation in starting height $\ldots \ldots 122$
6.3	Atten. Table
6.4	Mathematical Model Flame Temperature Plasma Profile
6.5	FDS Temperature Plasma Profile
6.6	Excess Loss for a Fuel Heap with FDS Plasma Model
6.7	Progressive fire simulations
7.1	Flame Parameters
A.1	Effective Collision Frequency $< 2000^{\circ}$ C [54]
A.2	Effective Collision Data > 2000°C , $< \nu_{eff} > \times 10^{-14} sec^{-1}m^{-3}$ [54] 171
B.1	Ash Analysis taken from [71]
B.2	Ash Analysis (%) taken from [116] $\ldots \ldots 180$
B.3	Eucalypt data (%) taken from [4] (p. 96) $\ldots \ldots 181$
B.4	Ratio of Retention [4](p. 99)
B.5	Range of measure concentrations of macro-nutrients in various components of eucalypts [4](p.136)