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We present recent results on the Landau gauge gluon andglopstgators irSU(3) pure gauge
theory at Wilsong = 5.7 for lattice sizes up to &0corresponding to physical volumes up to
(13.2 fm)*. In particular, we focus on finite-volume and Gribov-copjeefs. We employ a
gauge-fixing method that combines a simulated annealingritign with finalizing overrelax-
ation. We find the gluon propagator for the largest volumelsemome flat at? ~ 0.01 Ge\2.
Although not excluded by our data, there is still no cleaigation of a gluon propagator tending
towards zero in the zero-momentum limit. New data for thesglppopagator are reported, too.
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1. Introduction

Presently, there is an intensive exchange of results and opinions Inetwmeos carrying out
analytical and numerical studies of infrared QCD. This ongoing rebdartises in particular on
the infrared behavior of the Landau-gauge gluon and ghost prapagal he latter is intimately
related to the confinement [1, 2, 3]. What makes analytical predictiorsitpeslso in the non-
perturbative sector of the theory is the possibility to write down a hieraréiyson-Schwinger
equations (DSE) connecting propagators and vertices. Under ratheassilanptions the hier-
archy can be truncated. However, not all assumptions have beemudgndyahecked. Note that
recently the full system of Landau gauge DSE has been solved withgatuanrtations within the
asymptotic infrared region with a power ansatz for all Green functiondviedd4]. Numerically,
the propagators can be studied from first principles in terms of Monte Qd) simulations of
lattice QCD. It is worth to compare the lattice results with the asymptotic power-Itkavibar, and
with numerical DSE solutions found in finite volumes [5]. It is interesting to shether there
remain differences as the infinite-volume limit is approached.

On the lattice we approximate the gluon propagator as the MC average

Ko Ab( A Quv \ Zgi (6
D32 (0) = (A5 (@RS(-0) = & 3 — %3 ) 20D D)
with the gluon fieldAy, ;> , = (1/2iago) (Ux i — U)I“)trace|esstransformed into Fourier space. The
lattice momente, = 2 mk, /L, with integerk, € (—L,/2,+L,/2] are related to their physical
values bygy, = (2/a)sin(mrky /Ly).
The ghost propagator in momentum space at non-geis defined by double Fourier trans-
formation ,
G*(q) = z <efiR-(xfy) [Mfl}iw _ 5abzgl;l(f ) _ (1.2)
Xy
Practically, this is done by an inversion of the Faddeev-Popov (F-P) nmjﬂmsing a conjugate-
gradient algorithm with plane waves as sources. The Faddeev-Pgeoator in terms of the
Landau gauge-fixed links is

MEP = 5 Re Tr [{T2 T2} Uep + U ) 8= 2T T UeuBis oy — 21T U 8 gy |+ (13)
[

with T2 = A3/2 (A2 are the Gell-Mann matrices). The functioBg(g?) and Zy(q?) are called
dressing functions of the respective propagator.

In Landau gauge the gluon and ghost dressing functions are pretiictetiow the simple
power laws [6]

Zgn(o?) O (?) ™ and Zg(o?) O (7> . (1.4)

in the asymptotic regime® — 0. Thereby, both exponents are related to samehich, under
the assumption that the ghost-gluon vertex is infrared-regular, takelsi@ afaboutk = 0.596
[7]. That is, the gluon propagator is predicted to decrease towards foamenta and to vanish
atg? = 0. At which scale this asymptotic behavior sets in cannot be concludedifiwse studies,
however.
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A truncated system of DSE formulated on a 4D torus and numerically soljepr¢8icts
a specific finite-volume behavior which, at the first glance, looks quite sinalaarlier lattice
results obtained in particular by some of us [8]. Characteristic deviatiomadmentag ~ 1/L of
the gluon and the ghost propagator from the momentum dependence e$fleetive propagators
at infinite volume should be expected. In order to check the DSE predistiedgcided to evaluate
the gluon and the ghost propagator for increasingly large symmetric lattitehave measured
the gluon and ghost propagators for configurations generated withitberVgdauge action at fixed
B =5.7 on 56, 64*, 72* and 80 lattices. Note that the latter corresponds to a volume of about
(13.2 fm)4. Comparing results from either analytic or numerical approaches fgingas-volume
will hopefully allow (i) to conclude for which momenta data on both propagaoegeliable, and
(ii) to estimate the order of magnitude of distortion of the momentum dependeade finite-size
and Gribov-copy effects. This paper presents first results of thiy.stud

2. Gauge fixing

To fix the Landau gauge, we apply to all links a gauge transformatierG (G = SU(3))
mappingUy ; — Uy = ngx,uQL[u with the aim to maximize a gauge functional

1
XU

or, more exactly, to find the global maximumf&f[g] [1]. In this workgx € G is considered as a
periodic field on all lattice sites. To find the global maximum in practice is a compligateblem
which becomes exceedingly time consuming with increasing lattice volume. Staidmeh initial
random gauge transformatigg one generally arrives at one of many local maxim&gfig]. The
corresponding gauge-fixed configurations are called Gribov coples; all satisfy the differential
gauge conditio, A, = 0 together with the additional necessary condition that the Faddeev-Popov
operator has a positive spectrum (apart from its 8 trivial zero motdtf).increasing volume, the
copies become dense with respect to the value of the functional (2.1)@spehtral density of the

F-P operator near zero grows [9].

One way to suppress the effect of the Gribov ambiguity is to lggl, local maxima ofRy [g]
and to choose among them the “best” one (“bc”), which possesses ¢iestiamlue ofy,[g]. The
underlying idea is that the maximal value of the local maxima approaches the giakimum of
Fu[g], and the distortion of gauge-dependent observables, computed lortspies, vanishes in
the limit Neopy — . Such studies normally use the overrelaxation (OR) technique to search fo
the maximum ofy [g]. They have been carried out in [8, 10, 11, 12] and have shown tihexr
copy effect to become weaker with growing lattice extendienin accordance with Zwanziger’s
conjecture [1]. This suggests that it is tolerable to restrict gauge-fixamgpatations on large
lattices (L > 48) to one gauge copy only Our simulations of thé8U(3) propagators at = 56
were carried out using an OR algorithm with the overrelaxation parametés ge= 1.70. The
number of gauge-fixing (GF) iterations did not exceed itOmost of the cases. However, we
find a considerable slowing down of the OR GF process on“dditice. This was one of the
reasons why we switched from using OR to a simulated annealing (SA) algoi®A, also known

IThis is called “first copy” (“fc”) in a multi-copy approach.
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as a “stochastic optimization method” has been proven to be highly effects@mmg close to
the global maximum in various problems of different nature with multiple local maxitnaas
proposed in [13, 14] and has found numerous applications in varidds fi¢ science. The idea
of applying SA for gauge fixing has been first put forward and redlinghe case of maximally
Abelian gauge in [15]. The method is designed to keep the system longlepending in a region
of simultaneous attraction by many local maxima during a quasi-equilibrium gsaselergone by
the “spin system” formed bgy interacting through the fixeflUy , } field with Ry [g] as energy. The
temperaturel’ of the spin system is decreased by snTabteps between updates in a rangd of
where the penetrability of functional barriers strongly changes. Btieaily, when infinitely-slow
cooling down toT = 0, the SA algorithm finds the global maximum with 100% probability. For
complicated systems with large numbers of degrees of freedom and dioheldocal extrema,
e.g., for GF on large lattices, we have to restrict the numb@§gfT-steps of cooling the system
from Tmax tO Tmin tO, say,O(lO“). Within these limits we can still try to attain an as high value of
the functional studied (in our casi, [g]) as possible. Note that GF with SA requires a finalizing
OR in order to satisfy transversalif, A, = 0 with a given high precision.

For theSU(3) case we chos@mnax such that it leads to a sufficiently large mobility in the
functional space. The final temperatlfg, was taken low enough that the subsequent OR was not
slowed down while penetrating further functional barriers. This is witte$y the check that the
violation of the differential gauge conditiod, A, )?, monotonously decreases until the machine
precision is reached (stopping criterion) in almost all cases. In praétice,= 56,64,72 and 80
we restricted ourselves to one copy, and carried out fromi @ to 15x 10° heatbath (HB) sweeps
of SA with 4 microcanonical sweeps after each HB one. We checked teartiallerT -steps
are done in between, the higher the local maxima being reached. Finallyptedhat a linear
decrease iT seems not to be the optimal choice:schedules with smallér-steps close tdmax
and largefT -steps at the end (witNit fixed) lead to higheFy [g]-values (after completing the full
SA procedure).

3. Ghost propagator results

The SU(3) ghost propagator g8 = 5.7 is shown as a function af? in Fig. 1; on the left
hand side for a single B6configuration, simply comparing results after either OR or SA gauge
fixing, and on the right hand side as an average over 14 configuratitims case of OR, and over
7 configurations using SA gauge fixing. The influence of the gaugegfixiathod, here through
the emerging copy, can be seen only for the three lowest momenta at this lekticénsgeneral,
one notices that the higher the gauge functional, the lower the estimates biotstepgopagator at
the smallest momenta. This comparison (Fig. 1) demonstrates that the prob&nb@f copies
does still exist forL = 56, resulting in maximally 10% difference of ghost propagators at lowest
momenta. Note that this result cannot be directly compared to our previalissflo, 8, 11, 12] of
Gribov-copies effect, in which the “fc-bc” comparison was used tosssttee Gribov ambiguity. A
detailed check of Zwanziger's conjecture on the weakening of the GplmiMem with an increase
of the lattice volume (using the SA vs. OR “one-copy” comparison) reqtingser studies both
for smaller and larger lattices.

In Fig. 2 a scatter plot is shown of the ghost dressing function for admarage of momentum,
combining data obtained for 7 configurations on 4 Bitice, 14 configurations on a 64attice, 3
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Figure 1: Ghost propagator results: the influence of the gauge fixiggridhm on the propagator, calculated
for a typical single gauge field configuration (left), on tlveraged propagator (right).

configurations on a 72and 3 configurations on a 8Gattice, all thermalized g8 = 5.7. The gauge
field configurations were produced with a heat-bath algorithm applyin@@(1thermalization
sweeps in between. We consider only momenta surviving a cylinder cutAgith 1 [16]. For

all lattice sizes GF has been carried out with the SA algorithm. Surprisingtheailalues for the
ghost propagator fall perfectly on one universal curve (within 1%ueacy), besides those for the

2 smallest momenta. The results, especially those fouhd=a80, show that a true IR exponext
cannot yet be defined or does not exist at all. This is at variance witisymaptotic DSE prediction

k = 0.595 [5] and also withk = 0.2 motivated by thermodynamic considerations in [18]. The
latter estimate ok is based on the required cancellation of gluon and ghost contributions to the
pressure, that otherwise were building up a Stefan-Boltzmann law, in timement phase. Note
that downward deviations of the data at lowest momentum for each phisicalizeV from the
infinite-volume curve of5(g?) are predicted by the DSE approach on a finite torus [5]. However,
we do not find such deviations.

4. Gluon propagator results

Fig. 3 shows data for the gluon propagator computed for three difflattice sizes a = 5.7.
There, the gauge was fixed with the SA algorithm. At the present stageathdalor a non-
vanishing gluon propagator at zero momentum, as there is no sight of eedifteehavior even
at the largest lattice volume available to us. Also, the decrease of the zenesntion propagator
D(0) upon increasing the volume seems to become less with biggdihe 64 data forD(g?)
resemble the pattern of overshooting deviations from an universaifidanaf momentum known
from the DSE solutions on a finite torus [5], though. If the lowest two or¢hm@menta were
removed from the plot, the picture would be less convincing in favor of amgeneplateau. Better
statistics and data on even larger symmetric lattices (ith80) will make us more confident in
this.
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Figure 2: Scatter plot for the ghost dressing function from differiaitice sizes and configurations, gener-
ated a3 = 5.7 and gauge-fixed with SA.
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Figure 3: The gluon propagator from different lattice sizegat 5.7. The data points drawn gf = 0.001
represent the zero-momentum gluon propagB{@).

5. Discussion

We conclude that using the SA technique for the purpose of gauge fixmgidawably facil-
itates simulations of ghost and gluon propagators in Landau gauge ond#iges. We find that
SA-based computations of the ghost propagator seem to be less afigcttadistical fluctuations
compared to other calculations where OR is used. Additionally, estimates dfdisé gropagator
at low momenta are systematically lower than those obtained after simple OR.

A continuous decrease in slope in the ghost dressing function below ¥.4&s not conform
to a simple power-law ansatz. Therefore, any attempts to extract infrapethents from lattice
data seem to be premature at the present stage. Qualitatively, the samierbishseen for the
case ofSU(2) (see [17]) and also in the DSE solutions on a torus [5]. However, teetsfof finite
volumes are much less than expected from there though. The same we timelgtuon propagator
which we cannot confirm to be infrared-decreasing even at volumgssltran(13fm)*.
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Future analytical (DSE and renormalization group) studies and lattice sim@dattion-
ally including alsoZ(3) flip operations into the GF procedure [11], at even larger volumes will
hopefully help to resolve or explain the existing discrepancies betweenttive land analytical
findings.
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