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We include a generalized infinite class of quark-gluon vertex dressing diagrams in a study of how dynamics
beyond the ladder-rainbow truncation influences the Bethe-Salpeter description of light-quark pseudoscalar and
vector mesons. The diagrammatic specification of the vertex is mapped into a corresponding specification of the
Bethe-Salpeter kernel, which preserves chiral symmetry. This study adopts the algebraic format afforded by the
simple interaction kernel used in previous work on this topic. The new feature of the present work is that in every
diagram summed for the vertex and the corresponding Bethe-Salpeter kernel, each quark-gluon vertex is required
to be the self-consistent vertex solution. We also adopt from previous work the effective accounting for the role
of the explicitly non-Abelian three-gluon coupling in a global manner through one parameter determined from
recent lattice-QCD data for the vertex. Within the current model, the more consistent dressed vertex limits the
ladder-rainbow truncation error for vector mesons to be never more than 10% as the current quark mass is varied
from the u/d region to the b region.
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I. INTRODUCTION

In recent years, significant progress has been made in
the study of the spectrum of hadrons, and their nonpertur-
bative structure and form factors, through approaches that
are manifestly covariant and accommodate both dynamical
chiral symmetry breaking (DCSB) and quark confinement [1].
Covariance provides efficient and unambiguous access to
form factors [2–4]. Consistency with chiral symmetry and its
spontaneous breaking is obviously crucial to preventing the
pseudoscalars from artificially influencing the difficult task of
describing and modeling the infrared dynamics; this is a role
better left to other hadronic states that are not so dominated
by chiral symmetry. The associated concept of a constituent
quark mass is important, and it is often implemented in models
as a constant mass appearing in the propagator; however, this
idealization runs into trouble for higher lying states where the
sum of the constituent masses is below the hadron mass. This
difficulty is marginally evident with the ρ, but it is inescapable
by the time one has reached the ground state axial vector
mesons (e.g., a1, b1 mesons) [5].

In reality, solutions of the QCD equation of motion for the
quark propagator [quark Dyson-Schwinger equation (DSE)]
give a momentum-dependent quark mass function. Model
calculations, mostly in Landau gauge, typically yield a mass
function that evolves from the current mass value at ultraviolet
spacelike momenta to a value some 0.4 GeV larger in the deep
infrared [6]. The propagator is a gauge-dependent object, and
the gauge dependence of this phenomenon has not been fully
explored. In the chiral limit, such an enhancement is DCSB.
At finite current mass, models also strongly suggest that the
enhancement is the same mechanism as DCSB which has an
important influence over the low-lying hadron spectrum. In
the chiral limit, the scalar term of the quark self-energy, which
shows most of the momentum dependence, plays a dual role

as the dominant invariant amplitude of the chiral pion Bethe-
Salpeter equation (BSE) amplitude at low momenta [7]. In any
process where the spatial extent of the pion plays an important
role, the running of the quark mass function is likewise crucial
to an efficient symmetry-preserving description. Otherwise
a theoretical model is fighting symmetries. An example is
provided by the pion charge form factor above the chiral
symmetry-breaking scale, i.e., Q2 > mρ . It is this large
value of the dressed quark mass function at low spacelike
momentum that leads, in model solutions of the quark DSE,
to |p2| �= M2(p2) within a significant domain of timelike
momenta where these models can be trusted. For example,
this is sufficient to prevent spurious qq̄ production thresholds
in light-quark hadrons below about 2 GeV [5].

The task of maintaining manifest covariance, DCSB, a
running quark mass function, and an explicit substructure in
terms of confined quarks is often met by models defined as
truncations of the DSEs of QCD [1,8,9]. For practical reasons,
the equations must be truncated to decouple arbitrarily high
order n-point functions from the set of low order n-point
functions used to construct observables. A common truncation
scheme is the ladder-rainbow truncation. Here the one-loop
gluon dressing of the quark (with bare gluon-quark vertices)
is used self-consistently to generate the quark propagator. In
general, the kernel K of the Bethe-Salpeter equation is given
in terms of the quark self-energy � by a functional relation
dictated by chiral symmetry [10]. This preserves the Ward-
Takahashi identity for the color singlet axial vector vertex
and ensures that chiral pseudoscalars will remain massless,
independent of model details. With a rainbow self-energy, this
relation yields the ladder BSE kernel. To go beyond this level,
one needs to realize that the exact quark self-energy is given by
the same structure except that one of the gluon-quark vertices
is fully dressed. It is the vertex dressing that generates the terms
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in K beyond ladder level. This is the topic we are concerned
with in this paper.

The ladder BSE for meson bound states is an integral
equation with a one-loop kernel structure that must allow for
the spinor structure of propagators and the meson amplitudes.
With the four-dimensional space-time that one must use to
maintain manifest covariance, and with dynamically generated
quark propagators that one must use to preserve the Ward-
Takahashi identities of chiral symmetry, the numerical task
is large. Any scheme for corrections to the ladder truncation
will in general add the complexity of multiple loop Feynman
diagrams involving amplitudes that are only known after
solution. For practical reasons the studies that have been
able to investigate hadron states beyond ladder-rainbow (LR)
truncation in recent years [11–14] have exploited the sim-
plifications following from use of the Munczek-Nemirovsky
(MN) model [15]. In this case the basic element is a δ function
that restricts the exchanged (or gluon) momentum to zero; it
reduces both the quark DSE and the meson BSE to algebraic
equations. There is only one parameter: a strength set by mρ .

This simplified kernel has no support in the ultraviolet
and one must be wary of its use for related physics. Bound
state masses are relatively safe in this regard; even heavy
quark states that sample short distance or large momenta are
safe due to the large quark mass scale present. Even with
the MN model, the DSE solutions for the quark propagators
have the correct power law behavior, and they continuously
connect to the current quark mass, in the ultraviolet, apart
from log corrections. The dominant qualitative features of
DSE solutions of a realistic model are preserved in the MN
model: large infrared strength giving DCSB and the (confining)
absence of a mass pole. Our analysis is not aimed at providing
a serious representation of experimental data; rather we aim at
achieving some understanding, even if it is quite qualitative,
of the relative importance of classes of higher-order diagrams
for the BSE kernel for bound states. Because of the inherent
complexity brought by use of a momentum distribution as a
kernel, there is little information available in the literature on
this topic. To obtain such information, we feel the price paid
by dispensing with a clear connection to perturbative QCD is
worthwhile in the initial stages.

There are studies of vertex corrections and relevance of
the ladder-rainbow truncation of the BSE that have utilized
the convenience of purely scalar field theories (see Ref. [16])
or scalar QED (see Ref. [17]). In a non-Abelian context, a
first study of the correction to ladder-rainbow truncation for
pseudoscalar and vector mesons and scalar and axial vector
diquark correlations was made in Ref. [11] where a one-gluon
exchange dressing of the quark-gluon vertex was implemented.
Subsequently in Ref. [12], it was realized that the algebraic
structure allowed a recursive implementation of the ladder
series of diagrams for the quark-gluon vertex as well as
an implementation of the corresponding series of diagrams
for the chiral symmetry-preserving BSE kernel. As far as
we are aware, this was the first solution of a BSE equation
for bound states of colored quarks and gluons in which the
kernel contained the effects from an infinite number of loops.
In these works, the chiral pseudoscalars remained massless
independent of the model parameter, mρ received corrections

of order 10% from ladder dressing of the vertex, and the
diquark states evident at ladder-rainbow level were removed
from the spectrum by the dressing effects. The influence of
vertex dressing upon the quark propagator was also studied.

There is very little in the way of guidance from realistic
nonperturbative non-Abelian models of the infrared structure
of the quark-gluon vertex. It has often been assumed, e.g., see
Ref. [18], that a reasonable beginning is the Ball-Chiu [19] or
Curtis-Pennington [20] Abelian ansatz times the appropriate
color matrix. These Abelian descriptions of the momentum de-
pendence satisfy the Abelian vector Ward-Takahashi identity,
and their use makes the implicit assumption that this might be
a good enough approximation to the corresponding identity for
QCD, namely, the Slavnov-Taylor identity for the color octet
vertex [21]. The use of an explicit ladder sum for the gluon
vertex provides easy access to the chiral symmetry-preserving
BSE kernel and receives some motivation from the fact that
a ladder-summed photon-fermion vertex combines with the
rainbow approximation for the fermion propagator to preserve
the Ward-Takahashi identity for that vertex.

However, when initial results from lattice-QCD simulations
of the gluon-quark vertex became available [22,23], it was
realized [24] that the color algebra generated by any ladder
sum for this vertex gives a magnitude and strength for
the dominant amplitude at zero gluon momentum that is
qualitatively and quantitatively incompatible with the lattice
data and incompatible with the leading ultraviolet behavior
of the one-loop QCD Slavnov-Taylor identity. The infrared
vertex model developed in Ref. [24] made an extension of
the fact that the one-loop QCD color structure introduced by
the three-gluon coupling repairs the deficiency of a purely
ladder structure. The color structure of the ladder class of
diagrams produces a weak repulsive vertex, while the color
structure of the three-gluon coupling contribution produces an
attractive contribution that is enhanced by a factor of N2

c at
the purely one-loop level. These observations from Ref. [24]
were blended with the algebraic features afforded by the MN
model to reexamine the relation between vertex dressing,
the chiral symmetry-preserving BSE kernel, and the resulting
meson spectrum and diquark correlations [14]. This approach
introduced one extra parameter (besides the gluon two-point
function strength and the quark current mass): an effective
net color factor fitted to lattice-QCD data on the gluon-quark
vertex. The net attraction in the vertex, driven by the explicitly
non-Abelian three-gluon coupling, had a marked effect: the
ladder-rainbow truncation made mρ 30% too high compared
with the solution from the completely summed vertex. In other
words, the attraction produced by summed vertex dressing
in a non-Abelian context is more important than previously
thought. However, in that approach, the structure of the vertex
is such that the coupling of any internal gluon line to a quark, is
itself bare. This is not self-consistent, and one can question the
effect that this omitted infinite subclass of vertex dressing and
BSE kernel contributions may have upon the hadron spectrum.

In the present work, we extend the analysis of Ref. [14]
by incorporating a wider class of vertex dressing diagrams.
We allow the coupling of any internal gluon line to a quark
to be described by the dressed vertex at an order consistent
with a given total order in the final vertex. In the limit of
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the vertex summed to all orders, this becomes the use of the
self-consistent quark-gluon vertex at every internal location
in a diagram. We borrow from previous work the use of the
MN model of the two-point gluon function to generate an
algebraic structure, and we again incorporate the important
non-Abelian three-gluon coupling through the device of an
effective net color factor refitted to the lattice data for the
vertex. We use the infinite series of diagrams for the BSE
kernel generated from the chiral symmetry-preserving relation
to the quark self-energy. We investigate the resulting spectrum
of pseudoscalar and vector mesons.

In Sec. II, we describe the general properties of the
quark-gluon vertex and the relationship with the associated
BSE kernel that preserves chiral symmetry. Information from
the Slavnov-Taylor identity for the gluon-quark vertex and
the Ward-Takahashi identity for the color singlet axial-vector
vertex is summarized for relevance to present considerations.
We discuss diagrammatic summations that were used previ-
ously to model the gluon vertex and the generalized class
of diagram considered here. In Sec. III, we introduce the
interaction model that allows an algebraic analysis, and we
present consequent results for the gluon-quark vertex and
the self-consistent dressed quark propagator. The associated
symmetry-preserving BSE kernel is presented also. Section
IV contains a presentation and analysis of the methods and
results for the meson masses. In Sec. V, we summarize this
work.

II. QUARK-GLUON VERTEX AND BETHE-SALPETER
KERNEL

We employ Landau gauge and a Euclidean metric, with
{γµ, γν} = 2δµν, γ

†
µ = γµ, and a · b = ∑4

i=1aibi . The
dressed quark-gluon vertex for gluon momentum k and quark
momentum p can be written ig tc �σ (p + k, p), where t c =
λc/2 and λc is an SU(3) color matrix. In general, �σ (p + k, p)
has 12 independent invariant amplitudes. We are particularly
concerned in this work with the vertex at k = 0, in which case
the general form is

�σ (p) = α1(p2)γσ + α2(p2)γ · ppσ − α3(p2)ipσ

+α4(p2)iγσ γ · p, (1)

where αi(p2) are invariant amplitudes. In the model studies of
Refs. [12] and [14] that we build upon, one finds α4 = 0; this
will also be the case here.

As we will discuss later, we wish to utilize the functional
relation that enables the BSE kernel to be generated from
the quark self-energy so that chiral symmetry is preserved.
This requires the vertex to be represented in terms of a set of
explicit Feynman diagrams. Some exact results are known for
the vertex at one-loop order in QCD [25]. In Landau gauge
and to O(g2), i.e., to one loop, the amplitude �σ is given by

�(1)
σ (p + k, p) = Z1γσ + �A

σ (p + k, p)

+�NA
σ (p + k, p), (2)

with

�A
σ (p + k, p) = −

(
CF − CA

2

) ∫ 


q

g2Dµν(p − q)γµ

× S0(q + k)γσS0(q)γν, (3)

and

�NA
σ (p + k, p) = −CA

2

∫ 


q

g2γµS0(p − q)γνDµµ′

× (q + k)i�3g

µ′ν ′σ (q + k, q)Dν ′ν(q), (4)

where
∫ 


q
= ∫ 


d4q/(2π )4 denotes a loop integral regularized
in a translationally invariant manner at mass scale 
. Here
Z1(µ2,
2) is the vertex renormalization constant to ensure
�σ = γσ at renormalization scale µ. The following quantities
are bare: the three-gluon vertex ig f abc �

3g
µνσ (q + k, q), the

quark propagator S0(p), and the gluon propagator Dµν(q) =
Tµν(q)D0(q2), where Tµν(q) is the transverse projector. The
next order terms in Eq. (2) are O(g3), the contribution
involving the four-gluon vertex; O(g4), contributions from
crossed-box and two-rung gluon ladder diagrams; and one-
loop dressing of the triple-gluon vertex, etc. The color factors
in Eqs. (3) and (4) are given by

tatbta =
(

CF − CA

2

)
tb = − 1

2Nc

tb,

taf abctb = CA

2
itc = Nc

2
itc,

tata = CF 1c =
(
N2

c − 1
)

2Nc

1c.

(5)

In contrast, for the color singlet vector vertex, i.e., for the strong
dressing of the quark-photon vertex, one has the one-loop
Abelian result

�̃
(1)
σ (p + k, p) = Z̃1γσ − CF

∫ 


q

g2Dµν(p − q)

× γµS0(q + k)γσ S0(q)γν. (6)

To motivate the approximate vertex used in the present
study, we note that the local color SU(3) gauge invariance of
the QCD action gives the Slavnov-Taylor identity [21] for the
gluon vertex

kµi�µ(p + k, p) = G(k2){[1 − B(p, k)] S(p + k)−1

−S(p)−1 [1 − B(p, k)]}, (7)

which relates the divergence of the vertex to the quark
propagator S(p), the dressing function G(k2) of the ghost
propagator −G(k2)/k2, and the ghost-quark scattering kernel
B(p, k), all consistently renormalized. Even though no explicit
ghost content is evident in the one-loop vertex Eq. (2), the
equation does satisfy this identity at one-loop order [25].

The dressed quark propagator appearing in Eq. (7) is the
solution to the gap equation, or the quark Dyson-Schwinger
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equation, which is

S−1(p) = Z2 S−1
0 (p) + CF Z1

∫ 


q

g2Dµν

× (p − q) γµS(q)�ν(q, p), (8)

where S−1
0 (p) = iγ · p + mbm,mbm is the bare current

quark mass, and Z2(µ2,
2) is the quark wave function
renormalization constant. The general form for S(p)−1 is

S(p)−1 = iγ · p A(p2, µ2) + B(p2, µ2), (9)

and the renormalization condition at scale p2 = µ2 is
S(p)−1 → iγ · p + m(µ), where m(µ) is the renormalized
current quark mass.

Prior to the recent appearance of quenched lattice-QCD
data [22,23], there had been little information available on the
infrared structure of the gluon-quark vertex. The two O(g2)
diagrams of Eq. (2) cannot be expected to be adequate there. A
common assumption [18] has been to adopt an Abelian vertex
ansatz, such as the Ball-Chiu [19] or Curtis-Pennington [20]
forms, and attach the appropriate color matrix. In the case of
an Abelian U(1) gauge theory, the counterpart to Eq. (7) is the
Ward-Takahashi identity (WTI)

kµ i�̃µ(p + k, p) = S(p + k)−1 − S(p)−1. (10)

At k = 0, the Abelian vertex �̃µ has the same general
form as given earlier in Eq. (1). The Ward identity �̃σ (p) =
−i∂S−1(p)/∂pσ yields α̃1 = A(p2), α̃2 = 2 A′(p2), and
α̃3 = 2 B ′(p2), where f ′ = ∂f (p2)/∂p2. However, even if
the Abelian ansatz, ig tc �̃σ (p), were to be adopted for the
gluon vertex, it would not help in the present context, because
we need a representation in terms of an explicit set of Feynman
diagrams for the resulting self-energy in order to determine the
symmetry-preserving BSE kernel.

In Ref. [12], a study was made of a ladder summation
ansatz for the gluon vertex based on just the Abelian-like gluon
exchange diagram of Eq. (3); the symmetry-preserving BSE
kernel was generated and used to explore meson and diquark
masses. The vertex was generated by iterative and recursive
techniques and, after convergence, is equivalent to the solution
of the integral equation

�σ (p + k, p) = Z1γσ −
(

CF − CA

2

)∫ 


q

g2Dµν

× (p − q)γµS(q + k)

×�σ (q + k, q)S(q)γν. (11)

Here, at any order of iteration, the quark propagator is
calculated by using the same vertex in the gap equation,
Eq. (8). Is this ladder sum a good approximation to the
gluon-quark vertex, particularly in the infrared? The quenched
lattice-QCD data indicate that the answer is no. The lattice data
clearly give α1(p2) > 1 for all available p2, and the infrared
limit appears to be α1(0) � 2.2. The ladder summation based
on Eq. (11) gives α1(p2) < 1, with infrared limit α1(0) ≈ 0.94.
The one-loop QCD analysis indicates that in the ultraviolet,
α1(p2) approaches unity from above [25]; while the recent

model vertex [24], based on a nonperturbative extension of the
two one-loop diagrams from Eq. (2), yields α1(p2) > 1 for all
p2 and agrees quite well with the lattice data.

The reason for this problem can be seen from the color
factors associated with the two one-loop diagrams, Eqs. (3) and
(4), which are the leading terms in the ultraviolet region. The
ladder sum in Eq. (11) is built on the least significant of the two
diagrams; the color factor of the omitted three-gluon term is
−N2

c times that of the retained term. The relative contribution
to the Slavnov-Taylor identity, Eq. (7), from that term is of
the same order at one loop. More generally, as discussed
in Ref. [14], if G(k2)(1 − B(p, k)) > 0 persists into the
nonperturbative region, one can expect α1(p2) > 1. One can
also expect to obtain the wrong sign for α1(p2) − 1 if a model
kernel has the wrong sign. This is the case with the Abelian-like
ladder sum, Eq. (11). Note that in an Abelian U(1) gauge
theory, e.g., the photon-quark vertex, α̃1(p2) = A(p2) > 1.
An Abelian ansatz for this amplitude of the gluon-quark vertex
might be quite reasonable, but it cannot be simulated by an
explicit ladder sum—the color algebra prevents it. In analogy
with the photon-quark vertex, where α̃1(p2) > 1 is correlated
with the spectral density being positive definite as the timelike
region is approached, the gluon-quark vertex dressing has been
referred to as an attractive effect in the infrared spacelike
region [14]. (Of course, for the gluon vertex there should be no
color octet bound states and no positive spectral density in the
timelike region.) The three-gluon coupling is a strong source
of the attraction at low spacelike p2; it is N2

c times larger than
the small repulsive effect of gluon exchange.

The model for Dµν that we employ in this work, described
in Sec. III, allows us to focus on zero gluon momentum. In this
case, as discussed and utilized in Ref. [24], the two pQCD one-
loop diagrams for the vertex, Eqs. (3) and (4), are both closely
related to the momentum derivative of the corresponding quark
self-energy, apart from the differing color factors. The resulting
dependence upon the single-quark momentum variable is
similar for each diagram. Both are one-loop integrals projected
onto the same Dirac structures. We adopt the approach of
Ref. [14] to the vertex for our algebraic study; the approach
is defined by taking the momentum dependence to be similar
even in the infrared and with dressed propagators. Thus we
combine the two terms and write Eq. (2) as

�(1)
σ (p + k, p) ≈ Z1γσ − CCF

∫ 


q

g2Dµν(p − q)

× γµS0(q + k)γσS0(q)γν, (12)

withC being an effective color factor to be determined by a fit to
lattice-QCD data for the vertex. If the momentum dependence
of the two combined terms from Eq. (2) is identical, then we
see that C = 1; this is equivalent to the Abelian limit. If one
omits the three-gluon term altogether, as in the iterative study
in Ref. [12], then C = (CF − CA

2 ) C−1
F , which for Nc = 3,

gives C = −1/8. One expects that the non-Abelian term is
necessary for an effective model and thus that 0 < C < 1.

This vertex ansatz allows us to avoid making a model for
the dressed three-gluon vertex for which there is little in the
way of reliable information. It is implicitly hoped that the fit of
C to lattice data will effectively compensate for deficiencies.
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( i+1) (i)
=

FIG. 1. (Color online) Iterative relation for successive terms in
the ladder-summed vertex. Large filled circles denote the dressed
quark-gluon vertex, letters in parenthesis denote the number of gluon
lines contributing to the particular vertices, and small filled circles
denote that the propagators are fully dressed. Note that an important
non-Abelian term is approximately accounted for by the effective
color factor C as described in the text.

Our aim is not the vertex itself but a study of the relative
importance of classes of diagrams for the BSE kernel for meson
masses. This vertex ansatz allows an algebraic approach to the
BSE meson masses that is quite illustrative of new qualitative
information.

From Eq. (12), the nonperturbative summation equivalent
to the integral equation

�σ (p + k, p) = Z1γσ − CCF

∫ 


q

g2Dµν(p − q)γµ

× S(q + k)�σ (q + k, q)S(q)γν, (13)

is a natural suggestion. This was studied in Ref. [14], with S(q)
being the self-consistent solution of the quark DSE, Eq. (8),
containing the same dressed vertex. A fit to the lattice-QCD
data for the vertex gave C = 0.51, a value that confirms that
attraction by a mechanism outside the scope of iterated gluon
exchange is present.

An iterative representation is useful: �µ = �
i=0

�i
µ, where

�0
µ = Z1 γµ, and i labels the number of internal gluon lines.

The contribution with i + 1 internal gluon lines is obtained
from the ith contribution by adding one gluon ladder. This is
schematically depicted in Fig. 1.

A. A wider class of quark-gluon vertex dressing

The enlarged class of dressing diagrams considered in
this work is obtained iteratively as depicted in Fig. 2. The
contribution with i internal gluon lines is generated from

(i)
=

(j) (k)

(l)

FIG. 2. (Color online) Iterative relation for the enlarged class of
dressing diagrams considered in this work. Symbols are the same as
in Fig. 1, with j + k + l + 1 ≡ i. The vertex contribution with i

internal gluon lines is obtained from vertex contributions with fewer
gluon lines.

three contributions having a smaller number of gluon lines by
adding one gluon ladder with dressed vertices. If the number
of gluon lines in the three vertex contributions are denoted
j, k, and l, then summation is made over j, k, and l such that
j + k + l + 1 = i. Again, �µ = �i=0 �i

µ. The iterative
scheme is described by

�i
µ(p + k, p) = −CCF

∑
j,k,l

i=j+k+l+1

∫ 


q

g2Dσν(p − q)

×�j
σ (p + k, q + k)S(q + k)

×�l
µ(q + k, q)S(q)�k

ν (q, p), (14)

for i � 1.
If the iteration is carried to all orders, the equivalent integral

equation is

�µ(p + k, p) = Z1γµ − CCF

∫ 


q

g2Dσν(p − q)

×�σ (p + k, q + k)S(q + k)

×�µ(q + k, q)S(q)�ν(q, p). (15)

If the iteration is stopped to produce all vertex functions
with up to n internal two-point gluon lines, our improved
scheme takes into account 1+n(n+1)(n+2)/6 diagrams; the
corresponding ladder-summed vertex at that order contains a
subset of (n + 1) of these diagrams.

In Fig. 3, we use low-order diagrams to illustrate the more
general class of dressing terms included this way. Note that
the included diagrams are restricted to planar diagrams. The
contribution from crossed gluon lines in Fig. 3(d) is not
included. All diagrams of the ladder sum used in Ref. [14],
such as Fig. 3(a), are included; the new element here is the
self-consistent dressing of the internal vertices illustrated by
Figs. 3(b) and 3(c).

(2) = ++ +

(a) (b) (c) (d)

FIG. 3. (Color online) Vertex skeleton diagrams at O(g5). Large
filled circle denotes the quark-gluon vertex function dressed to
the order of two effective gluon kernel lines. Small filled circles
denote that the propagators are fully dressed. Previous work included
the ladder structure typified by part (a). The enlarged class of dressing
diagrams implemented in this work includes parts (b) and (c) as well.
Nonplanar diagrams such as part (d) are not accommodated by the
present approach. We use an effective color factor to accommodate a
major non-Abelian effect from the three-gluon coupling as described
in the text.
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B. Symmetry-preserving Bethe-Salpeter kernel

The renormalized homogeneous Bethe-Salpeter equation
(BSE) for the quark-antiquark channel, denoted by M , can be
compactly expressed as

[�M (k; P )]EF =
∫ 


q

[K(k, q; P )]GH
EF [χM (q; P )]GH , (16)

where �M (k; P ) is the meson Bethe-Salpeter amplitude (BSA),
k is the relative momentum of the quark-antiquark pair, and P

is their total momentum; E,. . . , H represent color, flavor, and
spinor indices, and the BS wave function is

χM (k; P ) = S(k+)�M (k; P )S(k−), (17)

where k± = k ± P
2 , and K is the amputated quark-antiquark

scattering kernel. In general, the kernel K is given in terms
of the quark self-energy � by a functional relation dictated
by chiral symmetry [10]. This preserves the Ward-Takahashi
identity for the color singlet axial vector vertex and ensures
that chiral pseudoscalars will remain massless, independent of
model details.

In a flavor nonsinglet channel and with equal mass quarks,
the axial-vector Ward-Takahashi identity is

−iPµ�5
µ(p + P, p) = S−1(p + P )γ5 + γ5S

−1(p)

−2m(µ)�5(p + P, p), (18)

where we have factored out the explicit flavor matrix. The
color-singlet quantities �5

µ and �5 are the axial-vector vertex
and the pseudoscalar vertex, respectively, and P is the total
momentum. The amplitude �5

µ(p + P, p) has a pseudoscalar
meson pole. A consequence is that the meson BSE (16) for the
(dominant) γ5 amplitude at P 2 = 0 is equivalent to the chiral
limit quark DSE for B(p2), and a nonzero value for the latter
(DCSB) necessarily produces a massless pseudoscalar bound
state [7].

The general relation between the BSE kernel K and the
quark self-energy � can be expressed through the functional
derivative [10]

K(x ′, y ′; x, y) = − δ

δS(x, y)
�(x ′, y ′). (19)

It is to be understood that this procedure is defined in the
presence of a bilocal external source for q̄q, and thus S and
� are not translationally invariant until the source is set to
zero after the differentiation. An appropriate formulation is
the Cornwall-Jackiw-Tomboulis effective action [26]. In this
context, the above coordinate space formulation ensures the
correct number of independent space-time variables will be
manifest. Fourier transformation of that four-point function
to momentum representation produces K(p, q; P ) having the
correct momentum flow appropriate to the BSE kernel for total
momentum P .

The constructive scheme of Ref. [11] is an example of
this relation as applied order by order to a Feynman diagram
expansion for �(p). An internal quark propagator S(q) is
removed, and the momentum flow is adjusted to account
for injection of momentum P at that point. The number of

such contributions coming from one self-energy diagram is
the number of internal quark propagators. Hence the rainbow
self-energy generates the ladder BSE kernel. A two-loop self-
energy diagram (i.e., from one-loop vertex dressing) generates
three terms for the BSE kernel. One can confirm that the
axial-vector Ward-Takahashi identity is preserved. Similarly,
the vector Ward-Takahashi identity is also preserved.

To be more specific, with the discrete indices made explicit,
we apply

KGH
EF = −δ�EF

δSGH
(20)

to the self-energy given by the second term on the right-hand
side of Eq. (8). After a decomposition,

�(k) =
∞∑

n=0

�n(k), (21)

according to the number n of gluon kernels in the vertex defined
by

�n(k) = CF

∫ 


q

g2Dµν(k − q)γµ S(q)�n
ν (q, k), (22)

for n � 1, with

�0(k) = mbm + CF

∫ 


q

g2Dµν(k − q)γµS(q)γν (23)

The order n contribution to the BSE kernel is

[Kn(k, q;P )]GH
EF = −CF g2Dµν(k − q)[γµ]EG

× [
�n

ν (q−, k−)
]

HF − CF

∫ 


l

g2Dµν

× (k − l)[γµS(l+)]EL
δ

δSGH(q±)

× [
�n

ν (l−, k−)
]

LF . (24)

This format is the same as that used in Refs. [12] and [14],
except that here the content of �n

ν is more extensive. With
a bare vertex, the first term of Eq. (24) produces the ladder
kernel and the second term is zero. With a vertex up to one
loop (n = 1), the first term of Eq. (24) produces the ladder
term plus a one-loop correction to one vertex; the second term
produces two terms: a one-loop correction to the other vertex
and a nonplanar term corresponding to crossed gluon lines.
These three corrections to the ladder kernel have the same
structure as the kernels shown in Figs. 3(b)–3(d). At higher
order, n > 1, the BSE kernel produced in the present work
departs from that considered in Ref. [14].

After substitution of Eq. (24) into the BSE (16), and with a
change of variables, the meson BSE becomes

�M (k; P ) = −CF

∫ 


q

g2Dµν(k − q)γµ[χM (q; P )�ν

× (q−, k−) + S(q+)
Mν(q, k; P )], (25)

where we denote by 
Mν the summation to all orders of the
functional derivative of the vertex as indicated in Eq. (24).
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In particular,


Mν(q, k; P ) =
∞∑

n=0


n
Mν(q, k; P ), (26)

with

[

n

Mν(q, k; P )
]

LF =
∫ 


l

δ

δSGH(l±)

[
�n

ν (q−, k−)
]

LF

× [χM (l; P )]GH. (27)

The vertex iteration given in Eq. (14) produces the recur-
rence formula for 
n

Mν


n
Mν(q, k; P ) = −CCF

∑
j,k,h

n=j+k+h+1

×
[ ∫ 


t

g2Dρσ (q − t)�j
ρ(q+, t+)χM (t ; P )�k

ν

× (t−, t− + k − q)S(t− + k − q)�h
σ (t− + k − q, k−)

+
∫ 


t

g2Dρσ (k − t)�j
ρ(q+, t+ + q − k)S

× (t+ + q − k)�k
ν (t+ + q − k, t+)χM (t ; P )�h

σ (t−, k−)

+
∫ 


t

g2Dρσ (q − t)
j

Mρ(q, t ; P )S(t−)�k
ν

× (t−, t− + k − q)S(t− + k − q)�h
σ (t− + k − q, k−)

+
∫ 


t

g2Dρσ (q − t)�j
ρ(q+, t+)S(t+)
k

Mν

× (t, t + k − q; P )S(t− + k − q)�h
σ (t− + k − q, k−)

+
∫ 


t

g2Dρσ (q − t)�j
ρ(q+, t+)S(t+)�k

ν

× (t+, t+ + k − q)S(t+ + k − q)
h
Mσ

× (t + k − q, k; P )

]
, (28)

where 
0
Mν(q, k; P ) = 0.

The structure of the qq̄ BS kernel produced by
Eqs. (25) and (28) is schematically depicted in Figs. 4
and 5. With a general interaction kernel, g2Dρσ , it is exceed-
ingly difficult to implement this formal recurrence relation to
obtain a BS kernel because of overlapping multiple integrals
that compound rapidly with increasing order.

= +

FIG. 4. (Color online) Kernel decomposition. Filled triangles
represent the meson BSAs; filled circle, the dressed quark-gluon
vertex; crossed circle, the 
 function.

(n)
= + +

++

(j)

(k)
(h)

(j)(j)
(k)

(h)

(k)
(h)

(j)

(h)

(k)

(h)

(j) (k)

FIG. 5. (Color online) Same as Fig. 4, but for 
 function
decomposition. Letters in parenthesis denote the number of gluon
lines contributing to the particular functions.

III. ALGEBRAIC ANALYSIS

A. Interaction model

In the ultraviolet, the kernel of the quark DSE, Eq. (8), takes
the form

Z1γµg2Dµν(k)�ν(q, p) → 4πα(k2)γµDfree
µν (k)γν, (29)

where k = p − q, and α(k2) is the renormalized strong
running coupling, which has absorbed the renormalization
constants of the quark and gluon propagators and the vertex.
The ladder-rainbow truncations that have been phenomeno-
logically successful in recent years for light-quark hadrons
adopt the form of Eq. (29) for all k2 by replacing α(k2) by
αeff(k2), which contains the correct one-loop QCD ultraviolet
form and a parametrized infrared behavior fitted to one or
more chiral observables such as 〈q̄q〉0

µ. In this sense, such an
αeff(k2) contains those infrared effects of the dressed vertex
�ν(q, p) that can be mapped into a single effective amplitude
corresponding to γν for chiral quarks. Such a kernel does not
have the explicit dependence upon quark mass that would
occur if the vertex dressing were to be generated by an explicit
Feynman diagram structure. In particular, one expects the
vertex dressing to decrease with increasing quark mass; the
effective ladder-rainbow kernel appropriate to heavy-quark
hadrons should have less infrared strength from dressing than
is the case for light-quark hadrons.

We use an explicit (but approximate) diagrammatic de-
scription of the dressed vertex �ν(q, p); and to facilitate
the analysis, we make the replacement 4παeff(k2)/k2 →
(2π )4G2δ4(k). This is the Munczek-Nemirovsky ansatz [15]
for the interaction kernel. The parameter G2 is a measure of
the integrated kernel strength, and we expect this to be less than
what would be necessary in ladder-rainbow format because of
the infrared structure now to be provided explicitly by the
model vertex �µ(q, p). The equations of the previous sections
convert to model form by the replacement

g2Dµν(k) →
(

δµν − kµkν

k2

)
(2π )4G2δ4(k), (30)

where we choose Landau gauge. It is the combination of
Eq. (30) and the model vertex that is the DSE kernel;
comparisons of Eq. (30) with information about the dressed
gluon two-point function are incomplete. The resulting DSEs
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for the quark propagator and gluon-quark vertex are ultraviolet
finite; thus the renormalization constants are unity: Z1 = Z2 =
1, and there is no distinction between bare and renormalized
quark current mass. We set mbm = m(µ) = m.

B. Algebraic vertex and quark propagator

With this kernel, the vertex integral equation (15) deter-
mines solutions for k = 0, and we define �µ(p, p) := �µ(p).
The resulting algebraic form for Eq. (15) is

�µ(p) = γµ − CG2�σ (p)S(p)�µ(p)S(p)�σ (p). (31)

In obtaining this form, we used 3CF /4 = 1, where the extra
factor of 3/4 arises from the transverse projector. The general
form of the vertex is

�µ(p) = α1(p2)γµ + α2(p2)γ · ppµ − α3(p2)ipµ

+α4(p2)iγµγ · p, (32)

where αi(p2) are invariant amplitudes. From Eq. (31), we find
α4 = 0, as was the case for the related models in Refs. [12]
and [14].

The vertex is a sum over contributions with exactly n

internal effective gluon kernels according to

�µ(p) =
∞∑

n=0

�n
µ(p), (33)

with the general contribution given by the recursive relation

�n
µ(p) = −CG2

∑
j,k,l

n=j+k+l+1

�j
ν (p)S(p)�k

µ(p)S(p)�l
ν(p), (34)

where �0
µ(p) = γµ. Substitution of the form S(p)−1 = iγ ·

pA(p2) + B(p2) into Eq. (34) gives �n
µ(p2) in terms of the

functions A(p2) and B(p2). These latter functions must be
solved simultaneously with the vertex at the given order. The
algebraic form of the gap equation for the propagator is

S−1(p) = iγ · p + m + G2γµS(p)�µ(p), (35)

where again the transverse projector and the color factor
combine to yield 3CF /4 = 1. After projection onto the two
Dirac amplitudes, we have

A(p2) = 1 − G2 i

4
tr

[
γ · p

p2
γµS(p) �µ(p)

]
, (36)

B(p2) = m + G2 1

4
tr[γµ S(p) �µ(p)]. (37)

Equations (34), (36), and (37) are solved simultaneously at a
specified order n of vertex dressing.

When one is limited to a strict ladder summation for the
vertex with bare internal vertices, closed form expressions for
the vertex amplitudes αi in terms of A and B are obtainable
[12,14]. With the enlarged class of dressing considered
here, corresponding closed form expressions have not been
obtained. However numerical evaluation is sufficient for the
vertex and propagator amplitudes; a numerical treatment

of the BSE kernel must be made in any case. Numerical
solution of the simultaneous algebraic equations for the vertex
and propagator is carried out here using the algebraic and
numerical tools of MATHEMATICA [27] with the assistance of
the FEYNCALC package used for computer-algebraic evaluation
of the Dirac algebra [28].

The model parameter C for the vertex is determined by a
fit to selected global features of quenched lattice-QCD data
for the quark propagator [29] and the quark-gluon vertex [22].
Thess data are available for both quantities at current quark
mass m = m̄ = 60 MeV. These are the same data as used
to fit the same parameter C in Ref. [14]; a different result
will therefore reflect the wider class of vertex dressing herein.
To facilitate comparison, we also eliminate the role of the
interaction strength mass scale parameter G in this step by
dealing with dimensionless quantities; G will later be fixed by
requiring that mρ be reproduced.

The lattice-QCD data for the quark propagator indicate that
Zq(0) ≡ 1/Aq(0) ≈ 0.7 and Mq(0) ≡ B(0)/A(0) ≈ 0.42 GeV.
Following Ref. [14], the lattice data for both the propagator
and the vertex in the infrared are characterized by the set of
four dimensionless quantities evaluated at p2 = 0:

A(0,m60) = 1.4, (38)

α1(0,m60) = 2.1, (39)

−M(0,m60)2α2(0,m60) = 7.1, (40)

−M(0,m60)α3(0,m60) = 1.0, (41)

where m60 = m̄/Mqu(0). The best fit to these quantities gives
C = 0.34 with an average relative error of r̄ = 24% and
standard deviation σr = 70%. The quality of fit is about
the same as in Ref. [14], and changes �C ≈ ±0.2 are not
significant in this regard. For example, C = 0.15 leads to
r̄ = 39% and σr = 72%. We will use C = 0.15 because
the resulting vertex at timelike p2 is more convergent with
respect to increasing order of dressing. The value of C being
significantly greater than the strict ladder sum limit C = −1/8,
we see that the attraction provided by the three-gluon coupling
is important for the vertex. However, the amount of attraction
that must be provided in this phenomenological way in the
present work is less than that required in Ref. [14] to fit the
same lattice quantities. In that work, C = 0.51 was found
necessary. We attribute this difference to the fact that a wider
class of self-consistent dressing diagrams is included in the
present approach; attraction is provided by every vertex that is
internal in the sense of Fig. 2.

In Figs. 6 and 7, we present the results for our calculations
of A(p2) for different values of C and different orders of quark-
gluon vertex dressing. We set G = 1 GeV, so all dimensioned
quantities are measured in units ofG. The current mass is mq =
0.0183G. One can see from Fig. 6 that C has a major impact
on the behavior of A(s), especially in the timelike region.
Figure 7 shows that with n = 14 as the order of dressing of
the quark-gluon vertex, we achieved convergence of the quark
propagator function A(p2) for p2 > −G2. The same is true for
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C=0.500
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FIG. 6. (Color online) Quark propagator amplitude A(s) vs
Euclidean s = p2. We use the interaction mass scale G = 1 GeV
and the current mass is m = 0.0183G = 18.3 MeV. C dependence
calculated with converged summation of vertex dressing, forC = 0.15
(solid curve), C = 0.5 (dashed curve), C = −0.125 (dot-dashed
curve), and C = −0.25 (dotted curve).

the function B(p2). The relative measure of the convergence
of the quark propagator functions with n is the convergence
of the meson masses calculated using the solutions for the
propagators. We will show later that our calculations of mπ and
mρ have converged to better than 1% for n = 14. For heavier
current quarks, the convergence region for the solutions of
A(p2) and B(p2) extends deeper into the timelike region of
p2, which allows for convergent calculations of heavier meson
masses.

In Figs. 8 and 9, we present the results for our calculations of
M(p2) = B(p2)/A(p2) for different values of C and different

FIG. 7. (Color online) Same as Fig. 6, but showing the influence
of vertex dressing to order n as described in the text. For C =
0.15, n = 0 yields the solid curve and the result is the ladder-rainbow
truncation.

s
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M
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0

0.2
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1.6

1.8

2
C=0.150
C=0.500
C=-0.125
C=-0.250

FIG. 8. (Color online) Quark mass function M(s) vs Euclidean
s = p2. We use the interaction mass scale G = 1 GeV and the
current mass is m = 0.0183G = 18.3 MeV. C dependence calculated
with converged summation of vertex dressing, for C = 0.15 (solid
curve), C = 0.5 (dashed curve), C = −0.125 (dot-dashed curve), and
C = −0.25(dotted curve).

orders of quark-gluon vertex dressing. Again these calculations
have G = 1 GeV, so all dimensioned quantities are measured
in units of G. The vertex parameter C has a modest impact on
the behavior of M(s).

Figures 10–12 display the results for the vertex amplitudes
αi(s) corresponding to different orders of vertex dressing.
Successive orders after one-loop (n = 1) serve to enhance
the infrared strength for s < 1. The convergence with n is
monotonic, in contrast to the convergence of the BSE kernel
that is generated from this vertex, as discussed later.

FIG. 9. (Color online) Same as Fig. 8, but showing the influence
of vertex dressing to order n as described in the text. For C =
0.15, n = 0 yields the solid curve and the result is the ladder-rainbow
truncation.
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FIG. 10. (Color online) Gluon-quark vertex amplitude α1(s) vs
Euclidean s = p2, for C = 0.15. We use the interaction mass scale
G = 1 GeV and the current mass is m = 0.0183G = 18.3 MeV. n =
0 (solid curve) results from the bare vertex and is the ladder-rainbow
truncation.

The quark condensate in the present model is given by

〈q̄q〉0 = − 3

4π2

∫ s0

0
dss

B0(s)

s A2
0(s) + B2

0 (s)
, (42)

in terms of the chiral limit quark propagator amplitudes. There
is no renormalization necessary because there is a spacelike s0

for which B0(s > s0) = 0. Because of the under representation
of the ultraviolet strength of the interaction in this model, the
condensate is characteristically too low. In particular, we find

−〈q̄q〉0
C=0.15 = (0.2146G)3 = (0.1266 GeV)3, (43)

with G = 0.59 GeV. The ladder-rainbow result (C = 0) is
−〈q̄q〉0

LR = G3/(10π2) = (0.1277 GeV)3. Thus one can see

s
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FIG. 11. (Color online) Same as Fig. 10, but for α2(s).
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FIG. 12. (Color online) Same as Fig. 10, but for α3(s).

that the vertex dressing decreases the condensate slightly. In
more detail, we have

〈q̄q〉0
LR

〈q̄q〉0
C=0.15

= 1.03, (44)

which indicates that the ladder-rainbow truncation overes-
timates the condensate by 3% compared with the more
completely dressed vertex considered here. The previous study
[14] with a more restricted class of vertex dressing diagrams
found that the ladder-rainbow truncation was 18% too low.

C. Algebraic Bethe-Salpeter kernel for mesons

Substitution of the model interaction kernel Eq. (30) into
the meson BSE, Eq. (25), produces the algebraic form

�M (k; P ) = −G2γµ{χM (k; P )�µ(k−)

+ S(k+)
Mµ(k; P )}. (45)

The previous general recurrence relation Eq. (28) for the
general term of 
Mν = ∑∞

n=0

n
Mν now has the algebraic

form


n
Mν(k; P ) = −CG2

∑
j,k,h

n=j+k+h+1

× [
�j

ρ(k+)χM (k; P )�k
ν (k−) S(k−)�h

ρ(k−)

+�j
ρ(k+)S(k+)�k

ν (k)χM (k; P )�h
ρ(k−)

+

j

Mρ(k; P )S(k−)la�k
ν (k−)S(k−)�h

σ (k−)

+�j
ρ(k+)S(q+)
k

Mν(k; P )S(k−)�h
ρ(k−)

+�j
ρ(k+)S(k+)�k

ν (k+)S(k+)
h
Mσ (k; P )

]
.

(46)

If we work at a given order n of vertex dressing, then
the quark propagator, dressed vertex, and BSE kernel can be
constructed recursively. By construction, chiral symmetry is
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preserved, and the chiral pseudoscalar states are massless,
independent of model parameters. Because of the algebraic
structure, in which the BS amplitude �M (k; P ) appears on
both sides of Eq. (45) with the same qq̄ relative momentum
k, a physical solution where P 2 = −M2

M is independent
of k is defined only at k = 0. That is, the quark and
antiquark have momenta ηP and (1 − η)P . (Here we consider
only equal mass quarks and thus have chosen η = 1/2.)
The Munczek-Nemirovsky model interaction does not allow
momentum transfer to quarks. This is a restriction present
in all hadron studies made within this model. We define
�M (P ) = �M (k = 0; P ), after which the form in which we
solve the BSE is

�M (P ) = −G2 γµS

(
P

2

) {
�M (P ) S

(
−P

2

)

×�µ

(
−P

2

)
+ 
Mµ(0; P )

}
. (47)

IV. MESON MASSES AND RESULTS

The general form of a meson BS amplitude can be written
as

�M (k; P ) =
∑

i

Ki(k; P ) f i
M (k2, k · P ; P 2), (48)

where the Ki(k; P ) are a complete set of independent co-
variants constructed from Dirac matrices and momenta that
transform in a manner specified by the quantum number of
the meson under consideration. The f i

M (k2, k · P ; P 2) are
the corresponding invariant amplitudes. (We do not show
explicitly the color singlet unit matrix.) The model BSE under
consideration here, Eq. (47), has relative momentum k = 0,
and the set of covariants is reduced considerably. We have

�M (P ) =
N∑

i=1

Ki(P )f i
M (P 2), (49)

and it is convenient to develop a set of projection operators Pj

that allow us to isolate each amplitude according to

f
j

M = T rD[Pj�M ]. (50)

Then projection of the BSE, Eq. (47), yields the eigenvalue
equation

f (P 2) = H(P 2) f (P 2), (51)

where f = (f 1
M, f 2

M, . . . ) is a vector of invariant amplitudes,
and the matrix H(P 2) is an N ×N representation of the kernel.

The mass MM of the lowest bound state is obtained from
the highest negative value of P 2 for which

det[H(P 2) − I ]P 2+M2
M=0 = 0. (52)

This method, namely, the solution of the characteristic poly-
nomial for Eq. (51), has also been followed in earlier work of
this type [12,14].

A. Pion

The general form of the π Bethe-Salpeter amplitude
requires four covariants and is

�π (k; P ) = γ5
[
i f 1

π + γ · P f 2
π

+ γ · k k · P f 3
π + σµνkµPν f 4

π

]
, (53)

in terms of amplitudes f i
π (k2, k ·P ; P 2). We do not show flavor

dependence, since we treat u and d quarks the same in all other
respects. In the present case, only two covariants survive, and
we have

�π (P ) = γ5
[
if 1

π (P 2) + γ · Pf2
π (P 2)

]
. (54)

Convenient projection operators in this case are

P1 = − i

4
γ5, P2 = 1

4P 2
γ · Pγ5. (55)

B. Rho

The general form of the ρ Bethe-Salpeter amplitude
requires eight transverse covariants and corresponding am-
plitudes. Specific choices that have been found convenient in
earlier work are given in Refs. [5,30]. In the present case, the
most general form is simply

�ρ µ(P ) =
(

δµν − PµPν

P 2

)
γνf

1
ρ (P 2)

+ σµνPνf
2
ρ (P 2). (56)

Again, a unit color matrix is understood, and we treat u and
d quarks as the same. Convenient projection operators that
isolate the amplitudes are

P1 = 1

12
γµ, P2 = 1

12P 2
σµνPν. (57)

C. Vertex dressing for light quarks

There are a total of three parameters: C = 0.15 has already
been set by the quenched lattice data for the quark propagator
and the gluon-quark vertex; while the experimental mπ and mρ

are used to set the other two parameters, namely, the interaction
mass scale, G = 0.59 GeV, and the current mass for the u/d

quark, m = 0.0183G = 11 MeV. The fully dressed vertex
model is used in these determinations. In practice, we require
convergence to three significant figures for the masses; this is
achieved with a vertex dressed to order n = 14. Table I shows
how the vertex dressing influences mπ and mρ .

To confirm that our constructed BSE kernel preserves chiral
symmetry, we verified that to any order of vertex dressing,
and with m = 0, the chiral pion is massless to the numerical
accuracy considered. The physical mπ is not fixed perfectly by
the symmetry but is almost so. The explicit symmetry breaking
by the current mass is sufficient to determine mπ for all orders
of vertex dressing except for a few % error in the ladder-
rainbow truncation (n = 0). Since the same behavior was
observed in earlier work of this nature [12,14], this result is
quite model independent.
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TABLE I. Effect of quark-gluon vertex dressing to order
n upon the masses of the π and ρ mesons (in GeV). The
ladder-rainbow (LR) truncation corresponds to n = 0, one-loop
vertex dressing corresponds to n = 1, etc., while the full
model result (converged to three significant figures) is labeled
n = ∞. Also displayed for mρ is the mass error, �mρ , and the
relative mass error, �mρ/mρ , of the LR truncation of the present
model compared with that of a previous model [14] based on
a limited class of vertex dressing diagrams. The mass scale
parameter is G = 0.59 GeV, the current mass of the u/d-quark
is m = 0.0183G = 11 MeV, and C = 0.15.

Vertex
dressing

mπ mρ �mρ
�mρ

mρ

�mρ

mρ
[14]

n = 0
(LR)

0.140 0.850 +0.074 +0.095 +0.295

n = 1
(one-loop)

0.135 0.759 −0.017 −0.022 –

n = 2 0.135 0.781 +0.005 +0.006 +0.096
n = 3 0.135 0.772 −0.004 −0.005 N/A
n = 4 0.135 0.778 +0.002 +0.003 N/A
n = ∞
(full
model)

0.135 0.776 0.0 0.0 0.0

The response of mρ to increasing order of vertex dressing
shows that the ladder-rainbow truncation is missing 74 MeV of
attraction compared with the full model result. The magnitude
of the error decreases with each added order of vertex dressing.
The relative error in the ladder-rainbow mass is 9.5% in the
present self-consistent vertex model, compared with 29.5%
in the vertex model of Ref. [14]. In the present approach,
each diagram for the dressed vertex has each of its internal
vertices dressed in a self-consistent way. This self-consistency
introduces a greater nonlinearity into the dependence of the
vertex, and BSE kernel, upon the effective strength ( − CG2)
of the relevant integral equation for the vertex. This in
turn significantly changes the response of the meson mass
calculation to changes in either of these parameters or the
order n (maximum number of gluon lines) of the summed
vertex.

Some of the attraction due to the corrections to ladder-
rainbow truncation in Ref. [14] is offset here by a combination
of two effects: (a) the presence of the extra diagrams we
account for by generating the vertex self-consistently, and
(b) the resulting smaller values of the strength parameters
C and G found necessary to fit the lattice vertex data, as well
as mπ and mρ . Note that in either Ref. [14] or in the present
self-consistent scheme for the vertex, diagrams with n gluon
lines contain an overall factor ( − CG2)n. However, in the
former scheme, there is only one diagram of order n; while
in the self-consistent scheme, the number is n(n + 1)/2. With
increasing n, this latter effect can quickly alter the balance
between positive and negative contributions and can offset the
effect of smaller strength for the kernel. In fact, calculations of
mρ for a range of C values up to 0.5 show that the error of the
ladder-rainbow truncation is always less in the self-consistent
vertex dressing scheme; the converged mρ never becomes more
than 11% below the ladder-rainbow value. Thus the extra

diagrams or consequent nonlinearity of the self-consistent
vertex dressing scheme is the dominant reason for the evident
improved accuracy of ladder-rainbow truncation arising from
the present simple algebraic model. It is not known whether
this finding carries over to a more realistic treatment of QCD
dynamics.

D. Current quark mass dependence

One expects the influence of vertex dressing to decrease
with increasing quark mass because of the internal quark prop-
agators in the vertex. Thus the LR truncation should become
more accurate for mesons involving heavier quarks. It is useful
to quantify this for the following reason. Phenomenological
LR kernels [3] are capable of incorporating many realistic
features of QCD modeling and have been developed to provide
efficient descriptions of light-quark mesons, their elastic and
transition form factors, and decay constants. A parameterized
LR kernel that reproduces the experimental mπ and mρ has,
by definition, absorbed the effective dressing of the vertex.
The present work suggests that this is an amount of vertex
attraction worth 9.5% of the vector meson mass. However. this
phenomenological representation of the dressing does not have
an explicit dependence upon quark mass that would occur if the
vertex dressing were to be generated by an explicit Feynman
diagram structure. One would expect such a phenomenological
LR kernel to be progressively too attractive when applied to
mesons with progressively heavier quarks.

The present model provides an opportunity to explore how
much of the final meson mass result is attributable to vertex
dressing and how this varies with quark mass. In Table II, we
display results for the ground state vector mesons in the u/d-,
s-, c-, and b-quark regions for both LR truncation and the full
model. Again, the quark current masses are determined so that
the full model reproduces experiment. We see that the amount

TABLE II. LR truncation error for equal quark mass vector
mesons in the u/d-, s-, c-, and b-quark regions, according to
calculated mass and effective binding energies (in GeV). The
ladder-rainbow (LR) truncation corresponds to order n = 0 in
vertex dressing, and the full model result corresponds to vertex
dressing to all orders, n = ∞, in this model. Mass scale parameter
is G = 0.59 GeV, and C = 0.15.

LR error (%)
LR Full model

n = 0 n = ∞ This model [14]

mu,d = 0.011
mρ 0.850 0.776 9.5 30
BEρ 0.346 0.311 11

ms = 0.165
mφ 1.08 1.02 6.0 21
BEφ 0.350 0.320 9.0

mc = 1.35
mJ/ψ 3.11 3.09 0.3 3.5
BEJ/ψ 0.260 0.260 0

mb = 4.64
mϒ 9.46 9.46 0 0
BEϒ 0.100 0.100 0
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TABLE III. Masses of equal quark mass vector and pseudoscalar
mesons in the u/d-, s-, c-, and b-quark regions, and current quark
masses required to reproduce the experimental vector meson masses.
All are in units of GeV. Values of mηc

and mηb
are predictions.

Experimentally [31], mηc
= 2.9797 ± 0.00015 and mηb

= 9.30 ±
0.03. The fictitious pseudoscalar 0−

ss̄ is included for comparison with
other studies [14].

mu,d = 0.011 ms = 0.165 mc = 1.35 mb = 4.64
mρ = 0.776 mφ = 1.02 mJ/ψ = 3.09 mϒ(1S) = 9.46
BEρ = 0.311 BEφ = 0.320 BEJ/ψ = 0.260 BEϒ = 0.100
mπ = 0.135 m0−

ss ¯
= 0.61 mηc

= 2.97 mηb
= 9.43

BEπ = 0.953 BE0− = 0.727 BEηc
= 0.380 BEηb

= 0.130

by which the LR masses are too large decreases steadily with
increasing quark mass, as expected. The LR truncation here
is missing 6% of attraction for mφ which is less than the 21%
seen in the restricted class of dressing diagram considerably
previously [14]. The LR truncation is quite accurate for the cc̄

and bb̄ vector states, as expected.
For the larger quark masses, the meson mass is dominated

by the sum of the quark masses. We also express the results in
a form that has this large mass scale removed. For each state
in Table II, we display an effective binding energy defined as
BE = 2Mq(0) − mV , where Mq(0) is the quark mass function
obtained from the DSE solution at p2 = 0, and mV is the
meson mass. Thus Mq(0) is being used as a rough measure of
the constituent quark mass. The use of a single p2 point may
well be an overestimate of constituent masses. Furthermore,
our fitted current quark masses are on the upper edge of what is
usually quoted at a renormalization scale of µ = 2 GeV [31].
Such an overestimate would be amplified in the infrared region
via a DSE solution for the quark propagator. Nevertheless, a
relative comparison should be meaningful. Table II shows the
dependence of BE upon the current quark mass for the fully
dressed model and the LR truncation. On this basis, the relative
amount of overbinding of the LR truncation is consistent
with its relative lack of attraction with respect to the mass
results.

In Table III, we display the full model results for both the
vector and pseudoscalar qq̄ states. The masses for ηc and ηb

are predictions. In the c- and b-quark regions, these results
are essentially the same as those of Ref. [14], because the
differences in the employed model of vertex dressing become
irrelevant when any dressing contribution is suppressed by
the large mass of propagators internal to the vertex. The
systematics of the mass dependence of hyperfine splitting
that spans the c- and b-quark regions, here and in earlier
work [14], strongly suggests that the experimental value [31],
mηb

= 9.30 ± 0.03, is too low.

V. SUMMARY

We have taken advantage of an algebraic model to enlarge
the class of diagrams for the quark-gluon dressed vertex that
can be incorporated into the Bethe-Salpeter kernel, while

allowing a practical application to the calculation of meson
masses. A given expansion of the vertex in diagrammatic
form produces a diagrammatic expansion of the quark self-
energy, which in turn specifies a diagrammatic expansion
of the BSE kernel if chiral symmetry is to be respected.
This procedure relieves the phenomenology of the task of
reproducing Goldstone’s theorem whenever parameters are
changed; it is always obeyed in this approach, and thus
phenomenology can address itself to a more constrained task.
The constraints are considerable: a realistic ladder-rainbow
kernel fitted to 〈q̄q〉0 [3] produces mρ,mφ , and mK� to
better than 5%. Such a phenomenological LR kernel for light
mesons has absorbed vertex dressing but without the explicit
mq dependence associated with an explicit diagrammatic
representation of the dressed gluon-quark vertex. To gain more
information, it is necessary to work with a model that can
implement a summation of vertex diagrams, turn that into a
summation of diagrams for the chiral symmetry-preserving
BSE kernel, and allow a practical solution of the meson BSE.

To this end we use the Munczek-Nemirovsky ansatz [15]
for the interaction kernel. We use an improved model for
the quark-gluon dressed vertex wherein each diagram for the
dressed vertex has each of its internal vertices dressed in a self-
consistent way. This moves considerably beyond the ladder
BSE structure [14] for the vertex, in which vertices internal
to the dressed vertex of interest are bare. In common with
Ref. [14], we also use an effective method, with one parameter
(C = 0.15 for this model), to accommodate the important
non-Abelian effect of the three-gluon coupling for the vertex.
Quenched lattice-QCD data for the quark propagator and
the quark-gluon vertex at zero gluon momentum fixed the
parameter C, while mπ and mρ fixed the other two parameters
via the fully dressed vertex results.

The resulting model provides a laboratory within which the
relevance of ladder-rainbow truncation (bare vertex) can be
explored over a range of quark masses from u/d quarks to b

quarks. The influence of the enlarged class of vertex dressing
diagrams included in this work is seen to indicate that LR
truncation is missing 9.5% of attraction for mρ , whereas the
previous information from a smaller class of vertex dressing
diagrams [14] had LR missing 30% of attraction. We have
argued that the extra diagrams, or consequent nonlinearity of
the self-consistent vertex dressing scheme, is the dominant
reason for the evident improved accuracy of ladder-rainbow
truncation arising from the present simple algebraic model.
It is not known whether this finding carries over to a more
realistic treatment of QCD dynamics. As heavier qq̄ mesons
are considered, the amount of missing attraction in the LR
truncation decreases steadily, as does the influence of vertex
dressing—it is less than 1% for the J/ψ and ϒ .

The influence of the non-Abelian three-gluon coupling
is very significant. No attempt has been made to consider
four-gluon coupling or nonplanar gluon line diagrams (e.g.,
crossed-box diagrams) for the vertex dressing. On the other
hand, a limited class of nonplanar gluon line diagrams for
the meson BSE kernel, as generated from the planar diagrams
of the dressed vertex, are included. While the complex task
of including both planar and nonplanar two-point gluon line
diagrams for the vertex is currently underway, it is not yet
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known whether explicit three- and four-gluon couplings can
be accommodated, even through the device of an effective
color factor.
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