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ABSTRACT 

 

 

 

 

Recently, there has been considerable interest in the study of coupled fluid flow 

– geomechanics simulation, integrated into reservoir engineering. One of the most 

challenging problems in the petroleum industry is the understanding and predicting of 

subsidence at the surface due to formation compaction at depth, the result of 

withdrawal of fluid from a reservoir. In some oil fields, the compacting reservoir can 

support oil and gas production. However, the effects of compaction and subsidence 

may be linked to expenditures of millions of dollars in remedial work. The 

phenomena can also cause excessive stress at the well casing and within the 

completion zone where collapse of structural integrity could lead to loss of 

production. In addition, surface subsidence can result in problems at the wellhead or 

with pipeline systems and platform foundations.  

Recorded practice reveals that although these problems can be observed and 

measured, the technical methods to do this involve time, expense, with consideration 

uncertainty in expected compaction and are often not carried out. Alternatively, 

prediction of compaction and subsidence can be done using numerical reservoir 

simulation to estimate the extent of damage and assess measurement procedures. 

With regard to reservoir simulation approaches, most of the previous research and 

investigations are based on deterministic coupled theory applied to continuum porous 

media. In this work, uncertainty of parameters in reservoir is also considered. 

This thesis firstly investigates and reviews fully coupled fluid flow – 

geomechanics modeling theory as applied to reservoir engineering and geomechanics 

research. A finite element method is applied for solving the governing fully coupled 

equations. Also simplified analytical solutions that present more efficient methods for 

estimating compaction and subsidence are reviewed. These equations are used in 

uncertainty and stochastic simulations. Secondly, porosity and permeability variations 

can occur as a result of compaction. The research will explore changes of porosity 

and permeability in stress sensitive reservoirs. Thirdly, the content of this thesis 

incorporates the effects of large structures on stress variability and the impact of large 
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structural features on compaction. Finally, this thesis deals with affect of pore 

collapse on multiphase fluid and rock properties. A test case from Venezuelan field is 

considered in detail; investigating reservoir performance and resultant compaction 

and subsidence. 

The research concludes that the application of coupled fluid flow – 

geomechanics modeling is paramount in estimating compaction and subsidence in oil 

fields. The governing equations that represent behaviour of fluid flow and 

deformation of the rock have been taken into account as well as the link between 

increasing effective stress and permeability/porosity. From both theory and 

experiment, this thesis shows that the influence of effective stress on the change in 

permeability is larger than the effect of reduction in porosity. In addition, the 

stochastic approach used has the advantage of covering the impact of uncertainty 

when predicting subsidence and compaction.  

This thesis also demonstrates the influence of a large structure (i.e. a fault) on 

stress regimes. Mathematical models are derived for each fault model to estimate the 

perturbed stress. All models are based on Mohr–Coulomb’s failure criteria in a 

faulted area.  The analysis of different stress regimes due to nearby faults shows that 

effective stress regimes vary significantly compared to a conventional model. 

Subsequently, the selection of fault models, fault friction, internal friction angle and 

Poisson’s ratio are most important to assess the influence of the discontinuity on the 

reservoir compaction and subsidence because it can cause a significant change in 

stress regimes.  

To deal with multiphase flow in compacting reservoirs, this thesis presents a 

new method to generate the relative permeability curves in a compacting reservoir. 

The principle for calculating the new values of irreducible water saturation (Swir) due 

to compaction is demonstrated in this research. Using coupled reservoir simulators, 

fluid production due to compaction is simulated more comprehensively. In the case 

example presented, water production is reduced by approximately 70% compared to 

conventional modeling which does not consider changes in relative permeability. This 

project can be extended by applying the theory and practical methodologies 

developed to other case studies, where compaction and stress sensitivity dominate the 

drive mechanism. 
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