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Abstract

In this thesis we study the connection between continuum quantum field theory
and corresponding lattice field theory, specifically for two cases: Landau gauge
fixing and ’t Hooft-Polyakov monopoles.

To study non-perturbative phenomena such as the confinement mechanism of
quarks and gluons and dynamical chiral symmetry breaking in Quantum Chromo-
dynamics (QCD), there are two major approaches: the Dyson-Schwinger equa-
tions (DSEs) approach, which is based on the covariant continuum formulation,
and lattice gauge theory. The strength and beauty of lattice gauge theory is due
to the fact that gauge invariance is manifest and fixing a gauge is not required.
In the covariant continuum formulation of gauge theories, on the other hand,
one has to deal with the redundant degrees of freedom due to gauge invariance
and has to fix gauge (most popularly, Landau gauge). There, the gauge-fixing
machinery is based on the so-called Faddeev-Popov procedure or more generally,
the Becchi-Rouet-Stora-Tyutin (BRST) symmetry. Beyond perturbation theory
this is aggravated by the existence of so-called Gribov copies, however, that sat-
isfy the same gauge-fixing condition, but are related by gauge transformations,
and are thus physically equivalent. When attempting to fix Landau gauge on
the lattice to make a connection with its continuum counterpart, this ambiguity
manifests itself in the Neuberger 0/0 problem that asserts that the expectation
value of any physical observable will always be of the indefinite form 0/0. We
explain the topological nature of this problem and how the complete cancellation
of Gribov copies can be avoided in a modified lattice Landau gauge based on a
new definition of gauge fields on the lattice as stereographically projected link
variables. For compact U(1), where the Gribov copy problem is related to the
classification the local minima of XY spin glass models, we explicitly show that
there still remain Gribov copies but their number is exponentially reduced in
lower dimensional models. We then formulate the corresponding Faddeev-Popov
procedure on the lattice, for these models. Moreover, we explicitly demonstrate
that the proposed modification circumvents the Neuberger 0/0 problem for lat-
tices of arbitrary dimensions for compact U(1). Applied to the maximal Abelian
subgroup this will avoid the perfect cancellation amongst the remaining Gribov
copies for SU(N), and so the corresponding BRST formulation is also then pos-
sible for generic SU(N), in particular, for the Standard Model groups.
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For higher dimensional lattices, the gauge fixing conditions for both the stan-
dard and the modified lattice Landau gauges are systems of multivariate non-
linear equations, solving which in general is a highly non-trivial task. However,
we show that these systems can be interpreted as systems of polynomial equa-
tions. They can then be solved exactly by computational Algebraic Geometry,
the Groebner basis technique in particular, and numerically by the Polynomial
Homotopy Continuation method.

’t Hooft-Polyakov monopoles play an important role in high energy physics
due to their presence in grand unified theories and their usefulness in studying
non-perturbative properties of quantum field theories through electric-magnetic
dualities. In the second part of the thesis, we study adjoint Higgs models, which
exhibit ’t Hooft-Polyakov monopoles, and have been extensively analyzed using
semi-classical analysis in the continuum. However, to study them in a fully non-
perturbative fashion, it is essential to put the theory on the lattice. Here, we
investigate twisted C-periodic boundary conditions in SU(N) gauge field theory
with an adjoint Higgs field and show that for even N with a suitable twist one
can impose a non-zero magnetic charge relative to each of N − 1 residual U(1)’s
in the broken phase, thereby creating ’t Hooft-Polyakov magnetic monopoles.
This makes it possible then to use lattice Monte-Carlo simulations to study the
properties of these monopoles in the full quantum theory and compare them with
the existing results in the continuum.
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