MODELLING THE EFFECTS OF SOIL VARIABILITY AND VEGETATION ON THE STABILITY OF NATURAL SLOPES

by

Yun Hang Chok B.E. (Hons), MIEAust

Thesis submitted for the degree of

Doctor of Philosophy

The University of Adelaide School of Civil, Environmental and Mining Engineering

October 2008

ABSTRACT

It is well recognised that the inherent soil variability and the effect of vegetation, in particular the effect of tree root reinforcement, have a significant effect on the stability of a natural slope. However, in practice, these factors are not commonly considered in routine slope stability analysis. This is due mainly to the fact that the effects of soil variability and vegetation are complex and difficult to quantify. Furthermore, the available slope stability analysis computer programs used in practice, which adopt conventional limit equilibrium methods, are unable to consider these factors. To predict the stability of a natural slope more accurately, especially the marginally stable one, the effects of soil variability and vegetation needs to be taken into account.

The research presented in this thesis focuses on investigating and quantifying the effects of soil variability and vegetation on the stability of natural slopes. The random finite element method (RFEM), developed by Griffiths and Fenton (2004), is adopted to model the effect of soil variability on slope stability. The soil variability is quantified by the parameters called the *coefficient of variation* (COV) and *scale of fluctuation* (SOF), while the safety of a slope is assessed using *probability of failure*.

In this research, extensive parametric studies are conducted, using the RFEM, to investigate the influence of COV and SOF on the probability of failure of a cohesive slope (i.e. undrained clay slope) with different geometries. Probabilistic stability charts are then developed using the results obtained from the parametric studies. These charts can be used for a preliminary assessment of the probability of failure of a spatially random cohesive slope. In addition, the effect of soil variability on $c'-\phi'$ slopes is also studied. The available RFEM computer program (i.e. rslope2d) is limited to analysing slopes with single-layered soil profile. Therefore, in this research, this computer program is modified to analyse slopes with two-layered soil profiles. The modified program is then used to

investigate the effect of soil variability on two-layered spatially random cohesive slopes. It has been demonstrated that the spatial variability of soil variability has a significant effect on the reliability of both single and two-layered soil slopes.

Artificial neural networks (ANNs), which are a powerful data-mapping tool for determining the relationship between a set of input and output variables, are used in an attempt to predict the probability of failure of a spatially random cohesive slope. The aim is to provide an alternative tool to the RFEM and the developed probabilistic stability charts because the RFEM analyses are computationally intensive and time consuming. The results obtained from the parametric studies of a spatially random cohesive slope are used as the database for the ANN model development. It has been demonstrated that the ANN models developed in this research are capable of predicting the probability of failure of a spatially random cohesive slope with high accuracy. The developed ANN models are then transformed into relatively simple formulae for direct application in practice.

The effect of root reinforcement caused by vegetation is modelled as additional cohesion to the soils, known as *root cohesion*, c_r . The areas affected by tree roots (i.e. root zone) are incorporated in the finite element slope stability model. The extent of the root zone is defined by the *depth of root zone*, h_r . Parametric studies are conducted and the results are used to develop a set of stability charts that can be used to assess the contribution of root reinforcement on slope stability. Furthermore, ANN models and formulae are also developed based on the results obtained from the parametric studies. It has been demonstrated that the factor of safety of a slope increase linearly with the values c_r and h_r , and the contribution of root reinforcement to a marginally stable slope is significant. In addition, probabilistic slope stability analysis considering both the variability of the soils and root cohesion are conducted using the modified RFEM computer program. It has been demonstrated that the spatial variability of root cohesion has a significant effect on the probability of slope failure.

LIST OF PUBLICATIONS

The following publications have been prepared as a result of this research:

Chok, Y. H., Jaksa, M. B. and Griffiths, D. V., Fenton, G.A., and Kaggwa, W. S. (2007). "A parametric study on reliability of spatially random cohesive slopes." *Australian Geomechanics*, 42(2), 79-85.

Chok, Y. H., Jaksa, M. B. and Griffiths, D. V., Fenton, G.A., and Kaggwa, W. S. (2007). "Effect of spatial variability on reliability of soil slopes." *Proc. 10th Australia New Zealand Conference on Geomechanics*, Brisbane, 2, 584-589.

Chok, Y. H., Kaggwa, W. S., Jaksa, M. B. and Griffiths, D. V. (2004). "Modelling the effects of vegetation on stability of slopes." *Proc. 9th Australia New Zealand Conference on Geomechanics*, Auckland, 1, 391-397.

STATEMENT OF ORIGINALITY

This thesis contains no material which has been accepted for the award of any other degree or diploma at any university or other tertiary institution and, to the best of my knowledge and belief, this thesis contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying.

Signed:

Date:

ACKNOWLEDGEMENTS

I would like to express my sincere thanks to my principal supervisor, Associate Professor Mark Jaksa, of the School of Civil, Environmental and Mining Engineering, the University of Adelaide, for his enthusiastic guidance, continual support and encouragement throughout this research. His patience and availability for any help is deeply appreciated. His comments and suggestions during the preparation of this thesis are gratefully acknowledged. I would also like to extend my appreciation for the support of my cosupervisor, Dr. William Kaggwa, also of the School of Civil, Environmental and Mining Engineering, the University of Adelaide, for his encouragement, advice and invaluable help throughout this research. His comments, suggestions and thorough review of this thesis are gratefully appreciated.

I wish to thank the School of Civil, Environmental and Mining Engineering, the University of Adelaide for the provision of excellent research support and facilities. I wish to acknowledge the computing support given to me by Dr. Stephen Carr. My thanks are also extended to my fellow postgraduate students for their friendship and encouragement.

The fund given to this research project by the University of Adelaide Scholarship (UAS) is sincerely acknowledged. This research would not have been possible without their financial assistance. My thanks are also extended to the South Australian Partnership Computing (SAPAC) for providing the supercomputer facility called Hydra, which was used to carry out the majority of the numerical studies in this research.

I would also like to acknowledge Professor Vaughan Griffiths, of the Colorado School of Mines, USA, and Professor Gordon Fenton, of the Dalhousie University in Canada, for graciously providing the source code of the random finite element method (RFEM) computer program, i.e. *rslope2d*, which has been used for probabilistic slope stability analysis throughout this research. Their invaluable advice and help in this research are also appreciated.

Finally, I would like to thank my family who have been the source of my strength and inspiration throughout this journey. I will always be indebted to my parents, Tien Siong and Kui Yin, for their sacrifices, love and support throughout my life. I would also like to thank my brother, Yun Vun, and my sister, Yan Lee, for their continual support and encouragement. Lastly, I wish to thank my wife, Lan, for her constant love, understanding and support throughout the period of my candidature.

TABLE OF CONTENTS

Absi	tract		i
List	of Publ	ications	iii
Stat	ement o	f Originality	iv
Acki	nowledg	gements	v
Tab	le of Co	ntents	vii
List	of Figu	res	xi
List	of Tabl	es	xvii
Note	ation		xix
CH	APTER	1 INTRODUCTION	1
1.1	Introd	luction	1
1.2	Aims	and Scope of the Research	2
1.3	Layou	it of Thesis	3
CH	APTER	2 LITERATURE REVIEW	6
2.1	Introd	luction	6
2.2	Metho	ods of Slope Stability Analysis	6
	2.2.1	Conventional Slope Stability Analysis	6
	2.2.2	Finite Element Method for Slope Stability Analysis	9
	2.2.3	Probabilistic Slope Stability Analysis	11
2.3	Soil V	/ariability	15
	2.3.1	Classical Statistical Characteristic of Soil Properties	16
	2.3.2	Spatial Variability of Soil Properties	21
	2.3.3	Published Data for Inherent Soil Variability	25
2.4	Effect	s of Vegetation on Slope Stability	27
	2.4.1	Background	27
	2.4.2	Influences of Vegetation	29
	2.4.3	Quantifying Effect of Root Reinforcement	33

90

	2.4.4	Modelling Effects of Vegetation on Slope Stability	46
	2.4.5	Discussion	50
2.5	Artific	al Neural Networks	52
	2.5.1	Background	52
	2.5.2	Back-Propagation Multi-Layer Perceptrons	53
	2.5.3	Development of ANN Model	57
2.6	Summ	ary	61
CHA	APTER	3 PROBABILISTIC SLOPE STABILITY ANALYSIS USING RANDOM FINITE ELEMENT METHOD	63
3.1	Introd	uction	63
3.2	Overv	iew of the Probabilistic Analysis Methodology	63
3.3	Simula	ation of Soil Profile	64
	3.3.1	Soil Parameters	65
	3.3.2	Random Field Generation	66
	3.3.3	Transformation into Lognormal Random Field	69
	3.3.4	Effects of Local Averaging and Variance Reduction	70
	3.3.5	Mapping of Simulated Soil Properties onto Finite Element Mesh	72
	3.3.6	Cross-correlation between c and ϕ	73
3.4	Finite	Element Slope Stability Analysis	74
	3.4.1	Determination of Factor of Safety	75
	3.4.2	Definition of Slope Failure	76
3.5	Monte	Carlo Simulation	76
	3.5.1	Probability of Failure	76
	3.5.2	Number of Realisations	77
3.6	Valida	tion of Simulated Soil Properties	80
	3.6.1	Verification of the Lognormal Distribution	80
	3.6.2	Verification of the Correlation Structure	87
3.7	Summ	ary	89

CHAPTER 4 INFLUENCE OF SOIL VARIABILITY ON RELIABILITY OF SINGLE-LAYERED SOIL SLOPES

4.1	Introd	uction	90
4.2	Probal	oilistic Analysis of Spatially Random Cohesive Slopes	90
	4.2.1	Description of Numerical Studies Undertaken	90

	4.2.2	Consideration of Computational Resources and Time Constraints	93
	4.2.3	Determination of Iteration Limit and Number of Realisations	94
	4.2.4	Effect of Mesh Density on Probability of Failure	97
	4.2.5	Deterministic Solutions	100
	4.2.6	Results of Parametric Studies	100
	4.2.7	Effect of Anisotropy of Scale of Fluctuation on Probability of Failure	111
	4.2.8	Probabilistic Stability Charts	112
4.3	Probal	pilistic Analysis of Spatially Random $c' - \phi'$ Slopes	112
	4.3.1	Deterministic Solutions	115
	4.3.2	Iteration Limit and Number of Realisations	115
	4.3.3	Effect of COV and θ/H on Probability of Failure	117
	4.3.4	Comparison of Probability of Failure and Factor of Safety	119
	4.3.5	Effect of $c' - \phi'$ Correlation on Probability of Failure	121
4.4	Summ	ary	122

CHAPTER 5 INFLUENCE OF SOIL VARIABILITY ON RELIABILITY OF TWO-LAYERED SOIL SLOPES 124

5.1	Introd	uction	124
5.2	Descri	ption of The Two-Layered Soil Slope Model	125
5.3	Valida	tion of the Two-layered Slope Model	128
5.4	Probal	pilistic Analysis of a Two-Layered Spatially Random Cohesive Slope	129
	5.4.1	Description of Numerical Studies Undertaken	129
	5.4.2	Deterministic Solutions	130
	5.4.3	Results of Numerical Studies	131
5.5	Summ	ary	139

CHAPTER 6 PREDICTION OF RELIABILITY OF SPATIALLY RANDOM COHESIVE SLOPES USING ARTIFICIAL NEURAL NETWORKS 141

6.1	Introd	uction	141
6.2	Development of ANN Models		142
	6.2.1	Input and Output Variables	142
	6.2.2	Data Division and Pre-processing	143
	6.2.3	Network Architecture and Performance of ANN Models	145
6.3	Devel	opment of ANN Model Equation	151

6.4	Sensiti	vity Analysis of the ANN Model Inputs	154
6.5	Summ	ary	156
СНА	PTER	7 SLOPE STABILITY ANALYSIS CONSIDERING EFFECT OF ROOT REINFORCEMENT	157
7.1	Introdu	action	157
7.2	Assess Metho	ing Influence of Root Reinforcement on Slope Stability by Finite Element d	158
7.3	Vegeta	ted Slope Stability Charts	165
7.4	Artific	ial Neural Networks Modelling	170
	7.4.1	Input and Output Variables	170
	7.4.2	Database	171
	7.4.3	Network Architecture and Performance of ANN Models	172
	7.4.4	ANN Model Equation for Vegetated Slope	173
7.5	Probab	vilistic Study	175
	7.5.1	Summary	182
СНА	PTER	8 SUMMARY AND CONCLUSIONS	185
8.1	Summ	ary	185
8.2	Recom	mendations for Further Research	189
8.3	Conclu	isions	190
REF	EREN	CES	191
APP	ENDIX	A PROBABILISTIC STABILITY CHARTS	211

LIST OF FIGURES

Figure 2.1	Uncertainty in estimation of soil properties (after Kulhawy 1992)	16
Figure 2.2	Normal and lognormal distributions of undrained shear strength, s_u , with mean of 100 kPa and standard deviation of 50 kPa (COV = 0.5)	20
Figure 2.3	Dilatometer lift-off pressure reading P_0 versus depth: (a) measured data points; (b) linear fit and linear regression lines (after DeGroot 1996)	22
Figure 2.4	Reductions in soil moisture near a Poplar tree growing in boulder clay (after Biddle 1983)	31
Figure 2.5	Effect of root reinforcement on the shear strength of soil (after Coppin and Richards 1990)	34
Figure 2.6	Shear strength of root-permeated sand as a function of root density (after Ziemer 1981)	35
Figure 2.7	Comparison of shear strength increase due to root/fibre reinforcement (after Gray and Leiser 1982)	35
Figure 2.8	Root area ratio against depth for different distance from the tree trunk: (a) swamp paperbark and (b) river red gum (after Abernethy and Rutherfurd 2001)	37
Figure 2.9	Relationship between root tensile strength and root diameter for two Australian riparian species (after Abernethy and Rutherfurd 2001)	39
Figure 2.10	Relationship between root tensile strength and root diameter for six vegetation species in Northern Mississippi (after Simon and Collison 2002)	39
Figure 2.11	Perpendicular root reinforcement model (after Wu et al. 1979)	40
Figure 2.12	Root cohesion, c_r (kPa), due to river red gum root reinforcement (after Abernethy and Rutherfurd 2001)	45
Figure 2.13	Root cohesion, c_r (kPa), due to swamp paperbark root reinforcement (after Abernethy and Rutherfurd 2001)	45

Figure 2.14	Forces acting on a slice on a vegetated infinite slope (after Coppin and Richards 1990)	47
Figure 2.15	Influences of vegetation on deep-seated failures (after Coppin and Richards 1990)	48
Figure 2.16	Typical structure and operation of an MLP (after Maier and Dandy 1998)	54
Figure 3.1	Top-down approach for random field generation using LAS method (after Fenton 1990)	67
Figure 3.2	Comparison of estimated and exact correlation between adjacent cells across a parent cell boundary for varying effective averaging lengths $2D/\theta$ (after Fenton 1990)	68
Figure 3.3	Comparison of estimated and exact covariance for generated 2-D LAS process with scales of fluctuation of (a) $\theta = 4$ and (b) $\theta = 0.5$, averaged over 10 realisations (after Fenton 1990)	69
Figure 3.4	Variance reduction over a square finite element (after Griffiths and Fenton 2004)	71
Figure 3.5	Typical finite element mesh used for slope stability analysis	72
Figure 3.6	Typical random field realisations of undrained cohesion, c_u , with scales of fluctuation of (a) $\theta = 1$ m and (b) $\theta = 10$ m	73
Figure 3.7	Minimum number of realisations required versus relative percentage error for 95% and 90% confidence levels, and $m = 1$	79
Figure 3.8	Frequency density plots for simulated values of c_u with different values of COV and θ/H (based on one realisation)	81
Figure 3.9	Frequency density plots for 'Mean c_u ' with different values of COV and θ/H (based on 2,000 realisations)	85
Figure 3.10	Comparison of experimental and theoretical correlation structure for scales of fluctuation (a) $\theta = 1$ m and (b) $\theta = 10$ m	88
Figure 4.1	Geometry of the cohesive slope problem	91
Figure 4.2	Typical finite element mesh for a 1:1 cohesive slope ($\beta = 45^{\circ}$, D = 2)	92
Figure 4.3	Effect of number of iterations on probability of failure (COV = 0.5 ; $\theta/H = 1$)	96
Figure 4.4	Effect of number of realisations on probability of failure (COV = 0.5 ; $\theta/H = 1$)	96

Effect of number of realisations on computational time ($maxit = 500$)	97
Finite element mesh with different mesh density (a) $0.5 \text{ m} \times 0.5 \text{ m}$; (b) $1 \text{ m} \times 1 \text{ m}$; (c) $2 \text{ m} \times 2 \text{ m}$. ($\beta = 45^{\circ}$, D = 2)	98
Effect of varying θ /H on probability of failure for different mesh densities with COV fixed at 0.5 and 1.0 ($\beta = 45^{\circ}$, D = 2, N _s = 0.3)	99
Typical deformed mesh for the 1:1 cohesive slope with COV of (a) 0.3, (b) 0.5 and (c) 1.0 ($\beta = 45^{\circ}$; D = 2; N _s = 0.3; $\theta/H = 1$)	101
Typical deformed meshes for the 1:1 cohesive slope with θ /H of (a) 0.1, (b) 1 and (c) 10 (β = 45°; D = 2; N _s = 0.3; COV = 0.5)	102
Effect of varying COV on probability of failure for different values of θ/H with N _s fixed at 0.2 ($\beta = 45^{\circ}$; D = 2)	104
Effect of varying COV on probability of failure for different values of θ/H with N _s fixed at 0.3 ($\beta = 45^{\circ}$; D = 2)	104
Effect of varying θ /H on probability of failure for different values of COV with N _s fixed at 0.2 ($\beta = 45^{\circ}$; D = 2)	106
Effect of varying θ /H on probability of failure for different values of COV with N _s fixed at 0.3 ($\beta = 45^{\circ}$; D = 2)	106
Effect of varying θ /H on probability of failure for different values of N _s with COV fixed at 0.1 ($\beta = 45^{\circ}$; D = 2)	107
Effect of varying θ /H on probability of failure for different values of N _s with COV fixed at 0.5 ($\beta = 45^{\circ}$; D = 2)	108
Effect of varying θ /H on probability of failure for different slopes (D = 2; N _s = 0.2; COV = 0.5)	109
Probability of failure versus factor of safety for different values of θ/H with COV fixed at 0.1 ($\beta = 45^\circ$; $D = 2$)	110
Probability of failure versus factor of safety for different values of θ/H with COV fixed at 0.5 ($\beta = 45^\circ$; $D = 2$)	110
Probability of failure versus factor of safety for different degrees of anisotropy with COV fixed at 0.5 ($\beta = 45^{\circ}$; $D = 2$; $N_s = 0.3$; $\theta_v/H = 1$)	111
	113
Mesh and slope geometry used for the $c' - \phi'$ slope problem	114
	500) Finite element mesh with different mesh density (a) 0.5 m × 0.5 m; (b) 1 m × 1 m; (c) 2 m × 2 m. (β = 45°, D = 2) Effect of varying θ/H on probability of failure for different mesh densities with COV fixed at 0.5 and 1.0 (β = 45°, D = 2, N _s = 0.3) Typical deformed mesh for the 1:1 cohesive slope with COV of (a) 0.3, (b) 0.5 and (c) 1.0 (β = 45°; D = 2; N _s = 0.3; θ/H = 1) Typical deformed meshes for the 1:1 cohesive slope with θ/H of (a) 0.1, (b) 1 and (c) 10 (β = 45°; D = 2; N _s = 0.3; COV = 0.5) Effect of varying COV on probability of failure for different values of θ/H with N _s fixed at 0.2 (β = 45°; D = 2) Effect of varying θ/H on probability of failure for different values of COV with N _s fixed at 0.3 (β = 45°; D = 2) Effect of varying θ/H on probability of failure for different values of COV with N _s fixed at 0.3 (β = 45°; D = 2) Effect of varying θ/H on probability of failure for different values of COV with N _s fixed at 0.3 (β = 45°; D = 2) Effect of varying θ/H on probability of failure for different values of COV with N _s fixed at 0.3 (β = 45°; D = 2) Effect of varying θ/H on probability of failure for different values of N _s with COV fixed at 0.1 (β = 45°; D = 2) Effect of varying θ/H on probability of failure for different values of N _s with COV fixed at 0.5 (β = 45°; D = 2) Effect of varying θ/H on probability of failure for different values of N _s with COV fixed at 0.5 (β = 45°; D = 2) Probability of failure versus factor of safety for different values of θ/H with COV fixed at 0.1 (β = 45°; D = 2) Probability of failure versus factor of safety for different values of θ/H with COV fixed at 0.5 (β = 45°; D = 2) Probability of failure versus factor of safety for different values of θ/H with COV fixed at 0.5 (β = 45°; D = 2) Probability of failure versus factor of safety for different degrees of anisotropy with COV fixed at 0.5 (β = 45°; D = 2) Probability of failure versus factor of safety for different degrees of anisotropy with COV fixed at 0.5 (

Figure 4.22	Critical slip surface obtained from SLOPE/W using simplified Bishop's method (FOS = 1.2)	115
Figure 4.23	Effect of number of iterations on P_f	116
Figure 4.24	Effect of number of realisations on P_f	116
Figure 4.25	Typical deformed mesh at slope failure for the $c'-\phi'$ slope with (a) $\theta/H = 0.1$ and (b) $\theta/H = 10$. (COV _{c'} = 2COV _{\u03c0} = 0.3)	117
Figure 4.26	Effect of varying COV on probability of failure for different values of θ/H	118
Figure 4.27	Effect of varying θ /H on probability of failure for different COVs of c' and ϕ'	119
Figure 4.28	Probability of failure versus factor of safety for different COV of c' and ϕ' ($\theta/H = 1$)	120
Figure 4.29	Probability of failure versus factor of safety for different values of θ/H (COV _{c'} = 2COV _{ϕ} = 0.5)	121
Figure 4.30	Probability of failure versus θ/H for different values of COVs of c' and ϕ' , and θ/H	122
Figure 5.1	Typical layering profiles of the two-layered soil slope model (a) horizontal layering; and (b) parallel layering	126
Figure 5.2	Simulation of two-layered spatially random soil profile with horizontal layering ($\theta_1/H = 10$, $\theta_2/H = 0.1$)	127
Figure 5.3	Typical simulated two-layered spatially random soil profile with parallel layering ($\theta_1/H = 10$, $\theta_2/H = 0.1$)	127
Figure 5.4	Typical finite element mesh for a 2:1 cohesive slope problem ($\beta = 26.6^\circ$; D = 2)	128
Figure 5.5	Deformed mesh of single-layered cohesive slope (N _s = 0.25; COV = 0.5; $\theta/H = 1$)	131
Figure 5.6	Deformed meshes of two-layered cohesive slope with different values of c_{u1}/c_{u2} : (a) 0.5; (b) 0.75; (c) 1.25; and (d) 1.5. (COV = 0.5; $\theta/H = 1$)	133
Figure 5.7	Probability of failure versus COV for different values of c_{u1}/c_{u2} with θ/H fixed at 1	134
Figure 5.8	Probability of failure versus θ/H for different values of c_{u1}/c_{u2} with COV fixed at 0.5	135

Figure 5.9	Probability of failure versus θ/H for different values of h/DH with COV and θ/H fixed at 0.5 and 1, respectively	136
Figure 5.10	Typical deformed meshes for a two-layered cohesive slope with different values of COV in each layer: (a) $\text{COV}_1 = 0.1$, $\text{COV}_2 = 0.5$ ($P_f = 0.014$) and (b) $\text{COV}_1 = 0.5$, $\text{COV}_2 = 0.1$ ($P_f = 0.081$)	138
Figure 5.11	Typical deformed meshes for a two-layered cohesive slope with different values of θ/H in each layer: (a) $\theta_1/H = 0.1$, $\theta_2/H = 1$ ($P_f = 0.022$) and (b) $\theta_1/H = 1$, $\theta_2/H = 0.1$ ($P_f = 0.151$)	139
Figure 6.1	Data division for ANN model development	143
Figure 6.2	Effect of the numbers of hidden layers nodes on correlation coefficient, <i>r</i> , for the validation data set of ANN Models A1 – A12 (learning rate = 0.2 ; momentum term = 0.8)	147
Figure 6.3	Effect of the learning rate on correlation coefficient, r , for the validation data set of the ANN model A3 (momentum term = 0.8)	150
Figure 6.4	Effect of the momentum term on correlation coefficient, r , for the validation data set of the ANN model A3 (learning rate = 0.2)	150
Figure 6.5	Structure of the ANN Model A3	151
Figure 7.1	Typical finite element mesh for incorporating effect of root reinforcement	159
Figure 7.2	Vegetated slope with different locations of root zone	160
Figure 7.3	FOS versus root cohesion for different depths of root zone ($c' = 1 \text{ kPa}; \phi' = 25^{\circ}$)	162
Figure 7.4	FOS versus root cohesion for different values of effective cohesion of soil ($\phi' = 25^\circ$; $h_r = 1$ m)	163
Figure 7.5	FOS versus root cohesion for different values of effective friction angle of soil ($c' = 1$ kPa; $h_r = 1$ m)	164
Figure 7.6	Stability charts for 3:1 vegetated slope	166
Figure 7.7	Stability charts for 2:1 vegetated slope	167
Figure 7.8	Stability charts for 1:1 vegetated slope	168
Figure 7.9	Stability charts for 0.5:1 vegetated slope	169
Figure 7.10	Data division for ANN model development	171
Figure 7.11	Structure of the optimal ANN model (Model E2)	174
Figure 7.12	Typical finite element mesh with simulated cohesion value	177

Figure 7.13	Typical deformed meshes for the slopes without considering the effect of root reinforcement: (a) Case 1 and (b) Case 2	178
Figure 7.14	P_f versus COV for different θ/H : (a) Case 1 and (b) Case 2	180
Figure 7.15	P_f versus θ/H for different COV: (a) Case 1 and (b) Case 2	181
Figure 7.16	Typical deformed meshes for the vegetated slope with different values of COV: (a) 0.1 and (b) 1. (θ /H fixed at 10)	182
Figure 7.17	Typical deformed meshes for the vegetated slope with different values of θ /H: (a) 0.1 and (b) 10. (COV fixed at 0.5)	183

LIST OF TABLES

Table 2.1	Typical values for coefficient of variation (after Lee et al. 1983)	26
Table 2.2	Typical values for coefficient of variation (after Lacasse and Nadim 1996)	26
Table 2.3	Suggested guidelines for inherent soil variability (after Phoon and Kulhawy 1999a)	28
Table 2.4	Summary of scale of fluctuation of some geotechnical properties (after Phoon and Kulhawy 1999a)	29
Table 2.5	Root tensile strength for selected plant species (after Coppin and Richards 1990)	38
Table 2.6	Typical values for root cohesion, c_r	43
Table 3.1	Normal standard deviates for different confidence levels	78
Table 3.2	Minimum number of realisations required for achieving desired accuracy	79
Table 3.3	Comparison between sample and target mean and standard deviation of c_u (based on one realisation)	83
Table 3.4	Comparison between sample and target mean and standard deviation of ' <i>Mean</i> c_u ' (based on 2000 realisations)	87
Table 4.1	Input parameters for parametric studies	92
Table 4.2	Cases with shortest and longest computational time	94
Table 4.3	Comparison of P_f and computation time for the slope with different mesh density (COV = 1.0; $\theta/H = 0.1$)	99
Table 4.4	Factor of safety assuming homogenous soil ($\beta = 45^{\circ}$, D = 2)	100
Table 4.5	Input values of COV and θ /H used in the $c' - \phi'$ slope problem	114
Table 4.6	FOS for $c' - \phi'$ slope with different mean values of c' and ϕ'	120
Table 5.1	Comparison of estimated values of P_f obtained by using the two- layered model and the original single-layered model	129

Table 5.2	Input parameters for parametric studies of a two-layered cohesive slope	130
Table 5.3	FOS for a two-layered cohesive slope with different c_{u1}/c_{u2} (h/DH = 0.5)	131
Table 5.4	Probability of failure for a two-layered cohesive slope with different values of c_{u1}/c_{u2} (h/DH = 0.5, COV = 0.5, $\theta/H = 1$)	132
Table 5.5	Probability of failure of a two-layered cohesive slope with different values of COV in each soil layer. (h/DH = 0.5, $c_{u1}/c_{u2} = 1$ and $\theta_1/H = \theta_2/H = 1$)	137
Table 5.6	Probability of failure of a two-layered cohesive slope with different values of θ/H in each soil layer. (h/DH = 0.5, $c_{u1}/c_{u2} = 1$ and COV $_1 = \text{COV}_2 = 0.5$)	138
Table 6.1	Summary of range for input and output variables	143
Table 6.2	Input and output statistic for ANN models	144
Table 6.3	Performance of ANN models with different number of hidden layers and nodes	146
Table 6.4	Performance of ANN models with different learning rates	149
Table 6.5	Performance of ANN models with different momentum terms	149
Table 6.6	Performance of ANN models using different transfer functions	149
Table 6.7	Weights and biases for the ANN Model A3	152
Table 7.1	Computed FOS for the slope with different locations of root zone	161
Table 7.2	Input variables and values for parametric studies undertaken	165
Table 7.3	Summary of range for input and output variables	170
Table 7.4	Input and output statistic for ANN models	172
Table 7.5	Performance of ANN models with different number of hidden nodes	173
Table 7.6	Weights and biases for the ANN Models E2	174
Table 7.7	Input parameters and values for Case 1	177
Table 7.8	Input parameters and values for Case 2	177

Table 7.9Computed P_f for the slopes considering effect of root reinforcement179

NOTATION

Α	total cross-sectional area of the soil
A_r	total cross-sectional area occupied by roots
ANNs	artificial neural networks
a_i	mean cross-sectional area of roots in size class i
$C_{y_j d_j}$	covariance between the model output (y_j) and the desired output (d_j)
COV	coefficient of variation
Cov[]	covariance operator
С	cohesion
<i>c</i> ′	drained or effective cohesion
C ₀	autocovariance at lage 0
C_k	autocovariance
C _r	root cohesion
C_{Total}	total cohesion
C_u	undrained cohesion
D	depth factor of a slope
d	root diameter
\overline{d}	mean of desired output (d_j)
d_{j}	desired actual output of node <i>j</i>
E	global error function
E_s	Young's modulus
$E[\cdots]$	expectation operator
F_s	factor of safety
FEM	finite element method
FOS	factor of safety
FOSM	first order second moment method

$f(I_j)$	transfer function of node <i>j</i>
f(x)	continuous function of <i>x</i>
$\mathbf{G}(x)$	standard normal random field
Н	height of slope
h_r	depth of root zone
Ι	number of input variables
k	lag distance
k_0	autocorrelation distance
L_{min}	minimum root length
LAS	local average subdivision
MAE	mean absolute error
MLPs	multi-layer perceptrons
MCS	Monte Carlo simulation
MSE	mean squared error
Median $_{X}$	median of variable X
$Mode_X$	mode of variable <i>X</i>
Ъ .Т	
N _s	stability coefficient
N _s n	number of data points
-	-
n	number of data points
n n _f	number of data points number of realisation reaching failure
n n _f n _{sim}	number of data points number of realisation reaching failure number of realisations
n n_f n_{sim} P_f	number of data points number of realisation reaching failure number of realisations probability of failure
n n_f n_{sim} P_f PEM	number of data points number of realisation reaching failure number of realisations probability of failure point estimation method
n n _f n _{sim} P _f PEM PDF	number of data points number of realisation reaching failure number of realisations probability of failure point estimation method probability density function
n n _f n _{sim} P _f PEM PDF RAR	number of data points number of realisation reaching failure number of realisations probability of failure point estimation method probability density function root area ratio
n n _f n _{sim} P _f PEM PDF RAR RFEM	number of data points number of realisation reaching failure number of realisations probability of failure point estimation method probability density function root area ratio random finite element method
n n _f n _{sim} Pf PEM PDF RAR RFEM RFEM	number of data points number of realisation reaching failure number of realisations probability of failure point estimation method probability density function root area ratio random finite element method root mean squared error
n n _f n _{sim} P _f PEM PDF RAR RFEM RFEM RMSE r	number of data points number of realisation reaching failure number of realisations probability of failure point estimation method probability density function root area ratio random finite element method root mean squared error coefficient of correlation
n n_f n_{sim} P_f PEM PDF RAR RFEM RFEM RMSE r S_w	number of data points number of realisation reaching failure number of realisations probability of failure point estimation method probability density function root area ratio random finite element method root mean squared error coefficient of correlation surcharge due to weight of vegetation
n n_f n_{sim} P_f PEM PDF RAR RFEM RMSE r S_w SOF	 number of data points number of realisation reaching failure number of realisations probability of failure point estimation method probability density function root area ratio random finite element method root mean squared error coefficient of correlation surcharge due to weight of vegetation scale of fluctuation

T_r	mean tensile strength of roots
t_i	deterministic trend component
и	pore water pressure
<i>u</i> _a	pore air pressure
Var[]	variance operator
W	total weight of slice
W _{ji}	connection weight between nodes i and j
X	random variable
\overline{X}	average value of variable X
x	input variables
x_i	input from node <i>i</i>
x_{max}	maximum value of input variable <i>x</i>
x_{min}	minimum value of input variable x
X_n	scaled value of input variable x
Y	random variable
\overline{Y}	average value of variable Y
\overline{y}	average value of variable y
\mathcal{Y}_{j}	predicted output of node <i>j</i>
α	shear distortion angle
eta	slope angle
Γ^2	variance function
γ	bulk unit weight
Δw_{ji}	weight increment from node i to node j
\mathcal{E}_i	residual component
η	learning rate
θ	scale of fluctuation
$oldsymbol{ heta}_{j}$	bias for node j
μ	mean value
$\mu_{\scriptscriptstyle X}$	mean value of variable X
$\mu_{\scriptscriptstyle Y}$	mean value of variable Y
$\mu_{\ln X}$	mean of the normally distributed $ln(X)$

ν	Poisson's ratio
ρ	correlation coefficient
ρ_k	autocorrelation coefficient
$ ho_{XY}$	coefficient of correlation of variables X and Y
σ	standard deviation
σ^{2}	point variance
$\sigma_{_n}$	normal stress
$\sigma_{\scriptscriptstyle T}^{2}$	variance of the soil property spatially averaged over an averaging domain T
$\sigma_{_X}$	standard deviation of variable X
$\sigma_{\scriptscriptstyle Y}$	standard deviation of variable Y
$\sigma_{\scriptscriptstyle d_j}$	standard deviation of desired output d_j
$\sigma_{_{y_j}}$	standard deviation of model output y_j
$\sigma_{\ln X}$	standard deviation of the normally distributed $ln(X)$
${ au}_b$	limiting bond stress between the root and the soil
ϕ	friction angle
ϕ^b	friction angle of the soil with respect to changes in matric suction
ϕ'	drained or effective friction angle
Ψ	dilation angle