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ABSTRACT

It is well recognised that the inherent soil variability and the effect of vegetation, in

particular the effect of tree root reinforcement, have a significant effect on the stability of a

natural slope.  However, in practice, these factors are not commonly considered in routine

slope stability analysis.  This is due mainly to the fact that the effects of soil variability and

vegetation are complex and difficult to quantify.  Furthermore, the available slope stability

analysis computer programs used in practice, which adopt conventional limit equilibrium

methods,  are  unable  to  consider  these  factors.   To  predict  the  stability  of  a  natural  slope

more accurately, especially the marginally stable one, the effects of soil variability and

vegetation needs to be taken into account.

The research presented in this thesis focuses on investigating and quantifying the effects of

soil variability and vegetation on the stability of natural slopes.  The random finite element

method (RFEM), developed by Griffiths and Fenton (2004), is adopted to model the effect

of soil variability on slope stability.  The soil variability is quantified by the parameters

called the coefficient of variation (COV) and scale of fluctuation (SOF), while the safety of

a slope is assessed using probability of failure.

In this research, extensive parametric studies are conducted, using the RFEM, to

investigate the influence of COV and SOF on the probability of failure of a cohesive slope

(i.e. undrained clay slope) with different geometries.  Probabilistic stability charts are then

developed using the results obtained from the parametric studies.  These charts can be used

for  a  preliminary  assessment  of  the  probability  of  failure  of  a  spatially  random cohesive

slope.   In  addition,  the  effect  of  soil  variability  on c –  slopes is also studied.  The

available RFEM computer program (i.e. rslope2d) is limited to analysing slopes with

single-layered soil profile.  Therefore, in this research, this computer program is modified

to analyse slopes with two-layered soil profiles.  The modified program is then used to
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investigate the effect of soil variability on two-layered spatially random cohesive slopes.  It

has been demonstrated that the spatial variability of soil variability has a significant effect

on the reliability of both single and two-layered soil slopes.

Artificial neural networks (ANNs), which are a powerful data-mapping tool for

determining the relationship between a set of input and output variables, are used in an

attempt to predict the probability of failure of a spatially random cohesive slope.  The aim

is to provide an alternative tool to the RFEM and the developed probabilistic stability

charts because the RFEM analyses are computationally intensive and time consuming.

The results obtained from the parametric studies of a spatially random cohesive slope are

used as the database for the ANN model development.  It has been demonstrated that the

ANN models developed in this research are capable of predicting the probability of failure

of a spatially random cohesive slope with high accuracy.  The developed ANN models are

then transformed into relatively simple formulae for direct application in practice.

The effect of root reinforcement caused by vegetation is modelled as additional cohesion to

the soils, known as root cohesion, cr.  The areas affected by tree roots (i.e. root zone) are

incorporated in the finite element slope stability model.  The extent of the root zone is

defined by the depth of root zone, hr.  Parametric studies are conducted and the results are

used to develop a set of stability charts that can be used to assess the contribution of root

reinforcement on slope stability.  Furthermore, ANN models and formulae are also

developed based on the results obtained from the parametric studies.  It has been

demonstrated that the factor of safety of a slope increase linearly with the values cr and hr,

and the contribution of root reinforcement to a marginally stable slope is significant.  In

addition, probabilistic slope stability analysis considering both the variability of the soils

and root cohesion are conducted using the modified RFEM computer program.  It has been

demonstrated that the spatial variability of root cohesion has a significant effect on the

probability of slope failure.
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xmin minimum value of input variable x

xn scaled value of input variable x

Y random variable

Y average value of variable Y

y average value of variable y

yj predicted output of node j

shear distortion angle

slope angle
2 variance function

bulk unit weight

jiw weight increment from node i to node j

i residual component

learning rate

scale of fluctuation

j bias for node j

mean value

X mean value of variable X

Y mean value of variable Y

Xln mean of the normally distributed ln(X)



xxii Notation

Poisson’s ratio

correlation coefficient

k autocorrelation coefficient

YX coefficient of correlation of variables X and Y

standard deviation
2 point variance

n normal stress

2
T variance of the soil property spatially averaged over an averaging domain T

X standard deviation of variable X

Y standard deviation of variable Y

jd standard deviation of desired output dj

jy standard deviation of model output yj

Xln standard deviation of the normally distributed ln(X)

b limiting bond stress between the root and the soil

friction angle
b friction angle of the soil with respect to changes in matric suction

drained or effective friction angle

dilation angle
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