
MODELLING THE EFFECTS OF SOIL VARIABILITY AND

VEGETATION ON THE STABILITY OF NATURAL

SLOPES

by

Yun Hang Chok

B.E. (Hons), MIEAust

Thesis submitted for the degree of

Doctor of Philosophy

The University of Adelaide

School of Civil, Environmental and Mining Engineering

October 2008



i

ABSTRACT

It is well recognised that the inherent soil variability and the effect of vegetation, in

particular the effect of tree root reinforcement, have a significant effect on the stability of a

natural slope.  However, in practice, these factors are not commonly considered in routine

slope stability analysis.  This is due mainly to the fact that the effects of soil variability and

vegetation are complex and difficult to quantify.  Furthermore, the available slope stability

analysis computer programs used in practice, which adopt conventional limit equilibrium

methods,  are  unable  to  consider  these  factors.   To  predict  the  stability  of  a  natural  slope

more accurately, especially the marginally stable one, the effects of soil variability and

vegetation needs to be taken into account.

The research presented in this thesis focuses on investigating and quantifying the effects of

soil variability and vegetation on the stability of natural slopes.  The random finite element

method (RFEM), developed by Griffiths and Fenton (2004), is adopted to model the effect

of soil variability on slope stability.  The soil variability is quantified by the parameters

called the coefficient of variation (COV) and scale of fluctuation (SOF), while the safety of

a slope is assessed using probability of failure.

In this research, extensive parametric studies are conducted, using the RFEM, to

investigate the influence of COV and SOF on the probability of failure of a cohesive slope

(i.e. undrained clay slope) with different geometries.  Probabilistic stability charts are then

developed using the results obtained from the parametric studies.  These charts can be used

for  a  preliminary  assessment  of  the  probability  of  failure  of  a  spatially  random cohesive

slope.   In  addition,  the  effect  of  soil  variability  on c –  slopes is also studied.  The

available RFEM computer program (i.e. rslope2d) is limited to analysing slopes with

single-layered soil profile.  Therefore, in this research, this computer program is modified

to analyse slopes with two-layered soil profiles.  The modified program is then used to
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investigate the effect of soil variability on two-layered spatially random cohesive slopes.  It

has been demonstrated that the spatial variability of soil variability has a significant effect

on the reliability of both single and two-layered soil slopes.

Artificial neural networks (ANNs), which are a powerful data-mapping tool for

determining the relationship between a set of input and output variables, are used in an

attempt to predict the probability of failure of a spatially random cohesive slope.  The aim

is to provide an alternative tool to the RFEM and the developed probabilistic stability

charts because the RFEM analyses are computationally intensive and time consuming.

The results obtained from the parametric studies of a spatially random cohesive slope are

used as the database for the ANN model development.  It has been demonstrated that the

ANN models developed in this research are capable of predicting the probability of failure

of a spatially random cohesive slope with high accuracy.  The developed ANN models are

then transformed into relatively simple formulae for direct application in practice.

The effect of root reinforcement caused by vegetation is modelled as additional cohesion to

the soils, known as root cohesion, cr.  The areas affected by tree roots (i.e. root zone) are

incorporated in the finite element slope stability model.  The extent of the root zone is

defined by the depth of root zone, hr.  Parametric studies are conducted and the results are

used to develop a set of stability charts that can be used to assess the contribution of root

reinforcement on slope stability.  Furthermore, ANN models and formulae are also

developed based on the results obtained from the parametric studies.  It has been

demonstrated that the factor of safety of a slope increase linearly with the values cr and hr,

and the contribution of root reinforcement to a marginally stable slope is significant.  In

addition, probabilistic slope stability analysis considering both the variability of the soils

and root cohesion are conducted using the modified RFEM computer program.  It has been

demonstrated that the spatial variability of root cohesion has a significant effect on the

probability of slope failure.
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Chapter 1

INTRODUCTION

1.1 Introduction

Slope instability is one of the major problems in geotechnical engineering where disasters

involving loss of life and property can and do occur.  The majority of these slope failures

are associated with vegetated or forested natural slopes.  A natural slope is different from a

man-made slope or embankment in that the effects of soil variability and vegetation may

play an important role in its stability.  It is well recognised that the underlying soil profiles

of a natural slope are unlikely to be completely uniform and homogenous, due largely to

the complex deposition process of soil materials.  Even within a so-called ‘homogenous’

soil layer, soil properties tend to vary from one location to another (Vanmarcke 1977a).

This  inherent  variation  of  soil  properties  in  distance  or  space  is  known  as spatial

variability.  In addition, vegetation can affect the stability of a slope mainly by the increase

in soil shear strength due to root reinforcement, although other effects such as surcharge of

trees; wind loading on large trees; soil buttressing and arching effects caused by large tree

roots; and modification of soil moisture content through the processes of rainfall

interception and evapotranspiration may also provide minor effects on slope stability (Gray

and Leiser 1982; Greenway 1987; Coppin and Richards 1990).  The actual behaviour of

natural slopes, as distinct from man-made slopes, is greatly affected by the effects of soil

variability and vegetation mentioned above.

In practice, the stability of a slope is usually assessed using the conventional limit

equilibrium methods, and the soil profiles are often assumed to be uniform and

homogenous.  The conventional slope stability analyses are usually performed within a

deterministic analysis framework where single best estimates or characteristic values for
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soil parameters are used.  To account for the variability and uncertainty in soil properties, a

higher factor of safety is usually adopted.  In addition, the effects of vegetation are usually

ignored in the stability analysis of a vegetated slope, due mainly to the fact that the

physical effects of vegetation are complex and difficult to quantify.  Furthermore,

engineers claim that ignoring the effects of vegetation is a conservative approach, knowing

that  vegetation  will  ultimately  enhance  the  stability  of  a  slope.   As  a  result,  the

conventional slope stability analysis approach may give a poor estimate of the actual safety

of a natural slope because the effects of soil variability and vegetation are not properly

modelled and accounted for.

Adopting a higher factor of safety to account for the effects of soil variability and ignoring

the influence of vegetation in slope stability analysis appears to be reasonable and

acceptable when designing a new slope, where conservatism is necessary.  However, when

predicting the actual behaviour of an existing slope, for example, the assessment of a

marginally stable natural slope, ideally, all aspects should be taken into account.

Otherwise, engineers and planners are unaware of the true safety or reliability of the slope.

Therefore, there is a need to consider and include the effects of soil variability and

vegetation in slope stability analysis so that the actual behaviour of natural slopes can be

predicted more accurately.

1.2 Aims and Scope of the Research

This research has aimed to investigate and quantify the effects of soil variability and root

reinforcement contributed by vegetation on the stability of natural slopes, and to develop

simplified solutions, in the form of charts or equations, which can be readily used in

practice  for  a  quick  or  preliminary  assessment  of  the  effects  of  soil  variability  and

vegetation on slope stability.  The results of this research will provide a better

understanding of the effects of soil variability and vegetation on the stability of natural

slopes.  In addition, the simplified solutions (i.e. charts or equations) developed in this

research will enable engineers to quantify the effects of soil variability and vegetation on

slope stability.

In order to achieve the overall aim of this research, several specific aims or steps are

established, as summarised below:
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1. Investigate the effects of soil variability on the reliability of single-layered spatially

random cohesive slopes (i.e. undrained clay slopes) and c  slopes by performing

parametric studies using the random finite element method (RFEM), developed by

Griffiths and Fenton (2000; 2004).  For the cohesive slope problem, the results of the

parametric studies are used to develop a set of probabilistic stability charts that can be

used for predicting the probability of failure of a spatially random slope.

2. The available computer program of the RFEM is limited for analysing slope with only

single-layered soil profile.  Therefore, this research extends and modifies the available

RFEM computer program to model slopes with two-layered soil profiles and the effects

of soil variability on the reliability of a two-layered soil slope are investigated.

3. Investigate the feasibility of using artificial neural networks (ANNs) for predicting the

probability of failure of a spatially random cohesive slope.  The objective is to develop

ANN models and transform them into relatively simple mathematical equations.  These

ANN  models  and  equations  can  serve  as  an  alternative  tool  to  the  RFEM  and  the

developed stability charts.

4. Incorporate the effects of root reinforcement into the existing finite element model for

slope stability analysis and perform parametric studies to investigate the effect of root

reinforcement contributed by vegetation on the stability of a slope.  The results of

parametric studies are used to develop a set of stability charts for predicting the factor

of safety of vegetated slopes considering the effects of root reinforcement.  As an

alternative tool to the finite element analysis and stability charts, ANN model and

mathematical equations are developed.

1.3 Layout of Thesis

In Chapter 2, reviews of literature on the topics that are related to the work in this research

are presented including: methods of slope stability analysis; soil variability; effects of

vegetation on slope stability; and artificial neural networks.

In Chapter 3, the formulation and implementation of the random finite element method

(RFEM) for probabilistic slope stability analysis are described.  This includes the
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procedures for simulation of spatially random soil profiles, the formulation of the finite

element slope stability analysis model, and some important aspects related to Monte Carlo

simulation.  The soil profiles simulated by RFEM are examined and validated so that the

prescribed statistical characteristics are accurately simulated.

In Chapter 4, the parametric studies undertaken, using the RFEM, for investigating and

quantifying the effects of soil variability on the reliability of spatially random cohesive and

c  slopes, are described.  For the cohesive slopes, the parametric studies are performed

on slopes with different geometries.  Probabilistic stability charts are developed for

predicting the probability of failure of spatially random cohesive soil slopes.

In Chapter 5, modifications and extension of the available computer model RFEM aimed at

analysing slopes with two-layered soil profiles are described.  Results of parametric studies

to investigate the effect of soil variability on the reliability of a two-layered spatially

random cohesive soil slope are also described.

In Chapter 6, the application of ANN techniques for predicting the probability of failure of

spatially random cohesive soil slopes is described.  The data used for the development of

the  ANN  model  are  obtained  from  the  results  of  the  parametric  studies  conducted  in

Chapter 4.  Relatively simple mathematical equations based on the developed ANN model

are developed.  The relative importance of the input parameters affecting the probability of

failure is also investigated.

In Chapter 7, the effect of root reinforcement is incorporated in the existing finite element

slope stability model.  Parametric studies are conducted to investigate and quantify the

effect of root reinforcement on slope stability.  A set of stability charts are developed based

on the results of the parametric studies, which can be used for a quick evaluation of the

factor of safety of a vegetated slope considering the effect of root reinforcement.  An ANN

model is developed for predicting the factor of safety of a vegetated slope considering the

effect of root reinforcement using the data obtained from the parametric studies. This ANN

model has been transformed into relatively simple mathematical equation.  In addition, the

effect of the spatial  variability of root cohesion on the probability of failure of a slope is

investigated using the two-layered slope model developed in Chapter 5.
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In  Chapter  8,  summary  and  conclusions  of  this  research  are  presented,  and

recommendations for future research are also given.
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Chapter 2

LITERATURE REVIEW

2.1 Introduction

In order to predict the stability of a natural slope more accurately, the effects of soil

variability and vegetation need to be taken into consideration.  In this research, these two

aspects have been incorporated into slope stability analysis, and their effects on slope

stability have been investigated and quantified.  This chapter provides a background for

later chapters of this thesis and briefly reviews the relevant literature in: methods of slope

stability analysis; soil variability; effects of vegetation on slope stability; and artificial

neural networks.

2.2 Methods of Slope Stability Analysis

Slope stability analysis is usually performed to evaluate the safety of natural slopes,

excavations, embankments, earth dams and landfills.  Over the years, slope stability

analysis has evolved from tedious manual calculations to advanced computer solutions and

probabilistic analysis.  The improvement in the tools for slope stability analysis, in most

cases, has improved the engineer’s understanding about the slope stability problem.  The

following sections briefly discuss the available methods of slope stability analysis.

2.2.1 Conventional Slope Stability Analysis

In practice, the stability of a slope is usually assessed using limit equilibrium methods.

Stability analysis using the limit equilibrium approach involves solving the equilibrium

problem by assuming force and/or moment equilibrium.  Over the years, many limit

equilibrium methods for slope stability analysis have been developed and applied in

practice, including the ordinary method of slices (Fellenius 1936), Bishop’s modified
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method (Bishop 1955), force equilibrium methods (e.g. Lowe and Karafiath 1960), Janbu’s

generalised procedure of slices (Janbu 1968), Morgenstern and Price’s method

(Morgenstern and Price 1965) and Spencer’s method (Spencer 1967).  Slope stability

charts based on these limit equilibrium methods have also been developed (e.g. Taylor

1937, 1948; Bishop and Morgenstern 1960; Spencer 1967; Janbu 1968; Hunter and

Schuster 1971; Cousins 1978), which are useful for preliminary analysis and quick

estimation of the stability of a slope.  However, in practice, detailed slope stability analysis

is usually performed using a computer program and most of the available computer

programs are based on the limit equilibrium approach.

Slope stability analysis can be performed using either total or effective stress.  Total stress

analysis is applicable to embankments and multistage loading problems where the short-

term condition is critical, while effective stress analysis should be used for excavation

problems where the long-term condition is critical (Duncan 1996).  In total stress analysis,

pore pressures are not considered in the analysis and the shear strength of soil is described

by undrained shear strength, su (sometimes referred to u = 0 analysis).  In effective stress

analysis, the shear strength of soil is described by the Mohr-Coulomb failure criterion, as

given by:

tan)( ucs n (2.1)

where c  = effective cohesion of the soil; n  =  normal stress; u = pore water pressure;

and  =  effective  friction  angle  of  the  soil.   It  should  be  noted  that  Equation  (2.1)  is

applicable only to fully saturated soils.  For partially saturated or unsaturated soils, the

Mohr-Coulomb failure criterion can be extended in the following form (Fredlund et al.

1978):

b
aan uuucs tan)(tan)( (2.2)

where au = pore air pressure; b = friction angle of the soil with respect to changes in

)( uua  when )( an u is held constant.  The term )( uua  is usually known as the
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matric suction and is considered as an increase in the apparent soil cohesion (Fredlund and

Rahardjo 1993).

In the conventional limit equilibrium approach, the stability of a slope is measured by

factor of safety (FOS), which is defined as the ratio between the shear strength of the soil

to the shear stress required for equilibrium (Duncan 1996).  A slip surface, which can be

planar, circular or non-circular in shape, is required to be assumed prior to the equilibrium

analysis.  At the point of failure the shear strength is assumed to be fully mobilised along

the slip surface and FOS is assumed to be constant for the entire slip surface.  The stability

analysis eventually involves an iterative process until the critical slip surface is found,

which is the slip surface with the lowest FOS.  Over the years, many studies have been

conducted to investigate the computational accuracy of different limit equilibrium methods

and to develop techniques for searching the critical slip surface (Duncan 1996).  However,

Duncan (1996) pointed out that the critical slip surface can be assumed to be circular, in

most cases, with little inaccuracy unless there are geological layers that constrain the slip

surface to a non-circular shape.

It should be noted that most conventional slope stability analyses are performed within a

deterministic framework.  This means the input parameters (e.g. shear strength parameters,

pore  pressure,  etc.)  are  based  on  the  single  best  estimate  value  of  the  available  field  or

laboratory test data.  In most cases, due to limited test data, engineering judgements based

on previous experience are required to generate the best estimate for each parameter.  As a

result,  the  calculated  FOS  not  only  depends  on  the  accuracy  of  the  chosen  method  of

analysis and the assumed failure mode, but also the uncertainty associated with the input

parameters and the reliability of judgmental assumptions made in relation to the input

parameters.  In practice, the uncertainty and variability in soil parameters are traditionally

accounted  for  by  adopting  a  higher  FOS.   However,  FOS  has  been  proved  to  be  an

inadequate tool for quantifying the effects of uncertainty and variability in soil properties

(Duncan 2000).  Hence, it is readily accepted that more reliable tools to incorporate soil

variability  and  uncertainty  into  slope  stability  analysis  are  required.   This  has  led  to  the

development of probabilistic slope stability analysis in the 1970s (e.g. Wu and Kraft 1970;

Alonso 1976; Tang et al. 1976; Vanmarcke 1977b), and this will be discussed later.
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2.2.2 Finite Element Method for Slope Stability Analysis

The finite element method (FEM) is a relatively new but powerful technique for slope

stability analysis.  Although the FEM has been commonly used in deformation analysis of

embankments and other geotechnical problems, it is still not widely used for stability

analysis of slopes as compared with the conventional limit equilibrium methods (Duncan

1996; Griffiths and Lane 1999).  This is because the latter approach is theoretically simple

and the available computer programs can usually provide a quick and accurate estimation

of the FOS of a slope.  In contrast, the FEM involves more complex theory and it usually

requires more time for developing model parameters, performing the computer analyses

and interpreting the results (Duncan 1996).  Despite that, the FEM for slope stability

analysis has several advantages over the conventional limit equilibrium methods, as stated

by Griffiths and Lane (1999):

1. No assumption is required to be made in advance with respect to the shape and location

of the slip surface.  Failure occurs ‘naturally’ through zones where the soil elements

with shear strength that is lower than the applied shear stress.

2. There is no need to make assumptions about internal forces, which appear to be one the

major sources of inaccuracy for some limit equilibrium methods.  The finite element

method preserves global equilibrium until ‘failure’ is reached.

3. The finite element solutions provide information about deformations at pre-failure

stress levels if realistic soil stiffness parameters are used.

4. The finite element method is able to provide information on progressive failure up to

and including overall shear failure.

One of the earliest studies that used the FEM for stability analysis of slopes was conducted

by Smith and Hobbs (1974).  Based on the elasto-plastic soil model, they reported results

of u  =  0  slopes  and  obtained  reasonable  agreement  with  Taylor’s  (1937)  charts.

Meanwhile, studies were conducted by Zienkiewicz et al. (1975) and Griffiths (1980) to

analyse the stability of c -  slopes using the FEM.  These studies also indicated that the

FOS computed by the FEM was in good agreement with that calculated by limit

equilibrium  methods.   Since  then,  more  studies  adopting  the  FEM  for  slope  stability
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analysis have been reported (e.g. Potts et al. 1990; Matsui and Sun 1992; Griffiths and

Lane 1999; Jeremic 2000; Lane and Griffiths 2000; Lechman and Griffiths 2000; Sainak

2004; Zheng et al. 2006; Griffiths and Marquez 2007; Li 2007).

The first published finite element slope stability analysis software was reported in the

second  edition  of  the  text  by  Smith  and  Griffiths  (1988).   This  two-dimensional  (2D),

elasto-plastic finite element software was updated to include a better slope geometry

routine in the third edition of the text (Smith and Griffiths 1998) and extended to three-

dimensional (3D) analysis in the fourth edition of the text (Smith and Griffiths 2004).  This

finite element slope stability analysis software has been rigorously tested and validated

against the limit equilibrium methods by Griffiths and Lane (1999).  They demonstrated

that the computer program can be applied to slopes under different conditions including

undrained clay ( u  = 0) slopes, c –  slopes, layered slopes and slopes with a free surface.

Meanwhile, Lane and Griffiths (2000) used the same computer program to estimate the

stability of a slope under a drawdown condition and comparisons were made with the limit

equilibrium results published by Morgenstern (1963).  Furthermore, Lechman and Griffiths

(2000) analysed the progression of failure within a slope under different loading strategies

using the same computer program.  More recently, Griffiths and Marquez (2007)

conducted studies using the 3D version of the FEM computer program for slope stability

analysis and made comparisons with other available 3D limit equilibrium methods.  The

2D version of this finite element slope stability program will be used throughout this

research.  The theoretical aspects and formulation of the finite element slope stability

model will be discussed in the next chapter.

In addition to the advantages mentioned above, when the FEM is combined with a random

field generator, it is capable of analysing slopes with spatially random soil properties.  This

is due to the nature of the FEM where the entire slope domain is divided into numerous

discrete elements and every single element can be assigned a different random variable by

the random field generator.  The probabilistic analysis methodology that involves

combining random fields with FEM to perform Monte Carlo analysis is called the random

finite element method (RFEM) (Griffiths and Fenton 2004), which is a powerful tool for

considering soil variability in slope stability analysis and this will be discussed later.  In

contrast, the conventional limit equilibrium methods are deficient when explicitly

modelling the spatial or point-to-point variation of soil properties.
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2.2.3 Probabilistic Slope Stability Analysis

As mentioned in Section 2.2.1, deterministic FOS is inadequate for effectively accounting

for the effect of soil variability and other sources of slope stability uncertainty.

Probabilistic analysis has been considered as a more rational approach to account for the

uncertainty and variability of soil properties in geotechnical analyses.  Instead of using

FOS as the measure of the safety of a slope, the probability of failure or reliability index

are often used in probabilistic slope stability analysis (Mostyn and Li 1993; U.S. Army

Corps of Engineers 1995; Wolff 1996).  In the literature, several probabilistic approaches

have been applied to slope stability analysis including the: (1) first order second moment

(FOSM) method; (2) point estimate method (PEM) method; (3) Monte Carlo simulation

(MCS) and (4) random finite element method (RFEM).  These are described briefly in turn

below.

2.2.3.1 First Order Second Moment

The first order second moment (FOSM) method is a relatively simple approach for

accounting for the effects of the variability of the input random variables with respect to a

performance function.   In this case,  the performance function is the FOS equation of the

selected limit equilibrium method (e.g. Bishop’s simplified method of slices, Morgenstern

and  Price’s  method  and  Spencer’s  method).    This  approach  is  based  on  a  Taylor  series

expansion of the performance function at some point to be evaluated.  This expansion is

truncated after the linear term (i.e. first order).  The first two moments (mean and standard

deviation)  of  the  input  parameters  are  used  to  estimate  the  first  two  moments  of  the

performance function (Harr 1987):
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where sFE  and sFVar  are the mean and variance of the factor of safety, Fs,

respectively; ji XX ,Cov  is the covariance between the random variables xi and xj; and n

is the number of random variables.
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The detailed formulations of the FOSM method can be found in several publications (e.g.

Harr 1987; U.S. Army Corps of Engineers 1995; Griffiths et al. 2002b).  The application of

the FOSM method in slope stability analysis has been described by Alonso (1976), Tang et

al. (1976), Vanmarcke (1977b), Li and Lumb (1987), Li and White (1987), Mostyn and

Soo (1992), Christian et al. (1994a) and Duncan (2000), among others.  Although the

FOSM method is relatively simple to implement, it has several limitations.  The accuracy

of the FOSM method diminishes as the nonlinearity of the performance function increases

due to the truncation of the Taylor series after the first order term.  It should be noted that

the FOS equations for most limit equilibrium methods are non-linear in nature.

Furthermore, the FOSM method provides no information about the shape of the probability

density  function  (PDF)  of  the  output  and  the  shape  of  the  PDF  needs  to  be  assumed  in

order to estimate any probability (El-Ramly et al. 2002; Griffiths et al. 2002b).  In addition,

evaluating the partial derivatives in Equation (2.4), for a highly non-linear performance

function, can be cumbersome.  To overcome this problem, U.S. Army Corps of Engineers

(1995) recommends the use of the finite difference approximation of the partial

derivatives.  Duncan (2000) demonstrated that the FOSM could be applied to many

geotechnical problems including slope stability by using this simplified approach.

2.2.3.2 Point Estimate Method

An alternative approach to the FOSM method is the point estimate method (PEM),

developed by Rosenblueth (1975; 1981) and discussed in detail by Harr (1987), Wolff

(1996), U.S. Army Corps of Engineers (1995), and Griffiths et al. (2002b).  In the PEM,

the continuous PDFs for the input random variables are replaced by a set of discrete point

masses, which are located at plus or minus one standard deviation from the mean values.

The discrete point masses are then multiplied by weighted factors to evaluate the first two

moments  of  the  performance  function.   The  PEM  is  a  direct  method  and  it  can  give

reasonably accurate results.  However, the PEM is less popular for slope stability analysis

because the computations become complicated and tedious when there are more than two

random variables to be considered.  Despite that, some researchers have attempted to use

the PEM for probabilistic slope stability analysis (e.g. McGuffey et al. 1982; Nguyen and

Chowdhury 1984; Li 1992; Thornton 1994).  An excellent summary of the accuracy and

limitations of this method has been provided by Christian and Baecher (1999).
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2.2.3.3 Monte Carlo Simulation

Another way to estimate the mean and standard deviation of the performance function is

the use of Monte Carlo simulation (MCS).  Here, random variables are generated based on

their assumed PDF, and the performance function is evaluated for each generated set.  The

process is repeated thousands of times in order to establish the statistic of the performance

function.  The major advantage of this method is that no assumption is required about the

shape of the PDF of the performance function.  In addition, MCS is simpler and more

straightforward in terms of mathematics as compared with the FOSM and PEM.  The

major limitation of the MCS is the extensive computational efforts required.  As a result,

this method is seldom used in practice (El-Ramly et al. 2002).  However, several authors

have attempted to combine limit equilibrium methods with MCS to perform probabilistic

slope stability analysis (e.g. Kim et al. 1978; Nguyen and Chowdhury 1984; Chandler

1996; El-Ramly et al. 2002) to model the uncertainty and variability of the soil properties.

It should be noted that, MSC is gaining popularity due to the recent rapid development in

computing resources.

2.2.3.4 Considerations for Spatial Correlation

The majority of the probabilistic slope stability analyses that have been reported in the

literature, including those mentioned above, have generally ignored the spatial correlation

of the soil properties, except the studies conducted by Vanmarcke (1977b); Li and Lumb

(1987), Mostyn and Soo (1992) and El-Ramly et al. (2002).  In these studies, the spatial

correlation of the soil properties along the critical slip surface has been modelled using a

random field model and the concept of spatial averaging (Vanmarcke 1977a, 1983).  A

reduction in the variance of soil properties was considered, based on the assumed scale of

fluctuation of the soil.  Other studies, however, assumed that the soil property was

represented by a single random variable, which implies that the soil property is perfectly

correlated over the entire slope geometry.  It has been shown that ignoring spatial

correlation of soil properties in probabilistic slope stability analysis could significantly

overestimate the probability of failure (Li and Lumb 1987; Mostyn and Soo 1992; El-

Ramly et al. 2002).
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The main limitation of using limit equilibrium methods for probabilistic slope stability

analysis is that the spatial correlation of properties cannot be accounted for explicitly,

although some authors have attempted to consider it implicitly.  This is due to the inherent

limitation of the limit equilibrium method itself, where uniform soil properties need to be

assumed within each soil layer.  Moreover, previous probabilistic slope stability analyses

have  evaluated  the  probability  of  failure  based  on  the  critical  slip  surface  obtained  from

deterministic analysis.  However, very often, the critical slip surface obtained from the

deterministic analysis may not be the critical slip surface in the probabilistic analysis due

to the spatial variability of the soils.  In fact, the critical slip surface is not always a

traditional circular or wedge shape in a non-homogenous or spatially random soil slope.  It

is more logical that slope failure will occur at locations with low shear strength or ‘weak

zones’ within the slope geometry due to the fact that shear strength generally varies from

one location to another.  Consequently, the critical slip surface can be almost any shape,

depending on the spatial correlation structure of the soil properties.  Hence, for this reason,

the studies that consider spatial correlation of soil properties along the critical slip surface

may be inadequate as well.

2.2.3.5 Random Finite Element Method

To overcome the limitations of the limit equilibrium methods in accounting for the spatial

variability of soil properties, Griffiths and Fenton (2000; 2004) proposed an approach

called the random finite element method (RFEM), which incorporates spatially random soil

profiles into finite element slope stability analysis.  In this approach, the spatially random

soil profiles were generated using the local average subdivision (LAS) method (Fenton

1990; Fenton and Vanmarcke 1990) based on random field theory (Vanmarcke 1977a,

1983).  The non-linear finite element program was based on that developed by Smith and

Griffiths (1998), as previously discussed in Section 2.2.2.  The random field and the finite

element methods were merged together and combined with Monte Carlo simulation to

perform probabilistic analysis of a slope.  The RFEM is a powerful tool for considering the

spatial variability of soil properties in geotechnical problems.  Apart from the applications

in slope stability problems, the RFEM has also been applied to other geotechnical

problems including the bearing capacity of shallow foundations (e.g. Fenton and Griffiths

2000, 2001; Griffiths and Fenton 2001; Griffiths et al. 2002a; Fenton and Griffiths 2003),

settlements of shallow foundations (e.g. Paice et al. 1996; Fenton and Griffiths 2002,
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2005); retaining walls and earth pressure problems (e.g. Fenton et al. 2005; Griffiths et al.

2005), and seepage (Griffiths and Fenton 1993; Fenton and Griffiths 1996, 1997; Griffiths

and Fenton 1997, 1998).  The RFEM will be used for probabilistic slope stability analysis

throughout this research so that the effect of soil variability can be investigated.  The

theoretical aspects and formulation of the RFEM will be discussed in the next chapter.

Although Griffiths and Fenton (2000; 2004) have made a significant contribution in

developing a powerful and advanced method (i.e. RFEM) for considering the spatial

variability of soil properties in probabilistic slope stability analysis, more work is required

to be done so that this method can be readily accepted and used in the practice.  The major

limitation of the RFEM is the theoretical complexity of the method and it is also time

consuming to perform the finite element analysis and Monte Carlo simulation.  Practising

engineers may be delaying in adopting the RFEM for probabilistic slope stability analysis

due to these limitations.  Therefore, there is a need to transform the RFEM solutions into

more  simplified  and  straightforward  solutions,  either  in  the  forms  of  charts  or  simple

equations, which can be readily adopted by practising engineers.  Furthermore, the

available computer model of RFEM is limited to analysing slopes with single-layer soil

profiles, the model is yet to be extended to analyse slopes with layered soil profiles.  The

soil profiles of natural vegetated slopes often consist of distinct layers of soil with different

properties due to natural deposition process.

2.3 Soil Variability

It is well recognised that the properties of natural soils are inherently variable from one

location to another, even within a relatively homogenous deposit.  This is due mainly to the

complex nature of geological deposition process and loading history.  Vanmarcke (1977a)

identified inherent soil variability as one of the three primary sources of uncertainty in soil

property characterisation.  The other two sources of uncertainty are statistical uncertainty

due to limited sampling data and measurement errors which arise from testing equipment

and procedures. Transformation model uncertainty that  is  introduced  when  field  or

laboratory measurements are transferred into design soil properties using empirical or other

correlation models has also been identified as another major sources of uncertainty in

relation to soil property characterisation (Phoon and Kulhawy 1999a, 1999b).  Estimated

soil properties, which are used in geotechnical design and analysis, are affected by the
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above-mentioned sources of uncertainty, as shown in Figure 2.1.  As a result, outcomes of

geotechnical design and analysis are always associated with a certain level of uncertainty

and risk governed by the assumptions made in relation to the input soil  parameters.   The

present research focuses primarily on the effect of inherent soil variability on slope

stability.  The following sections present the techniques used to quantify inherent soil

variability and published data associated with it.

Figure 2.1 Uncertainty in estimation of soil properties (after Kulhawy 1992)

2.3.1 Classical Statistical Characteristic of Soil Properties

Variability or uncertainty in soil properties can be quantified by treating the soil properties

as random variables (e.g. denoted by X and Y).  Instead of having a single deterministic

value, such a soil property will now have a range of values as defined by its probability

density function (PDF).  Several classical statistical measures used for describing random

variables are presented below.

2.3.1.1 Mean of a Random Variable

For a random variable X, with a PDF defined by a function f(x), the mean, X , or expected

value, XE , is defined by:
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dxxfxX XE (2.5)

for continuous functions, or

iX x
n

X 1E (2.6)

for discrete functions, where n is the number of data points.

2.3.1.2 Variance of a Random Variable

The variance measures the dispersion or uncertainty of data about the mean value and is

calculated by:

dxxfxXX XXX
222 EVar (2.7)

for continuous functions, or

2

1
1Var Xix

n
X (2.8)

for discrete functions, , where n is the number of data points.

2.3.1.3 Standard Deviation of a Random Variable

The standard deviation is, X , is related to the variance, XVar , by:

XX Var (2.9)



18 Chapter 2.  Literature Review

2.3.1.4 Coefficient of Variation of a Random Variable

Variability of soil properties is often expressed by the parameter known as the coefficient

of variation, COV, which is the ratio of the standard deviation to the mean value, as given

by:

X

XCOV (2.10)

In the literature, many researchers have reported values of COV for various soil properties,

which will be discussed later.

2.3.1.5 Correlation of Two Random Variables

If a pair of random variables (e.g. X and Y) depends on each other, the variables X and Y

are considered to be correlated, and their correlation is measured by the covariance,

YX ,Cov , as described by:

YX YXYX E,Cov (2.11)

for continuous functions, or

YiXi yx
n

YX 1,Cov (2.12)

for discrete functions, where n is the number of data points.

The coefficient of correlation, YX , is obtained by normalising the covariance by the

standard deviation of variables X and Y, as given by:

YX
YX

YX ,Cov
(2.13)
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The correlation coefficient is bounded by –1 and +1 (i.e. 11 YX ), where 1YX

indicates a perfect correlation between the variables X and Y (either positive or negative),

while 0YX  indicates the two random variables are linearly independent.

2.3.1.6 Probability Density Function

The probability density function (PDF) defines the distribution of a random variable and

the most commonly used PDFs in geotechnical applications are the normal and lognormal

distributions.  For example, Lumb (1966) used the 2 test, and data from vane shear tests

and unconfined compression tests, to show that the undrained shear strength, su, follows a

normal distribution.  Similar findings about su have also been reported by other researchers

(e.g. Hooper and Butler 1966; Chiasson et al. 1995).  Lumb (1966) also demonstrated that

normal distributions were suitable for other soil properties (e.g. effective cohesion and

friction  angle).   The  applicability  of  the  normal  distribution  for  soil  properties  was  also

supported by Lee et al. (1983).  In contrast, Brejda et al. (2000) found it difficult to fit a

normal distribution to sampled soil properties, but a lognormal distribution showed a better

fit to their data.  Fenton (1999) also pointed out that most soil properties are strictly non-

negative, in that case a lognormal distribution is more suitable.  He assumed that the cone

tip resistance was lognormally distributed.  In addition, there are available field data that

indicate some soil properties are well represented by a lognormal distribution (e.g.

Hoeksema and Kitanidis 1985; Sudicky 1986; Cherubini 2000).  Other distributions such

as triangular, beta and gamma distributions are also gaining popularity (Abramson et al.

2002; Baecher and Christian 2003).

The PDF for the normal distribution with mean, , and standard deviation, , is defined by:

2

2
1exp

2
1 xxf (2.14)

The normal distribution is in a bell shape which is symmetrical about the mean value, and

the random variable can take on values between -  to + .  Despite this vast range, 99.7

percent of the values will be found within 3  of the mean (Abramson et al. 2002).

Thus, 99.7 percent of the values will be positive if the mean value is positive and is at least
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greater than 3 .  Figure 2.2 shows a typical normal distribution for undrained shear

strength, su, with a mean of 100 kPa and standard deviation of 50 kPa (i.e. COV = 0.5).

For a lognormally distributed random variable, X, with a mean, X , and a standard

deviation, X , its natural logarithm, ln(X), will be normally distributed.  The mean and

standard deviation of the normally distributed ln(X) are given by:

2
ln2

1
ln ln XXX (2.15)

and

2
ln COV1ln XX (2.16)

The PDF of a lognormal distribution is then given by:

2

ln

ln

ln

ln
2
1exp

2
1

X

X

X

x
x

xf (2.17)
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Figure 2.2 Normal and lognormal distributions of undrained shear strength, su, with

mean of 100 kPa and standard deviation of 50 kPa (COV = 0.5)
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The lognormal distribution ranges between zero and infinity, thus includes no negative

values.  A typical lognormal distribution for undrained shear strength, su,  with a mean of

100 kPa and standard deviation of 50 kPa (i.e. COV = 0.5) is also plotted in Figure 2.2,

together  with  the  normal  distribution  that  has  the  same  mean  and  standard  deviation,  as

previously mentioned.  Rearrangement of Equations (2.15) and (2.16) will give the mean

and standard deviation of the lognormal field:

2
ln2

1
lnexp XXX (2.18)

1exp 2
ln XXX

(2.19)

The median and the mode of a lognormal distribution is related to a normal distribution by:

XX lnexpMedian (2.20)

2
lnlnexpMode XXX (2.21)

2.3.2 Spatial Variability of Soil Properties

The inherent variations in soil properties from point to point is not a completely random

process, rather it is spatially correlated and is controlled by location in space.  The

magnitudes of a soil property at two adjacent locations are likely to be strongly correlated.

As the distance between the two locations increases, the correlation weakens until it

vanishes.  Vanmarcke (1977a) pointed out that such spatial correlation should be

considered in modelling of soil properties.

The spatial variation of soil properties, xi, at any locations, i,  can  be  divided  into  a

deterministic trend component, ti,  and  a residual component, i, (Vanmarcke 1977a;

DeGroot and Baecher 1993; Baecher and Christian 2003), as shown in Figure 2.3, and

described by:

xi = ti + i (2.22)
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The trend component represents the change in average soil properties as a function of

location.  In practice, the trend function is often estimated using regression analysis.  The

method of ordinary least squares is the most widely used method for trend estimation in

geotechnical literature (Lumb 1974; DeGroot 1996; Baecher and Christian 2003), with

polynomial trends to order 4 being reported.

Figure 2.3 Dilatometer lift-off pressure reading P0 versus depth: (a) measured data

points; (b) linear fit and linear regression lines (after DeGroot 1996)

The residual component is the random variation from the trend, which can be estimated

from the scatter of observations around the trend.  This residual component is commonly

modelled as a stationary random field with a probability density function of zero mean and

constant variance (Vanmarcke 1977a; DeGroot and Baecher 1993; Baecher and Christian

2003).  A random field is considered to be stationary if (Brockwell and Davis 1987):

The mean is constant with distance (i.e. no spatial tend in the data);

The variance is constant with distance (i.e. homoscedastic);

There are no seasonal variations; and
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There are no irregular fluctuations.

Since the trend is considered deterministic, spatial variability is concerned with the

correlation between residuals. Random field theory (Vanmarcke 1977a, 1983) is the most

commonly used mathematical technique for modelling the spatial variability of soil

properties.  In a stationary random field, i.e. a soil profile with constant mean trend and

whose properties vary spatially, the soil property can be described stochastically using

three parameters (Vanmarcke 1977a): (i) the mean; (ii) the standard deviation (or the

variance); and (iii) the scale of fluctuation.  The mean and the standard deviation are the

point statistical measures with no consideration of their spatial correlation structure.  The

scale of fluctuation (SOF) was introduced as an additional statistical parameter for

describing the spatial correlation of soil properties.  The SOF is defined as the distance

within  which  the  soil  properties  show strong  correlation  from point  to  point  (Vanmarcke

1977a).  Thus, a large value of SOF implies a smoothly varying field, suggesting a more

continuous soil mass, while a small value of SOF implies one that varies more randomly.

2.3.2.1 Autocovariance and Autocorrelation Function

The spatial correlation of soil properties can be described by the statistical measures called

the autocovariance, kc , and autocorrelation coefficient, k , which measure the similarity

between data separated by a lag distance, k, as given by:

XXXXXXc kiikiik E,Cov (2.23)

and

0c
ck

k (2.24)

where 0c  is the autocovariance at lag 0.  At a separation or lag distance of k = 0, the

residuals are the same and the autocovariance reduces to the variance of the data, XVar .

Therefore, Equation (2.24) can be re-written as follow:
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X
XXXX

X
XX kiikii

k Var
E

Var
,Cov

(2.25)

The plots of autocovariance and autocorrelation coefficient against lag distance, k, are

known as the autocovariance function and autocorrelation function, respectively.

Monotonically decaying functions are usually used to describe the autocovariance and

autocorrelation functions.  The exponential and Gaussian (squared exponential) are the

functions that are most commonly used in practice (Vanmarcke 1977a, 1983; Li and White

1987; DeGroot 1996; Lacasse and Nadim 1996), as given by Equations (2.26) and (2.27),

respectively:

0/|| kk
k e (2.26)

2
0 )/( kk

k e (2.27)

where 0k  is called the autocorrelation distance,  which  is  the  distance  at  which  the

autocorrelation function decays from 1 to 1/e (i.e. 0.3679) (DeGroot 1996; Lacasse and

Nadim 1996).  For the exponential and Gaussian autocorrelation function, the SOF is equal

to 2 and  (i.e. 1.77) times the autocorrelation distance, respectively (Vanmarcke 1977a,

1983).

2.3.2.2 Spatial Average and Variance Function

The spatial variability of soil properties has been included in geotechnical analysis through

the concept of spatial or local averaging (Vanmarcke 1977a, 1983).  It is assumed that

geotechnical performance is controlled by the average soil properties rather than soil

properties at discrete locations.  For example, the stability of a slope tends to be controlled

by the average shear strength rather than the shear strength at a particular location along

the slip surface (Li and Lumb 1987).  As a result, local averages over a spatial domain are

of more interest than the point-to-point variation in a random field.  The process of spatial

averaging results in a reduction of variance because the fluctuations in soil properties tend

to  cancel  out  within  the  averaging  domain.   This  implies  that  the  variance  of  an  average

soil property is usually less than the variance of its point property.  Vanmarcke (1977a)
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proposed the dimensionless variance function, 2 , to measure the reduction in the point

variance under local averaging, as given by:

2

2
T2 T (2.28)

where 2
T = the variance of the soil property spatially averaged over an averaging domain

T; 2  = the point variance.  At relatively large values of T, the variance function will take

the following form (Vanmarcke 1977a):

T
T2 (2.29)

where  = scale of fluctuation.  Equation (2.29) can be re-written to give the expression for

scale of fluctuation:

TT2 (2.30)

Vanmarcke (1977a) proposed that the variance function may be approximated by the

following expression:

T
T

T1
T2 (2.31)

This model indicates that no reduction to the point variance is required if the averaging

domain is smaller than or equal to the scale of fluctuation.

2.3.3 Published Data for Inherent Soil Variability

Limited in-situ soil data, in most practical cases, is the obstacle for incorporating the

spatial variability of soil properties into geotechnical design and analysis.  However, in the

absence of adequate data, the statistical parameters of soil data can be estimated from the

values published in the literature.  Extensive efforts have been made by several
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investigators to compile the values of coefficient of variation (COV) for various soil

properties.   For  example,  Lee  et  al.  (1983)  compiled  reported  values  of  COV for  a  wide

variety of soil properties, and the soil properties that are relevant to slope stability analysis

are summarised in Table 2.1.  In addition, Lacasse and Nadim (1996) have also published a

table of suggested PDF and COV for various soil properties, as shown in Table 2.2.

Table 2.1 Typical values for coefficient of variation (after Lee et al. 1983)

Table 2.2 Typical values for coefficient of variation (after Lacasse and Nadim 1996)
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Furthermore, Phoon and Kulhawy (1999a) produced suggested guidelines of COV for

inherent soil variability based on a comprehensive review on various test measurements, as

shown in Table 2.3.  Other researchers (e.g. Lumb 1966; Asaoka and Grivas 1982; Soulie

et al. 1990; Chiasson et al. 1995) also reported values of COV based on in-situ testings.

The scale of fluctuation (SOF) and autocorrelation distance is less well documented in the

literature as compared with the values of COV, especially in the horizontal direction.

Despite that, Phoon and Kulhawy (1999a) have reported values of SOF, as summarised in

Table 2.4.  It can be seen that vertical SOF generally ranges between 0.1 and 12.7 m, while

horizontal SOF generally ranges between 3 and 80 m.  It is also noted that the horizontal

SOF is much higher than the vertical SOF (i.e. at least 10 times).  This is due mainly to the

nature of the soil and geological deposition process.

2.4 Effects of Vegetation on Slope Stability

2.4.1 Background

Incorporating the effects of vegetation in slope stability analysis was first attempted in the

1960s although grass, shrubs and trees have been used to stabilise slopes for many years.

Vegetation has been traditionally considered to have a minor effect on the stability of

slopes, and it is usually ignored in conventional slope stability analysis.  This assumption

has been proved not always to be correct.  Terzaghi (1950) considered deforestation to be a

possible cause of the landslide that occurred in 1915 at Hudson, New York.  Although the

effect of vegetation had been qualitatively appreciated at that time, the influences of

vegetation were only well recognised after the pioneer quantitative research on this subject

by several investigators (Bethlahmy 1962; Bishop and Steven 1964; Endo and Tsuruta

1969).  Bethlahmy (1962) and Bishop and Stevens (1964) quantitatively investigated the

effects of timber harvesting on the stability of slopes.  Bishop and Stevens (1964) noted a

significant increase in the frequency of landslides after forest clearing.  Endo and Tsuruta

(1969) determined the reinforcing effect of tree roots on soil shear strength through large-

scale, in-situ direct shear tests on soil blocks containing live tree roots.  These pioneer

studies all showed that vegetation has a significant influence on the stability of slopes.

Since then, research on this topic has continued to become more widespread.
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Table 2.3 Suggested guidelines for inherent soil variability

(after Phoon and Kulhawy 1999a)
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Table 2.4 Summary of scale of fluctuation of some geotechnical properties

(after Phoon and Kulhawy 1999a)

2.4.2 Influences of Vegetation

The influences of vegetation can be generally classified into hydrological and mechanical

effects.  Hydrological effects refer to the modification of soil moisture content caused by

the hydrological cycle when vegetation is present.  Mechanical effects arise from the

physical interaction between the vegetation and the soil slope, i.e. soil-vegetation

interaction.  The following sections briefly discuss these effects and a more comprehensive

review on this subject can be found in many publications (e.g. Gray and Leiser 1982;

Greenway 1987; Coppin and Richards 1990; Gray and Sotir 1996).

2.4.2.1 Hydrological Effects

Vegetation may influence the soil moisture content in several ways.  The foliage intercepts

part of the rainfall and from there it evaporates back to the atmosphere.  This process

ultimately  reduces  the  amount  of  rainfall  that  infiltrates  into  the  soil  slope.   In  addition,
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plant roots extract moisture from the soil through the process of transpiration.  The

evaporation of intercepted rainfall from the plant surface and the removal of moisture from

a plant by transpiration are often known as the process of evapotranspiration (Coppin and

Richards 1990).  Rainfall interception and evapotranspiration by plants have the effect of

reducing the soil moisture content, which leads to a decrease of pore water pressure in

saturated soils or an increase in matric suction in unsaturated soils.  Both the decrease of

pore water pressure and increase of matric suction will ultimately improve the stability of a

slope by increasing the effective stress and hence soil shear strength.

Many studies have shown that vegetation has a significant influence on the soil moisture

content and soil suction.  Biddle (1983) conducted soil moisture studies near five tree

species growing in clayey soils in the UK.  The species investigated were poplar, horse

chestnut, lime, silver birch and cypress.  Soil moisture was measured by means of a

neutron moisture meter extending to a maximum depth of 4 m below ground surface.  The

results showed that poplar trees caused the deepest drying effect to a depth of 4 m, and the

drying effect extended to a radius equal to the height of the tree, as shown in Figure 2.4.

The average height of the poplar trees studied was 17 m.

Richards et al. (1983) measured the total soil suction for a site in Adelaide, South

Australia, which was affected by three different species of tree (i.e. eucalypts, casuarinas

and pines).  It was found that, for all tree species, soil suctions were significantly higher

near the trees than in adjacent land without trees.  More recently, similar studies were

carried out by other researchers (e.g. Cameron 2001; Jaksa et al. 2002; Blight 2005).

These  studies  together  showed  that  soil  moisture  content  and/or  soil  suction  were

significantly influenced by vegetation.

Although the ability of vegetation to reduce soil moisture is well recognised, its influence

on the stability of slopes has yet to be quantified.  In the literature, most studies assume

that the major effects of vegetation on slope stability are mechanical rather than

hydrological (e.g. Wu et al. 1979; Gray and Leiser 1982; Coppin and Richards 1990).  It is

generally accepted that root reinforcement is the most important factor to be considered in

assessing the effect of vegetation on the stability of slopes.  The hydrological effects are

often considered to have a minimal or negligible influence on slope stability.
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However, recent field studies by Simon and Collision (2002) have demonstrated the

importance of the hydrological effects of riparian vegetation in controlling riverbank

stability.  They measured the pore water pressure and matric suction in soils, and the

response to rainfall over one cycle of a dry and wet period (i.e. 14 months), under different

vegetation covers.  Based on field data, their stability analysis results showed that the

significance of hydrological effects on riverbank stability depended on the types of

vegetation and antecedent rainfall.  It was found that trees are more efficient in removing

soil moisture and preventing rainfall infiltration into soils compared to grasses.  It was also

shown that the beneficial effect of hydrological factors was more significant in the dry

period than in the wet period.

Figure 2.4 Reductions in soil moisture near a Poplar tree growing in boulder clay

(after Biddle 1983)

2.4.2.2 Mechanical Effects

Plant  roots  can  reinforce  the  soil  due  to  their  tensile  strength  and  adhesional  properties.

The inclusion of plant roots with high tensile strength increases the confining stress in the

soil mass by its closely spaced root matrix system.  The soil mass is bound together by the

plant roots and the soil shear strength is increased by providing additional apparent
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cohesion to the soils (Coppin and Richards 1990).  Over the past three decades, a

significant amount of work has been done to quantify the effect of root reinforcement and

this will be discussed later.

The weight of large trees may give an additional surcharge to the slope, hence, increases

both the down-slope forces and confining stress of the soil at the potential slip surface.

The effect of surcharge could be either adverse or beneficial depending on the location of

the trees (Coppin and Richards 1990).  If trees are located at the top of slope, the overall

stability of the slope will be reduced due to the increase in down-slope forces.  On the

other hand, if trees are located at the bottom or toe of slope, the stability of slope will be

improved due to the fact that the additional vertical load will increase the frictional

component of the soil shear strength.  In the literature, the total weight of the trees growing

on  a  slope  is  usually  considered  to  be  uniformly  distributed.   For  example,  Bishop  and

Stevens (1964) estimated an average surcharge of 2.5 kPa for Sitka Spruce (Picea

sitchensis) forest cover, Greenway (1987) reported an average surcharge of 0.5 kPa for

Candlenut (Aleurites moluccana) trees on slopes in Hong Kong and Wu et al. (1979)

computed an average value of 3.8 kPa for Sitka Spruce trees in Alaska.

Furthermore, large trees may be subjected to wind loading which increase the driving

forces acting on the slopes.  It has been found that the pressure exerted on a tree by wind

can be transmitted to the soil as increased loading which ultimately reduces its resistance to

failure  (Hsi  and  Nath  1970;  Brown and  Sheu  1975).   The  wind  force  acting  on  the  trees

may create a destabilising moment to the slope if the magnitude of the wind is sufficiently

large.

Large tree roots may also penetrate deeply into the firm strata causing them act as

stabilising piles.  When the anchored tree roots are closely spaced they may also yield

buttressing and arching effects, which ultimately restrain the downhill movement of the

slope and improve slope stability (Gray 1978; Coppin and Richards 1990).  Wang and Yen

(1974) developed a theoretical model for soil arching in long slopes created by piles or

trees.   They  showed  that  soil  arching  would  be  developed  when  the  piles  or  trees  are

spaced within a critical spacing, which is a function of soil properties (i.e. c  and ), slope

angle and the at-rest earth pressure.
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The effects of buttressing and arching, surcharge, and wind loading are usually considered

only in the case of large trees, since these effects are insignificant for small trees, shrubs

and grasses.  Although the mechanical effects of vegetation comprise various aspects as

discussed above, the available literature has generally focused on investigating the

influence  of  root  reinforcement  on  the  stability  of  slopes.   This  is  a  reasonable  trend

because root reinforcement has been considered as one of the most cost effective slope

stabilisation methods nowadays.

2.4.3 Quantifying Effect of Root Reinforcement

2.4.3.1 Enhanced Soil Shear Strength

The presence of plant roots in soils can be analogous to reinforced concrete, where the

inclusion of high tensile strength materials (i.e. steel bars) is used to enhance the tensile

and shear strength of concrete.  Soils reinforced by plant roots behave as a composite

material in which the root matrix system tend to bind the soil together in a monolithic mass

and contribute to an increase in soil shear strength by an additional apparent cohesion, cr

(Endo and Tsuruta 1969; Waldron 1977; Wu et al. 1979).  However, plant roots have a

negligible effect on the friction angle of soils due to their random orientation (Gray and

Leiser 1982).  Hence, the enhanced soil shear strength due to root reinforcement, s , can

be considered equivalent to the increase in apparent soil cohesion, cr, as shown in Figure

2.5.  As a result, the Mohr-Coulomb equation can be modified as follows (Coppin and

Richards 1990):

tan)( uccs nr (2.32)

where s = shear strength of the soil; c  = effective soil cohesion; n = normal stress; u =

pore water pressure; and  = effective friction angle.

Many studies have been conducted to quantify the contribution of root reinforcement to

soil shear strength.  These studies include in-situ direct shear tests on soil blocks with plant

roots (e.g. Endo and Tsuruta 1969; O'Loughlin 1974b; Ziemer 1981; Abe and Iwamoto

1988; Wu et al. 1988a; Nilaweera 1994; Wu and Watson 1998; Abernethy 1999;
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Abernethy and Rutherfurd 2001), and laboratory direct shear tests of soils with roots (e.g.

Waldron 1977; Waldron and Dakessian 1981, 1982; Waldron et al. 1983; Terwilliger and

Waldron 1990, 1991) or soils reinforced by fibres that simulate roots (e.g. Gray and

Oshashi 1983; Jewell and Wroth 1987; Wu et al. 1988b; Shewbridge and Sitar 1990,

1996).

These studies together give evidence on the increase in soil shear strength due to root

reinforcement.  It was generally found that the increase in soil shear strength due to root

reinforcement is directly proportional to the root density.  For example, Ziemer (1981)

showed that the shear strength of California sand containing pine roots increased linearly

with the root density, as shown in Figure 2.6.  Gray and Leiser (1982) also showed that the

increase in shear strength with increase in root density for various vegetation species and

plastic fibres (Figure 2.7).

s

s

Figure 2.5 Effect of root reinforcement on the shear strength of soil

(after Coppin and Richards 1990)
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Figure 2.6 Shear strength of root-permeated sand as a function of root density

(after Ziemer 1981)

Figure 2.7 Comparison of shear strength increase due to root/fibre reinforcement

(after Gray and Leiser 1982)
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2.4.3.2 Root Density and Depth

Root density is commonly measured by the term known as root area ratio, RAR, which is

defined as the ratio of the total cross-sectional area that is occupied by all roots in a given

cross-section of soil, Ar, to the total cross-sectional area of the soil being considered, A.

RAR can be determined by counting roots by size classes within a given soil area and

usually only roots less than 15 mm to 20 mm in diameter are counted (Coppin and

Richards 1990):

A

an

A
A iirRAR (2.33)

where ni = number of roots in size class i; and ai = mean cross-sectional area of roots in

size class i.

The depth of root systems varies significantly with vegetation species and their growing

environments (Greenway 1987).  About 60–80% of grass roots are found in the top 50 mm

of soil (Coppin and Richards 1990).  For trees and shrubs, the most widely reported range

was 1–3 m (Kozlowski 1971).  However, deeper root systems had been reported, for

example, William and Pidgeon (1983) reported gum tree rooting to 27.5 m.  In North

America, the depth of rooting is constrained by bedrock at relatively shallow depths (less

than 2 m) in many slopes (Schmidt et al. 2001).

Recently, Abernethy and Rutherfurd (2001) conducted a field study to investigate the

effect of two Australian riparian trees (i.e. river red gum and swamp paperbark) on

riverbank stability at the lower Latrobe River, Victoria.  Their field data showed that the

range of RAR for the two tree species was found between 0.001% and 0.76%.  They also

found that RAR decreases as the depth from the soil surface and the distance from the tree

trunk  increases,  as  shown  in  Figure  2.8.   It  can  be  seen  that  the  root  systems  of  swamp

paperbark and river red gum extend to a depth of 1.2 m and 2.0 m, respectively.

Simon and Collision (2002) also conducted a similar field study to investigate the effect of

four riparian tree species (i.e. black willow, sweetgum, river birch and sycamore) and two

grass species (i.e. switch grass and gamma grass) on riverbank stability in northern

Mississippi.  It was found that switch grass has the highest RAR (0.014% averaged over
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the upper 1 m of soil), followed by river birch and sycamore (0.010% and 0.012%).  For

black willow, sweetgum and gamma grass the figures were 0.0087%, 0.0056% and

0.0044% respectively.

The RARs found in the two recent studies (i.e. Abernethy and Rutherfurd 2001; Simon and

Collision 2002) are consistent with the results from other previous studies. Typical values

of RAR reported by Coppin and Richards (1990) were 0.14–0.93% for tree roots in the 5 to

10 mm diameter class; 0.05–0.17% for Rocky Mountain douglas fir; and 0.1–0.8% for

barley.

Figure 2.8 Root area ratio against depth for different distance from the tree trunk:

(a) swamp paperbark and (b) river red gum

(after Abernethy and Rutherfurd 2001)

2.4.3.3 Root Tensile Strength

The tensile strength of tree roots can be measured by tensile tests in the laboratory or in-

situ and has been investigated by many researchers.  Most authors reported a wide
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variation in the root tensile strength depending on species, growing environment, root

diameter, and orientation.  Coppin and Richards (1990) provided a summary of root tensile

strength for different species of plant based on the source from O’Loughlin and Watson

(1979) and Schiechtl (1980), as shown in Table 2.5.  It can be seen that the root tensile

strength for grasses and herbs vary from 0.0 to 86.5 MPa, whereas for trees and shrubs the

values vary from 5 to 68 MPa.

Table 2.5 Root tensile strength for selected plant species

(after Coppin and Richards 1990)

Tensile strength (MPa)

Grasses and herbs

Elymus (Agropyron) repens (Cough grass) 7.2–25.3
Campanula trachelium (Bellflower) 0.0–3.7
Convolvulus arvensis (Bindweed) 4.8–21.0
Plantago lanceolata (Plantain) 4.0–7.8
Taraxacum officinale (Dandelion) 0.0–4.4
Trifolium pratense (Red Clover) 10.9–18.5
Medicago sativa (Alfalfa) 25.4–86.5

Trees and shrubs

Alnus incana (Alder) 32.0
Betula pendula (Birch) 37.0
Cytisus scoparius (Broom) 32.0
Picea sitchensis (Sitka Spruce) 23.0
Pinus radiata (Radiata Pine) 18.0
Populus nigra (Black Poplar) 5.0–12.0
Populus euramericana (Hybrid Poplar) 32.0–46.0
Pseudotsuga menziesii (Douglas Fir) 19.0–61.0
Quercus robur (Oak) 32.0
Robinia pseudoacacia (Black Locust) 68.0
Salix purpurea (Willow) 36.0
Salix cinerea (Sallow) 11.0

There is direct evidence that root tensile strengths vary significantly with root diameter.

Most investigators reported a decrease in root tensile strength with increasing root diameter

(Wu et al. 1979; Nilaweera and Nutalaya 1999; Abernethy and Rutherfurd 2001; Simon

and Collison 2002).  Figures 2.9 and 2.10 show the relationship between the root tensile
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strength and root diameter reported in the field studies conducted by Abernethy and

Rutherfurd (2001) and Simon and Collinson (2002), respectively.  Both studies showed

that root tensile strength decrease exponentially with root diameter and the majority of the

measured tensile strengths were within the range reported by Coppin and Richards (1990).

Figure 2.9 Relationship between root tensile strength and root diameter for two

Australian riparian species (after Abernethy and Rutherfurd 2001)

Figure 2.10 Relationship between root tensile strength and root diameter for six

vegetation species in Northern Mississippi (after Simon and Collison 2002)
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2.4.3.4 Root Reinforcement Model

A simple perpendicular root reinforcement model was developed by Wu et al. (1979) for

predicting the increase in shear strength of soil due to the presence of tree roots.  This

model assumes that a flexible elastic root extends across a potential sliding surface in a

slope  (Figure  2.11).   When  the  root  distorts  within  the  shear  zone  a  tensile  force  is

developed in the root.  This force can be resolved into normal and tangential components.

The normal component increases the confining stress on the shear plane, while the

tangential component directly resists the shear.  The increase in shear strength of soil, s ,

predicted by this model is given by the following equation:

sintancos
A
ATs r

r (2.34)

where Tr =  mean tensile  strength  of  the  roots;
A
Ar  = fraction of soil cross-sectional area

occupied by roots (i.e the root area ratio, RAR);  = shear distortion angle; and  = friction

angle of the soil.

Figure 2.11 Perpendicular root reinforcement model (after Wu et al. 1979)

Observations from the field and laboratory tests indicate that the shear distortion angle, ,

is  most  likely  to  fall  within  the  range  40  to 70  in most practical situations (Gray and
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Leiser 1982).  Wu et al. (1979) showed that the second bracketed term in Equation (2.34)

is relatively insensitive to normal variations in  and , as it varied only from 1.0 to 1.3 for

25  <  <  40  and 40  <  <70 .  Hence, an average value of 1.2 was suggested and

Equation (2.34) may be rewritten as follows:

A
ATs r

r2.1 (2.35)

The assumption of initial root orientation being perpendicular to the shear plane has

received some attention in the literature.  In nature, tree roots may be inclined at many

different angles to the sliding plane.  Laboratory direct shear tests on fibre reinforced soils

conducted by Gray and Ohashi (1983) have shown that a perpendicular orientation is not

optimal.  Roots with an initial orientation of 60  to the shear surface yield the greatest

increase in shear strength in most sands.  However, they showed that perpendicular

orientations of reinforcing fibres provided comparable reinforcement to randomly oriented

fibres.  This finding generally supports the use of the simple perpendicular root

reinforcement model in practical applications where tree roots are most likely to be

randomly oriented within a soil slope.  Although other root reinforcement models have

been developed since then, such as the inclined root reinforcement model (Gray and Leiser

1982) and the cable and pile model (Wu et al. 1988b), the perpendicular root reinforcement

model still remains widely used because of its simplicity and accuracy.

The perpendicular root reinforcement model assumes that the failure mode for the roots is

a tensile failure so that the tensile strength of the roots is fully mobilised.  Pullout or bond

failure must be prevented for this assumption to be valid.  The minimum root length, Lmin,

required to prevent pullout is given by (Wu et al. 1979):

b

r dTL
4min (2.36)

where Tr = root tensile strength; d = root diameter; and b  = limiting bond stress between

the root and the soil.
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2.4.3.5 Published Data for Root Cohesion

As discussed in Section 2.4.3.1, the increase in shear strength of soil due to root

reinforcement is equivalent to an additional apparent cohesion, which is also known as root

cohesion, cr, and this value can be estimated based on three different methods: (1) the

perpendicular root reinforcement model with the available root density and tensile strength

information;  (2)  field  or  laboratory  direct  shear  tests;  and  (3)  back  analysis  on  failed

slopes.  With the estimated value of root cohesion, cr, the increase in factor of safety (FOS)

of a slope can be calculated accordingly using routine slope stability analysis methods.

The incorporation of root cohesion in routine slope stability analysis methods is discussed

later.  In the literature, many investigators have estimated the value of root cohesion for

different vegetation species growing in different environments, these typical values are

summarised in Table 2.6.  It is noted that the typical values for cr vary from 1.0 to 94.3 kPa

depending on the vegetation species and environments.  However, the majority of the

values fall within the range of 1.0–20.0 kPa.  It should be noted that most of these

published values were derived from data averaged over the entire soil profile that was

affected by vegetation and did not account for any spatial variability.  The spatial

variability of root cohesion is discussed next.

2.4.3.6 Spatial Variability of Root Cohesion

Root cohesion is spatially variable because the species, age, size, and spacing of trees are

usually non-uniform on a slope.  Recent field studies conducted by Abernethy and

Rutherfurd (2001), at the lower Latrobe River, Australia, indicated that root area ratio,

RAR, for two Australian riparian species varied both vertically and laterally, as previously

discussed in Section 2.4.3.2 (see Figure 2.8).  Based on the measured values of RAR and

root tensile strength, they calculated the corresponding values of root cohesion, cr, using

the perpendicular root reinforcement model.  Simple linear regression expressions for cr

were developed for the two tree species being investigated (Abernethy and Rutherfurd

2001).  For the river red gum:

70.02333.1099.0920.4 rec DC
r (2.37)
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Table 2.6 Typical values for root cohesion, cr

Investigators Vegetation cr (kPa)

Endo and Tsuruta (1969)2 Alder (Japan) 2.0–12.0

Swanston (1970)3 Hemlock, spruce (Alaska, USA) 3.4–4.4

O'Loughlin (1974a)3 Conifers (British Columbia, Canada) 1.0–3.0

Burroughs and Thomas (1977) 1 Conifers (Oregon, USA) 3.0–17.5

Wu et al. (1979)1 Conifers (Alaska, USA) 5.9

Gray and Megahan (1981)3 Ponderosa pine, Douglas-fir (Idaho, USA) 2.8–6.2

Waldron and Dakessian (1981) 2 52-month-old yellow pine (Laboratory) ~5.0

Waldron et al. (1983)2 54-month-old yellow pine (Laboratory) 3.7–6.4

Ziemer (1981)2 Lodgepole pine (California, USA) 3.0–21.0

Sidle and Swanston (1982) 3 Blueberry, devils's club (Alaska, USA) 2.0

Riestenberg and Sovonick-Dunford (1983) 1 Sugar maple forest (Ohio, USA) 6.2–7.0

Wu (1984a)1 Sphagnum moss (Alaska, USA) 3.5–7.0

Wu (1984b)1 Hemlock, sitka spruce (Alaska, USA) 5.6–12.6

Abe and Iwamoto (1986)2 Japanese cedar (Japan) 1.0–5.0

Buchanan and Savigny (1990) 3 Grasses, sedges, shrubs, sword fern (USA) 1.6–2.1

Red alder, hemlock, Douglas-fir, cedar 2.6–3.0

Abernethy and Rutherfurd (2001)1 River red gum (Victoria, Australia) 10.0

Swamp paperbark 19.0

Schmidt et al. (2001)1 Natural forest - conifers (Oregon, USA) 25.6–94.3

Industrial forest - hardwood 6.8–23.2

<11-year-old clearcuts 1.5–6.7

Simon and Collision (2002)1 Sycamore (Mississippi, USA) 7.0

River birch 8.0

Sweetgum 4.0

Gamma grass 6.0

Black willow 2.0

Switch grass 18.0
1Based on perpendicular root reinforcement model with measurements of root density and tensile strength
2Based on direct shear tests
3Based on back analysis
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For swamp paperbark:

63.02891.1540.0769.4 rec DC
r (2.38)

where C = distance from the tree trunk (m); and D = depth below the soil surface (m).

Based on the developed linear regression expressions, Abernethy and Rutherfurd (2001)

plotted isopleths of root cohesion, cr, for river red gum and swamp paperbark, as shown in

Figures 2.12 and 2.13, respectively.  It can be seen that the root cohesion reduces

dramatically with depth and with distance from the tree trunk.

Other field studies conducted by Schmidt et al. (2001) and Roering et al. (2003), at the

Oregon Coast Range, USA, also indicated that the spacing, size and condition of trees

controlled the spatial pattern of root network and root strength.  It was found that the

median lateral root cohesion, cr, ranges from 6.8–23.2 kPa in industrial forests with

significant deciduous vegetation and ranges from 25.6–94.3 kPa in natural forests

dominated by coniferous vegetation.  It was also found that root cohesion after forest

clearing  was  uniformly  less  than  10  kPa.   In  their  study  sites,  it  was  observed  that

landslides tend to occur in areas of reduced root strength.

Although spatial variability of root cohesion is well recognised and is verified by recent

field measured data, many researchers have ignored it in the past, when considering root

reinforcement in slope stability analysis (e.g. Wu et al. 1979; Greenway 1987; Collison et

al. 1995; Collison and Anderson 1996), which will be further discussed later.  An average

root cohesion, which was most probably estimated from an individual tree, was applied to

entire slope in the slope stability analysis.  This assumption may underestimate or

overestimate  the  root  cohesion,  hence,  gives  an  incorrect  prediction  of  the  safety  of  the

slope.   Therefore,  there  is  a  need  to  quantify  the  spatial  variability  of  root  cohesion  and

consider its effects on slope stability.
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Figure 2.12 Root cohesion, cr (kPa), due to river red gum root reinforcement

(after Abernethy and Rutherfurd 2001)

Figure 2.13 Root cohesion, cr (kPa), due to swamp paperbark root reinforcement

(after Abernethy and Rutherfurd 2001)
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2.4.4 Modelling Effects of Vegetation on Slope Stability

Most researchers have used conventional limit equilibrium methods to quantify the effects

of vegetation on the stability of slopes (e.g. Wu et al. 1979; Greenway 1987; Collison et al.

1995; Collison and Anderson 1996; Abernethy and Rutherfurd 2000; Schmidt et al. 2001).

Two different types of slope failures have been widely considered in the literature: shallow

translational failures and deep-seated rotational failures.

2.4.4.1 Shallow Failures

Most of the vegetated slopes in North America consist of a thin soil layer (usually less than

2 m thick) overlying a bedrock stratum (Schmidt et al. 2001).  The length-to-depth ratio for

these slopes is usually very high and the failure mode is usually shallow translational or

planar.   Therefore,  the  infinite  slope  analysis  method  is  commonly  adopted  for  slope

stability analysis (e.g. Wu et al. 1979; Sidle 1992; Wu and Sidle 1995; Schmidt et al.

2001).  The failure plane is normally assumed to be parallel to the bedrock and located at

the interface between the rooted soil and the bedrock (Figure 2.14).  Wu et al. (1979)

modified the original equation for factor of safety (FOS) of an infinite slope to include the

effects of vegetation:

DSW
ulSWlcc

w

wr

sin)(
tan]cos)[()(

FOS (2.39)

where c  = effective cohesion of soil; cr = root cohesion; l = length of the slice; W = total

weight of the slice; Sw = surcharge due to weight of vegetation;  = slope angle; u = pore-

water pressure;  = effective friction angle of soil; and D = wind loading.

Wu et al. (1979) used the modified infinite slope model to investigate the stability of slopes

before and after the removal of forest cover in Alaska, USA.  An average root cohesion, cr,

of 5.9 kPa was assumed to be contributed by root reinforcement.  An average tree

surcharge  of  3.8  kPa  was  also  assumed  in  the  stability  analysis.   It  was  determined  that

slopes that were originally unstable (i.e. having FOS<1.0) became stable (i.e. having

FOS>1.0) when root cohesion was included in the stability analysis.  The results indicated

that loss of root strength following forest clearing had caused slope instability, which was

generally in good agreement with the observed behaviour of the slopes.



Chapter 2.  Literature Review 47

Sidle (1992) proposed an infinite slope model that incorporates changes in root cohesion

and vegetation surcharge through several forest management cycles.  Recovery of root

strength and tree surcharge following timber harvest was modelled by a sigmoid

relationship, while root deterioration of harvested vegetation was simulated by an

exponential decay function.  The probability of slope failure was related to the changes in

root strength and the probability of occurrence of a landslide-triggering storm.  The model

was used to study the effects of specific forest management practices over long time

periods for selected hillslopes located in coastal Alaska and areas in the western United

States.  Wu and Sidle (1995) later integrated the infinite slope model proposed by Sidle

(1992) with a contour line-based topographic analysis and a geographic information

system (GIS) that was used to extract spatial data for soil and vegetation.  This distributed,

physically-based slope stability model was called dSLAM and it was applied to hillslopes

in the Oregon Coast Ranges using actual spatial patterns of timber harvesting and

measured rainfall which triggered widespread landslides in that area in 1975.  The model

was able to produce a map of spatial distribution of factor of safety (FOS) for the entire

region being considered.  However, Wu and Sidle (1995) pointed out that the accuracy of

the results was greatly affected by limited information about spatial distribution of some

parameters (e.g. soil depth, saturated hydraulic conductivity, cohesion and friction angle).

Figure 2.14 Forces acting on a slice on a vegetated infinite slope

(after Coppin and Richards 1990)
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2.4.4.2 Deep-Seated Failures

Shallow failures are more commonly found in the temperate environment (e.g. North

America) where the infinite slope model is considered appropriate for slope stability

analysis.  However, in the humid tropical environment, the soil profiles are much deeper,

reaching depths of up to 30 m (Collison and Anderson 1996).  In this case, tree roots are

unlikely to occupy the entire soil profile and the failure mode may be circular, or non-

circular, rotational rather than shallow translational where potential slip surfaces may pass

beneath the root zone, as shown in Figure 2.15.  In addition, the ground water table may be

very deep below the ground surface, and matric suction or negative pore-water pressure

may develop in the unsaturated zone.  In the case of deep-seated failures, the infinite slope

method is considered inappropriate.

Figure 2.15 Influences of vegetation on deep-seated failures

(after Coppin and Richards 1990)

To consider the effects of vegetation on deep-seated slope failures, Greenwood (1983)

proposed a simple equation based on the ordinary method of slices (Fellenius 1936) where

the original stability equation was modified to include the effects of vegetation.  More

recently, Greenwood (2006) developed a spreadsheet-based program, called SLIP4EX,

where the ordinary method of slices (Fellenius 1936), Bishop’s simplified method (Bishop

1955), and Janbu’s method (1954) were modified and used for considering effects of
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vegetation on slope stability.  The modifications to the stability equations were carried out

in a fashion similar to that of the infinite slope method where root cohesion, surcharge and

wind loading were added to the original equation.  The hydrological effects were simply

considered as changes in the pore-water pressure.

Several researchers from the University of Bristol, UK, developed a combined hydrologic

and stability model, called CHASM, in order to study the effects of rainfall infiltration on

the stability of vegetated slopes in the humid tropical environment (Lloyd 1990; Anderson

and Kemp 1991; Anderson and Lloyd 1991; Collison 1993; Collison et al. 1995; Collison

and Anderson 1996; Wilkinson 2000; Wilkinson et al. 2000; Wilkinson et al. 2002a;

Wilkinson et al. 2002b).  The CHASM model comprises integrated hydrology, vegetation

and stability components.  The hydrological system is modelled by a forward explicit finite

difference  scheme  where  the  rainfall  infiltration  is  calculated  using  Darcy’s  Law  (Darcy

1856).  The unsaturated vertical flow is computed using the Richard’s equation (Richards

1931) with the unsaturated conductivity defined by the Millington-Quirk (1959) procedure.

Evapotranspiration and root water uptake ae modelled using the Penman-Monteith

equation (Monteith 1973).  Root reinforcement is modelled by an increase in apparent soil

cohesion using the perpendicular root reinforcement model (Wu et al. 1979).  Surcharge

can be also considered in the stability analysis.  The methods of slope stability analysis

used in CHASM were Bishop’s simplified circular method (Bishop 1955) and Janbu’s non-

circular method (Janbu 1954).

The Wedge method was more commonly used in the studies investigating the effects of

vegetation on riverbank stability (e.g. Abernethy 1999; Abernethy and Rutherfurd 2000;

Simon and Collison 2002).  Abernethy and Rutherfurd (2000) modified the generalised

wedge model, called GWEDGEM (Donald and Zhao 1995), to include the effect of root

reinforcement in the stability analysis of riverbanks along the Latrobe River, Australia.

Instead of assuming an average value of root cohesion, cr, the spatial distribution of root

cohesion was considered in the stability analysis.  Root cohesion was assumed to decrease

exponentially from the tree trunk, in both the vertical and lateral directions, based on the

empirical relationships obtained from their field test data.
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2.4.4.3 Considerations for Parameter Uncertainty

The accuracy of the factor of safety (FOS) calculated by any method of slope stability

analysis is affected by the uncertainty in the input parameters.  Similar to soil properties,

the input parameters related to vegetation such as root cohesion, surcharge and matric

suction are subjected to significant uncertainty due to the inherent variable nature of the

vegetation system, as well as the errors encountered when their effects are quantified.

Very limited studies in the literature have considered the variability in the vegetation input

parameters on the estimated FOS of a slope.  Wilkinson (1999) performed stochastic

analyses,  using  the  CHASM model,  to  investigate  the  effect  of  parameter  uncertainty  on

the FOS of a slope.  Input parameters such root cohesion, surcharge, saturated soil

hydraulic conductivity, interception and evapotranspiration were considered normally

distributed with coefficients of variation (COV) of 0.1, 0.2 and 0.3.  It was found that the

standard deviation of the FOS was relatively small compared to the standard deviation of

the input parameters and it was concluded that, in that case, parameter uncertainty has an

insignificant effect on the FOS.  However, Wilkinson (1999) only considered a specific

case study in his stochastic analyses, where only one set of mean values for each input

parameter was used.  He pointed out that it is incorrect to state that parameter variability is

not important, based on his analysis, because parameter variability may have an important

effect on other combinations of mean values of the input parameters.

Chandler (1992; 1996) developed a computer program to perform Monte Carlo simulation

using the infinite slope equation for modelling the variability of input parameters including

the  soil  properties,  vegetation  parameters  and  rainfall  data  on  the  FOS  of  a  slope.   The

analyses were conducted in a topographic scale to predict the probability of occurrence of

shallow slope failure in a selected region.  The limitation of this model, as pointed out by

Chandler (1992), was large quantities of data were required to perform a meaningful

analysis, which could be difficult to obtain.

2.4.5 Discussion

Although many researchers have attempted to incorporate the effect of root reinforcement

in slope stability analysis, the spatial variability of root cohesion has not been

systematically considered in these analyses.  Recent research has focused on considering
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the spatial variability of root cohesion through quantifying the spatial distribution of

vegetation on a slope on a regional scale (e.g. Wu and Sidle 1995; Schmidt et al. 2001;

Roering et al. 2003).  All these studies have adopted the simple infinite slope model for

slope stability analysis due to the fact that shallow translational failure is the most common

failure mode encountered in these regions (i.e. North America).

For deep-seated slope failures, Collison et al. (1995) investigated the effect of vegetation

distribution on the factor of safety (FOS) of a slope using the CHASM model.  Vegetation

was assumed to be located at different locations on a slope, such as the slope toe, slope

crest, combined slope toe and crest, slope face and the entire slope.  It was found that the

case with vegetation located at the slope toe yielded the highest FOS, which was

equivalent to the FOS obtained from the case with vegetation located along the entire

slope.  Abernethy and Rutherfurd (2000) also considered the spatial variability of root

cohesion  using  the  wedge  method  of  slope  stability  analysis.   Instead  of  assuming  an

average value, root cohesion was varied vertically and laterally based on the linear

regression expressions obtained from field data.  These analyses eventually yielded a more

realistic FOS for the slopes being considered.

To date, there has been no study attempting to incorporate effects of vegetation into finite

element  slope  stability  analysis.   All  the  previous  studies  have  adopted  the  conventional

limit equilibrium methods.  The advantages of the finite element method are well

recognised and has been discussed previously in Section 2.2.2.  One of the advantages is

the finite element method determines the most critical failure surface or failure mode with

no a priori assumption.  This is particularly useful when root reinforcement is considered

because circular or non-circular failure may not be the most critical failure mode.

Furthermore, combining the finite element method with random fields, i.e. the random

finite element method (RFEM), allows the spatial variability of soil properties and root

cohesion to be accounted together in the probabilistic slope stability analysis.  Again, no

study has considered the effect of spatial variability of soil properties and root cohesion

simultaneously in slope stability analysis.  The above-mentioned issues will be addressed

in this research (Chapter 7).
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2.5 Artificial Neural Networks

2.5.1 Background

Artificial neural networks (ANNs) are a class of non-linear computational tools that

attempt to simulate the way in which the human brain processes information (Zurada 1992;

Fausett 1994).  It is a powerful tool for pattern recognition and modelling of non-linear

relationships involving a large number of variables.  ANNs learn ‘by example’, in which

an actual measured set of input variables and their corresponding outputs are presented to

an ANN to determine the relationship between the input and output variables.  The most

widely used ANNs in the field of geotechnical engineering are the multi-layer perceptrons

(MLPs) that are trained with the back-propagation algorithm (Rumelhart et al. 1986).

Adeli (2001) has provided a comprehensive review on the historical applications of ANNs

in the field of civil engineering.  Meanwhile, Shahin et al. (2001) reviewed the applications

of ANNs specifically in the field of geotechnical engineering including pile capacity,

settlement of foundations, soil properties and behaviour, liquefaction, site characterisation,

earth retaining structures, slope stability, and tunnels and underground openings.  It is

generally accepted that ANN models are a useful alternative to many analytical and

empirical models provided quality data for model development are available.

The application of ANNs to slope stability problems is significantly lower when compared

with other geotechnical problems.  Shahin et al. (2001) cited only one previous study (i.e.

Ni et al. 1996) that applied ANNs to a slope stability problem.  Ni et al. (1996) proposed a

methodology of combining fuzzy sets theory with ANNs for evaluating the stability of

slopes.  In this approach, the input variables were gradient, horizontal profile, vertical

profile, location, slope height, geological origin, soil texture, depth of weathering, direction

of the slope, vegetation, land use, maximum daily precipitation and hourly precipitation.

However, more studies on the application of ANNs to slope stability problems have been

reported more recently (e.g. Neaupane and Achet 2004; Sakallariou and Ferentinou 2005;

Wang et al. 2005).

Neaupane and Achet (2004) used back-propagation MLPs to predict slope movements in a

higher Himalayan highway slope.  In their study, the input variables included the

antecedent rainfall, rainfall intensity, infiltration coefficient, shear strength, groundwater
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and slope gradient.  The data used for ANN model development were obtained from field

measurements and observations.  Meanwhile, Sakellariou and Ferentinou (2005) utilised

back-propagation MLPs to predict the factor of safety (FOS) and the stability status (i.e.

either ‘failed’ or ‘stable’) of a slope based on the input variables of unit weight, cohesion,

friction angle, slope angle, slope height, and pore water pressure.  A total of 46 different

case records of slopes with a circular failure mechanism were used in the ANN model

development process.  The factors of safety of these slopes were previously evaluated

using conventional limit equilibrium methods.  These recent studies together show that

ANNs can be used to predict slope stability and movements.

2.5.2 Back-Propagation Multi-Layer Perceptrons

The topology and algorithm details of back-propagation MLPs have been described in

many publications (e.g. Eberhart and Dobbins 1990; Zurada 1992; Fausett 1994; Hassoun

1995).  In brief, MLPs consists of a number of interconnected neurons, commonly known

as processing elements (PEs) or nodes.  The PEs are logically arranged into multiple

layers: an input layer, one or more intermediate layers called hidden layers, and an output

layer, as shown in Figure 2.16.  Each PE is connected to all the PEs in the next layer via

weighted connections.  The scalar weights determine the strength of influence between the

interconnected neurons.

The input from each PE in the previous layer is multiplied by an adjustable connection

weight.  The weighted input values, at each PE, are then summed and a threshold value or

bias is added or subtracted.  The result of this combined summation is then passed through

a non-linear transfer function (e.g. logistic sigmoid or hyperbolic tangent functions) to

produce the output of the PE.  The output of one PE provides the input to the PEs in the

next layer.  For node j, this process is summarised in Equations (2.40) and (2.41), and

illustrated in Figure 2.16.

n

i
jijij xwI

1
(2.40)

)( ji Ify (2.41)
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where jI = the activation level of node j; jiw = the connection weight between nodes i and

j; ix = the input from node i, i = 0, 1, …, n; j = the bias for node j; yj = the output of node

j; and )( jIf = the transfer function.

Figure 2.16 Typical structure and operation of an MLP

(after Maier and Dandy 1998)

The logistic sigmoid and hyperbolic tangent transfer functions are given in Equations

(2.42) and (2.43), respectively:
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‘Learning’ or ‘training’ of the neural networks involves adjusting the connection weights

by repeatedly presenting a historical set of model inputs and the corresponding (desired)

outputs.  The objective of this process is to minimise the errors between the predicted and

desired output values.  The number of training samples presented to the weight updates is

called an epoch.  This iterative process of correcting the weights at the completion of each

epoch, until the errors are minimal, is based on the gradient-descent technique.  The global
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error between the predicted and desired output is calculated using an error function.  The

most commonly used error function is the mean square error (MSE) function, which is

defined as:

2)(
2
1

jj dyE (2.44)

where E = global error function; jy = the predicted output; and jd = the desired output.

The global error function, E, is minimised by modifying the weight using the gradient

decent rule as follows:

ji
ji w

Ew (2.45)

where jiw  = weight increment from node i to node j; and;  = learning rate, by which the

size of the step taken along the error surface is determined.

The weights are then updated by adding the delta weight, jiw , to the corresponding

previous weight as follows:

jijiji wnwnw )()1( (2.46)

where )(nw ji = the value of a weight from node i to node j at step n (before adjustment);

and )1(nw ji = the value of the weight at step (n+1) (after adjustment).

The choice of learning rate, , is critical and the optimal learning rate is usually

determined by trial-and-error.  A small learning rate will usually result in a very slow

convergence.  On the other hand, if a large learning rate is chosen, convergence will never

occur.  To solve this problem, Rumelhart et al. (1986) proposed to add a momentum term,

, to the weight adjustment that is proportional to the amount of the previous weight

change.  By doing so, the weight change of the current step will carry some momentum of
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the weight change from the previous step.  The modified adjustment equations are as

follows:

)()1( nw
w
Enw ji

ji
ji (2.47)

and

)1()()1( nwnwnw jijiji (2.48)

Shahin et al. (2002b) investigated the effect of the learning rate and momentum term on the

performance of the ANN model developed for settlement prediction.  They found that the

performance of the ANN model was relatively insensitive to the learning rate and

momentum term.  It was determined that a learning rate of 0.2 and a momentum value of

0.8 produced the best prediction.  Neaupane and Achet (2004) also used different learning

rates (i.e. 0.001, 0.05, and 0.01) in the development of an ANN model used for the

prediction of slope movement.  In their case, it was found that a learning rate of 0.01 was

optimal.  In addition, Basma and Kallas (2004) determined that the optimal values of the

learning rate and momentum term were 0.03 and 0.9, respectively, when the ANNs were

used to predict the soil collapse potential.  It can be seen that there is no consensus, in the

literature, in relation to the selection of the values of learning rate and the momentum term,

which could be due mainly to fact that they are problem dependent.  Therefore, the best

way to determine the optimal values of the learning rate and momentum term is through

trial-and-error.

In the back-propagation algorithm, the adjustment of the weights is carried out in a

backward manner.  The weights between the hidden layers and the output layer are

adjusted first, followed by the weights between the hidden layer and the input layer.  This

is an iterative process until some stopping criterion is met so that the network can obtain a

set of weights, which will produce the input/output mapping that has the minimum error.

One common stopping criterion is the cross-validation technique proposed by Stone

(1974).  The advantage of this technique is to ensure that ‘overfitting’  or  ‘overtraining’

does not occur (Smith 1993).  Overfitting may occur when the network starts to learn

‘noise’ contained in the training data and the model might no longer fit the general trend.
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2.5.3 Development of ANN Model

The development of an artificial neural network (ANN) model essentially involves a

number of steps, which are carried out in a systematic manner as outlined by Maier and

Dandy (2000).  This systematic approach has been successfully adopted and applied to

geotechnical problems (e.g. Shahin et al. 2002a; Shahin et al. 2002b; Shahin 2003; Shahin

and Jaksa 2005).  First, the input and output variables for the ANN model need to be

identified.  This usually requires a good understanding of the physical problem.  A number

of techniques have been suggested in the literature in relation to the selection of input

variables.  In the field of geotechnical engineering, one common approach is that a fixed

number of input variables are used in advance and assumed to be the most effective input

variables in relation to the model output variables (e.g. Jan et al. 2002; Shahin et al. 2002b;

Sakallariou and Ferentinou 2005).  Another approach is to train many neural networks with

different combinations of input variables and to select the network that has the best

performance (e.g. Goh 1994; Saka and Ural 1998).  Other useful techniques include the use

of statistical methods (Stein 1993) and genetic algorithms (NeuralWare 1997) to identify

the most significant variables in the model.

The next step involves gathering the data required for calibrating and validating the ANN

model.  The database will contain numerous case records that have different input patterns

with their corresponding expected outputs.  In geotechnical problems, these case records

could be obtained from field measurements, laboratory test results, or data generated by

numerical analysis.  It is common practice to divide the available data into two subsets: a

training set to construct the ANN model and a validation set to test the generalisation

ability of the model within the limits set by the training data.  If cross-validation is used as

the stopping criterion for training, in order to avoid overfitting, the data need to be divided

into three sets: training, testing, and validation.  The training set is used in the training

process to adjust the connection weights.  The testing set is used to decide when to stop

training, and training is normally stopped when the error of the testing sets starts to

increase.  The validation set is used to test the performance of the trained network in the

deployed environment using data that were not used in the model development phase.

There are no guidelines found in the literature in relation to the optimal proportion of the

data to use for training, testing and validation sets.  However, Hammerstrom (1993)
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suggested that two-thirds of the data are to be used for model calibration (i.e. training and

testing sets) and one-third for model validation.  Shahin et al. (2004) investigated the effect

of using different proportions of data for training, testing and validation on the

performance of ANN models developed for settlement prediction.  It was found that there

was no clear relationship between the data proportion and the model performance.  The

best result was obtained when 20% of the data were used for validation and the remaining

data were divided into 70% for training and 30% testing.

In the majority of ANN applications in geotechnical engineering, the data are divided into

their subsets arbitrarily.  Recent studies have found that the way the data are divided can

have a significant impact on the results obtained (Tokar and Johnson 1999; Shahin et al.

2004).  It is well understood that ANNs perform best when they do not extrapolate beyond

the extreme values of the data used for calibration (Minns and Hall 1996; Tokar and

Johnson 1999).  Therefore, in order to develop a reliable ANN model, the case records of

the extreme values should be included in the calibration set.  In addition, the statistical

properties (e.g. mean and standard deviation) of the various data subsets need to be similar

to ensure that each subset represents the same statistical population (Masters 1993).

Pre-processing of the data is usually required before they are applied to the neural

networks.  This is essential because the transfer function adjusts the output of each neuron

to its limiting values (e.g. –1.0 and 1.0 for the hyperbolic tangent function; and 0 and 1 for

the logistic sigmoid function).  Various scaling and normalisation methods have been

proposed in the literature (Masters 1993; Stein 1993).  The simple linear mapping of the

variables’ extreme to the neural network’s practical extreme is adopted for scaling, as it is

the most commonly used method for this purpose (Masters 1993).  For a variable, x, with a

maximum and minimum values of maxx and minx , respectively, the scaled value, nx , is

calculated as follows:

minmax

min

xx
xxxn (2.49)

After all the data are divided into their respective subsets (i.e. training, testing and

validation) and pre-processed, the next step is to determine the model or network

architecture.  Determination of model architecture is one of the most important and
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difficult tasks in the ANN model development process (Maier and Dandy 2000).  This is

because there is currently no rule for determining the optimal number of hidden layers and

the number of nodes of in each of these hidden layers.  A common strategy is to train the

ANN model several times, starting with the least number of layers and nodes and then

increasing the number while monitoring the model performance.  It has been shown that

one hidden layer is sufficient to approximate any continuous function provided that

sufficient connection weights are given (Cybenko 1989; Hornik et al. 1989).  In contrast,

some researchers (Flood and Kartam 1994; Ripley 1996) stated that the use of more than

one hidden layer provides the flexibility needed to model complex functions in many

situations.  However, using more than one hidden layer often increases the training time

(Masters 1993).   It  has also been shown in the literature (e.g.  Maren et  al.  1990; Masters

1993; Rojas 1996) that neural networks with a large number of connection weights or

nodes are more likely to be subject to overfitting and poor generalisation.

Training or learning is then carried out using the back-propagation algorithm, as discussed

in the previous section.  The aim of the training process is to optimise the connection

weights so that they can be used to define the relationship between the input and output

variables.  This process is equivalent to the parameter estimation phase in conventional

statistical models.  Cross-validation (Stone 1974), by using a testing data set, is commonly

used to decide when to stop training in order to avoid overfitting.  Once the neural network

is trained by optimising the weights, the performance of the trained model needs to be

validated.  The validation of the trained model is conducted using an independent data set

(i.e. validation set), which has not been used in the model calibration phase.  The aim is to

test the predictive and generalisation ability of the ANN model within the limits or ranges

set by the training data.

The coefficient of correlation, r, the root mean squared error,  RMSE,  and  the mean

absolute error, MAE, are the main criteria that are often used to evaluate the prediction

performance  of  ANN  models.   The  coefficient  of  correlation  is  a  standard  statistical

measure that is used to determine the relative correlation and goodness-of-fit between the

predicted and observed data and can be calculated as follows:
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where jy = model (predicted) output nyyyy ,,,, 321 ; jd = desired (observed) output

ndddd ,,,, 321 ;
jjdyC = covariance between the model output )( jy  and the desired

output )( jd ;
jy = standard deviation of the model output, jy ;

jd = standard deviation of

the desired output, jd ; y = mean of the model output, jy ; d = mean of the desired output,

jd  ; and n = number of data.

Smith (1986) suggested the following guide for values of | r | between 0.0 and 1.0:

 | r |  0.8 strong correlation exists between the two sets of variables;

0.2< | r | < 0.8 correlation exists between the two sets of variables; and

| r |  0.2 weak correlation exists between the two sets of variables.
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The RMSE is the most popular measure of error and has the advantage that large errors

receive much greater attention than small errors (Hecht-Nielsen 1990).  RMSE is

calculated as follows:

2
1

1

2)(1RMSE
n

j
jj dy

n
(2.55)

In  contrast  with  RMSE,  MAE  eliminates  the  emphasis  given  to  the  large  errors.   Both

RMSE and MAE are desirable when the evaluated output data are smooth or continuous

(Twomey and Smith 1997) and is calculated as follows:

n

j
jj dy

n 1

1MAE (2.56)

Based on the values of r, RMSE and MAE, an optimum ANN model can be selected.  This

ANN  model  can  then  be  used  as  a  forecasting  tool  in  practice.   With  the  optimal

connection weights in place, it is also possible to develop a mathematical expression

relating the input and output variables.  This mathematical expression or formula is more

useful and portable in practice.  In the field of geotechnical engineering, ANN-based

equations that can be used for predicting the settlement of shallow foundations on granular

soils and the pullout capacity of marquee ground anchors have been developed by Shahin

et al. (2002a) and Shahin and Jaksa (2005), respectively.

2.6 Summary

The treatment of the relevant literature in this chapter has indicated that inherent soil

variability and effects of vegetation are not commonly considered in routine slope stability

analysis although their effects on slope stability are well recognised.  This is because

quantifying the effects of soil variability and vegetation is usually a complicated task.  The

available tools for slope stability analysis in practice (i.e. limit equilibrium methods) are

not well established to account for the effects of soil variability and vegetation.

Furthermore, there is currently no simple or straightforward solution available (either in

the form of equations or charts) for this problem.  Engineers are usually left to

manipulating the factor of safety in order to take such effects into consideration.  Despite
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the complexity, it has been demonstrated that the effects of soil variability and vegetation

can be quantified by various methods found in the literature.  In addition, the random finite

element method (RFEM) has emerged as a powerful tool that capable of considering

spatially varying soil properties in slope stability analysis through a probabilistic

framework.  The RFEM can also be used to consider the effects of root reinforcement on

slope stability, in particular considering the spatially varying root cohesion.  The

implementation of the RFEM in probabilistic slope stability analysis is discussed in the

next chapter.
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Chapter 3

PROBABILISTIC SLOPE STABILITY ANALYSIS USING

RANDOM FINITE ELEMENT METHOD

3.1 Introduction

This chapter discusses the formulation and implementation of the random finite element

method (RFEM) for probabilistic slope stability analysis.  The RFEM combines a random

field generator with a non-linear finite element slope stability analysis algorithm to

perform a probabilistic analysis using the Monte Carlo simulation method.  This

probabilistic methodology was developed by Griffiths and Fenton (2000; 2004) and it has

been fully implemented in a computer model known as rslope2d.

Throughout this research, the computer model rslope2d has been adopted to investigate the

effect of soil variability on slope stability.  However, the available version (i.e. version

1.98) of rslope2d was limited to analysing slopes with single-layered soil profiles.

Therefore, this computer model was modified and further developed to consider slopes

with two-layered soil profiles.  This computer model was also extended in order to analyse

the effect of root reinforcement.  These developments of the computer model are discussed

in subsequent chapters.

3.2 Overview of the Probabilistic Analysis Methodology

Probabilistic  analysis  is  a  more  realistic  approach  to  the  assessment  of  slope  stability

because the uncertainty and variability in soil properties can be explicitly taken into

account.  Unlike deterministic analysis, which is based on assumed characteristic values of
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soil properties, probabilistic analysis considers the variable nature of soil properties, based

on their statistical characteristics.  The latter approach leads to a more realistic measure of

the stability of a slope, which is usually characterised by the probability of failure, Pf.  As

previously mentioned in Chapter 2, the random finite element method (RFEM) is a

powerful probabilistic method for slope stability analysis because the spatial correlation of

soil properties is modelled explicitly and no assumption about the shape or location of the

failure surface is required to be made in advance.  Failure occurs through soil elements

whose shear strength is lower than the applied shear stresses.

The procedures for probabilistic slope stability analysis adopted in rslope2d can be

summarised as follows:

1. Simulate a 2-dimensional (2-D) spatially random soil profile based on the prescribed

statistical parameters of the chosen soil properties;

2. Perform finite element slope stability analysis on the simulated soil profile to determine

whether the slope ‘fails’ under specific convergence criteria; and

3. Repeat  Steps  1  and  2  many  times  as  part  of  the  Monte  Carlo  simulation  process  to

establish the probability of failure, Pf.

Detailed descriptions of each process are presented in the following sections.

3.3 Simulation of Soil Profile

To incorporate  soil  variability  in  slope  stability  analysis,  it  is  essential  to  generate  a  soil

profile that can represent the variability and spatial correlation of the properties in real soil

deposits.  In rslope2d, a 2-D spatially random soil profile is generated based on random

field theory (Vanmarcke 1977a, 1983), which makes use of three statistical properties: the

mean, , a measure of the variance (e.g. standard deviation, , or coefficient of variation,

COV), and the scale of fluctuation, .   The  scale  of  fluctuation  (SOF), as previously

discussed in Chapter 2, is a parameter describing the spatial correlation of soil properties

with distance.  A small value of SOF implies rapid fluctuation of the soil property in space

about the mean, whereas a large value of SOF implies a smoothly varying field.
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3.3.1 Soil Parameters

Prior to the random field generation process, it is important to identify the soil parameters

that are required to be treated as random variables.  The soil model used in the elastoplastic

finite element slope stability analysis algorithm in rslope2d consists of the following input

parameters:

1. Cohesion, c;

2. Friction angle, ;

3. Dilation angle, ;

4. Young’s Modulus, Es;

5. Poisson’s ratio, ; and

6. Unit weight, .

The parameters c and  are commonly referred to as soil shear strength parameters and the

soil shear strength is commonly described by the Mohr-Coulomb failure criterion, as

discussed in Chapter 2.  The parameters c and can be expressed in two different stress

states, depending on whether a ‘total’  or  ‘effective’  stress  analysis  is  assumed.   A  total

stress  analysis  is  applied  to  short-term  stability  problems  where  no  dissipation  of  excess

pore water pressure has taken place, such as a newly cut or newly constructed slope in

fully saturated clay.  Stability analyses should be carried out in terms of effective stresses

for problems where changes in pore pressures have taken place, for example, an existing

embankment.  In total stress analysis, the cohesion is assumed to be completely undrained

and the shear strength is given by the undrained shear strength, su, or undrained cohesion,

cu, (i.e. u = 0).  In effective stress analysis, the drained cohesion, c , and drained friction

angle,  are used in the slope stability analysis.  The research contained in this thesis

considers both total and effective stress analysis of the slope stability problem, where the

results and discussions are presented in Chapter 4.

While the dilation angle, , affects the volume change of the soil during yielding and the

elastic parameters (i.e. Young’s modulus, Es, and Poisson’s ratio, ) influence the
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computed deformations prior to failure in slope stability analysis, they have little influence

on the predicted factor of safety (Griffiths and Lane 1999).  Griffiths and Lane (1999) also

concluded that the most important parameters in finite element slope stability analysis are

the same as those used in the traditional limit equilibrium approach, namely the strength

parameters c and , unit weight, , and the geometry of the slope.  Hence, it is logical to

assume that, in a probabilistic analysis, only the variability of the cohesion, friction angle

and unit weight influences the probability of failure of a slope.

However, a previous probabilistic study conducted by Alonso (1976) concluded that the

influence of the soil  density or unit  weight on the probability of failure of a clay slope is

relatively small compared with the shear strength parameters.  This is due to the fact that

the variability of soil unit weight is usually small, as published in the literature (e.g. Lee et

al. 1983; Phoon and Kulhawy 1999a; Duncan 2000; Baecher and Christian 2003).

Therefore, throughout this research, only the shear strength parameters c and  are

modelled as random fields, while the other parameters are held constant and treated

deterministically to reduce the complexity of the problem.  The variability of the shear

strength parameters c and is characterised by a lognormal distribution.  This is because

lognormal distribution avoids the generation of negative values of strength parameters c

and  that a normal distribution allows.  Furthermore, available field data indicate that

some soil properties are well represented by a lognormal distribution (e.g. Hoeksema and

Kitanidis 1985; Sudicky 1986; Cherubini 2000), as previously discussed in Chapter 2.  The

characteristic of a lognormal distribution has been discussed in Section 2.3.1.6.

3.3.2 Random Field Generation

To generate random fields of a soil property (i.e. c or ), random field theory is

implemented in rslope2d using the local average subdivision (LAS) method developed by

Fenton and Vanmarcke (1990).  This method produces correlated local averages of the soil

property based on a standard normal distribution function (i.e. having zero mean and unit

variance) and a spatial correlation function.  An isotropic exponentially decaying

(Markovian) correlation function is assumed in this research, and it can be expressed as:
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2
exp

k
k (3.1)

where  = correlation coefficient between the underlying random field values at any two

points separated by a lag distance k.

The LAS methodology has been described in detail by Fenton (1990) and Fenton and

Vanmarcke (1990).  Briefly, the one-dimensional (1-D) LAS method proceeds in a top-

down recursive manner, as indicated in Figure 3.1.  In Stage 0, a normally distributed

global average is generated for the process.  In subsequent stages, the parent cell from

previous stage is subdivided into two equal regions such that the local averages of these

two new cells must average to the parent cell value, which in turn preserves upward

averaging.  The normally distributed values in the two new cells are generated so that the

following four criteria are satisfied:

1. They have the correct variance according to local averaging theory;

2. They are properly correlated with each other;

3. Their average is equal to the parent cell value; and

4. They are properly correlated with other new cells.

Figure 3.1 Top-down approach for random field generation using LAS method

(after Fenton 1990)
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                                          NOTE:  
   This figure is included on page 67 of the print copy of 
     the thesis held in the University of Adelaide Library.
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Fenton (1990) investigated the accuracy of the 1-D LAS method for estimating a zero

mean Ornstein-Uhlenbeck process, and the results of comparing the exact correlation with

that estimated by LAS are given in Figure 3.2.  The correlation structure is exponentially

decaying and based on an averaging dimension, D, and a scale of fluctuation, .  It can be

seen from Figure 3.2 that the error is typically very small.  Fenton (1990) also pointed out

that the errors are self-correcting and the estimated correlation structure tends to the exact

correlation function when averaged over several realisations.  The rate of convergence of

the estimated statistic to the exact one is 1 / n , where n is the number of realisations.

Figure 3.2 Comparison of estimated and exact correlation between adjacent cells

across a parent cell boundary for varying effective averaging lengths 2D/

(after Fenton 1990)

In simulating a 2-D random field, the parent cell is subdivided into four equal regions at

each  stage.   As  in  the  1-D case,  the  values  in  the  four  new cells  are  selected  so  that  the

upward averaging is preserved and they are properly correlated with each other, as well as

with other new cells.  The comparisons of the estimated and exact covariance structure of a

generated 2-D LAS process with scales of fluctuation of  = 4 and  = 0.5 are shown in

Figures 3.3 (a) and (b), respectively.  The results have been averaged over 10 realisations

and indicate that the exponentially decaying correlation structure has been estimated by 2-

D LAS method with a reasonable accuracy.
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                                          NOTE:  
   This figure is included on page 68 of the print copy of 
     the thesis held in the University of Adelaide Library.
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Figure 3.3 Comparison of estimated and exact covariance for generated 2-D LAS

process with scales of fluctuation of (a)  = 4 and (b)  = 0.5, averaged over 10

realisations (after Fenton 1990)

3.3.3 Transformation into Lognormal Random Field

If a soil property X (i.e. c or ) is assumed to be characterised statistically by a lognormal

distribution defined by a mean, X , and a standard deviation, X , the standard normal

random field, G(x), generated by the LAS method is then necessary to be transformed into

a lognormal distribution using the relationship:

iXXi xGX lnlnexp (3.2)

where xi is the vector containing the coordinates of the centre of the ith element; Xi is the

soil property value assigned to that element; Xln  and Xln  are the mean and standard

deviation, respectively, of the underlying normally distributed ln X . Xln  and Xln  can be

a1172507
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                                          NOTE:  
   This figure is included on page 69 of the print copy of 
     the thesis held in the University of Adelaide Library.
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computed using Equations (2.15) and (2.16), respectively, as previously shown in Section

2.3.1.6.

3.3.4 Effects of Local Averaging and Variance Reduction

The input statistical parameters such as the mean, standard deviation and scale of

fluctuation  are  assumed to  be  defined  at  the  point  level.   Within  the  context  of  the  LAS

methodology, the point variance is reduced due to the local averaging process and the

reduction is governed by a variance function, 2 .  The variance reduction is a function of

the size of the averaging domain and the scale of fluctuation (Vanmarcke 1983), and for an

exponentially-decaying correlation function, it is given by:

2T2
2 12T

2T
2T e (3.3)

where T is the size of the averaging domain.  For a square finite element, T is the element

size.

Griffiths and Fenton (2004) show that the variance function for a square finite element of

side length  can be expressed as follows:

0 0

222 2exp4 dydxyxyx (3.4)

The variance function for a square finite element, based on an exponentially decaying

correlation function, is given in Figure 3.4.  This figure indicates that elements that are

small relative to the scale of fluctuation ( 0) lead to very little reduction in variance

( 2 1), while elements that are large relative to the scale of fluctuation lead to very

significant variance reduction ( 2 0).   In  other  words,  if  the  element  size  is  fixed,  a

larger scale of fluctuation leads to less reduction in variance, while a smaller scale of

fluctuation leads to greater reduction in variance.
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Figure 3.4 Variance reduction over a square finite element

(after Griffiths and Fenton 2004)

Griffiths and Fenton (2004) also point out that, if the point distribution is normal, local

averaging results in reduction in variance but the mean is unaffected.  However, in a

lognormal distribution, local averaging reduces both the mean and the standard deviation.

This is because the mean and variance of a lognormal distribution being dependent on both

the mean and variance of the underlying normal distribution, as indicated by Equations

(2.18) and (2.19) (see Section 2.3.1.6).  When the effects of local averaging are included,

Equations (2.18) and (2.19) can be rewritten to define the ‘sample’ mean and standard

deviation of a lognormal field as:

2
ln

2
2
1

lnexpˆ XXX (3.5)

1expˆˆ 2
ln

2
XXX (3.6)

From Equations (3.5) and (3.6), when 2 0, XX lnexpˆ  = Median X; and 0ˆ .

This implies that with significant variance reduction due to local averaging, the sample

mean tends to the median and the sample standard deviation tends to zero.
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                                          NOTE:  
   This figure is included on page 71 of the print copy of 
     the thesis held in the University of Adelaide Library.
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3.3.5 Mapping of Simulated Soil Properties onto Finite Element Mesh

Once the random field is transformed into the desired lognormal field, it is then mapped

onto the finite element mesh, which is established according to the user-defined slope

geometry.  A typical finite element mesh for a 1:1 slope with a height, H = 10 m, is shown

in Figure 3.5.  A fixed base is assumed at the lower boundary and rollers are assumed at

the two vertical boundaries.  Each element within the slope geometry is 1 m by 1 m in size

and it is assigned a random variable of the particular soil property (i.e. c or ).

Fixed

R
ol

le
rR

ol
le

r

H

Figure 3.5 Typical finite element mesh used for slope stability analysis

Figure 3.6 shows typical random field realisations of undrained cohesion, cu, for the slope

with different scales of fluctuation, .   Figure  3.6(a)  shows  a  relatively  small  scale  of

fluctuation of  = 1 m, while Figure 3.6(b) shows a relatively large scale of fluctuation of

 = 10 m.  It should be noted that both random field realisations have the same mean and

standard deviation of
uc = 60 kPa and

uc = 30 kPa, respectively, i.e. COV = 0.5.  Dark

and light regions indicated ‘strong’ and ‘weak’ soil elements, respectively.  It can be

observed from Figure 3.6 that a smaller value of  generates a more rapidly varying soil

profile with distance (i.e. a more spatially random soil profile), while a larger value of

generates a more continuously varying soil profile (i.e. a more uniform soil profile).
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(a)

(b)

Figure 3.6 Typical random field realisations of undrained cohesion, cu, with scales of

fluctuation of (a)   = 1 m and (b)   = 10 m

3.3.6 Cross-correlation between c and

The relationship or cross-correlation between the strength parameters c and  is poorly

understood and no consensus is provided by literature.  In addition, it is strongly dependent

on the soil being studied (Fenton and Griffiths 2003).  However, Cherubini (2000) reported

values of cross-correlation between c and  ranging from –0.24 to –0.70.  In rslope2d,

cross-correlation between c and  is implemented using the covariance matrix

decomposition approach (Fenton 1994).  The algorithm is summarised as follows:

1. Specify the cross-correlation coefficient, c (-1 c  1).  Values of c  of –1, 0, and

1 correspond to completely negatively correlated, uncorrelated, and completely

positively correlated, respectively;

2. Form the correlation matrix between G ln c (x) and G ln (x), assumed to be stationary

(i.e. the same at all points x in the field):
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0.1
0.1

c

c (3.7)

3. Compute the Cholesky decomposition of .  That is, find the lower triangular matrix L,

such that LLT = ;

4. Generate two independent standard normally distributed random fields, G1(x) and

G2(x), each having a scale of fluctuation of ;

5. At each spatial point, x, form the underlying point-wise correlated random fields:

i

i

i

ic

xG
xG

LL
L

xG
xG

2

1

2221

11

ln

ln 0.0
(3.8)

6. Transform the standard normal random field of c and to the final lognormal random

field using Equation (3.2).

3.4 Finite Element Slope Stability Analysis

The finite element slope stability analysis algorithm in rslope2d assumes  2-D  and  plain

strain conditions.  It uses an elastic-perfectly plastic stress-strain law with a Mohr-

Coulomb failure criterion.  It utilises 8-node quadrilateral elements with reduced

integration in the gravity loads generation, stiffness matrix generation and stress

redistribution  phases  of  the  algorithm.   The  theoretical  basis  of  the  method  is  described

fully by Smith and Griffiths (1998; 2004) and the application of the finite element method

in slope stability problems is described by Griffiths and Lane (1999).

In brief, the analyses involve the application of gravity loading and the monitoring of

stresses  at  all  Gauss  points.   The  forces  generated  by  the  self-weight  of  the  soil  are

modelled by a standard gravity ‘turn-on’ procedure.  This procedure generates normal and

shear  stresses  at  all  Gauss  points  within  the  mesh  and  the  soil  is  initially  assumed to  be

elastic.  These stresses are then compared with the Mohr-Coulomb failure criterion, which

can be written in terms of principal stresses as follows:

cos
2

sin
2

3131 cF (3.9)
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where 1 and 3 are the major and minor principal stresses.

If the stresses at a particular Gauss point lie within the Mohr-Coulomb failure envelope

(F < 0), then that location is assumed to remain elastic.  If the Mohr-Coulomb failure

criterion is violated (F  0), then that location is assumed to be yielding.  Yielding stresses

are redistributed to neighbouring elements that still have reserves of strength.  The plastic

stress redistribution is accomplished by using a visco-plastic algorithm (Zienkiewicz and

Cormeau 1974).  This is an iterative process which continues until the Mohr-Coulomb

failure criterion and global equilibrium are both satisfied at all Gauss points within the

mesh.

3.4.1 Determination of Factor of Safety

The finite element algorithm in rslope2d computes a deterministic factor of safety, FOS,

based on the mean values of the shear strength parameters using the strength reduction

method (Matsui and Sun 1992).  The FOS of a slope is defined as the factor that the

original  shear  strength  parameters  must  be  divided  by  in  order  to  bring  the  slope  to  the

point of failure.  The strength parameters at the point of failure, c f and f, are therefore

given by:

FOS
cc f (3.10)

and

FOS
tanarctanf (3.11)

This definition of the factor of safety is essentially the same as that used in limit

equilibrium methods, which is defined as the ratio of shear strength of soil to shear stress

required for equilibrium (Duncan 1996).  Validation studies conducted by Griffiths and

Lane (1999) indicate good agreement between the FOS computed by the finite element

method and that obtained from the stability charts developed by Taylor (1937) and Bishop

and Morgenstern (1965).
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3.4.2 Definition of Slope Failure

Several definitions of slope failure used in finite element slope stability analysis have been

discussed by Wong (1984) and Abramson et al. (2002) including:

1. Some test of bulging of the slope profile (Snitbhan and Chen 1976);

2. Limiting of the shear stresses on the potential failure surface (Duncan and Dunlop

1969); and

3. Non-convergence of the solution (Zienkiewicz and Taylor 1989).

In rslope2d, non-convergence of the algorithm within a user-specified maximum number

of iterations or iteration limit is used as an indicator of slope failure.  A slope is considered

to have “failed” when no stress distribution can be found that simultaneously satisfies both

the Mohr-Coulomb failure criteria and global equilibrium (Griffiths and Lane 1999).  This

is usually accompanied by a dramatic increase in the nodal displacements within the mesh.

Griffiths and Fenton (2004) reported that an iteration limit of 500 was adequate to ensure

convergence of solutions for a case study of a 2:1 undrained clay slope.  The iteration limit

required for the case studies considered in this research is investigated and discussed

further in Chapter 4.

3.5 Monte Carlo Simulation

This section covers two important aspects of Monte Carlo simulation, namely the

probability of failure and the number of realisations.  Treatment of each of these follows.

3.5.1 Probability of Failure

Based  on  a  given  set  of  soil  property  statistics  (mean,  standard  deviation  and  scale  of

fluctuation), there are an infinite number of possible random fields that can be generated.

Although these random fields have the same statistics, the arrangement of the ‘strong’ and

‘weak’ soil elements is different in each random field realisation, which in turn yields

different outcomes in the finite element analyses.  Hence, probabilistic analysis involves

the repeated finite element examination of every single realisation of the generated random
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fields,  as part  of the Monte Carlo simulation process.   The probability of failure, Pf,  of  a

slope is estimated by the following relationship:

sim

f
f n

n
P (3.12)

where n f = number of realisations reaching failure; and nsim = total number of realisations

in the simulation process.

3.5.2 Number of Realisations

The accuracy of the estimated probability of failure depends on the number of realisations

in the Monte Carlo simulation process.  In general, the accuracy increases as the number of

realisations increases.  However, it is important to determine the minimum number of

realisations to produce a reliable and reproducible result.  The reason is that repetitive

finite element analysis is very time consuming and the estimation of Pf usually converges

within a certain number of realisations.  Any further increase in the number of realisations

will not improve the estimation greatly, but will adversely affect the computational time

and effort.

Hahn and Shapiro (1967) suggest that the minimum number of realisations required is

dependent on the number of component random variables and the desired level of

confidence, as given by:

f

f

P
Pdmn

1100 2

min (3.13)

where nmin = minimum number of realisations for the Monte Carlo simulation process;

m = number of random variables;  = relative percentage error in estimating Pf ; and

d = normal standard deviate according to the desired confidence levels, as shown in Table

3.1.
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Table 3.1 Normal standard deviates for different confidence levels

Confidence Level Normal Standard Deviate, d

80% 1.282
90% 1.645

95% 1.96

99% 2.576

To use Equation (3.13), a value of Pf is required before the simulation process takes place,

but this is not always available.  Hahn and Shapiro (1967) suggest the use of Pf = 0.5 as a

first estimate of the nmin.  By using Pf = 0.5, Table 3.2 lists the minimum number of

realisations, nmin, required for various percentage errors, , and for 95% and 90%

confidence levels with number of random variables, m, equals to 1 and 2.  It is shown that,

in order to achieve a relative percentage error of less than 5%, for a 95% confidence level,

the number of realisations must be greater than 1,500 for single random variable problems

and 3,000 for two random variables problems.  The variation of the minimum number of

realisations with relative percentage errors for the single random variable problem (m = 1)

and for 95% and 90% confidence levels is also plotted in Figure 3.7.

By rearranging Equation (3.13), the relative percentage error can be back-calculated after a

Monte Carlo simulation that involved nsim realisations, based on the computed probability

of failure, Pf :

%100
)1(

fsim

f

Pn
Pm

d (3.14)

By examining Equation (3.14), it can be seen that the relative percentage error is directly

proportional to the square root of (1 – Pf), and inversely proportional to the square root of

nsim.  Therefore, it should be expected that a larger number of realisations is required for

smaller probabilities of failure, if the relative percentage error and confidence level are

fixed at a prescribed value.
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Griffiths and Fenton (2004) reported that 1,000 realisations of the Monte Carlo simulation

process was adequate for a 2:1 undrained clay slope in order to produce converged

estimations of the probability of failure.  The minimum number of realisations required for

the case studies considered in this research is investigated and discussed further in the next

chapter.

Table 3.2 Minimum number of realisations required for achieving desired accuracy

m = 1 m = 2
Relative
error,

(%)
95%

Confidence
90%

Confidence
95%

Confidence
90%

Confidence

0.5 153,664 108,241 307,328 216,482
1 38,416 27,060 76,832 54,121
5 1,537 1,082 3,073 2,165
10 384 271 768 541
50 15 11 31 22
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Figure 3.7 Minimum number of realisations required versus relative percentage

error for 95% and 90% confidence levels, and m = 1
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3.6 Validation of Simulated Soil Properties

It is important to ensure that the soil profile simulated by rslope2d, using the local average

subdivision (LAS) method, conforms to the prescribed statistical properties such as

probability density function (PDF), mean, standard deviation, and scale of fluctuation.  It is

also necessary to ensure that the simulated random fields conform to the local averaging

theory based on random field theory (Vanmarcke 1983).  As a result, a verification study

was undertaken based on the 1:1 undrained clay slope, as shown previously in Figure 3.7.

3.6.1 Verification of the Lognormal Distribution

The first part of the verification study involves examining the distribution, mean and

standard deviation of the simulated soil properties.  For the 1:1 undrained clay slope, the

simulated soil property is the undrained cohesion, cu.   Random fields of cu with different

values of coefficient of variation, COV, and scale of fluctuation, , were simulated using

the LAS method.  In this study, the scale of fluctuation was normalised by the slope height

(i.e. /H).  The target mean was fixed at 60 kPa and the values of COV being considered

were 0.1, 0.3, 0.5 and 1.0.  The target normalised scales of fluctuation, /H, being

considered were 0.1, 1 and 10.

Figure 3.8 shows the frequency density plots of the simulated values of cu within the slope

geometry for one realisation, which are labelled as ‘sample’ distributions.  The ‘target’

distributions are obtained by using the theoretical PDF for a lognormal distribution, as

given by Equation (2.17) in Section 2.3.1.6.  Generally, the lognormal distribution appears

to be a reasonable fit of the simulated data, as shown in Figure 3.8.  However, it can be

seen from Figure 3.8 that the sample distribution does not always match the target

distribution.  In fact, the closest match is observed when /H = 1 and larger discrepancies

were observed for the random fields with /H =  0.1  and  10,  for  all  values  of  COV.   On

visual  inspection,  it  is  clear  that  the  shape  of  the  sample  distribution  is  affected  by  the

values of COV and /H.  This is further verified by computing the sample mean and

standard deviation of the simulated values of cu.
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Figure 3.8 Frequency density plots for simulated values of cu with different values of

COV and /H (based on one realisation)
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Figure 3.8 Frequency density plots for simulated values of cu with different values of

COV and /H (based on one realisation) (continued)
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The comparison between the sample and target mean and standard deviation of cu is

summarised in Table 3.3.  The results in Table 3.3 confirm that the sample mean and

standard deviation of cu are influenced by the values of COV and /H.  If the value of /H

is fixed the difference between the target and sample mean and standard deviation of cu

increases  as  the  value  of  COV  increases.   For  example,  when /H is fixed at 0.1, the

difference between the target and sample mean of cu increases from 0.3% to 18.3%, while

the difference between the target and sample standard deviation of cu increases from 34.7%

to 52.9%.  However, when the value of COV is fixed, the largest difference between the

target and sample mean and standard deviation of cu is observed when /H = 10, while the

smallest difference is observed when /H = 1.

Table 3.3 Comparison between sample and target mean and standard deviation of

cu (based on one realisation)

Mean (kPa) Std. Dev. (kPa)
COV /H

Target Sample
Difference

(%) Target Sample
Difference

(%)

0.1 0.1 60 59.8 0.3 6 3.9 34.7
0.1 1 60 59.9 0.1 6 5.6 6.3
0.1 10 60 57.7 3.8 6 2.8 53.7
0.3 0.1 60 58.5 2.5 18 11.3 37.1
0.3 1 60 59.6 0.7 18 16.3 9.4
0.3 10 60 52.4 12.6 18 7.6 57.6
0.5 0.1 60 56.2 6.3 30 17.7 41.0
0.5 1 60 59.0 1.7 30 26.0 13.5
0.5 10 60 46.8 22.1 30 11.3 62.2
1 0.1 60 49.1 18.3 60 28.3 52.9
1 1 60 56.5 5.8 60 44.6 25.7
1 10 60 34.6 42.4 60 16.0 73.3

Since the Monte Carlo simulation process essentially involves simulating thousands of

realisations of random soil profiles, it is important to investigate the distribution of the

‘Mean cu’ computed for each realisation.  For this purpose, 2,000 realisations of cu fields

were simulated and the sample mean for each realisation were computed.  The frequency
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density plots for the computed sample ‘Mean cu’ with different values of COV and /H are

shown in Figure 3.9.  The theoretical or target lognormal distribution is also included in

each plot.

In can be seen that, for all values of COV, the closest match between the sample and target

distribution are observed when /H  =  10.   It  is  also  noted  that  the  scatter  of  the  sample

‘Mean cu’  decreases  as  the  values  of  COV  and /H decreases.  The sample mean and

standard deviation of ‘Mean cu’ are computed and summarised in Table 3.4.  It can be seen

that both the sample mean and standard deviation of ‘Mean cu’ are reduced from their

target  values.   If  the  value  of /H is fixed the difference between the target and sample

mean of ‘Mean cu’ increases as the value of COV increases.  For example, when /H = 0.1,

the difference between the target and sample mean of ‘Mean cu’ increases from 0.5% to

19% as the value of COV increases from 0.1 to 1.0.  Similarly, the difference between the

target and sample standard deviation of ‘Mean cu’ also increases as the values of COV

increase when the values of /H are fixed.  For example,  when /H = 0.1,  the difference

between  the  target  and  sample  standard  deviation  of  ‘Mean cu’ increases from 95.3% to

96.9% as the value of COV increases from 0.1 to 1.0.

On the other hand, if the values of COV are fixed, the difference between the target and

sample mean of ‘Mean cu’ decreases as the value of /H increases.  For example, the case

with COV = 0.1, the difference between the target and sample mean of ‘Mean cu’

decreases from 0.5% to 0.2% as the value of /H increases from 0.1 to 10.  Similarly, the

difference between the target and sample standard deviation of ‘Mean cu’ also decreases as

the values of /H increases when the value of is  COV fixed.  For example,  the case with

COV = 0.1, the difference between the target and sample standard deviation of ‘Mean cu’

decreases from 95.3% to 14.9% as the value of COV increases from 0.1 to 10.
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Figure 3.9 Frequency density plots for ‘Mean cu’ with different values of COV and

/H (based on 2,000 realisations)
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Figure 3.9 Frequency density plots for ‘Mean cu’ with different values of COV and

/H (based on 2,000 realisations) (continued)
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Table 3.4 Comparison between sample and target mean and standard deviation of

‘Mean cu’ (based on 2000 realisations)

Mean (kPa) Std. Dev. (kPa)
COV /H

Target Sample
Difference

(%) Target Sample
Difference

(%)

0.1 0.1 60 59.7 0.5 6 0.3 95.3
0.1 1 60 59.7 0.5 6 2.0 66.4
0.1 10 60 59.9 0.2 6 5.1 14.9
0.3 0.1 60 58.4 2.6 18 0.8 95.8
0.3 1 60 59.6 0.8 18 5.8 67.7
0.3 10 60 59.9 0.2 18 14.9 17.0
0.5 0.1 60 56.1 6.6 30 1.2 96.1
0.5 1 60 59.0 1.6 30 9.4 68.8
0.5 10 60 59.7 0.5 30 24.4 18.7
1 0.1 60 48.6 19.0 60 1.8 96.9
1 1 60 57.4 4.3 60 16.6 72.3
1 10 60 59.1 1.5 60 45.8 23.7

The difference between the sample and target distribution is attributed to the effects of

local averaging, which was previously discussed in Section 3.3.4.  The target mean and

standard deviation are point estimates, while the sample mean and standard deviation are

local averages that are affected by the size of the averaging domain and scale of fluctuation

(Vanmarcke 1983).  For a lognormal distribution, both the mean and variance are reduced

due to local averaging, which has been shown in Figure 3.9 and Table 3.4.  According to

the local averaging theory, if the element size is fixed, a larger scale of fluctuation (i.e. as

) leads to less reduction to the point variance, while a smaller scale of fluctuation (i.e.

as  0) leads to greater reduction to the point variance.

3.6.2 Verification of the Correlation Structure

As previously discussed in Section 3.3.2, rslope2d uses the local average subdivision

(LAS) method to produce correlated local averages based on an isotropic exponentially

decaying (i.e. Markov) correlation structure.  The theoretical correlation function has been
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given in Equation (3.1).  Figure 3.10 shows the comparison between the experimental

correlation structure simulated by rslope2d with the theoretical correlation structure for

two different scales of fluctuation, i.e.  1 m and 10 m.  The results were obtained based

on an average over 100 random field realisations.  Good agreement between the

experimental and theoretical correlation structure is observed.
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Figure 3.10 Comparison of experimental and theoretical correlation structure for

scales of fluctuation (a)  = 1 m and (b)  = 10 m



Chapter 3.  Probabilistic Slope Stability Analysis using Random Finite Element Method 89

3.7 Summary

This chapter has described the formulation and implementation of the random finite

element method (RFEM), which was used as the probabilistic slope stability analysis tool

throughout this research.  It has been shown that rsloped2d, a computer model that

implements RFEM, is capable of modelling the characteristic features of soil variability.

Preliminary studies were undertaken to investigate the effect of varying statistical

parameters on the simulated random fields.  The results have validated the LAS

methodology,  which  is  used  for  the  simulation  of  random soil  profiles  in rslope2d.  The

results  also  indicated  that  the  distribution  of  a  simulated  soil  property  is  affected  by  the

coefficient of variation (COV) and the scale of fluctuation, .   It  is  anticipated  that

variations in COV and  have a significant influence on the probability of failure of a

slope.  This topic is dealt with in the following chapter.
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Chapter 4

INFLUENCE OF SOIL VARIABILITY ON RELIABILITY

OF SINGLE-LAYERED SOIL SLOPES

4.1 Introduction

It has been shown in Chapter 3 that the statistical distribution of soil properties is

influenced by the soil variability parameters, namely the coefficient of variation (COV)

and the scale of fluctuation, .   It  is  reasonable  to  expect  that  soil  variability  has  a

significant influence on the estimated probability of failure, Pf, of a slope.  The aim of this

chapter is therefore to investigate and quantify the effects of COV and  on the estimated

Pf of a slope.  This is achieved by carrying out numerical studies using the computer model

rslope2d,  which  is  based  on  the  random  finite  element  method  (RFEM),  as  discussed  in

Chapter 3.  Two cases are considered herein: (a) a cohesive slope; and (b) a c  slope.

This chapter also aims to develop a set of probabilistic stability charts that can be used to

evaluate the probability of failure of a slope by taking the effect of soil variability into

consideration.

4.2 Probabilistic Analysis of Spatially Random Cohesive
Slopes

4.2.1 Description of Numerical Studies Undertaken

The slope problem under consideration is shown in Figure 4.1.  The slope geometry is

described by the parameters: slope angle, ,  depth  factor,  D,  and  slope  height,  H.   For  a

cohesive slope problem, a total stress analysis is assumed and the effect of pore pressure is
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not considered.  The soil shear strength is described solely by the undrained shear strength,

su, or undrained cohesion, cu, (i.e. u = 0).  In this study, the undrained cohesion, cu, was

modelled as a random variable, which was described by a lognormal distribution.

Meanwhile, the spatial variability of cu was modelled by the soil variability parameters

COV and .  In the interest of generality, the scale of fluctuation,  was normalised by the

slope height, H, (i.e. /H), while the mean value of undrained cohesion was expressed in

terms of a dimensionless stability coefficient, Ns, similar to Taylor’s (1937) stability

number, and expressed as:

H
N s

uc (4.1)

where
uc  = the mean value of cu;  = unit weight of the soil; and H = slope height.

H

DH

Figure 4.1 Geometry of the cohesive slope problem

In this study, the input parameters , D, Ns, COV and /H were varied systematically, and

the values adopted in the parametric studies are given in Table 4.1.  The slope angles, , of

14 , 18.4 , 26.6 , 45  represents slopes of 4:1, 3:1, 2:1, and 1:1, respectively, were

adopted.  The scale of fluctuation, , was assumed to be isotropic, i.e. the horizontal  and

the vertical are equal.  The effect of anisotropy of  is investigated and discussed later.

Other parameters were held constant at their deterministic values, e.g. slope height, H =

10 m; unit weight,  = 20 kN/m3; Young’s modulus, Es = 1  105 kPa; Poisson’s ratio,  =

0.3; and dilation angle,  = 0 .
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Figure 4.2 shows a typical finite element mesh for a 1:1 cohesive slope with  = 45  and D

= 2.  The parameter S is dependent on the slope angle, .  For example, in this case, when

 = 45 , the corresponding value of S is 1.  An element size of 1 m  1 m is adopted for the

finite element mesh in Figure 4.2.  The effect of mesh density on the estimated probability

of failure, Pf, is also discussed later.

Table 4.1 Input parameters for parametric studies

Parameters Input values
14 , 18.4 , 26.6 , 45

D 1, 2, 3
Ns 0.1, 0.2, 0.3, 0.4, 0.5

COV 0.1, 0.3, 0.5, 1.0
/H 0.1, 0.5, 1, 5, 10

2H 2HSH

DH

H

Figure 4.2 Typical finite element mesh for a 1:1 cohesive slope (  = 45 , D = 2)

Parametric studies of a single-layered cohesive slope problem using the random finite

element method (RFEM) were previously conducted by Griffiths and Fenton (2004).

These studies, however, focused solely on a 2:1 slope with  = 26.6  and D = 2, using a

1 m  1 m finite element mesh.  The values of Ns, COV and /H investigated were:

Ns = 0.15, 0.17, 0.2, 0.25, 0.3;
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COV = 0.25, 0.5, 1, 2, 4, 8; and

/H = 0.1, 0.25, 0.5, 1, 2, 4, 8.

The current parametric studies therefore extend Griffiths and Fenton’s studies by

investigating slopes with different geometry (i.e. by varying  and D).  The current studies

also aim at developing a set of probabilistic stability charts, which can be used for a

preliminary estimate of Pf of a cohesive slope with spatially random undrained cohesion,

cu.  It should be noted that the values of Ns, COV and /H being considered in the current

studies are not exactly the same as those investigated by Griffiths and Fenton (2004).  In

the current studies, high values of COV (i.e. COV > 1.0) are not considered due to the fact

that these high values of COV are unlikely to be encountered in real soil deposits, based on

the published data in the literature (e.g. Lee et al. 1983; Phoon and Kulhawy 1999a;

Baecher and Christian 2003).  These published data suggested a likely range for COV of cu

of 0.1 – 0.5, as previously shown in Chapter 2.  Therefore, the current study sets the upper

bound value of COV to 1.0, for the purpose of numerical modelling.

4.2.2 Consideration of Computational Resources and Time Constraints

As discussed in Chapter 3, in order to accurately estimate the probability of failure, Pf,

thousands  of  repetitions  of  non-linear  finite  element  analyses  are  required,  as  part  of  the

Monte Carlo simulation process.  The computational time is usually large and dependent

on several parameters: iteration limit for the finite element analysis, maxit; number of

realisations adopted in the Monte Carlo process, nsim; mesh density; problem size and the

estimated probability of failure, Pf.

Generally, the computational time increases as maxit and nsim increase.  The minimum

requirement of maxit and nsim for producing a reliable and reproducible estimate of Pf is

discussed later.  The computational time will also increase if a finer mesh is used or the

problem size is increased.  Moreover, the computational time for a slope with higher Pf is

usually greater than that for a slope with lower Pf.  This is because a higher Pf means  a

larger number of Monte Carlo realisations have reached the user-defined iteration limit

without converging to a solution, hence, yield more ‘failed’ slopes.  On the other hand, in
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the finite element analysis, a ‘safe’ slope usually converges quickly, before reaching the

iteration limit.

In order to investigate the effect of varying each input parameter with the values listed in

Table 4.1, a total of 1,200 individual slope problems were analysed.  To achieve this, the

following computing resources were used:

IBM eServer 1350 Linux Cluster, named Hydra, consisting of 129 nodes with each

node having dual 2.4 GHz Xeon Processers (Pentium P4), 2.0 GB RAM and running

on RedHat Linux; and

AMD Athlon 2100+ Dual Servers, named Terzaghi and Vanmarcke, with 1.0 GB RAM

and 60 GB HDD running Linux.

Table 4.2 shows the cases with the shortest and longest computational time out of 1,200

slope problems that were analysed, using the computing facility Hydra.  It should be noted

that, the element size was fixed at 1 m  1 m, nsim = 2000, and maxit = 500.  It can be seen

that the difference in computational time between these two extreme cases is very large,

i.e.  approximately  13.5  hours.   Clearly,  if  the  element  size, nsim and maxit are  fixed,  the

computational time is governed by the problem size and the estimated Pf.  The slope with

= 14  and D = 3 has a relatively larger problem size and higher Pf than the slope with  =

45  and D = 1, and as a result, it requires a longer computational time.

Table 4.2 Cases with shortest and longest computational time

D Ns COV /H FOS Pf Runtime (sec)
45 1 0.4 0.1 0.1 2.45 0 50
14 3 0.1 0.5 0.1 0.6 1 48,756

4.2.3 Determination of Iteration Limit and Number of Realisations

Preliminary analyses were conducted to determine the iteration limit, maxit,  and  the

number of realisation, nsim, required for producing a reliable and reproducible estimated of
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the probability of failure, Pf.  The analyses were performed on a 1:1 undrained clay slope

with  = 45  and D = 2, as previously shown in Figure 4.2.  The soil variability parameters

COV and /H  were  fixed  at  0.5  and  1,  respectively.   The  stability  coefficient,  Ns, was

varied so that slopes with different values FOS and Pf could be investigated.  Figure 4.3

shows  the  effect  of  the  number  of  iterations  on  the  estimated Pf.  It can be seen that

iteration limit of 500 appears to be adequate for all cases of slopes with different FOS and

Pf.

Figure 4.4 indicates that the estimated Pf, for all cases being considered, starts to converge

at 2,000 realisations.  Further increment in the number of realisations causes only minor

changes in the estimated Pf.  Based on the equation suggested by Hahn and Shapiro (1967)

(i.e. Equation (3.13)), the number of realisations required to achieve a relative percentage

error of less than 5%, for a 95% confidence interval, is 1,500.  The results observed in

Figure 4.4 are in good agreement with that estimated by the Hahn and Shapiro (1967)

equation.

Figure 4.5 shows the effect of varying the number of realisations of Monte Carlo

simulation on the computational time for the slopes with different values of FOS, and with

COV and /H fixed at 0.5 and 1, respectively.  It can be seen that, for all cases of FOS, the

computational time increases linearly as the number of realisations increases.  It is also

observed  that  the  slope  with  a  lower  FOS (or  higher Pf) requires a longer computational

time than that with a higher FOS (or lower Pf).  It should be noted that the further increase

of the number of realisations after 2,000 realisations yielded only minor changes in Pf, as

previously shown in Figure 4.4, but the computational time was increased dramatically, as

shown in Figure 4.5.

Based on these preliminary analyses, it was concluded that 2,000 realisations to be used for

the Monte Carlo simulation to ensure the error in the estimated Pf is minimised, while the

iteration limit was fixed at 500.
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Figure 4.3 Effect of number of iterations on probability of failure

(COV = 0.5; /H = 1)
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Figure 4.5 Effect of number of realisations on computational time

(maxit = 500)

4.2.4 Effect of Mesh Density on Probability of Failure

Preliminary  analyses  were  also  conducted  to  investigate  the  effect  of  element  size  of  the

finite element mesh on the estimated probability of failure, Pf.   Three  different  mesh

densities were considered: (a) 0.5 m  0.5 m; (b) 1 m  1 m; and (c) 2 m  2 m, as shown

in Figure 4.6.  It should be noted that the 1 m  1 m mesh is the same as that previously

shown in Figure 4.2.  The finer mesh (0.5 m  0.5 m) and coarser mesh (2 m  2 m) have

exactly the same slope geometry as the 1 m  1 m mesh, i.e.  =  45  and  D  =  2.   In

addition, in this investigation, Ns was  held  constant  at  0.3.   Two  cases  of  COV  were

considered in the analyses, i.e. COV = 0.5 and 1.0, while /H was varied between 0.1 and

10.
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(a)

(b)

(c)

Figure 4.6 Finite element mesh with different mesh density (a) 0.5 m  0.5 m;

(b) 1 m  1 m; (c) 2 m  2 m. (  = 45 , D = 2)

Figure 4.7 shows the comparison of the estimated Pf, obtained from 2,000 realisations of

the Monte Carlo simulation, by using different mesh densities.  It is observed that the

estimated Pf is sensitive to mesh density at small values of /H.  At large values of /H, the

results seem to converge well.  In general, the 1 m  1 m mesh appears to be reasonable for

producing a reliable estimate of Pf, with the exception of when /H = 0.1 and when COV is

high (i.e. COV = 1.0).  The results in Figure 4.7 suggest that, the element size should be

much smaller that the scale of fluctuation, , in order to produce a reliable estimate of Pf.

It was found that the ratio between the element size and scale of fluctuation should be at

least 0.5.
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Figure 4.7 Effect of varying /H on probability of failure for different mesh densities

with COV fixed at 0.5 and 1.0 (  = 45 , D = 2, Ns = 0.3)

Although using a finer mesh produced a better estimate of the Pf, the computational time

also increased dramatically, as shown in Table 4.3.  Table 4.3 shows the comparison of the

estimated Pf and computational time for the worst case observed in Figure 4.7 (i.e. COV =

1.0 and /H = 0.1).  A significant increase in the computational time is observed, as a finer

mesh is used.  As a result, in the parametric studies that follow a finer mesh (0.5 m

0.5 m) was used only for the cases with small /H (i.e. /H = 0.1 and 0.5) and high COV.

Table 4.3 Comparison of Pf and computation time for the slope with different mesh

density (COV = 1.0; /H = 0.1)

Mesh density Estimated Pf Runtime (hrs)
0.5 m  0.5 m 0.963 16.3

1 m  1 m 0.581 2.4
2 m  2 m 0.166 0.2
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4.2.5 Deterministic Solutions

Prior to the probabilistic analyses, deterministic analyses were conducted by assuming the

soil  profile to be homogeneous.   The factor of safety (FOS) was computed, based on the

assumed mean value of the undrained cohesion, cu, using the finite element method (FEM).

Griffiths and Lane (1999) reported that FOS predicted by the FEM is in good agreement

with those obtained from popular stability charts produced by Taylor (1937) and Bishop

and Morgenstern (1960).  The comparison between the FOS computed by the FEM and

that obtained from Taylor’s charts, for the 1:1 undrained clay slope (  = 45 , D = 2) with

different values of Ns, is summarised in Table 4.4.  It is noted that the FEM solutions are

comparable with those obtained from Taylor’s charts.

Table 4.4 Factor of safety assuming homogenous soil (  = 45 , D = 2)

Ns uc  (kPa) FOS (FEM) FOS (Taylor’s charts)
0.1 20 0.55 0.56
0.2 40 1.10 1.12
0.3 60 1.65 1.69
0.4 80 2.15 2.25
0.5 100 2.70 2.81

4.2.6 Results of Parametric Studies

Based on 2,000 realisations of Monte Carlo simulations for each parametric group

described in Table 4.1, the influence of each input parameter on the estimated Pf is

investigated and discussed in the following sections.

First, the effects of the spatial variability of undrained cohesion, cu, on the probability of

slope failure, Pf, are examined.  The results obtained for the slope with  = 45  and D = 2

are used for this discussion.  Figures 4.8 and 4.9 show the typical deformed meshes at

slope failure for the 1:1 cohesive slope with Ns = 0.3 and different values of COV and /H.

Again, dark and light regions indicate ‘strong’ and ‘weak’ soil elements, respectively.
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(a)

(b)

(c)

Figure 4.8 Typical deformed mesh for the 1:1 cohesive slope with COV of (a) 0.3, (b)

0.5 and (c) 1.0 (  = 45 ; D = 2; Ns = 0.3; /H = 1)

It can be noticed that the failure mode is different for the slope with varying values of

COV and /H.  For example, Figures 4.8(a), (b) and (c) show the failure mechanism of the

slope with COV of 0.3, 0.5 and 1.0, respectively with the value of /H being held constant

at  1 in this case.   It  can be seen that,  when COV = 0.3 and 0.5,  a circular ‘toe’ failure is

obtained.  However, for COV = 1.0, the failure mode appears to be ‘deep-seated’.

It should be noted that the failure mode is not solely dependent on COV but also /H.

Figures 4.9(a), (b) and (c) show the failure mode of the slope with /H of 0.1, 1 and 10,
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respectively, with COV fixed at 0.5.  When /H = 0.1, the soil profile is approaching one

that is completely spatially random, and no obvious circular or planar failure surface is

observed.  In fact, failure occurs through a non-uniform surface delineated by regions of

weak  soil  shear  strength.   On  the  other  hand,  as /H increases, the soil profile becomes

more uniform, hence, a circular failure mode is more likely to be developed.  When /H =

10, a ‘deep-seated’ mode is observed.  These observations suggest that, for a cohesive

slope, ‘deep-seated’ failure only occurs when the soil profile is uniform, that is, /H is

large.

(a)

(b)

(c)

Figure 4.9 Typical deformed meshes for the 1:1 cohesive slope with /H of (a) 0.1,

(b) 1 and (c) 10 (  = 45 ; D = 2; Ns = 0.3; COV = 0.5)
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Figures 4.10 and 4.11 show the effects of varying COV on Pf for different values of /H,

with Ns fixed at 0.2 and 0.3, respectively.  It has been previously shown that Ns of 0.2 and

0.3 yielded a FOS of 1.10 and 1.65, respectively (Table 4.4).  In practice, FOS = 1.10

would suggest a marginally stable slope which is at the verge of failure, while FOS = 1.65

would suggest a stable slope with a very low likelihood for slope failure.  In general, Pf

increases as COV increases (i.e. increasing variability in cu).   When Ns = 0.2 and FOS =

1.10 (i.e. a marginally stable slope), Pf increases significantly as COV increases from 0.1

to 0.3 for all values of /H (Figure 4.10).  However, the increase in Pf becomes lesser as

COV increases from 0.3 to 0.5, which is the upper bound value for COV suggested in the

literature, as discussed in Chapter 2.  As an example, for /H = 1, Pf increases significantly

from 0.10 to 0.69 as COV increases from 0.1 to 0.3 but Pf increases relatively less from

0.69 to 0.82 as COV increases from 0.3 to 0.5.

On the other hand, for the slope with Ns = 0.3 and FOS = 1.65 (i.e. a stable slope), the rate

of increase in Pf as  COV increases  from 0.1  to  0.3  is  smaller  than  that  observed  for  the

slope with Ns = 0.2.  However, Pf increases significantly as COV increases from 0.5 to 1.0.

In addition, it  is  also noted that the values of Pf for the slope with Ns = 0.3 are generally

smaller than those observed for the slope with Ns = 0.2.  This is expected because a higher

value of Ns indicates the corresponding mean value of cu is higher as well.  Despite that, a

Pf of  as  high  as  0.23  was  computed  for  the  slope  with  COV  =  0.5  and /H  =  10.   The

results in Figures 4.10 and 4.11 suggest that, for a marginally stable slope (i.e. FOS  1.0),

Pf is  more  sensitive  to  the  lower  values  of  COV (i.e.  COV < 0.3),  however,  for  a  stable

slope (i.e. FOS > 1.5), Pf is more sensitive to the higher values of COV (i.e. COV > 0.3).

Figures 4.10 and 4.11 also show that different values of /H lead to different values Pf as

COV increases.  It can be seen that, for both Ns = 0.2 and 0.3, all the curves intersect at a

specific point.  For Ns = 0.2, this point occurs when Pf = 0.31 and COV = 0.17, while for

Ns = 0.3, the intersection occurs when Pf = 0.31 and COV = 0.66.  At the intersection

point, the Pf is independent of the values of /H.  Different behaviour is observed before

and  beyond  these  intersection  points.   As  an  example,  for  Ns = 0.3, when COV < 0.66,

smaller /H leads to lower Pf.  On the other hand, when COV > 0.66, smaller /H leads to

higher Pf.  The effect of /H on Pf is illustrated more clearly in Figures 4.12 and 4.13.
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Figure 4.10 Effect of varying COV on probability of failure for different values of

/H with Ns fixed at 0.2 (  = 45 ; D = 2)
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Figure 4.11 Effect of varying COV on probability of failure for different values of

/H with Ns fixed at 0.3 (  = 45 ; D = 2)
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Figures 4.12 and 4.13 show the effect of varying /H on Pf for different values of COV

with  Ns fixed at 0.2 and 0.3, respectively.  Two different trends are obvious, which are

dependent on the values COV, i.e. Pf either increases or decreases as /H increases.  For Ns

= 0.2, Pf increases as /H increases when COV = 0.1, but Pf decreases  as /H increases

when COV = 0.3, 0.5 and 1.0 (Figure 4.12).  On the other hand, for Ns = 0.3, Pf increases

as /H increases when COV = 0.1, 0.3, and 0.5, but Pf decreases as /H increases when

COV = 1.0 (Figure 4.13).  It is also noted that Pf converges  to  either  0  or  1  when /H

becomes very small (i.e. /H  0).

It should be noted that the trends of the results observed in Figures 4.10 to 4.13 are similar

to those observed by Griffiths and Fenton (2004) for a 2:1 cohesive slope (  = 26.6 ; D =

2)  with  Ns = 0.25 (i.e.
uc = 50 kPa).  As previously discussed by Griffiths and Fenton

(2004), the two different trends observed with respect to the variation of Pf with /H (i.e. Pf

either increases or decreases as /H increases) are governed by the median Ns (or the

median cu) of the simulated random fields.  The COV values of 0.17 and 0.66, as

previously observed at the intersection points in Figures 4.10 and 4.11, are the special

values that cause the median Ns of the simulated random fields to equal 0.18, which is the

critical value that would cause the slope being considered to have FOS = 1.0.

A value of COV lower than the special value will cause the median Ns > 0.18 and lead to

Pf increases as /H increases.  This is because, as /H increases, the scatter of the mean cu

of the simulated random fields also increases, as previously shown in Chapter 3.  Also,

with the simulated median Ns > 0.18, it is expected that Pf < 0.5.  Increase in the scatter of

mean cu will increase the chances for low values of mean cu to occur,  and hence, lead to

increase in Pf.  In contrast, a value of COV higher than the special value will cause the

median Ns <  0.18  and Pf > 0.5, which lead to Pf decreases as /H increases.  This is

because, with median Ns < 0.18, the chances for a ‘failed’ slope to occur is very high.  Less

scatter in the simulated values of Ns means that Pf is expected to remain high (i.e. Pf  1).

As /H increases, the scatter of mean cu increases accordingly, and lead to more

realisations with Ns > 0.18 to be simulated, thereby increasing the chances of the

occurrence of a ‘safe’ slope, hence, a decrease in Pf is expected.
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Figure 4.12 Effect of varying /H on probability of failure for different values of

COV with Ns fixed at 0.2 (  = 45 ; D = 2)
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Figure 4.13 Effect of varying /H on probability of failure for different values of

COV with Ns fixed at 0.3 (  = 45 ; D = 2)
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Figures 4.14 and 4.15 show the effect of varying /H on Pf for  the  slopes  with  different

values  of  Ns and FOS, with COV fixed at 0.1 and 0.5, respectively.  For COV = 0.1,

varying /H causes no changes in Pf for the slopes with Ns = 0.1, 0.3, 0.4 and 0.5.  For the

slopes  with  Ns =  0.2  (i.e.  FOS  =  1.10),  the  value  of Pf increases as the value of /H

increases.  These results indicate that, when COV is very small, only the marginally stable

slope (i.e. FOS  1.0) is sensitive to the values of /H.  On the other hand, when COV =

0.5, the value of Pf increases as the value of /H increases for the slopes with Ns = 0.3, 0.4

and 0.5.  However, for the slopes with Ns = 0.1 and 0.2,  the value of Pf decreases as the

value of /H increases.  This behaviour is also governed by the median Ns of the simulated

random fields, as discussed above.
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Figure 4.14 Effect of varying /H on probability of failure for different values of Ns

with COV fixed at 0.1 (  = 45 ; D = 2)
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Figure 4.15 Effect of varying /H on probability of failure for different values of Ns

with COV fixed at 0.5 (  = 45 ; D = 2)

Figure 4.16 shows the effect of varying /H on the probability of failure, Pf, for different

slope angles, with the values of D, Ns and COV fixed at 2, 0.2 and 0.5, respectively.  It can

be seen that, in this case, Pf increases as /H increases for the slopes 3:1 and 4:1.

However, Pf decreases as /H increases for the slopes 1:1 and 2:1.  This is because, as the

slope geometry changes, the critical value of Ns that would cause FOS = 1.0 for each slope

also varies.  In this case, for the slopes 3:1 and 4:1, their median Ns is greater than the

critical Ns, while for the slopes 1:1 and 2:1, their median Ns is smaller than the critical Ns.

It should be noted that assuming a perfectly correlated soil profile (i.e. ) and

completely ignoring the spatial correlation in probabilistic slope stability analysis could

either overestimate or underestimate the probability of failure of a slope, as observed in

Figures 4.12 to 4.16.  This is because, as  0 (i.e. becoming more spatially random),

Pf of the slope would either converge to 0 or 1, depending on the values of COV and Ns.

In real soil deposits, the scale of fluctuation of soil properties is expected to lie between the

two extreme cases: completely random soils (i.e. /H  0)  and  perfectly  correlated  soil

profile (i.e. /H ).
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Figure 4.16 Effect of varying /H on probability of failure for different slopes

(D = 2; Ns = 0.2; COV = 0.5)

Figures 4.17 and 4.18 show the direct comparison between the probability of failure, Pf,

and the factor of safety, FOS, for different values of /H, and with COV fixed at 0.1 and

0.5, respectively.  The different values of FOS were obtained by varying the value of Ns in

the range of 0.1 – 0.5, as previously shown in Table 4.4.  The corresponding values of FOS

were found in the range between 0.55 and 2.75.  It can be seen from both Figures 4.17 and

4.18 that, for both COV = 0.1 and 0.5, Pf decreases as FOS increases for all cases of /H,

which is expected.  For COV = 0.5 (Figure 4.18), the curves intersect at the point where Pf

= 0.34 and FOS = 1.45.  When FOS < 1.45, smaller /H leads to higher Pf, and when FOS

< 1.45, smaller /H leads to lower Pf.  It is also noted that, when COV is small (i.e. COV =

0.1), a slope with FOS > 1.65 would have Pf  0.  However, when COV is large (i.e. COV

= 0.5), even with FOS as high as 1.65 there may be still a significant probability of failure,

dependent on the values of /H.  In practice, any slope with FOS > 1.5 would generally be

regarded as a stable slope.  The results shown in Figures 4.17 and 4.18 suggest that the

deterministic FOS is not a reliable measure of the true safety of a slope.  In fact, FOS is

meaningful only when the COV of the strength parameters is very small (i.e. COV < 0.1).
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Figure 4.17 Probability of failure versus factor of safety for different values of /H

with COV fixed at 0.1 (  = 45 ; D = 2)
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Figure 4.18 Probability of failure versus factor of safety for different values of /H
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4.2.7 Effect of Anisotropy of Scale of Fluctuation on Probability of
Failure

As discussed in Chapter 2, the horizontal scale of fluctuation, h, is generally larger than

the vertical scale of fluctuation, v, due mainly to soil depositional processes.  The results

presented so far are based on the assumption that the scale of fluctuation is isotropic (i.e. h

= v).  Numerical studies were conducted to investigate the effect of anisotropy of on the

Pf.  The value of h was assumed to be 1, 5, 10 and 50 times larger than the v.  The FOS

was varied within the range of 1.0 – 1.5 in this investigation.

Figure 4.19 shows the plots of Pf versus  FOS  for  different  degrees  of  anisotropy  (i.e.

h/ v), with v/H = 1 and COV = 0.5.  It is observed that the curves intersect at FOS  1.42.

When FOS < 1.42, the isotropic assumption leads to higher estimate of Pf, which is

conservative.  In contrast, when FOS > 1.42, the isotropic case becomes unconservative, as

a lower Pf is estimated.  However, the effects are small compared to the effects of variation

in the values COV and /H.   It  is  also  noted  that  further  increment  in  the  degree  of

anisotropy will result only small changes to Pf.
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Figure 4.19 Probability of failure versus factor of safety for different degrees of

anisotropy with COV fixed at 0.5 (  = 45 ; D = 2; Ns = 0.3; v/H = 1)
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4.2.8 Probabilistic Stability Charts

It has been shown that, the RFEM analysis is computationally intensive, due mainly to the

Monte Carlo simulation process and the non-linear finite element analysis.  Therefore, it is

worthwhile to develop a set of probabilistic stability charts, which can be used for a quick

and preliminary estimation of the Pf of a spatially random cohesive slope.  The charts were

constructed based on the numerical results obtained from the parametric studies.  The

values of the input parameters were previously summarised in Table 4.1.

A probabilistic chart of Pf versus /H for different values of COV is plotted, for each slope

geometry (  and D) and Ns.  Figure 4.20 shows a set of typical probabilistic stability charts

for  the  case  with  D  =  2  and  Ns = 0.2.  The probabilistic stability charts for other

combinations of D and Ns are presented in Appendix A.  It can be seen from Figure 4.20

that,  when the  values  of  D and  Ns are  fixed,  the  variations  of Pf with  respect  to /H are

dependent on the slopes and the values of COV.

4.3 Probabilistic Analysis of Spatially Random c  – Slopes

This  section  deals  with  the c -  slope problem, involving an effective stress analysis.

Effective or drained cohesion, c , and friction angle, , are the shear strength parameters.

The soil shear strength is defined by the Mohr-Coulomb failure criterion, as previously

discussed in Chapter 2.  The slope geometry, together with the finite element mesh used is

presented in Figure 4.21.  The slope has a height, H, of 10 m, a gradient of 1:1 (  = 45 ),

and a depth factor, D, of 1.5.  The element size was fixed at 0.5 m  0.5 m, for the purpose

of modelling soil with small scales of fluctuation, .  In this study, the slope geometry was

fixed and variations in  and D were not considered.

A deep water table was assumed in this study, hence, the effect of pore water pressure was

not considered in the analysis.  The shear strength parameters c  and  were modelled as

random variables and both were described by a lognormal distribution.  Other parameters

were held constant, e.g. slope height, H = 10 m; unit weight,  = 20 kN/m3; Young’s

modulus, '
sE  = 1  105 kPa; Poisson’s ratio,  = 0.3; and dilation angle,  = 0 .
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Figure 4.21 Mesh and slope geometry used for the c -  slope problem

In the process of simulating the soil profiles, random fields of c  and  were generated

independently, based on their prescribed statistical parameters (i.e. mean, standard

deviation, and scale of fluctuation).  The mean, , and standard deviation, , were

expressed in terms of the coefficient of variation, COV, while the scale of fluctuation was

expressed in the dimensionless form of /H.

In the first part of the parametric studies, the mean values of cohesion and friction angle

were held constant at 10 kPa and 30 , respectively.  The COV of c  and , and /H were

varied systematically according to Table 4.5.  It is noted that the COV of  is assumed to

be half of the COV of c .  This is due to the fact that the variability of the friction angle is

generally smaller than that of cohesion, as previously discussed in Chapter 2.  Published

data from the literature (e.g. Lee et al. 1983; Phoon and Kulhawy 1999a; Baecher and

Christian 2003) indicate that, the COV of cohesion is in the range of 0.1 – 0.5, while the

friction angle is in the range of 0.05 – 0.15.  No cross correlation between c  and  was

assumed in the first part of analysis.  Cross correlation between c  and  is investigated

and discussed later.  An isotropic scale of fluctuation was assumed throughout the analysis.

Table 4.5 Input values of COV and /H used in the c -  slope problem

Parameters Input values

COVc 0.1, 0.2, 0.3, 0.4, 0.5
COV 0.05, 0.1, 0.15, 0.2, 0.25

/H 0.1, 0.5, 1, 5, 10
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4.3.1 Deterministic Solutions

Deterministic analyses were conducted using both the finite element method and the limit

equilibrium methods, based on the mean values of the shear strength parameters, i.e. c   =

10 kPa and   =  30 .  The limit equilibrium solution was obtained by using the student

edition of the commercial slope stability analysis software SLOPE/W (GEO-SLOPE

International Ltd 2004).  The computed factor of safety (FOS), based on a simplified

Bishop’s method, was 1.2.  The critical slip surface of the slope is shown in Figure 4.22,

which indicates a ‘toe’ failure.  Toe failure is generally expected in a c –  slope problem

due  to  the  low  value  of  effective  cohesion.   The  FOS  computed  by  the  finite  element

method is 1.12, which is comparable with that obtained from the limit equilibrium method.

Figure 4.22 Critical slip surface obtained from SLOPE/W using simplified Bishop’s

method (FOS = 1.2)

4.3.2 Iteration Limit and Number of Realisations

Preliminary analyses were conducted to determine the iteration limit, maxit, and number of

realisation, nsim, required to produce a reliable estimate of the probability of failure, Pf,

similar to that conducted previously for the cohesive slope problem.  Figure 4.23 indicates

that an iteration limit of 1,000 is required for a c –  slope problem in order to obtain a

stable estimation of Pf, which is double that required for the cohesive case.

As discussed in Chapter 3, the number of realisations required by Monte Carlo simulation

to produce a stable solution is partly dependent on the number of random variables in the

problem.  Therefore, it is expected that the number of realisations required by a c –  slope

problem is double that required by a cohesive slope problem.  Figure 4.24 indicates that
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4,000 realisations would give a reliable and reproducible estimate of Pf.  As a result, maxit

= 1,000 and nsim = 4,000 were used in this study.
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Figure 4.23 Effect of number of iterations on Pf
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Figure 4.24 Effect of number of realisations on Pf
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4.3.3 Effect of COV and /H on Probability of Failure

The deterministic FOS computed above by the finite element and limit equilibrium

methods are 1.12 and 1.2, respectively, which suggest that the slope is marginally stable.

The  deterministic  solution  is  based  on  the  assumption  that  there  is  no  variability  of  soil

properties (i.e. COV  0), as well as the soil profile is uniform and homogenous (i.e.

).  This section deals with the influence of incorporating soil variability on the stability of

a c –  slope.

Figure 4.25 shows the typical deformed meshes for the c –  slope being considered, with

/H  of  0.1  and  10,  respectively.   The  COVs  of c  and  are fixed at 0.3 and 0.15,

respectively.  It is noted that the finite element method predicted a similar failure

mechanism as that obtained from the limit equilibrium method (Figure 4.22).  No

noticeable difference in the failure mode, between soils with small and large scales of

fluctuation, is observed in this case.

(a)

(b)

Figure 4.25 Typical deformed mesh at slope failure for the c – slope with (a) /H =

0.1 and (b) /H = 10. (COVc  = 2COV = 0.3)
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Figure 4.26 shows the variations of Pf with COV of c .   As discussed earlier,  COV of

was assumed to be equal to half of that of c .   It  is  observed  that, Pf increases as COV

increases, for all cases of /H.  To achieve practically no failure in the slope, the COV of c

and  must be smaller than 0.1 and 0.05, respectively.  When the COV of c  and  is

varied within the range suggested in the literature, Pf as high as 0.38 is obtained, which

indicates a high likelihood for slope.  As explained earlier, as the COV increases, lower

values of shear strength parameters (i.e. c  and ) are likely to be encountered, and more

often, in any realisation.  These low values tend to control the stability of the slope and the

chances of slope failure are increased accordingly.

 Figure 4.27 shows the effect of varying /H on Pf, for different COVs of c  and .  It can

be  seen  that,  for  all  cases  of  COV  of c  and , Pf increases as /H increases.  This

observation is similar to that found in the cohesive case.  The similarity in the trends of the

results between the cohesive and c –  cases suggest that the variations of COV and /H

with respect to Pf, for the c –  cases, are due to the same reasons of the cohesive case, as

previously explained in Section 4.2.6.  In this c – case, assuming a perfectly correlated

soil profile would overestimate the Pf for all the COVs being considered.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5

COVc'

Pr
ob

ab
ili

ty
 o

f F
ai

lu
re

/H = 0.1
/H = 0.5
/H = 1
/H = 5
/H = 10

Figure 4.26 Effect of varying COV on probability of failure for different values of

/H
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Figure 4.27 Effect of varying /H on probability of failure for different COVs of c

and

4.3.4 Comparison of Probability of Failure and Factor of Safety

In this section, the mean values of c  and  are varied, and the Pf is compared directly with

the deterministic FOS.  The mean values of c  and  that were considered in the analysis,

and their corresponding values of FOS, are summarised in Table 4.6.  Figure 4.28 shows

the direct comparison between Pf and FOS, for different COV of c  and .  The value of

/H  was  fixed  at  1  in  this  case.   It  is  observed  that, Pf decreases as FOS increases, as

expected.  The curves intersect at the point Pf = 0.75 and FOS = 0.95.  When FOS < 0.95, a

larger COV leads to a lower value of Pf.  In contrast, when FOS > 0.95, a larger COV leads

to a higher value of Pf.  It is also noted that, for the case with COVc  = COV  = 0.5, FOS

greater than 1.6 is required to reduce Pf to insignificant levels (i.e. below 1/4000).

Figure 4.29 shows the plots of Pf versus FOS for different values of /H, with COVc  =

2COV = 0.5.  In this case, the intersection point occurs approximately at Pf = 0.4 and FOS

= 1.1.  When FOS < 1.1, a larger value of /H leads to a lower value of Pf, which indicates

that the /H  =  case  is  unconservative.   On  the  other  hand,  when  FOS  <  1.1,  a  larger
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value of /H leads to a higher value of Pf, which indicates that the /H  =  case is

conservative.

 Table 4.6 FOS for c –  slope with different mean values of c  and

c  (kPa) (degrees) FOS
0 20 0.38
0 30 0.60
10 20 0.88
10 30 1.12
20 20 1.25
20 30 1.55
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Figure 4.28 Probability of failure versus factor of safety for different COV of c  and

 ( /H = 1)
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Figure 4.29 Probability of failure versus factor of safety for different values of /H

(COVc  = 2COV = 0.5)

4.3.5 Effect of c –  Correlation on Probability of Failure

The results discussed so far are based on the assumption of no cross-correlation between

the parameters c  and .  Analyses were conducted to investigate the influence of the c –

correlation.  The cross-correlation between c  and  is defined by the correlation

coefficient, , as previously discussed in Chapter 3 (Section 3.3.6).  Values of  = –1, 0,

and 1, correspond to a completely negatively correlated, uncorrelated, and completely

positively correlated soil, respectively.  In this study, values of  = –1, –0.5, 0, 0.5 and 1

were considered.  The COVs of c  and  were fixed at 0.5 and 0.25, respectively.

Cherubini (2000) reported that c and  are negatively correlated, with values ranging from

–0.24 to –0.70, as previously discussed in Chapter 3.

Figure 4.30 shows the variations of Pf with  respect  to c –  correlation, , for the slopes

with different values of COVs of c  and , and /H.  The results indicate that, for all cases

of  COV and /H, negative correlation between c  and  leads  to  a  lower  estimate  of Pf,

while positive correlation between c  and  leads to a higher estimate of Pf.
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Figure 4.30 Probability of failure versus /H for different values of COVs of c and ,

and /H

4.4 Summary

The random finite element method (RFEM) was used to investigate the influence of soil

variability on the reliability of single-layered soil slopes.  The spatial variability of soil

properties was modelled by the coefficient of variation (COV) and the scale of fluctuation

(SOF).   Numerical  studies,  based  on  Monte  Carlo  simulation  method,  were  conducted  to

investigate the effects of varying COV and SOF on the probability of failure, Pf, of a slope.

Two cases were considered in the numerical studies: (a) a cohesive slope problem and (b) a

c –  slope problem.

To ensure the estimated Pf is reliable and reproducible, preliminary studies were carried

out to determine the required iteration limit, maxit,  for  the  finite  element  slope  stability

analysis and the number of realisations, nsim,  for  the  Monte  Carlo  simulation  process.   It

was found that maxit = 500 and nsim = 2,000 are adequate for a cohesive slope problem.

For a c –  slope problem, however, maxit = 1,000 and nsim = 4,000 are required.  Studies

were also conducted to investigate the effect of mesh density on the estimated Pf.  It was
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determined that, in order to obtain a reliable estimate of Pf, the ratio between element size

and SOF should be at least 0.5.

For the cohesive slope case study, the undrained cohesion, cu, was modelled as a random

field, which was described by a lognormal distribution.  Parametric studies were conducted

by varying the slope angle, ,  depth  factors,  D,  stability  coefficient,  Ns, COV and

normalised SOF, /H.  A set of probabilistic stability charts were developed, based on the

results of the parametric studies, which can be used as a quick estimation of Pf of  a

spatially random cohesive slope.

The results of numerical studies indicated that both COV and /H have a significant effect

on the estimated Pf.  It was generally found that, Pf increased as COV increased.  However,

as /H increased, Pf either decreased or increased, dependent on the values of COV, Ns and

slope geometry (  and D).  It was found that, for slopes with Pf < 0.5, Pf decreased as /H

increased, while for slopes with Pf > 0.5, Pf decreased as /H increase.

Direct comparison between the probability of failure, Pf, and the deterministic factor of

safety  (FOS)  was  made  and  the  results  indicated  that  values  of  FOS as  high  as  1.5  were

associated with significant chances of failure when the COV was varied within the range

suggested in literature.  It can be concluded that the deterministic FOS becomes unreliable

when the variability in soil properties is significant.

The effects of COV and /H on Pf of a c –  slope were found to follow the same trends as

the cohesive slope.  A circular ‘toe’ type failure was found to be the critical failure mode.

It was also determined that, assuming negative correlation between c  and  leads  to  a

lower estimate of Pf, while positive correlation between c  and  leads to a higher estimate

of Pf.

In the next chapter, the computer model rslope2d is extended to examine slopes with two-

layered soil profiles.  Probabilistic analysis is also conducted to investigate the effects of

soil variability on the reliability of two-layered soil slopes.
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Chapter 5

INFLUENCE OF SOIL VARIABILITY ON RELIABILITY

OF TWO-LAYERED SOIL SLOPES

5.1 Introduction

In the previous chapter, the influence of soil variability on a single-layered soil slope was

investigated.  However, it is not uncommon that, the real slope soil profiles consist of two

or more layers of soil with different properties.  There is also a possibility that soil near the

ground surface has a higher cohesion due to the apparent cohesion contributed by tree root

reinforcement  or  soil  suction,  as  previously  discussed  in  Chapter  2.   In  this  case,  the  top

layer should be modelled with different values of cohesion.

To model a layered soil slope in traditional limit equilibrium analysis, the soil profile is

usually divided into layers with different soil properties.  The soil properties within each

layer are commonly assumed to be uniform.  However, in a real soil profile, the properties

within each single layer may vary spatially.  In addition, even different soil layers that have

the same mean value of a soil property, they may have very different spatial variability (i.e.

different COV and ).

The computer model rslope2d, as discussed in Chapter 3 and adopted for the numerical

studies in Chapter 4, is capable of modelling soil variability in slope stability analysis.

However, the available version of this computer model is limited to analysing slopes with a

single-layered soil profile.  Therefore, the aim of this chapter is to extend rslope2d to

incorporate a two-layered soil profile in the probabilistic slope stability analysis.  The

following sections discuss the development of the two-layered slope model, followed by

validation of the developed model.  Finally, probabilistic analyses of two-layered soil

slopes are performed and the effect of soil variability on layered slopes is examined.
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5.2 Description of The Two-Layered Soil Slope Model

As discussed in Chapter 3, it is important to simulate a soil profile that can represent real

soil deposits.  Therefore, if the real soil profile consists of obvious layers of soil with

different  properties,  it  is  necessary  to  model  them  in  the  soil  profile  simulation  process.

Two different layering profiles are considered in the development of the two-layered soil

slope model, as shown in Figure 5.1.

The first layering profile models a slope with two soil layers that are separated by a

horizontal boundary, as shown in Figure 5.1(a).  This is the most common type of soil

layering found in real soil deposits due mainly to the soil deposition process.  Similar to a

single-layered slope model, the slope geometry is defined by the slope height, H, slope

angle, , and depth factor, D.  An additional parameter ‘h’ is introduced here to define the

depth of the upper layer (i.e. layer 2) from the ground surface.  The upper layer is underlain

by  a  lower  layer  (i.e.  layer  1),  which  may  consist  of  a  different  soil  type  and  hence  has

different soil properties.

The second type of layering profile models a slope with an upper layer that is parallel to

the ground surface, as shown in Figure 5.1(b).  This slope profile can be used to model

slopes with a thin layer of soil overlying harder materials (e.g. weathered rocks), as found

in most natural slopes.  In addition, this slope profile is also suitable for modelling the

effect of tree root reinforcement or soil suction, such that the upper layer (layer 2) can have

a  higher  cohesion  than  the  lower  layer  (layer  1).   The  depth  of  the  upper  layer  for  this

profile is also described by the parameter ‘h’.

In the process of simulating a two-layered soil profile, two independent random fields are

simulated for each soil parameter (e.g. c or ), using the local average subdivision (LAS)

method, as discussed previously in Chapter 3.  The first random field (RF 1) has the

statistical properties (i.e. mean, standard deviation and scale of fluctuation) corresponding

to the lower layer (layer 1), while the second random field (RF 2) has properties

corresponding to the upper layer (layer 2).  These two distinct layers may have different

values of mean, standard deviation and scale of fluctuation.  The generated random fields

are then systematically mapped onto the finite element mesh according the pre-defined

depth of the upper layer, h, as illustrated in Figure 5.2.
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Figure 5.1 Typical layering profiles of the two-layered soil slope model (a)

horizontal layering; and (b) parallel layering

Figure 5.2 shows the process of simulation of a two-layered undrained cohesion, cu, field,

with the horizontal layering boundary set at the toe of the slope, such that h/DH = 0.5.  In

this case, RF 1 is assumed to have a larger scale of fluctuation than RF 2 (i.e. 1/H = 10,

2/H = 0.1),  and for simplicity,  the mean and COV of cu are assumed to be the same for

both  layers.   The  simulated  soil  profile,  hence,  represents  a  slope  with  a  more  spatially

random soil mass overlying a foundation layer with a more continuous soil mass.  It can be

seen that for RF 1, only the soil elements that are located below the pre-defined horizontal

boundary are used to form the desired two-layered soil profile, and on the other hand, for

RF 2, only those soil elements that are located above the horizontal boundary are used.

Figure 5.3 shows the typical simulated two-layered spatially random soil profile with

parallel layering.  The process of simulating the two-layered soil profile with parallel

layering is similar to that of the soil profile with horizontal layering except the boundary is

defined as being parallel to the slope and ground surface.  The simulated two-layered soil

profile  is  then  used  in  the  finite  element  analysis  and  Monte  Carlo  simulation.   The

analysis  procedure  is  exactly  the  same as  that  performed on  single-layered  soil  slopes  as

described in Chapters 3 and 4.
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Figure 5.2 Simulation of two-layered spatially random soil profile with horizontal

layering ( 1/H = 10, 2/H = 0.1)

H
h

DH
h

Figure 5.3 Typical simulated two-layered spatially random soil profile with parallel

layering ( 1/H = 10, 2/H = 0.1)
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5.3 Validation of the Two-layered Slope Model

The developed two-layered slope model was validated against the original single-layered

model by simply using the two-layered model to estimate the probability of failure, Pf, of a

single-layered soil slope and comparing the result with that obtained by using the original

single-layered model (i.e. rslope2d).  This is achieved by assuming the random fields of

the lower (RF 1) and upper (RF 2) layers both have exactly the same statistical properties

(i.e.  Ns,  COV  and /H).  The aim is to confirm that the modified computer program is

behaving  exactly  the  same  as  the  original  program.   The  estimated Pf obtained from the

two-layered model should be the same or similar to that obtained from the single-layered

model. This is because the analysis procedure in the modified program is exactly the same

as the original program.

A 2:1 undrained clay slope with a depth factor, D, of 2 was used in this investigation.  The

slope geometry together with the finite element mesh used in the analyses is shown in

Figure 5.4.  It is noted that a finer mesh (0.5 m  0.5 m) was used in this study.  The

statistical properties of the undrained cohesion, cu, were held constant at Ns = 0.25, COV =

0.5 and /H = 1.

2H

DH

H

2H 2H

Figure 5.4 Typical finite element mesh for a 2:1 cohesive slope problem

(  = 26.6 ; D = 2)

Three different depths of the upper layer were considered when using the two-layered soil

slope model, i.e. h/DH = 0.25, 0.5 and 0.75.  It should be noted that the statistical

properties of cu (i.e.  Ns,  COV  and /H)  in  each  layer  of  the  two-layered  soil  profile  are
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exactly the same, although h/DH is different.  The only difference is that the random field

for each soil layer was generated based on a different random number seed.

The comparison of the estimated Pf obtained by using the different models is shown in

Table 5.1.  The probability of failure was estimated based on a 2,000 Monte Carlo

realisations.  It is noted that the estimated values of Pf for this slope, which were computed

using the two-layered model, are generally in good agreement with the original single-

layered model, with a maximum relative percentage error of 10%.  It is noted that the

relative percentage error of the estimated Pf of 0.187 is 9% (using a 95% confidence level),

as calculated using Equation (3.14).  This error is greater than the two-layered slope model

with h/DH = 0.25 and 0.5, and slightly less than the model with h/DH = 0.75.  Based on

this comparison, it is suggested that the relative percentage error between the two-layered

and the single-layered models is acceptable.

Table 5.1 Comparison of estimated values of Pf obtained by using the two-layered

model and the original single-layered model

Slope Model Probability of Failure, Pf Relative Error (%)
Single-layered 0.187 -
Two-layered (h/DH = 0.25) 0.172 8
Two-layered (h/DH = 0.5) 0.179 4
Two-layered (h/DH = 0.75) 0.206 10

5.4 Probabilistic Analysis of a Two-Layered Spatially
Random Cohesive Slope

5.4.1 Description of Numerical Studies Undertaken

To  investigate  the  effect  of  soil  variability  on  the  reliability  of  a  two-layered  soil  slope,

numerical studies using the modified version of the computer program rslope2d were

conducted.  In these studies, a 2:1 (  = 26.6 ) two-layered cohesive slope with a depth

factor, D = 2, was investigated.  The slope geometry, together with the finite element mesh

used in the analyses, was previously shown in Figure 5.4.  The probabilistic analysis
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methodology used in these numerical studies is the same as that used for the single-layered

cohesive slope problem, as discussed in Chapter 4.  The undrained cohesion, cu, was

modelled as a random variable, which was described by a lognormal distribution.  The

spatial variability of cu was modelled by the soil variability parameters COV and /H.

In the first part of the analyses, both the upper and lower layers were assumed to have the

same COV and /H (i.e.  COV1 = COV2 and 1/H = 2/H).   The mean value of cu for the

upper layer (layer 1), cu1, was fixed at 50 kPa (i.e. Ns = 0.25).  The mean value of cu for the

lower layer (layer 2), cu2, was varied using the ratio cu1/cu2 of 0.5, 0.75, 1, 1.25 and 1.5.  A

value of cu1/cu2 of less than one indicates a stronger upper layer overlying a weaker lower

layer, while cu1/cu2 of greater than one indicates that the lower layer is stronger than the

upper layer.  In addition, the location of the layering boundary was also varied using the

ratio h/DH of 0.25, 0.5 and 0.75.  The input parameters cu1/cu2, COV and /H were varied

systematically in the parametric studies according to the values given in Table 5.2.  All

other parameters were held constant at their deterministic values, i.e. H = 10 m,  =

20 kN/m3, Es = 1  105 kPa,  = 0.3 and  = 0 .

In the second part of the study, the ratio of cu1/cu2 and h/DH were held constant at  1 and

0.5, respectively, and the effect of varying COV and /H between the two layers were

investigated.

Table 5.2 Input parameters for parametric studies of a two-layered cohesive slope

Parameters Input values
cu1/cu2 0.5, 0.75, 1, 1.25, 1.5
h/DH 0.25, 0.5, 0.75
COV 0.1, 0.3, 0.5

/H 0.1, 1, 10

5.4.2 Deterministic Solutions

Deterministic factor of safety (FOS) for the two-layered cohesive slope with different ratio

of cu1/cu2, with h/DH fixed at 0.5, was determined using the finite element method and the
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results  are  shown  in  Table  5.3.   It  is  noted  that,  as  expected,  FOS  increases  as cu1/cu2

increases.  Based on the deterministic FOS, slopes with cu1/cu2 = 0.5 would be considered

as unstable, slopes with cu1/cu2 = 0.75 as marginally stable, and slopes with cu1/cu2 greater

than 1 as stable.

Table 5.3 FOS for a two-layered cohesive slope with different cu1/cu2 (h/DH = 0.5)

cu1/cu2 FOS
0.5 0.86
0.75 1.16

1 1.45
1.25 1.75
1.5 2.03

5.4.3 Results of Numerical Studies

Based on 2,000 realisations of Monte Carlo simulations for each parametric group

described in Table 5.2, the effect of each input parameter on the probability of failure, Pf,

was examined.  However, before examining the results of the two-layered cases, it is

worthwhile to look at the deformed mesh of a single-layered cohesive slope with cu =

50 kPa (i.e. Ns = 0.25), as shown in Figure 5.5.  In this case, the values of COV and /H

were fixed at 0.5 and 1, respectively.  The corresponding Pf obtained  for  this  slope  was

0.187.  Figure 5.5 indicates that the critical failure mechanism is deep-seated.

Figure 5.5 Deformed mesh of single-layered cohesive slope

(Ns = 0.25; COV = 0.5; /H = 1)
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5.4.3.1 Effect of Variation of cu1/cu2 on Probability of Failure

When the ratio of cu1/cu2 was varied, both the Pf and failure mechanism changed

accordingly.  The Pf of a two-layered cohesive slope with different ratios of cu1/cu2 is

shown in Table 5.4.  The deformed meshes and failure mechanisms of a two-layered

cohesive slope with different values of cu1/cu2 are shown in Figure 5.6.  It should be noted

that, in the first part of the analyses, the values of COV and /H were assumed to be the

same in the two soil layers.  The effect of incorporating different values of COV and /H

in each layer is discussed later.

Table 5.4 Probability of failure for a two-layered cohesive slope with different

values of cu1/cu2 (h/DH = 0.5, COV = 0.5, /H = 1)

cu1/cu2 Pf

0.5 0.986
0.75 0.674

1 0.194
1.25 0.046
1.5 0.021

Table 5.4 shows that Pf decreases as the ratio of cu1/cu2 increases.  This is expected because

as cu1/cu2 increases the lower layer becomes stronger, and as a result, the probability of

slope failure reduces accordingly.  Figure 5.6 shows that different failure mechanisms were

observed for different values of cu1/cu2.   Figures  5.6(a)  and  (b)  show that  when cu1/cu2 is

less than 1 (i.e. 0.5 and 0.75, respectively), the failure mechanism appears to be deep-

seated.  The slip surface starts at the top of the upper layer and propagates through the

weaker lower layer, and finally exits at the regions near the toe of the slope.  However,

when cu1/cu2 is greater than 1 (i.e. 1.25 and 1.5, respectively), as shown in Figures 5.6(c)

and (d), the failure mechanism appears to be a toe failure.  It is noted that the slip surface

did not propagate through the lower layer as this layer has a larger value of cu.  The higher

strength value of the lower layer had eventually prevented the slip surface from

propagating through this layer.  As a result, the slip surface had to find a weaker path

through the soil.
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(a)

(b)

(c)

(d)

Figure 5.6 Deformed meshes of two-layered cohesive slope with different values of

cu1 cu2: (a) 0.5; (b) 0.75; (c) 1.25; and (d) 1.5.  (COV = 0.5; /H =1)

Figure  5.7  shows  the  effect  of  varying  the  values  of  COV  on Pf for  different  values  of

cu1/cu2, with /H fixed at 1.  It is noted that Pf increases as COV increases for the slopes

with cu1/cu2  0.75, however, Pf decreases as COV increases for the slopes with cu1/cu2 =
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0.5.  This is because, as COV increases, the scatter of the simulated values of cu about the

mean value increases, and this increases the chances of simulating very low and high

values of cu.  It is also observed that, when COV is small (i.e. COV  0), Pf converges to

0 for the slopes with cu1/cu2  0.75, while Pf converges to 1 for the slopes with cu1/cu2 = 0.5.
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Figure 5.7 Probability of failure versus COV for different values of cu1/cu2 with /H

fixed at 1

Figure 5.8 shows the effect of varying the values of /H on Pf for  different  values  of

cu1/cu2,  with  COV fixed  at  0.5.   It  can  be  seen  that Pf increases as /H increases for the

slopes with cu1/cu2  1, but Pf decreases as /H increases for the slopes with cu1/cu2  0.75.

It is also observed that, as /H  0, Pf  0 for the slopes with cu1/cu2  1, but Pf  1 for

the slopes with cu1/cu2  0.75.  The results shown in Figure 5.8 indicate that assuming

perfectly correlated soil profiles would overestimate the Pf of the slopes with cu1/cu2  1,

but underestimate the Pf of the slopes with cu1/cu2  0.5.  The effect of varying /H of Pf for

the two-layered cohesive slope, as shown in Figure 5.8, is found similar to that observed

from the single-layered cohesive slope analyses, as previously described in Chapter 4.  The

two different trends observed in the variation of Pf with  respect  to  the  values  of /H are
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governed by the median cu of the simulated random fields, which was previously discussed

in Section 4.2.6.
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Figure 5.8 Probability of failure versus /H for different values of cu1/cu2 with COV

fixed at 0.5

Figure 5.9 shows a plot of Pf versus cu1/cu2 for different cases of h/DH.  It is recalled that

h/DH  represents  the  location  of  the  horizontal  boundary  of  the  layering.   The  values  of

COV and /H were  fixed  at  0.5  and  1,  respectively.   It  can  be  seen  that Pf decreases as

cu1/cu2 increases for all cases of h/DH.  The curves intersect at a point where cu1/cu2 = 0.95

and Pf =  0.28.   When cu1/cu2 > 0.95, higher values of h/DH yields a larger Pf, however,

when cu1/cu2 < 0.95, higher values of h/DH yields a lower Pf.  This is because a higher

value of h/DH means that the thickness of the lower layer is less than the upper layer.

Therefore, for the case with a stronger lower layer, as the thickness of the stronger layer

diminishes the probability of failure increases.



136 Chapter 5.  Influence of Soil Variability on Reliability of Two-Layered Soil Slopes

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.5 0.75 1 1.25 1.5

cu1/cu2

Pr
ob

ab
ili

ty
 o

f F
ai

lu
re

h/DH = 0.25

h/DH = 0.5

h/DH = 0.75

Figure 5.9 Probability of failure versus /H for different values of h/DH with COV

and /H fixed at 0.5 and 1, respectively

5.4.3.2 Effect of Variation of COV and /H in Each Soil Layer

In the second part of the analyses, the effect of varying COV and /H in each soil layer on

Pf was investigated.  In these analyses, the location of the layering boundary was fixed at

the toe of the slope (i.e. h/DH = 0.5).  The mean value of cu in each soil layer was assumed

to be the same (i.e. cu1/cu2 = 1).  Firstly, the effect of varying COV in each layer of a two-

layered cohesive slope on Pf was investigated.  A total of six cases were considered, for the

two-layered cohesive slope, each with different combinations of values of COV in each

layer and, the corresponding estimated values of Pf are shown in Table 5.5.  It should be

noted that /H was fixed at 1 for these cases.  It can be seen that varying values of COV in

each layer has a significant impact on the estimated values of Pf.  Bearing in mind that the

mean value of cu in each layer was the same, the only difference was the value of COV.

Examination of the results shown in Table 5.5 indicates that  a slope with COV1 > COV2

always has a higher Pf than a slope with COV1 < COV2, except when COV was small (i.e.

Cases 1 and 2).  This finding suggests that the lower or base layer is more critical and it is
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more sensitive to the variability of cu.  An increase in the variability of this layer will cause

a significant effect on the probability of slope failure.

Table 5.5 Probability of failure of a two-layered cohesive slope with different values

of COV in each soil layer. (h/DH = 0.5, cu1/cu2 = 1 and 1/H = 2/H = 1)

Case No. COV1 COV2 Pf

1 0.1 0.3 0
2 0.3 0.1 0
3 0.1 0.5 0.014
4 0.5 0.1 0.081
5 0.3 0.5 0.039
6 0.5 0.3 0.125

Figure 5.10 shows the typical deformed meshes for the two-layered cohesive slope with

different values of COV in each layer for: (a) Case 3 and (b) Case 4 (see Table 5.5).  It can

be  seen  from Figure  5.10(a)  that,  when the  COV of  the  upper  layer  (i.e.  COV2 = 0.5) is

higher than the COV of the lower layer (i.e. COV1 = 0.1), the failure mechanism is a toe

failure. The critical slip surface is located in the upper layer and it does not propagate

through the lower layer.  However, when the COV of the lower layer (i.e. COV1 = 0.5) is

higher than the COV of the upper layer (i.e. COV2 = 0.1), the failure mechanism is a deep-

seated one.  The critical slip surface starts at the top of the upper layer and propagates

through both the upper and lower layers.  This observation suggests that the failure surface

is more likely to develop in the soil layer with higher variability, i.e. higher value of COV.

It should also be noted that the slope shown in Figure 5.10(b) has a higher Pf than the slope

shown in Figure 5.10(a), as shown in Table 5.5, which confirms that deep-seated failure is

a more critical failure mechanism.

Next, the effect of varying /H in each layer of a two-layered cohesive slope on Pf was

investigated.  A total of six cases, each with different combinations of /H in each layer,

were considered and the computed values of Pf are shown in Table 5.6.  It should be noted

that the COV of each layer was fixed at 0.5 for these analyses.  It can be seen from Table

5.6 that a slope with 1/H > 2/H always has a higher Pf than  a  slope  with 1/H < 2/H.

This again suggests that the lower or base layer has a higher influence on Pf of the slope.
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(a)

(b)

Figure 5.10 Typical deformed meshes for a two-layered cohesive slope with different

values of COV in each layer: (a) COV1 = 0.1, COV2 = 0.5 (Pf = 0.014) and (b) COV1 =

0.5, COV2 = 0.1 (Pf = 0.081)

Table 5.6 Probability of failure of a two-layered cohesive slope with different values

of /H in each soil layer. (h/DH = 0.5, cu1/cu2 = 1 and COV 1 = COV2 = 0.5)

Case No. 1/H 2/H Pf

1 0.1 1 0.022
2 1 0.1 0.151
3 0.1 10 0.098
4 10 0.1 0.278
5 1 10 0.222
6 10 1 0.284

Figure 5.11 shows the typical deformed meshes for the two-layered cohesive slope with

different values of /H in each layer for: (a) Case 1 and (b) Case 2 (see Table 5.6).  It can

be seen from Figure 5.11(a) that, when the /H of the upper layer (i.e. 2/H = 1) is larger

than the /H of the lower layer (i.e. 1/H  =  0.1),  the  failure  mechanism  is  a  toe  failure.

However, when the /H of the lower layer (i.e. 1/H = 1) is larger than the /H of the upper

layer (i.e. 2/H = 0.1), the failure mechanism is a deep-seated one.
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The deformed meshes shown in Figure 5.11 suggest that failure is more likely to occur in

the soil layer with a larger /H, i.e. a more continuous soil mass.  This is because failure

will occur along a path of least resistance or low values of cu.  In a more spatially random

soil mass (i.e. low /H), there is little likelihood for such path because the values of cu

change rapidly and the weaker soil elements are likely to be adjacent to the stronger ones.

However, in a more continuous soil mass (i.e. high /H),  chances of larger zones of low

values of cu are higher.  Hence, path of least resistance is more likely to occur.

(a)

(b)

Figure 5.11 Typical deformed meshes for a two-layered cohesive slope with different

values of /H in each layer: (a) 1/H = 0.1, 2/H = 1  (Pf = 0.022) and (b) 1/H = 1, 2/H

= 0.1 (Pf = 0.151)

5.5 Summary

In this chapter, the random finite element method (RFEM) computer program rslope2d

was modified so that it  could be used to analyse a two-layered soil  slope.   Two different

types of layering profiles were considered: horizontal layering and parallel layering.  The

modified computer program was validated against the original single-layered program.
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The modified program was used in the numerical studies of a two-layered spatially random

cohesive slope.  A 2:1 slope (  = 26.6 ) with a depth factor, D, of 2 was considered in the

numerical studies.  In the first part of the analyses, both the upper and lower layers were

assumed  to  have  the  same  COV  and /H (i.e. COV1 = COV2 and 1/H  = 2/H).   The

parameters cu1/cu2,  h/DH,  COV  and /H  were  varied  systematically  as  part  of  the

parametric studies.  The numerical results show that, when the ratio of cu1/cu2 was varied,

both the Pf and failure mechanism changed accordingly.  As expected, Pf reduces as cu1/cu2

increases.  The failure mechanism for the slopes with cu1/cu2 less than 1 appears to be deep-

seated.  However, a toe failure mechanism was observed for the slopes with cu1/cu2 greater

than 1.  It was found that a deep-seated failure was the critical mechanism as it yielded

higher values of Pf.

In the second part of the analyses, the effect of varying COV and /H in each soil layer on

Pf was investigated.  The numerical results suggest that the lower or base layer has a higher

influence on Pf of the slope.  It was also found that failure surface is more likely to occur in

the soil layer with a larger values of COV and /H.
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Chapter 6

PREDICTION OF RELIABILITY OF SPATIALLY

RANDOM COHESIVE SLOPES USING ARTIFICIAL

NEURAL NETWORKS

6.1 Introduction

In Chapter 4, a series of parametric studies were conducted, using the random finite

element  method  (RFEM)  and  the  Monte  Carlo  simulation,  to  investigate  the  effect  of

spatial variability of undrained cohesion, cu, on the probability of failure, Pf, of a spatially

random cohesive slope.  These studies provided an insight into the effects of various

parameters  on  the  reliability  of  a  spatially  random  cohesive  slope.   However,  the  major

drawback of the RFEM and Monte Carlo simulation is that they are computationally

intensive.  Performing parametric studies or sensitivity analysis is therefore a time-

consuming task.  Furthermore, the RFEM computer program (i.e. rslope2d) is not readily

available and widely used in practice, hence, the use of this method to estimate probability

of failure of a slope is limited.  To overcome this limitation, a series of probabilistic

stability charts were developed in Chapter 4, as presented in Appendix A, which can be

used for a quick and preliminary estimation of the probability of failure, Pf.   However,  it

would be more useful if a relationship between the input and output parameters of the

spatially random cohesive slope problem can be established, ideally in the form of a simple

equation so that it can be readily used in practice.

To achieve this aim, this chapter investigates the feasibility of using artificial neural

networks (ANNs), a powerful data mapping tool, to establish such an input/output
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relationship so that it can be used to predict the probability of failure, Pf, of a spatially

random cohesive slope with virtually any combination of input values.  As discussed in

Section 2.5.2, multi-layer perceptrons (MLPs) that are trained with the back-propagation

algorithm are a type of ANN that has a high capability of data mapping, and they have

been successfully used in a wide range of geotechnical problems.  Therefore, MLPs trained

with the back-propagation algorithm are used in this study.

6.2 Development of ANN Models

In this study, the ANN models were developed using the software Neuframe Version  4

(Neusciences 2000).  The procedures for ANN model development proposed by Maier and

Dandy (2000), as given in Section 2.5.3, were used as a guide in this work.  The data used

to calibrate and validate the ANN model were obtained from the parametric studies that

were conducted in Chapter 4 using the random finite element method (RFEM).  Additional

parametric studies for the slopes with /H = 0.2, which were not considered in Chapter 4,

were also conducted to obtain more case records for slopes with small /H.  As a result,

there were a total of 1,440 individual case records and each with a different combination of

input and output values.

6.2.1 Input and Output Variables

As discussed in Chapter 4, five parameters have a significant impact on the probability of

failure, Pf, of a spatially random cohesive slope. They are the slope angle, , the depth

factor, D, stability number, Ns, coefficient of variation, COV, and the normalised scale of

fluctuation, /H.  It should be noted that Ns was previously defined in Chapter 4 (Equation

4.1) as the mean undrained cohesion,
uc , normalised by unit weight,  and slope height,

H.  These five parameters were used as the input variables for the ANN model.  The model

output was therefore the probability of failure, Pf.  The range of each parameter examined

in the analyses that follow is given in Table 6.1.
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Table 6.1 Summary of range for input and output variables

Input/output variables Range

Slope angle, 14  – 45

Depth factor, D 1 – 3
Stability number, Ns 0.1 – 0.5

Coefficient of variation, COV 0.1 – 1.0

Normalised scale of fluctuation, /H 0.1 – 10

Probability of failure, Pf 0 – 1

6.2.2 Data Division and Pre-processing

The parametric studies that were performed in Chapter 4 produced a total of 1,440 cases

with different combinations of input and output values.  Since cross-validation (Stone

1974) was used as the stopping criteria in calibrating the ANN model, the data were

randomly divided into three sets: training, testing and validation.  In total, 80% (i.e. 1,152

case records) of the data were used for model calibration and 20% (i.e. 288 case records)

were used for model validation.  The calibration data were further divided into 70% (i.e.

806 case records) for the training set and 30% (i.e. 346 case records) for the testing set.

The data division for ANN model development is shown in Figure 6.1.

All data
(1440)

Training
(806)

Testing
(346)

Model Validation
(288)

Model Calibration
(1152)80%

20%

70%

30%

Figure 6.1 Data division for ANN model development
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When dividing the data, it is essential to ensure that the data used for training, testing and

validation represent the same statistical population, as recommended by Masters (1993).

This is achieved by randomly choosing several combinations of the training, testing and

validation  sets  until  three  statistical  consistent  data  sets  are  obtained,  as  proposed  by

Shahin et al. (2004).  The statistics of the data used for the training, testing and validation

sets are given in Table 6.2, which includes the mean, standard deviation, maximum,

minimum  and  range.   It  can  be  seen  that  the  data  used  for  the  training,  testing  and

validation are statistically consistent, which suggests that they represent similar statistical

populations.

Table 6.2 Input and output statistic for ANN models

Statistical parametersModel variables and
data sets Mean Std. Dev. Minimum Maximum Range

Slope angle,  ( ° )
Training set 25.75 11.75 14.00 45.00 31.00
Testing set 25.97 11.98 14.00 45.00 31.00
Validation set 26.73 12.08 14.00 45.00 31.00
Depth factor, D
Training set 1.98 0.82 1.00 3.00 2.00
Testing set 2.08 0.80 1.00 3.00 2.00
Validation set 1.95 0.81 1.00 3.00 2.00
Stability number, Ns

Training set 0.29 0.14 0.10 0.50 0.40
Testing set 0.31 0.14 0.10 0.50 0.40
Validation set 0.31 0.14 0.10 0.50 0.40
Coefficient of variation, COV
Training set 0.48 0.34 0.10 1.00 0.90
Testing set 0.46 0.32 0.10 1.00 0.90
Validation set 0.49 0.34 0.10 1.00 0.90
Dimensionless scale of fluctuation, /H
Training set 2.87 3.69 0.10 10.00 9.90
Testing set 2.76 3.59 0.10 10.00 9.90
Validation set 2.65 3.53 0.10 10.00 9.90
Probability of failure, Pf

Training set 0.301 0.413 0.000 1.000 1.000
Testing set 0.268 0.394 0.000 1.000 1.000
Validation set 0.276 0.397 0.000 1.000 1.000
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Once the available data have been divided into their subsets, the input and output variables

were pre-processed by scaling them to eliminate their dimension and to ensure that all

variables receive equal attention during training (Masters 1993), using Equation (2.49), as

previously shown in Section 2.5.3.

6.2.3 Network Architecture and Performance of ANN Models

After establishing the required three data sets: training, testing and validation, the next step

was to ‘train’ the ANN model.  As previously discussed in Section 2.5.2, ‘training’

involves repeatedly presenting a series of input/output pattern sets to the networks.  The

networks gradually learn the input/output relationship by adjusting the weights to minimise

the error between the actual and predicted output patterns of the training sets.  Cross-

validation using the testing data sets was adopted as the stopping criteria for the ANN

models to avoid overfitting.  The validation data sets were then used to assess the accuracy

of the developed ANN model using data that were not used for either training or testing.

As mentioned in Section 2.5.2, neural networks with different numbers of hidden layers

and nodes may perform differently.  Furthermore, network internal parameters such the

learning rate, momentum term, and the use of different transfer functions may also affect

the performance of the developed ANN models.  The following sections investigate the

effects of the above-mentioned factors on the performance of the developed ANN models.

The performance of the ANN models was measured by three standard performance

measures: the correlation coefficient, r,  the root mean square error,  RMSE, and the mean

absolute error, MAE, as previously discussed in Section 2.5.2.

6.2.3.1 Effect of Numbers of Hidden Layers and Nodes on Performance of ANN

Models

The network architecture was determined using a trial-and-error approach in which the

ANN models were trained with different numbers of hidden layers and nodes.  In this

study, networks were developed with 1 and 2 hidden layers and 2, 4, 6, 8, 10, and 12 nodes

in each layer.  It should be noted that an equal number of nodes was used in each hidden

layer for the 2 hidden layers models.  The tanh and sigmoid transfer functions were used in

the hidden and output layers, respectively.  Other internal parameters such as the learning
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rate and momentum term were fixed at the software’s default values, i.e. learning rate = 0.2

and momentum term = 0.8.  The effect of varying the learning rate and momentum term,

and the use of different transfer functions in the hidden and output layer on the

performance of ANN models is discussed later.

The performance of the developed ANN models with different numbers of hidden layers

and nodes is summarised in Table 6.3.  The ANN models developed in this section are

designated by the names ‘A1’ to ‘A12’.  It should be noted that models that perform better

are ones with a higher value of r and a lower value of RMSE and MAE.  It  can be seen

from Table 6.3 that models with 2 hidden layers generally perform better than the models

with one hidden layer, except for Model A7, which has only 2 nodes in each hidden layer.

It is also observed that models with a larger number of hidden layer nodes perform better

than the models with a lesser number of nodes in the hidden layers.

Table 6.3 Performance of ANN models with different number of hidden layers and

nodes

Performance measures
r RMSE MAE

Model
No.

No.
hidden
layers

No.
hidden
nodes

T S V T S V T S V
A1 1 2 0.971 0.970 0.972 0.100 0.097 0.094 0.051 0.049 0.051
A2 1 4 0.988 0.982 0.982 0.064 0.074 0.075 0.028 0.033 0.034
A3 1 6 0.992 0.987 0.988 0.053 0.064 0.062 0.024 0.029 0.030
A4 1 8 0.994 0.988 0.989 0.046 0.061 0.059 0.021 0.027 0.026
A5 1 10 0.996 0.991 0.990 0.036 0.052 0.056 0.015 0.021 0.024
A6 1 12 0.996 0.991 0.990 0.038 0.054 0.058 0.015 0.023 0.024
A7 2 2 0.969 0.961 0.967 0.103 0.111 0.102 0.054 0.057 0.054
A8 2 4 0.990 0.983 0.983 0.059 0.073 0.073 0.029 0.034 0.036
A9 2 6 0.999 0.994 0.995 0.021 0.045 0.038 0.009 0.017 0.016

A10 2 8 0.998 0.998 0.996 0.024 0.028 0.034 0.010 0.013 0.014
A11 2 10 0.998 0.995 0.996 0.025 0.040 0.037 0.010 0.017 0.016
A12 2 12 0.999 0.996 0.996 0.022 0.035 0.035 0.009 0.015 0.014

T = training; S = testing and V = validation.

The effect of the number of hidden layers and nodes on the performance of ANN models

for the validation data is plotted in Figure 6.2.  It can be seen that the performance of the

ANN models improves significantly when the number of hidden layer nodes increases

from 2 to 6.  However, the improvement is minimal when the hidden layer nodes further
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increases from 6 to 12.  Figure 6.2 also shows that the ANN models with 2 hidden layers

perform better than the models with only 1 hidden layer when there are 6 or more nodes in

the hidden layer.  Increasing the number of hidden layers has less impact for models with 2

and 4 nodes in the hidden layer.
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Figure 6.2 Effect of the numbers of hidden layers nodes on correlation coefficient, r,

for the validation data set of ANN Models A1 – A12 (learning rate = 0.2; momentum

term = 0.8)

Based on the results shown in Table 6.3, the optimum ANN model can be determined.

According to Shahin and Jaksa (2005), a model is deemed to be optimum if it combines

three categories: (i) the model provides good performance with respect to the testing set;

(ii) the model has a minimum number of hidden layers and nodes; and (iii) the model has

consistent performance on the validation set with that obtained on the training and testing

sets.  Based on the computed values of r, RMSE and MAE of the developed ANN models,

Model A12 appears to be the optimum model.  However, Model A12 has 2 hidden layers

with 12 nodes in each layer, which becomes impractical to transform into formulae.  This

is because a total of 25 equations are required to describe the relationship between the

input and output variables.  Therefore, for the purpose of developing a set of practical
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equations, Model A3 is considered to be optimum.  Model A3 has 1 hidden layer with 6

nodes in each layer, which only requires 7 equations to describe the relationship between

the input and output variables.  It should be noted that the relative error between the Model

A3 and A12, for the correlation coefficient, r, is less than 1%, which is insignificant.  The

details of transforming Model A3 into a set of practical equations for predicting the

probability of failure of a spatially random cohesive slope is described later.

6.2.3.2 Effect of Learning Rate and Momentum Term on Performance of ANN

Models

The effect of learning rate and momentum term on the performance of ANN models was

investigated by varying these two parameters within the range of 0.01 – 0.95 (i.e. 0.01, 0.1,

0.2, 0.4, 0.6, 0.8, 0.9, and 0.95).  The number of hidden layers and nodes were fixed at 1

and 6, respectively, which has the same network architecture to that of Model A3, as

previously shown in Table 6.3.

The performance of ANN models with different learning rates and momentum terms is

summarised in Tables 6.4 and 6.5, respectively.  It should be noted that when one

parameter was varied the other parameter was kept constant at their default values (i.e.

momentum term = 0.8 and learning rate = 0.2).  Figures 6.3 and 6.4 shows the effect of

varying the learning rate and momentum term on the correlation coefficient, r, for the

validation data set, respectively.  In can be seen from both Figures 6.3 and 6.4 that the

effect of varying the learning rate and momentum term on model performance is not as

significant as varying the number of hidden layers and nodes.  It was found that the

optimum learning rate = 0.2 and momentum term = 0.8, which are the software’s default

values.

6.2.3.3 Effect of Using Different Transfer Functions on Performance of ANN models

The effect of using different transfer functions in the hidden and output layers is shown in

Table 6.6.  Better performance was observed for the models with a sigmoid transfer

function in the output layer (i.e. Models D1 and D2).  However, Model D1, which uses a

tanh function in its hidden layer, performs slightly better than Model D2, which uses a

sigmoid function in its hidden layer.
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Table 6.4 Performance of ANN models with different learning rates

Performance measures
r RMSE MAE

Model
No.

Learning
rate

T S V T S V T S V
B1 0.01 0.985 0.983 0.978 0.072 0.074 0.083 0.032 0.034 0.040
B2 0.1 0.987 0.984 0.982 0.066 0.071 0.075 0.029 0.033 0.035
B3 0.2 0.992 0.987 0.988 0.053 0.064 0.062 0.024 0.029 0.030
B4 0.4 0.991 0.985 0.986 0.056 0.069 0.067 0.024 0.032 0.032
B5 0.6 0.993 0.986 0.988 0.050 0.067 0.063 0.022 0.029 0.027
B6 0.8 0.993 0.985 0.986 0.049 0.070 0.067 0.022 0.030 0.029
B7 0.9 0.993 0.984 0.986 0.049 0.071 0.068 0.022 0.030 0.029
B8 0.95 0.993 0.984 0.986 0.050 0.071 0.068 0.022 0.031 0.029

T = training; S = testing and V = validation.

Table 6.5 Performance of ANN models with different momentum terms

Performance measures
r RMSE MAE

Model
No.

Momentum
term

T S V T S V T S V
C1 0.01 0.986 0.984 0.980 0.068 0.071 0.078 0.030 0.033 0.037
C2 0.1 0.987 0.984 0.981 0.066 0.070 0.077 0.030 0.033 0.036
C3 0.2 0.986 0.983 0.979 0.069 0.073 0.081 0.031 0.034 0.037
C4 0.4 0.992 0.987 0.987 0.052 0.063 0.064 0.024 0.029 0.030
C5 0.6 0.987 0.984 0.982 0.066 0.071 0.075 0.029 0.033 0.035
C6 0.8 0.992 0.987 0.988 0.053 0.064 0.062 0.024 0.029 0.030
C7 0.9 0.990 0.982 0.985 0.061 0.076 0.069 0.026 0.035 0.032
C8 0.95 0.989 0.983 0.981 0.060 0.072 0.077 0.029 0.033 0.035

T = training; S = testing and V = validation.

Table 6.6 Performance of ANN models using different transfer functions

Performance measures
r RMSE MAE

Model
No.

Transfer
function in

hidden layer

Transfer
function in

output layer
T S V T S V T S V

D1 Tanh Sigmoid 0.992 0.987 0.988 0.053 0.064 0.062 0.024 0.029 0.030
D2 Sigmoid Sigmoid 0.991 0.986 0.985 0.056 0.067 0.069 0.024 0.030 0.031
D3 Tanh Tanh 0.976 0.970 0.968 0.096 0.103 0.107 0.060 0.064 0.066
D4 Sigmoid Tanh 0.973 0.959 0.962 0.096 0.112 0.109 0.054 0.061 0.061

T = training; S = testing and V = validation.
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Figure 6.3 Effect of the learning rate on correlation coefficient, r, for the validation

data set of the ANN model A3 (momentum term = 0.8)
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Figure 6.4 Effect of the momentum term on correlation coefficient, r, for the

validation data set of the ANN model A3 (learning rate = 0.2)
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6.3 Development of ANN Model Equation

One of the aims of this chapter is to develop a simple input/output relationship that can be

used  for  prediction  of  the  reliability  of  a  spatially  random  cohesive  slope.   It  was

determined in Section 6.2.3.1 that Model A12, which has 2 hidden layers with 12 hidden

nodes in each hidden layer, was the most accurate ANN model.  However, as discussed

previously, translating this ANN model into simple equation becomes impractical due to

the large number of hidden layers and nodes.  The use of this ANN model for predicting

the probability of failure, Pf, of a cohesive slope is therefore limited to the users who have

access to neural network software (e.g. Neuframe).

For the purpose of developing a relatively simple equation that can be used for predicting

the probability of failure, Pf, of a spatially random cohesive slope, Model A3 is considered

suitable.   Model  A3  has  1  hidden  layer  with  6  nodes  and  performs  reasonably  well,

although not as good as Model A12.  However, considering the large uncertainties in

estimating soil properties, the difference in accuracy between Models A3 and A12 is

considered acceptable.  The structure of Model A3 is shown in Figure 6.5 and its

connection weights and biases are shown in Table 6.7.
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Input layer Hidden layer Output layer

Figure 6.5 Structure of the ANN Model A3
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Table 6.7 Weights and biases for the ANN Model A3

wji (weight from node i in the input layer to node j in the hidden
layer)Hidden

layer nodes
i = 1 i = 2 i = 3 i = 4 i = 5

Hidden
layer bias

( i)

j = 6 -1.386 0.936 6.080 3.140 1.006 0.175
j = 7 0.217 0.227 5.689 -4.667 -2.092 -0.943
j = 8 -2.937 -0.719 3.673 -2.058 -1.680 0.642
j = 9 -0.682 -3.259 0.573 -0.916 -0.887 0.846

j = 10 1.136 1.761 -4.868 0.416 -5.032 -0.099
j = 11 0.060 0.560 -4.715 0.177 -0.792 0.152

wji (weight from node i in the input layer to node j in the hidden
layer)Output

layer nodes
i = 6 i = 7 i = 8 i = 9 i = 10 i = 11

Output
layer bias

( i)

j = 12 -5.343 -5.905 -4.3266 -2.126 3.227 3.120 -0.929

Using the connection weights and biases shown in Table 6.7, the predicted probability of

failure can be expressed as follows:

654321 tanh120.3tanh227.3tanh126.2tanh327.4tanh905.5tanh343.5929.01
1

HHHHHHf e
P (6.1)

where:

H1 = 0.175 – 1.386 + 0.936D + 6.08Ns + 3.14COV + 1.006( /H) (6.2)

H2 = –0.943 + 0.217 + 0.227D + 5.689Ns – 4.667COV – 2.092( /H) (6.3)

H3 = 0.642 – 2.937 – 0.719D + 3.673Ns – 2.058COV – 1.68( /H) (6.4)

H4 = 0.846 – 0.682 – 3.259D + 0.573Ns – 0.916COV – 0.887( /H) (6.5)
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H5 = –0.099 + 1.136 + 1.761D – 4.868Ns + 0.416COV – 5.032( /H) (6.6)

H6 = 0.152 + 0.06 + 0.56D – 4.715Ns + 0.177COV – 0.792( /H) (6.7)

It should be noted that, the predicted probability of failure, Pf, obtained from Equation

(6.1) is scaled between 0.0 and 1.0 and in order to obtain the actual value, this Pf has to be

re-scaled using Equation (2.49) and data ranges in Table 6.1.  However, since the data

range for Pf is also between 0.0 and 1.0, Equation (6.1) remains unchanged.  It should also

be noted that, before using Equations (6.2) to (6.7), all input variables (i.e. , D, Ns, COV

and /H) need to be scaled between 0.0 and 1.0 using Equation (2.49) and the data ranges

in Table 6.1.  Accounting for this, Equations (6.2) to (6.7) are hence rewritten as follows:

H1 = 1.494 – 0.045 + 0.468D + 15.2Ns + 3.489COV + 0.102( /H) (6.8)

H2 = –2.037 + 0.007 + 0.114D + 14.223Ns – 5.185COV – 0.211( /H) (6.9)

H3 = 1.656 – 0.095 – 0.36D + 9.183Ns – 2.287COV – 0.17( /H) (6.10)

H4 = 2.752 – 0.022 – 1.63D + 1.433Ns – 1.018COV – 0.09( /H) (6.11)

H5 = -0.271 + 0.037 + 0.881D – 12.17Ns + 0.462COV – 0.508( /H) (6.12)

H6 = 1.012 + 0.002 + 0.28D – 11.788Ns + 0.197COV – 0.08( /H) (6.13)

It should be noted that Equation (6.1) is valid only for the ranges of values of ,  D,  Ns,

COV and /H given in Table 6.1.  This is because ANN models perform best in

interpolation but not extrapolation (Flood and Kartam 1994; Minns and Hall 1996).  The

developed ANN equations, i.e. Equations (6.1), and (6.8) to (6.13), can therefore be used

as an alternative method to the random finite element method (RFEM) for predicting the

probability of failure of a spatially random cohesive slope.
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6.4 Sensitivity Analysis of the ANN Model Inputs

In an attempt to determine the relative importance of the various input variables, a

sensitivity analysis was carried out on the ANN Model A3.  This is achieved by using the

method proposed by Garson (1991), which has been previously adopted by other

researchers (e.g. Goh (1995a), Shahin et al. (2002b)) for the same purpose.  This method

involves partitioning the hidden-output connection weights of each hidden node into

components associated with each input node.  As mentioned previously, Model A3 has five

input nodes, one hidden layer with six nodes and one output node.  The connection weights

were previously shown in Table 6.7 and they are rewritten as follows:

Hidden nodes D Ns COV /H Pf

1 -1.386 0.936 6.080 3.140 1.006 -5.343
2 0.217 0.227 5.689 -4.667 -2.092 -5.905
3 -2.937 -0.719 3.673 -2.058 -1.680 -4.327
4 -0.682 -3.259 0.573 -0.916 -0.887 -2.126
5 1.136 1.761 -4.868 0.416 -5.032 -3.227
6 0.060 0.560 -4.715 0.177 -0.792 -3.120

The computation process proposed by Garson (1991) is as follows:

1. For each hidden node i, obtain the products Pij (where j represent the column number

of the weights mentioned above) by multiplying the absolute value of the hidden-

output layer connection weight by the absolute value of the hidden-input layer

connection weight of each input variable j.  As an example: P11 = 1.386  5.343 =

7.405.

Hidden nodes D Ns COV /H
1 7.405 5.001 32.485 16.777 5.375
2 1.281 1.340 33.594 27.559 12.353
3 12.708 3.111 15.893 8.905 7.269
4 1.450 6.929 1.218 1.947 1.886
5 3.666 5.683 15.709 1.342 16.238
6 0.187 1.747 14.711 0.552 2.471

2. For each hidden node, divide Pij by the sum for all the input variables to obtain Qij.  As

an example: Q11 = 7.405 / (7.405 + 5.001 + 32.485 + 16.777 + 5.375) = 0.110.
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Hidden nodes D Ns COV /H
1 0.110 0.075 0.485 0.250 0.080
2 0.017 0.018 0.441 0.362 0.162
3 0.265 0.065 0.332 0.186 0.152
4 0.108 0.516 0.091 0.145 0.140
5 0.086 0.133 0.368 0.031 0.381
6 0.010 0.089 0.748 0.028 0.126

3. For each input node, sum Qij to obtain Sj.  As an example:

S1 = 0.110 + 0.017 + 0.265 + 0.108 + 0.086 + 0.010 = 0.596.

D Ns COV /H
Sum 0.596 0.895 2.465 1.003 1.041

4. Divide Sj by  the  sum  of  all  the  input  variables  to  give  the  relative  importance  of  all

output weights attributed to the given input variable.  As an example, the relative

importance of input node 1 is equal to:

(0.596  100) / (0.596 + 0.895 + 2.465 + 1.003 + 1.041) = 9.9%

D Ns COV /H
Relative importance (%) 9.9 14.9 41.1 16.7 17.4

The results indicate that the stability number, Ns,  has  the  most  significant  effect  on  the

predicted probability of failure, Pf, with a relative importance of 41.1%.  This is followed

by the normalised scale of fluctuation, /H,  and  the  coefficient  of  variation,  COV,  each

with a relative importance of 17.4% and 16.7%, respectively.  The slope geometry

parameters: depth factor, D, and slope angle, , has relatively small impact on Pf, each with

a relative importance of 14.9% and 9.9%.  It should be noted that Ns is the mean undrained

cohesion, cu, normalised by the unit weight and slope height.  Furthermore, /H and COV

are parameters used to model the spatial variability of cu.   Therefore,  the  sensitivity

analysis suggests that spatial variability of soil properties has a more significant impact on

the reliability of a slope than the slope geometry parameters, for the geometries examined

in the present analysis.
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6.5 Summary

This chapter has investigated the feasibility of using artificial neural networks (ANNs) as

an alternative approach to the random finite element method (RFEM) and Monte Carlo

simulation for predicting the probability of failure, Pf,  of  a  spatially  random  cohesive

slope.  Multi-layer perceptrons (MLPs) trained with the back-propagation algorithm were

used in this study.  The data used for the ANN model development and validation were

obtained from the parametric studies conducted in Chapter 4 using RFEM and Monte

Carlo simulation.  A total of 1,440 case records were used and they were divided into three

different data sets: training, testing and validation. The training and testing sets were used

for model development or calibration, while the validation set was used for model

validation.

The optimum ANN model was determined using a trial-and-error approach where the

number of hidden layers and nodes was varied.  The performance of the developed ANN

models was measured by three standard performance measures: correlation coefficient, r,

RMSE and MAE.  It was found that the number of hidden layers and nodes has a

significant  effect  on  the  performance  of  the  ANN models.   The  ANN model  that  with  2

hidden layers with 12 nodes in each hidden layers was found to be the most accurate

model, which has a correlation coefficient, r,  of 0.996 for the validation data set.   It  was

also found that the network internal parameters such as the learning rate and momentum

term have less impact on ANN model performance compared to the number of hidden

layers and nodes.

A simple equation was developed based on the ANN model that has 1 hidden layer with 6

nodes, which can be used to predict the probability of failure, Pf,  of  a  spatially  random

cohesive slope.  This equation can be used as an alternative approach to the more advanced

but computationally intensive approach, i.e.  RFEM.  The sensitivity analysis of the ANN

model inputs indicated the stability number, Ns, was the most important parameter with a

relative importance of 41.1%.  The other parameters ranked in the order of most to least

important were /H, COV, D and .
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Chapter 7

SLOPE STABILITY ANALYSIS CONSIDERING EFFECT

OF ROOT REINFORCEMENT

7.1 Introduction

As discussed in Chapter 2, it is well recognised that vegetation can have a significant effect

on  slope  stability.   Vegetation  affects  the  stability  of  a  slope  through  various  processes,

including modification of soil moisture content; root reinforcement; surcharging;

buttressing and arching; and wind loading.  However, there is a consensus in the literature

that root reinforcement provides the most significant and important effect on slope

stability.  Much research has been conducted, in the past 30 years or so, to quantify the

effects of root reinforcement on slope stability.  The majority of is research has focussed

on field or laboratory studies of root-filled soils and modification of limit equilibrium

methods to incorporate the effect of root reinforcement.  Despite the considerable amount

of research conducted on this topic to date, there are a few issues that have yet to be

addressed, as mentioned in Chapter 2.

Firstly, no study has been conducted to consider the effect of root reinforcement on slope

stability using a numerical method, such as the finite element method (FEM).  All the

previous studies were based on limit equilibrium methods.  As discussed in Chapter 2 (see

Section 2.2.2), the FEM has the advantage of not requiring an advance assumption of the

shape and location the critical slip surface.  This is particularly useful for considering the

effect of root reinforcement in deep-seated type slope failure because the critical slip

surface is usually complex and unknown when vegetation is present.  Secondly, there is no

simple and straightforward solution (i.e. in the form of stability charts or simple formulae)

available for the assessment of the stability of deep-seated vegetated slopes considering the
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effect  root  reinforcement.   Stability  charts  or  formulae  are  more  useful  and  practical  for

preliminary  design  and  the  assessment  of  slopes  with  a  simple  geometry.   Finally,  the

spatial variability of root cohesion has not been considered in the previous slope stability

analyses, hence, its influence on slope stability is yet to be investigated.

The overall aim of this chapter is to address the above-mentioned issues so that the effect

of root reinforcement on slope stability can be modelled more accurately and the behaviour

of vegetated slopes can be understood better.  The precise objectives of this chapter are as

follows:

1. To incorporate the effect of root reinforcement into the existing finite element slope

stability model;

2. To investigate the effect of root reinforcement on slope stability using the finite

element method;

3. To produce vegetated slope stability charts through parametric studies using the finite

element method;

4. To develop an artificial neural network (ANN) model for calculating the factor of

safety (FOS) of a slope considering the effect of root reinforcement and to transform

the developed ANN model into a relatively simple formula which serves as an

alternative tool to the developed stability charts; and

5. To investigate the effect of spatial variability of root cohesion as well as soil properties

on slope stability using the random finite element method (RFEM).

7.2 Assessing Influence of Root Reinforcement on Slope
Stability by Finite Element Method

It has been discussed in Section 2.4.3 that, the effect of root reinforcement can be modelled

as an increase in apparent soil cohesion, called root cohesion, cr.  This root cohesion

ultimately increases the shear strength of the soil.  Various approaches have been

established in the past to determine the value of cr (see Section 2.4.3).  Published data in

the literature (see Table 2.6) suggested that the average value of cr is most likely to be

within the range of 1 kPa to 20 kPa.
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The finite element model used in this study assumes a 2-dimensional plane-strain condition

with an elastic-perfectly plastic soil model, which was developed by Smith and Griffiths

(1998).  The formulation and theoretical aspects of this finite element model has been

previously discussed in Section 3.4.  The effect of root reinforcement can be taken into

account in the finite element slope stability analysis by adding the root cohesion, cr, to the

effective or drained cohesion, c , of the soil to give a total cohesion, Totalc , as given by:

rTotal ccc (7.1)

In the finite element model, the soil elements that are affected by vegetation (known as the

root zone) are assigned the total cohesion, Totalc , while, for other soil elements within the

slope geometry, the effective soil cohesion, c , is used.  The typical finite element model

that consists of a root zone is shown in Figure 7.1.  The grey shaded areas indicate the root

zone and the extent of this root zone from the ground surface is defined by the parameter

called the depth of root zone, hr.  This is the effective distance beyond which plant roots

are assumed to cause little or no effect on the soil shear strength.

Figure 7.1 Typical finite element mesh for incorporating effect of root reinforcement

Numerical analyses, using the developed finite element model, were carried out to

investigate the effect of root reinforcement on slope stability.  A 2:1 homogenous slope (

= 26.6 ) with a height, H, of 10 m was considered.  The assumed soil properties were:  =

20 kN/m3; c  = 1 kPa; and  = 25 .  These analyses were performed deterministically,
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where a single average value for each parameter was used in the analyses.  Considerations

for spatial variability of root cohesion and soil properties using probabilistic analysis are

discussed later.

It should be noted that vegetation could grow on any region of a natural slope.  Therefore,

in  the  first  part  of  the  deterministic  analyses,  the  effect  of  the  spatial  distribution  of

vegetation on the stability of a slope was investigated.  Vegetation was considered growing

on different locations of a slope, as shown in Figure 7.2.  In this study, the root cohesion,

cr, and the depth of root zone, hr, were held constant at 10 kPa and 2 m, respectively.  The

factor of safety (FOS) for each case of slope shown in Figure 7.2 were computed and

summarised in Table 7.1.

Case 1: Bare slope Case 2: Vegetation grows on the slope surface

Case 3: Vegetation grows on the slope toe Case 4: Vegetation grows on the slope surface
and toe

Case 5: Vegetation grows on the upper slope
region

Case 6: Vegetation grows on the lower slope
region

Case 7: Vegetation grows on the upper and
lower slope regions

Case 8: Vegetation grows on the entire ground
surface

Figure 7.2 Vegetated slope with different locations of root zone
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It is noted that, without including the effect of root reinforcement in the slope stability

analysis (i.e. Case 1), the computed FOS for the slope is 1.05, which indicates the slope is

in a marginally stable state.  When vegetation grows on the entire slope (i.e. Case 8), the

FOS increases from 1.05 to 1.25 (i.e. 19% increase), which has the most significant

increase in FOS among all other cases.  This is followed by the case with vegetation grows

on the slope surface and toe (i.e. Case 4), in this case, the FOS was increased to 1.2 (i.e.

15% increase).  However, when vegetation was grown only on the slope surface (i.e. Case

2) or on the upper slope region (i.e. Case 5), the increase in FOS was only 3%.

Furthermore, when vegetation was grown only on the slope toe (i.e. Case 3) or on the

lower slope region (i.e. Case 6), no improvement in FOS was observed.  These results

suggest that vegetation should be grown on entire ground surface of a slope or at least on

the  slope  surface  and  toe,  so  that  the  beneficial  effect  of  the  root  reinforcement  on  slope

stability can be obtained.

Table 7.1 Computed FOS for the slope with different locations of root zone

Case FOS Increase (%)

1 1.05 -

2 1.08 3.0

3 1.05 0.0

4 1.20 15.0

5 1.08 3.0

6 1.05 0.0

7 1.08 3.0

8 1.25 19.0

In the second part  of the analyses,  vegetation was assumed growing on the entire ground

surface (same as Case 8) and the value cr was varied between 1 kPa and 20 kPa, while a hr

of 1 m and 2 m was considered.  The results of these analyses are shown in Figure 7.3.  It

can be seen that the FOS of a vegetated slope (i.e. cr > 0) is higher than that of a bare slope

(i.e. cr = 0).  The increase in the FOS is dependent on the values of cr and hr.  Generally,

the FOS increases linearly with the values of cr and hr.  For example, for an intermediate
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value of cr (i.e. cr = 10 kPa), the FOS increased from 1.05 to 1.16 for the case with hr =

1 m, and the FOS increased from 1.05 to 1.25 for the case with hr =  2  m,  or  a  10% and

19% increment, respectively.  For a high value of cr (i.e. cr = 20 kPa), the increments were

19% and 34%, respectively.  It is noted that the percentage increase in the FOS is not

directly proportional to the increment in the values of cr.  It is expected that the FOS will

approach a maximum limiting value as the value of cr keeps increasing.  However, this

maximum limiting value for the FOS was not investigated here because the extremely

large value of cr is  not  likely  to  be  encountered  in  the  real  situations.   Despite  this,  the

results show that root reinforcement provides a significant improvement on the stability of

a slope.  The results also indicate that a marginally stable slope could become stable when

the effect of root reinforcement is taken into consideration.  In other words, an originally

stable vegetated slope could become marginally stable after the vegetation is removed.
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Figure 7.3 FOS versus root cohesion for different depths of root zone

(c  = 1 kPa;  = 25 )

Figure 7.4 shows the effects of varying the values of cr on  the  FOS  of  the  slope  with

different values of effective soil cohesion, c , i.e. 1, 5, 10 and 20 kPa, while the other

parameters are held constant at:  = 20 kN/m3;  = 25 ; and hr = 1 m.  The computed FOS
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for the slopes with c  of 1, 5, 10 and 20 kPa, without considering the effect of root

reinforcement (i.e. cr = 0), are 1.05, 1.33, 1.59 and 2.05, respectively.  It is noted that the

FOS increases as cr increases for all the cases of c  considered.  The maximum percentage

increments  in  the  FOS of  the  slopes  with c  of 1, 5, 10 and 20 kPa, which were obtained

when cr = 20 kPa, are 19.4%, 10.6%, 7.8% and 5.3%, respectively.

Clearly, the slope with the lowest value of c   (i.e.  lowest  FOS)  showed  the  highest

percentage increment in the FOS when cr = 20 kPa.  In fact, the same phenomenon is

observed for the cases with other values of cr.  This finding suggests that root

reinforcement provides greater improvement to the stability of a slope with a lower FOS

than a slope with a higher FOS.
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Figure 7.4 FOS versus root cohesion for different values of effective cohesion of soil

(  = 25 ; hr = 1 m)

Figure 7.5 shows the plots of the FOS versus root cohesion, cr, for the slopes with different

values of friction angle, , i.e. 5 , 15 , 25  and 35 , while the other parameters are held

constant at:  = 20 kN/m3; c  = 1 kPa; and hr = 1 m.  The FOS for the slopes with  of 5 ,

15 , 25  and 35 , without considering the effect of root reinforcement (i.e. cr = 0), are 0.27,
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0.64, 1.05 and 1.53, respectively.  It is noted that the slopes that with  of 5  and 15  are

considered to be unstable or ‘failed’.

It can be seen from Figure 7.5 that the FOS increases as cr increases for all cases of

considered.  The maximum percentage increments in FOS of the slopes with  of 5 , 15 ,

25  and 35  are 35.0%, 24.3%, 19.4% and 14.3%, respectively.  This observation is similar

to that previously found in Figure 7.4 where the slope with a lower FOS obtains a greater

in FOS than the slope with a higher FOS.  The results in Figure 7.5 once again confirm that

root reinforcement provides greater improvement to the stability of a slope with a lower

FOS than a slope with a higher FOS.
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Figure 7.5 FOS versus root cohesion for different values of effective friction angle of

soil (c  = 1 kPa; hr = 1 m)



Chapter 7.  Slope Stability Analysis Considering Effect of Root Reinforcement 165

7.3 Vegetated Slope Stability Charts

In order to construct slope stability charts that can be used for assessing the effect of root

reinforcement on slope stability, extensive parametric studies were carried out.  The input

parameters were systematically varied according to the values shown in Table 7.2.  A total

of 768 different combinations of input parameters were obtained based on the values

shown in Table 7.2.  The slope angles, , of 18.4 , 26.6 , 45.0  and 63.4  correspond to

slopes of 3:1, 2:1, 1:1 and 0.5:1, respectively.  The depth factor, D, is not considered as a

variable because in the case of a c –  slope, especially when the value of c  is small, the

slip surface will not extend deeper than the toe level.  Therefore, a constant depth factor, D,

of 2 was used.  It is noted that the effective soil cohesion, c , is expressed as a

dimensionless stability coefficient, c / H.  For example, when  = 20 kN/m3 and H = 10 m,

values of c / H of 0.1, 0.05, 0.025 and 0.005 correspond to a c  of 20 kPa, 10 kPa, 5 kPa

and 1 kPa, respectively.  The constructed stability charts are presented in Figures 7.6 to

7.9.

Table 7.2 Input variables and values for parametric studies undertaken

Input variables Values

Slope angle,  (degrees) 18.4, 26.6, 45.0, 63.4

Friction angle,  (degrees) 5, 15, 25, 35

Stability coefficient, c / H 0.1, 0.05, 0.025, 0.005

Root cohesion, cr (kPa) 0, 1, 5, 10, 15, 20

Depth of root zone, hr (m) 1, 2

It can be observed from Figures 7.6 to 7.9 that, for all slope angles, FOS increase linearly

as root cohesion increases.  It also noted that the increase in FOS is more significant for the

steeper  slopes  and  those  with  a  lower  value  of  FOS.   This  observation  suggests  that

vegetation is a useful method of slope stabilisation, especially for steep slopes with a low

value of FOS.
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Figure 7.6 Stability charts for 3:1 vegetated slope
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Figure 7.7 Stability charts for 2:1 vegetated slope



168 Chapter 7.  Slope Stability Analysis Considering Effect of Root Reinforcement

0.0

0.5

1.0

1.5

2.0

0 5 10 15 20

Root cohesion, cr (kPa)

FO
S

                     hr = 2m
                     hr = 1m

Slope 1:1
c'/ H = 0.005

0.0

0.5

1.0

1.5

2.0

0 5 10 15 20

Root cohesion, cr (kPa)

FO
S

                     hr = 2m
                     hr = 1m

Slope 1:1
c'/ H = 0.025

0.0

0.5

1.0

1.5

2.0

0 5 10 15 20

Root cohesion, cr (kPa)

FO
S

Slope 1:1
c'/ H = 0.05

                     hr = 2m
                     hr = 1m

0.0

0.5

1.0

1.5

2.0

0 5 10 15 20

Root cohesion, cr (kPa)

FO
S

Slope 1:1
c'/ H = 0.1

                     hr = 2m
                     hr = 1m

35o

25o

15o

5o

’

35o

25o

15o

5o

’

35o

25o

15o

5o

’

35o

25o

15o

5o

’

Figure 7.8 Stability charts for 1:1 vegetated slope
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Figure 7.9 Stability charts for 0.5:1 vegetated slope
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7.4 Artificial Neural Networks Modelling

This section attempts to develop an artificial neural network (ANN) model for predicting

the factor of safety (FOS) of a vegetated slope with considering the effects of root

reinforcement.  The developed ANN model is then transformed into a simple equation so

that it can be readily used in practice.  Back-propagation multi-layer perceptrons (MLPs)

are used for the ANN model development.  The theoretical aspects of back-propagation

MLPs have been described in Section 2.5.2.  The procedures for ANN model development

have also been discussed in Section 2.5.3 and have been adopted in the development of the

ANN model for predicting the probability of failure of a spatially random cohesive slope,

as presented in Chapter 6.  The same procedures for ANN model development are adopted

in this section.

7.4.1 Input and Output Variables

As discussed in Section 7.3, five parameters are required to predict the FOS of a vegetated

slope with the effect of root reinforcement.  They are the slope angle, , friction angle, ,

stability coefficient, c / H, root cohesion, cr, and depth of root zone, hr.   These  five

parameters are used as the input variables for the ANN model.  The output for the ANN

model is the factor of safety, FOS.  The range of each parameter is given in Table 7.3.

Table 7.3 Summary of range for input and output variables

Input/output variables Range

Slope angle,  (degrees) 18.4 – 63.4

Friction angle,  (degrees) 5 – 35

Stability coefficient, c / H 0.005 – 0.1

Root cohesion, cr (kPa) 0 – 20
Depth of root zone, hr (m) 1 – 2

Factor of safety, FOS 0.109 – 3.719
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7.4.2 Database

In Section 7.3, extensive parametric studies were conducted in order to construct the

vegetated  slope  stability  charts.   The  results  of  these  numerical  analyses  are  used  as  the

data required for ANN model development.  As discussed previously in Section 2.5.3,

when cross-validation (Stone 1974) is used as the stopping criteria for calibrating the ANN

model, the data are randomly divided into three sets: training, testing and validation.  In

total, 80% (i.e. 614 case records) of the data were used for model calibration and 20% (i.e.

154 case records) were used for model validation.  The calibration data were further

divided into 70% (i.e. 430 case records) for the training set and 30% (i.e. 184 case records)

for the testing set.  The schematic representation of data division for ANN model

development is shown in Figure 7.10.

The  data  are  randomly  divided  into  several  combinations  of  the  training,  testing  and

validation until three statistical consistent data sets are obtained, as proposed by Shahin et

al. (2004).  The statistics of the data used for the training, testing and validation sets are

given in Table 7.4.  It can be seen that the data used for training, testing and validation are

statistically consistent, which indicates that they represent the same statistical population.

The data are then pre-processed using Equation (2.49), as discussed in Section 2.5.3.

All data
(768)

Training
(430)

Testing
(184)

Model Validation
(154)

Model Calibration
(614)80%

20%

70%

30%

Figure 7.10 Data division for ANN model development
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Table 7.4 Input and output statistic for ANN models

Statistical parametersModel variables and data
sets Mean Std. Dev. Minimum Maximum Range

Slope angle,  ( ° )
Training set 38.8 17.4 18.4 63.4 45.0
Testing set 38.4 17.4 18.4 63.4 45.0
Validation set 36.9 17.4 18.4 63.4 45.0
Friction angle, ' ( ° )
Training set 20.4 11.4 5.0 35.0 30.0
Testing set 19.4 10.6 5.0 35.0 30.0
Validation set 19.7 11.2 5.0 35.0 30.0
Stability number, c'/ H
Training set 0.046 0.036 0.005 0.100 0.095
Testing set 0.044 0.035 0.005 0.100 0.095
Validation set 0.044 0.035 0.005 0.100 0.095

Root cohesion, cr (kPa)
Training set 8.8 7.3 0.0 20.0 20.0
Testing set 7.8 7.3 0.0 20.0 20.0
Validation set 8.6 7.2 0.0 20.0 20.0

Depth of root zone, hr (m)
Training set 1.5 0.5 1.0 2.0 1.0
Testing set 1.5 0.5 1.0 2.0 1.0
Validation set 1.5 0.5 1.0 2.0 1.0
Factor of safety, Fs

Training set 1.216 0.785 0.109 3.719 3.610
Testing set 1.154 0.739 0.156 3.656 3.500
Validation set 1.170 0.662 0.125 3.484 3.359

7.4.3 Network Architecture and Performance of ANN Models

The ANN models were trained with the pre-processed training data set and the testing data

set was used to decide when to stop training to avoid overfitting (Stone 1974).  In this

study, the optimal network architecture of the ANN model was determined by trial-and-

error.  It was determined that the networks with one hidden layer were able to accurately

define the relationship between the input and output variables.  However, the performance

of the ANN models was affected by the number of nodes in the hidden layer, as shown in

Table 7.5.  It can be seen that, as the number of hidden layer nodes increases from two to

four, the performance of the ANN models improved significantly.  However, this
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improvement is somewhat reduced when the number of hidden layer nodes was increased

from four to six.

Based  on  the  criterion  of  selecting  a  network  architecture  that  can  be  transformed into  a

practical formula, hence a parsimonious one, the model that with four nodes in the hidden

layer (i.e. Model E2) is considered to be the optimal model.  It should be noted that the

hyperbolic tangent and logistic sigmoid functions were used in the hidden and output

layers, respectively.  Furthermore, the learning rate and momentum term were fixed at 0.2

and 0.8, respectively.

Table 7.5 Performance of ANN models with different number of hidden nodes

Performance measures
r RMSE MAE

Model
No.

No.
hidden
nodes T S V T S V T S V

E1 2 0.991 0.993 0.990 0.121 0.098 0.119 0.087 0.075 0.090
E2 4 0.995 0.997 0.997 0.079 0.060 0.055 0.047 0.045 0.041
E3 6 0.996 0.998 0.998 0.074 0.052 0.048 0.041 0.038 0.037

T = training; S = testing and V = validation.

7.4.4 ANN Model Equation for Vegetated Slope

It was determined in the previous section that Model E2, which has one hidden layer with

4 nodes, was the optimum ANN model.  The structure of the ANN Model E2 is shown in

Figure 7.11 and its connection weights and biases are shown in Table 7.6.

Using the connection weights and biases shown in Table 7.6,  the predicted FOS, Fs,  of  a

vegetated slope with effect of root reinforcement can be expressed as follows:

4321 tanh941.1tanh22.3tanh381.1tanh345.0346.01
1

HHHHs e
F (7.2)

where:

rr hc
H
cH 338.0411.0135.0046.0329.0653.01 (7.3)
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rr hc
H
cH 05.0305.0117.1380.0843.0445.02 (7.4)

rr hc
H
cH 008.0018.0438.0152.1357.2794.13 (7.5)

rr hc
H
cH 006.0083.0303.0464.1008.0356.04 (7.6)
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c / H

Figure 7.11 Structure of the optimal ANN model (Model E2)

Table 7.6 Weights and biases for the ANN Models E2

wji (weight from node i in the input layer to node j in the
hidden layer)Hidden

layer
nodes i = 1 i = 2 i = 3 i = 4 i = 5

Hidden
layer bias

( i)
j = 6 0.329 -0.046 -0.135 -0.411 -0.338 0.653
j = 7 -0.843 0.380 1.117 0.305 -0.050 0.445
j = 8 -2.357 1.152 0.438 0.018 -0.008 -1.794
j = 9 0.008 1.464 0.303 -0.083 -0.006 0.356

wji (weight from node i in the input layer to node j in the
hidden layer)Output

layer
nodes i = 6 i = 7 i = 8 i = 9

Output
layer bias

( i)

j = 10 -0.345 1.381 3.220 1.941 -0.346
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It should be noted that the predicted FOS obtained from Equation (7.2) is scaled between

0.0 and 1.0, and in order to obtain the actual value, this FOS has to be re-scaled using

Equation (2.49) and the data ranges in Table 7.3.  It should also be noted that, before using

Equations (7.3) to (7.6), all input variables (i.e. , , c / H, cr and hr)  need  to  be  scaled

between 0.0 and 1.0 using Equation (2.49) and the data ranges in Table 7.3.  Equations

(7.2) to (7.6) are therefore rewritten as follows:

4321 tanh941.1tanh22.3tanh381.1tanh345.0346.01
61.3109.0 HHHHs e

F (7.7)

rr hc
H
cH 338.0021.0421.1002.0007.0843.01 (7.8)

rr hc
H
cH 05.0015.0758.11013.0019.0718.02 (7.9)

rr hc
H
cH 008.0001.0611.4038.0052.0037.13 (7.10)

rr hc
H
cH 006.0004.0189.3042.00002.0134.04 (7.11)

It should be noted that Equation (7.7) is valid only for the ranges of values of ,  D,  Ns,

COV and /H given in Table 7.3.  This is because ANNs perform best in interpolation but

not extrapolation, as discussed previously in Section 2.5.2.  The developed ANN equations

can therefore be used as an alternative method to the finite element analysis and the

vegetated slope stability charts.  This is particularly useful for interpolation of the cases

that are not considered in the parametric studies and the stability charts.

7.5 Probabilistic Study

It has been discussed in Section 2.4.3.6 that root cohesion, cr, is most likely to be spatially

variable rather than uniform.  Therefore, a probabilistic study was conducted to investigate

the effect of spatial variability of root cohesion on the stability of a vegetated slope.  This

was achieved by using the random finite element method (FREM) and the two-layered

slope model developed in Chapter 5.  As previously discussed in Section 7.2, root
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cohesion, cr, can be modelled as an additional cohesion, which is added to the effective

cohesion of soil, c , to give a total cohesion, Totalc , in the root zone (Equation (7.1)).  In

deterministic analyses, such as those performed in Section 7.2, both cr and c  are assumed

to be spatially uniform, however, in probabilistic analysis, they are treated as random

variables, and vary spatially within the slope geometry being considered.  Coefficients of

variation  (COV),  and  the  scale  of  fluctuation  (SOF),  are  used  to  describe  the  spatial

variability  of  the  root  cohesion  as  well  as  other  soil  properties.   The  probabilistic  slope

analysis was conducted based on Monte Carlo simulation approach, as previously

discussed in Chapter 3.

A 2:1 slope (  = 26.6 ) with a height, H, of 10 m was used in this study, the typical finite

element mesh with a realisation of a simulated cohesion random field is shown in Figure

7.12.  The darker regions indicate soils with a higher cohesion value.  It can be seen that

the upper soil layer (i.e. the root zone) has a higher cohesion value than the underlying soil

layer.  In the first part of the analyses (denoted as Case 1), only the effective cohesion of

the soil, c , and root cohesion, cr, were considered as random variables, which were both

described by a lognormal distribution.  Other input parameters were assumed to remain

constant at their deterministic values, as summarised in Table 7.7.  It should be noted that,

in the root zone, the effective cohesion of soil, c , was assumed to have the same spatial

variability (i.e. same COV and SOF) as the root cohesion, cr.  Therefore, instead of treating

c  and cr as two different random fields, a single random field of total cohesion, Totalc , was

simulated to represent the cohesion in the root zone.

In this study, the SOF, , was normalised by the slope height, H, which was similar to that

performed in  Chapters  4  and  5.   It  is  noted  from Table  7.7  that  three  different  values  of

COV   (i.e.  0.1,  0.5  and  1)  and /H (i.e. 0.1, 1 and 10) for cr were considered in the

analyses.  However, the COV and /H of c  for the underlying soil was fixed at 0.5 and 1,

respectively.  In the second part of the analyses (denoted as Case 2), the effective friction

angle of the soil was considered as a lognormally distributed random variable, together

with c  and cr,  with  a  COV of  0.25  and /H of  1.   Other  parameters  remained  the  same

values as used in the Case 1 analyses.  The input parameters for the Case 2 analyses are

summarised in Table 7.8.  It should be noted that no correlation between the input

parameters was assumed in these analyses.
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Figure 7.12 Typical finite element mesh with simulated cohesion value

Table 7.7 Input parameters and values for Case 1

Input parameters Mean COV /H

Effective cohesion, c 5 kPa 0.5 1

Effective friction angle, 20  (deterministic) - -

Unit weight, 20 kN/m3 (deterministic) - -

Depth of root zone, hr 2 m (deterministic) - -
Root cohesion, cr 5 kPa 0.1, 0.5, 1 0.1, 1, 10

Table 7.8 Input parameters and values for Case 2

Input parameters Mean COV /H

Effective cohesion, c 5 kPa 0.5 1

Effective friction angle, 20 0.25 1

Unit weight, 20 kN/m3 (deterministic) - -

Depth of root zone, hr 2 m (deterministic) - -

Root cohesion, cr 5 kPa 0.1, 0.5, 1 0.1, 1, 10

Deterministic analyses, based on the mean values of each input parameter, were conducted

to evaluate the factor of safety (FOS) of the slope being considered.  It was found that the

FOS of the slope without considering the effect of root reinforcement was 1.10.  However,

when root cohesion of 5 kPa was included in the analysis the FOS increased to 1.18.  It

should be noted that the deterministic FOS for Cases 1 and 2 were identical because both



178 Chapter 7.  Slope Stability Analysis Considering Effect of Root Reinforcement

cases used the same mean values for input parameters.  The FOS indicates that the slope is

in a marginally stable condition when the effect of root reinforcement is not considered.

Based on a Monte Carlo simulation involving 2,000 realisations, the computed probability

of failure, Pf, of the slope without considering the effect of root reinforcement for Cases 1

and 2 are 0.1555 and 0.4175, respectively.  Typical deformed finite element meshes for the

slopes of Cases 1 and 2 are shown in Figure 7.13.  It can be seen that the failure

mechanism of the slope is a typical circular ‘toe’ failure.  It is noted that Pf increased

significantly (i.e. approximately 2.7 times) in Case 2 when the spatial variability of the

friction angle, , was considered in the analysis.

(a)

(b)

Figure 7.13 Typical deformed meshes for the slopes without considering the effect of

root reinforcement: (a) Case 1 and (b) Case 2

When the effect of root reinforcement was considered in the probabilistic slope analysis,

the probability of failure, Pf, of the slope reduced significantly.  The magnitude of the

reduction in Pf was governed by the values of COV and /H.  The computed Pf of the slope

with different values of COV and /H are summarised in Table 7.9.  It can be seen that, in

Case 1, Pf reduced from 0.1555 (without root reinforcement) to less than 0.001 when COV

of cr is small (i.e. COV = 0.1).  A similar observation was also found in Case 2 where Pf

reduced from 0.4175 to less than 0.215 when COV = 0.1.  The reduction was also
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significant  even  when the  COV was  high  (i.e.  COV = 1),  as  shown in  Table  7.9.   These

results indicate that the spatial variability of root cohesion has a significant influence on

the Pf of a vegetated slope.  The effects of variations in COV and /H on Pf are shown in

Figures 7.14 and 7.15, respectively.

Table 7.9 Computed Pf for the slopes considering effect of root reinforcement

Pf

COV /H Case 1 Case 2

0.1 0.1 0.0010 0.2145

0.1 1 0.0005 0.2140

0.1 10 <1/2000 0.2085

0.5 0.1 0.0055 0.2565

0.5 1 0.0155 0.2375
0.5 10 0.0220 0.2330

1 0.1 0.0490 0.3310
1 1 0.0800 0.3130

1 10 0.1310 0.3030

Figure 7.14 shows the effect of varying the COV of cr on the Pf of the slope with different

values of /H, for (a) Case 1 and; (b) Case 2.  It can be seen that Pf increases as the COV

increases for all values of /H.  This is  because as COV increases the chances of getting

extremely low values of cr are also increases, which ultimately increases Pf, as previously

discussed in Section 4.2.6.

Figure 7.15 shows the effect of varying /H of cr on the Pf of  the  slope  with  different

values of COV.  It can be seen that the effect of varying /H on Pf is very small when COV

= 0.1 and 0.5, for both Cases 1 and 2.  However, a more significant effect was observed

when COV = 1.0, for both Cases 1 and 2.  It is noted that different trends were observed in

the variation of /H with Pf for Cases 1 and 2.  For Case 1, Pf increases as /H increases,

whereas for Case 2, Pf decreases as /H increases.  This phenomenon has also been

observed when the effect of root reinforcement was not considered in the probabilistic

slope analysis, as previously discussed in Section 4.2.6.  The results shown in Figures 7.14
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and  7.15  indicate  that  the  effect  of  COV  and /H on Pf for a vegetated slope follows a

similar trend as that for a bare slope (i.e. effect of root reinforcement is not considered).
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Figure 7.14 Pf versus COV for different /H: (a) Case 1 and (b) Case 2
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Figure 7.15 Pf versus /H for different COV: (a) Case 1 and (b) Case 2

Figure 7.16 shows the typical deformed finite element meshes for the vegetated slope in

Case 1, with different values of COV of cr: (a) 0.1 and (b) 1, and with /H fixed at 10.  It

can be seen that the failure mechanism for the vegetated slope is a typical ‘toe’ failure’.  It
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is also noted that failure surface ‘moves’ towards the root zone as COV increases,

producing a shallow type failure.  This is because the extremely low value of cr in the root

zone has controlled the failure mode.  Figure 7.17 shows the typical deformed finite

element meshes for the vegetated slope with different values of /H: (a) 0.1 and (b) 10, and

with COV fixed at 0.5.  It is noted the failure mode is reasonably consistent, as the values

of /H varies.

(a)

(b)

Figure 7.16 Typical deformed meshes for the vegetated slope with different values of

COV: (a) 0.1 and (b) 1. ( /H fixed at 10)

7.5.1 Summary

In this chapter, the effect of root reinforcement on slope stability has been modelled using

the finite element slope stability analysis method.  The root cohesion, cr, has been

considered as additional cohesion, which is added to the soil cohesion.  The soil elements

within the defined slope geometry that are affected by vegetation are known as the root

zone, and the extent of this root zone is defined by the depth of root zone, hr.  The results

from the numerical analyses conducted using the finite element method show that the

factor of safety (FOS) of a slope increases when the effect of root reinforcement is taken

into consideration.  In general, the FOS increases linearly with cr and hr.  It has been found
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that the increase in FOS is more significant for the slopes with a lower value of FOS than

for those with a higher value FOS.

(a)

(b)

Figure 7.17 Typical deformed meshes for the vegetated slope with different values of

/H: (a) 0.1 and (b) 10.  (COV fixed at 0.5)

Extensive parametric studies using the finite element method have been conducted to

generate a series of stability charts that can be used for determining the FOS of a vegetated

slope.  Five variables were varied systematically to determine the corresponding value of

FOS for each case.  These variables considered are the slope angle, , friction angle, ,

stability coefficient, c / H, root cohesion, cr, and depth of root zone, hr.

An artificial neural network (ANN) model has also been developed to serve as an

alternative tool for predicting the FOS of a vegetated slope.  The database required for

ANN model development is based on the results generated from the parametric studies.

The ANN model with one hidden layer and four nodes was found to be the most optimum

and parsimonious model.  This model has been transformed into a relatively simple

formula that can be used in the practice.

Probabilistic studies have been carried out in order to investigate the effect of spatial

variability of root cohesion on the stability of a slope.   The root cohesion, as well  as the
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strength parameters (i.e. c  and ), has been treated as lognormally distributed random

variables.  The probabilistic slope analysis was performed using the Monte Carlo

simulation and the random finite element method (RFEM).  It has been demonstrated that

spatial variability of root cohesion has a significant effect on the probability of failure, Pf,

of a slope.  It has been found that Pf increases as the COV of cr increases for all values of

/H.  However, Pf either increases or decreases as /H increases, dependent on the value of

COV.  These observations are consistent with those found in Chapters 4 and 5, where the

effect of root reinforcement was not considered in the probabilistic slope analysis.
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Chapter 8

SUMMARY AND CONCLUSIONS

8.1 Summary

This research has examined and quantified the effects of soil variability and vegetation on

the  stability  of  natural  slopes.   A set  of  probabilistic  stability  charts  has  been  developed,

which can be used for a preliminary assessment of the effect of soil variability on the

reliability of spatially random cohesive slopes.  Artificial neural network (ANN) models

and  formulae  that  can  be  used  to  predict  the  probability  of  failure  of  a  spatially  random

cohesive slope have also been developed.  In addition, the effect of root reinforcement on

slope stability has been examined using the finite element method.  A set of stability charts

for vegetated slopes, which considers the effect of root reinforcement, has been developed.

ANN models and formulae, which can be used for predicting the factor of safety (FOS) of

a vegetated slope, have also been developed.

In Chapter 2, it was discussed that inherent soil variability and effects of vegetation are not

commonly considered in routine slope stability analysis, although their effects on slope

stability are well recognised.  The main reason is due to the complexity and difficulty in

quantifying the effects of soil variability and vegetation.  Furthermore, the available tools

for slope stability analysis in practice (i.e. limit equilibrium method) are not well

established to account for the effects of soil variability and vegetation.  However, the

review of relevant literature in this chapter has indicated that the random finite element

method (RFEM), developed by Griffiths and Fenton (2004), is capable of considering the

effect of soil variability using a probabilistic slope stability analysis approach utilising

Monte  Carlo  simulation.   In  addition,  it  was  also  discussed  that  ANNs  are  a  powerful

computational tool that can be used to determine the relationship between the input and

output variables. ANNs are capable of providing relatively simple and straightforward

formulae that can be readily used in practice.  Such formulae for the assessment of the
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effect  of  soil  variability  and  vegetation  on  slope  stability  are  not  yet  available  in  the

literature.   Finally,  it  was  also  discussed  that  the  effect  of  root  reinforcement  can  be

modelled using the finite element method by considering the effect of root reinforcement

as an increase in soil cohesion called root cohesion.  The spatial variability of root

cohesion can also be considered using the RFEM.

Chapter 3 described the formulation and implementation of the random finite element

method (RFEM) for probabilistic slope stability analysis.  It has been demonstrated that

rslope2d, a computer model that implementing RFEM, is capable of modelling the effects

of soil variability on slope stability.  Investigations were undertaken to validate the

simulated soil properties and to investigate the effect of varying statistical parameters on

the simulated random fields.  The results indicated that the statistical distribution of a

simulated soil property (e.g. cu)  was  affected  by  the  coefficient  of  variation  (COV)  and

scale  of  fluctuation  (SOF).   When  the mean cu for each random field (out of 2,000

realisations) was computed, it was observed that the scatter of the computed mean cu

increased as either COV or SOF increased.  It is also observed that, as SOF  0, both the

mean value and standard deviation (or variance) of the computed mean cu, for the

simulated random fields, were reduced from their point values due to the effect of local

averaging.  The reduction was found to increase as COV increased.

In Chapter 4, parametric studies were conducted to examine the influence of the spatial

variability of undrained cohesion, cu, which was described by a lognormal distribution, on

the probability of failure, Pf,  of  a  spatially  random  cohesive  slope  with  different

geometries.  Based on the results of the parametric studies, a set of probabilistic stability

charts were developed for the spatially random cohesive slopes. In addition, probabilistic

analysis  of  a  2:1  spatially  random c -  slope  has  also  been  conducted.   The  analyses

carried out in this chapter yielded the following specific observations:

In general, Pf increases as COV increases.  More specifically, for a marginally stable

slope  (i.e.  FOS  1), Pf is  more  sensitive  to  lower  values  of  COV  (i.e.  COV  0.3).

However,  for  a  stable  slope  (i.e.  FOS > 1.5), Pf is more sensitive to higher values of

COV (i.e. COV  0.5).  This is because, as COV increases, more scatter in the

simulated values of cu is expected and the low values have controlled the failure of the

slope.
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Pf either increases or decrease as SOF increases.  For a slope with Pf < 0.5, Pf increases

as SOF increases.   On the other hand, for a slope with Pf > 0.5, Pf decreases as SOF

increases.   The  effect  of  SOF  on Pf is governed by the reduction in variance of soil

properties due to local averaging effect.  As SOF increase and approaches infinity, less

variance reduction is expected, hence, more scatter in the simulated values of cu is

expected.

When COV is small (i.e. COV  0.1), only marginally stable slopes are sensitive to

SOF, but when COV is moderate to large (i.e. COV  0.5), even stable slopes (i.e. FOS

> 1.5) are sensitive to SOF.

Pf decreases as FOS decreases for all values of COV and /H.  It has been shown that,

when COV is small (i.e. COV  0.1), to achieve Pf = 0, FOS needs to be greater than

1.65.   However,  when COV is  large  (i.e.  COV  0.5),  FOS needs  to  be  greater  than

2.75 to achieve Pf = 0.  This observation suggested that, when COV is large, a high

FOS does not necessarily indicate a stable slope.

 It  was  shown  that  the  effect  of  anisotropy  of  SOF  on Pf was small compared to the

effects of variation in the values COV and /H on Pf.

The results of the probabilistic analysis of a c  slope indicated that variations of Pf

with respect to COV and SOF were similar to those observed in the cohesive case.

For all values of COV and /H, negative correlation between c  and  leads to a lower

estimate of Pf, while positive correlation between c  and  leads to a higher estimate of

Pf, as compared to the assumption of no correlation between c  and .

In Chapter 5, the random finite element method (RFEM) computer program rslope2d was

modified to analyse a two-layered soil slope.  The modified program was then used to

study the influence of soil variability on the reliability of a 2:1 two-layered spatially

random cohesive slope.  The analyses carried out in this chapter yielded the following

specific observations:

When the upper and lower layers were both assumed to have the same COV and /H,

the failure mechanism changed with respect to the ratio of cu1/cu2.  The failure
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mechanism for the slopes with cu1/cu2 less than 1 appears to be deep-seated.  However,

a toe failure mechanism was observed for the slopes with cu1/cu2 greater than 1.  It was

found that a deep-seated failure was the critical mechanism as it yielded higher values

of Pf.

When the COV and /H were systematically varied, the results indicated that the lower

layer has a higher influence on the probability of failure of the slope.  It was also

shown that failure surface was more likely to occur in the soil layer with a larger value

of COV and /H.

Chapter 6 investigated the feasibility of using ANNs as an alternative approach to the

RFEM  and  Monte  Carlo  simulation  for  predicting  the  probability  of  failure, Pf,  of  a

spatially random cohesive slope.  Multi-layer perceptrons (MLPs) trained with the back-

propagation algorithm were used in this study.  The data used for the ANN model

development and validation were obtained from the parametric studies conducted in

Chapter 4 using RFEM and Monte Carlo simulation.  It was concluded that ANNs have the

ability of predicting the probability of failure, Pf, of spatially random cohesive slopes with

a high degree of accuracy.  A relatively simple formula was developed based on the ANN

model with 1 hidden layer and 6 nodes, which can be used as an alternative approach to the

more advanced but computationally intensive approach (i.e. RFEM).  In addition, the

sensitivity analysis of the ANN model inputs indicated the stability number, Ns,  was  the

most important parameter with a relative importance of 41.1%.  The other parameters

ranked in the order of most to least important were /H, COV, D and .

 In Chapter 7, the effect of root reinforcement on slope stability was modelled using the

finite element slope stability analysis method.  The root cohesion, cr, was considered as an

additional cohesion, which was added to the soil cohesion.  The soil region within the

defined slope geometry that is affected by vegetation are known as the root zone, and the

extent of this root zone is defined by the parameter called the depth of root zone, hr.  Based

on the results of the parametric studies, a set of stability charts was developed for the

vegetated slopes considering the effect of root reinforcement.  An ANN model was also

developed to serve as an alternative tool for predicting the FOS of a vegetated slope.  In

addition, probabilistic studies were carried out in order to investigate the effect of spatial

variability  of  root  cohesion  on  the  stability  of  a  slope.   The  analyses  carried  out  in  this

chapter yielded the following specific observations:
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The FOS increased linearly with cr and hr.  It was also found that the increase in FOS is

more significant for the slopes with a lower value of FOS than for those with a higher

value FOS.

The ANN model with one hidden layer and four nodes was found to be the most

optimum and parsimonious model.  This model was then transformed into a relatively

simple formula that can be used in the practice.

The  spatial  variability  of  root  cohesion  has  a  significant  effect  on  the  probability  of

failure, Pf, of a slope.  It was found that Pf increases as the COV of cr increases for all

values of /H.  However, Pf either increases or decreases as /H increases, dependent

on the value of COV.

8.2 Recommendations for Further Research

The slope stability analyses conducted in this research have assumed a deep water table

and the effect of pore water pressure were not considered.  It is well known that pore water

pressure is one of the variables, in slope stability analysis, that subject to significant

uncertainty.  Therefore, the variability of pore water pressure is also likely to have a

considerable effect on the stability of a natural slope.  It is worthwhile to use the random

finite element method (RFEM) to analyse slopes with a shallow water table and consider

the changes in pore water pressure.

In this research, probabilistic stability charts and ANN model formulae are developed for

the spatially random cohesive slopes only, due to time constraints.  To construct useful

charts for the c  slopes with different geometries, more analyses need to be undertaken

as more parameters would be involved.  Furthermore, in order be more applicable in

practice, charts for c  slopes  should  also  include  water  table  location.   This  is  a  time

consuming and computationally intensive task but certainly achievable and desirable.

The RFEM computer model rslope2d has assumed a 2-dimensional (2D) plane-strain

conditions.  Therefore, the spatial variability of soil properties and root cohesion in the

third dimension was not considered.  Vanmarcke (1977) stated that soil properties vary

spatially in 3-dimensions (3D).  Furthermore, the spatial distribution of vegetation on a
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natural slope is also extended to the third dimension.  Hence, it is worthwhile to perform

3D probabilistic slope stability analyses considering the effects of soil variability and

vegetation in 3D.  As discussed in Chapter 2, the 2D finite element slope stability model,

which is used in rslope2d, has been recently extended to 3D (Griffiths and Marquez 2007).

However, it has yet to be combined with 3D spatially random soil profile simulated by the

local average subdivision (LAS) method and incorporated into a Monte Carlo simulation

framework.

This research has examined the effect of soil variability and vegetation through parametric

studies and the range of the input parameters were based on observed or suggested values

found in the literature.  It is worthwhile to apply the RFEM and tools developed in this

research (i.e. two-layered slope model, stability charts, and ANN models and formulae) to

reported case studies of slope failure.  However, it should be mentioned that the majority

of the case studies reported in the literature do not provide the detailed information

required for considering the effects of soil variability and vegetation in slope stability

analysis.

8.3 Conclusions

From  the  analyses  presented  in  this  thesis,  it  can  be  concluded  that  the  effects  of  soil

variability and root reinforcement have a significant impact on the stability of natural

slopes, in particular on marginally stable slopes.  Considering these factors in slope

stability analysis enables the safety of a slope to be predicted more accurately.  In addition,

when performing probabilistic slope stability analysis, assuming a perfectly correlated soil

profile (i.e. SOF ) in probabilistic slope stability analysis could either overestimate or

underestimate the Pf.   For  slopes  with Pf < 0.5, Pf  0  as  SOF  0, hence, the Pf is

overestimated.  For slopes with Pf > 0.5, Pf  1  as  SOF  0, hence, the Pf is

underestimated.  Finally, it is also concluded that artificial neural networks (ANNs) have

the ability to predict the probability of failure of spatially random cohesive and the factor

of safety of a vegetated slope taking the effect of root reinforcement into consideration.
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