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SUMMARY 

Dermatan sulphate (DS) is a sulphated glycosaminoglycan (GAG) that is widely distributed as 

proteoglycan throughout the extracellular matrix and at cell surfaces where it plays an 

important role in many key biological processes. The intra-cellular catabolism of DS 

commences with endohydrolysis of the polysaccharide chains to oligosaccharides, which are 

then sequentially degraded from the non-reducing terminus by lysosomal exoenzymes to 

monosaccharides and inorganic sulphate for transport out of the lysosome and re-utilisation 

by the cell. Both endo-β-N-acetylhexosaminidase (Hyal-1 hyaluronidase) and endo-β-

glucuronidase activities towards DS have been proposed. The present study was undertaken 

to: 1) determine the substrate specificities and sub-cellular locations of these endoglycosidase 

activities; and 2) compare endoglycosidase activities and substrate specificities in the 

mucopolysaccharidoses, where a defect in one of the lysosomal exoenzymes required to 

degrade DS results in the lysosomal accumulation of partially degraded DS oligosaccharide 

fragments. To this end, a series of oligosaccharide substrates designed to represent aspects of 

the physiological substrate was prepared, and an assay was developed to measure 

endoglycosidase activities and determine their substrate specificities by quantifying specific 

oligosaccharide products.  

Assay substrates rich in glucuronic acid (GlcA) or iduronic acid (IdoA) were prepared 

by limited chondroitinase ABC digestion of chondroitin sulphate A and DS, respectively. The 

resulting tetra- to hexadecasaccharides were separated by size-exclusion chromatography and 

characterised by electrospray ionisation-tandem mass spectrometry (ESI-MS/MS). These 

substrates, which were not susceptible to degradation by lysosomal exoenzymes, were then 

incubated with Chinese hamster ovary (CHO)-K1 cell homogenate (source of 

endoglycosidase activity), and the oligosaccharide products generated from the non-reducing 

end of the substrate were measured by ESI-MS/MS. Endo-β-N-acetylhexosaminidase and 

endohexuronidase activities were detected towards the oligosaccharide substrates, with both 

activities preferentially degrading the GlcA-rich substrates and only minor activity observed 

towards IdoA-rich substrate. The endo-β-N-acetylhexosaminidase activity had a minimum-

sized substrate requirement of a hexasaccharide and was observed to sequentially remove 

tetrasaccharides from the non-reducing end of oligosaccharides, whereas the 
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endohexuronidase activity had a minimum substrate of an octasaccharide, acted randomly and 

was comparatively low. The activities displayed the same acidic pH optimum and responded 

in the same manner to changes in buffer composition and substrate concentration, and to the 

presence of divalent cations, NaCl, detergent and protease inhibitors. Both activities were 

modestly affected by the hyaluronidase inhibitor, apigenin. Percoll density gradient sub-

cellular fractionation confirmed that the activities were primarily in the lysosomes and late 

endosomes. The endo-β-N-acetylhexosaminidase and endohexuronidase activities detected 

here in CHO-K1 cells are consistent with the Hyal-1 and endo-β-glucuronidase enzymes 

described previously. These data suggest that Hyal-1 and endo-β-glucuronidase are 

predominantly lysosomal enzymes that act in concert to degrade the low-sulphate, GlcA-rich 

domains of DS, but are less active towards the highly sulphated regions containing IdoA. 

To test the hypothesis that endoglycosidase activities are altered in the 

mucopolysaccharidoses, an attempt was made to compare Hyal-1- and endo-β-glucuronidase-

like activities and their substrate specificities in mucopolysaccharidosis (MPS)-affected and 

unaffected control skin fibroblasts. However, no activity was detected towards octa- to 

hexadecasaccharide substrates in control fibroblast homogenates, and in homogenates of MPS 

fibroblasts deficient in the lysosomal exoenzymes α-L-iduronidase and N-

acetylgalactosamine-4-sulphatase, despite the fact that: 1) what appear to be the products of 

Hyal-1 and endo-β-glucuronidase activities towards endogenous DS could be detected in the 

lysosomes of the MPS cells by sub-cellular fractionation; and 2) the ESI-MS/MS assay was 

demonstrated sensitive enough to detect endoglycosidase activities in homogenates of a 

number of different mouse tissues (including whole skin). We hypothesise that this absence of 

detectable endoglycosidase activity in skin fibroblasts results from enzyme non-recognition of 

the exogenous assay substrates tested, and hence that these cells contain heretofore 

undescribed Hyal-1 and endo-β-glucuronidase isoforms with unique substrate specificities. 

In conclusion, the development of an ESI-MS/MS assay to measure the products of 

endoglycosidase activities has enabled the characterisation of these activities towards DS. 

This strategy may be useful for the future study of endoglycosidase activities towards a 

variety of other GAGs such as heparan sulphate, where particular oligosaccharide structures 

have been shown to possess unique biological activities. 
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