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 Abstract 
The use of molecular markers to identify quantitative trait loci (QTL) affecting 

economically important traits has become a key approach in animal genetics, both for 

understanding the genetic basis of these traits and to help design novel breeding programs. 

The general goal of the present work was to map QTL for economically important traits in 

beef cattle. Because of the practical limitations of phenotypic selection for meat quality, 

these traits are ideal candidates for the use of marker-assisted selection. Thus, the thesis 

specifically focused on carcass and beef quality traits. Six half-sib families were generated 

by mating six Limousin × Jersey crossbred sires to purebred Jersey or Limousin cows, 

producing 784 backcross progeny (366 and 418 progeny in Australia and New Zealand, 

respectively). The six crossbred sires and all the backcross progeny were genotyped for 

285 microsatellite markers (on average 189 informative loci per sire family) spread across 

the 29 bovine autosomes. A large number of traits were recorded on backcross progeny. 

In the first phase of the research, a single-QTL model based on regression interval 

mapping was used to map QTL for a wide range of economically important traits in the 

beef industry. Chromosome-wise significant evidence for linkage was found on BTA12 

(P<0.01) and BTA16 (P<0.05) for age at puberty. Thirteen QTL were found to affect 

calving ease related traits (birth weight, pelvic area and gestation length). BTA11, 14 and 

22 were most significant linkage groups affecting calving ease traits. Several genomic 

regions were linked to the carcass and beef quality traits. The results revealed a major QTL 

on BTA2 close to the map position of myostatin gene, affecting yield, carcass fatness and 

beef quality traits.  

In the second phase, the pleiotropic effects of a myostatin functional SNP on beef 

traits were studied. There was no association between this myostatin variant and birth 

weight and growth traits. However, the variant decreased overall fatness, increased muscle 

mass and improved meat tenderness, thus providing an intermediate and more useful 

phenotype than the more severe double-muscling phenotype caused by a major deletion in 

the myostatin gene described by others.  

In the third phase, a multiple marker analysis approach in the framework of the 

mixed-effects model was developed, allowing all markers of the entire genome to be 

included in the analysis simultaneously. Further, exploiting a factor analytic covariance 

structure for modeling trait by marker or family by marker interaction terms, the approach 
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was extended to the multi-trait and multiple family situations. The simulation study 

showed that modeling multiple phenotypes and multiple families in a single linkage 

analysis simultaneously can markedly increase the power to detect QTL, compared to 

modeling each phenotype or family separately. 

Finally, the multi-trait multiple QTL approach developed herein was applied to map 

QTL influencing carcass and meat quality traits. Several pleoitropic QTL and also trait-

specific QTL affecting beef traits were mapped, resulting in a useful resource from which 

fine mapping can be launched for subsequent gene discovery and marker-assisted 

selection. 
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 Chapter 1: Introduction and literature review 
 

1.1 Introduction 

Many characters of central importance to medicine, food production and 

evolutionary biology are quantitative in nature, being under the control of several genes 

plus the environment. Such traits include hypertension, osteoporosis and behaviour in 

humans, yield and quality in crop plants and farm animals and competitive ability and 

fitness in organisms in the wild (Kearsey and Pooni, 1996). Despite their central medical, 

economic and social importance, these traits are difficult to study because the phenotype 

does not easily provide an insight into the genotype, unlike most simple single-gene traits 

with major effects.  

During the last century, there was an almost exponential growth in the knowledge 

and understanding of genetics, which led, appropriately, to the unravelling of the complete 

human genome sequence in February 2001 (Wolfsberg et al., 2001). However, despite 

these developments, the understanding of the genes underlying the control of quantitative, 

polygenic, traits is little further advanced than it was in 1918 when Fisher wrote his 

landmark paper providing a methodology for understanding quantitative traits. Using 

quantitative genetic theory it is possible to estimate the statistical effects as means, 

variances and covariances of groups of genes (Falconer and Mackay, 1996; Lynch and 

Walsh, 1998), but very little about the nature of the individual polygenes that underlie the 

traits has been known. 

Although it is clearly not essential to understand the nature of polygenes or 

quantitative trait loci (QTL) to estimate heritability, select individuals, or predict selection 

response, it would be interesting and intellectually satisfying to have some sound 

understanding of the individual genes involved. Indeed, such knowledge may have a 

profound influence on the way that the scientists tackle theoretical and applied problems 

related to quantitative traits.  

For many years, the application of the quantitative genetic approach allowed the 

identification of animals with high performance and selective breeding has contributed to 

the successful improvement of the animal production efficiency. The development of 

export markets and increased consumer demands for improved product quality has led to a 

changed focus in selective breeding.  However, the ideal situation for selective breeding 



 

2 

 

 

using quantitative genetic theory is that the trait is highly heritable and that the phenotype 

can be observed in all individuals before the reproductive age (Lynch and Walsh, 1998). 

Therefore, the efficiency of this method decreases when the characteristics have a low 

heritability or are difficult to measure (e.g., meat tenderness). In addition, some traits are 

sex limited (e.g., milk production) or are expressed very late in the life (e.g., longevity). 

Furthermore, the traditional selection within populations has not been very efficient when 

the selection objective involves characteristics with unfavorable genetic correlations (for 

example milk production and protein content of milk) (Schwerin et al., 1995).  

Recent developments in molecular biotechnology and statistical genomics have 

enabled changes in animal breeding programs. The availability of molecular markers 

provides an additional dimension to the use of quantitative genetics in animal breeding. 

Potential applications of molecular markers include marker-assisted selection, 

identification of the number of genes controlling quantitative traits, grouping germ-plasm 

into related groups, selection of parents and marker-assisted back-crossing.  

The development of molecular techniques has expedited the creation of dense 

linkage maps across the whole genome in most livestock species. The density of the bovine 

microsatellite-based genetic map is quite high and it is estimated that a mean distance 

between two neighboring loci is 1.4 cM (Ihara et al., 2004). Chromosomal regions that are 

associated with molecular markers and with a quantitative trait are defined as quantitative 

trait loci (QTL). The genetic maps provide a basis for finding QTL in whole genome scans. 

Identifying QTL has the potential to significantly increase the rate of genetic improvement 

through the use of marker-assisted selection (Meuwissen and Goddard, 1996; Spelman and 

Bovenhuis, 1998). 

1.2 Literature review 

1.2.1 History 

The idea of using markers associated with a trait of interest, for example, to predict 

the performance of individuals in the trait, is not new. The history of QTL mapping can be 

traced back to 1920’s. Sax (1923) used the morphological markers to demonstrate an 

association between seed weight and seed coat colour in beans. In 1961 Neimann-Sorensen 

and Robertson proposed a half-sib design for QTL detection in commercial dairy cattle 

populations. Although the actual results were disappointing, this was the first study of 

marker-trait association in livestock. In addition, this was the first attempt to detect QTL in 
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an existing segregating population. Moreover, it was the first study to use blood groups 

rather than morphological markers. Furthermore, the proposed statistical analysis by 

Neimann-Sorensen and Robertson (1961) was unique as it attempted to estimate the power 

to detect QTL and to consider the problem of multiple comparisons.  

Both Sax (1923) and Neimann-Sorensen and Robertson (1961)used only one marker 

in their studies. Thoday (1961) showed that by use of a pair of linked markers (marker 

bracket), it is possible to determine whether a QTL was located within the bracket or to 

either side. If within the bracket, the QTL could be located more exactly. Thoday (1961) 

noticed that the main practical limitation of the technique seems to be the lack of suitable 

markers.  

In 1965 Law completed the first successful QTL mapping experiment and localised a 

QTL in wheat using substitution lines. Jayakar (1970) proposed that maximum likelihood 

could be used to map QTL. Two years later, Haseman and Elston (1972) proposed a sib-

pair analysis method for QTL detection in human populations.   

During the 1980s there was a number of QTL detection studies in agricultural plants 

based on isozymes using crosses between different strains or even species in order to 

generate sufficient electrophoretic polymorphism (Kahler and Wehrhahn, 1986; Tanksley 

et al., 1982; Weller et al., 1988). However, naturally occurring biochemical 

polymorphisms were insufficient for complete genome analyses in populations of interest.    

Lander and Botstein (1989) introduced the maximum likelihood based interval 

mapping for crosses between inbred lines. This enabled the location of the QTL to be 

estimated separately from its effect by using information from the markers flanking a 

location of interest. Interval mapping became feasible because of the fast advance of 

molecular genetic technology, which enabled large numbers of reliable molecular markers 

to be identified.  

1.2.2 DNA markers and genetic maps 

A genetic marker is a detectable difference in DNA sequence that allows a specific 

point on the chromosome to be ‘tagged’ and followed through the generations of a family 

using a laboratory test. Genetic markers can be, but do not necessarily need to be, within 

the gene. However, most of the DNA markers are based on DNA sequence in between 

genes and simply tag an anonymous point along the chromosome.  
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A series of different molecular marker systems, which became available during the 

last two decades, can be broadly classified into three classes: a) the first generation 

molecular markers, including restriction fragment length polymorphism (RFLPs), random 

amplified polymorphic DNA (RAPDs) and their modifications; b) the second generation 

molecular markers, including simple sequence repeat (SSRs), amplified fragment length 

polymorphism (AFLPs) and their modified forms, and c) the third generation molecular 

markers including expressed sequence tag  (ESTs) and single nucleotide polymorphism  

(SNPs) (Gupta et al., 2001).  

DNA microsatellites (SSRs) are highly polymorphic and abundant, often found in 

non-coding regions of genes. These markers are by definition “codominant”, that is the 

heterozygote genotype could be distinguished from either homozygote. Furthermore, 

microsatellites are nearly always polyallelic (Rohrer et al., 1994). Thus, most individuals 

will be heterozygous. Therefore, microsatellites markers represent a powerful way of 

mapping genes controlling economic traits.  

A SNP is generally defined as a base pair location at which the frequency of the most 

common base pair is lower than 99% (Weller, 2001). The gel-based assays that are needed 

for most molecular markers are time consuming and expensive. However, the SNPs do not 

always need these gel-based assays. In addition, the SNPs are the fundamental unit of 

genetic variation and attractive as markers because they are abundant, both in animals and 

plants, genetically stable and amenable to high-throughput automated analysis (Beuzen et 

al., 2000; Gupta et al., 2001). A large number of SNPs have already been developed in the 

human genome (Gupta et al., 2001).  

A genetic map describes the chromosomal location and the relative order of known 

markers on each of the chromosome in the genome. Rapid advances in molecular genetics 

have led to the development of dense genetic maps of linked, polymorphic markers for 

many species. Detection and localization of QTL on the genetic map is based on co-

segregation between alleles at marker loci and alleles at the QTL. A genetic map function 

is a mathematical relationship between recombination probabilities and map distances 

measured in centimorgans or Morgans. If r corresponds to the recombination frequency 

between a pair of markers and � is the distance between them in Morgans, then the 

Haldane mapping function (Haldane, 1919) is defined by  

)21ln(
2
1

r−−=θ                                                                                                     (1-1) 
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This mapping function assumes no crossover interference. However, the 

phenomenon of interference in genetic recombination is well-known. Therefore, if 

interference is taken into account, the Kosambi map function (1-2) (Kosambi, 1944) should 

be used.  

)
21
21

ln(
4
1

r
r

−
+=θ                                                                                                       (1-2) 

1.2.3 Experimental designs for QTL mapping 

Studies to map QTL in humans, dairy cattle, and trees have used existing 

populations. However, most of the early studies performed on QTL have been based on 

planned crosses. Creation of a mapping population maximizes the chance to have 

segregating genes. It is more likely that a given QTL show segregation in a cross between 

two phenotypically divergent lines than within a population, which has been under strong 

directional selection. 

The inbred lines have a high degree of homozygosity at marker loci and QTL, and 

their resulting offspring will have high linkage disequilibrium between alleles of all linked 

loci. Thus, crosses between inbred lines are highly efficient for detecting QTL. Since 

inbred lines do not exist in farm animals, crosses between outbred lines are common in 

these species (Lynch and Walsh, 1998). The drawback of the outbred line crosses is that 

the degree of homozygosity at marker loci is lower than in inbred lines and that it is 

unknown for the QTL. Since the degree of homozygosity at the QTL is unknown in the 

divergent breeds in the cross, the parental lines are usually assumed fixed for alternative 

QTL alleles (e.g., Haley et al., 1994). If this is not the case in reality, there is a 

confounding between the allele frequency and the effect of the QTL, which decreases the 

power of QTL mapping. 

A number of populations can be derived from a cross between divergent lines, 

including F2, single- or double- backcross and recombinant inbred (Weller, 2001). An F2 

is more powerful than either individual backcross for detecting QTL of additive effect, and 

can also be used to estimate the degree of dominance for detected QTL. While the single 

backcross can only be used to detect the additive by additive interaction effect, the F2 or a 

combination of the two backcrosses can be used to detect four types of interaction between 

two loci (additive by additive, additive by dominance, dominance by additive and 

dominance by dominance). However, a relatively larger population size is needed to obtain 

enough power to detect these interactions. 
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The most popular design for QTL mapping in livestock is half sib design (daughter 

design). The daughter design, first proposed by Neimann-Sorensen and Robertson (1961), 

has been used mainly for dairy cattle in which a single sire can have hundreds or thousands 

of progeny with records on a number of traits, while each dam will have only a few 

progeny. This design essentially is a two-generation design, where offspring genotypes are 

used to determine the two haplotypes in the common parent. Then, for each offspring, the 

probability of inheriting from one of these haplotypes is calculated at locations throughout 

the genome using flanking informative marker information. In the regression application, 

the evidence for QTL comes from mean differences between the offspring inheriting the 

allele from one haplotype and those inheriting from the other (Knott et al., 1996). In the 

outbred situation, it is assumed that the contribution of the mates of the common parent is 

equal over all common parents. The population cannot be assumed to be in complete 

linkage disequilibrium, and so it cannot be assumed that the same marker allele is always 

associated with the same QTL allele in all half-sib families and, hence, when it comes to 

the regression analysis the QTL allele contrast nested within a half-sib family is of interest   

Weller et al. (1990) introduced a design termed “granddaughter” design in which 

sons of grandsires heterozygous for the genetic markers are genotyped, and the daughters 

of these sons are scored for the quantitative traits. This design is similar to the F-3 design 

in that the residual variance is reduced because many phenotypes are scored for each 

individual genotyped. However, this design differs from the F-3 design in that only half of 

the granddaughters will receive the parental allele.   

1.2.4 Methods for QTL mapping 

There are four statistical methodologies for QTL analysis. Regression based 

methods, maximum likelihood methods, mixed model methods and Bayesian methods. The 

methods of QTL analysis were originally implemented using maximum likelihood (Lander 

and Botstein, 1989), in which information on the presence of a QTL is derived from both 

the mean differences between the flanking marker genotype classes and from the 

distribution of the trait within each marker genotype class. The disadvantage of maximum 

likelihood based methods for QTL analysis is their computational complexity, which 

makes them relatively difficult to use for the simultaneous analysis of several QTL, 

interactions between QTL, effects of unlinked QTL and fixed effects (e.g., year and sex) 

(Kim and Park, 2001). The advantage of such simultaneous analyses is their potential to 
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remove bias and to increase the power of the analysis via reducing the residual variance 

(Kim and Park, 2001). Haley and Knott (1992) showed that ordinary least squares can be 

used for QTL analysis and provides very similar estimates and test statistics to those 

obtained from maximum likelihood.  

Grignola et al. (1996) proposed a variance component approach based on a mixed 

linear model to estimate the variance due to the QTL alleles, polygenic effects and 

residuals. This model can be fitted to any general complex pedigree and is robust to the 

number of QTL alleles and normality assumptions, and provides accurate estimations of 

QTL location and effects when family size is large.  

Bayesian methods have attractive properties for QTL analysis. These methods extract 

additional information from phenotypes, incorporate complex pedigree relationship and 

provide inferences based on the joint posterior distribution of many other parameters such 

as QTL genotypes and their effects, number, map position and allele frequencies 

(Hoeschele et al., 1997). However, the Bayesian analyses are very demanding in terms of 

computing requirements particularly for a whole genome scan for multiple traits, and 

require operator expertise in regard to ensuring the proper mixing and convergence of the 

sampler (Hoeschele et al., 1997). 

Single marker analysis 
With the advent of linkage maps, QTL mapping using single marker analysis has 

been reported in the literature in which potential candidate gene markers may be mapped a 

priori in the linkage group in outbred populations (Le Roy and Elsen, 1995; Weller et al., 

1990). However, single marker based mapping has disadvantages. Knott et al. (1996) 

summarized the drawbacks of this approach as a) heterogeneity of information content 

among markers biases the estimation of QTL location toward the more informative rather 

than the closest marker when multiple markers in the vicinity of the QTL are available, and 

b) there is a confounding between estimates of QTL position and effects. 

Interval mapping 
Interval mapping approach (Lander and Botstein, 1989) considers the intervals 

between pairs of flanking markers and explores the evidence of the presence of a QTL at 

various positions between the markers. Compared to single marker mapping, interval 

mapping has been shown to provide some additional power and much more accurate 

estimates of QTL effect and position and to be relatively robust to failure of normality 

assumptions (Knott and Haley, 1992; Lander and Botstein, 1989). However, the major 
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disadvantage of this method in outbred population as Knott and Haley (1992) and Haley et 

al. (1994) stated, is that missing genotypes and different information contents among 

marker intervals due to variability in marker heterozygosity cause a bias in the estimated 

QTL location toward the more informative marker interval. Furthermore, linked and 

multiple QTL on chromosome cause the bias of significant tests and estimates of QTL 

location and effect (Martinez and Curnow, 1992).   

Multiple QTL mapping 
In order to increase the reliability and accuracy of QTL mapping, the effects of 

possible multiple QTL on a chromosome should be adequately separated in testing and 

estimation. Zeng (1994) introduced a method of multiple QTL mapping, which is denoted 

composite interval mapping (CIM). In this method, disassociating of the linkage effects of 

the multiple linked QTL during the identification of individual QTL is accomplished by 

testing for QTL at a particular genomic region conditioned on other selected markers, 

known as co-factors. The purpose of using these co-factors is to minimize the effects of 

QTL in the remainder of the genome when attempting to identify a QTL in a particular 

region (Zeng et al., 1999). This method creates a relatively simple and systematic 

procedure to map multiple QTL but as stated by Zeng et al. (1999) there are some 

limitations to composite interval mapping. First, an uneven distribution of markers in the 

genome can affect the analysis, meaning that the test statistic in a marker-rich region may 

not be comparable to that in a marker-poor region. Second, the difficulty of estimating the 

joint contribution to the genetic variation of multiple linked QTL. Third, composite 

interval mapping is not directly extendable to epistasis analysis. Finally, the use of tightly 

linked markers as co-factor can reduce the statistical power to detect a QTL. 

To address the drawbacks of composite interval mapping, Kao and Zeng (1997) and 

Kao et al. (1999) proposed and implemented a multiple interval mapping (MIM) procedure 

for mapping multiple QTL simultaneously. The idea behind multiple interval mapping is to 

fit multiple putative QTL effects and associated epistatic effects directly in model to 

facilitate the search, test and estimation of positions, effects and interactions of multiple 

QTL (Zeng et al., 1999). Interaction between QTL (epistasis), has been reported as an 

important effect for complex phenotypes by many researchers in QTL studies (Brockmann 

et al., 2000; Cao et al., 2001; Nagase et al., 2001; Yu et al., 1997) and in basic biological 

processes in animals (Luschnig et al., 2000; Scanga et al., 2000).  
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Fine mapping 
Genome wide scans for QTL in experimental and outbred livestock populations have 

revealed many QTL carrying chromosomal regions (Haley, 1999). However, the size of 

confidence intervals for estimated QTL position have been shown to be within 20 to 30 cM 

(Kim and Park, 2001) which is too large to efficiently implement technologies such as 

marker assisted selection, marker assisted introgression, positional cloning or positional 

candidate gene identification. Thus, the development and implementation of fine mapping 

methods is essential to provide a route toward eventually cloning QTL. 

Goddard (1991) discussed exploiting linkage disequilibrium (LD) to map genes for 

quantitative traits. Riquet et al. (1999) proposed a fine mapping approach based on the 

utilization of historical recombinants and identity-by-descent (IBD) mapping using linkage 

disequilibrium (LD). Its application is suitable in young isolated populations with a 

relatively small number of founders (Kim and Park, 2001). As most domestic livestock 

populations are young and dynamic, there should be large regions of LD, as discovered by 

(Farnir et al., 2000), where LD was found to exist over extended chromosomal interval in 

the Holstein-Friesian population.  

Fine mapping will refine the size of the regions harbouring the QTL detected in 

mapping experiments, which will pave the way for more efficient implementations of 

schemes such as marker assisted selection and marker assisted introgression, and will 

allow positional candidate gene analyses to proceed with high levels of accuracy and 

precision.      

Comparative mapping  
Comparative mapping is the study of the pattern of genomic locations of known 

genes in different species. One way to improve the validity of detected QTL is to compare 

results between studies from different populations. For example, Sonstegard et al. (2000) 

reported that the bovine chromosome 27 (BTA27) contains two conserved segments 

corresponding to Human chromosomes 8 and 4 (HSA8 and 4), which contain QTL for fat 

deposition. Also Keightley et al. (1996) found seven QTL for body weight in the mouse; 

two of these QTL were located on mouse chromosome 13 and 17 (MMU13 and MMU17), 

which are homologous to BTA23 where Elo et al. (1999) found a QTL for live weight. In 

addition, BTA23 is homologous to the short arm of human chromosome 6 (HSA6) and to 

MMU13 and MMU17 (http://www.informatics.jax.org). Therefore, some potentially 

interesting genes might be found by mapping those genes known to be homologous 
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between HSA6 and MMU13 and MMU17, but which still have not been mapped in cattle 

(Elo et al., 1999).                   

1.2.5 Relationships between growth, carcass and beef attributes 

Understanding the relationships between economically important traits in beef cattle 

is of great importance in QTL mapping using multiple trait analysis, which exploits 

information from different traits to increase the precision and accuracy of the analysis.     

Selection for growth rate leads to larger framed, heavier and later maturing animals 

(Mrode, 1988). This may lead to poorer carcass quality (e.g., reduced lean to bone ratio 

and dressing percentage) caused by a lower stage of maturity at slaughter (Andersen et al., 

1981). Additionally, selection for growth rate seems to cause physiological changes in the 

muscles, which may have unfavourable consequences for meat quality traits such as 

colour, intramuscular fat content and tenderness (Aass and Vangen, 1997). Aass  (1996) 

reported unfavourable genetic correlation between growth rate and carcass and meat 

quality traits.       

Rate of growth in the period immediately pre-slaughter affects the glycogen content 

of muscle (Oddy et al., 2001), which is an important determinant of  pH fall post mortem  

and the ultimate pH and thus colour and tenderness of muscle (Shorthose and Harris, 

1991). In addition, beef colour, the first criteria consumers use to judge meat quality and 

acceptability (Conforth, 1994), is related to ultimate pH. Purchas and Aungsupakorn  

(1993) found a curvilinear relationship between ultimate pH and the tenderness of beef, a 

beef attribute that is closely related to the overall acceptability of beef (Chambers and 

Bowers, 1993), with minimum tenderness between 5.8 and 6.2 pH values.   

Pitchford et al. (2006) reported that environmental correlation between meat (carcass 

weight and loin eye area) and fat traits (fat depth and intramuscular fat) were positive, but 

the genetic correlations were negative.  

Carcass fat depositions and fatty acid composition can affect the beef quality. 

Although Riley et al. (1983) found a close association between subcutaneous fat and 

tenderness, Fiems et al. (2000) reported fat characteristics of the carcass and meat are poor 

predictors of meat tenderness and colour.  

Fatty acids are involved in various technological aspects of meat quality. Because 

they have very different melting points, variation in fatty acid composition has an 

important effect on firmness or softness of the fat in meat, especially the subcutaneous and 
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intermuscular (carcass fats) but also the intramuscular (marbling) fat (Wood et al., 2004). 

Fat colour is another aspect of quality affected by mainly by �-carotene concentration and 

also by fatty acids. Differences in muscle fiber type between muscles are reflected in 

differences in fatty acid composition. Red muscles have a higher proportion of 

phospholipids than white muscles and therefore a higher percentage of polyunsaturated 

fatty acids.  

1.2.6 QTL mapping in beef cattle 

Importance of phenotype definition 
Definition of relevant trait and collection of high quality phenotype data are the 

important aspects for a cattle genomic effort. By way of example, one might use a simple 

model in which the phenotype measured is profit per animal. Using this idea, any genetic 

variation, acting on average daily gain, carcass merit or a number of other variables, might 

be detected by using genetic markers (Smith et al., 2003). A more realistic example is the 

amount of fat on the animal, which is an important trait and impacts on efficiency of 

production, but the method of measurement can have significant impact on the results. An 

approach is to use fat depth, but accurate definition of phenotype requires a standardised 

system for data collection, since depth can vary from point to point along the same carcass.  

The major difficulty in comparing results from QTL mapping between different 

studies on carcass and beef quality attributes is the lack of consistency between studies in 

the definition of these attributes and the use of different measurements for the same trait. 

This means that, in many cases, it is almost impossible to validly compare results from one 

experiment with those from other, very similar experiments. For example, in Australian 

abattoirs that use the AUS-MEAT scheme (AUS-MEAT Limited, 1998), carcasses are 

weighed with all internal fat sources removed and with some subcutaneous fat trimming 

allowed (Burrow et al., 2001). Consequently, yield or dressing percentages based on 

carcass weight data including this fat will be correlated but different traits. 

 Most economically important traits in beef cattle have many known components. 

Thus, correct identification of genetic variation requires the use of techniques that 

accurately measure important animal characteristics.  

Definition of relevant phenotype is not the only critical step in genome research. As 

stated by Smith et al. (2003) it is essential to have a system of checks and balances to 

ensure that the carcass or cut of meat on which the phenotype is determined is properly 



 

12 

 

 

identified and, thus matched to the biological sample that was the source of DNA for 

genotyping.   

Detected QTL in beef cattle 
The basic principle underlying published beef cattle QTL experiments is the 

production of relatively large half-sib families using crossbred sires. The number of 

animals required for accurate mapping of QTL is a function of the magnitude of the effect 

of substituting the two sire alleles and the extent to which environmental variables affect 

the trait. The statistical analysis generally examines the contrast between the two alleles of 

the sire along each chromosome, which is why crossbred sires are employed as they 

increase the probability of allelic contrast.  

A number of beef cattle QTL mapping experiments have been conducted, mainly at 

the US Meat Animal Research Centre where four resource families were developed for the 

identification of QTL for carcass composition and meat quality traits. The four families 

included Brahman × Hereford, Brahman × Angus, sire families (Keele et al., 1999; Stone 

et al., 1999), Piedmontese × Angus and Belgian Blue × MARC III sire families (Casas et 

al., 1998).    

Kim et al. (2003) also conducted a genome scan for chromosomal regions 

influencing growth and carcass traits in an experimental population of Angus and Brahman 

crossbred and detected five QTL with genome wide significant evidence for linkage on 

bovine chromosome 2 (BTA2) and BTA6 for birth weight, BTA1 and BTA5 for yearling 

weight and BTA23 for hot carcass weight.  

Based on the results of QTL analysis in the Piedmontese × Angus and Belgian Blue 

× MARC III families, it has been established that the locus causing double muscling in 

cattle mapped to the centromeric end of chromosome 2 (Casas et al., 1998) in both 

Piedmontese × Angus and Belgian Blue × MARC III populations, indicating that the same 

locus was involved in both breeds. Further, it has been determined that double muscling 

was caused by mutations in the myostatin gene (Smith et al., 1997). Smith et al. (2003) 

reported that the loss of myostatin function caused dramatic effects on many traits in the 

Piedmontese × Angus and Belgian Blue × MARC III families, which were similar in 

nature for both Piedmontese and Belgian Blue alleles.  

On a distal region from the location of myostatin, there is a QTL for carcass traits, 

reported in two different studies (MacNeil and Grosz, 2002; Smith et al., 2003). This QTL 
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cannot be considered the same because of its distance from the centromeric region where 

myostatin resides.  

Fat deposition is an economically important trait in cattle. For example, in the US the 

fat deposition ultimately determines carcass yield grade and quality, thus affecting profit 

margins (Sonstegard et al., 2000). A number of identified QTL for carcass fatness have 

been reported in the literature (Table 1.1). Kim et al. (2003) identified 3 QTL influencing 

external fat deposition with suggestive evidence for linkage (two QTL on BTA1 and one 

QTL on BTA19). These researchers found two QTL with suggestive evidence for linkage 

on BTA2 and BTA15 affecting internal carcass fat deposition. Other suggestive QTL for 

fat deposition included: BTA16 (MacNeil and Grosz, 2002); BTA5 (Casas et al., 2000) 

and BTA18 (Stone et al., 1999). Several detected QTL affecting other carcass traits have 

been reported (Table 1.1).  

Chromosome 3 has been implicated in the expression of traits in beef cattle (Casas et 

al., 2003; Kim et al., 2003; Smith et al., 2003). A QTL for marbling and retail product 

yield has been detected in two different families (Brahman × Angus and Belgian Blue × 

MARC III) on chromosome 3 (Smith et al., 2003). In both families, the QTL for the same 

traits reside in a similar chromosomal region (Table 1.1). This suggests that it is the same 

gene, or group of genes, influencing the expression of marbling and retail product yield. It 

is possible that in both families comparisons are made between the Angus allele with the 

Belgian Blue and Brahman alleles. As stated by Smith et al. (2003), these results highlight 

the need to characterize allelic variation of QTL in several breeds and breed crosses to 

enable effective marker-assisted implementation.  

QTL for several carcass traits including eye muscle area, birth weight, marbling, fat depth, 

retail product yield, dressing percentage and USDA yield grade have been found on BTA5 

(Table 1.1). Casas et al. (2000) identified a QTL on BTA5 located at 50 to 80 cM affecting 

dressing percentage, yield grade, rib bone, and retail product yield. Stone et al. (1999) 

detected a QTL allele of Brahman origin on BTA5 located at 50 to 80 cM affecting rib 

bone and dressing percentage. MacNeil and Grosz (2002) and Mizoshita et al. (2004) also 

found QTL for carcass traits on this chromosome.  
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Table 1.1 Quantitative trait loci detected in beef cattle 

BTA Position (cM)a  Support interval (cM) Traitb Familyc Methodd References 
   Lower Upper     
1 1    -e - ABF AB IM-UNI Kim et al. (2003) 
1 126  - - ABF AB RA-UNI Kim et al. (2003) 
1 120  100 135 BWT BH IM-UNI Casas et al. (2003) 
1 50  38 74 FATYD BA IM-UNI Smith et al. (2003) 
1 50  38 74 FATYD BA IM-UNI Smith et al. (2003) 
1 53  37 72 RPYD BA IM-UNI Smith et al. (2003) 
1 63  41 77 YG BA IM-UNI Smith et al. (2003) 
1 66  - - YWT AB IM-UNI Kim et al. (2003) 
2 126  - - BWT AB RA-UNI Kim et al. (2003) 
2 4  2 6 BWT BM, PA IM-UNI Casas (2002) 
2 4  2 6 EMA BM, PA IM-UNI Smith et al. (2003) 
2 4  2 6 FAT BM, PA IM-UNI Smith et al. (2003) 
2 54  21 60 FAT BH IM-UNI Smith et al. (2003) 
2 61  - - KPH AB RA-UNI Kim et al. (2003) 
2 4  2 6 KPH BM, PA IM-UNI Smith et al. (2003) 
2 120  110 130 MAR HC IM-UNI MacNeil and Grosz (2002) 
2 4  2 6 MAR BM, PA IM-UNI Smith et al. (2003) 
2 54  45 70 MAR BA IM-UNI Smith et al. (2003) 
2 4  2 6 RPYD BM, PA IM-UNI Smith et al. (2003) 
2 4  2 6 YG BM, PA IM-UNI Smith et al. (2003) 
2 52  38 79 YG BH IM-UNI Smith et al. (2003) 
3 40  21 58 BWT BH IM-UNI Casas et al. (2003) 
3 128  - - BWT AB IM-UNI Kim et al. (2003) 
3 36  23 46 FAT BH IM-UNI Smith et al. (2003) 
3 77  69 85 KPH BA IM-UNI Smith et al. (2003) 
3 28  0 42 MAR BH IM-UNI Smith et al. (2003) 
3 56  9 74 MAR BA IM-UNI Smith et al. (2003) 
3 65  47 85 MAR BM IM-UNI Casas et al. (2001) 
3 68  64 85 RPYD BM IM-UNI Casas et al. (2001) 
3 70  55 83 RPYD BA IM-UNI Smith et al. (2003) 
4 60  52 67 EMA Wagyu IM-UNI Mizoshita et al. (2004) 
4 33  24 41 HCW BM IM-UNI Casas et al. (2001) 
4 55  52 62 MAR Wagyu IM-UNI Mizoshita et al. (2004) 
4 19  4 34 WBS3 BM IM-UNI Casas et al. (2001) 
5 49  - - BWT AB IM-UNI Kim et al. (2003) 
5 40  - - DP HC IM-UNI MacNeil and Grosz (2002) 
5 53  38 66 EMA BH IM-UNI Casas et al. (2000) 
5 62  41 78 FAT PA IM-UNI Casas et al. (2000) 
5 64  53 71 FATYD BH IM-UNI Smith et al. (2003) 
5 75  62 80 MAR BH IM-UNI Smith et al. (2003) 
5 68  36 112 RPYD PA IM-UNI Casas et al. (2000) 
5 67  37 91 WBS14 PA IM-UNI Casas et al. (2000) 
5 52  45 54 YE Wagyu IM-UNI Mizoshita et al. (2004) 
5 30  - - YG HC IM-UNI MacNeil and Grosz (2002) 
5 72  54 102 YG PA IM-UNI Smith et al. (2003) 
5 81  - - YWT AB RA-UNI Kim et al. (2003) 
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Table 1.1 continued  
BTA Position (cM)  Support interval (cM) Trait Family Method References 

   Lower Upper     
6 1  - - BWT AB RA-UNI Kim et al. (2003) 
6 9  0 26 EMA BH IM-UNI Casas et al. (2003) 
6 52  45 67 EMA BM IM-UNI Smith et al. (2003) 
6 52  44 76 HCW BM IM-UNI Smith et al. (2003) 
7 55  44 71 FAT BH IM-UNI Smith et al. (2003) 
8 23  0 36 FAT BM IM-UNI Casas et al. (2001) 
8 30  17 43 FAT PA IM-UNI Casas et al. (2001) 
8 9  0 26 MAR BM IM-UNI Smith et al. (2003) 
9 71  46 76 MAR BH IM-UNI Casas et al. (2003) 
9 67  63 92 RPYD BH IM-UNI Casas et al. (2003) 
9 26  19 34 WBS14 BM IM-UNI Casas et al. (2001) 

10 24  0 30 HCW BH IM-UNI Smith et al. (2003) 
10 4  0 28 MAR BH IM-UNI Smith et al. (2003) 
10 59  47 76 MAR BM IM-UNI Casas et al. (2001) 
11 66  27 80 YG BH IM-UNI Smith et al. (2003) 
13 60  43 64 RPYD BH IM-UNI Stone et al. (1999) 
14 33  29 39 ADG Wagyu IM-UNI Mizoshita et al. (2004) 
14 40  - - EMA HC IM-UNI MacNeil and Grosz (2002) 
14 14  10 25 FAT PA IM-UNI Smith et al. (2003) 
14 16  0 22 FAT BH IM-UNI Smith et al. (2003) 
14 50  45 51 HCW Wagyu IM-UNI Mizoshita et al. (2004) 
14 40  - - HCW AB RA-UNI Kim et al. (2003) 
14 47  30 87 MAR BH IM-UNI Smith et al. (2003) 
14 19  0 24 YG BH IM-UNI Smith et al. (2003) 
15 1  - - KPH AB IM-UNI Kim et al. (2003) 
15 28  23 32 WBS14 BH IM-UNI Keele et al. (1999) 
16 49  32 57 HCW BA IM-UNI Smith et al. (2003) 
16 45  21 69 KPH BH IM-UNI Smith et al. (2003) 
16 62  39 73 KPH BA IM-UNI Smith et al. (2003) 
16 44  25 55 MAR BA IM-UNI Smith et al. (2003) 
17 35  0 63 FATYD BA IM-UNI Smith et al. (2003) 
17 50  35 75 LWT HC IM-UNI MacNeil and Grosz (2002) 
17 21  0 68 MAR BM IM-UNI Smith et al. (2003) 
18 23  11 38 HCW BH IM-UNI Smith et al. (2003) 
18 85  79 85 RPYD BH IM-UNI Smith et al. (2003) 
19 5  0 15 RPYD BH IM-UNI Smith et al. (2003) 
19 18  0 37 YG BH IM-UNI Smith et al. (2003) 
20 72  52 75 WBS14 BH IM-UNI Smith et al. (2003) 
20 66  55 75 WBS3 BH IM-UNI Smith et al. (2003) 
21 56  50 63 BWT BH IM-UNI Casas et al. (2004b) 
23 14  - - HCW AB RA-UNI Kim et al. (2003) 
23 30  21 42 MAR BH IM-UNI Casas et al. (2003) 
26 26  16 38 FATYD BA IM-UNI Smith et al. (2003) 
26 26  15 41 RPYD BA IM-UNI Smith et al. (2003) 
26 26  21 36 YG BA IM-UNI Smith et al. (2003) 
27 29  12 51 MAR BH IM-UNI Smith et al. (2003) 
27 60  49 64 MAR BM IM-UNI Smith et al. (2003) 
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Table 1.1 Continued 
BTA Position (cM)  Support interval (cM) Trait Family Method References 

   Lower Upper     
29 54  45 58 HCW BH IM-UNI Casas et al. (2003) 
29 49  40 62 RPYD BH IM-UNI Casas et al. (2003) 
29 54  30 65 WBS14 BH IM-UNI Casas et al. (2000) 
29 54  50 64 WBS14 PA IM-UNI Casas et al. (2000) 
29 54  40 64 WBS3 PA IM-UNI Casas et al. (2000) 
29 55  42 57 WWT BH IM-UNI Casas et al. (2003) 

a Map position (Centimorgan) based on Ihara et al. (2004).   b ABF: Adjusted subcutaneous fat thickness between the 12th 
and 12th ribs, ADG: Average daily gain, BWT: Birth weight, DP: Dressing percentage, EMA: Eye muscle area, FAT: Fat 
depth at P8, FATYD: Fat yield, HCW: Hot carcass weight, KPH: Estimated kidney, heart and pelvic fat, LWT: Live 
weight, MAR: Marbling, RPYD: Retail product yield, WBS3: Meat tenderness measured as Wartner-Bratzler sear force 
at day 3 post mortem, WBS14: Meat tenderness measured as Wartner-Bratzler sear force at day 14 post mortem, WWT: 
Weaning weight, YE: Carcass yield estimate, YG: Yield grade, YWT: Yearling weight. cAB: Sired by an Angus × 
Brahman bull, BA: Sired by a Brahman × Angus bull,  BH: Sired by a Brahman × Hereford bull, BM: Sired by a Belgian 
Blue × Marc III bull, HC: Sired by a Hereford × Composite gene combination bull PA: Sired by a Piedmontese × Angus 
bull   Wagyu: Japanese black cattle. d IM-UNI: Interval mapping univariate analysis, RA-UNI: Univariate analysis using 
a random model. eSupport interval was not reported. 
 

One of the important criteria for meat quality is tenderness because tough meat is an 

important problem currently facing the beef cattle industry (Wheeler et al., 1994), 

especially for cattle containing Bos indicus germ plasm (Keele et al., 1999). In an attempt 

to detect QTL for beef tenderness (defined as Warner-Bratzler shear force collected at d2 

and 14 post-mortem on steaks from the longissimus muscle), (Keele et al., 1999) 

conducted a genome scan and identified one QTL located 28 cM from the most 

centromeric marker on BTA15. Chromosomes 4, 5, 9 and 29 have been reported to harbour 

QTL for tenderness (Smith et al., 2003). Casas et al. (2000) reported tenderness QTL on 

BTA29 and calpain 1 gene (CAPN1) has been considered as a functional and positional 

candidate gene for this QTL (Smith et al., 2003). There are a number of studies showing 

the associations of the DNA variants in this gene with meat tenderness (Casas et al., 2006; 

Morris et al., 2006; Page et al., 2004; White et al., 2005). 

1.3 Conclusions  

The earlier studies have put a great deal of effort into the beef cattle QTL mapping. 

However, review of the literature revealed a significant number of gaps in knowledge that 

has encouraged the need for the present study. First, nearly all of the beef cattle studies 

have used the interval mapping (one QTL model) to locate QTL. Second, although 

phenotypic measurements have been available on multiple traits, only the single trait 

analyses have generally been performed on data from beef cattle QTL mapping 

experiments. Multivariate approaches can increase the power of the test and the precision 

of parameter estimates (Gilbert and Le Roy, 2004; Jiang and Zeng, 1995; Korol et al., 
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1995; Meuwissen and Goddard, 2004). Third, most of the studies to detect QTL in beef 

cattle have focused on growth, carcass and fatness traits. A very few studies have 

considered beef tenderness and marbling. However, eating quality of meat depends on 

several important characteristics, including appearance, color, taste, fat content, texture, 

juiciness and tenderness. Also there is no information regarding the genes involving in the 

expression of beef fat. Nutritional quality of beef fat is important and knowledge about the 

genes underlying this characteristic can be useful to improve fat quality.  

1.4 Research objectives 

The overall aim of this study is to identify genomic regions affecting economic traits 

in beef cattle. More specifically, the present work will concentrate on carcass and meat 

quality traits. The traits to be studied are: 

1. Reproductive traits (birth weight, pelvic area, gestation length and age at puberty) 

2. Meat yield  

3. Carcass fatness (internal, external and intramuscular fat deposition) 

4. Meat quality (tenderness, colour and pH, cooking loss)  

5. Fat quality (fat colour and fatty acids composition) 

In order to bridge the gaps outlined above, the objectives of the study are: 

1. To develop a multiple QTL mapping technique that can simultaneously include all of the 

markers of the entire genome to the analysis. 

2. To develop a model for joint analysis of multiple phenotypes and families for QTL 

mapping 

3. To apply the developed model for identifying genomic regions linked to the carcass and 

meat quality traits.  

Some of the expected outcomes of this study include: 

1. This research will provide additional insight into the actual genetic architecture of 

economically important traits in beef cattle. 

2. This study will indicate the benefit of joint analysis of multiple traits and mapping 

families. 

3. Results of this research will pave the way for QTL fine mapping and finally, the 

application of technologies such as marker-assisted selection and marker-assisted 

introgression.   
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 Chapter 2: General materials and methods 
 

2.1 Introduction  

The data used for the present study were from two projects, the Davies gene-

mapping project funded by the J.S. Davies Bequest to the University of Adelaide 

(Australian experiment) and the New Zealand AgResearch cattle gene mapping project 

funded by the New Zealand Foundation for Research, Science and Technology (New 

Zealand experiment). The two projects were designed to search for DNA markers 

associated with economically important traits in beef cattle. In order to avoid repetition of 

the common aspects of the projects in the next chapters, this chapter of the thesis describes 

the details of the projects.  

2.2 Experimental design 

The trial design involved two divergent breeds, Jersey (J) and Limousin (L), which 

are known to be extremely different for a number of performance traits (Cundiff et al., 

1986).  Three pairs of half-brothers were generated as first-crosses (X), and one of each 

pair was used for mating with both Jersey and Limousin dams in Australia and New 

Zealand, creating in total 784 backcross progeny (469 XJ and 315 XL) in the two countries 

(Table 2.1). In Australia, 366 experimental backcross calves (205 XJ and 161 XL) were 

born over the three years 1996-98. The XJ animals were born to Jersey dams and XL 

backcrosses were born to Limousin dams, at the University of Adelaide’s property, located 

about 150 kilometres north of Adelaide, near Mintaro in the cereal zone of South 

Australia’s mid-North. Calves were born in autumn (March-May, average 26th April), 

single suckled and weaned in summer (first week in February) at an average age of 250 

days. After weaning, calves grazed pasture and/or hay supplemented for 430-500 days. The 

seasonal annual rainfall distribution patter during the experiment (1994-1998) varied, with 

an annual average of 586 mm, of which 34% fell in summer period (October-March) and 

66% fell in winter period (April-September), a pattern typical of “Mediterranean” climates. 

Calves stayed with their dams on pasture and also have free access to oaten hay 

supplements provided to dams during the critical feed shortage period of the first year 

(January-June). The animals grown out on pasture in pre-allocated slaughter groups until 
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about two years of age, and were finished on grain concentrates for at least 180 days as 

part of an intensive feed efficiency trial. In New Zealand, 262 experimental backcross 

calves (162 XJ and 100 XL) were born in spring 1996, and another 156 were born in spring 

1997 (102 XJ and 54 XL). The Jersey backcrosses were born in Jersey herds and were 

bucket-reared, whereas the Limousin backcrosses were born in 1996 by embryo transplant 

as singles or twins to Hereford x Friesian recipients on AgResearch’s Whatawhata Station, 

and in 1997, they were born as singles in two Limousin herds. In both years, the XL calves 

were reared on their dams.  

 

Table 2.1 Breeds of grand dams and grand sires and number of progeny in each sire family 

Sire family Experiment Grand sire (breed) Grand dam (breed) N.of progeny 
398a Australia (Jersey) (Limousin) 113 
368b Australia (Limousin) (Jersey) 128 
361c Australia (Jersey) (Limousin) 125 
417 New Zealand (Limousin) (Jersey) 122 
402 New Zealand (Jersey) (Limousin) 156 
394 New Zealand (Jersey) (Limousin) 140 

a, b and c, called TOM, LOU and RYAN, respectively. 
 

2.3 Definition of the Traits  

2.3.1 Live animal measurements 

Birth weights were recorded within 24 hours of birth. Body measurements were 

obtained from individual animals using a tape for height (measured as the distance from 

hip to the ground), length (measured as the distance between the first sacral bone on the 

shoulder and pin-bone) and girth (measured as the body circumference immediately 

posterior to the front leg). At weaning, calves were again weighed while full. Height was 

measured from the top of the hips and to the ground. The length and girth were measured 

similarly to that at birth. Other measurements at weaning were fat depth scanned at the P8 

site on the rump as described by Arthur et al. (2001) using a Ezi-scan® sonic device 

(Amac Pty. Ltd.), plus hip width (bone) and stifle width (muscle) were measured using 

callipers. Hip and stifle widths were not measured on calves born in 1996. The animals’ 

post-weaning weight, height, length, girth, fat depth at P8 site, hip and stifle widths were 

obtained at approximately 400 days and 600 days after birth (i.e. during winter after the 
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dry season and summer after the wet season, respectively) (Table 2.2). 

Table 2.2 Summary statistics of the traits (Australian data) 

Trait Abbreviation N Mean S.D. Min Max 
Birth weight, kg Bwt 366 26.4 6.1 12.8 44.7 

Body height at birth, cm Birht 366 68.7 5.0 54 84 

Body length at birth, cm  Birlg 366 114.5 7.0 97 132 

Body width at birth, cm Birwd 366 53.4 3.7 38 65 

Gestation length, day Gl 363 283.7 5.0 273 293 

Weaning weight, kg Wwt 365 228.5 32.0 112 308 

Body hight at weaning, cm Wht 359 109.9 4.9 90 120 

Hip width at weaning, cm Whip 365 34.7 2.4 26 45 

Stifle width at weaning, cm Wsti 365 28.1 3.0 18 36 

Fat depth at weaning, mm Wfat 364 0.5 1.1 0 5 

Body weight at 400 days, kg 400Wt 365 252.3 36.5 137 361 

Body hight at 400 days, cm 400Ht 365 119.4 5.1 100 143 

Hip width at 400 days, cm 400Hip 288 39.1 2.0 32 46 

Stifle width at 400 days, cm 400Sti 288 28.9 2.8 22 40 

Fat depth at 400 days, mm 400Fat 364 1.1 1.4 0 5 

Body weight at 600 days, kg 600Wt 362 361.8 43.4 235 492 

Body hight at 600 days, cm 600Ht 363 126.0 5.6 108 140 

Hip width at 600 days, cm 600Hip 363 43.0 2.1 37 49 

Stifle width at 600 days, cm 600Sti 363 31.9 3.5 22 45 

Fat depth at 600 days, mm 600Fat 362 1.6 2.4 0 12 

Age at puberty, days AP 181 420.0 47.2 289 506 

Marbling, score Mar 355 1.5 0.8 0 4 

Carcass fat depth on the rump, mm P8 356 12.3 5.2 3 30 

Meat colour, score MC 355 1.9 0.9 1 6 

Fat colour, score FC 355 1.8 1.4 0 7 

�-carotene concentration, µg/g fat BC 363 1.2 0.6 0.1 4.2 

Fat colour on biopsy samples, score FCB 363 2.0 0.6 1 5 

Eye muscle area, cm2 EMA 355 80.7 17.0 26 166 

Carcass length, cm Carclg 356 139.0 5.8 120 155.5 

Pelvic area, cm2 PA 356 278.7 45.1 170.5 451 

Channel fat, kg Chanfat 356 12.5 3.9 4.7 22.8 

Omental fat, kg Omenfat 266 12.0 4.1 3.3 24.5 

Heart weight, kg Heart 351 1.8 0.3 1.0 5.96 

Liver weight, kg Liver 334 5.9 1.0 1.5 9.3 

Kidney weight, kg Kidney 353 1.2 0.2 0.6 1.6 

Fat depth at ribs 10th  and 11th, mm Rbft 356 9.7 3.6 3 24 

Ossification, score  Ossms 356 225.6 47.1 140 400 

Butt shape, score Butt 356 2.5 0.7 1 4 

Intramuscular fat content, % Imf 355 5.3 1.7 1.4 11.1 

Melting point, oC Mp 355 37.4 3.1 31 46 

 



 

 

 

22
                                                                                                                                             
 
 

 
Table 2.2 continued 
Trait Abbreviation N Mean S.D. Min Max 
Monounsaturated fatty acids, % of 
triacylglyceride 

MUFA 355 49.2 5.2 36.0 61.1 

Hot standard carcass weight, kg Hcw 356 334.7 61.7 168.0 479.6 

Meat weight, kg# Meat 330 230.4 48.5 114.5 355.2 

Fat weight, kg# Fat 330 45.3 11.3 11.3 82.4 

Bone weight, kg# Bone 330 58.9 10.0 33.5 88.7 

Flight distance, meter Fdist 357 9.7 3.8 1.5 23 

Docility, score Docsco 362 12.3 1.7 7.5 15.8 

Weight of M. longissimus dorsi, kg LD 351 6.3 1.5 3.1 11.5 

Weight of M. semitendinosus, kg ST 349 2.5 0.8 1.1 10.0 

Weight of silverside, kg SS 346 8.5 2.3 3.8 16.4 

pH of M. longissimus dorsi muscle  pHld 355 5.6 0.1 5.4 6.7 

pH of M. semitendinosus muscle pHst 351 5.7 0.1 5.5 6.4 

Cooking losses of LD muscle, % Clld 355 21.8 1.9 14.5 39.1 

Cooking losses of ST muscle, % Clst 351 26.3 1.8 19.0 31.1 

SFa of LD on day 1 post-mortem, kg Wbld1 355 4.9 1.3 2.6 13.2 

SF of LD on day 5 post-mortem, kg Wbld2 355 4.4 1.0 2.5 10.3 

SF of LD on day 12 post-mortem, kg Wbld3 355 4.2 1.0 1.8 10.6 

SF of LD on day 26 post-mortem, kg Wbld4 355 4.0 1.0 2.1 9.9 

SF of ST on day 1 post-mortem, kg Wbst1 352 5.3 0.9 3.5 10.3 

SF of ST on day 5 post-mortem, kg Wbst2 352 5.1 0.8 2.6 7.4 

SF of ST on day 12 post-mortem, kg Wbst3 352 4.9 0.8 2.7 8.7 

SF of ST on day 26 post-mortem, kg Wbst4 351 4.7 0.8 2.7 8.4 
# Estimated from prediction equations. aLD: M. Longissimus dorsi, bST: M. semitendinosus. c SF= Warner-Bratzler shear force. 

2.3.2 Carcass and meat quality 

Australia  
 All animals born in 1996 were slaughtered at the Stockyard abattoir, Grantham, 

Queensland with those born in 1997 and 1998 slaughtered at the T&R’s Murray Bridge 

abattoir, South Australia (age at slaughter 34-40 months). The animals were killed using a 

captive bolt and carcasses were electrically stimulated with a low voltage (peak 45V, 

200mA) rectal-nostril stimulator for 40 seconds within five minutes of sticking. Following 

standard line processing, the carcasses were weighed, split and stored in a chiller (0-4°C) 

overnight. Approximately 18 hours after slaughter, carcasses were quartered at the 10/11th 

rib and carcass assessment performed by an accredited AUS-MEAT grader. Carcass traits 

evaluated include the cross sectional area of the M. longissimus dorsi (eye muscle area, 

EMA, cm2), fat depth at the position 8 on the rump (P8) (mm), and surface fat between the 
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10th and 11th ribs over the M. longissimus dorsi muscle (Ribfat, mm) (Table 2.2).  

The left half-carcass from each animal was boned out and samples collected from the 

eye round (M. semitendinosus) and striploin (M. longissimus dorsi). Samples of 2.5 cm 

steaks were vacuum packed, randomly assigned to different ageing treatment groups (1, 5, 

12, 26 days) at 0-1°C, and frozen (-20°C) after the completion of the ageing treatment. 

Before the tenderness measurements, the steaks were thawed overnight at 1°C and trimmed 

to 80-100g samples. The cooking procedure was in plastic bags in a water bath to an 

internal temperature of 70°C (40min) to achieve a “medium” degree of doneness as 

outlined by Perry et al. (2001a). The weight of each steak (before and after cooking) was 

also recorded. Cooking loss was calculated as the percentage difference between pre- and 

post-coked weight (Table 2.2). After storage overnight in the chiller, rectangular strips 

(15.0 x 6.6mm) were cut parallel to the fibres and Warner-Bratzler shear force 

measurements were performed on the Lloyd pressure tester according to Bouton and Harris 

(1972).  

Ultimate pH was recorded in the M. semitendinosus and M. longissimus dorsi 

muscles prior to cooking using a WP-80 pH, mV, Temp-meter. pH measurements were 

taken after four aging treatments (1, 5, 12, 26 days after slaughter). pH was consistent 

across the aging treatments, so a simple average was used as the best indicator of ultimate 

pH of each muscle. Meat colour was assessed on the chilled carcass of the rib eye muscle 

area (M. longissimus dorsi) and scored against the AUS-MEAT beef colour reference 

standards (AUS-MEAT Limited, 1998). AUS-MEAT meat colour scores were 1, 1C, 2, 3, 

4, 5, 6 where a high score indicates darker meat.  To enable numerical analysis, score 1C 

was converted to a numerical value of 1.5.   

Fat and meat samples were taken from the lateral part of strip-loin for determination 

of intramuscular fat content (IMF), fatty acid composition and melting poing. 

Triacylglycerol fatty acids were extracted, methylated and analysed by gas-liquid 

chromatography as described by Malau-Aduli et al. (1997). Fatty acids were classified into 

saturated (SFA, no double bonds), monounsaturated (MUFA, one double bond), and 

polyunsaturated (PUFA, two or more double bonds) and computed following Malau-Aduli 

et al. (1997). Elongation and desaturation indices were also calculated as described by 

Pitchford et al. (2002a). Elongation and desaturation indices show elongase enzyme and 

delta-9-desaturase enzyme activities, respectively. Melting point was recorded as the “slip 

point”. The temperature at which the fat “slipped” was recorded as the melting point 
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(Pitchford et al., 2002a). 

ß-Carotene content in the fat samples was analysed as described by Kruk et al. 

(1997b). Fat colour score (FC, Table 2.2) on carcasses was assessed in the chiller 

according to AUS-MEAT specifications (AUS-MEAT Limited, 1998). Subcutaneous 

adipose tissues were biopsied from the area between the 12th and 13th ribs in calves at 9–

10 months of age. Fat colour score of adipose biopsy samples (FCB) was estimated on a 5-

point scale (1-white to 5-very yellow) immediately after removing the fat from biopsy site 

and rinsing with water.   

New Zealand 
Animals were pre-allocated to slaughter groups in the springs of 1998 and 1999 over 

18 and 10 kill days, respectively (once a week with approximately 15 same-sex animals 

per slaughter group, 18 groups in 1998 and 10 in 1999). Pre-allocation was based on breed 

of calf, sire, and balanced as far as possible within breed for live weight before the first 

slaughter day. Offspring (steers and heifers) were slaughtered off pasture in 28 year of 

birth by sex groups, at ages ranging from 22 to 28 months at the Ruakura Abattoir in 

Hamilton, New Zealand.  Each animal was stunned by captive bolt and then slaughtered; 

no electrical stimulation was applied immediately after slaughter. After splitting the 

carcass and weighing the two sides (to give hot carcass weight, HCW, Table 2.3), the right 

striploin was removed and the right side was then stored in a chiller for 24 hours before 

quartering at the 10/11th rib. A butcher’s dissection of the right fore- and hind-quarters was 

then carried out in order to record, for each joint, the weights of saleable meat plus meat 

trim (the combined total being referred to as “meat”), trimmed fat (‘fat”) leaving a fat 

cover of approximately 2 mm, and bone. 

Initial pH was recorded within about 30 minutes of slaughter and then monitored at 

intervals for about 24 hours until rigor mortis (pH<5.5), while the striploin was held in a 

controlled-temperature cabinet at 15°C. Ultimate pH was the lowest pH attained in the first 

24 h, defining the full development of rigor mortis. The rate of fall of pH was linear at 

constant temperature, and calculated from a linear regression of measured pH values on 

time during the pre-rigor period. Five steak portions were then cut from the striploin for 

cooking and shear-force tenderness measurements. 

The first steak was processed upon reaching rigor mortis, and the four other steaks 

were cooked at intervals (approximately 1/3, 1.0, 1 1/3 and 4.0 days post mortem), after 
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continued storage at 15°C. For cooking, each steak was placed inside a plastic cooking 

bag, heated in a boiling water-bath to an internal temperature of 75°C, then removed and 

cooled rapidly in ice to an internal temperature of 2°C. Shear-force measurements were 

then recorded using a MIRINZ tenderometer (Fraserhust and MacFarlane, 1983), taking 

the average from measurements of ten 1cm by 1cm cores, aligned with the fibers running 

longitudinally along the core. The measurements of tenderness on the five steak samples 

were referred to as Cook 1-5. 

 

Table 2.3 Summary statistics of the traits (New Zealand data) 

Trait Abbreviation N Mean S.D. Min Max 

Birth weight, kg Bwt 306 29.5 5.7 14 50 

Body weight at 400 days, kg 400Wt 241 267.7 38.2 194 371 

Body weight at 600 days, kg 600Wt 413 435.7 67.1 286 642 

Gestation length, day Gl 185 284.5 5.9 258 301 

Age at puberty, day Pubert 139 371.2 48.6 199 466 

Fat weight at side, kg Fatwt 401 9.5 2.6 3.3 22.8 

Bone weight, kg Bonewt 401 23.9 3.9 15.9 35.5 

Meat weight, kg Meatwt 401 74.1 16.7 44.5 126.1 

Rump meat weight, kg Rumeat 406 5.1 1.2 3.0 8.4 

Hot standard carcass weight, kg Hscw 413 227.6 43.9 136 369 

Weight of longissimus dorsi, kg LD 405 6.0 1.4 2.9 10.8 

Weight of silverside, kg SilverS 406 8.4 2.2 4.4 16.1 

Eye muscle area, cm2 EMA 326 59.0 13.6 37.2 111.7 

pH of M. longissimus dorsi muscle pHld 413 5.4 0.1 5.3 6.2 

SFa of LDb on rigor mortis, kg Wbld1 413 14.6 2.8 5.4 2.7 

SF of LD on day 1.3 post-mortem, kg Wbld2 413 10.9 2.9 2.7 20 

SF of LD on day 2.0 post-mortem, kg Wbld3 413 7.4 1.7 3.3 17.4 

SF of LD on day 2.3 post-mortem, kg Wbld4 400 6.8 1.4 4.0 16.7 

SF of LD on day 4.0 post-mortem, kg Wbld5 413 5.8 1.2 3.6 15.6 

Cooking loss of LD on rigor mortis, % Clld1 413 23.4 5.0 8.6 53.9 

Cooking loss of LD at day1.3, % Clld2 413 23.6 4.0 12.4 39.3 

Cooking loss of LD at day2.0, % Clld3 413 23.1 4.0 8.8 47.8 

Cooking loss of LD at day2.3, % Clld4 400 21.7 4.0 7.7 45.2 

Cooking loss of LD at day4.0, % Clld5 413 23.8 4.2 7.7 48.8 

Fat depth at ribs 12th and 13th, mm Rbft 325 7.4 2.9 1 20 

Meat colour L, score ColL 411 39.8 1.9            34.1 45.8 

Meat colour a, score Cola 411 17.2 1.8 11.6 22.3 

Meat colour b, score Colb 411 8.1 1.1 4.1 10.9 

Side Length, cm Carclg 413 127.0 4.6 99.6 140.5 
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Table 2.3 continued  
Trait Abbreviation N Mean S.D. Min Max 

Pelvic area, cm2 PA 413 212.6 26.3 141.5 288.4 

Channel fat, kg Chanfat 413 7.1 3.2 1.5 19.5 

Omental fat, kg Omenfat 413 4.0 2.1 0.6 12.5 

Pericardial fat, kg Prcarfat 409 0.5 0.2 0.1 1.8 

Rump fat, kg Rumfat 406 0.5 0.2 0 1 

Silverside fat, kg Silversfat 406 0.5 0.1 0.2 1.0 

Intramuscular fat content, % Imf 341 4.2 2.3 0.4 12.8 

Melting point, oC Melpt 405 37.2 2.6 28.5 44 

Monounsaturated fatty acids, % of 
triacylglyceride 

Mufa 402 51.2 3.0 42.4 59.3 

Fat colour on biopsy samples, score FCB 410 1.7 0.6 1 4 

Heart weight, kg Heart 413 1.6 0.2 1.1 2.5 

Liver weight, kg Liver 412 6.2 0.9 3.8 9 

Kidney weight, kg Kidney 413 0.9 0.1 0.6 1.5 

Docility, score Docsco 155 12.7 1.4 9.9 16.8 
a SF: Shear force. b LD: M. longissimus dorsi muscle. 

 

The correspondence between ageing time scale and cook group differed for Australia 

and New Zealand because of processing conditions. The half-life for the fall in shear force 

(SHLF) was taken by fitting an exponential decay function through the shear-force results 

from cook times 1 to 5 (Dransfield et al., 1981), for the striploin of each animal separately. 

The weight of each steak (before and after cooking) was also recorded. The percentage 

weight loss of each steak during cooking was calculated from the steak weights, before and 

after cooking (Table 2.3).   

2.4 DNA markers and linkage map 

DNA was extracted from the New Zealand and Australian cohorts from blood 

samples collected in their first year of life, with the exception of the XL calves born in 

New Zealand in 1996 where DNA was extracted from ear cartilage (because of the 

possibility of blood mixing in twin-born recipient calves). 

For genotyping of two experimental populations, 285 PCR-based microsatellite loci 

(spread across the whole genome, except for the X- and Y-chromosomes) were chosen 

from the Meat Animal Research Centre (MARC) map (http://www.marc.usda.gov/genome 

/cattle/cattle.html) to provide adequate coverage of the bovine genome (Table 2.4). To 

insure robustness of PCR and reliability of allele identifications, the markers were tested 
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and those markers that were not robust were replaced with another marker in the same 

region. The six sires were genotyped using the 285 markers to determine if the sires are 

heterozygous at each marker loci. On average the sires were informative for 189 loci 

(Table 2.5). The F1 sires and their backcross progeny were genotyped based on the 

informative markers at AgResearch, New Zealand. The fragments were visualized by 

autoradiography after electrophoresis of stained polyacrylamide gels.  
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Table 2.4 Marker loci and their map positions (cM)a  

BTA1                   
  Locus BMS2321 BMS711 ILSTS4 BMS4017 BM4307 TGLA57 CSSM004 INRA011 INRA049 BM6506 CSSM032 BMS1789  BM1824 BMS599 BMS2263    
  Position 15.4 23.9 34.3 38.1 38.4 51.0 52.2 60.3 75.8 77.7 99.2 113.5 122.4 139.3 147.8    
BTA2                   
  Locus BY5 BULGE23 BTAFJ1 MSTN BULGE20 ILSTS26 INRA40 TGLA431 TEXAN2 OARHH30 TGLA377 URB042 ILSTS30 OAFCB20 RM356 BMS2626 BM6444 BMS356 
  Position 3.9 4.5 4.6 6.0 6.5 10.8 10.9 11.9 26.0 28.6 30.7 37.6 38.9 44.0 56.9 75.3 96.9 109.0 

BTA3                   

  Locus BMS871 INRA006 RM065 BMS963 BMS482 BL41 MCM58 BM4129 TGLA263 HUJ246 BM6465 BMS2145 BMS835 BMS896 BMC4214    

  Position 0.0 17.1 30.6 32.9 34.0 43.3 47.9 52.5 54.0 68.0 69.2 93.8 99.1 116.5 125.8    

BTA4                   

  Locus BMS1788 BMS1172 BMS1237 MAF70 MAF50 RM067 BMS495 INRA72 BMS779 ILSTS62 OARCP26 BMS648 TGLA159 MGTG4B     

  Position 12.5 30.8 34.4 46.0 51.2 51.9 59.3 63.0 68.7 72.3 76.0 91.2 102.1 112.8     

BTA5                   

  Locus BMS1095 BMS610 AGLA293 OARFCB5 BL37 MAF23 CSSM22 BMS1248 BMS772 BM2830         

  Position 0.0 12.0 32.3 35.3 52.1 64.5 74.2 90.8 108.8 116.9         

BTA6                

  Locus INRA133 BM1329 BM143 BMS483 BM4621 BM415 BM8124 BM2320        

  Position 8.1 35.4 53.7 67.8 77.6 82.0 101.4 127.3        

BTA7                

  Locus BM7160 RM006 TGLA48 TGLA303 BM741 BM6117 BMS2258 BMS792 INRA192 BMS1331 BM9065 ILSTS6 BMS522 BMS1247  

  Position 0.0 25.4 38.2 39.3 48.9 62.2 77.2 79.6 82.5 90.7 101.1 116.6 120.5 133.8  

BTA8                

  Locus RM321 RM372 BMS1591 BM4006 TGLA13 BMS1341 BMS2072 BM711 CSSM47 BMS836      

  Position 19.1 21.1 31.4 50.1 54.6 55.0 66.0 92.7 118.7 122.9      

BTA9                

  Locus BM757 ETH225 BM2504 RM216 BMS817 BMS1148 BMS1290 TGLA73 BM4208 BMS1967      

  Position 5.4 12.8 30.9 37.1 42.5 50.9 64.9 77.6 90.7 109.3      

BTA10                

  Locus CSSM38 BMS528 BMS861 BM875 BM888 BMS1620 TGLA272 BMS2614        

  Position 11.0 24.0 43.0 53.9 60.0 80.4 97.2 109.4        
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 Table 2.4 continued 
BTA11                               
  Locus BM827 BMS2131 BMS2325 BM304 RM096 INRA111 BMS1716 BMS1822  RM150 BMS1048 BMS989 RM363 BMS2315  OARCP34 HEL13 

  Position 10.6 18.9 21.1 33.6 40.5 53.1 54.6 65.9 70.1 81.1 92.2 97.6 110 111 122.4 

BTA12                               
  Locus BMS410 BM6108 AGLA226 BM6404 BMS975 RM113 BMS1316                 
  Position      0 15.1 37.2 57.1 63.8 81.4 102                 
BTA13                               
  Locus TGLA23 BMS1742 ILSTS59 HUJ616 BMS1669 RM327 BL1071 AGLA232 BMS2319             
  Position      9 23 41.7 51.7 59.2 73.6 81 91.4 97.3             
BTA14                               
  Locus BMS1678 ILSTS11 RM011 ILSTS8 BM302 BMS740 BMS108 BM4513 BL1036             
  Position      14 25.7 43.6 50.9 52.4 60.7 67.7 79.8 100             
BTA15                               
  Locus BR3510 BMS2533 MAF65 HEL1 JAB4 POTCHA BM4325 BMS812 TGLA75 BM848 BMS820 BMS429       
  Position      9.4 13.9 32.7 38 39.1 76.5 76.9 84.9 89.3 97.5 98.2 109.8       
BTA16                               
  Locus BMS357 HUJ614 BMS538 BM1311 TGLA53 BMS1907 BMS1207 CSSM28 BM719 BM3509 INRA13 HUJ625       
  Position      2.7 14.2 26.4 32.5 38.5 43.7 53.5 54.1 77.6 84 87.4 89       
BTA17                               
  Locus RM156 BMS2220 BMS941 CSSM9 OAFCB48 ILSTS23 BM8125 BL50 BM1862 BM1233           
  Position      2.4 17.3 37 38.3 41.7 46.8 66.5 72.2 80.9 92.1           
BTA18                               
  Locus BMS1355 TEXAN10 INRA121 BM8151 BM7109 INRA63 ILSTS2 BMS2639 BMS929 BMS2785 TGLA227         
  Position      2.9 20.7 30.2 40.2 47 48 54.7 55.5 61.2 72 84.1         
BTA19                               
  Locus BM9202 HEL10 BMS2142 BP20 BM17132 BMS1069 ETH3 RM388 BMS601             
  Position      0 16 43.3 45.9 59.2 77.7 90 95 108             
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Table 2.4 continued 

BTA20                     
  Locus RM106 BM1225 TGLA304 TGLA126 BM4107 BMS1120 BMS703 BM5004 BMS521   
  Position      2.7 8.2 20.2 31.9 57.4 58.7 60.1 71.8 80.9   
BTA21                     
  Locus BM8115 RM151 BM3413 AGLA233 BM103 BMC4228 ILSTS16 TGLA122 BMS743   
  Position      0 12.6 15 21.2 29.8 36.9 45.2 62.7 75.3   
BTA22                     
  Locus INRA26 BM1558 BM1303 AGLA13 BMS390 BM2613 BMS875 HMH1R BM4102   
  Position      2.9 19.1 28.7 31.2 48.9 54.1 64.1 79.4 82.9   
BTA23                     
  Locus INRA132 UWCA1 CYP21 BM1818 BP34 BM1905 BM1443       
  Position      4.7 26.5 42.4 58.2 64.4 71.6 73.8       
BTA24                     
  Locus BM7151 CSSM31 BMS1743 INRA90             
  Position      8.2 25.8 43.9 56.3             
BTA25                     
  Locus RM074 BM4005 BP28 BM737 BMS1353           
  Position      2.2 14.4 23.4 31.6 46.4           
BTA26                     
  Locus BMS651 BM1314 BM4505 BM6041 MAF92 BM7237 ILSTS91       
  Position      2.8 27 41.6 51.7 63.4 66.8 71.5       
BTA27                     
  Locus BMS2168 BM6526 CSSM43 INRA134 BM203           
  Position      0 10.1 34.5 45.3 64.1           
BTA28                     
  Locus BMC6020 BL25 BM6466 BMS1714 BMC2208           
  Position      8 24.8 43 49.4 59.6           
BTA29                     
  Locus BMS1857 BMS764 OAVH110  OARHH22 CAPN1 BMC1206  BMS1948       
  Position      1.8 11.3 24.2 41.6 59.7 62.5 65.6       

a The map positions relative to the most distal marker on the Meat Animal Research Centre (MARC) map, which uses the Kosambi’s 
mapping function.     
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Table 2.5 Number of informative markers by sire family 

  Chromosome   
Sire  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29  Total 
361  7 8 9 10 8 8 9 9 9 7 9 4 8 6 8 8 9 7 5 5 5 6 4 3 2 4 3 4 3  187 
368  7 7 7 9 6 5 6 6 8 6 7 7 9 5 7 8 8 6 3 8 8 6 3 4 3 4 4 4 7  178 
394  8 12 10 9 5 4 8 7 9 6 13 6 7 6 9 9 8 7 6 6 6 4 7 2 4 5 5 4 6  198 
398  8 8 8 8 6 5 9 7 8 7 12 6 6 7 8 6 7 7 8 7 7 4 3 3 4 2 5 5 6  187 
402  7 14 8 8 8 5 7 8 9 7 6 5 6 8 8 5 4 8 5 4 3 6 4 4 5 4 3 4 5  178 
417  8 10 7 10 7 6 8 7 8 7 9 6 9 8 8 11 8 8 6 7 6 8 6 4 3 6 3 5 7  206 
Avg  7.5 9.8 8.2 9.0 6.7 5.5 7.8 7.3 8.5 6.7 9.3 5.7 7.5 6.7 8.0 7.8 7.3 7.2 5.5 6.2 5.8 5.7 4.5 3.3 3.5 4.2 3.8 4.3 5.7  189 
Min  7 7 7 8 5 4 6 6 8 6 6 4 6 5 7 5 4 6 3 4 3 4 3 2 2 2 3 4 3  178 
Max  8 14 10 10 8 8 9 9 9 7 13 7 9 8 9 11 9 8 8 8 8 8 7 4 5 6 5 5 7  206 
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 Chapter 3: Mapping QTL for economic traits in beef 
cattle (Interval mapping-one QTL model) 

 

3.1 Introduction  

The impact of the traditional genetic programs on beef cattle growth is well 

documented. However, the profitability of the beef industry depends on a number of 

economically important traits.  For example, compared to growth traits, reproductive traits 

have not been successfully improved through selection.  Economic impact of reproductive 

performance in the beef cow herd can never be overemphasized. Carcass quality is another 

area where opportunity for improvement through selection programs has not been 

exploited.  The industry is striving to meet consumer demand for healthier products.  

Research need to be done to generate data to use for genetic evaluations.  Both 

reproductive traits and carcass and beef quality traits are areas that also serve as excellent 

examples of the potential use of DNA technology.   

Difficult calving or dystocia is one of the most important problems in beef 

production. A difficult calving, which requires assistance, can lead to increased labour and 

veterinarian costs. However, the further implications are reduced subsequent reproductive 

performance of the cow, increased calf mortality, and potential loss of the cow. Calf birth 

weight has been used as an indicator trait to avoid calving difficulties. Direct heritability 

estimates for birth weight range from 0.44 to 0.51 (Eriksson et al., 2004). Eriksson et al. 

(2004) reported moderate to high and positive genetic correlations between calving 

difficulties, stillbirth and birth weight for Hereford and Charolais breeds. This relationship 

is unfavourable because the estimates of the genetic correlation between direct effects on 

birth weight and yearling weight are approximately 0.5 across all beef cattle breeds (Koots 

et al., 1994). This genetic antagonism amongst direct effects is a situation where selection 

based on breeding values for yearling weight may also significantly increase birth weight, 

thus potentially increasing the calving difficulty. Therefore, identifying gene markers, 

which affect birth weight but not subsequent growth, coupled with marker-assisted 

selection has potential to overcome this genetic antagonism. 

Gestation length has been included in some sire selection indices (Amer et al., 1998) 

in beef cattle. Gestation length shows moderate to high heritability (Andersen and Plum, 

1965; Goyache and Gutiérrez, 2001), and high genetic correlations with birth weight 

(Bourdon and Brinks, 1982) and dystocia (Nadarajah and Burnside, 1989). In this sense, 



 

33 

 

 

Gestation length has been proposed as a breeding objective to reduce birth weight without 

affecting pre-weaning growth traits (Bourdon and Brinks, 1982; Brinks et al., 1991). 

Disregarding malpresentations, calving difficulties are generally the result of a 

discrepancy between the size of the calf and the size and shape of the cow’s pelvic opening 

(Meijering, 1984). Pelvic measurements have been thus advocated as auxiliary selection 

criteria to reduce the incidence of difficult calvings. (Johanson and Berger, 2003) reported 

that the increase of pelvic area is associated with decrease in dystocia. 

Age at puberty in heifers can have a major effect on the efficiency of the beef cattle 

enterprise when heifers are bred to calve first as 2-yr olds, especially under a restricted 

breeding season. Significant genetic variation exists within and between breeds of beef 

cattle for age at puberty (Gregory et al., 1991; Martin et al., 1992). Limousin heifers reach 

puberty at an older age than heifers of Jersey breed (Gregory et al., 1991; Martin et al., 

1992). The average differences for age at puberty between breeds are attributed to the 

additive effects of genes present in diverse frequencies within breeds Martin et al. (1992). 

Thus, there is a need to identify the genetics involved with the expression of this trait. 

Beef quality comprises a set of key fresh meat quality, processing, and sensory 

characteristics that are important for the future profitability and competitiveness of the beef 

industry. These include intramuscular fat, cholesterol, ultimate pH, color, water-holding 

capacity or drip loss, tenderness, cooking loss, and sensory traits involving taste (Oddy et 

al., 2001). Molecular genetic techniques can overcome the well known limitations of the 

breeding schemes to improve meat quality traits (de Vries et al., 1998). Information about 

QTL affecting these traits is particularly interesting for its possible application in marker 

assisted selection schemes. However, there are very few reported QTL for beef quality, 

because early studies to detect QTL in beef cattle have focused on growth, carcass and 

fatness traits. 

The use of linear regression interval mapping to detect QTL in structured outbred 

populations is a useful first step, providing information about important QTL. Thus, the 

aim of the work herein was to exploit the regression based interval mapping to locate QTL 

for economically important traits in the beef industry. 

3.2 Methodology  

An experimental cattle backcross between the Jersey and Limousin breeds was 

performed in Australia and New Zealand to map quantitative trait loci (QTL) for diverse 
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production traits. Six crossbred sires and their progeny were genotyped for 189 informative 

microsatellite markers covering the 29 bovine autosomes. The trait categories included in 

this chapter were the reproductive traits, carcass and beef quality traits from the Davies 

cattle gene mapping herd in Australia (Chapter 2). Pelvic area, birth weight, gestation 

length and age at puberty in heifers were considered as reproductive traits. Birth weight 

was considered as a reproductive trait because of its relationship with calving ease. QTL 

analysis was conducted for a wide range of the carcass and meat quality traits (Chapter 2).  

3.2.1 Marker inheritance and sire haplotype reconstruction 
 Each marker in each sire family was considered in turn to determine marker 

inheritance and to reconstruct sire haplotype using the approach of Knott et al. (1996).  

Markers for which a sire was homozygous were uninformative (i.e., offspring with 

genotypes identical to their sire) and were removed from consideration. For markers, 

which were heterozygous in the sire, it was possible to determine which allele the progeny 

inherited. Once informative markers were identified and their inheritance determined, the 

haplotypes for each sire were reconstructed for the linkage group under consideration. This 

was done by considering, in turn, each pair of adjacent markers for which the sire was 

heterozygous. Progeny, in which the allele inherited from the sire were determined at both 

loci, were ascertained and the linkage phase was taken as that which minimised the number 

of recombination events in the sire. This was repeated for each pair of adjacent 

heterozygous markers to reconstruct the two haplotypes for each sire.   

3.2.2 Information content  
The information content of an individual marker is the proportion of animals in 

which the allele inherited from the sire can be unambiguously identified. In the first stage 

of the analysis, the approach described by Knott et al. (1996)  using multiple markers was 

used to obtain the probabilities of the alternative genotypes for each offspring at fixed 

locations through the genome. These probabilities were used to investigate the information 

content of the markers when used together. The variance of these coefficients across the 

progeny gives a measure of information. Information content at genome position i was 

calculated as 25.0)( ipVar , where pi is the probability of receiving QTL allele i and 0.25 

is the expected variance of inheritance probabilities for a fully informative marker (Knott 

et al., 1998).  When there is no information from markers, the variances are zero, and when 
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the genotype of all individuals is known at the location being considered, the variance is 

expected to be 0.5.   

 3.2.3 Estimation of QTL parameters  
In the present chapter, the QTL analyses were performed using the QTL Express 

(Seaton et al., 2002), a web-based software at http://qtl.cap.ed.ac.uk/. The software 

analyses each chromosome independent of others and allows the user to fit one and two 

QTL. It includes tools for permutation and bootstrap analyses to calculate chromosome-

wise significance thresholds and confidence intervals, respectively.  

The method of Knott et al. (1996) assumes that there is no interference in 

recombination events and Haldane’s mapping function (Haldane, 1919) applies. At the first 

stage, in this method the probabilities for each progeny inheriting the two sire haplotypes 

are calculated for fixed positions in the linkage group conditional upon marker genotypes. 

The probabilities depend only upon the alleles inherited at the two nearest informative 

markers flanking the position under consideration and the recombination between the 

markers and this position. In the second stage, these probabilities together with fixed 

effects are used in least squares framework to investigate the genetic model underlying the 

trait of interest. For each regression, an F-ratio of the model including the QTL effect 

compared with the model not including the QTL effect was calculated. F-ratio statistics 

were plotted against the location for which it was calculated to provide a curve displaying 

evidence for the presence of a QTL in the linkage group. The location with the largest F-

ratio was taken to be the best estimated position for a QTL for each trait. QTL effects were 

estimated using two models, individual families and across families. First, in recognition of 

the fact that the samples were from outbred populations (the QTL alleles were not fixed in 

original breeds, Jersey and Limousin) and only three families were available, analyses 

were applied to each individual sire family. Second, across family analysis was applied to 

calculate the estimates of the putative QTL effect for each sire included in the analysis for 

the genomic region under investigation. This was done by nesting the regression within 

sires. This is because not all sires will be heterozygous for all QTL and the linkage phase 

between the QTL  and the sire haplotype will vary from sire to sire.            

A single QTL model was fitted for each trait. Models (3-1), (3-2) and (3-3) were 

fitted for birth weight, pelvic measurements and other traits, respectively.   

 

ijlmnijimljiijlmn exbBDCTBPY +++++= µ                                                                    (3-1) 
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ijlmijiljiijlm exbBDCTXY +++++= covcovβµ                                                             (3-2) 

ijlmijiljiijlm exbBDCTY ++++= µ                                                                                (3-3)                            

Where ijlmnY  is the phenotype of individual n , offspring of sire i , iµ  is the mean of 

sire family i , BP is birth period (j=1,…,5), CT is cohort (six year and sex combinations, 

l=1,…, 6), BD is breed of dam (Jersey and Limousin) ib  is the allele substitution effect of 

the QTL within family i , ijx  is  the probability that animal n  inherited the (arbitrarily 

assigned) first allele of sire i , covβ  is regression coefficient of hot carcass weight for 

pelvic measurements, covX  is hot carcass weight and ijlmne  is the residual effect.    

3.2.4 Test statistic and significant thresholds 
For a fixed position of QTL, the ratio of the regression mean square to the residual 

mean square provides the variance (F) ratio test statistic. In individual family analysis, the 

test within each family produces an F-ratio with 1 degree of freedom in the numerator and 

(n-2) degree of freedom in the denominator, where n is the number of offspring in the 

analysed family. The test across family produces an F-ratio with s degree of freedom in the 

numerator, where s is the number of sires analysed and (� − sm 2 ) degree of freedom in the 

denominator. An alternative approximate log-likelihood ratio (LR) test statistic is provided 

by 

nloge(RSSr / RSSf)                                                                                                (3-4) 

where n is the number of observations; RSSr and RSSf  are residual sum of squares 

reduced model and residual sum of squares full model, respectively. This test statistic is 

distributed approximately as a chi-square with degrees of freedom equal to the number of 

parameters included in the full model but omitted from the reduced model and dividing this 

test statistic by 4.605 would approximately give the log of the odds (LOD score) (Haley et 

al., 1994). 

   In the present study, permutation tests were performed with 1000 replicates to 

empirically determine P-values at the chromosome-wise significance level (Churchill and 

Doerge, 1994). Empirical confidence intervals for QTL location were determined using 

bootstrapping as described by Visscher et al. (1996).  
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 3.3 Results  

3.3.1 Information content 
Average information content across families and all 29 autosomes was 75%. 

Minimum and maximum average information content (across families) were 66% and 83% 

for BTA6 and BTA13, respectively. The measure of information content can range from 0 

(absence of information) to 1 (maximal information content). Reduced information content 

resulted primarily from the lack of informative markers in one or more than family and the 

resulting need to infer the marker genotype for the uninformative loci based on somewhat 

distant markers. Other factors, such as missing genotypes for individual animals and 

unequal segregation of alternative alleles can affect the information content. The average 

information content reported herein includes the values obtained for genomic positions 

(one centimorgan intervals) between and at the marker loci. It should be noted that 

information content is less between markers than at the marker loci (Weller, 2001).  

3.3.2 Reproductive traits 
The most likely positions, F-ratios and LOD scores and estimated effects of the 

detected QTL that are likely to affect calving ease age of puberty were determined (Table 

3.1). The regions identified as harbouring highly significant QTL (expected number of 

false-positives <0.01) for calving ease related traits reside on cattle chromosomes 14, 20 

and 22.  

A chromosomal region with effects on birth weight (Table 3.1) was identified on 

BTA14. The maximum F-statistic was detected between 37 cM from the beginning of the 

linkage group. This QTL appears to be segregating in family 361 with the estimated allele 

substitution effect of 3.06 kg.   

There was evidence for the presence of a QTL for birth weight and pelvic area on 

BTA3 (Figure 3.1). The 95% confidence interval for the birth weight QTL on BTA3 

covers 0-91 cM. An overlapping, but slightly wider, confidence interval was found for PA, 

encompassing positions 0 through 103 cM. Birth weight and pelvic area QTL on BTA3 

segregated in family 361 with the estimated allele substitution effects of 3.06 kg and 22.92 

cm2, respectively.  
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Table 3.1 Most likely position, F-statistic values, approximate LOD scores and allelic 
effects of detected QTL for calving ease traitsa 

BTA Position (cM) b Trait Family QTL Effect S.E. F-Value LODc 
1 80 Birth weight, kg 361 1.56 0.81 4.6 2.9 
   368 2.17 0.81   
   398 1.73 0.98   
      
3 58 Birth weight, kg 361 3.09 0.92 4.2 2.7 
   368 0.42 0.98   
   398 1.15 0.94   
      
3 0 Pelvic area, cm2 361 22.92 3.46 4 2.6 
   368 5.46 3.2   
   398 3.94 3.8   
      
5 34 Birth weight, kg 361 0.05 0.7 4.3 2.7 
   368 0.20 1.06   
   398 2.86 0.8   
      
6 35 Pelvic width, cm 361 5.2 1.37 4.1 2.6 
   368 5.72 1.33   
   398 6.26 1.52   
      
6 35 Pelvic area, cm2 361 10.54 3.24 4.4 2.8 
   368 9.74 3.16   
   398 20.86 3.61   
      
10 102 Gestation length, day 361 1.09 0.95 4.5 2.9 
   368 0.17 1.21   
   398 3.58 1.03   
      
14 37 Birth weight, kg 361 3.06 0.73 7.1 4.5 
   368 1.33 0.75   
   398 0.55 0.76   
      
17 74 Pelvic area, cm2 361 5.04 3.26 4.1 2.6 
   368 10.04 3.72   
   398 23.52 3.78   
      
17 78 Pelvic hight, cm 361 1.77 2.19 4.3 2.7 
   368 0.08 2.37   
   398 9.04 2.6   
      
18 23 Pelvic hight, cm 361 0.11 2.36 4.4 2.8 
   368 2.20 2.2   
   398 8.11 2.34   
      
20 3 Pelvic area, cm2 361 12.14 3.71 4 2.5 
   368 5.62 3.4   
   398 22.16 3.83   
          
20 11 Pelvic hight, cm 361 2.73 2.32 5.2 5.2 
   368 2.55 2.31   
   398 8.81 2.44   
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Table 3.1 continued 
BTA Position (cM) b Trait Family QTL Effect S.E. F-Value LODc 

21 8 Birth weight (kg) 361 0.17 0.83 4.4 2.8 
   368 2.40 0.74   
   398 1.38 0.82   
      

22 3 Pelvic area, cm2 361 25.86 3.49 4.8 3.1 
   368 4.34 3.11   
   398 2.50 3.55   
      

22 3 Pelvic width, cm 361 10.90 1.47 4.8 3.1 
   368 1.98 1.31   
   398 0.94 1.50   
      

23 20 Gestation length, day 361 4.05 1.19 4.2 2.7 
   368 0.56 1.47   
   398 1.44 1.45   
      

28 48 Pelvic width, cm 361 8.82 1.39 4.6 2.9 
   368 0.04 1.32   
     398 5.80 1.50    

a Detected QTL at least at 5% chromosome-wise significant are reported.  b Position (cM) based on the map of Ihara et al. 
(2004). c logarithm of odds. The highlighted F-values show 1% chromosome-wise significant. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1 F-statistic profile from individual family analysis (sire family 361) for pelvic 
area and birth weight on BTA3. The lower and upper horizontal lines represent 5% and 1% 
chromosome-wise significant levels of linkage, respectively. 

 

A significant F-statistic peak at the centromeric region of BTA22 indicated a QTL 

affecting both pelvic width and pelvic area (Figure 3.2), close to marker INRA26. The 

detected QTL segregating in family 361had allele substitution effects of –10.90 cm and    –

25.86 cm2 for pelvic width and pelvic area, respectively.  
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Figure 3.2 F-statistic profile from individual family analysis (sire family 361) for pelvic 
width and pelvic area on BTA22. The lower and upper horizontal lines represent 5% and 
1% chromosome-wise significant levels of linkage, respectively. 

 

Additional putative QTL for pelvic area with effects at or above the significant 

threshold (chromosome-wise significance of P<0.05) were detected on BTA17 and BTA20 

both segregating in family 398. There was also evidence for a QTL that influenced pelvic 

width and pelvic area on BTA6 (Table 3.1). The highest test statistic was found on the 

proximal region of BTA6, close to microsatellite marker BM1329. 

Linkage analysis indicated significant QTL (chromosome-wise significance of 

P<0.05) for gestation length on BTA10 and 23, segregating in families 398 and 361 with 

the allele substitution effects of 3.58 and 4.05 day, respectively.   

BTA12 and BTA16 were linked to the age at puberty. The BTA12 QTL was 

segregating in family 361 (Figure 3.3) and the BTA16 QTL was segregating in family 398 

(Figure 3.4). 
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Figure 3.3 F-statistic profile from individual family analysis (sire family 361) for age at 
puberty on BTA12. The lower and upper horizontal lines represent 5% and 1% 
chromosome-wise significant levels of linkage, respectively.  
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Figure 3.4 F-statistic profile from individual family analysis (sire family 398) for age at 
puberty on BTA16. The lower and upper horizontal lines represent 5% and 1% 
chromosome-wise significant levels of linkage, respectively. 
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3.3.2 Carcass and beef quality traits 
Across family analysis revealed no evidence of linkage for carcass and meat traits on 

BTA1. However, two QTL affecting fatness traits were identified on BTA1 by using 

individual family analysis. The significant QTL (chromosome-wise significance of 

P<0.01) segregating in family 361 was positioned in the centromeric end of BTA1 (Figure 

3.5), close to the microsatellite marker BMS2321, for back fat thickness (P8) and had 

allele substitution effect of 2.89 mm.  

A putative QTL (chromosome-wise significance of P<0.01) segregating in family 

398 was located at 91 cM on BTA1 for channel fat (Figure 3.6). The additive allele 

substitution effect of this QTL was 2.32 kg. 

           
 
 
 
 
 
 
 
 

 

 

 
Figure 3.5 F-ratio profile from individual family analysis (sire family 361) for P8 on 
BTA1. The lower and upper horizontal lines represent 5% and 1% chromosome-wise 
significant levels of linkage, respectively 

                            
 
 
 
 
 
 

 

 

 

 
Figure 3.6 F-ratio profile from individual family analysis (sire family 398) for channel fat 
on BTA1. The lower and upper horizontal lines represent 5% and 1% chromosome-wise 
significant levels of linkage, respectively 

0

2

4

6

8

10

12

14

0 15 30 45 60 75 90 105 120 135

Relative position (cM)

F-
V

al
ue

0

5

10

15

20

25

0 20 40 60 80 100 120 140

Relative position (cM)

F-
V

al
ue



 

43 

 

 

There was highly significant evidence for the presence of QTL on BTA2 for carcass 

muscularity related traits (butt shape, eye muscle area, meat yield and proportion of meat 

to bone), meat tenderness measured as Warner-Bratzler shear force on M. semitendinosus 

muscle (peak force) and carcass fat content (Figure 3.7). The detected QTL is segregating 

in more than two families (Table 3.1). The maximum F-statistic obtained for all the traits, 

with the exception of butt shape, ranged from 10 to 18 cM from beginning of the linkage 

group, close to the microsatellite marker ILSTS26. 
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Figure 3.7 F-Ratio profile from across family analysis for butt shape (BS), carcass fat 
percent (Fat), meat percent (Meat), meat to bone ratio (MB), Warner-Bratzler shear force 
on M. semitendinosus muscle (peak force) (Lwbst), eye muscle area (EMA) and silverside 
weight (SS) on BTA2. The lower and upper horizontal lines represent 5% and 1% 
chromosome-wise significant evidence of linkage, respectively.  
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Table 3.2 Most likely position, F-statistic values, approximate LOD scores and allelic 
effects of detected QTL for carcass and meat quality traits (Across family analysis)a 

BTA Position (cM) b Trait Family QTL ffect S.E. F-Value LODc 
2 38 Butt shape, score 361 0.01 0.09 8.0 2.9 
    368 0.26 0.10   
    398 0.39 0.09   
         
2 14 Eye muscle area, cm2 361 8.14 2.39 12.5 5 
    368 10.76 2.31   
    398 5.82 9.92   
         
2 15 Meat percent# 361 1.89 0.45 18.5 7.8 
    368 2.23 0.44   
    398 1.80 0.54   
         
2 14  Peak shear force on STd, kg 361 0.10 0.02 19.6 11.8 
    368 0.12 0.02   
    398 0.09 0.03   
         
2 18 Meat to bone ratio# 361 0.21 0.21 8.1 11.1 
    368 0.29 0.29   
    398 0.19 0.19   
         
2  Fat percent# 361 1.47 0.45 9.4 5.86 
    368 1.37 0.44   
    398 1.72 0.64   
         
2 14 Silverside weight, kg 361 0.92 0.26 10.0 6.2 
    368 1.01 0.25   
    398 0.38 0.32   
         
2 16 Weight of ST, kg 361 0.40 0.12 11.1 6.9 
    368 0.54 0.12   
    398 0.23 0.14   
         
3 75 Hot carcass weight, kg 361 1.40 6.97 4.6 2.9 
    368 19.98 7.09   
    398 18.35 7.67   
         
3 16 Heart to carcass ratio, % 361 0.0200 0.0100 4.1 2.7 
    368 0.0400 0.0100   
    398 0.0000 0.0100   
         
3 75 Aging rate on ST, kg 361 0.0001 0.0010 5.0 3.2 
    368 0.0030 0.0009   
    398 0.0013 0.0010   
         
3 95 Meat percent 361 1.24 0.51 3.8 2.4 
    368 0.59 0.43   
    398 0.89 0.47   
a Detected QTL at least at 5% chromosome-wise significant are reported.  b Position (cM) based on the map of Ihara et al. 
(2004). c logarithm of odds. # predicted percentage of meat and yield. dST: M. semitendinosus muscle. The highlighted F-
values show 1% chromosome-wise significant. 
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Table 3.2 continued  
BTA Position (cM) a Trait Family QTL Effect S.E. F-Value LODb 
3 16 Fat depth at ribs 12th and 13th, mm 361 0.56 0.60 4.4 2.8 
    368 0.55 0.62   
    398 2.32 0.68   
         
4 48 Peak shear force on LDc, kg 361 0.1105 0.0370 4.0 2.6 
    368 0.0635 0.0367   
    398 0.0049 0.0384   
         
4 52 Aging rate of LD, kg 361 0.0037 0.0011 4.6 2.9 
    368 0.0018 0.0011   
    398 0.0005 0.0012   
         
4 50 Peak shear force on STd, kg 361 0.0415 0.0227 4.2 2.7 
    368 0.0614 0.0219   
    398 0.0266 0.0234   
         
5 39 Hot carcass weight, kg 361 3.54 7.22 4.1 2.6 
    368 30.95 10.41   
    398 14.80 8.37   
         
5 34 Peak shear force on ST, kg 361 0.0761 0.0217 4.2 2.7 
    368 0.0025 0.0325   
    398 0.0168 0.0250   
         
5 90 pH of semitendinosus muscle 361 0.0310 0.0158 4.8 3.1 
    368 0.0508 0.0159   
    398 0.0069 0.0175   
         
6 120 Heart to carcass weight ratio, % 361 0.01 0.01 4.4 2.8 
    368 0.02 0.01   
    398 0.09 0.03   
         
8 54 Eye muscle area, cm2 361 8.66 2.83 4.9 3.2 
    368 0.70 2.14   
    398 5.64 2.41   
         
9 104 Intramuscular fat content, % 361 0.80 0.27 4.4 2.8 
    368 0.55 0.26   
    398 0.20 0.30   
         
9 61 Marbling, score 361 0.16 0.13 7.3 4.6 
    368 0.24 0.12   
    398 0.51 0.13   
         
10 37 Melting point, oC 361 0.11 0.55 5.3 3.4 
    368 1.61 0.51   
    398 1.46 0.60   

a Position (cM) based on the map of Ihara et al. (2004). b logarithm of odds.  cLD: M. longissimus dorsi muscle. dST: M. 
semitendinosus muscle. The highlighted F-values show 1% chromosome-wise significant. 
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Table 3.2 continued  
BTA Position (cM) a Trait Family QTL effect S.E. F-Value LODb 
12 98 Eye muscle area, cm2 361 8.61 3.54 3.8 2.4 
   368 0.30 2.13   
   398 5.51 2.41   
         
12 61 Intramuscular fat content, % 361 0.04 0.29 4.4 2.79 
   368 0.10 0.25   
   398 0.98 0.27   
         
12 25 Meat percent 361 1.65 0.53 3.8 2.4 
   368 0.13 0.45   
   398 0.73 0.58   
         
12 31 Meat to bone ratio 361 0.34 0.01 4.2 2.7 
   368 0.01 0.08   
   398 0.03 0.09   
         
14 22 Carcass length, cm 361 30.12 9.91 7.0 4.4 
   368 23.61 10.43   
   398 26.27 10.05   
         
14 16 Cooking loss of LDc, % 361 0.55 0.33 8.9 5.6 
   368 1.69 0.35   
   398 0.11 0.35   
         
14 41 Hot carcass weight, kg 361 24.34 6.79 7.1 4.5 
   368 16.35 6.97   
   398 12.51 7.03   
         
15 102 Channel fat, kg 361 0.92 0.62 5.3 3.4 
   368 0.69 0.71   
   398 2.38 0.66   
         
15 23 Fat colour on biopsy, score 361 0.08 0.12 6.1 3.9 
   368 0.21 0.13   
   398 0.51 0.13   
         
15 75 Liver to carcass weight ratio, % 361 0.05 0.04 5.2 3.3 
   368 0.14 0.04   
   398 0.06 0.05   
         
16 2 Marbling, score 361    4.3 2.7 
   368      
   398      
         
17 91 Eye muscle area, cm2 361 0.13 2.28 7.2 4.5 
   368 9.66 2.17   
   398 3.95 2.86   

a Position (cM) based on the map of Ihara et al. (2004). b logarithm of odds.  cLD: M. longissimus dorsi muscle. The 
highlighted F-values show 1% chromosome-wise significant. 
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Table 3.2 continued 

BTA Position (cM) a Trait Family QTL effect S.E. F-Value LODb 
17 95 Hot carcass weight, kg 361 3.21 0.44 4.3 2.7 

    368 19.18 2.74   
    398 19.86 2.26   
         

17 97 Heart to carcass weight ratio, % 361 0.01 0.01 4.6 2.9 
    368 0.04 0.01   
    398 0.03 0.02   
         

17 56 Kidney to carcass weight ratio, % 361 0.01 0.01 5.2 3.3 
    368 0.03 0.01   
    398 0.02 0.01   
         

17 88 Liver to carcass weight ratio, % 361 0.02 0.04 4.0 2.6 
    368 0.14 0.04   
    398 0.02 0.06   
         

17 40 Meat percent 361 1.40 0.42 6.2 3.9 
    368 1.13 0.43   
    398 0.14 0.45   
         

17 90 Meat to bone ratio 361 0.07 0.07 5.1 3.2 
    368 0.26 0.07   
    398 0.06 0.09   
         

17 97 Fat depth on the rump (P8), mm 361 0.72 0.90 4.1 2.6 
    368 2.82 0.87   
    398 1.20 1.08   
         

17 87 Fat depth at 400 days, mm 361 0.46 0.21 4.4 2.8 
    368 0.49 0.20   
    398 0.22 0.27   
         

18 41 Peak shear force on LDc, kg 361 0.17 0.04 7.4 4.7 
    368 0.04 0.04   
    398 0.02 0.04   
         

18 44 Meat colour, score  361 0.41 0.14 3.9 2.5 
    368 0.02 0.13   
    398 0.23 0.13   
         

24 8 Butt shape, score 361 0.03 0.09 3.8 2.4 
    368 0.15 0.08   
    398 0.26 0.09   
         

24 55 Intramuscular fat content, % 361 0.14 0.36 4.0 2.5 
    368 0.85 0.26   
    398 0.39 0.38   

Detected QTL at least at 5% chromosome-wise significant are reported.  a Position (cM) based on the map of Ihara et al. 
(2004). b logarithm of odds.  cLD: M. longissimus dorsi muscle. The highlighted F-values show 1% chromosome-wise 
significant. 
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Table 3.2 continued 
BTA Position (cM) a Trait Family QTL effect S.E. F-Value LODb 
24 8 pH of semitendinosus muscle 361 0.03 0.02 4.8 3 
    368 0.05 0.02   
    398 0.00 0.02   
        
25 46 Carcass length, cm 361 5.72 13.85 4.2 2.7 
    368 5.87 8.60   
    398 36.00 10.39   
        
25 29 Fat depth on the rump (P8), mm 361 2.96 1.75 3.7 2.3 
    368 3.44 1.32   
    398 2.00 1.86   
        
26 13 Fatty acids elongation index, % 361 1.41 0.73 5.1 3.3 
    368 1.45 0.71   
    398 2.21 0.80   
        
26 40 Meat colour, score 361 0.53 0.17 4.0 2.5 
    368 0.01 0.15   
    398 0.28 0.20   
        
28 57 Fat depth at ribs 12th and 13th, mm 361 1.83 0.68 3.9 2.5 
    368 0.31 0.72   
    398 1.52 0.72   
        
29 60 Kidney to carcass weight ratio, % 361 0.01 0.01 5.1 3.3 
    368 0.03 0.01   
    398 0.01 0.01   
        
29 55 Peak shear force on LDc, kg 361 0.16 0.05 7.7 4.9 
    368 0.11 0.03   
    398 0.06 0.04   
        

29 59 
Total monounsaturated fatty acids, 
%  361 0.05 0.98 3.9 2.5 

    368 1.64 0.64   
    398 1.55 0.69   
        
29 59 Total saturated fatty acids, % 361 0.04 1.00 4.1 2.6 
    368 1.73 0.65   
    398 1.61 0.70   

a Position (cM) based on the map of Ihara et al. (2004). b logarithm of odds.  cLD: M. longissimus dorsi muscle. The 
highlighted F-values show 1% chromosome-wise significant. 
 
 

BTA3 exhibited evidence for the presence of a significant QTL (chromosome-wise 

significance of P<0.01) affecting beef tenderness (aging rate) measured as Warner-Bratzler 

shear force on M. semitendinosus muscle (Table 3.2).  

A significant (chromosome-wise significance of P<0.05) QTL with effects on 

Warner-Bratzler shear force measures of both M. longissimus dorsi and M. semitendinosus 
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muscles was identified in the middle of BTA4, close to microsatellite markers MAF50 and 

RM067.    

BTA5 harbours loci affecting hot carcass weight, meat pH and tenderness (Table 

3.2). The tenderness QTL was located at 34 cM on this chromosome, close to the hot 

carcass weight QTL situated at 39 cM.  

Across family analysis showed only one QTL on BTA6 for the traits studied.  This 

QTL located at the telomeric end of the chromosome, affecting heart percent (weight 

defined as percentage of hot carcass weight) and segregating in family 398. Additional 

putative QTL influencing internal organ weights were detected on BTA15 (QTL for liver 

percent, situated at 75 cM), BTA17 (QTL for kidney and heart percent, and liver percent, 

mapped at 56, 88 and 97 cM, respectively) and BTA29 (QTL for kidney percent located at 

60 cM) (Table 3.2). 

Individual family analysis showed significant QTL (chromosome-wise significance 

of P<0.05) for fat colour (scored on the biopsy samples at weaning) on BTA6 segregating 

in families 361 and 368 with the allelic effect of 0.25 and 0.26 unit, respectively. However, 

across family analysis showed no significant QTL for fat colour on this chromosome but 

significant QTL (chromosome-wise significance of P<0.05) for this trait on BTA15. 

Based on the individual family analysis, BTA7 seems to contain two QTL linked to 

rib fat depth (Rbft), one at the telometric end of the chromosome segregating in family 368 

with the additive effect of 1.94 mm and the other on the centromeric end of the 

chromosome, close to microsatellite marker BM9065, with a substitution effect of 2.29 

mm. 

A significant QTL (chromosome-wise significance of P<0.01) for eye muscle area 

was apparent on BTA8, close to microsatellite markers TGA13 and BMS1341. The 

detected QTL was segregating in families 361 and 398 with the additive effects of 8.66 and 

5.64 cm2, respectively (Table 3.2). Additionally, individual-family analysis uncovered a 

significant QTL (chromosome-wise significance of P<0.01) for fat colour on BTA8 

situated at 49 cM from the beginning of the linkage group (Figure 3.8), close to the BTA8 

QTL for eye muscle area. 

Linkage analysis indicated significant QTL for marbling (chromosome-wise 

significance of P<0.01) and intramuscular fat content (chromosome-wise significance of 

P<0.05) on BTA9 (Figure 3.9).  
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Figure 3.8 F-Ratio profile from individual family analysis (sire family 361) for fat colour 
on BTA8. The lower and upper horizontal lines represent 5% and 1% chromosome-wise 
significant evidence of linkage, respectively. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.9 F-Ratio profile from across family analysis for marbling (Mar) and 
intramuscular fat content (Imf) on BTA9. The lower and upper horizontal lines represent 
5% and 1% chromosome-wise significant evidence of linkage, respectively.  

 

There is evidence suggesting significant QTL (chromosome-wise significance of 

P<0.01) for fat melting point on BTA10, between microsatellite markers, BMS528 and 

BMS861, situated from approximately 12 to 30 cM (Figure 3.10). The detected QTL is 

segregating in family 368 and 398 with the allelic effects of 1.61 and 1.47 unit, 

respectively.  
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Individual family analysis of the data for BTA10 indicated a QTL influencing meat 

colour (chromosome-wise significance of P<0.05) segregating in family 361 with an allelic 

effect of 0.36 units.     
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Figure 3.10 F-Ratio profile from across family analysis for melting point of fat tissue on 
BTA10. The lower and upper horizontal lines represent 5% and 1% chromosome-wise 
significant evidence of linkage, respectively. 

 
A DNA region with effects on intramuscular fat and eye muscle area was identified 

on BTA12. The maximum F-values for intramuscular fat and eye muscle area were 

positioned at 61 and 98 cM, respectively. Additional putative QTL linked to carcass traits 

were detected on BTA12, affecting meat as a percentage of carcass weight and the ratio of 

meat to bone (Table 3.2). 

 Individual family analysis revealed significant QTL (chromosome-wise significance 

of P<0.01) affecting fat colour on both BTA11 (Figure 3.11) and BTA12 (Figure 3.12).  
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Figure 3.11 F-Ratio profile from individual family analysis (sire family 368) for fat colour 
(scored on biopsy samples) on BTA11. The lower and upper horizontal lines represent 5% 
and 1% chromosome-wise significant evidence of linkage, respectively. 
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Figure 3.12 F-Ratio profile from individual family analysis (sire family 368) for fat colour 
on BTA12. The lower and upper horizontal lines represent 5% and 1% chromosome-wise 
significant evidence of linkage, respectively. 

 
Evidence suggesting the existence of QTL associated with fatty acid elongation 

(chromosome-wise significance of P<0.01) and meat tenderness (aging rate, chromosome-

wise significance of P<0.05) was identified on BTA13 (Figure 3.13). This chromosome 

also harbours putative QTL for ultimate meat pH (Figure 3.14). 
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Figure 3.13 F-Ratio profile from across family analysis for aging rate measured on 

the M. longissimus dorsi muscle (Lwbldb) and fatty acids elongation index (Elong) on 
BTA13. The lower and upper horizontal lines represent 5% and 1% chromosome-wise 
significant evidence of linkage, respectively. 
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Figure 3.14 F-Ratio profile from individual family analysis (sire family 398) for 

meat pH on BTA13. The lower and upper horizontal lines represent 5% and 1% 
chromosome-wise significant evidence of linkage, respectively. 

 
A DNA region near the centromeric end of BTA14 had significant effects 

(chromosome-wise significance of P<0.01) on hot carcass weight, carcass length and 

cooking loss. BTA14 QTL for carcass length, hot carcass weight and cooking loss were 

segregating in all families, two families (361 and 368) and one family (368), respectively. 

Additionally, individual family analysis showed that this chromosome harbours QTL for 

fat colour, fatty acid elongation and desaturation indices, segregating in families 361, 398 

and 368, respectively. The position of all the detected QTL using individual family and 

across family analyses encompassed 14 to 41 cM (Table 3.2). 

A test statistic peak at the telomeric end of BTA15 close to BMS429 indicated a 

significant QTL (chromosome-wise significance of P<0.01) affecting channel fat. The 

detected QTL is segregating in families 398 with the additive effect of 2.4 unit. 

There is evidence suggesting significant QTL (chromosome-wise significance of 

P<0.05) on BTA16 associated with marbling, meat pH and eye muscle area. The maximum 

F-statistic for the marbling QTL was near the centromeric end of the chromosome, while 

the pH and eye muscle area QTL were located at 85 cM from the beginning of the linkage 

group. 
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Figure 3.15 F-Ratio profile from across family analysis for liver weight (Liver), fat 

colour scored on biopsy sample (FCB) and channel fat (Chanfat) on BTA15.  The lower and 
upper horizontal lines represent 5% and 1% chromosome-wise significant evidence of 
linkage, respectively. 

 

The linkage analysis showed that BTA17 harbours QTL for internal organ weights 

(heart, liver and kidney weights as a percentage of carcass weight), hot carcass weight, eye 

muscle area, estimated meat yield, estimated bone yield, meat to bone yield ratio, and 

backfat thickness (Table 3.2). The positions of the most of the detected QTL on this 

chromosome were between 87 to 97 cM from the beginning of the linkage group (Figure 

3.16), suggesting a gene (or a complex of genes) resides in this region that are responsible 

for variation in carcass traits.  
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Figure 3.16 F-Ratio profile from across family analysis for backfat thickness (P8), kidney 
weight (Kidney), eye muscle area (EMA), hot carcass weight (HCW) and estimated meat 
yield (Meat) on BTA17.  The lower and upper horizontal lines represent 5% and 1% 
chromosome-wise significant evidence of linkage, respectively. 
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BTA18 harbours significant QTL for meat tenderness (peak force measured on the 

M. longissimus dorsi muscle (Lwblda)) and meat colour (chromosome-wise significance of 

P<0.01 and P<0.05, respectively). The maximum test statistic peaks for these two traits 

were at 38 and 44 cM from the beginning of the linkage group, close to microsatellite 

markers BM8151 and INRA63 (Figure 3.17). The detected QTL is segregating in family 

361 with the allelic effects of 0.17 and 0.41 units for Lwblda and meat colour, respectively. 

Although across family analysis showed no evidence of association between 

molecular markers on BTA18 and fatness traits, individual family analysis revealed 

significant QTL (chromosome-wise significance of P<0.05) linked to channel fat in the 

middle of the chromosome, segregating in family 361.  
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Figure 3.17 F-Ratio profile from across family analysis for meat colour (MC) and 

tenderness (peak force measured on the M. longissimus dorsi muscle, Lwblda) on BTA18.  
The lower and upper horizontal lines represent 5% and 1% chromosome-wise significant 
evidence of linkage, respectively. 

 

Across family analysis showed no QTL for carcass and meat traits on BTA19, 20, 

21, 22 and 23. However, individual-family analysis identified QTL for meat colour 

(chromosome-wise significance of P<0.05), fat colour and fatty acid elongation index 

(chromosome-wise significance of P<0.01) on BTA19, 22 and 23, respectively. The meat 

colour QTL on BTA19 segregating in family 361, mapped at 23 cM from the beginning of 

the linkage group, between microsatellite markers HEL10 and BMS2142. 
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A significant (chromosome-wise significance of P<0.05) F-statistic peak at the 

centromeric end of BTA24 indicated a putative QTL influencing butt shape, pH and meat 

aging rate (Lwbstb) (Table 3.2). In addition, individual-family analysis revealed a QTL 

(chromosome-wise significance of P<0.05) affecting total mono-unsaturated fatty acids in 

this part of the chromosome. Furthermore, this chromosome was found to harbour QTL 

(chromosome-wise significance of P<0.05) for cooking loss and intramuscular fat.  

A significant QTL (chromosome-wise significance of P<0.05) was detected at the 

middle of chromosome 25 with an effect on fat thickness (P8). The detected QTL is 

segregating in family 368 with the allelic effect of 3.4 mm (Table 3.2). Additionally, 

individual-family analysis showed that this chromosome harbours a significant QTL 

(chromosome-wise significance of P<0.01) segregating in family 398 for estimated fat 

yield. The detected QTL was located at the centromeric end of the chromosome, close to 

microsatellite marker BM4005, with the additive effect of 1.4 %. 

A significant QTL (chromosome-wise significance of P<0.01) affecting fatty acid 

elongation index mapped to BTA26. The allelic substitution effect for this QTL varied 

between 2.2 and 1.4 units across 3 families. The maximum F-statistic for this QTL was at 

13 cM between microsattelite markers BMS651 and BM1314 (Table 3.2). Individual-

family analysis revealed a marbling QTL in this part of the chromosome. The marbling 

QTL is segregating in family 368 with an allelic substitution effect of 0.4 unit. 

Additionally, this chromosome harbours a QTL (chromosome-wise significance of P<0.05) 

for meat colour. 

A DNA region located at the telomeric end of BTA28 was found to have an effect 

(chromosome-wise significance of P<0.05) on rib fat thickness (Rbft). The detected QTL is 

segregating in families 361 and 398 with substitution effects of 1.8 and 1.5mm, 

respectively (Table 3.2).  

 Linkage analysis showed that BTA29 harbours QTL linked to four traits, Kidney 

weight (chromosome-wise significance of P<0.01), total mono-unsaturated fatty acids, 

summation of saturated fatty acids (chromosome-wise significance of P<0.05) and meat 

tenderness (peak force, Lwblda) (chromosome-wise significance of P<0.01). The detected 

QTL for these traits were located at 56 to 60 cM from the beginning of the linkage group, 

close to marker BMC1206 (Table 3.2, Figure 3.18).  
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Figure 3.18 F-Ratio profile from across family analysis for kidney weight (Kidney), 

summation of saturated fatty acids (SFA), total mono-unsaturated fatty acids (Mufa) and 
meat tenderness (peak force measured on the M. longissimus dorsi muscle, Lwblda) on 
BTA29. The lower and upper horizontal lines represent 5% and 1% chromosome-wise 
significant evidence of linkage, respectively. 

 

3.3 Discussion 

Data from the Australian Limousin × Jersey double backcross population was analysed 
resulting in convincing evidence for QTL affecting economically importance traits 
in beef cattle production. 

3.3.1 Reproductive traits 
The interval mapping results provided significant evidence for QTL affecting birth 

weight on BTA1 and BTA14. Previous reports indicated the presence of growth QTL on 

bovine chromosome 1 (Kim et al., 2003; Stone et al., 1999). Based on data from a half-sib 

family of a Brahman × Hereford sire, Stone et al. (1999) reported a putative QTL for birth 

weight at 120 cM on BTA1. In addition, the completed scan in all available progeny of this 

sire confirmed the presence of a QTL for birth weight on BTA1 (Casas et al., 2003). 

However, the support interval for the birth weight QTL in the present study does not 

include the positions reported by Stone et al. (1999) and Casas et al. (2003), suggesting 

more than one QTL for birth weight are segregating on this chromosome.  

A putative QTL on BTA5, between microsatellites markers AGLA293 and 

OARFCB05, was found to affect birth weight. The effects of BTA5 on growth and carcass 

traits have been reported. A QTL for birth weight was detected in the 70 to 110 cM interval 

on this linkage group by Davis et al. (1998) in a crossbred population. Birth weight QTL 
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on this chromosome has been reported in families segregating alternative forms of the 

myostatin gene (Casas et al., 2003). Li et al. (2002) also detected QTL on BTA5 for birth 

weight at 20 to 30 cM and 65 to 75 cM intervals in.  

There was evidence supporting the presence of significant QTL on BTA3, 14 and 21 

affecting birth weight. Davis et al. (1998) reported the presence of a QTL at 0 cM to 42 cM 

on BTA14 for birth weight, in a similar region found herein affecting birth weight. The 

evidence of birth weight QTL on BTA3 and BTA21 herein supports a number of published 

papers (Casas et al., 2004b; Casas et al., 2003; Davis et al., 1998; Kim et al., 2003). The 

most obvious candidate genes for BTA21QTL is insulin like growth factor 1 receptor. 

Davis et al. (1998) and Casas et al. (2003) detected QTL for birth weight at the 

centromeric region of BTA21, where the QTL for birth weight was detected in the present 

study. However, Kim et al. (2003) and Casas et al. (2004b) reported QTL for birth weight 

in the telomeric region of BTA21. This inconsistency across studies can partly be 

explained by the different breeds and designs used in the studies. Additionally, the density 

and informativity of the markers used in different studies and the large error within each 

study could lead to QTL not being assigned to the correct genomic positions. 

Calf birth weight has been used as an indicator trait to avoid calving difficulties 

(Eriksson et al., 2004). Thus, identifying loci such as those detected herein (QTL for birth 

weight on BTA1, 3 and 21), which affect birth weight but not subsequent growth, coupled 

with marker-assisted selection has potential to overcome these problems. However, the 

possible effects of this QTL on carcass and meat quality need to be investigated.       

Gestation length has been proposed as a breeding objective to reduce birth weight 

without affecting pre-weaning growth traits (Bourdon and Brinks, 1982; Brinks et al., 

1991). The current study revealed suggestive QTL for gestation length on BTA10 and 23. 

However, no evidence was found for the presence of QTL for birth weight on these 

chromosomes. 

For pelvic area, a significant influence of BTA22 at the centromeric region of the 

chromosome and suggestive effects of BTA3, 6, 17, and 20 were discovered. There is 

some evidence supporting QTL affecting calving difficulties traits on BTA3 (Kuhn et al., 

2003; Schrooten et al., 2000). Schrooten et al. (2000) mapped a QTL for calving ease on 

BTA3, which was linked to birth weight and pelvic area in the study herein. However, 

birth weight QTL and pelvic area QTL were mapped in different locations on the 

chromosome.   
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Indication of QTL for pelvic width and pelvic area at 35 cM on BTA6 is in 

agreement with the results from Schrooten et al. (2000) and Kuhn et al. (2003), who found 

a QTL in the proximal region of this chromosome for calving ease and stillbirth (direct 

effects), respectively. Additionally, Casas et al. (2000) detected a QTL for birth weight in 

this region of the chromosome. The putative QTL for pelvic area on BTA6 is further 

supported by results from Schrooten et al. (2000), who mapped a QTL for size and dairy 

character in the proximal region of BTA6; traits which may influence delivery of a calf 

Kuhn et al. (2003). 

On BTA18, where a suggestive QTL for pelvic height was found herein, Kuhn et al. 

(2003) reported a QTL affecting dystocia and stillbirth. Additionally, Ashwell et al. (1998) 

found a QTL on BTA18 for strength and thurl width, which may affect calving ease of a 

cow (Bellows et al., 1971). 

BTA12 and BTA16 were linked to the age at puberty. BTA16 harbours live weight 

and growth QTL in the population studied herein (data have not been presented). The onset 

of puberty is determined by body weight as heifers start to cycle at approximately 43% of 

mature body weight (Coffey et al., 2006). Therefore, genes that influence growth and live 

weight, as well as reproductive pathways might be anticipated to play a role in controlling 

the onset of puberty. Heritability estimates of 0.27 and 0.44 for age and live weight at 

puberty in beef cattle have been reported previously (Morris et al., 2000).  McNaughton et 

al. (2005) also reported QTL on BTA16 for puberty defined as proportion of estimated 

mature live weight at puberty in crossbred Friesian x Jersey animals.  

3.3.2 Carcass and beef quality 
Several linkage groups were linked to the carcass and meat quality traits. The most 

important linkage group was BTA2 where a QTL was detected for muscle measurements, 

meat tenderness and carcass fatness. More compelling evidence for the effects being real 

comes from the detection of QTL in a similar location in more than one sire family. The 

position of the maximum F-statistic obtained for all the carcass and meat traits, with the 

exception of butt shape, which is a subjective trait, ranged from 10 to 18 cM from the 

beginning of the linkage group, close to microsatellite marker ILSTS26. The mh locus 

(known as myostatin) is a gene that causes muscle hypertrophy in mice (McPherron et al., 

1997) and has been mapped by Smith et al. (1997) to the region where the QTL for carcass 

and fatness traits herein is located. Thus, the association between this candidate gene and 

the carcass traits need to be investigated. 
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Effects of QTL detected (on BTA2) are expected to be in opposite directions for 

muscling and fat percent. This is in consistent with the observations that double-muscle 

animals have carcasses with a low percentage of fat. Therefore, mounting evidence 

suggests that this region of the bovine genome contains a gene or complex of genes with 

significant effects on carcass composition. However, the linkage analysis showed there are 

other regions of the bovine genome with effects on carcass and meat traits. Putative QTL 

for muscling, measured as eye muscle area were found on BTA8, BTA12, BTA16 and 

BTA17, implying that the QTL on BTA2 may interact with a multitude of loci that 

influence carcass traits. Thus, further analysis of the data is required to ascertain the 

relationship between the BTA2 QTL and other regions of the genome. This would be 

useful for a better understanding the genetic control of the carcass traits. 

The amount and distribution of fat has an important impact on carcass and meat 

quality in beef cattle (Wheeler et al., 1994). Employing the individual and across family 

analyses, the present study revealed a number of putative QTL for fat related traits. BTA1 

seems to harbour two QTL for fatness traits, one at the centromeric end of the 

chromosome, close to microsatellite marker BMS2321, affecting backfat thickness (P8) 

and the other at 91 cM affecting channel fat. Using a line-cross model, Kim et al (2003) 

mapped a QTL on BTA1, close to microsattelite marker AGLA17, which is responsible for 

external fat deposition measured as subcutaneous fat thickness between the 12th and 13th 

ribs. BMS2321 which is close to the detected QTL for external fat in the present study and 

AGLA17 which is close to the reported QTL for external fat by Kim et al (2003) map to 15 

and 0 cM on the bovine map (Ihara et al., 2004), respectively. Additional putative QTL for 

external fat were located on BTA3, BTA7 and BTA28 (QTL for rib fat thickness, Rbft) 

and BTA17 and BTA25 (QTL for backfat thickness, P8). 

On BTA17 where QTL for backfat thickness (P8) was detected, MacNeil and Grosz 

(2002) reported a QTL for internal fat (estimated kidney, pelvic, and heart fat). 

Additionally, Casas et al. (2004b) found a QTL on BTA17 for fat yield. This chromosome 

harbours QTL for internal organ weights (Heart, Liver and Kidney weights as a percentage 

of carcass weight), hot carcass weight, eye muscle era, and other carcass traits, indicating 

the pleiotropic effects of the underlying genes or a hint on multiple genes having different 

effects in the linkage group. Thus, the present analysis could be extended to handle 

multiple traits using multitrait QTL analysis. This could provide additional power for 

chromosomes such as BTA17 where QTL for several traits have been found and also could 

provide a test of whether there is pleiotropy or close linkage.  



 

61 

 

 

BTA17 harbours uncoupling protein 1 (UCP1) which plays a role in heat production 

by uncoupling oxidative phosphorylation from the respiratory chain. However, there are 

many genes on this chromosome and further studies are required to test specific hypotheses 

regarding candidate genes.   

Casas et al. (2003) reported a QTL for internal fat (estimated kidney, pelvic and 

heart fat), on BTA15 where a QTL for channel fat was found in the present study. 

However, the detected QTL in the present study was located at the telomeric end of 

BTA15 close to BMS429, which does not include the location reported by Casas et al. 

(2003). 

The present study, found QTL both intramuscular fat (IMF) and also marbling score. 

Two QTL were detected for marbling score. One of these is on BTA9 and the other is on 

BTA16. The former was previously reported in a resource population obtained from a 

Brahman × Hereford crossbred sire (Casas et al., 2003). Additional putative QTL for 

intramuscular fat were found on QTL BTA12 and 24. There is no previous report of QTL 

for this trait on these chromosomes.          

A marbling QTL was found on the centromeric region of BTA16. There is previous 

evidence showing QTL for marbling on this chromosome. Casas et al. (2004b) reported a 

QTL affecting marbling at 44 cM on BTA16, between HUJ1614 and IDVGA68.  

No QTL congruency was found for intramuscular fat and other types of fat depots, 

suggesting that different genes are responsible for intramuscular fat and other types of fat 

depots. Thus, it should be possible to manipulate marbling accumulation independently of 

other fat depots. 

Concerning fatty acid characteristics, QTL for melting point were found on BTA10 

and 13, for desaturation index on BTA14, for elongation index on BTA14, 23 and 26, for 

total saturated fatty acids and total cis-monounsaturated fatty acids on BTA29. Pitchford et 

al. (2002a) reported that melting point of fatty acids is genetically correlated with their 

calculated desaturation index. However, the present research did not find any DNA regions 

linked to both melting point and desaturation index.     

Apart from its effect on desaturation index and total saturated fatty acids, a QTL on 

BTA14 was found to affect fat colour scored on a biopsy sample, cooking loss, carcass 

length and carcass weight. There is ample evidence for a QTL affecting fat deposition 

located on BTA14 in dairy cattle (Coppieters et al., 1998; Heyen et al., 1999; Riquet et al., 

1999) and beef cattle (Casas et al., 2000; Moore et al., 2003).  
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In total, five QTL were detected for Warner-Bratzler shear force, a mechanical and 

objective measure of meat tenderness. Two of these QTL were previously reported. The 

study herein revealed a QTL for Warner-Bratzler peak force measured on the M. 

longissimus dorsi muscle (Lwblda), mapped to the telomeric end of BTA29. This finding 

confirms the results of Casas et al. (2003; 2000) who found a QTL for tenderness in this 

region of the bovine genome. Interestingly, the position of the detected QTL in the map 

used herein coincides with the position of the detected QTL for kidney weight as a 

percentage of carcass weight), total mono-unsaturated fatty acids and saturated fatty acids, 

suggesting the pleiotropic effects of the underlying genes or hint of multiple genes having 

different effects in the identified linkage group. 

A DNA region in the middle of BTA4, between microsatellite markers MAF50 and 

RM067 affected meat tenderness. The detected QTL linked to both peak force and aging 

rate, influenced the tenderness of both the M. longissimus dorsi and M. semitendinosus 

muscles. The evidence of a tenderness QTL on BTA4 in the population herein confirms the 

results of Casas et al. (2001). 

A significant QTL was detected on BTA2 affecting meat tenderness, measured as 

Warner-Bratzler shear force on the M. semitendinosus muscle (Lwbsta). The position of 

the detected QTL coincides with the detected QTL for the muscling traits in the 

centromeric region of the chromosome. Thus, it would be important to evaluate the effects 

of mh locus on beef tenderness to ascertain the genetic control of meet tenderness in 

populations segregating myostatin alleles. 

A QTL on BTA18 affecting meat tenderness measured as Warner-Bratzler shear 

force on the M. longissimus dorsi (Lwblda) was detected. To date, six different genomic 

regions on chromosomes 4, 5, 9, 15, 20 and 29 have been reported to be associated with 

the expression of meat tenderness in cattle. This is the first report of QTL on BTA2 and 

BTA18 linked to meat tenderness. These results suggest that different genomic regions are 

involved in the expression of quantitative traits, depending on the genetic background. 

Alternatively, it may simply be that the QTL are not segregating the relevant alleles in the 

families under study.  

 The present study revealed putative QTL for pH on BTA5, 13, 16 and 24 and for 

meat colour on BTA10, 18, 19 and 26. There is no previously evidence of a QTL affecting 

meat pH and colour in any chromosome in other QTL experiments in cattle.  

In general, individual family analysis revealed a number of QTL which were not 

significant in the across family analysis. Across family analyses are most powerful when a 



 

63 

 

 

QTL is segregating in all the sires (Walling et al., 2004). Given the outbred nature of the 

population and assuming a biallelic QTL, even in the most favourable situation with QTL 

allele frequencies of 0.5 on average, the effect will not be segregating in 50% of the sires. 

Given the limited number of sires likely to be heterozygous for the QTL, the residual 

variation from other nonsegregating families is such that only very large QTL will be 

found to be statistically significant. Despite this, for any given significance level, the 

across family analyses are likely to be the most powerful. This study found a greater 

number of QTL from the individual family analyses, but the results were not adjusted for 

the number of families tested.  

The mapping of QTL involves substantial multiple testing. This study included all 29 

bovine autosomes and attempted to correct for multiple positional testing using the 

chromosome wide thresholds calculated by permutation tests (Churchill and Doerge, 

1994). The study did not adjust for the 3 families tested in the individual family analyses 

nor did it correct for the number of traits analysed. Given the number of tests, it is likely 

that some results are Type 1 errors (identifying a QTL when there is not one present). 

However, increasing the stringency of the thresholds would increase the frequency of Type 

2 errors (failing to identify a QTL present in the region studied). Adjusting thresholds for 

the number of traits analysed seems to be too stringent, as results previously declared 

significant may no longer reach the new required threshold simply because of the addition 

of a new trait in the analyses. Such a result would be discarded despite no change in the 

evidence for a putative QTL. Hence, in accordance with the recommendation of Lander 

and Bostein (1995), suggestive results are reported with the recognition of the potential for 

false positive results.   

3.4 Summary 

The preliminary analysis of the Davies cattle gene mapping showed significant 

association between DNA markers and economically important traits in beef production. A 

strong QTL was found close to the myostatin gene affecting a number of carcass traits. 

However, there were also other genomic regions influencing these traits. Thus, 

investigation of the association between myostatin gene polymorphisms and carcass 

compositions and probable interactions of this gene with other chromosomal regions could 

be useful to understand the genetic control of the carcass and meat quality traits. 

Furthermore, in order to describe the genetic architecture of the traits, it is necessary to 
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undertake further analysis of the whole data set (the Davies cattle gene mapping and the 

New Zealand gene-mapping herds) using advanced methods fitting multiple QTL and 

multitrait QTL models. 
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 Chapter 4: Effects of a myostatin functional SNP on beef 
traits 

 

4.1 Introduction  

Based on the QTL mapping results (Chapter 3), a major QTL was identified with 

pleiotropic effects on a number of carcass and meat traits. The position of the detected 

QTL coincided with the mapped position of the myostatin gene (MSTN) on bovine 

chromosome 2 (BTA2). 

The transforming growth factor β superfamily (TGF-β) encompasses a large group of 

secreted growth and differentiation factors that play important roles in regulating 

development and tissue homeostasis (McPherron and Lee, 1997). Myostatin or growth and 

differentiation factor-8 (GDF8) is a member of the TGF-β gene superfamily. Mouse 

studies have shown the gene is expressed predominantly in skeletal muscle of adult 

animals as well as during early development. Myostatin was first discovered in mice 

(McPherron et al., 1997) and acts as a negative regulator of skeletal muscle mass. In cattle, 

mutations in MSTN are responsible for double muscling, a dramatic increase in skeletal 

muscle development (Grobet et al., 1998; Kambadur et al., 1997; McPherron and Lee, 

1997).  

Traditionally, it was thought that double muscling was inherited as an autosomal 

recessive and that +/+ and mh/+ conferred similar moderate phenotypes and mh/mh 

expressed an extreme phenotype.  The locus has been termed “partially recessive” because 

there is some effect of a single copy of the allele, but generally the truly double-muscled 

phenotype requires that the animal be homozygous (Kambadur  et al., 1997). Casas et al. 

(1998) documented the “partial recessive character” of MSTN in the Belgian Blue cattle, in 

a study where heterozygous (mh/+) animals had a muscle mass 1.6 standard deviations 

higher than homozygous normal (+/+) animals.  

Many distinct mutations have been identified in the bovine myostatin gene that result 

in an interruption of the production or activity of myostatin (Dunner et al., 2003; Grobet et 

al., 1998). Hence, myostatin alleles can be grouped into two functional classes: inactive 

myostatin (which correspond to mh) and active myostatin (which correspond to +). To 

date, there have been reports of nine mutations in coding regions of myostatin that cause 

non-synonymous changes, of which three cause mis-sense mutations, including two in 
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exon 1 and one in exon 2. The remaining six mutations, located in exons 2 and 3, result in 

premature stop codons, which are the mutations responsible for the double-muscling 

phenotype (Bellinge et al., 2005). One of the mutations in the bovine myostatin gene is a 

cytosine to adenine transversion in exon 1 at base 413, causing an amino acid substitution 

of leucine for phenylalanine94 (Grobet et al., 1998). The substitution occurs in a region of 

the protein known to be the inhibitory domain of the myostatin propeptide (Grobet et al., 

1998). 

Previous studies have examined different mutations in myostatin gene (for example, 

the 11-base pair deletion in the Belgian Blue and South Devon breeds studied by Casas et 

al. (2004a; 1998) and Wiener et al. (2002), respectively). Double-muscled Piedmontese 

animals have a guanine to adenine transition mutation in exon 3, causing a substitution of 

tyrosine for cysteine (C313Y) in the signalling portion of the protein (Grobet et al., 1998; 

Kambadur et al., 1997). This transition has been predicted to abrogate the function of the 

protein (Grobet et al., 1998; Kambadur et al., 1997).   

Recent advances in molecular genetics have resulted in assays that accurately 

identify these MSTN mutations, thereby allowing the effects of these genotypes to be 

examined thoroughly (Fahrenkrug et al., 1999). The objective of this study was to 

document the size and type of the effects of the SNP 413 in the MSTN gene on a wide 

range of traits of economic importance. 

4.2 Material and methods 

4.2.1 Experimental design 
Two-generation resource populations, The University of Adelaide’s Davies Gene 

Mapping and the New Zealand AgResearch Gene Mapping Projects in Australia and New 

Zealand, respectively, were developed using two phenotypically divergent Bos taurus 

breeds, Jersey (J) and Limousin (L). Three pairs of first–cross half-brothers were generated 

as first-crosses (X), with one of each pair used for mating in Australia and the other used 

for mating in New Zealand to both pure Jersey and pure Limousin dams, creating 469 

Jersey backcross (XJ) and 315 Limousin backcross (XL) progeny in the two countries 

(Chapter 2).  
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4.2.2 DNA extraction and SNP genotyping 
DNA was extracted from the New Zealand and Australian cohorts from blood 

samples collected in their first year of life, with the exception of the XL calves born in 

New Zealand in 1996 where DNA was extracted from ear cartilage. Genotyping of the 

SNP 413 in the MSTN gene was performed by PCR-RFLP on both Australian and New 

Zealand progeny (Table 4.1). Amplification of a fragment of the bovine myostatin gene 

containing the MSTN SNP 413 was obtained using the following primer pair (Sellick, 

2002): 

MSTNaF 5'-ATTCACTGGTGTGGCAAGTTGTCTCTCAGA-3'  

MSTNbR 5'-CCCTCCTCCTTACATACAAGCCAGCAG-3' 

 
 
Table 4.1 Number of animals genotyped for MSTN SNP 413  

Project Backcross SNP 413 genotype Total 

Australia   AA# AC CC  

 Jersey 0 102 101 203 

 Limousin 54 91 15 160 

 Total 54 193 116 363 

New Zealand      

 Jersey 0 131 125 256 

 Limousin 70 69 8 147 

 Total 70 200 133 403 

Total  124 393 249 766 
# A=variant allele, C=Normal allele   

4.2.3 Statistical analysis 
Multivariate analysis of both the Australian and the New Zealand data was 

conducted using ASReml (Gilmour et al., 2006). The univariate analysis of the individual 

traits was conducted to provide starting values for the multivariate analysis. For the 

Australian data, the trait groups were divided as a) live animal measurements, b) carcass 

traits and c) meat quality, fat quality and behavioural traits.  The models included fixed 

effects of breed of dam (Jersey or Limousin), slaughter group (6 combinations of year of 

birth and sex= 96H, 96S, 97H, 97S, 98H and 98S), and sire family (three), plus date of 

birth as a covariate and additive and dominance covariates within breed of dam. Additive 
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covariates were 0, 1 and 2 to account for zero, one and two variant myostatin allele 

carrying by CC, AC and AA genotypes, respectively. In order to test for dominance, an 

additional regression covariate was added with value of 0 for homozygotes and 1 for 

heterozygotes. A significant result for this covariate was interpreted as evidence of a 

dominance effect.  

An attempt was made to fit a multivariate animal model and also a multivariate sire 

model in the data set to estimate the polygenic variance and separate it from the residual 

variance. However, because of the weak pedigree information (only common grandsires 

across countries and too few dams with multiple progeny), the data did not allow 

estimation of the additive polygenic correlation between traits in the multivariate 

framework so the residual effect was the only random term in the model.  

For the AgResearch data, trait groups were classed as a) live animal measurements 

and reproductive traits, b) carcass traits, and c) meat quality and fat quality and behavioural 

traits.  The statistical model used included fixed effects of breed of dam (Jersey or 

Limousin), farm of birth (three levels) and birth type (single or twin) within breed of dam, 

slaughter group (28 levels that includes adjustments for sex and year), and sire family 

(three levels), plus additive and dominance covariates within breed of dam. The residual 

effect was the only random term in the model.  

4.3 Results 

The results from multi-trait analysis of growth, carcass and meat and fat quality traits 

showed that the effects of slaughter group, sire and breed of dam on majority of traits were 

significant. 

Breed of dam. Breed differences were significant for most of the traits. Breed effect was 

evident in both the Australian and New Zealand progeny. The Limousin backcross (XL) 

animals were heavier at birth, at weaning, at 400 and 600 days of age and had a heavier hot 

carcass weight (P<0.001) than the Jersey backcross (XJ) progeny. These animals had a 

larger eye muscle area, heavier M. longissimus dorsi muscle, M. semitendinosus muscle 

and Silverside, higher meat yield (P<0.001), lower marbling score (P<0.05), less 

intramuscular fat content (P<0.001)) and greater fat thickness, and higher fat and bone 

weights (P<0.01) (Table 4.2). 

Pelvic area was also affected by breed (P<0.001) as the XL animals had larger pelvic area 

than XJ animals (P<0.001).  
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Breed had significant effects on meat and fat quality traits. Breed affected tenderness 

measured as Warner-Bratzler shear force. XL animals had more tender M. semitendinosus 

muscle (P<0.001) but less tender M. longissimus dorsi muscle (P<0.05) than the meat cuts 

from XJ animals. Cooking loss of both M. semitendinosus muscle and M. longissimus dorsi 

muscles in the XL animals were higher than XJ animals (P<0.01). Breed had no significant 

effect on meat pH, but the effect of breed on meat colour was significant (P<0.01). XJ 

animals had darker meat than XL progeny (P<0.01). Fat colour score, and total 

monounsaturated fatty acids were higher in the XJ progeny but fat melting point was lower 

in XJ animals than in XL animals (P<0.01).  Breed inheritance had no significant effect on 

behavioral traits.  

Myostatin effects. The results indicated that the additive effect of the MSTN variant on 

birth weight was not significant. There was a significant dominance effect of the gene for 

birth weight recorded in the New Zealand animals. For the Limousin backcross animals in 

New Zealand, the heterozygous progeny with one copy of the variant MSTN allele were 

7.6% lighter than the mean of the two homozygous genotypes. However, in general, the 

MSTN variant had a significant positive effect on muscle and negative effect on fatness. 

The heterozygote was usually similar to the normal homozygote, resulting in many 

significant dominance estimates (Table 4.2). In the backcross Limousin animals, MSTN 

had both additive and dominance effects on stifle width measured at weaning, eye muscle 

area, silverside weight, tenderness of M. semitendinosus muscle measured on days 1 and 

26 postmortem. From the Australian data, there was also a dominance effect of MSTN for 

hip width measured on live animals at 600 days of age (P<0.01) and docility score 

(P<0.05). On the other hand, only additive effects of MSTN were significant for fat depth 

and stifle width measured on live animals at 600 days of age, meat yield, fat yield, P8 fat 

depth (P<0.001), marbling score (P<0.01), intramuscular fat and rib fat (P<0.05), 

tenderness of M. semitendinosus muscle measured on days 5 and 12 after slaughter 

(P<0.01) and cooking loss of M. semitendinosus muscle (P<0.001).  
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Table 4.2 Additive (a) and dominance (d) effects (%) of myostatin and breed effects as a 
percentage of trait means for traits measured on live animals, carcass and beef quality 
traits.  

 Limousin  Jersey  
  a d  a+d a Breed difference b 
Trait  AU c NZ d  AU NZ  AU NZ   AU NZ 
Live traits                 
Bwt 2.6 0.7 -3.2  -7.6** 0.9 1.4 32.3*** 29.7 *** 
Wwt 1.5 - -1.5 - 2.0 - 11.2 *** - 
400W 1.8 0.5 1.3 -3.0 1.0 -1.0 10.1 25.3 
600W 0.4 1.7 -1.6 1.6 1.2 0 15. 1*** 14.5*** 
Whip -0.5 - -0.6 - 0.8 - 1.7 - 
Wsti 2.5* - -3.1* - 1.4 - 10.6*** - 
600Hip -1 - -2.3** - -0.2 - 4.4*** - 
600Sti 2.8** - -1.7 - 1.4 - 12.3*** - 
600Fat -13.9*** - -1.7 - -9.8* - 12 - 
Docility 0.8 2.8 -5.0* 6.8 -1.6 0.3 4.2 -6.7 
Carcass traits         
Hcw 2.7 3.4* -2.5 -3.6 1.2 0.8 22.7*** 23.5*** 
EMA 10.5*** 4.8* -6.3** -13.0*** 4.4* 4.4** 19.1*** 36.2*** 
SS 5.8*** 7.2*** -2.7* -10.4*** 1.2 2.5 8.4*** 39.1*** 
P8 -18.7*** - 1.4 - -2.1 - 26.6** - 
Mar -17.0** - 0.7 - 0.7 - -26.1* - 
Channel fat -2.2 -5.0 1.3 10.4 -6.4 -11.7** -13.7* -39.7*** 
Omental fat -1.9 -6.3 -3.1 5.6 0.1 -0.8 -9.1 -27.8** 
Rbft -9.4 -8.8 1.3 11.1 -7.5 -11.2* 4.2 -8.8 
Imf -8.2* -7.1 2.9 9.0 -4.0 -5.5 -25.9*** -47.4 
Meat yield 7.3*** 5.9*** -4.2* -6.7** 2.2 2.1 24.2*** 30.4*** 
Fat yield -16.5*** -8.1* 1.5 15.0** -1.7 -7.1* 22.6*** -3.4 
Bone yield -0.8 -0.3 1.1 -1.2 -0.3 -0.5 17.3*** 16.7*** 
PA -2.2 0 0.1 -0.5 0.9 0.7 14.6*** 3.2 

Beef quality         
Wbld -1.3 0.3 1.8 3.9 -0.5 5.7 12.1* 11.3* 
Wbst -4.7** - 6.6** - -2.4 - -12.0*** - 
Clld 0.1 -0.9 1.2 -4.6** 0.6 1.7 4.2** 11.1*** 
Clst -2.5*** - 0.8 - -0.2 - 3.2* - 
Mufa 1.4 -2.2* 1.2 0.2 -0.7 0.9 -6.5*** -1.9 
a additive plus dominance. b Limousin minus Jersey.  cAU: Australian progeny. d NZ: New Zealand progeny. e last 
measurement of tenderness. Bwt: Birth weight, Wwt: Weaning weight, 400W: Body weight at 400 days, Whip: Hip width at 
weaning, Wsti: Stifle width at weaning, 600Hip: Hip width at 600 days, 600Sti: Stifle width at 600 days, 600Fat: Fat depth at 
600 days, Hcw: Hot standard carcass weight, EMA: Eye muscle area, SS: Silverside weight, P8: Carcass fat depth on the 
rump, Mar: Marbling, Rbft: Fat depth at ribs 12th and 13th, Imf: Intramuscular fat content, PA: Pelvic area, Wbld: Warner-
Bratzler shear force measured on the M. longissimus dorsi muscle,  Wbst: Warner-Bratzler shear force measured on the M. 
semitendinosus muscle, Clld: Cooking loss of the M. longissimus dorsi muscle, Clst: Cooking loss of  the M. semitendinosus 
muscle, Mufa: Total monounsaturated fatty acids. *: P <0.05, **: P< 0.01, *** : P<0.001 
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A regression analysis for the average effect of a substitution of a single copy of the 

variant MSTN allele indicated an increase in stifle width at 600 days of age (2.8% of the 

trait mean, Australian progeny), (eye muscle area 10.5 and 4.8% of the trait mean, 

Australian and New Zealand progeny, respectively), silverside (5.8 and 7.2%, Australian 

and New Zealand progeny, respectively), meat yield (7.3 and 5.9%, Australian and New 

Zealand progeny) and a reduction in fat depth measured at 600 days of age, P8 fat depth 

and marbling score (–13.9, -18.7, -17.0% of the trait means, Australian progeny), 

intramuscular fat (-8.2 and –7.1, Australian and New Zealand progeny, respectively), total 

fat yield (-16.5 and –8.1%, Australian and New Zealand progeny, respectively), Warner-

Bratzler shear force and cooking loss of M. semitendinosus muscle (–4.7 and –2.5%, 

respectively, Australian progeny) (Table 4.2).          

The analyses indicate that the Limousin backcross calves carrying two copies of the 

variant MSTN allele produced carcasses with about 12-15% more meat, and 16-33% less 

fat when compared with animals having no copies of the variant MSTN allele. Significant 

additive and dominance effects of the allele variant on meat yield indicate that 

heterozygous animals produce carcasses with about 3% more meat when compared with 

animals carrying no copies of the variant MSTN allele.  

There were only two genotypic groups, AC and CC, in the Jersey backcross 

progeny. Therefore, it was not possible to separate additive and dominance effects of the 

gene in this group of animals. Thus, estimated MSTN effects for this group are additive 

effect plus the dominance deviation. The results from the Australian progeny indicated that 

in this group of animals, MSTN had significant effects on fat depth measured on live 

animals at 600 days of age and eye muscle area (P<0.05). The estimated additive plus 

dominance effect of the MSTN gene shows that fat depth measured on live animals was 

9.8% lower in heterozygous animals than homozygous normal animals. Also eye muscle 

area in the heterozygous animals was 4.2% larger than the homozygous normal animals. 

However, the effect of a single copy of the variant allele was not detectable for most of the 

traits, including meat and fat yield, in this group of animals. 

Similar results from the New Zealand Jersey backcross animals indicated that MSTN 

had significant effects on eye muscle area (P<0.01), channel fat (P<0.01), rib fat depth 

(P<0.05) and total fat yield (P<0.05). The estimated additive plus dominance effect of the 

MSTN gene showed that eye muscle area in heterozygous animals was larger than 

homozygous normal animals (4.4% of the trait mean, P<0.01). The estimated additive plus 

dominance effects of the MSTN gene for rib fat, total fat weight and kidney fat were           
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-11.2%, -7.1% and –11.6%, respectively, demonstrating that animals carrying one copy of 

the variant MSTN allele produced carcasses with less fat than those of animals carrying no 

copies of the inactive MSTN allele variant. 

4.4 Discussion  

In Australia the animals were grown on pasture and then finished on grain in the 

feedlot and were slaughtered at 34-40 months of age, while in New Zealand the animals 

were grown on pasture from birth to slaughter and were killed at 22-28 months of age. 

Pleiotropic effects of a SNP in the myostatin gene in animals with two genetic 

backgrounds, Limousin and Jersey as breed of dam, were investigated in two different 

environments, South Australia (where animals were finished on a feedlot and New Zealand 

(where animals were grown on pasture from birth to slaughter). This is the first report of 

the effects of the myostatin SNP 413 on many traits in two different environments. In 

general, the New Zealand progeny were smaller than the Australian progeny because the 

animals in Australia were both older (slaughter age of 34-40 months and 22-28 months in 

Australia and New Zealand, respectively) and fatter when slaughtered. The data from two 

experiments were separately analysed because the traits in two trials differed and the trait 

measurements were not identical in Australia and New Zealand.    

Live animal measurements. The results indicate that the additive effect of the MSTN 

allele variant on birth weight was not significant. This finding is consistent with some of 

previous reports on myostatin effects (Hanset R., 1991; Menissier, 1982) but heavier 

weights at birth have been documented in many studies in which double-muscling was 

involved (Arthur, 1995; Arthur et al., 1989; Casas et al., 2004a; Casas et al., 1999; Casas 

et al., 1998; Cundiff et al., 1998; Nott and Rollins, 1979; Short et al., 2002). Casas et al. 

(1998) compared animals inheriting one or zero copies of an inactive myostatin allele in 

Belgian Blue and Piedmontese, and found that the difference between both groups was 4.6 

kg, with animals inheriting one copy of the inactive myostatin allele were heavier at birth 

than animals inheriting zero copies. In another study, Casas et al. (1999) reported that 

homozygous mh/mh animals were heavier at birth than the heterozygous +/mh and 

homozygous +/+ animals. They reported that the difference between the two homozygotes 

was 5.2 kg for birth weight. Casas et al. (2004a) studied the effect of the Belgian Blue 

inactive myostatin allele and found a difference of 3.5 and 2.0 kg at birth between the 

groups inheriting two and one copies, and the groups inheriting one and zero copies of the 
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inactive myostatin allele, respectively. This magnitude of effect is similar to that observed 

in studies of the Piedmontese inactive allele MSTN Short et al. (2002), where differences 

of 3.1 and 1.3 kg were reported for the same contrasts.  

Casas et al. (1999) reported that differences in weight were observed at 200 days and 

1 year of age in Piedmontese crossbreds segregating an inactivated myostatin allele. Casas 

et al. (2004a) also studied the effect of an inactivated myostatin allele on animal live 

weights in a crossbred population involving the Belgian Blue breed. They reported that 

while animals with one copy of the inactive myostatin allele had a postweaning and 

average daily gain similar to animals with zero copies of the allele, animals with two 

copies of the inactive myostatin allele had a slower growth rate. Nott and Rollins (1979) 

and Arthur (1989) found similar performance among these groups. The research presented 

here did not find a significant additive or dominance effect of the MSTN allele variant on 

animal live weight.  

The most likely explanation for conflicting results of the present study and those 

mentioned above is the type of the mutation in myostatin studied herein. Previous studies 

have concentrated on inactive MSTN alleles, which cause the full double muscling 

phenotype in the homozygotes. The allele variant described herein should be active as only 

a single amino acid substitution is present. Both the Belgian Blue and Piedmontese 

doubled-muscle animals involved in the most studies on myostatin possess an extreme 

muscularity (Arthur, 1995), which is certainly more pronounced than doubled-muscle 

animals of Limousin involved in the present research. There may be also some breed 

effects, which given the Jersey and Limousin genetic backgrounds could affect traits 

particularly early in life. As the MSTN allele variant has been observed in Australian 

Angus, the effects of the 413 SNP should be investigated in different breeds. 

Muscle mass. Although birth weight and other animal live weights were not associated 

with the myostatin allele variant, there was a significant effect of the allele on the 

muscularity of live animals and muscle mass measured after slaughter. The effect of the 

gene on muscularity was evident even at the youngest age examined (stifle width at 

weaning, 200 d of age) and was maintained in older animals (stifle width at 600 d of age) 

and even after slaughter (eye muscle area) (Table 4.2). Stifle width is an indicator of 

muscularity. Both additive and dominance effects of the allele on stifle width measured at 

weaning were significant. Based on the data from the Australian progeny, the additive 

effect of the allele for this trait was 2.5%. In other words, AA animals had about 5% wider 

stifle widths relative to CC animals without differences in weight. Traits that are 
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considered a more direct measure of muscularity were (e.g., eye muscle area and silverside 

weight) also increased with one copy of MSTN allele variant.  More dramatic effects were 

observed with of two copies of the MSTN allele in the Limousin backcross animals. The 

estimated additive plus dominance effect for eye muscle area in the Jersey backcross 

progeny was similar to that of the Limousin backcross animals, indicating no interaction 

between breed of dam and myostatin gene for this trait. Also, the results showed that AA 

animals from Limousin backcross group had a large increase in meat yield, of 33.6 Kg and 

17.6 Kg  (Australia and New Zealand, respectively) increase in meat yield compared to CC 

animals. However, there were no significant additive or dominance effects of MSTN on hot 

carcass weight and the hot carcass weight of CC animals was comparable to that of AA 

animals in Australian progeny. Although the analysis of the New Zealand data showed a 

significant additive effect of the SNP in the Limousin backcross animals for hot carcass 

weight, the effect of the allele in the Jersey backcross animals was not significant. In 

addition, the size of the additive effect of the gene for hot carcass weight in the Limousin 

backcross animals was only 3% indicating that AA animals had only 6% higher carcass 

weights compared to CC animals. 

Fatness. Because the animals had normal weights even though differences in skeletal 

muscle mass observed, the potential redistribution of the body tissues was investigated. 

The results revealed a significant effect of the allele on fat depots (fat depth measured on 

live animals, intra muscular fat and external fat measured as fat depth at P8 rump and ribs 

12th and 13th at rump). The additive effects of the allele for fat traits were negative showing 

the AA animals were leaner than CC animals. In order to rule out the possibility that fat 

stores were simply redistributed in AA animals, the total body fat was analysed. The 

results showed that total body fat mass was decreased in AA animals compare with CC 

animals, 33% and 16% based on the Australian and New Zealand data, respectively. 

Hence, the normal body weight of AA animals, which had higher muscle mass, appeared 

to result from differences in fat accumulation. McPherron and Lee (2002) reported that 

mice lacking myostatin have a reduction in total body fat, which is particularly pronounced 

in older animals. These researchers investigated the effect of the MSTN mutation in two 

genetic models of obesity, agouti lethal yellow (Ay) and obese (Lepob/ob). Their findings 

indicated that loss of MSTN activity led to a partial suppression of fat accumulation and 

abnormal glucose metabolism. The exact mechanism by which myostatin regulates fat 

metabolism is unknown.  However, it has been suggested that one possibility is that the 

effects of the myostatin mutations in adipose tissue are an indirect effect of the lack of 
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myostatin signalling in skeletal muscle so that the anabolic effects of the MSTN mutations 

on skeletal muscle tissue per se may shift energy metabolites in such a manner as to 

prevent fat accumulation elsewhere in the body (McPherron and Lee, 2002). It is possible 

that the effects on muscle mass and/or fat stores seen in the present study and also in mice 

studies (McPherron et al., 1997; McPherron and Lee, 2002) may reflect the activity of 

some other mediator of cachexia whose production or activity is induced by myostatin 

(indirect effect of myostatin). 

Consistent with the findings in the study herein, it is widely accepted that the amount 

of fat in the carcass of doubled-muscled cattle is significantly less than normal cattle 

(Arthur, 1995; Casas et al., 1998). In particular, intramuscular fat has been reported to be 

significantly affected by the doubled-muscle phenotype (Casas et al., 1998; Hanset R., 

1991; Raes et al., 2001). The minimal marbling contributes to a reduced flavour rating, and 

the cause for this reduced marbling is reported to be a reduced subcutaneous and internal 

fatty tissue adipocyte size. However, the adipocyte size within the intramuscular fat 

appears to be the same between doubled-muscle and normal cattle (Hocquette et al., 1999). 

Studies by Webb et al. (1998) demonstrated that variation also exists in the fatty acids 

composition of intramuscular fat in the Belgian Blue breed when compared with normal 

breeds. Based on the New Zealand data, myostatin was associated with composition of fat 

depots so that the percentage of mono-unsaturated fatty acids (MUFA) in fat obtained from 

animals inheriting two copies of MSTN allele variant was lower than animals inheriting no 

copies of the allele. Consistent with this result, a higher polyunsaturated fatty acid 

proportion (PUFA) and a lower MUFA concentration have been found in the intramuscular 

fat of mh/mh genotypes of Belgian Blue breed compared with normal genotype (Raes et 

al., 2001). 

Meat quality. The myostain allele was associated with tenderness of the M. 

semitendinosus muscle so that animals carrying two copies of the MSTN allele variant had 

more tender meat than animals with zero or one copy of the allele. In agreement with this 

finding, the general conclusion from most studies of double-muscled cattle is that meat 

from double-muscle cattle is more tender than that from normal-muscled cattle (Arthur, 

1995; Bailey et al., 1982; Hanset R., 1991; Wheeler et al., 2001). It has been reported that 

the muscle of double-muscled cattle contains less connective tissue (Bailey et al., 1982), 

implying a lower background toughness and therefore more tender meat (Bailey et al., 

1982; Hanset R., 1991). 
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Wheeler et al. (2001) reported that in Piedmontase cattle, both mh/+ and mh/mh 

genotypes improved the tenderness of longissimus, gluteus medius, semimembranosus and 

biceps femoris muscles relative to the +/+ genotype. On the other hand, Uytterhaegen et al. 

(1994) reported that the M. longissimus dorsi in double-muscled cattle is tougher and has 

more cooking loss than that of normal animals. They reported that lower background 

toughness, due to decreased levels of collagen (lower connective tissue) in double-muscled 

animals seems to be largely compensated by decreased myofibrillar tenderization, resulting 

in tougher meat. Casas et al. (1998), however, reported that a single copy of an inactivated 

MSTN allele had no effect on tenderness, measured as by M. longissimus dorsi shear force. 

It seems the inconsistency in reports is due to the measurements of tenderness and the 

muscle type studied. For example, based on the New Zealand data, there is evidence of 

significant additive effect of the gene on tenderness of the M. longissimus dorsi muscle 

(tenderness measurements on days 1.3 and 2.3 after rigor mortis). However, based on the 

Australian data where tenderness measurements of two different muscles (M. longissimus 

dorsi and M. semitendinosus) were available, the results indicated that the effect of the 

MSTN allele on tenderness is muscle dependent. The allele variant affected the tenderness 

of the M. semitendinosus muscle but not the M. longissimus dorsi muscle. M. 

semitendinosus and M. longissimus dorsi differ metabolically and histochemically; and M. 

longissimus dorsi is oxidative while M. semitendinosus is glycolytic. In addition, as shown 

by Totland et al. (1988), M. longissimus dorsi is a relatively homogenous muscle, whereas 

M. semitendinosus is relatively heterogenous in fibre type and has more connective tissue. 

 Negative aspects of the meat from double-muscled cattle were reported to include 

pale colour, less taste and reduced water binding (Bailey et al., 1982). Meat from double-

muscle cattle has been reported to be slightly paler than that from normal-muscled cattle 

because there is a higher proportion of white muscle (type II B fibres) coupled with lower 

myoglobin content of the muscles (West, 1974). The study herein investigated the effects 

of the myostatin allele variant on some of these meat quality attributes. Although there was 

no evidence for the effect of the allele on meat colour or pH, results indicated that the 

myostatin allele variant was associated with low cooking loss in M. longissimus dorsi and 

M. semitendinosus muscles. Uytterhaegen et al. (1994) reported that double muscling in 

Belgian bulls increased cooking loss in the M. longissimus dorsi muscle. However, 

Wheeler et al. (2001) found no differences in cooking loss between +/+, mh/+ and mh/mh 

genotypes. These contradictions in relative tenderness and cooking loss could be due to 

inconsistency in cooking, differences in slaughter and chilling conditions, the 
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measurements of tenderness and the muscle type studied. In addition, there is some 

question as to whether heterozygotes for the double-muscling mutation have been correctly 

identified in some of the existing literature (Arthur, 1995). Thus, the magnitude of the 

effect on tenderness of one and two copies of inactivated myostatin allele is not clear in 

some experiments because of the uncertainty of genotypes. Contradiction in tenderness 

effects also could be due to epistatic interactions with other loci (Casas et al., 2000; 2001).  

It has been reported that myostatin accounts for all of the effects on tenderness of 

Piedmontese breed (Wheeler et al., 2001). However, the results of the present study, 

showed that after removing the effect of myostatin on the tenderness, the Limousin 

backcross animals had lower shear force measured on this muscle than that of the Jersey 

backcross animals, suggesting that myostatin does not account for all of the breed effects 

on tenderness and that there may be other genomic regions influencing the trait. 

Bone. The bones of double-muscled cattle, while significantly hypotrophied, are not 

affected as drastically as other tissues in the body (Arnold et al., 2001). Hanset alet al. 

(1991) reported percent losses in bone mass of double-muscled bulls compared to 

conventional bulls ranged from -4.8% (tibia) to -9.1% (femur). However, there was no 

evidence of the MSTN effects on bone weight herein. Hamrick et al. (2000) demonstrated 

that despite the impressive musculature of the myostatin-null “Mighty” mouse, its femora 

is not altered in either shape or size. Their findings indicated that the bone underwent no 

adaptation whatsoever in response to the increased muscle mass. 

Pelvic area. Problems with dystocia and neonatal survival have been consistent problems 

with double-muscled cattle (Arthur, 1995), and these problems have been the main 

deterrent to more widespread use of this genetic trait. Bellows et al. (1971) showed that the 

main cause of dystocia is an incompatible relationship between birth weight and pelvic 

area. Short et al. (2002) reported that addition of one and two mh alleles linearly increased 

birth weight and linearly decreased pelvic area. Because pelvic area was not measured in 

cow, but only in the progeny, the present work was unable to examine the effect of the 

MSTN allele variant on pelvic area as a characteristic of the dam. However, when birth 

weight and pelvic area were analyzed as traits of the calf, there was no association between 

the myostatin allele variant and pelvic area or birth weight. 

Limousin cattle are described as having a moderate increase in muscling compared 

with other Bos taurus breeds such as Herefords and Angus, but are not considered a 

double-muscled breed and do not suffer from an increase in dystocia compared with 
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Hereford cattle in Australia (Short et al., 2002). In addition, all purebred Limousin cattle 

used in the present study were not obviously double-muscled upon live visual assessment.       

Gene action. The gene products from the myostatin locus act via autocrine or paracrine 

mechanisms to control myogenesis (Rios et al., 2002). Even though the activity of this 

gene product was not measured directly herein, some of the traits that were measured in 

this experiment, such as carcass weight, marbling, eye muscle area, primal cuts, and 

muscle score are highly related to the effects of this gene and can be used to estimate the 

genetic control mechanisms. In these traits, there was ample evidence that a major portion 

of the action of the myostatin gene product is additive. However, there was also evidence 

of some non-additivity. The non-additivity was always caused by the presence of a second 

myostatin allele variant, which had a larger effect than one myostatin allele variant. Partial 

dominance is the term often used to describe this effect. Whether this non-additivity is real 

or an artifact due to shape of the dose-response curve of myostatin for the traits measured 

cannot be determined. For example, based on the Australian data animals carrying one and 

two copies of the allele produced 7.0 kg and 33.6 kg more meat, respectively compared 

with animals not carrying a copy of the allele. Also animals with two copies of the allele 

produced 26.6 kg more meat than animals with one copy of the allele. In Australian data, 

there was evidence of additivity for fatness, but both additive and non-additive 

(dominance) effects on muscle mass. In New Zealand, evidence of both additive and non-

additive (dominance) effects for muscle mass and fatness were observed.  

4.5 Summary  

The effect of the myostatin SNP 413 on birth, growth, carcass and beef quality 

traits was investigated in Australia and New Zealand. The study indicated that the effect of 

myostatin SNP 413 is different from other myostatin mutations. It was shown that despite 

differences in climate, feeding regimens and age of slaughter in two countries, the allele is 

expressed similarly in two different environments. Furthermore, the findings showed that 

along with increased muscling, animals carrying the variant have reduced fat depots and 

increased meat tenderness with similar birth weight to the normal animals. Thus, the 

variant is an ideal candidate for genotype-assisted selection to improve carcass 

composition.  
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 Chapter 5: Multivariate multiple QTL mapping 

 

5.1 Introduction  

Initially, for the project herein, a single-QTL model based on regression interval 

mapping (Knott et al., 1996) was used to map QTL for a wide range of economically 

important traits in the beef industry (chapter 3). The results revealed a major QTL affecting 

carcass traits on BTA2 close to the map position of the myostatin gene. The pleiotropic 

effects of the myostatin functional SNP, which underlay this QTL, were then studied 

(chapter 4). However, given that data from multiple traits and sire families were available, 

a new approach for incorporating multiple markers together with multiple traits and 

families was developed to increase the power and accuracy of the genetic mapping of QTL 

(this chapter).  

5.2 Multiple QTL mapping 

The most popular approach for QTL mapping is interval mapping, proposed by 

Lander and Botstein (1989). Interval mapping involves likelihood-ratio tests for each 

possible QTL by densely covered chromosomes using linkage information in the available 

marker data. It assumes that a single gene regulates the trait of interest. Under the single-

QTL model, interval mapping may fail to separate closely linked QTL and instead report 

“ghost” QTL that have no true effect on the trait (Haley and Knott, 1992; Martinez and 

Curnow, 1992). Therefore, procedures for detecting multiple quantitative trait loci (QTL) 

are of growing interest to geneticists. However, the best procedure for testing for multiple 

QTL is unclear.  

Variable selection based on multiple-regression models of phenotype data on 

multiple genetic markers has been increasingly accepted as a general framework for 

mapping multiple QTL, with a large number of proposed methodologies being developed 

(Broman and Speed, 2002; Hoeschele et al., 1997; Jansen, 1993; Piepho and Gauch, 2001; 

Zeng, 1994). To overcome the required extreme computation times involved in multiple-

QTL models, Jansen (1993) and Zeng (1993) independently introduced approximate 

multiple-QTL models, termed multiple QTL mapping (MQM) and composite interval 

mapping (CIM) by Jansen (1993) and Zeng (1994), respectively.  Both Jansen (1993) and 

Zeng (1993) highlighted the benefits of including cofactors in the model to account for 
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QTL segregating elsewhere in the genome. These cofactors have been proposed as linear 

covariates, simply by including the genotype probabilities at the locations selected. In both 

multiple QTL mapping and composite interval mapping, markers take over the role of the 

nearby QTL and are fitted as cofactors while testing for a single QTL elsewhere in the 

genome. In this manner, the cofactors function as a genetic background control and absorb 

most of the genetic effects of their nearby QTL from the residual variance. As a result, the 

power of the QTL analysis is enhanced, while reasonable computation times are retained. 

However, in the approximate multiple QTL methods there is the additional task of 

selecting cofactors for controlling the genetic background. However, the choice of method 

of selecting the location or markers to be included differs between researchers. Kao et al. 

(1999) extended the composite interval mapping approach to multiple-interval mapping 

(MIM). Multiple-interval mapping directly regresses the trait on a set of markers, which 

densely cover the chromosomes. Since there has been no convenient way to handle too 

many intervals simultaneously, intervals must be selectively included in the model, again 

generating a model selection problem (Xu, 2003). The true multiple-interval mapping 

should include all intervals defined by markers.  

 Whittaker et al. (1996) showed that the least-squares method for interval mapping is 

equivalent to standard multiple linear regression of phenotype on marker type. Therefore, 

the problem of QTL detection essentially reduces to the problem of finding the appropriate 

pairs of markers. This decreases considerably the computational burden compared to a 

complete search, but there is still a problem of over-fitting because of the number of 

models that are fitted. Also, with increasing the number of markers, the majority of genetic 

markers across a genome will not be linked to QTL for the trait of interest and most of the 

regression coefficients will have a theoretical value of zero. From a statistical theory 

perspective, the parameter space in a QTL identification problem is quite sparse (Zhang et 

al., 2005). In addition, the dummy variables will be highly correlated across loci, leading 

to a high degree of multicolinearity. Furthermore, the number of markers tested can be 

very large relative to the number of observed individuals (Meuwissen et al., 2001; Xu, 

2003), a problem that has been notoriously difficult in statistics. When the number of 

markers exceeds the number of individuals, the ordinary least-squares approach will have 

no unique solution (Xu, 2003). A number of authors have addressed these problems both in 

Bayesian (Xu, 2003; Zhang et al., 2005) and classical statistical inferences (Gilmour, 2007; 

Verbyla et al., 2007).  
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Gilmour (2007) proposed a mixed model approach in which all markers are fitted as 

independent random effects with common variance within the linkage groups. Once the 

significance of variance associated with a linkage group is established, all the information 

about the location of the QTL that markers contain is captured in the best linear unbiased 

predictions (BLUPs) for the markers. The size of a postulated QTL at marker points is 

predicted from the marker BLUPs and then a QTL profile is predicted from which to 

postulate the most likely position of the QTL. The location of a putative QTL is then tested 

by fitting it as a fixed effect in the presence of the random marker effects. If the QTL 

model is adequate, the random component for the linkage group will become negligible. 

Otherwise, the above process is repeated.  

Verbyla et al. (2007) presented an extension of interval mapping that incorporates all 

intervals simultaneously in the analysis. This approach uses a working model in which the 

QTL sizes are assumed to be random effects for all intervals across the genome. If the 

random regression term is found to be significant, there is evidence for at least one QTL. 

The next step is to use an outlier detection method to locate QTL. Detected QTL are fitted 

as fixed effects and the above process is repeated until the variance component for the 

QTL sizes is not significant. Since the genetic link between markers as genetic information 

and a putative QTL is formulated, this approach seems more realistic than the proposed 

method by Gilmour (2007). 

In this study, a variation on the multiple QTL mapping approach of Gilmour (2007) 

is presented in which, as Verbyla et al. (2007) it is allowed all markers of the entire 

genome to have common variance. Marker effects (that is, the QTL effects associated with 

markers) of the entire genome are simultaneously evaluated. If the marker density is 

relatively high, the markers will detect most of the QTL effects. Using mixed linear 

models, BLUPs of marker effects can be calculated even if there are more effects to be 

predicted than data points. 

5.3 Multitrait QTL mapping 

A QTL may affect more than one trait and this is termed pleiotropic effect. QTL with 

pleiotropic effects can be mapped using multiple trait analysis. Commonly, in almost all 

genomic studies including QTL mapping experiments, a great number of measurements are 

taken. Single and bivariate quantitative analyses are routinely performed on the collected 

data.  However, multiple trait analysis is seldom performed. Multivariate QTL mapping 
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allows the detection of any possible pleiotropic effects and linked QTL, while exploiting 

the information from genetic and phenotypic correlations between traits (Gilbert and Le 

Roy, 2003; Knott and Haley, 2000; Korol et al., 1995). This gives potentially more insight 

into the nature of genetic correlations between different traits. In addition, multivariate 

approaches can increase the power of the test and the precision of parameter estimates 

(Gilbert and Le Roy, 2004; Jiang and Zeng, 1995; Korol et al., 1995; Meuwissen and 

Goddard, 2004). Jiang and Zeng (1995) showed that if the true model is a pleiotropic QTL, 

then analysing the multiple affected traits simultaneously by fitting a pleiotropic QTL 

increases power and improves the resolution to map QTL.  

The simplest way to deal with multivariate data is by mapping individual traits and 

assessing whether the confidence intervals for QTL overlap for some combinations of 

traits. However, several approaches have been taken to handle multivariate data collected 

in gene mapping experiments. In almost all the approaches, multivariate traits are often 

condensed to allow univariate analysis. One approach is selecting one of the traits as the 

primary trait and considering the remaining traits as covariates, modifying the mean 

behaviour of the primary trait. Alternatively, the multivariate trait is replaced by one or 

more linear combinations of the underlying univariate traits through traditional principal 

component analysis or factor analysis (Gilbert and Le Roy, 2003, 2004; Stearns et al., 

2005; Weller et al., 1996). Neither of these approaches is satisfactory. In the first approach, 

the traits are treated asymmetrically, with one trait arbitrarily designated as primary. For 

instance in mapping genes for carcass fatness, treating carcass weight as a covariate runs 

the risk of masking linkage evidence for genes that impact both traits. In essence, 

information on the variance and covariances displayed by traits is lost when they are 

viewed as covariates.  

Transforming the original traits into new linear combinations has been approached in 

several ways, For example, Weller et al. (1996) consider principal component analysis, 

while Gilbert and Le Roy (2003) consider discriminate analysis. Korol et al. (2001) use a 

transformation of the trait space followed by single-trait analysis and subsequent back 

transformation. Stearns et al. (2005) evaluated multivariate and univariate approaches to 

map QTL and reported that there is a clear gain of power with principal component 

techniques over univariate models on the original traits, when the traits are influenced by 

QTL in a manner consistent with the principal component function. These conditions, 

however, can seldom be completely anticipated.  
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A possible disadvantage of using principal components in QTL analyses is that the 

magnitudes of the estimated effects are difficult to interpret directly in terms of traits. A 

transformation that produces traits that are either phenotypically or genetically uncorrelated 

does not ensure that the QTL only influences a single canonical trait. This is because 

different QTL affecting a trait may have different patterns of pleiotropy, for example some 

QTL affect only one trait whereas others affect two or more traits (Knott and Haley, 2000). 

In this case, it is not possible to find a canonical transform that ensures all QTL only 

influence one canonical trait. Consequently, it cannot be assumed that QTL found to be 

affecting two different canonical variables in the same location are actually different QTL, 

as stated by Weller et al. (1996). One could only conclude that QTL affecting different 

canonical traits are indeed different if the genetic correlations between traits are the same 

as the phenotypic correlations and all individual QTL follow the same pattern, a situation 

that is likely to be rare.   

A number of methods to analyse the traits simultaneously have been developed. 

(Jiang and Zeng, 1995; Knott and Haley, 2000; Korol et al., 2001). However, currently, 

multiple trait approaches suffer in their implementation. These methods have not been 

widely adopted and this is probably a reflection of their relative statistical complexity. In 

addition, it is not clear how to proceed with the analysis of data containing many traits 

(e.g., does one start with single trait analysis or with one multitrait analysis that assumes 

that there are QTL affecting all traits) (Haley, 1999). Further development is required to 

determine the most efficient way to select the traits. Additionally, in practice, results are 

observed that seem intuitively incorrect. For example, Knott (2005) stated that single-trait 

analyses give evidence for all traits in one region of a linkage group, but when the traits are 

analyzed together, the best location can move some distance away to where there was no 

evidence for QTL from the individual trait analyses.  

5.4 Joint analysis 

The explosion of interest in QTL mapping has led to many different studies being 

conducted, each based on its own experimental populations. Data from these studies are 

often analysed separately. The cost of genotyping and collecting phenotypic data is often 

prohibitive for many studies. Thus, many studies lack a sufficient number of individuals to 

provide adequate power to detect any but the largest QTL. Thus, one direction for QTL 

analysis is to combine information from several or many studies (for example, by meta-
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analysis of results of studies) (Allison and Heo, 1998; Goffinet and Gerber, 2000; Wood et 

al., 2006) or joint analysis of the original data (Kim et al., 2005; Walling et al., 2000). 

Where it is not possible to access the original data, meta-analysis can provide valuable 

insight (Haley, 1999). For example, combining results from several equivocal candidate 

gene studies can provide a more conclusive analysis (Allison and Heo, 1998). Meta-

analysis, however, is limited in its scope by the information that is available, for example, 

as published in journals. For QTL studies, this information is likely to be a summary of 

results considered significant at a pre-defined threshold. Thus, for a particular region of the 

genome, published results are likely to provide a highly censored sample of all results. 

The pooling of raw data potentially allows more information to be extracted than 

meta-analysis. For example, joint analysis of two or more similar populations could lead to 

more power to detect QTL not found in any individual study or could be used to confirm 

the presence of QTL detected in only one population (Lander and Kruglyak, 1995). In 

addition, joint analysis could lead to more precise estimates of the effects and location of a 

common QTL and could be used to examine differences in QTL effects in different 

populations (Walling et al., 2000). 

Joint analysis is applicable to the situations where mapping information is available 

from different families. In this case, joint analysis can be used to combine information 

across families. For example, half-sib designs are common for QTL studies in livestock. 

For a fixed experimental resource, it is often preferable to test more small half-sib families 

than fewer large half-sib families. Because there is greater chance of detecting a rare allele. 

In the case of a validation study, significance tests should not be as stringent as for the 

initial genome scan. Hence, smaller sample sizes suffice, allowing many more families to 

be screened. However, because within sire analysis of small half-sib families provides 

limited power to detect QTL, experimenters may desire to incorporate information from all 

sires. 

In order to bridge the gaps outlined, a multitrait multiple QTL technique was 

developed. The criticism of a multivariate decomposition does not imply that factor 

analysis is worthless. In the present study, a factor model is integrated more closely with 

DNA markers to model trait by marker effects for hunting pleiotropic QTL. Moreover, this 

work will demonstrate how a factor model can be used to combine information across 

families and traits, and hence, can substantially improve the power and resolution of QTL 

mapping.   
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5.5 Multiple marker analysis 

5.5.1 Genetic model   

A genetic model for a quantitative trait provides the means to interpret the genetic 

basis of the trait. Consider first the simple case of backcrossing between inbred lines. Two 

parental strains differing in both marker and QTL genotypes are mated to produce an F1 

population. All F1 individuals will have the same heterozygous genotype. The F1 progeny 

are then mated to one of the parental strains (Bb × BB). The genetic background for this 

cross is then three-quarters of the recurrent parent, and one-quarter of the other parent. 

Assume genotypic data for m markers and phenotypic data for one complex trait of interest 

are collected from n individuals. Further assume the m markers are densely located on the 

chromosomes of interest such that putative QTL will be co-transmitted with some of these 

m markers. The alleles are labelled at the ith QTL in the first strain Qi, and the alleles at the 

jth marker locus Mj. The alleles in the second strain are labelled qi and mj in a 

corresponding fashion. 

The genetic value of each individual and the QTL genotype are unknown and will be 

denoted as z and g = (g1, g2, …, gn), respectively, where gi labels the number of Qi alleles 

at the ith QTL locus as 1 and –1 for the Qi Qi and the Qi qi, respectively. Herein, it is 

assumed that QTL combine additively between and within loci, so i

n

i i ga� =
=

1
z  where ai is 

the effect of the ith QTL. 

Most statistical analyses of QTL effects have used a fixed linear model. That is, the 

phenotype of each backcross individual is modeled as a linear function of a genetic effect 

and a residual, unexplained, variance (Weller, 2001). Therefore, the basic genetic model is 

yi = µ + gi + ei                                                                                                         (5-1)   

where yi denotes the trait value for ith individual, µ is the mean performance of all 

individuals, gi represents the genetic effect of individual i, and ei the non-genetic (residual) 

effects which is assume to be distributed as N(0, 2
eσ ). 

  For a single QTL model, gi can be specified as  

gi =  Qia + vi                                                                                                           (5-2) 

where a is the QTL size of effect, Qi is unknown, and conditional on the values of the 

flanking markers, the probability distribution for Qi can be obtained.  The vi represents the 

effects of the other QTL, polygenic effects not explained by Q.                                  
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To extend the model for multiple QTL situation, following Zeng (1993) consider first 

each individual in the backcross population has the marker-type x = (x1, x2, …, xm) where xi 

is 1 and –1 if the genotype of  the  individual at the ith marker locus is MiMi and Mimi, 

respectively. The linear model for yi is 

ij

m

j ij exy ++= � =
βµ

1
                                                                                            (5-3) 

where m is the total number of markers in the entire genome, xij is a dummy variable 

(defined by 1 and -1 ) indicating the genotype of the jth marker for individual i, jβ    is the 

QTL effect associated with marker j, and e is residual. jβ  are chosen so as to give the 

linear function of x with maximal covariance with phenotype, and therefore, with genetic 

value z.  Identifying QTL from the markers under investigation using the above multiple-

linear-regression model is equivalent to selecting variables xj, which have non-zero 

coefficients jβ .                                                                       

5.5.2 Mixed model for multiple markers 

 Herein a mixed model approach equivalent to model (5-3) is used which treats the 

size of the QTL, a, as random rather than fixed. It is assumed that a ~N(0, 2
aσ ). 2

aσ  is 

estimated in the random effects model. Therefore, the related mixed model for the genetic 

model (model 5-4) can be written in matrix notation as below: 

y = X� + Zu+ e                                                                                                       (5-4) 

where y is a column vector containing the phenotype values for a trait measured in n 

individuals. It is assumed that this linear mixed model with p×1 vector of fixed effects (�) 

and m×1 vector of random effects (u) describes the observations adequately. The elements 

of the vector u are the marker effects. X and Z are, respectively, n×p and n×m incidence 

matrices, and e is the n×1 column vector of residual deviations assumed to be distributed 

independently of the random effects. Usually, all of the elements of the incidence matrices 

are equal to 0 or 1, depending upon whether the relevant effect contributes to the 

individual’s phenotype. Herein, Z is a matrix containing marker scores with values of 1 

and –1.    

Since E(u) = E(e)= 0, by definition, E(y)= X�. Denote the n × n covariance matrix 

associated with the vector e of residuals by R and the m×m covariance matrix associated 

with the vector u of random effects by G. Under the assumption that u and e are 

uncorrelated, the distribution and the covariance matrix of the data vector y is  
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),(~ HX�y N                                                                                                          (5-5) 

where H= ZGZ' + R.       

It is assumed that the residuals have constant variance and are uncorrelated, so that R 

is a diagonal matrix, with R= I2
eσ  where I is identical matrix. 

G = M2
mσ  where M could be a known matrix reflecting the marker correlation 

coefficients.  

[ ]ff ′= �M ,   ( f and mf ,...,2,1=′  ) 

In the above formula, m is the total number of markers and ffff r ′′ −= 21�  is the 

correlation coefficient between marker fm and marker fm ′ . ffr ′  is the recombination 

frequency between marker loci f  and f ′ . 

Note that the marker effects are not correlated; it is the marker covariables that are 

correlated. All of the markers of the entire genome are fitted simultaneously as random 

effects, allowing one variance for the entire genome. The correlation structure exists 

among the marker covariates within a linkage group, but a correlation structure on the 

estimated sizes is not imposed because the aim is simply to shrink the marker effects 

according to the size of any QTL that they reflect. Hence, G = I2
mσ . The linkage 

information is utilized in so far as associating the markers with linkage groups and 

imputing the missing marker data using an approach based on Martinez and Curnow 

(1994). The missing markers were replaced by their expected marker-type, conditional on 

the marker-type of the two markers flanking the marker and the map distances to those 

markers.  

5.5.3 Estimation of the parameters 

The estimates of the fixed and random effects in equation (5-4) are obtained as 

solutions to the mixed-model equations (Lynch and Walsh, 1998), which are given by 
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This leads to best linear unbiased estimates (BLUES) of the fixed effects, 

yHXXHX� 111 )(ˆ −−− ′′=                                                                                            (5-7) 
and best linear unbiased predictors (BLUPs) of the random effects , 

 )ˆ(~ 1 �XyHZGu −′= − .                                                                                            (5-8) 
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Since R= I2
eσ and G = I2

mσ , implying IR 21 −− = eσ  and G = I2−
mσ , respectively, the 

mixed model equations (model 6) reduce to 
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where
22
me σσλ = .  

The estimation process to obtain the variance components ( 2
eσ and 2

mσ ), BLUPs and 

BLUEs involves an iterative approach. The most popular method for estimation of the 

variance parameters in linear mixed models is residual maximum likelihood (REML) 

(Patterson and Thompson, 1971). REML estimation of the variance parameters involves 

maximization of the residual log-likelihood that can be written as 

{ }PyyXHXH ′+′+−= −1loglog
2
1

R�                                                              (5-10) 

Let  �  denote the vector of variance parameters in G and R; then the score for  �  is 

given by 

{ },)(
2

1
)( ii

i

R
iR trU PqyPH

�
� ′−−=

∂
∂

=
�

                                                        (5-11) 

where ii �HH ∂∂=  and PyHq ii =  is the working variate for i� . 

The REML estimate of �  is obtained by solving the system of equations 0� =)(RU . 

In general, this requires a numerical solution. Given an estimate 0� =)(RU , an update can 

be obtained as 

)( )()()()1( m
R

mmm U �][I�� 1−+ +=                                                                           (5-12) 

where )(mI  is an information matrix for �  evaluated at )(m� . Patterson and Thompson 

(1971) used a Fisher Scoring algorithm that requires calculation of the expected 

information matrix. The Fisher Scoring algorithm is very computer-intensive, and may be 

inefficient for large data sets or complex variance models. Several other algorithms have 

been developed that are less computer-intensive and employ sparse matrix methods (Cullis 

et al., 2004).  

In this study, the average information algorithm (Gilmour et al., 1995) as 

implemented in the commercial software ASReml (Gilmour et al., 2006) was used to 

estimate the variance components. This software does not use (5-5) for REML estimation 
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of variance parameters, but rather uses a distribution free of � , essentially based on error 

contrasts or residuals following Verbyla (1990). 

The average information algorithm is a modified Fisher Scoring algorithm in which 

the expected information matrix is replaced by an approximate average of the observed and 

expected information matrices as given in (5-13). 

PQQI ′=
2
1

                                 (5-13) 

where ]...[ 1 iqqQ =  and iq  are working variates corresponding to iq  as shown above. The 

calculation of the score and working variables for variance component parameters is 

detailed in Gilmour et al. (1995). 

5.4.4 Significance thresholds 

Evidence for a QTL 
The first step is to fit model (5-4) where markers of the entire genome are fitted 

simultaneously as random regression genetic effects, allowing one variance for the entire 

genome.  Under the null hypothesis of no QTL, since the markers are neutral, there should 

be no variance associated with markers. The alternative is that one or more QTL occur on 

the genome. Then, all of the marker covariables in general, and in particular, those closest 

to the QTL, will take up some of the variation caused by the QTL, thereby inflating the 

variance component of the random regression term, 2
mσ . So, if the random regression term 

is significant, there is evidence for a QTL in the genome, and the process continues to 

locate QTL (as detailed in the following section). If there is no significant variance 

component, there is no evidence of QTL, and the process is terminated. The appropriate 

test for the variance of the marker random regression is the REML likelihood ratio test 

which is the one-sided test for which –2 times the change in the logarithm of the likelihood 

ratio is distributed as a mixture of 2
0χ   and 2

1χ  with a 5% critical value of 2.79 (Stram and 

Lee, 1994). 

Locating the QTL 
Once the significance of the marker random regression is established, the next stage 

is to detect the most likely marker linked to the QTL. The BLUPs of the marker effects 

contain all the information on the QTL. In a fixed effect model, the flanking markers 

would explain all the QTL variation. However, in a mixed effect model, the QTL effect is 
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dispersed (unevenly) over all the markers because they are all correlated to some degree 

with the QTL and each marker effect is shrunk (Gilmour, 2007). In the present study, in 

order to locate the QTL, individual marker effects were assessed using a probability 

statement regarding the marker size of effect, u, given the data. Following Verbyla (2003):  

),0(~~ 2
PENuu σ−                                                                                                (5-14) 

),~(~ 2
2 PEuNu σy                                                                                              (5-15) 

where y2 is the portion of the data that defines the residual likelihood, u~  is the best linear 

unbiased predictor of u, and 2
PEσ  is the prediction error variance. The relevant probability 

statement is: 

{ })0(),0(min 22 yy >< uPuP                                                                             (5-16) 

which can be calculated based on the normal distribution given in (5-15) as:  

)
~0~

()0(
PEPE

uuu
PuP

σσ
−>−=>   or 

)
~

()0(
PE

u
ZPuP

σ
−>=<             )1,0(~ NZ                                                        (5-17) 

A small probability indicates that the distribution of u given the data has a 

distribution that is centred away from zero, and hence, provides evidence that a QTL is 

close to that marker. These probabilities were converted to log scale using (5-18) (Fisher, 

1954) 

 -2ln[ )
~

(
PE

u
ZP

σ
−

� ]                                                                                               (5-18) 

This quantity is a distributed 2χ value with two degrees of freedom (Fisher, 1954). 

Thus, dividing the values obtained from (5-18) by 4.6 will give an equivalent LOD score 

for each marker point. 

One way to locate QTL is choosing markers, which have reached a pre-defined LOD 

score threshold, but this will create problem of choosing an appropriate threshold. In the 

approach herein, however, the marker with highest LOD score is chosen and based on the 

map information, a QTL covariate is calculated and added to the fixed effect part of the 

model (5-4), �, and the above process is repeated. If there is only one QTL and its location 

has been identified, the marker variance will become non-significant (based on likelihood 

ratio test) in the presence of the QTL covariate, confirming the location. The correct 

variance model must be used for any formal testing of the QTL. If the QTL does not 
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remove all the marker variance, the standard Wald F statistic will assume the residual 

marker variance is the appropriate divisor and the QTL effect may not appear significant. 

The appropriate test is performed when any residual marker variance is not fitted in the 

model since the markers in themselves are assumed neutral. However, the QTL covariate 

may not explain much or all of the marker variation, leading to the need for further 

investigation. If there is another QTL not near the first QTL, then the QTL covariate may 

have explained a substantial amount of the marker variance, but what remains will indicate 

the location of the second QTL. A covariate is added for the second QTL and the process 

repeated until the random marker variance becomes effectively zero (that is, non- 

significant). 

5.6 Mixed model for multivariate multiple markers 

Suppose that p traits are measured in n individuals. The (np) × 1 dimensional column 

vector of observations is constructed by concatenating the univariate vectors, where the ith 

element of the column vector yj corresponds to the observations of trait j in the ith 

individual.  The model for combined vector of data across traits is given by:  

   yj = Xj�j + Zjuj+ ej                                                                                             (5-19) 

where there are qj fixed effects associated with trait j so that Xj and �j have, respectively, 

dimensionality n×qj and qj × 1 for each character. uj
(bj × 1)

 is vector of random effects 

associated with trait j. Assuming there is a single measurement for each trait in each 

individual, Zj = I, the mixed model can then be written as 
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It is assumed that the joint distribution of (uj, ej) is Gaussian with zero mean and 

variance matrix 

�
�
�

�
�
�
�

�

)(
)(

φ
γ

θ
j

j
j R0

0G
                                                                                             (5-21) 

where jθ  is a scale parameter which in the case of multiple trait or multi-trials is fixed to 

one. However, in mixed effects models with a single residual variance, jθ  is equal to the 
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residual variance ( 2σ ). γ  and φ  are vectors of variance parameters. The distribution of 

the data vector yj is thus,  

),(~ HX�y N                                                                                                        (5-22) 

where H= ZGZ' + R.       

R is (np) × (np) covariance matrix associated with the total vector ),...,( 1
T
p

TT eee =  of 

residuals errors. G is covariance matrix associated with the total vector ),...,( 1
T
p

TT uuu =  of 

random effects. First, consider the vector of residual effects, Te . While residual deviations 

for the same trait measured in different individuals can often be assumed to be 

uncorrelated, this is not necessarily the case for different characters measured in the same 

individual, which can exhibit an environmental correlation. The covariance matrix between 

ei and ej can be written as Iee� ijji σ=),( , where ),(2 jiEij σσ =  is the environmental 

covariance between traits i and j as expressed in the same individual. Let �  be the p × p 

covariance matrix of within-individual environmental effects, with the ijth elements 

being ),( jiEij σσ = . In the Kronecker product notation, the covariance matrix R for the 

total vector of errors, Te is  

I�R ⊗=                                                                                                              (5-23) 

Thus, although R is (np) × (np), its inverse, 1−R , can be computed from the inverse 

of a much smaller p × p matrix.  

The covariance matrix G, for the ith random term, has many possible forms. In the 

most general case, G could be completely unstructured, comprising 2)1( +ii bb  

parameters. As stated by Smith et al. (2001), interaction terms may be regarded as a vector 

representation of a ti dimensional array of effects, where ti is the number of factors in the 

interaction. The variance structure for the jth dimension is Gij. As with a single dimension 

random effect, Gij may take a range of forms. In the model herein, the interaction term is 

trait by marker. Let mu  be the mp × 1 vector of the effects of m markers for p traits. A 

general form for the variance structure of the interaction term is   

mpg GGu ⊗=)var(                                                                                                (5-24) 

where Gp and mG  are positive definite symmetric matrices of dimension p×p and 

m×m, respectively. The matrix Gp = ( )Mjjσ  is the marker variance matrix. The diagonal 

elements are the marker variances for traits and the off-diagonal elements are the marker 
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covariances between pairs of traits. mG  would be a known matrix reflecting the marker 

correlation coefficients.  

As mentioned above, a correlation structure is not imposed on the estimated effects 

because the aim is simply to shrink the marker effects according to the size of any QTL 

that they reflect. Hence, mG = mI  and in the Kronecker product notation, variance of trait 

by marker interaction term, var( gu ), is 

mp IGu ⊗=)var( g                                                                                                (5-25) 

The model (5-25) implies that trait × marker effects are correlated between traits.  

Separating the marked genetic effects from other random terms, including non-marked 

polygenic effects, the mixed model (5-19) can then be written as 

jgjgjjjjjj euZuZ�Xy +++= 00                                                                       (5-26) 

where ugj are the marker effects for trait j with associated design matrix Zgj (n × mp) and 

variance matrix as in (5-25). u0j comprise any additional random effects (including non-

marked polygenic effects) with associated design matrix Z0j and variance matrix G0.   

A simple structure for Gp is a diagonal model (DIAG), assuming the markers effects 

for different traits are regarded as independent so that Gp=diag( )Mjjσ , j=1…p.  The most 

general form for Gp is the unstructured variance model which contains p(p+1)/2 

parameters (i.e. the number of parameters to be estimated increases quadradically with the 

number of traits). This model will provide the best fit (in a likelihood sense) to the data.  

However, in cases with a large number of traits and markers, it is difficult to ensure that 

REML estimates of the variance parameters for such a complex variance model remain 

within the parameter space. Also estimation of such a structure may be inefficient for a 

large number of traits and markers so a more parsimonious structure is desirable. This can 

be achieved using a factor analytic model for the marker effects across traits. The factor 

analytic model with sufficient multiplicative terms can provide a good and parsimonious 

approximation to the unstructured form and is generally more computationally robust 

(Thompson et al., 2003). Even for small number of traits, a factor analytic structure is 

preferred for Gp as given the purpose that is finding pleiotropic QTL and also trait-specific 

QTL. 
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5.6.1 The Factor analysis model 

Factor analysis is a branch of multivariate analysis that is concerned with the internal 

relationships of a set of variates. Initially it was developed mainly by psychologists, and 

was primarily concerned with hypotheses about the organization of mental ability 

suggested by the examination of correlation or covariance matrices for sets of cognitive 

test variates (Lawley and Maxwell, 1971).  

The Factor Analysis latent variable model (Johnson and Wichern, 1998) is a method 

intended to describe the covariance relationships among many variables in a multivariate 

data set in terms of a few underlying, but unobservable, random quantities called factors. 

There are two types of factor analytical models, orthogonal (factors are uncorrelated) and 

oblique (factors are correlated).  

Factor analysis is based on a statistical model. The general factor model is linear in 

the common factors, � , and is presented in equation (5-27).  

)1()1()()1()1( ××××× +=− pmmppp ���	y                                                                    (5-27) 

In this model, the vector y represents a multivariate observation, µ a vector of means, 

�  a matrix of factor loadings ( ijλ  is loading of the ith variable on the jth factor), �  a 

vector of common factors, and �  a vector of specific, or residual, factors. The vectors �  

and �    are generally not observed and assumed independent. With so many unobservable 

quantities, a direct verification of the factor model from observations on y1, y2,…,yp is 

hopeless. However, with some additional assumptions about the random vectors �  and � , 

the model in (5-27) implies certain covariance relationships, which can be checked.  

Usually, factors are scaled to have unit variances.  

E (� )= 0 (m×1), Cov (� )=E [ �� ′ ]= I (m× m) 

E (� )= 0 (p×1), Cov (� )=E [ �� ′ ]= )( pp×
  where 
  is a diagonal matrix of specific, or 

residual, variances (Johnson and Wichern, 1998). Under these assumptions, the covariance 

structure for the model  (5-27) is 

Cov(y)= 
�� +′  and Cov( �y ′, )=� .                                                                  (5-28)      

A property of the factor loading matrix is that it can be rotated by an orthogonal 

matrix without loss of information (i.e. the covariances or correlations between variables 

are maintained following rotation). The portion of the variance explained by the retained 

factors for a specific variable is termed the communality and the portion not explained by 

the retained factors is called the uniqueness or specific variance. The ith communality is 
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the sum of squares of the loadings of the ith variable on the m common factors (Johnson 

and Wichern, 1998).  

In a mixed model setting, multiplicative models for random interaction terms induce 

correlations between the interactions. Factor analytic variance structures have been 

proposed for genotype by environment effects in mixed model analyses of data from multi-

environment trials (Cullis et al., 1998; Smith et al., 2001; Smith et al., 2005; Thompson et 

al., 2003). Smith et al. (2001; 2005) use a factor analytic structure to model variety by 

environment interactions, whilst simultaneously estimating a separate spatial correlation 

structure for the errors for each trial. Herein, the same formulation as Smith et al. (2001; 

2005) was used to explain the application of factor analysis in modelling trait by marker 

effects.  

When applied to the marker effects for each trait, the factor analytic model for 

marker effects, gu  will be 

��I��I�u +⊗++⊗= kmkmg )(...)( 11                                                           (5-29)  

where )1( ×m
r�  are a few, random quantities called factors (r=1…k<p), the coefficients 

)1( ×p
r�  are known as loadings, and )1( ×mp�  is the vector of residuals or lack of fit for the 

model.  

Equation (5-29) has the form of a random regression on k trait covariates k�� ,...,1 . 

However, the underlying, but unobservable, difference between this equation and standard 

random regression problems is that in this formulation both the covariates and the 

regression coefficients are unknown and therefore, must be estimated from the data (Smith 

et al., 2001) .  

Matrix notation allows the entire system of equations to be written quite compactly 

as  

��I�u +⊗= )( mg                                                                                                (5-30) 

Considering the full model (5-26) the distribution of (� ,� , e) is assumed to be 

multivariate normal, with mean the zero vector and variance matrix 
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where 
  is a diagonal matrix with elements ),...,,( 21 pψψψ  and iψ   is known as the 

specific variance for the ith trait. The variance matrix for the marker effects for each 

trait, )var( gu , is then given by 

mmmg I
���I��I�u ⊗+′=+⊗′⊗= )()var()()var()()var(                         (5-32)   

  Researchers may be interested only in � (e.g., in modelling variety by environment 

interaction in plants). However, herein both � and � are of interest.      

5.6.2 Estimation of the parameters 

Estimates of the fixed and random effects in equation (5-26) are obtained as solutions to 

the mixed-model equations (Smith et al., 2001), which are given by 
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This leads to best linear unbiased estimates (BLUEs) of the fixed effects, 

yHXXHX� 111 )(ˆ −−− ′′=                                                                                          (5-34) 
 
and best linear unbiased predictors (BLUPs) of the random effects , 

PyZIGu mg gp ′⊗= )(~                                                                                            (5-35) 

where  RZIGZH +′⊗== pmppy )()var(                                                                  (5-36) 
and  

11111 )( −−−−− ′′−= HXXHXXHHP                                                                       (5-37) 
In practice, BLUEs and BLUPs and the variance components are obtained through an 

iterative scheme (as in section 5.5.3). However, extra calculations in a factor analytic 

model are parameters in �  and 
 . In practice, the parameters in �  and 
  are usually 

unknown and require estimation from the experimental data. The number of parameters in 

the factor analytic model with k terms is given by pk+p-k(k-1)/2. Estimation in factor 

analysis is a two-stage procedure. First, the parameters in the model are estimated, and 

then these are used to provide estimates of individual factor scores. 

The use of model (5-32) for marker effects can lead to models with variance 

structures of less than full rank, which may occur when estimates of one or more specific 

variances tend to zero. In the literature on factor analysis, this is known as the Heywood 

case (Johnson and Wichern, 1998; Lawley and Maxwell, 1971). In this situation, REML 

estimation using the average information algorithm (Gilmour et al., 1995) or other standard 

algorithms is no longer possible.  
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Thompson et al. (2003) presented a sparse implementation of the average 

information algorithm for REML estimation of  the factor analytic variance parameters. 

The algorithm is computationally efficient as exploits the regression underpinning the 

factor analytic model thereby facilitating substantial time savings. Additionally, the 

(commonly occurring) case of factor analytic variance structures with less than full rank 

(reduced rank variance models) has been accommodated in the algorithm, which is useful 

in the multivariate analysis. The algorithm has been implemented in ASReml (Gilmour et 

al., 2006) and can be accessed via the "XFA" variance model. 

5.6.3 Significance thresholds 

Testing for pleiotropic QTL  
The first step is to fit model (5-26) where markers of the entire genome are fitted 

simultaneously as random regression genetic effects, considering two covariance models 

for Gp (The diagonal covariance model (DIAG) and the factor analytic model with one 

factor (FA1)). The DIAG model implies no marker covariance between traits (that is, the 

traits are independent with heterogeneous variances).  

Since DIAG and FA1 are nested models, the REMLRT statistic, �∆2                               

(twice the log likelihood difference) can be approximated by the 2χ distribution with the 

degree of freedom equal to the difference in the number of free parameters in the two 

nested models (Stuart et al., 1999). 

Rejection of the null hypothesis would provide supporting evidence for the existence 

of either QTL that cause pleiotropic effects or multiple linked QTL. Under the null 

hypothesis of no pleiotropic QTL, since the markers are neutral, there should be no 

covariance associated with markers. The alternative is that one or more QTL affecting two 

or more than two traits occur on the genome. Then, all of the marker covariables in 

general, and in particular, those closest to the QTL, will take up some of the covariation 

caused by the QTL, thereby inflating the covariance component of the random regression 

term. So, if a likelihood ratio test is significant for a FA1 model for the trait by random 

regression marker effects, there is evidence for at least one pleiotropic QTL in the genome, 

this will be fitted as a fixed covariate and the process continues. If there is no significant 

FA1 model for this term, then there is no evidence of pleiotropic QTL, and the process is 

terminated. 
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Locating the pleiotropic QTL  
Once the significance of covariance for the marker random regression is established 

by the factor analytic model, the next stage is to detect the most likely marker linked to the 

pleiotropic QTL. In order to locate pleiotropic QTL, individual marker effects for 

individual traits and the factor are converted to LOD scores using (5-18). The marker with 

highest LOD value for the factor is considered and based on the map information, a QTL 

covariate is calculated and added to the fixed effect part of the model (5-26) nested within 

traits. If there is only one pleiotropic QTL and its location is identified, the FA1 model for 

the marker covariance will become non-significant in the presence of the QTL covariate, 

confirming the location. However, the QTL covariate may not remove all the marker 

covariance leading to the need for further investigation. If there is another pleiotropic QTL, 

then the QTL covariate may have explained a substantial amount of the marker covariance, 

but the remaining marker covariance will indicate the location of the second pleiotropic 

QTL. A covariate is added for the second pleiotropic QTL and the process is repeated until 

the random marker covariance becomes effectively zero (that is, non significant FA1 

model compared to the DIAG model). In this stage, only the QTL affecting individual 

traits (that is, trait specific QTL) remain. In order to locate the trait specific QTL, the 

analysis is continued using the univariate analysis framework (explained in section 5.5), 

fitting the detected pleiotropic QTL as fixed covariates and testing the marker variance for 

that specific trait.       

5.7 Simulation study 

To investigate the behavior of the approach, extensive simulation studies were 

conducted. The genetic and statistical models used for creating the simulated data were 

similar to (5-1) and (5.3), respectively. The variance of model (5-1) can be written as:  

Var(y)=VA + VE                                                                                                        (5-38) 

where VE, residual variance, was considered as unity. VA is additive genetic variance and 

based on the general model of Cockerham (Cockerham, 1954) can be obtained by 

)21(
2
1

4
1 2

ijj
ji

i
i

iA rV −+= �� ααα
�

                                                                         (5-39) 

where rij  is the recombination frequency between QTL i and QTL j, and α  is QTL allele 

substitution effect. 

To assess the empirical type I error rate of the overall test of evidence for QTL, a 

normally distributed quantitative trait was considered with a residual standard deviation of 
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unity, with individuals being assigned a random value from this distribution. 1000 

populations were generated under the null hypothesis ( 02 =mσ ) with 100, 150, 200 and 

250 individuals. The simulation scheme for this part of the research involved 11 markers at 

10 cM intervals on 9 chromosomes, each with a length of 100 cM with no QTL.   

To examine the power of the REMLRT, replicate data sets were simulated under H1 

and analysed to see whether H0 was rejected by REMLRT. 1000 populations with 100, 

150, 200 and 250 individuals were generated. 11 markers at 10 cM intervals on 9 

chromosomes each with a length of 100 cM and four QTL having equal size of effects 

were simulated (Two QTL on chromosome 1 at 30 and 70 cM, one QTL on chromosome 3 

at 50 cM and one QTL on chromosome 5 at 0 cM). Three heritabilities were considered for 

a normally distributed trait ( 2h = 0.25, 2h = 0.30 and 2h = 0.35, giving the size of effect for 

each QTL as 0.5214, 0.5916 and 0.6631 units, respectively). 

To investigate the power of the FA1 model, four normally distributed quantitative 

traits were considered, each with a residual standard deviation of unity, with individuals 

being assigned a random value from this distribution. The simulation design was based on: 

sample sizes of 125, 250, 500 and 750, a total chromosome number of 8, 6 markers for 

each chromosome, and an average marker distance of 20 cM and 1000 replications. 

Inheritance of all loci was determined assuming random assortment and that recombination 

events occurred independently, allowing use of Haldane’s mapping function (Haldane, 

1919). A total of 10 QTL were set (Tables 5.1 and 5.2) for the whole genome. Among 

these QTL, there are two QTL with pleiotropic effects. Three sets of simulations for each 

population were generated, QTL with small effects, QTL with medium effects and QTL 

with large effects, in which each QTL (on average) explains 7, 10 and 13 %, respectively, 

of the phenotypic variance in the backcross. The variation explained by all the QTL for the 

four traits was the same. However, the traits had different heritabilities because the four 

QTL were simulated for traits 1 and 2 and three QTL for traits 3 and 4 (Table 5.2). Two 

QTL were set in repulsion phase on chromosome 6 affected trait 2. Two QTL on 

chromosome 5 in coupling phase affected trait 1. Two QTL on chromosome 8 in coupling 

phase affected trait 4. One QTL in the centromeric position (first marker) of chromosome 2 

and another QTL in the telomeric end of chromosome 7 (last marker) both affected trait 2.  
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Table 5.1 Simulated pleiotropic and trait specific QTL. 

  QTL1 QTL2 QTL3 QTL4 QTL5 QTL6 QTL7 QTL8 QTL9 QTL10 
  Chr1 Chr2 Chr4 Chr5 Chr5 Chr6 Chr6 Chr7 Chr8 Chr8 

Position (cM) 20 0 60 20 80 20 60 100 40 80 
Trait 1 PLTC  PLTC COUP# COUP#      

Trait 2  # PLTC   REPL# REPL#    

Trait 3 PLTC  PLTC     #   

Trait 4 PLTC        COUP# COUP# 
PLTC: Pleiotropic QTL. #: Trait specific QTL. COUP: Two linked QTL in coupling phase, REPL: Two linked QTL in repulsion phase   

Table 5.2 Simulated QTL effects on four traits. 
      QTL       
  QTL1 QTL2 QTL3 QTL4 QTL5 QTL6 QTL7 QTL8 QTL9 QTL10  

QTL 
Size 

Chromosome 1 2 4 5 5 6 6 7 8 8  

 Position  
(cM) 

 
20 

 
0 

 
60 

 
20 

 
80 

 
20 

 
60 

 
100 

 
40 

 
80 

 
2h  

Smalla             
 Trait 1 0.5896d  0.5896 0.5896 0.5896      0.28 
 Trait 2  0.7182 0.7182   -0.7182 0.7182    0.28 
 Trait 3 0.6030  0.6030     0.6030   0.21 
 Trait 4 0.5290        0.5290 0.5290 0.21 
             
Mediumb             
 Trait 1 0.7612  0.7612 0.7612 0.7612      0.40 
 Trait 2  0.9273 0.9273   -0.9273 0.9273    0.40 
 Trait 3 0.7559  0.7559     0.7559   0.30 
 Trait 4 0.6631        0.6631 0.6631 0.30 
Largec             
 Trait 1 0.9703  0.9703 0.9703 0.9703      0.52 
 Trait 2  1.1821 1.1821   -0.1821 1.1821    0.52 
 Trait 3 0.9233  0.9233     0.9233   0.39 
 Trait 4 0.8099        0.8099 0.8099 0.39 
a Each QTL on average accounted for 7%  of phenotypic variation, b Each QTL on average accounted for 10% of phenotypic variation, c 

Each QTL on average accounted for 13% of phenotypic variation.  d QTL allele effect in units,   
 

5.7.1 Simulation Procedure  

The phenotype of an individual is composed of its random residual component plus 

any genetic effect. The marker genotype data and trait value for each individual can be 

produced according to the mapping information and the QTL information. The basic 

simulation strategy is to step along the chromosomes and treat the marker positions and 

QTL positions alike. The difference between marker and QTL is that if a marker is 

reached, the marker genotype (0 or 1) is recorded. For a QTL, the additive and epistatic 

effects of the QTL are added to the trait value for the current individual.  

For each individual, the simulation starts from the first marker of each chromosome. 

By 50% chance, the first marker genotype will be 0 or 1 and is recorded. At the next 

marker or QTL position, the chance of obtaining a certain genotype is according to the 

recombination frequency between previous position and the current position. For example, 

if the distance between these two positions is 10cM and the Haldane map function has 
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been used, the recombination frequency is 0.091. Therefore, the current genotype will be 

different to the previous one with probability of 9.1%. After deciding the genotype for 

current position, the genotype value is recorded or the QTL additive effect is added to the 

trait value. The procedure continues until all markers and QTL have been reached. After 

adding the trait mean and the random residual effect, the trait value for current individual is 

obtained.  

5.7.2 Simulation results 

 Global type I and II errors 
A type I error (�) occurs if the null hypothesis H0 is rejected when it is actually true. 

The type I error may be higher than the specified “nominal � level” or, conceivably, may 

be lower than this level. A test is accurate if the type I error rate is not greater than the 

nominal � level. In the absence of a QTL, it is expected to observe 5% of the analyses 

resulting in significant marker random regression variance (this being the type I error 

accepted in setting the significant thresholds in the first part of the method). The empirical 

size of the REML likelihood ratio test (REMLRT) obtained (Table 5.3).   

The type II error of a test (�) occurs if the test fails to reject H0 when it is false. The 

power of a test is defined as 1-� and is equal to the probability of rejecting H0
 given that H0 

is wrong and that the alternative hypothesis H1
 is correct. The results showed that the 

REMLRT is powerful in testing 2
mσ , though the power can be low with low sample size 

and small QTL size of effect (Table 5.3). 

Table 5.3 Type I and type II error rates of the REMLRT. 

Sample size Type I error a  Type II error b  
  h2=0.25 h2=0.30 h2=0.35 

100 0.046 0.130 0.058 0.018 
150 0.040 0.010 0.004 0.000 
200 0.032 0.001 0.000 0.000 
250 0.039 0.000 0.000 0.000 

aThe proportions of replicates which likelihood ratio test statistic exceeding 2.79 (i.e, �=0.05), bThe 
proportions of replicates which the test fails to reject H0 when it is false.   
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Univariate vs. multivariate  

Power of pleiotropy test 

In terms of the trait by markers effects, a DIAG model and a factor analytic model 

with k=1 factor (denoted FA1) was fitted sequentially.  In the simulation study, the DIAG 

model had 4 parameters and the FA1 model had 8 variance parameters (4 loadings and 4 

specific variances for four traits). As the QTL size of effect increased the marker variance 

estimated from DIAG model for all four traits increased (Table 5.4).  In all cases, the 

marker variances for traits 1 and 2 were higher than those of traits 3 and 4, a result which 

one would expect as the heritability for these later traits was lower than that of the former 

(Table 5.2). Since two pleiotropic QTL were simulated (QTL1 and QTL3) for traits 1 and 

3 and only one of them was considered to affect one of the traits 2 or 4 (QTL1 for trait 4 

and QTL3 for trait 2), the factor loadings on trait 1 and 3 were higher than those for traits 2 

and 4. 

Three specific QTL (QTL2, 6 and 7) were simulated for trait 2 and only one specific 

QTL was simulated for trait 3 (QTL8). This fact was reflected in their specific variances so 

that, in general, traits 2 and 3 had highest and lowest, respectively, specific variances 

among four traits (Table 5.4). It should be noted that in a few of the replicates, the 

estimated marker variance using DIAG model for small populations and small QTL size 

was on the boundary for one trait; that is, it was estimated as zero. Also in some replicates, 

using the FA1 model led to zero estimation of specific variances for one or two traits when 

the sample size and QTL effect were small.   
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Table 5.4 Mean loadings (×10), and marker variances (×100) estimated for four traits and 
averaged over 1000 replicates. 

a  Each QTL accounted for 7%  of phenotypic variation, b Each QTL accounted for 10% of phenotypic variation,c Each QTL accounted 
for 13% of phenotypic variation 
 
 

QTL Effect Sample Size Trait FA1 model  DIAG model 
   Loadings Specific variance Marker variance 

Smalld      
 125 Trait1 0.61 0.35 0.78 
  Trait2 0.37 0.67 0.92 
  Trait3 0.59 0.18 0.59 
  Trait4 0.23 0.45 0.55 
      
 250 Trait1 0.59 0.35 0.73 
  Trait2 0.35 0.80 0.97 
  Trait3 0.61 0.18 0.58 
  Trait4 0.25 0.43 0.51 
      
 500 Trait1 0.59 0.34 0.71 
  Trait2 0.34 0.89 1.03 
  Trait3 0.61 0.18 0.57 
  Trait4 0.24 0.40 0.47 
      
 750 Trait1 0.60 0.34 0.71 
  Trait2 0.34 0.91 1.04 
  Trait3 0.61 0.18 0.56 
  Trait4 0.24 0.39 0.45 
      

Mediumb 125 Trait1 0.79 0.57 1.24 
  Trait2 0.46 1.27 1.60 
  Trait3 0.75 0.29 0.92 
  Trait4 0.29 0.70 0.82 
      
 250 Trait1 0.76 0.59 1.18 
  Trait2 0.45 1.43 1.68 
  Trait3 0.78 0.27 0.91 
  Trait4 0.30 0.65 0.76 
      
 500 Trait1 0.76 0.57 1.17 
  Trait2 0.44 1.53 1.74 
  Trait3 0.77 0.28 0.89 
  Trait4 0.31 0.61 0.71 
      
 750 Trait1 0.77 0.56 1.18 
  Trait2 0.44 1.56 1.76 
  Trait3 0.78 0.28 0.89 
  Trait4 0.31 0.59 0.69 
      

Largec 125 Trait1 0.99 0.91 1.95 
  Trait2 0.58 2.24 2.70 
  Trait3 0.92 0.44 1.36 
  Trait4 0.35 1.02 1.17 
      
 250 Trait1 0.98 0.92 1.89 
  Trait2 0.57 2.43 2.80 
  Trait3 0.95 0.42 1.35 
  Trait4 0.37 0.94 1.09 
      
 500 Trait1 0.97 0.93 1.91 
  Trait2 0.56 2.53 2.86 
  Trait3 0.95 0.41 1.33 
  Trait4 0.38 0.89 1.03 
      
 750 Trait1 0.98 0.95 1.93 
  Trait2 0.55 2.56 2.88 
  Trait3 0.96 0.41 1.32 
  Trait4 0.38 0.86 1.01 
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Since the DIAG model is nested within the FA1 model, a direct comparison can be 

made using a REML likelihood ratio test. Herein, the power of the pleiotropic test is the 

chance of detecting a common factor (pleiotropic QTL) if that factor really exists. Thus, 

the power of the pleiotropic test was defined as the number of analyses (out of 1000 

replicates) resulting in a significant FA1 model compared with the DIAG model. The 

power of the test depended on sample size and QTL size of effect (Figure 5.1). For a given 

QTL effect, as the population size increased, the power of the test increased and there was 

low power when both QTL effect and sample size were small. A population size of 500 

seems to be a critical limit, in which for the small QTL considered in the simulation study, 

the test can reach up to 80% power. When small QTL were considered, in order to reach a 

power more than 95%, the sample size needs to be increased to 750 individuals. However, 

only a small number of real QTL experiments have this number of individuals.  
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Figure 5.1 Observed statistical power (proportion of replicates with significant (P<0.05) 
FA1 model compared with DIAG model) for the pleiotropy model test. 

 

Power of QTL detection and false positives 

A true positive was declared whenever the LOD score for a marker reached the pre-

defined criterion (LOD=2) and a QTL was present at that marker. Conversely, a false 

positive was declared whenever the LOD score for a marker reached to the pre-defined 

criterion but a QTL was absent at that marker. In addition, to avoid of identifying adjacent 

markers as QTL, it was required that the LOD score dropped by at least 1.0 between 

‘peaks’ before declaring that two linked markers were identified as a QTL.  
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Figure 5.2 Comparison of the power of univariate (Uni) and multivariate (FA1) for QTL 
detection. The power was defined as average number of QTL detected for each trait 
divided by the number of QTL present. 
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The power of the experiment was calculated as the average number of QTL detected 

divided by the number of QTL present. The results showed that the ability to detect QTL 

using both univariate and multivariate analyses was strongly influenced by the QTL size of 

effect, and sample size so that the power to detect QTL improved significantly with 

increasing sample size and QTL effect (Figure 5.2 and Tables 5.5-5.8). 

The overall power of detecting a QTL using the FA1 model was generally higher 

than that obtained in the univariate analysis. The power of QTL detection using the FA1 

was 100% or was almost 100% when the relative QTL effect was large or a relatively large 

sample size was considered. The increasing power using the FA1 model was more evident 

when two pleiotropic QTL were affecting the trait (Traits 1 and 3, Figure 5.2).  For the 

large sample size and large QTL effect, the two methods had relatively similar power to 

identify QTL.  

The main feature to be noticed (Tables 5.5-5.8) is the higher ability of the FA1 model 

compared to univariate analysis to detect QTL1 and QTL3, which were simulated to have 

common effect on the traits. Multivariate and univariate analyses were equally efficient in 

detecting trait specific QTL with large effects. However, trait specific QTL with small 

effect could only be detected with very low efficiency using both multivariate and 

univariate analyses (Tables 5.5-5.8). In the case of the probability for false QTL detection, 

in general, both methods gave small likelihoods of finding false QTL. The highest 

likelihood of detecting false QTL is for small sample size (Tables 5.5-5.8). 

In the situation where the two linked QTL were in coupling phase, for a few of the 

replicates, both methods tended to choose the marker between two correct markers, 

particularly when the sample size and QTL effect was small. However, in the case of the 

two linked QTL in repulsion phase, declaring the middle marker as the correct marker 

rarely happened.  

Both univariate and multivariate techniques chose a rather low portion of unlinked 

loci to a QTL. This effect not evident with large sample sizes. Both approaches seem quite 

conservative, delivering only about 0-4.7% (univariate) and 0-7.1 % (FA model) of false 

positive unlinked loci.   
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Table 5.5 The power of QTL detection (proportion of significant replicates over all 1000 
replicates) and the probability of false QTL detected under univariate and multivariate 
analysis (Trait 1).  

QTL 
Effect 

Sample 
Size 

 
Model 

   
QTL 

 
 

       
 

        Pleiotropic a Linked b  False QTL c 
   1 3 4 5 One All One Two One Two Lk Uk Total 

Small                
 125 UNI d 5.6 6.4 9.7 9.2 24.6 0.1 11.1 0.9 16.9 2.0 2.1 0.8 2.9 
  FA1 e 28.4 32.6 11.6 11.4 58.2 0.7 48.0 13.0 20.7 2.3 4.2 3.0 7.2 
                
 250 UNI 53.4 50.5 60.2 57.7 95.2 11.0 76.4 27.5 83.6 34.3 8.8 2.2 11.0 
  FA1 83.2 85.3 58.2 55.8 99.3 25.3 96.6 71.9 81.0 33.0 10.7 6.0 16.7 
                
 500 UNI 78.7 79.5 82.0 81.2 99.8 42.2 95.2 63.0 97.2 66.0 2.2 0.1 2.3 
  FA1 95.4 96.3 78.9 80.3 57.8 100 99.8 91.9 95.5 63.7 1.7 1.0 2.7 
                
 750 UNI 95.5 95.8 96.5 96.0 100 84.8 100 91.3 99.8 92.7 0.6 0.1 0.7 
  FA1 99.5 99.7 94.8 96.2 100 90.3 100 99.2 99.9 91.1 0.8 0.2 1.0 
                

Medium 125 UNI 24.6 24.0 29.0 29.3 60.3 2.7 38.2 10.4 47.3 11.0 4.8 1.5 6.3 
  FA1 59.3 65.4 35.1 37.0 92.4 7.4 82.8 41.9 57.2 14.9 6.5 5.2 11.7 
                
 250 UNI 75.3 73.3 79.1 77.1 99.5 35.7 92.8 55.8 95.7 60.5 4.1 0.8 4.9 
  FA1 94.3 93.9 77.0 75.4 100 52.2 99.7 88.5 57.9 94.5 4.4 2.0 6.4 
                
 500 UNI 96.8 97.4 98.2 97.6 100 90.2 100 94.2 100 95.8 1.2 0.1 1.3 
  FA1 99.6 99.7 96.6 97.3 100 93.3 100 99.3 99.9 94.0 1.0 0.4 1.4 
                
 750 UNI 99.7 99.8 99.8 99.6 100 98.9 100 99.5 100 99.4 0.0 0.0 0.0 
  FA1 100 100 99.9 99.4 100 99.3 100 99.3 100 99.3 0.1 0.0 0.1 
                

Large 125 UNI 66.1 65.4 72.3 72.7 98.3 26.4 85.0 45.9 92.8 52.2 7.3 2.0 9.5 
  FA1 88.6 89.8 69.4 70.2 100 41.1 97.7 80.7 90.3 49.3 8.4 5.7 14.1 
                
 250 UNI 92.6 91.7 93.6 93.1 100 74.2 99.5 84.8 99.5 87.2 1.7 0.4 2.1 
  FA1 99.1 98.8 92.1 91.9 100 82.4 99.9 98.0 99.6 84.4 1.6 1.0 2.6 
                
 500 Diag 99.8 99.7 99.9 99.9 100 99.3 100 99.5 100 99.8 0.2 0.0 0.2 
  FA1 100 100 99.9 99.5 100 99.6 100 100 100 99.7 0.4 0.2 0.6 
                
 750 UNI 100 100 100 100 100 100 100 100 100 100 0.1 0.0 0.1 
  FA1 100 100 100 100 100 100 100 100 100 100 0.3 0.1 0.4 

a One: percentage of runs in which at least one of the four simulated QTL was identified, All: percentage of runs in which all four 
simulated QTL were identified, One pleiotropic: percentage of replicates in which at least one of the two simulated pleiotropic QTL was 
identified, Two pleiotropic: percentage of replicates in which both of the two simulated pleiotropic QTL were identified. b One linked: 
percentage of replicates in which at least one of the two simulated linked QTL was identified, Two linked: percentage of replicates in 
which both of the two simulated linked QTL were identified. c Lk: proportion of falsely chosen markers linked to QTL,  Uk: proportion 
of falsely chosen markers unlinked to QTL, Total false QTL: Lk plus Uk. d: univariate. e: Factor analytic model 
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Table 5.6 The power of QTL detection (proportion of significant replicates over all 1000 
replicates) and the probability of false QTL detected under univariate and multivariate 
analysis (Trait 2).  

QTL 
Effect 

Sample 
Size 

 
Model 

   
QTL 

        
 

 

         Repulsion a      False QTL b 
   2 3 6 7 One All One Two Mdl Lk Uk Total 

Small               
 125 UNI c 27.8 16.9 11.3 10.8 41.3 0.8 18.3 3.8 0.0 1.8 0.8 2.6 
  FA1 d 34.6 41.2 14.3 14.8 64.7 1.4 24.3 4.8 0.0 3.0 3.7 6.7 
               
 250 UNI 93.8 80.6 70.8 73.2 99.5 43.6 89.0 55.0 0.5 8.1 4.7 12.8 
  FA1 93.2 90.3 69.9 71.7 99.9 46.6 87.5 54.1 0.6 8.2 7.1 15.3 
               
 500 UNI 99.7 96.5 96.2 96.6 100 89.4 93.1 99.7 0.0 0.8 0.7 1.5 
  FA1 99.5 98.6 95.8 95.9 100 90.3 99.7 92.1 0.0 0.9 1.1 2.0 
               
 750 UNI 100 99.6 99.8 99.8 100 99.2 100 99.6 0.1 0.3 0.1 0.4 
  FA1 100 99.9 99.8 99.7 100 99.4 100 99.5 0.0 0.4 0.3 0.7 
               

Medium 125 UNI 60.6 45.0 35.9 34.9 71.9 12.9 50.3 20.5 0.0 3.4 1.0 4.4 
  FA1 73.8 74.6 45.4 44.1 95.3 17.7 62.4 27.1 0.0 3.5 2.6 6.1 
               
 250 UNI 99.1 94.5 91.6 91.7 100 78.7 98.8 84.5 0.3 3.1 2.3 5.4 
  FA1 99.0 97.3 91.2 91.6 100 80.8 98.7 84.1 0.2 2.8 3.8 6.6 
               
 500 UNI 100 99.9 99.9 100 100 99.8 100 99.9 0.0 0.4 0.3 0.7 
  FA1 100 100 99.9 99.9 100 99.8 100 99.8 0.0 0.3 0.5 0.8 
               
 750 UNI 100 100 100 100 100 100 100 100 0.0 0.1 0.0 0.1 
  FA1 100 100 100 100 100 100 100 100 0.0 0.1 0.0 0.1 
               

Large 125 UNI 96.5 88.5 83.4 81.6 99.9 62.0 94.3 70.7 0.3 6.3 3.0 9.3 
  FA1 95.6 94.0 82.7 81.3 99.9 63.0 94.6 69.4 0.2 6.8 3.9 10.7 
               
 250 UNI 100 99.5 98.8 98.9 100 97.2 100 97.7 0.2 1.2 1.4 2.6 
  FA1 100 99.7 98.7 98.8 100 97.3 100 97.5 0.3 1.1 2.0 3.1 
               
 500 UNI 100 100 100 100 100 100 100 100 0.0 0.1 0.0 0.1 
  FA1 100 100 100 100 100 100 100 100 0.0 0.1 0.1 0.2 
               
 750 UNI 100 100 100 100 100 100 100 100 0.0 0.1 0.0 0.1 
  FA1 100 100 100 100 100 100 100 100 0.0 0.1 0.0 0.1 

a One: percentage or runs in which at least one of the four simulated QTL was identified, All: percentage of runs in which all four 
simulated QTL were identified, One repulsion: percentage of replicates in which at least one of the two simulated linked QTL in 
repulsion phase was identified, Two repulsion: percentage of replicates in which both of the two simulated linked QTL in repulsion 
phase were identified, Mdl: percentage of replicates in which the marker between two linked QTL was chosen. b Lk: proportion of 
falsely chosen markers linked to QTL,  Uk: proportion of falsely chosen markers unlinked to QTL, Total false QTL: Lk plus Uk. c : 
Univariate. d Factor analytic model 
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Table 5.7 The power of QTL detection (proportion of significant replicates over all 1000 
replicates) and the probability of false QTL detected under univariate and multivariate 
analysis (Trait 3).  

QTL 
Effect 

Sample 
Size 

 
Model 

   
QTL 

      
 

 

        Pleiotropic a  False QTL b  
   1 3 8 One All One Two Lk Uk Total 

Small             
 125 UNI c 5.9 6.4 13.3 21.8 0.1 11.3 1.0 1.2 0.6 1.8 
  FA1 d 32.6 36.6 14.5 61.1 2.7 55.2 14.0 2.9 3.1 6.0 
             
 250 UNI 53.2 54.2 73.3 91.2 23.7 76.8 30.6 4.7 2.0 6.7 
  FA1 84.9 88.0 67.8 99.0 51.8 97.0 75.9 6.1 4.0 10.1 
             
 500 UNI 80.7 79.9 95.3 99.6 63.1 94.8 65.8 0.9 0.1 1.0 
  FA1 98.1 97.6 92.1 100 88.7 95.7 92.1 1.1 1.0 2.1 
             
 750 UNI 96.0 94.2 99.3 100 90.0 99.7 90.5 0.4 0.0 0.4 
  FA1 99.9 99.4 99.1 100 98.5 100 99.3 0.2 0.8 1.0 
             

Medium 125 UNI 22.8 18.9 36.4 51.6 4.4 7.3 34.4 2.7 1.1 3.8 
  FA1 61.7 65.6 40.3 90.6 16.9 85.4 41.9 3.0 2.2 5.2 
             
 250 UNI 71.1 72.3 90.1 98.1 49.0 90.4 53.0 2.7 1.2 3.9 
  FA1 94.1 96.3 84.5 100 76.5 99.7 90.7 2.3 2.6 4.9 
             
 500 UNI 97.1 96.4 99.7 100 93.5 99.7 93.8 0.5 0.1 0.6 
  FA1 100 99.9 99.3 100 99.2 100 99.9 0.3 0.5 0.8 
             
 750 UNI 99.8 98.7 100 100 98.5 100 98.5 0.0 0.0 0.0 
  FA1 100 100 100 100 100 100 100 0.0 0.4 0.4 
             

Large 125 UNI 56.5 55.1 77.7 91.2 29.4 77.0 34.6 5.3 2.4 7.7 
  FA1 86.7 88.6 69.6 99.0 54.6 97.7 77.6 6.0 2.0 8.0 
             
 250 UNI 84.9 87.7 98.4 99.9 73.9 98.0 74.6 1.4 0.3 1.7 
  FA1 98.9 98.9 96.2 100 94.2 100 97.8 1.1 0.9 2.0 
             
 500 Diag 99.5 99.6 99.9 100 99.0 100 99.1 0.2 0.0 0.2 
  FA1 100 100 99.9 100 99.9 100 100 0.1 0.1 0.2 
             
 750 UNI 100 100 100 100 100 100 100 0.0 0.0 0.0 
  FA1 100 100 100 100 100 100 100 0.0 0.1 0.1 

a One: percentage or runs in which at least one of the three simulated QTL was identified, All: percentage of runs in which all three 
simulated QTL were identified, One pleiotropic: percentage of replicates in which at least one of the two simulated pleiotropic QTL was 
identified, Two pleiotropic: percentage of replicates in which both of the two simulated pleiotropic QTL were identified. b Lk: proportion 
of false chosen markers linked to QTL,  Uk: proportion of false chosen markers unlinked to QTL, Total false QTL: Lk plus Uk. c: 
Univariate. d: Factor analytic model   
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Table 5.8 The power of QTL detection (proportion of significant replicates over all 1000 
replicates) and the probability of false QTL detected using univariate and multivariate 
analysis (Trait 4). 

QTL 
Effect 

Sample 
Size 

 
Model 

   
QTL 

        

             Coupling a                False QTL b  
   1 9 10 Onec Allc One Two Mdl Lk Uk Total 

Small              
 125 UNI e 3.0 5.4 6.1 12.8 0.0 10.8 0.7 0.6 1.4 0.4 1.8 
  FA1 f 14.8 8.0 8.3 26.7 0.2 15.1 1.2 1.3 2.2 2.9 5.1 
              
 250 UNI 32.0 50.0 47.5 79.5 8.7 73.1 24.4 4.7 7.6 1.1 8.7 
  FA1 61.1 48.9 47.9 88.8 13.7 73.7 23.1 5.4 8.7 2.1 10.8 
              
 500 UNI 57.5 69.4 68.9 95.8 29.6 91.4 46.9 0.5 0.7 0.3 1.0 
  FA1 78.2 69.3 68.2 97.9 38.1 90.4 47.1 0.7 0.8 1.0 1.8 
              
 750 UNI 81.2 86.7 86.5 99.8 60.4 99.2 74.0 0.4 0.7 0.0 0.7 
  FA1 93.2 87.3 87.4 100 70.7 99.4 75.3 0.5 0.8 0.5 1.3 
              

Medium 125 UNI 11.0 19.8 18.8 39.0 0.9 34.1 4.5 1.2 2.2 1.1 3.3 
  FA1 34.8 25.6 24.2 62.9 2.7 43.7 6.1 2.2 3.6 3.2 6.8 
              
 250 UNI 48.4 62.3 61.3 90.9 20.2 85.7 37.9 2.6 4.0 0.6 4.6 
  FA1 74.2 61.5 62.4 95.8 28.9 85.7 38.2 2.9 4.1 2.3 6.4 
              
 500 UNI 84.3 90.3 90.2 100 69.0 99.4 81.1 0.5 0.5 0.1 0.6 
  FA1 93.9 89.8 90.3 100 76.2 99.2 80.9 0.6 0.6 0.5 1.1 
              
 750 UNI 95.6 97.0 97.8 100 90.8 100 94.8 0.3 0.4 0.0 0.4 
  FA1 98.8 96.8 97.8 100 93.5 100 94.6 0.3 0.4 0.1 0.5 
              

Large 125 UNI 37.2 54.3 54.0 86.1 11.7 80.0 28.3 4.0 7.6 2.4 10.0 
  FA1 61.5 53.8 53.8 91.1 19.2 77.9 29.7 4.5 8.7 2.3 12.0 
              
 250 UNI 67.6 77.4 76.5 99.0 39.8 96.1 57.8 1.2 1.3 0.1 1.4 
  FA1 86.1 75.2 75.6 99.4 48.3 95.1 55.7 1.7 1.7 1.5 3.2 
              
 500 Diag 94.6 97.6 96.3 100 88.9 100 93.9 0.2 0.2 0.0 0.2 
  FA1 98.6 97.4 95.9 100 92.0 100 93.3 0.2 0.2 0.1 0.3 
              
 750 UNI 100 99.8 99.9 100 99.7 100 99.7 0.0 0.1 0.0 0.1 
  FA1 100 99.8 99.9 100 99.7 100 99.7 0.1 0.2 0.0 0.3 

a One: percentage or runs in which at least one of the three simulated QTL was identified. b All: percentage of runs in which all three 
simulated QTL were identified. c One coupling: percentage of replicates in which at least one of the two simulated linked QTL in 
coupling phase was identified, Two coupling: percentage of replicates in which both of the two simulated linked QTL in coupling phase 
were identified, Mdl: percentage of replicates in which the marker between two linked QTL was chosen. d Lk: proportion of false chosen 
markers linked to QTL,  Uk: proportion of false chosen markers unlinked to QTL, Total false QTL: Lk plus Uk. e: Univariate. f: Factor 
analytic model. 

 

Separate vs. joint family analysis 
The power of the QTL analysis for the small sample size and small QTL effect was 

very low and a large sample size (at least 750 individuals based on the simulated data) was 

needed to identify QTL with small effect with relatively high efficiency (section 5.7.2). 

However, it is not realistic to expect population sizes of this magnitude in actual planned 

experiments.  In some QTL experiments, mapping information is available from different 
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(a) Four QTL segregating in each family 
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families (e.g., half-sib designs), each family having a relatively small size. In this situation, 

joint analysis can be used to combine information across families.  

To explore the efficiency of the factor analytic model for joint analysis of multiple 

families, a QTL experiment comprising six families (labelled as S1, …, S6) was 

considered which mimics the real QTL mapping experiment herein (described in chapter 2) 

in terms of the number of families (six families) and the number of progeny per family 

(125 individuals per sire family on average). The same parameters as for trait 1 (Tables 5.1 

and 5.2) in the case of small QTL effects and small sample sizes were considered.  Two 

situations were simulated: a) all four QTL were segregating in all six families and b) QTL1 

and QTL3 were segregating in families S1, S2 and S3 and QTL26 and QTL29 were 

segregating in families S4, S5 and S6.  

A model equivalent to (5-26) was used. However, instead of using the factor analytic 

model and the DIAG model for the trait by marker effects, the FA1 model and the DIAG 

models we used for family by marker interaction effects. 

 

Figure 5.3 The power of QTL detection (average number of detected QTL divided by 
four) using separate (S1-S6) and joint analysis (FA1 and FA2) of six families (same 
parameter settings as trait 1). FA1 and FA2: joint analysis employing factor analytic 
models with one and two factors, respectively.  

 

The benefits to the joint analysis were evident (Figure 5.3, Tables 5.9-5.10). One 

main advantage was that the evidence for a particular QTL could be substantially increased 

with the extra information. This was apparent especially when all of the QTL were 

segregating in all families. However, when the number of common QTL across families or 

mapping trials decreased, the power of joint analysis tended to be closer to the individual 

analysis. Furthermore, the LOD score in the joint analysis was substantially higher than 

(b) Two QTL segregating in each family
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that from the single-family analyses (Figure 5.4). In the real dataset, this could have a 

subsequent effect on the confidence interval of the QTL location.  

Table 5.9 The power of QTL detectiona and the probability of false QTL detected using 
separate and joint analysis of six families (same parameter settings as trait 1, four QTL 
were segregating in all families). 

True QTL  False QTL  
Familyb 1 3 4 5  Linked Unlinked 

S1 7.9 7.6 10.5 9.5  1.2 0.2 
S2 9.2 7.9 10.7 11.3  1.5 0.2 
S3 8.9 8.2 9.1 11.4  1.9 0.6 
S4 9.7 6.6 10.9 9.6  1.2 0.2 
S5 8.8 9.7 10.4 11.8  1.5 0.5 
S6 7.7 7.4 10.1 8.9  1.3 0.3 

FA1c 94.6 94.1 94.9 94.2  0.5 0.1 
S750d 95.5 95.8 96.5 96.0  0.6 0.1 

a The percentage of runs (over all 1000 replicates) in which the QTL was identified. b Separate analyses of 
families S1-S6. c Joint analysis of the six families using factor analytic model with one factor. d Results from 
Table 5.5 for univariate analysis of trait 1 (small QTL and sample size of 750). 
 
 
 

Table 5.10 The power of QTL detection a and the probability of false QTL detected using 
separate and joint analysis of six families (same parameter settings as trait 1, four QTL 
were not segregating in all families).  

True QTL  False QTL  
Familyb 1 3 4 5  Linked Unlinked 

S1 4.1 4.0 - -  0.6 0.1 
S2 5.2 4.4 - -  0.1 0.0 
S3 4.6 2.9 - -  0.4 0.1 
S4 - - 3.3 2.7  0.3 0.0 
S5 - - 3.2 2.6  0.2 0.1 
S6 - - 2.2 3.2  0.0 0.1 

FA1c 53.8 50.5 10.3 10.6  2.2 0.9 
FA2d 65.9 66.9 58.1 57.8  2.6 1.4 
S750e 95.5 95.8 96.5 96.0  0.6 0.1 

a The percentage or runs (over all 1000 replicates) in which the QTL was identified. b Separate analyses of 
families S1-S6. c Joint analysis of the six families using factor analytic model with one factor. d Joint analysis 
of the six families using factor analytic model with two factors. e Results from Table 5.5 for univariate 
analysis of trait 1(small QTL and sample size of 750). 
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a) Univariate analysis of trait 1, small QTL- sample size 750 
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b) Individual vs. combined family analysis
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Figure 5.4 The profiles of the LOD score obtained from univariate analysis of trait 1, 
separate (S1-S6) and joint analysis (FA1) of six families (averaged over 1000 replicates) 
(same parameter setting as trait 1, four QTL are segregating in all families).  

 
 

In the case of a small QTL effects for trait 1, increasing the sample size from 125 to 

750 could substantially increase the power (Table 5.5). Alternatively, when the QTL were 

segregating in all families, information from the different families could be combined to 

extract more information from the available data and reach to similar power as increasing 

sample size to 750 individuals (Table 5.9).     

It should be noticed that when a small number of QTL with small effects were 

segregating (low trait heritability), the chance of identifying individual QTL, using 

separate analyses for each family, considerably decreased (scenario a vs. scenario b, Tables 

5.9 and 5.10). For example, the percentage of the replicates in which QTL26 was detected 

ranged 10.1-10.9 % and 2.2-3.3% among families S1, S2 and S3 in scenarios a and b, 
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respectively (Tables 5.9 and 5.10). Thus, given a QTL size, the power of QTL detection 

largely depended on the trait heritability.        

When four QTL were not segregating in all families, more than one factor was 

required to fully explain the data. Therefore, three models were considered for the trait by 

marker interaction term (DIAG model, FA model with one factor (FA1) and FA model 

with two factors (FA2)).  

Smith et al. (2001) discussed the need for constraints for the elements of �  for 

identifiability of the variance parameters and demonstrated how these constraints could be 

easily implemented into the average information algorithm. As discussed by Smith et al. 

(2001), when k>1, k (k-1)/2 independent constraints must be imposed on the elements of 

�  in order to ensure identifiability. The implementation of the constrains is that the 

number of variance parameters in the factor analytic model with k terms is given by pk+p-

k(k-1)/2 . One set of constraints that fulfils this requirement is that all k(k-1)/2 elements in 

the upper triangle of �  be fixed to zero (Jennrich and Schluchter, 1986). Therefore, in the 

case of FA2 (k=2), the first loading for the second factor (loading of FA2 on family S1) 

was set to be zero, leading to 17 parameters (6 loading for first factor, 5 loading for second 

factor, 6 specific variances) to be estimated.  

The analysis of the simulated data set showed that in 81.4% of the replicates the 

DIAG model was inferior to the FA1 model  (REMLRT=17.4 on 6 df, P<0.05, averaged 

over 1000 replicates), in 92.2% of the runs the FA2 model better fitted than the DIAG 

model (REMLRT=30.1 on 11 df, P<0.05, averaged over 1000 replicates) and in 62.0% of 

the replicates FA2 model was superior to the FA1 model (REMLRT=12.7 on 5 df, P<0.05, 

averaged over 1000 replicates). 

The constrained form of �  described above was only for computational ease. Thus, 

in order to obtain a meaningful interpretation of the loadings, the factors needed to be 

rotated. The plot of the first set of loadings against the second shows two clusters of 

families, namely (1) S1, S2, S3; (2) S4, S3, S6 (Figure 5.5). These results were expected as 

the families in the first group were simulated for QTL2 and QTL3 and the families in the 

second group were simulated for QTL4 and QTL5. 

While the FA2 model worked well in simulation, in practice it is likely that the best 

approach is to fit a FA1 model in each run. If the FA1 model is significant, then the marker 

with highest LOD score is moved to the fixed effects part of the model. This process is 

repeated until the FA1 term becomes non-significant. In the simulated data herein, this 

process was undertaken and after two runs, the FA1 model became non-significant. By 
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using this process, there is no need to interpret the factor loadings. Also, adopting this 

strategy is much easier computationally.  

 
Figure 5.5 Plot of family loadings from the factor analytic model with two factors (FA2) 
when the QTL were not segregating in all families. S1-S6: Families 1-6. 

 

5.8 Application to experimental data 

The computer simulations demonstrated that combining information across traits or 

families and exploiting this multivariate multiple QTL mapping technique could 

substantially increase the power and the robustness of mapping studies. As reported in 

chapter 3, a major QTL on BTA2 is segregating in a number of families affected that a 

number of carcass traits. The pleiotropic effects of a myostatin functional SNP underlying 

this QTL were established (chapter 4). Herein, this gene was used as a model to investigate 

the behaviour of the multivariate multiple QTL approach in the real dataset. It was 

hypothesized that this gene is responsible for a relatively large part of the genetic 

correlations among traits and sire families. 

Three carcass traits (silverside weight (kg), eye muscle area (cm2) and channel fat 

(kg)) from six half-sib families (three families in Australia and three families in New 

Zealand, on average 128 progeny per sire) (described in chapter 2) were analysed. The 

model fitted to the data was similar to (5-26) where �  included fixed effects of traits 

means, country, country by breed interaction, sire within country, cohort (6 combinations 

of year of birth and sex) in Australia, farm and birth type within breed of dam, and 



 

    

 

116
 

slaughter group (28 levels that includes adjustments for sex and year) in the New Zealand 

data. u  included the random term trait by sire by marker effect. The Limousin backcross 

animals were allowed to have different residual variation than the Jersey backcross 

animals.  

Allowing two separate residual variance-covariances for the traits measured in the 

two countries, a DIAG model and a FA1 model were sequentially fitted for the trait by sire 

by marker interaction term (Gp in (5-25)). Using the DIAG and the FA1 model for Gp 

required 18 parameters (18 marker variance for 3 traits and 6 families) and 36 parameters 

(18 specific variances and 18 factor loadings) to be estimated, respectively. Since these 

two models are nested, a direct comparison of the models can be made. The values of the 

log-likelihoods when sequentially fitting two models (DIAG and FA1) to the data were 

considered. Fitting the DIAG model, assuming there was no marker correlation between 

traits and families, gave a log-likelihood value of -3125.10, while fitting FA1 model gave a 

log-likelihood value of -3096.66, leading to a REMLRT of 56.88 on 18 degrees of 

freedom, which indicated a highly significant (P<0.0001) FA1 model compared with the 

DIAG model.  

Results obtained from the DIAG model indicated different markers for different traits 

and different sires. Using this model, markers with highest LOD score on BTA2 in sires 

398, 368, 417, 394 and 402 for channel fat were BMS2626 (75.3 cM), INRA40 (10.9 cM), 

TGLA377 (30.7 cM), MSTN (6.0 cM), ILSTS26 (10.8 cM), respectively. Markers with the 

highest LOD score on BTA2 in sires 368, 361, 417 and 402 for eye muscle area were 

TGLA431 (11.9 cM), MSTN (6.0 cM), INRA40 (10.4 cM), MSTN (6.0 cM), respectively. 

There was also a peak on BTA2 for sire 402 for silverside and the marker with highest 

LOD score was TGLA431 (11.9 cM). These results suggested a significant marker on 

BTA2 but it was not clear which marker is the most significant one.  

The FA1 model showed higher LOD scores for markers close to the myostatin gene 

than other markers in the absence of this gene in the fixed part of the model (Figure 5.6). 

The highest LOD score was for the myostatin marker (labelled as MSTN). A QTL 

covariate in the position of this marker was calculated and fitted as fixed effect nested 

within sire families to estimate the allelic effects of the gene (Table 5.11). The above 

process was repeated and the results from the second run showed a significant FA1 model 

compared with the DIAG model (REMLRT=33.84, on 18 df, P<0.05) indicating that the 

MSTN marker removed substantial covariation among traits and families but still there 

were other common QTL across traits or families. 
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Figure 5.6 The profile of the LOD scores obtained for all of the markers from the factor 
analytic model (FA1) across three traits (silverside weight, eye muscle area and channel 
fat) and six sire families. MSTN: myostatin marker on BTA2.   

 

 

Table 5.11 The allelic effect of the pleiotropic QTL linked to the MSTN marker when 
fitted as fixed effect. 

Trait Family QTL effect a S.E. Trait mean QTL effect (%) b LOD 
SS(KG) 398 0.29  0.24 9.0 3.2 1.0 
SS(KG) 368 0.74 0.21 9.0 8.2 3.6 
SS(KG) 361 0.75 0.22 9.0 8.3 3.5 
SS(KG) 417 0.28 0.17 9.0 3.1 1.4 
SS(KG) 402 0.61 0.16 9.0 6.8 4.3 
SS(KG) 394 0.59 0.16 9.0 6.5 4.0 

EMA(cm2) 398 4.74 2.23 83.8 5.7 1.8 
EMA(cm2) 368 7.29 2.00 83.8 8.7 3.9 
EMA(cm2) 361 8.60 2.06 83.8 10.3 4.8 
EMA(cm2) 417 3.14 1.46 63.3 5.0 1.8 
EMA(cm2) 402 6.11 1.31 63.3 9.7 5.8 
EMA(cm2) 394 4.83 1.36 63.3 7.6 3.7 

Chanfat (kg) 398 -0.94 0.62 12.9 -7.3 1.2 
Chanfat (kg) 368 -0.37 0.55 12.9 -2.9 0.6 
Chanfat (kg) 361 -0.59 0.57 12.9 -4.6 0.8 
Chanfat (kg) 417 -0.48 0.40 6.5 -7.4 1.0 
Chanfat (kg) 402 -1.48 0.36 6.5 -22.8 4.7 
Chanfat (kg) 394 -0.57 0.37 6.5 -8.7 1.2 
a: QTL allele substitution effect, QTL effect as percentage of the trait mean. Signs represent effects of 
Limousin-derived minus Jersey-derived alleles. SS: Silverside, EMA: eye muscle area, Chanfat: Channel fat     
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5.9 Discussion 

A multitrait multiple QTL approach in the framework of the mixed-effects model 

was developed, allowing all markers of the entire genome to be included in the analysis 

simultaneously. It was shown that the method could be used for joint analysis of multiple 

families in gene mapping studies. Further, the approach was applied to the data from a beef 

cattle QTL mapping study to combine information across carcass traits and sire families.  

The most difficult problem in multiple-QTL analysis comes from the model 

selection, which has recently become the focus of many QTL-mapping studies (Ball, 2001; 

Broman and Speed, 2002; Gilmour, 2007; Kao et al., 1999; Piepho and Gauch, 2001; Sen 

and Churchill, 2001; Verbyla et al., 2007; Xu, 2003). The multiple marker analysis 

approach developed and used herein is clearly a model selection strategy fitting relatively 

few models when compared with other methods. The method focuses first on the null 

hypothesis of no QTL in the genome (the variance component for the distribution of size of 

QTL is zero) and only after rejecting the null hypothesis, it is concluded that there is an 

evidence for QTL and then the QTL are located. The REML likelihood ratio test statistic 

(REMLRT) allows a genome-wide assessment of significance of the QTL.  

In experiments one always wants to know the probability of arriving at the wrong 

conclusion. In QTL analysis these include (a) the conclusion that there is a segregating 

QTL whereas in reality there is no QTL, or (b) not detecting a QTL when a QTL is 

actually present. The first type of error results in a false positive (type I error) and the 

second in a false negative (type II error). If the type I error rate of a test is greater than 

nominal � level, the test is relaxed and unreliable. If the type I error rate is less than �, the 

test is conservative and may lack power.  

To assess the accuracy and the robustness of the REMLRT, a series of simulation 

studies were performed. When no QTL was simulated it was expected to observe 5% of the 

replicates resulting in significant marker random regression variance based on the 

REMLRT. It would be best to use the correct distribution of the likelihood ratio test 

statistic under the null hypothesis, or its close approximation, as then the type I error rate 

would match the nominal � level. Self and Liang (1987) have discussed a number of 

special cases of the likelihood ratio test statistics under non-standard conditions. If only 

one parameter is on the boundary of the parameter space, the LRT statistic is 

approximately distributed as a mixture 2
1

2
0 2121 χχ + , provided no other parameter is 

tested (Self and Liang, 1987; Stram and Lee, 1994). Since only one parameter ( 2
mσ ), is 
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being tested, this approximation for testing marker variance could be used. The results 

showed that the REML likelihood ratio test statistic fitted the above mixture distribution. 

Consistent with the results herein, a number of simulations (Anisimova et al., 2001; 

Goldman and Whelan, 2000; Ota et al., 2000) showed that the likelihood ratio test statistic 

fits the above mixture distribution well even when the sample size is not very large. 

The simulation scheme to evaluate the power of the test consisted of only four QTL 

located on three chromosomes with no QTL on 6 chromosomes (66 unlinked markers and 

29 linked markers). Thus the majority of genetic markers across the genome were not 

linked to QTL. It might be possible that allowing a common variance for all the markers 

leads to a low power for the REMLRT. However, the results from the simulation study 

showed that the REMLRT was remarkably robust. 

Genome-wide searches for loci influencing quantitative traits are often plagued by 

low power and interpretive difficulties. Attempts to remedy these difficulties have typically 

relied on, and have promoted the use of, larger sample sizes, a greater density of molecular 

markers, and more-sophisticated statistical modeling. Many of these remedies can be 

costly to implement. In addition, as pointed out by Broman and Speed (2002), more 

sophisticated methods may not necessary lead to improved estimates.  

There have been numerous publications that address the power issue in QTL 

mapping. For example, It has been reported that multivariate approaches can increase the 

power of the test and the precision of parameter estimates (Gilbert and Le Roy, 2004; Jiang 

and Zeng, 1995; Korol et al., 1995; Meuwissen and Goddard, 2004). Meta-analysis of 

results from different studies (Allison and Heo, 1998; Wood et al., 2006) or joint analysis 

of the original data (Kim et al., 2005; Walling et al., 2000) are other options that have been 

proposed to improve QTL mapping resolution. By exploiting a multiplicative mixed model 

approach, the present study has addressed these two views to improve the power of QTL 

identification.  

When modelling multiple trait or multiple trials, it is important to avoid over-

parameterization, especially in small experimental populations used for QTL detection 

(Sillanpaa and Corander, 2002). As Piepho (2000) suggested, to avoid over- 

parameterization, a certain variance-covariance structure was imposed. The specific 

multiplicative model considered herein was the factor analytic model. This provided a 

parsimonious model specification to limit the number of parameters to be estimated. 

The proposed approach considered an unstructured covariance model for the 

residuals for traits and fitted a FA1 and a DIAG model sequentially for the interaction 
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terms (trait by marker term, family by marker interaction or trait by family by marker 

interaction). Considering the correlations among QTL effects at a single gene are either +1 

or −1 as suggested by Goddard (2001), a factor analytic model is more appropriate 

structure for a pleiotropic QTL. The aim of fitting FA structure for trait by marker effects 

was to account for the genetic marker covariances among p traits in terms of an unknown 

factor. Because the model was fitted within a mixed-model framework, the importance of 

the covariance due to the markers could be formally tested using a comparison of a model 

assuming no marker correlation (the DIAG model) and a model assuming marker 

correlation (the FA1 model). The DIAG model was nested within the FA1 model. 

Therefore, residual maximum likelihood ratio tests could be used to compare these models. 

This provided a formal test for common QTL (across families) or pleiotropic QTL effects. 

An extensive simulation study was undertaken to investigate the power of the pleiotropy 

test. The results indicated that the test was robust when the QTL size or sample size were 

high. However, there was a relatively low power to detect a QTL with small peiotropic 

effects or in small populations.  

   Multiplicative models have recently been popularised (Cullis et al., 1998; Smith et 

al., 2001; Smith et al., 2005; Thompson et al., 2003) in the analysis of plant variety trials 

to model genotype by environment interactions in the analysis of the data from multi-

environment trials. The key aims of a multi-environment trial analysis are to provide 

accurate and precise estimates of overall variety performance and to aid with the 

interpretation and understanding of variety by environment interaction (Smith et al., 2001). 

However, in multiplicative modelling of the trait by marker interaction herein, both 

common and specific factors are of interest. From a breeding point of view, common 

factors (loci with pleiotropic effects) are important in order to implement an indirect 

selection program that is getting a response to selection for a trait by selecting on a 

correlated trait instead. This is particularly the case when the heritability for the secondary 

trait is smaller (Falconer and Mackay, 1996) or when the secondary trait is difficult or 

expensive to measure. In addition, knowledge about such loci can be very important for 

animal breeders who, for example, would like to dissociate the positive correlation 

between birth weight and carcass weight. Also knowledge about trait-specific genes is 

important in the case where a breeding objective is to change one trait without affecting 

other traits. 

Specific variances for individual traits sometimes need to be constrained to zero. If 

more than one trait must be constrained in this way, the factor analytic variance structure 
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then has less than full rank so that the use of standard information-based estimation 

techniques (e.g. average information algorithm) is precluded. In the current research, a 

sparse implementation of the average information algorithm developed by Thompson 

(2003) was used. The advantage of the algorithm is that convergence for FA models is fast 

and estimation of parameters in the reduced ranked models is possible. It should be noted 

that, in practice, for both simulation and the real data set, the occurrence of zero specific 

variances was observed for one or two traits, which means that the marker effect for the 

trait was completely determined by the multiplicative part of the model or it was too small 

to be detected. Also Smith et al. (2001) reported this for multi-environment trial data in 

Australia. In the simulation study when all QTL were segregating in all families the 

occurrence of zero specific variances for the families was quite common in most of the 

replicates. This was due to the fact that there were no specific QTL in this case.  

The simulation study to examine the multitrait multiple QTL approach contained 

several situations including some cases, which could present difficulties for a QTL 

analysis. These cases included QTL near the ends of the chromosome (two QTL), QTL in 

coupling phase (QTL with loose linkage and QTL with relatively tight linkage), QTL in 

repulsion phase (two QTL), and pleiotropic QTL (two QTL). The simulation results 

showed the general behavior and performance of the method with respect to these 

situations. 

  In both univariate and multivariate analyses, the focus was on the problem of 

identifying QTL. Also this study considered an unrealistic situation in which QTL are 

located exactly at marker loci. However, if the genetic markers are sufficiently dense then 

one may dispense with interval mapping, considering only the marker loci as putative 

locations for QTL. Keeping this in mind, the multiple-marker analysis developed in this 

study will converge the true multiple-interval mapping (including all intervals). If the 

marker density is low, interval mapping and multiple-interval mapping may offer some 

advantage over marker analysis if a QTL is located in the middle of a large interval 

because they can point to one side rather than to two sides of the marker. If a QTL is 

located right at a marker, interval mapping offers no advantage over single-marker analysis 

(Xu, 2003). QTL mapping is not simply a gene-finding tool. QTL mapping provides 

critical information regarding quantitative evolutionary genetic processes. Nobody will try 

to clone a QTL identified by the interval mapping that is located between two distant 

markers. One should always try fine mapping using saturated maps in a larger population 

to further localize the QTL before considering cloning. From that point of view, multiple-
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marker analysis used herein and multiple-interval mapping will provide the same amount 

of information. 

Multiple trait QTL analysis should increase the power of detection, and hence, 

increase the significance of a QTL if the QTL is not a false positive result (Henshall and 

Goddard, 1999; Jiang and Zeng, 1995; Knott and Haley, 2000; Korol et al., 1995; Mangin 

et al., 1998). In terms of the number of QTL correctly identified, the FA1 model performed 

better than the univariate analysis, though it was only slightly better than univariate 

analysis for large QTL sizes and large populations. Apart from the issue of power, it is 

important to understand the nature of a genetic correlation between traits, which can 

provide relevant information for selection decisions. In this regard, the key advantage of 

FA1 over univariate analysis is that it provides a formal test for pleiotropic effects. The 

superior performance of multivariate analysis was due largely to its ability to detect the 

QTL with common effect on different traits. If the pleiotropic model is the correct one, it 

would be expected that fitting this model would give highest power and smallest standard 

deviations especially for location, as in this case, a number of traits are being used to 

estimate the same parameter (Jiang and Zeng, 1995; Knott and Haley, 2000).  

The situation was considered where pleiotropic QTL had the same effect on different 

traits. In general, multitrait analysis will have a greater benefit when a QTL has small 

effects on one trait and the same QTL has greater effect on another trait (Sorensen et al., 

2003) or when the pleiotropic effects of the QTL differ substantially from the most 

frequently observed effects of the environment and background genes, which is reflected 

by the environmental and background genetic correlations (Meuwissen and Goddard, 

2004). 

The power of the FA1 model compared to the univariate analysis was more evident 

when the pleiotropic effect was small. In general, a pleiotropic locus, too small to be 

detected by single-trait analyses, can be detected with the help of a multitrait analysis 

(Mangin et al., 1998).  

With respect to false QTL detection, in general, both the univariate and multivariate 

methods chose a rather low portion of linked or unlinked loci to a QTL. In the simulation 

study herein, a relatively sparse marker density was considered. However, a high marker 

density may increase the likelihood of choosing linked false markers.      

Multivariate and univariate analyses had similar efficiency in detecting trait-specific 

QTL with large effects. Trait-specific QTL with small effects could only be detected with 

very low efficiency using both multivariate and univariate analyses. Detecting these QTL 
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required a relatively large sample size. The results for small QTL when n=750 verified the 

applicability of the techniques. In practice, however, large mapping families may not be 

feasible because of the limited resources. Additionally, in most of the livestock QTL 

experiments, investigators tend to screen a number of families (e.g., half-sib designs), each 

family having relatively small size. The power of such designs is largely influenced by the 

number of families included in the experiment and by the size of the individual families 

(Weller et al., 1990). Also, in plants, the breeders tend to conduct marker-based recurrent 

selection in several populations simultaneously (Bernardo, 2004). The use of larger 

mapping populations would lead to fewer populations being improved, and many breeders 

prefer to select in a large number of populations with relatively few progeny, instead of in 

a few populations with many progeny (Bernardo, 2004). As Lander and Kruglyak (1995) 

pointed out, joint analysis of two or more similar experiments 1) could lead to more power 

to detect QTL not found in any individual population or 2) could be used to confirm the 

presence of QTL detected in only one population. With this in mind, the factor analytic 

model was applied in order to model the family by marker interaction term in simulation 

replicate data sets comprising six families each having 125 progeny.  

The results from the separate analysis of the families showed that there was a very 

low power to detect QTL with small effect. It should be noted that when a small number of 

QTL with small effect were segregating (low trait heritability), the chance of identifying 

individual QTL using separate analysis of each family considerably decreased. The results 

from joint analysis of six families revealed that gathering information across families could 

remarkably increase the power. The ability to detect QTL, when QTL were segregating in 

all families in the simulation data set herein, reached to the same power as increasing 

sample size to 750 individuals.  

To examine the behavior of the approach in actual datasets, the method was tested in  

data from a beef cattle QTL mapping experiment where the MSTN gene was previously 

found to have pleiotropic effects on meat yield and fatness (chapter 4). The results clearly 

showed that fitting a FA model across traits and families gave a much better indication of 

the QTL position than a single trait analysis or separate family analysis. 

Only four traits and six families were considered in the simulation data set. However, 

the model, as formulated in equation (5-26) and shown in the real dataset, is obviously 

expandable to an unlimited number of phenotypes and families. 

Walling et al. (2000) and Kim et al. (2005) demonstrated the potential benefit of a 

joint analysis of data from independent mapping experiments. They adopted a two-step 
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process so that first phenotypic data are standardised to residual standard deviation units 

for each population, and in the second step, they use the univariate regression interval 

mapping (Haley et al., 1994; Knott et al., 1996) to map QTL in independent pig 

populations. The proposed method herein is a one-stage process, which models residuals 

and genetic effects simultaneously. In addition, it includes all the markers in one analysis. 

Moreover, the approach utilises widely available statistical procedures, namely the linear 

mixed model and restricted maximum likelihood. It can easily accommodate covariates, 

extra sources of variation, fixed or random including polygenic effects and it can easily be 

generalized to experimental and crossing designs commonly used. 

5.10 Summary  

A multiple marker analysis approach in the framework of the mixed-effects model 

was developed, allowing all markers of the entire genome to be included in the analysis 

simultaneously. The approach was extended to multitrait and multiple family situations. It 

was shown through the simulation study that modeling multiple phenotypes and multiple 

families in a single linkage analysis simultaneously could markedly increase power, 

compared with modeling of each phenotype or family separately. The practical 

implementation of the approach in the actual mapping data from beef cattle clearly showed 

the ability of the method to gather information across traits and families. 
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 Chapter 6: Multiple-trait mapping of QTL for beef 
traits 

 

6.1 Introduction  

The beef industry has been forced to give greater attention to consumer issues in 

response to the negative publicity regarding health effects of red meat and increased 

competition from pork and poultry. General trends in consumer preferences are toward 

leaner meat products with predictable eating qualities and simple preparation requirements 

(Marshall, 1999). Therefore, carcass and meat quality attributes are becoming increasingly 

economically important to the beef cattle breeders.  

In addition to slaughtering conditions and technological considerations, meat 

characteristics depend directly on the muscle biology of live animals, which is regulated by 

genetic, nutritional and biological factors (te Pas and Soumillion, 2001). Among the later, 

the genetic factors are of prime importance because genetic improvement is both 

permanent and cumulative when inherited by the next generation. Genetic variation in both 

quantity and quality of beef is evident through differences between breeds and crossbreeds 

and between sires within a breed (Pitchford et al., 2006). Within-breed variation includes 

additive genetic effects and also the correlated impacts of additive genetic effects on other 

economically important productive and adaptive traits that affect beef production (Burrow 

et al., 2001). However, data collection for beef traits in breeding animals is generally 

difficult and expensive. Use of real-time ultrasound scanning for eye muscle area and fat 

thickness as a predictor of saleable beef yield is an effective tool for genetic evaluation of 

carcass quantity in young animals (Bergen et al., 1997; Moser et al., 1998; Perkins et al., 

1992; Robinson et al., 1993). Ultrasonography is also potentially useful for genetic 

evaluation of marbling in young animals, particularly in heifers or steer half-sibs (Wilson, 

1992). Other than ultrasonography, progeny testing is the only tool currently available to 

livestock breeders to genetically evaluate carcass and beef quality attributes, but this is a 

long- term and expensive option.  

Over the past decade, there has been an increasing emphasis on the development of 

molecular genetic tools, such as DNA markers, to improve beef production and quality 

through marker-assisted selection (MAS). Improving meat quality genetically is difficult 

by conventional selection methods based on phenotype because most meat quality traits 
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can only be measured after slaughter. In addition, only phenotypes of relatives can be used 

to estimate breeding values, which limits their accuracy. These limitations make meat 

quality traits ideal candidates for the use of MAS. DNA tests can make evaluations 

available shortly after birth, or even at the embryo stage. This significantly reduces the 

time needed for evaluation.  

In the present study, beef quality is defined by the properties of beef that are 

appreciated during consumption. Thus, in this definition, beef quality is directly related to 

the consumer preference, which are primarily focused on meat tenderness and marbling. 

Focusing on this definition of beef quality, only very limited information on genetic 

markers is available compared to the relatively large number of publications addressing 

genetic markers for growth and traits associated with the composition of the whole carcass.   

Beef cattle breeding programs aim to select animals with the highest combined 

economic value for the next generation. Therefore, most breeding programs select for a 

combination of traits. However, selection for a specific trait can lead to genetic changes in 

other traits because of the genetic correlations between the traits. The main cause for the 

existence of a genetic correlation between traits in outbred populations is pleiotropy 

(Falconer and Mackay, 1996), that is, genes that affect more than one trait. Closely linked 

QTL can also contribute to genetic correlations because of linkage disequilibrium. 

Pleiotropic effects of QTL, or closely linked QTL affecting different traits, can influence 

the value of individual QTL for marker-assisted selection. To avoid negative side effects of 

selection for certain chromosomal regions or to exploit the positive effects of marker-

assisted selection on other traits of interest, the presence of pleiotropic effects should be 

studied. In addition, characterisation of QTL based upon their pleiotropic effects will 

provide additional clues for the identification of candidate genes. Based on the proteins or 

other metabolites involved in the expression of each of those traits, selection of the most 

likely candidates from a list of candidate genes in that region is possible. Thus, knowledge 

of the pleiotropic effects should accelerate the identification of the causal DNA variants for 

the observed QTL effects. The contribution of identified QTL to the overall genetic 

correlation can be determined by multiple trait QTL analysis.  

The results from the interval mapping analysis revealed a number of QTL affecting 

carcass traits (Chapter 3). It was shown that the myostatin mutation accounted for a large 

amount of variation in carcass traits (Chapter 4). However, it was obvious that there were 

other genomic regions involved in the expression of carcass and meat quality traits.   

Consistent with other reports (Jiang and Zeng, 1995; Korol et al., 2001; Mangin et al., 
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1998), it was shown that multitrait analysis could improve the power to detect QTL 

(Chapter 5). Also the increasing power of QTL detection by combining information using 

joint analysis of mapping families was evident (Chapter 5). Taking advantage of the 

multiple-trait multiple marker analysis and the benefits from the joint analysis of multiple 

families, the goal of the work herein was to identify chromosomal regions affecting 

multiple traits and QTL affecting individual beef traits.  

6.2 Materials and methods 

6.2.1 Mapping population 

The investigation was carried out on the data from the University of Adelaide’s 

Davies Gene Mapping Project in Australia and the AgResearch cattle-mapping herd in 

New Zealand (Chapter 2). Briefly, the mapping populations were developed using two 

phenotypically divergent Bos taurus breeds, Jersey (J) and Limousin (L). Six half-sib 

families were generated by mating six F1 crossbred sires (LJ) to purebred Jersey or 

Limousin cows producing 784 backcross animals. Sire derived alleles were determined for 

285 microsatellite loci spread across the 29 bovine autosomes. Informative markers in the 

sires were chosen from the U.S. Meat Animal Research Centre map to cover over 90% of 

the genome in the F1 sire families. All of the backcross progeny were genotyped for the 

heterozygote markers in their sires. Approximately 100 traits were recorded in the two 

mapping projects. The focus of this chapter is on carcass and meat quality traits. 

6.2.2 QTL analysis  

In order to choose a number of trait categories, a cluster analysis was conducted on 

the residual (phenotypic) correlations (Chapter 3) from a wide range of live animal 

measurements and carcass traits. Based on the results from the cluster analysis and also 

biological relationships between traits, four categories of beef traits were considered. The 

trait categories were yield traits (carcass weight, eye muscle area, weight of silverside and 

weight of striploin), carcass fatness (channel fat, omental fat, back fat thickness, rib fat, 

intramuscular fat), meat quality traits (tenderness, cooking loss, meat colour and pH) and 

fat quality traits (fat colour, beta-carotene concentration, melting point of adipose tissue 

and total mono-unsaturated fatty acids). 

Fifteen animals, which had either no marker information or phenotypic data, were 

excluded from the analysis leaving data from 769 animals (356 and 413 animals in 
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Australia and New Zealand, respectively) for analysis. Progeny inheriting the first or 

second allele for each marker from the sire were coded as 1 or 2, respectively and they 

were converted to   –1 or +1, respectively for this analysis. This does not affect the results 

(except for the value of the intercept and the scale of the effect). Uninformative markers 

were coded as missing but their marker state, as for other missing genotypes, was imputed 

from the informative flanking markers following Martinez and Curnow (1994).  

Genetic and statistical model 
The half-sib design is related to the backcross, that is, the segregation of alleles from 

one of the parents in their offspring is of interest. In the outbred context, however, genes 

causing variation within the population (from segregation within family) are targeted. 

Consider first the backcross design (Chapters 1 and 5), the backcross progeny are divided 

into two groups, based on their marker genotypes. With a single marker, there are only two 

marker genotype groups for the backcross design, and only a single contrast can be tested, 

the difference between the means of the two progeny marker genotype classes (M1-M2). 

However, in a half-sib design, the offspring inheriting two alternative haplotypes from the 

heterozygous sire are compared. The regression coefficient (Marker contrast, M1-M2) in a 

half-sib design is (Weller, 2001) 

M1-M2=a(1-2r)+d(1-2r)(1-2p)                                                                              (6-1) 

where a, r, d and p are the additive QTL effect, recombination frequency between the 

genetic marker and the QTL, dominance deviation and QTL allele frequency, respectively.   

If the frequencies of two QTL alleles are equal (p=q=0.5) in dam population, then 

similar to the backcross design 

M1-M2=a(1-2r).                                                                                                     (6-2) 

If r=0 (complete linkage) and q≠p then  

M1-M2=a+d(1-2p).                                                                                                (6-3) 

Noting that q=1-p and rearranging (6-3) gives 

 M1-M2=a+d(q-p)                                                                                                  (6-4) 

which is the effect of allele substitution (Falconer and Mackay, 1996).  

Therefore, it was straightforward to extend the basic methodology developed from 

the backcross design (Chapter 5) to the half-sib design.  

The basic genetic model (6-5) considered for the data was  

gij =  Qijaj + uij                                                                                                        (6-5) 
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where gij represented the genetic effect of individual i in family j, Qij was the indicator of 

the paternal type, either –1 or 1 (Qij  was unknown, and conditional on the values of the 

flanking markers, the probability distribution for Qij could be obtained), aj was the size of 

the QTL effect at family j (j=1,…,6), and the uij represented the other genetic effects for 

individual i at family j not explained by Q. 

It was necessary to fit the markers/QTL within families because of the random 

assignment of the first haplotype, different QTL genotypes between parents, and different 

phases between markers and QTL between parents. The mixed model multiple QTL 

mapping method (Chapter 5) was extended here to ‘within families’.  Consider first the 

usual ANOVA single marker fixed linear model for the ith sire family (6-6) 

yijk  = � + Si + Mij + eijk                                                                                                                                         (6-6) 

 where yijk is phenotype of individual k from sire family i, � represents the mean of the 

model, Si is fixed effect of sire family i, Mij is the jth marker fixed effect nested within sire 

and eijk represents the associated residuals. The progeny group inheriting sire allele M1 and 

the group inheriting sire allele M2 are compared and the significance of a segregating QTL 

linked to the genetic marker can be tested using an ANOVA analysis with marker effect 

nested within family. Under the null hypothesis of no segregating QTL, the ratio of the 

marker effect mean squares to the residual mean squares should have a central F-

distribution. This method requires a separate analysis with each marker in turn. However, 

the mixed model multiple QTL mapping method (6-7) fits all the markers simultaneously 

as random effects with common variance within families.  

ij

m

j
ijiij eMSy +++= �

=1

µ .                                                                                      (6-7) 

Under the null hypothesis of no QTL, the variance component for marker random 

regression variance for each family will be not significant when tested using a one-sided 

likelihood-ratio test for which twice the change in Log Likelihood is distributed as a 

mixture of 2
0χ and s

1χ  with a 5% critical value of 2.79 (Stram and Lee, 1994).   

If the random regression term for a family was significant, it was concluded that 

there was evidence for a QTL in the genome segregating in that family. The marker effects 

were converted to the LOD scores (Chapter 5) and the marker with highest LOD score was 

then chosen and added to the model as a fixed covariate nested within families. If this 

explained all the marker variance for all the families, the process was terminated. 
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Otherwise, the process was repeated. In those cases where this did not explain all the 

marker variance for a specific family, the analysis was repeated for that specific family.  

It was assumed that the location of the QTL was the same for all families. The size of 

the QTL across families could, of course, be different. In order to combine information 

across families, it was deemed that a random effects model for the size of QTL was 

appropriate, leading to “borrowing strength”(accumulation of evidence) across families.  

The mixed model used in this chapter to model multiple traits and multiple families 

was similar to (5-26) (Chapter 5). However, because of weak pedigree information (only 

common grandsires across countries and too few dams with multiple progeny), it was not 

possible to distinguish between the polygenic (unlinked to the markers being considered) 

and environmental residual variance. Hence, the trait by family by marker interaction and 

the residual effects were the only random effects in the model, simplifying the (5-26) as 

jgjgjjjj euZ�Xy ++=                                                                                          (6-8) 

where the ith element of the column vector yj corresponds to the observations of trait j in 

the ith individual, �j  was a vector of fixed effects of traits means, country (Australia or 

New Zealand), breed of dam (Jersey or Limousin), country by breed interaction, myostatin 

genotype (three levels) within country, sire within country, cohort (6 combinations of year 

of birth and sex) in Australia, farm and birth type within breed of dam, and slaughter group 

(28 levels that included adjustments for sex and year) in the new Zealand data, Xj was a 

design matrix relating the fixed effects to the observations for  trait j,  ugj included the 

random interaction term trait by sire by marker effect, Zgj was a design matrix relating the 

random marker effects to the observations for trait j, and ej was the column vector of 

residual deviations for trait j. The variance of the ugj was defined by 

mp IGu ⊗=)var( gj                                                                                                 (6-9) 

where p indicated the number of the trait by family combinations. The model in (6-9) 

implies that trait × family × marker effects are correlated between traits and sire families.  

The residual variance-covariance matrices for the traits (Rj) were allowed to vary 

between the two countries. A DIAG model and a FA1 model (Chapter 5) were sequentially 

fitted for the covariance matrix Gp.    

The estimates of the fixed and random effects in equation (6-7) and (6-8) were 

obtained as solutions to the mixed-model equations (Chapter 5). In this study, the average 

information algorithm (Gilmour et al., 1995) was used to estimate the variance 
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components. The loadings and specific variances in the FA1 model were estimated using 

an algorithm described by Thompson et al. (2003). 

 The significance of the FA1 model was tested using the REML likelihood ratio 

(REMLRT) test. If the FA1 model was significant, the marker with highest LOD score for 

the factor was chosen and fitted as fixed covariate within families and the traits and the 

above process was repeated. If the FA1 model was not significant, a model similar to (6-7) 

was fitted to locate trait or family specific QTL. 

Ultimately, the 285 random marker effects were replaced by a small set of fixed QTL 

covariates for each trait. The QTL effects estimated from the fixed model were converted 

to the associated Z-scores and P-values. Since LOD scores are asymptotically distributed 

as chi-squared, they can be estimated from P-values using the expression                       

LOD = 1/2(log10e) �2 = 0.2172�2 (Lander and Botstein, 1989). The fixed markers effects, 

which reached a LOD score of 2.0 (�2 of 9.2), were considered as significant and reported 

in this chapter.  

All analyses in this chapter were conducted using the software program ASReml 

(Gilmour et al., 2006), which is a FORTRAN program for mixed-model estimation. A 

wide range of models can be fitted. ASReml uses sparse matrix methods and the average 

information algorithm (Gilmour et al., 1995) for residual maximum likelihood (REML) 

estimation of variance parameters (Patterson and Thompson, 1971). As a result, large and 

complex data sets can be efficiently analysed.  

6.3 Results 

Four trait groups were analysed (Table 6.1). The trait groups included yield traits 

(Hot carcass weight, silverside weight, eye muscle area and strip loin weight), carcass 

fatness (channel fat, omental fat, back fat thickness, rib fat thickness and intramuscular 

fat), meat quality traits (tenderness, cooking loss, meat colour and pH) and fat quality traits 

(fat colour, beta-carotene concentration, melting point of adipose tissue and total mono-

unsaturated fatty acids). As described in the methods section, the analysis consisted of two 

steps. In the first step, the significance of the factor model (in the case of multivariate 

multiple family analysis) or marker random regression variance (in the case of univariate 

analysis) was established to find an evidence for the genome wide significance of QTL. In 

the second step, the analysis proceeded to locate QTL and estimate their size of effects 

(QTL characterisation). 
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 Table 6.1 Summary of the models fitted for the different trait groups 

Trait group Trait Model 
Yield   
  Hot carcass weight (kg), eye muscle area (cm2), silverside weight (kg) FA1 
  Weight of the M. longissimus dorsi muscle (kg) DIAG 
    
Fatness   
  Channel fat (kg), Omental fat (kg) FA1 
  Intramuscular fat content (%), Fat depth at P8 (mm), Fat depth at rib 10th and 11th (mm) DIAG 
    
Meat quality   
  Wbld1, Wbld2, Wbld3, Wbld4 FA1 
  Wbst1, Wbst2, Wbst3, Wbst4, pH, Clld, Clst, MC DIAG 
    
Fat quality   
  Melting point (oC), Total mono-unsaturated fatty acids (%) FA1 
  �-carotene concentration (µg/g fat), Fat colour scored on biopsy sample (score) FA1 
Wbld1, 2, 3 and 4: Shear force measurements (kg) on M. longissimus dorsi muscle on days 1, 5, 12 and 26 after slaughter 
in Australia and days 0, 1/3, 1 and 4 days post mortem in New Zealand. Wbst1, 2, 3 and 4: Shear force measurements 
(kg) on M. semitendinosus muscle on days 1, 5, 12 and 26 after slaughter in Australia. Clld: Cooking loss of M. 
longissimus dorsi muscle (%). Clst: Cooking loss of M. semitendinosus muscle (%). MC: Meat colour (score).  

 

6.3.1 Yield traits  

Evidence for QTL. Hot carcass weight, silverside weight and eye muscle area were 

considered as measures of yield. Using the DIAG and the FA1 model, the trait by sire by 

marker interaction term needed 18 parameters (18 marker variance for 3 traits and 6 

families) and 36 parameters (18 specific variances and 18 factor loadings) to be estimated, 

respectively. The values of the log-likelihoods when sequentially fitting two models 

(DIAG, FA1) to the data were considered. Fitting the DIAG model, assuming there was no 

marker correlation between traits and families, gave a log-likelihood value of –4293.2, 

while fitting FA1 model gave a log-likelihood value of –4276.7, leading to REMLRT of 

33.0 on 18 degrees of freedom which indicated a significant (P<0.05) improvement in 

using the FA1 model compared with the DIAG model (Table 6.2). The marker with the 

highest LOD score value for the factor was located at 52 cM on BTA14 (Table 6.4). 

This marker was moved to the fixed part of the model nested within trait and sire 

families and the process was repeated. A further significant FA1 term was found in the 

presence of the BTA14 QTL in the model. The marker with the highest LOD score value 

for the factor was located at 92 cM on BTA17. There was no further significant FA1 term 

when this marker was fitted as fixed effect in the model, leading to the conclusion that 
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there was no additional significant pleiotropic or common QTL across traits and sire 

families.  

 

Table 6.2 Summary of residual log-likelihoods (RLL) and sequential likelihood ratio tests 
(REMLRT) for the models fitted to the trait × family× marker interaction effects for the 
yield traitsa 

Model Total  
variance 
parameters 

RLL REMLRT df  

DIAG 18 -4293.2    
FA1 36 -4276.7 33.0 18 P<0.05 
      
DIAG + QTL1 18 -4277.4    
FA1+ QTL1 36 -4261.6 31.6 18 P<0.05 
      
DIAG + QTL1+ QTL2 18 -4278.3    
FA1+ QTL1+ QTL2 36 -4265.0 26.6 18 N.S. 
a Traits included hot carcass weight, silverside and eye muscle area.  QTL1=BTA14, 52cM;  QTL2=BTA17, 92Cm 

 
A DIAG model was fitted in the presence of these two QTL to locate individual trait 

or family specific QTL. There was evidence for specific QTL affecting hot carcass weight 

and silverside (Table 6.3). It is possible that after fitting pleiotropic QTL and common 

QTL across families still there are pleiotropic QTL segregating in individual families 

(family-specific pleiotropic QTL). Therefore, a factor model was fitted across eye muscle 

area, striploin and hot carcass weight for sire families 368 and 394 which had non-zero 

specific variances for these traits. The results revealed further significant factors for the 

traits within these sire families. The weight of M. longissimus dorsi muscle (striploin) was 

not analysed in the multivariate analysis, but a univariate analysis was performed for this 

trait fitting the two identified pleiotropic QTL (BTA14 and BTA17 QTL) as fixed effect 

nested within sire family for this trait. The results indicated there were two sire families 

with significant marker variance for striploin weight (Table 6.3).  
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Table 6.3 Results of residual log-likelihoods (RLL) and likelihood ratio test (REMLRT) 
for the marker effects for individual yield traits and families.  

  HCW  SS  EMA  LD 
Model  RLL        REMLRT  RLL         REMLRT  RLL           REMLRT  RLL       REMLRT 

Full  -2758.1   -380.3   -1724.1   -279.0  
Family 398  -2758.1 0.0  -380.3 0.0  -1724.2 0.2  -279.0 0.0 
Family 368  -2763.3 10.4  -381.5 2.4  -1724.9 1.6  -279.0 0.0 
Family 361  -2758.1 0.0  -380.5 0.4  -1724.1 0.0  -281.1 4.2 
Family 417  -2758.1 0.0  -380.4 0.2  -1724.4 0.6  -279.3 0.6 
Family 402  -2758.1 0.0  -380.3 0.0  -1724.3 0.4  -279.0 0.0 
Family 394  -2762.0 7.8  -381.7 2.8  -1724.2 0.2  -282.5 7.0 

HCW: Hot carcass weight, SS: Silverside, EMA: Eye muscle area, LD: Weight of the M. longissimus dorsi muscle. Full model: a DIAG 
model for the family by marker interaction. Family i model: A DIAG model for the family by marker interaction in which the marker 
variance for the Family ith was fixed to zero. REMLRT was compared with a 5% critical value of 2.79; the highlighted values were 
significant.  

 

Characterisation of identified QTL. The factor analytic model led to the identification of 

two pleiotropic QTL on BTA14 and BTA17 affecting yield traits. Individual family 

analysis in the presence of these two QTL revealed five other family specific-QTL linked 

to yield traits (three family-specific pleiotropic QTL on BTA3, 5 and 10 and two trait-

specific QTL on BTA7 and 15 affecting M. longissimus dorsi muscle weight, Table 6.4). A 

multivariate multiple regression model was fitted to the data considering all the pleiotropic 

and family-specific QTL as fixed effects and allowing separate residual variances for the 

two countries. The results showed that a number of the identified QTL had significant 

effect on M. longissimus dorsi muscle weight. 

In all cases but the BTA5 QTL, the sign of the QTL effects were in the expected 

direction, that is, the Limousin allele increased yield. The estimated effect size of the 

identified QTL for yield traits ranged from –8.7 to 8.7% of the trait means (Table 6.4).        
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Table 6.4 Identified QTL for yield traits showing their chromosomal (BTA) position and 
size of effects as a percentage of the trait means.  

BTA Trait Position a Marker Family      Mean  Effect (L-J) LOD 
3 EMA 68 HUJ246 394 63.3 5.4 2.0 
3 HCW 68 HUJ246 394 237.8 6.3 3.9 
3 SS 68 HUJ246 394 9.0 5.3 2.7 
5 EMA 52 BL37 368 83.8 -6.2 2.3 
5 HCW 52 BL37 368 344.0 -8.0 5.2 
5 SS 52 BL37 368 9.0 -8.7 4.5 
7 LD 82 INRA192 394 6.4 7.3 3.6 
10 EMA 97 TGLA272 394 63.3 5.4 2.0 
10 HCW 97 TGLA272 394 237.8 5.8 3.2 
10 LD 97 TGLA272 394 6.4 6.5 3.0 
10 SS 97 TGLA272 394 9.0 4.9 2.3 
14 HCW 52 BM302 361 344.0 6.6 3.8 
14 LD 52 BM302 361 6.6 8.7 3.1 
14 SS 52 BM302 361 9.0 7.4 3.6 
14 HCW 52 BM302 368 344.0 6.6 3.4 
14 LD 52 BM302 368 6.6 7.7 2.4 
14 SS 52 BM302 368 9.0 7.1 3.0 
14 HCW 52 BM302 394 237.8 4.1 2.2 
14 SS 52 BM302 394 9.0 4.1 2.0 
14 HCW 52 BM302 398 344.0 4.5 2.0 
14 SS 52 BM302 398 9.0 5.6 2.1 
14 HCW 52 BM302 402 237.8 3.3 2.0 
14 SS 52 BM302 402 9.0 4.5 2.6 
14 HCW 52 BM302 417 237.8 4.4 2.2 
14 SS 52 BM302 417 9.0 4.7 2.3 
15 LD 77 BM4325 361 9.0 7.2 3.4 
17 EMA 92 BM1233 368 83.8 7.7 3.2 
17 HCW 92 BM1233 368 344.0 5.7 3.0 
17 LD 92 BM1233 368 6.6 7.6 2.5 
17 SS 92 BM1233 368 9.0 6.3 2.7 
17 HCW 92 BM1233 398 344.0 5.2 2.0 

EMA: Eye muscle area (cm2), HCW: Hot carcass weight (kg), SS: Silverside weight (kg), LD: Striploin weight (kg), a QTL position 
(cM) based on Ihara et al. (2004), signs represent effect of Limousin-derived minus Jersey-derived alleles, LOD:  logarithm of odds. 

 

6.3.2 Carcass fatness 

Evidence for QTL. The hypothesis in the present research was that the overall fatness was 

under the control of major genes and a number of individual QTL were underlying specific 

fat traits. A factor analytic model was formed across the six families and three fatness traits 

(Channel fat (internal fat), rib fat (external fat) and intramuscular fat). However, the factor 

model was not significant indicating that there were no pleiotropic QTL affecting these 

three traits. There were two measurements of internal fatness, channel fat and omental fat. 

Considering these two traits only, a factor analytic model was fitted for the trait by sire by 

marker interaction term. The results indicated a significant factor model (Table 6.5). The 
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marker with highest LOD score was located on BTA10. This marker was fitted as a fixed 

effect within traits and sire families, and the process was repeated until the factor model 

became not significant. The analysis revealed five pleiotropic QTL affecting channel fat 

and omental fat.         

 

Table 6.5 Summary of residual log-likelihoods (RLL) and sequential likelihood ratio tests 
(REMLRT) for the models fitted to the trait × family × marker interaction effects for 
channel and omental fat 

Model Total  
variance 
parameters 

RLL REMLRT df  

DIAG  12 -2343.6    
FA1 24 -2330.5 26.2 12 P<0.01 
      
DIAG + QTL1 12 -1682.6    
FA1+ QTL1 24 -1670.5  12 P<0.05 
      
DIAG + QTL1+ QTL2 12 -1693.9    
FA1+ QTL1+ QTL2 24 -1682.5 24.2 12 P<0.05 
      
DIAG + QTL1+ QTL2+ QTL3 12 -1705.3  12 P<0.05 
FA1+ QTL1+ QTL2+ QTL3 24 -1694.6 21.4   
      
DIAG + QTL1+ QTL2+ QTL3+ QTL4  12 -1710.8    
FA1 + QTL1+ QTL2+ QTL3+ QTL4  24 -1699.6 22.4 12 P<0.05 
      
DIAG + QTL1+ QTL2+ QTL3+ QTL4+ 
QTL5 

12 -1715.5    

FA1 + QTL1+ QTL2+ QTL3+ QTL4+ 
QTL5 

24 -1705.8 19.4  N.S. 

QTL1=BTA10, 11 cM;  QTL2=BTA9, 65 cM;  QTL3=BTA21, 0.0 cM;  
 QTL4=BTA13, 91 cM; QTL5=BTA6, 8 cM 

 

Univariate analyses were conducted in the presence of the five pleiotropic QTL to 

locate trait-specific QTL or family-specific QTL for the fatness traits. There was evidence 

for specific QTL for the fatness traits studied herein (Table 6.6).  

 

Table 6.6 Results of residual log-likelihoods (RLL) and likelihood ratio test (REMLRT) 
for the marker effects for individual fat traits and families 

  Kidney fat  Rib fat depth  Omental fat  Intra muscular fat 
Model  RLL        REMLRT  RLL         REMLRT  RLL           REMLRT  RLL       REMLRT 

Full  -1066.6   -1059.6   -662.6   -660.3 0.0 
Family 398  -1068.5 3.8  -1061.1 3.0  -663.3 1.4  -662.9 5.2 
Family 368  -1070.3 7.4  -1059.6 0.0  -666.0 6.8  -660.3 0.0 
Family 361  -1066.7 0.2  -1059.6 0.0  -662.8 0.4  -660.3 0.0 
Family 417  -1070.2 7.2  -1059.6 0.0  -664.5 3.8  -662.3 4.0 
Family 402  -1079.2 25.2  -1059.9 0.6  -664.1 3.0  -660.3 0.0 
Family 394  -1068.2 3.2  -1059.6 0.0  -666.2 7.2  -660.3 0.0 
Full model: a DIAG model for the family by marker interaction. Family i model: A DIAG model for the family by marker interaction in 
which the marker variance for the family ith was fixed to zero. REMLRT was compared with a 5% critical value of 2.79; the highlighted 
values were significant. 
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Characterisation of identified QTL. In total, 34 QTL distributed over 24 autosomes 

affecting five fatness measurements were found (Table 6.7). The fatness traits were 

indicators of external fat (P8 and rib fat), internal fat (channel fat and omental fat), and 

intramuscular fat (IMF). There was no indication of a pleiotropic QTL affecting external, 

internal and intramuscular fat depositions and as mentioned in the previous section, there 

was no significant factor model for these traits across six families. However, the factor 

model formed for omental fat and channel fat across six families was significant, resulting 

in the identification of chromosomal regions influencing both channel fat and omental fat 

(BTA6 and BTA13, Table 6.7). 

The univariate analysis provided evidence supporting the presence of two QTL on 

BTA1 affecting P8 and channel fat. The BTA1 QTL for P8 fat was located in the proximal 

end of the chromosome and the channel fat QTL was on the distal end of the chromosome. 

The two QTL were segregating in two different families and the Limousin allele was 

responsible for increasing fatness in both QTL. 

A highly significant marker on BTA4 was found to be linked to both intramuscular 

fat (LOD=2.1-4.3 in different families) and channel fat (LOD=5.3). The QTL was 

segregating in different families and the signs of effects were different for the two traits. 

Animals inheriting the Limousin allele from the sire had less channel fat and more 

intramuscular fat compared to animals inheriting the Jersey allele.  

On chromosome 6, a QTL was evident at 8 cM which primarily affected channel fat 

and omental fat, and was segregating in sire family 417. This QTL was identified using the 

factor analytic model. The Limousin allele was associated with decreased fatness for this 

QTL (19 and 35% of the trait mean for omental fat and channel fat, respectively, Table 

6.7). Also on chromosome 6, two trait specific QTL were mapped affecting P8 and channel 

fat. The BTA6 QTL for P8 and channel fat were located in the middle and at the distal end 

of the chromosome.   

The factor analytic model revealed a marker at 65 cM on BTA9 associated with 

channel fat. The QTL linked to this marker was segregating in three families. The allele 

substitution effect for this QTL ranged from 12 to 25 % of the trait mean and the Jersey 

allele was responsible for increased fat. The analysis in the presence of this QTL as fixed 

effect within sire families revealed another QTL at 42 cM on this linkage group affecting 

channel fat segregating in two families. The allele substitution effect for this QTL was 

between 12 to 16% of the trait mean in the two families. Conversely to the other QTL, the 

Limousin allele was responsible for increased fat in this QTL.  There was strong evidence   
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Table 6.7 Identified QTL for fatness traits with their chromosomal (BTA) position and 
size of effects as a percentage of the trait means.  

BTA Trait Positiona Marker Family Mean Effect (L-J) LOD 
1 P8am 15 BMS2321 361 12.4 15.7 3.3 
1 Chanfat 122 BM1824 398 12.9 18.8 4.1 
2 Rbft 97 BM6444 398 9.8 -21.7 2.7 
2 Rbft 97 BM6444 417 7.1 30.4 2.0 
3 Chanfat 52 BM4129 402 6.5 11.9 2.5 
3 Omenfat 94 BMS2145 368 12.1 13.7 2.7 
3 Rbft 126 BMC4214 398 9.8 18.8 2.6 
4 IMF 102 TGLA159 361 5.2 12.0 2.1 
4 IMF 102 TGLA159 398 5.2 17.7 4.3 
4 Chanfat 102 TGLA159 402 6.5 -22.6 5.3 
5 Chanfat 12 BMS610 402 6.5 -13.3 2.3 
6 Chanfat 8 INRA133 417 6.5 -34.6 6.6 
6 Omenfat 8 INRA133 417 3.7 -18.7 3.0 
6 P8am 35 BM1329 398 12.4 -12.1 3.9 
6 Chanfat 78 BM4621 394 6.5 -16.4 2.4 
7 Chanfat 0 BM7160 417 6.5 16.0 2.3 
9 Chanfat 42 BMS817 398 12.9 14.4 2.0 
9 Chanfat 42 BMS817 402 6.5 13.3 2.1 
9 Chanfat 65 BMS1290 361 12.9 -11.8 2.1 
9 Chanfat 65 BMS1290 368 12.9 -13.6 2.0 
9 Chanfat 65 BMS1290 402 6.5 -25.2 5.2 
9 IMF 78 TGLA73 361 5.2 -11.6 2.4 
9 IMF 78 TGLA73 417 3.9 -46.4 4.2 
10 IMF 11 CSSM38 398 5.2 -18.1 4.8 
10 Chanfat 11 CSSM38 402 6.5 -16.2 3.4 
11 Chanfat 40 RM096 394 6.5 -13.0 2.2 
13 Omenfat 91 AGLA232 368 12.1 -13.5 2.7 
13 Omenfat 91 AGLA232 394 3.7 15.2 2.9 
13 Chanfat 91 AGLA232 402 6.5 15.5 2.6 
14 IMF 52 BM302 417 3.9 -30.9 2.7 
14 Chanfat 44 RM011 368 12.9 -11.1 2.0 
14 Chanfat 44 RM011 402 6.5 -12.1 2.3 
15 Chanfat 110 BMS429 398 12.9 19.7 3.0 
16 Chanfat 78 BM719 402 6.5 -14.6 2.7 
17 Chanfat 66 BM8125 394 6.5 -16.6 2.8 
17 P8am 81 BM1862 368 12.4 9.9 3.4 
18 Omenfat 48 INRA63 402 3.7 15.4 3.2 
19 Chanfat 78 BMS1069 394 6.5 14.6 2.7 
21 Chanfat 0 BM8115 402 6.5 24.5 5.5 
22 Chanfat 31 AGLA13 394 6.5 14.8 2.7 
25 Chanfat 32 BM737 402 6.5 -23.1 5.1 
26 Rbft 3 BMS651 361 9.8 -14.7 2.0 
26 Rbft 3 BMS651 398 9.8 -15.4 2.0 
26 Chanfat 27 BM1314 402 6.5 13.6 2.6 
26 Omenfat 52 BM6041 417 3.7 -17.9 3.5 
27 Omenfat 64 BM203 394 3.7 -19.7 4.0 
28 Rbft 1 BMC2208 398 9.8 27.6 4.4 
29 Chanfat 66 BMS1948 368 12.9 -12.1 2.7 

P8am: Fat depth at the position 8 on the rump (mm), Chanfat: channel fat, Omenfat: Omental fat Rbft: Fat depth between the 10th and 
11th ribs (mm), IMF: Intramuscular fat content, a QTL position (cM) based on Ihara et al. (2004),  signs represent effect of Limousin-
derived minus Jersey-derived alleles, LOD: logarithm of odds. 
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for a QTL associated with intramuscular fat (IMF) on BTA9 (LOD=2.4-4.2 in different 

families). The QTL was linked to a marker at position 78 cM, adjacent to a marker linked 

to channel fat at position 65 cM. The allele substitution effect for this QTL for IMF was 

between 12 to 46% of the trait mean and the individuals inheriting the Jersey allele had 

higher intramuscular fat than those inherited the Limousin allele.   

A marker in the proximal part of BTA10 was associated with both channel fat and 

IMF. The QTL linked to this marker was segregating in two different families. The 

Limousin allele decreased both IMF and channel fat.  

Using the factor analytic model, a pleiotropic QTL was identified at 91 cM on 

BTA13 affecting both omental fat and channel fat. In two families, the Limousin allele was 

associated with increased fatness. Interestingly, in another family, the Jersey allele was 

responsible for increased fatness.   

A number of trait-specific QTL were identified for channel fat, of which the most 

significant QTL were located on the BTA21 (LOD=5.5) and BTA25 (LOD=5.1). The 

substitution allele effects for BTA21 QTL and BTA25 QTL were 24 and 23% of the trait 

mean, respectively. The Limousin allele for the BTA21 QTL and the BTA25 QTL was 

associated with increased and decreased fatness, respectively. 

QTL specific to omental fat were located on BTA18, 26 and 27. The allele 

substitution effect for these QTL ranged from 15 to 20% of the trait mean (Table 6.7). 

Lastly, significant association between rib fat and a marker located at the centromeric 

region of BTA28 was found (LOD=4.4). The QTL linked to this marker was segregating in 

one family with allele substitution effect of 28% of the trait mean. The animals inherited 

the Jersey allele at this QTL were leaner than those that inherited the Limousin allele.    

6.3.3 Meat quality  

Evidence for QTL. A number of traits related to the beef quality were analysed in this 

chapter. They included tenderness measured as shear-force, cooking loss, meat color and 

pH. Tenderness measurements of M. longissimus dorsi muscle were taken both in Australia 

and New Zealand. Tenderness of M. semitendinosus muscle was also measured in 

Australia. A factor analytic model with one multiplicative term was fitted across six 

families and four tenderness measurements (shear force measurements on M. longissimus 

dorsi muscle on days 1, 5, 12 and 26 after slaughter in Australia and tenderness 

measurements on M. longissimus dorsi muscle on days 0, 1/3, 1 and 4 days post mortem in 
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New Zealand). The FA1 model was superior to the DIAG model (Table 6.8). The results 

showed that the marker with highest LOD score for the factor was on BTA18. This marker 

was fitted as fixed covariate within the families and four trait measurements, and the DIAG 

and FA1 models were sequentially fitted for the trait by family by marker interaction term. 

The better fit of the model to the data was achieved when using FA1 model compared with 

the DIAG model. The marker with highest LOD score for the factor was on BTA29. 

Fitting this marker as fixed covariate in the model caused a substantial reduction in the 

marker covariation across the families and trait measurements, leading to a non-significant 

FA1 model compared with DIAG model (Table 6.8).       

 

Table 6.8 Summary of residual log-likelihoods (RLL) and sequential likelihood ratio tests 
(REMLRT) for the models fitted to the trait × family× marker interaction effects for meat 
tendernessa. 

Model Total  
variance 
parameters 

RLL REMLRT df  

Diag 12 -1694.4    
FA1 24 -1670.5 47.8 24 P<0.01 
      
Diag + QTL1 12 -1728.3    
FA1+ QTL1 24 -1705.7 45.2 24 P<0.01 
      
Diag + QTL1+ QTL2 12 -1766.8    
FA1+ QTL1+ QTL2 24 -1753.0 27.6 24 N.S. 

a Four tenderness measurements included shear force measurements on M. longissimus dorci muscle on days 1, 5, 12 and 26 after 
slaughter in Australia and tenderness measurements on M. longissimus dorci muscle on days 0, 1/3, 1 and 4 days post mortem in New 
Zealand. QTL1=BTA18, 84 cM  QTL2=BTA29, 62 cM.  
 

 

The BTA18 and BTA29 QTL were fitted as fixed covariates within sire families and 

the DIAG model was fitted for the individual trait measurements (shear force 

measurements on M. longissimus dorsi muscle (strip loin) in both Australia and New 

Zealand and shear force measurements on M. semitendinosus in Australia). The results 

indicated significant marker variances for shear force measurements on M. semitendinosus 

on days 1, 12 and 26 after slaughter in family 368 and shear force measurements on M. 

semitendinosus on day 5 after slaughter in family 361 (Table 6.9). Also the marker 

variances for shear force measured on striploin at rigor mortis and shear force measured on 

striploin on day 26 after slaughter were significant (families 417 and 368, respectively). 

With respect to the cooking loss of M. longissimus dorsi muscle, the residual log-

likelihood for a DIAG model for six sires was –776.5. Dropping marker effects for the 

families 368, 361 and 417 led to significant decreases in the log-likelihood (log-likelihood 
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of –778.3, –779.0 and –778.8 and REMLRT of 3.6, 5.0 and 4.6, respectively, P<0.05). The 

marker variances for other families were not significant. 

 

Table 6.9 Results of residual log-likelihoods (RLL) and likelihood ratio test (REMLRT) 
for the marker effects for individual tenderness traits and families. 

  Wbst1  Wbst2  Wbst3  Wbst4 
Model  RLL        REMLRT  RLL         REMLRT  RLL           REMLRT  RLL       REMLRT 

Full  -43.3   -23.7   -0.18   20.9  
  Family 398  -43.3 0.0  -23.9 0.4  -0.42   20.2  
  Family 368  -45.4 4.2  -23.7 0.0  -2.3 4.2  14.9 12.0 
  Family 361  -43.4 0.2  -25.3 3.2  0.18   20.9  

Wbst1, 2, 3 and 4 are shear force measurements on M. semitendinosus muscle on days 1, 5, 12 and 26 after slaughter in Australia. Full 
model: a DIAG model for the family by marker interaction. Family i model: A DIAG model for the family by marker interaction in 
which the marker variance for the family ith was fixed to zero. REMLRT was compared with a 5% critical value of 2.79; the highlighted 
values were significant. 

 

Marker random regression variance was not significant for meat color suggesting no 

evidence for QTL affecting meat color. Also there was no significant factor analytic model 

for meat pH measured on the M. semitendinosus (pHst) or M. longissimus dorsi muscles 

(pHld). However, there were significant marker variances for meat pH in the sire families 

368 (pHst and pHld), 368 and 417 (pHld).  

Characterisation of identified QTL. Eight linkage groups were established as being 

associated with meat tenderness (Table 6.10). Two QTL were identified using the factor 

analytic model having significant effects on tenderness of the M. longissimus dorsi muscle. 

The identified QTL were located at 84 cM and 63 cM on BTA18 and BTA29, respectively. 

There was no measurement of tenderness on the M. semitendinosus muscle in New 

Zealand project. However, these identified QTL for M. longissimus dorsi muscle were 

tested on M. semitendinosus tenderness measured in the Australian project. The results 

revealed significant effects of these QTL on tenderness of the M. semitendinosus muscle 

measured at day 1 (BTA18 QTL), day 12 and day 26 after slaughter (BTA29 QTL, Table 

6.10). The Limousin allele in the BTA29 QTL was associated with increased toughness of 

both muscles in all the segregating families with associated allelic effects of 6% to 20% of 

the trait mean. However, for the BTA18 QTL, the Limousin allele was responsible for 

tenderness of the M. longissimus dorsi muscle in sire family 417 and toughness the of M. 

longissimus dorsi and M. semitendinosus muscles in sire families 361 and 398, 

respectively.  

The univariate analysis of the Australian shear force data indicated two markers on 

BTA5 linked to the tenderness of both M. semitendinosus and M. longissimus dorsi 

muscles. One of the markers was located at 35 cM and the other marker resided at 65 cM 
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on this linkage group. The two identified QTL were in favour of the Jersey allele with 

substitution effects ranging from 7% to 26% of the trait means. The two identified QTL 

were tested on the tenderness measurements of the M. longissimus dorsi muscle in the New 

Zealand data. The effect of the second QTL (QTL at position 65 cM) was significant on 

tenderness of the M. longissimus dorsi muscle in sire family 394.  

 

Table 6.10 Identified QTL for meat tenderness showing their chromosomal (BTA) 
position and size of effects as a percentage of the trait means.  

BTA Trait Positiona Marker Family Mean Effect (L-J) LOD 
5 wbst1 35 OARFCB5 361 5.1 7.2 2.7 
5 wbst3 35 OARFCB5 361 4.7 7.0 2.7 
5 wbst2 35 OARFCB5 361 4.8 8.7 3.5 
5 wbld1 65 MAF23 368 4.7 26.4 2.8 
5 wbld4 65 MAF23 368 3.8 16.2 2.0 
5 wbst1 65 MAF23 368 5.1 12.9 2.7 
5 wbst4 65 MAF23 368 4.4 11.9 2.4 
5 wbld1 65 MAF23 394 14.6 -11.0 2.3 
10 wbld1 24 BMS528 361 4.7 -14.9 2.8 
10 wbld2 24 BMS528 361 4.3 -12.2 2.8 
10 wbst3 24 BMS528 368 4.7 6.4 2.3 
10 wbst2 24 BMS528 398 4.8 -6.9 2.1 
13 wbld1 9 TGLA23 398 4.7 12.0 2.0 
15 wbld3 39 JAB4 394 7.4 -12.2 2.9 
15 wbld2 39 JAB4 394 10.8 -11.9 2.4 
18 wbld4 84 TGLA227 361 3.8 10.3 2.2 
18 wbst1 84 TGLA227 398 5.1 6.9 2.3 
18 wbld1 84 TGLA227 417 14.6 -10.7 3.0 
18 wbld3 84 TGLA227 417 7.4 -12.7 2.6 
18 wbld2 84 TGLA227 417 10.8 -12.1 2.1 
22 wbst1 31 AGLA13 368 5.1 -9.8 4.1 
22 wbst3 31 AGLA13 368 4.7 -6.6 2.3 
22 wbst4 31 AGLA13 368 4.4 -6.3 2.1 
27 wbld4 0 BMS2168 368 3.8 -14.4 3.5 
27 wbst3 0 BMS2168 368 4.7 -6.6 2.4 
28 wbst1 43 BM6466 368 5.1 5.7 2.2 
29 wbst3 63 BMC1206 368 4.7 6.0 2.0 
29 wbst4 63 BMC1206 368 4.4 6.2 2.0 
29 wbld3 63 BMC1206 417 7.4 20.4 6.0 
29 wbld2 63 BMC1206 417 10.8 19.2 4.5 

Wbst1, 2, 3 and 4: Shear force measurements on M. semitendinosus muscle on days 1, 5, 12 and 26 after slaughter in Australia; Wbld1, 
2, 3 and 4: Shear force measurements on M. longissimus dorsi muscle on days 1, 5, 12 and 26 after slaughter in Australia and tenderness 
measurements on M. longissimus dorsi muscle on days 0, 1/3, 1 and 4 days post mortem in New Zealand. a QTL position (cM) based on 
Ihara et al. (2004), signs represent effect of Limousin-derived minus Jersey-derived alleles. LOD:  logarithm of odds. 

 

A QTL influencing meat tenderness was located at the proximal end of BTA10 

segregating in families 361, 368 and 398. The effects of the QTL were in favor of the 

Limousin allele in two families (sires 361 and 398). However, in sire family 368, the 

Limousin allele was associated with increased toughness. 



 

                             
  

 

                                                                                                                                            143 
 

A marker located on BTA22 was significantly (LOD=2.1-4.1 for different trait 

measurements) linked to a QTL affecting tenderness of the M. semitendinosus muscle 

measured as Warner-Bratzler shear force at days 1, 12 and 26 after slaughter. The QTL 

was segregating in sire family 368 and the allelic effects ranged from 6 to 9% for different 

measurements. The offspring inheriting the Limousin allele had more tender meat than 

those inheriting the Jersey allele. The other tenderness QTL identified in the present 

research were located on BTA13, 15 and 27 and 28 (Table 6.10). 

There was evidence supporting the association of several linkage groups with meat 

pH (Table 6.11). However, rather small QTL effects were detected for this trait, which 

ranged from 0.4 to 2% of the trait mean.  

The pH of both M. longissimus dorsi and M. semitendinosus muscles was measured 

in the Australian project. With respect to the pH measured on the M. semitendinosus 

muscle (pHst), significant marker random regression variance was established only in one 

sire family (family 368). The DNA markers linked to the pH in this family were located on 

BTA5, 10 and 24. The Limousin allele was associated with increased pH in these three 

QTL. The BTA24 QTL was interesting as it was linked to the pH measured on the M. 

longissimus dorsi muscle (pHld) in this family. In addition, this QTL was segregating in 

family 402 from New Zealand project as well. 

 Other markers with effects on pH for M. longissimus dorsi muscle were identified 

on BTA1, 6, 7, 8, 9, 12, 13, 15, 16, 18 and 27 (Table 6.11). BTA6 seems to harbor three 

QTL for pHld. A QTL in the centromeric region of the chromosome and another QTL in 

the middle section of the chromosome were both segregating in the sire family 368 with 

different sign of effects. The sire family 361 was segregating for another QTL located at 

the distal part of this chromosome. Two markers at 10 and 35 cM on BTA27 were chosen 

as flanking markers for a QTL affecting on pH segregating on family 368. The markers 

had similar sign and size of effect.    

Regions on BTA6, 14, 15 and 24 contained loci associated with cooking loss of the 

M. longissimus dorsi muscle (Table 6.11). The BTA6 QTL was located at the centromeric 

region of the chromosome linked to the same marker as for M. longissimus dorsi muscle 

pH. The effect of the Limousin allele in this QTL was an increase in cooking loss with 

allele substitution effect of 5.5% of the trait mean. The Limousin alleles in the QTL on 

BTA14 and 24 were also associated with increase cooking loss. However, the identified 

QTL on BTA15 was in favor of the Limousin allele so that animals inheriting the 
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Limousin allele had less cooking loss (allele substitution effect of 5% of the trait mean) 

compared with those inheriting the Jersey allele. 

 

Table 6.11 Identified QTL for pH and cooking with their chromosomal (BTA) position 
and size of effects as a percentage of the trait means.  

BTA Trait Positiona Marker Family Mean Effect (L-J) LOD 
1 pHld 77 BM6506 417 5.4 -0.7 2.9 
1 pHld 99 CSSM032 361 5.6 0.7 2.0 
1 pHld 99 CSSM032 368 5.6 1.0 3.0 
5 pHst 91 BMS1248 368 5.7 0.8 2.9 
6 pHld 8 INRA133 368 5.6 0.8 2.6 
6 CLld 8 INRA133 417 23.4 5.5 3.2 
6 pHld 54 BM143 368 5.6 -0.9 2.9 
6 pHld 127 BM2320 361 5.6 1.0 2.9 
7 pHld 91 BMS1331 361 5.6 1.0 2.7 
8 pHld 123 BMS836 361 5.6 -0.8 2.3 
9 pHld 65 BMS1290 368 5.6 -1.6 5.5 
10 pHst 24 BMS525 368 5.7 0.8 2.7 
12 pHld 57 BM6404 361 5.6 1.5 5.5 
13 pHld 74 RM327 368 5.6 1.1 3.6 
14 CLld 14 BMS1678 368 21.7 7.4 5.9 
15 CLld 77 BM4325 361 21.7 -5.1 3.3 
15 pHld 97 BM848 361 5.6 -1.0 3.0 
16 pHld 78 BM719 361 5.6 -1.6 5.5 
18 pHld 3 BMS1355 361 5.6 1.4 4.3 
24 pHld 8 BM7151 368 5.6 0.8 2.3 
24 pHst 8 BM7151 368 5.7 0.6 2.2 
24 pHld 8 BM7151 402 5.4 0.4 2.0 
24 CLld 44 BMS1743 368 21.7 4.6 3.3 
27 pHld 10 BM6526 368 5.6 -2.0 5.9 
27 pHld 35 CSSM43 368 5.6 -2.0 5.9 

pHld: pH measured on the M. longissimus dorsi muscle, pHst: pH measured on the M. semitendinosus muscle, CLld: Cooking loss of the 
M. longissimus dorsi muscle. a QTL position (cM) based on Ihara et al. (2004). Signs represent effect of Limousin-derived minus Jersey-
derived alleles. LOD: logarithm of odds. 

 

6.3.4 Fat quality  

Evidence for QTL. The traits related to the fat quality were fat color scores of adipose 

biopsy samples (FCB), �-carotene content (BC) of the fat samples, total mono-unsaturated 

fatty acids, and melting point of the fat tissue. Preliminary inspection of the fat colour and 

�-carotene data indicated that the distribution of the �-carotene values was positively 

skewed. A logarithmic transformation was examined as a means to reduce the skewness (as 

performed for milk carotenoid concentration by Winkelman et al., 1999). Because the 

transformation to natural logarithms resulted in a substantial reduction in skewness, the 

transformed values were used in the analyses. 
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A factor analytic model was fitted across the six families, fat colour and �-carotene 

concentration. A substantial increase in log likelihood was observed when the FA1 model 

was used. The marker with highest LOD score was located on BTA4. This marker was 

fitted as fixed covariate within the families and traits and the process was repeated. The 

analysis led to seven pleiotropic QTL (or common QTL across families) (Table 6.12).     

In order to map trait or family specific QTL, the DIAG model was fitted in the 

presence of the seven identified pleiotropic/common markers as fixed covariates. The 

results revealed significant marker random regression variances for fat colour and �-

carotene concentration in the families of sires 398 and 394 (Table 6.13), suggesting that 

there was evidence for family or trait-specific QTL. 

 

Table 6.12 Summary of residual log-likelihoods (RLL) and sequential likelihood ratio tests 
(REMLRT) for the models fitted to the trait × family× marker interaction effects a  

Model Total  
variance 
parameters 

RLL REMLRT df  

Diag 12 364.3    
FA1 24 381.2 33.8 12 P<0.001 
      
Diag + QTL1 12 341.2    
FA1+ QTL1 24 355.2 28.0 12 P<0.01 
      
Diag + QTL1+ QTL2 12 318.7    
FA1+ QTL1+ QTL2 24 332.4 27.4 12 P<0.01 
      
Diag + QTL1+ QTL2+ QTL3 12 294.0    
FA1+ QTL1+ QTL2+ QTL3 24 306.2 24.4 12 P<0.05 
      
Diag + QTL1+ QTL2+ QTL3+ QTL4 12 266.5    
FA1+ QTL1+ QTL2+ QTL3+ QTL4 24 279.4 25.8 12 P<0.05 
      
Diag + QTL1+ QTL2+ QTL3+ QTL4+ 
QTL5 

12 231.9    

FA1 + QTL1+ QTL2+ QTL3+ QTL4+ 
QTL5 

24 249.1 34.4 12 P<0.001 

      
Diag + QTL1+ QTL2+ QTL3+ QTL4+ 
QTL5+QTL6 

12 210.0    

FA1 + QTL1+ QTL2+ QTL3+ QTL4+ 
QTL5+QTL6 
 

24 221.2 22.4 12 P<0.05 

Diag + QTL1+ QTL2+ QTL3+ QTL4+ 
QTL5+QTL6+QTL7 

12 184.8    

FA1 + QTL1+ QTL2+ QTL3+ QTL4+ 
QTL5+QTL6+QTL7 

24 193.1 16.6 12 N.S. 

a Traits included the fat color scores of adipose biopsy samples and �-carotene concentration. QTL1=BTA4, 12cM; QTL2=BTA1, 15 
cM; QTL3=BTA12, 81 cM; QTL4=BTA9, 37 cM; QTL5=BTA19, 59 cM; QTL6=BTA11, 54 cM; QTL7=BTA15, 14 cM. 
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Table 6.13 Results of residual log-likelihoods (RLL) and likelihood ratio test (REMLRT) 
for the marker effects for individual fat colour traits and families. 

  Fat colour score a  �-carotene concentration  
Model  RLL           REMLRT  RLL          REMLRT  

Full  -89.6   220.3   
Family 398  -94.3 9.4  218.2 4.2  
Family 368  -89.6 0.0  219.4 1.8  
Family 361  -90.0 0.8  220.3 0.0  
Family 417  -89.6 0.0  220.3 0.0  
Family 402  -90.1 1.0  219.6 1.4  
Family 394  -91.1 3.0  215.6 9.4  

Full model: a DIAG model for the family by marker interaction. Family i model: A DIAG model for the family by marker interaction in 
which the marker variance for the family ith was fixed to zero. REMLRT was compared with a 5% critical value of 2.79; the highlighted 
values were significant. a fat color scores of adipose biopsy samples. 

 

Bivariate analysis of the melting point of the adipose tissue and total mono-

unsaturated fatty acids was conducted. A factor analytic model was formed across these 

two traits and the six families. There was a significant FA1 model and the marker with 

highest LOD score was on BTA26. Fitting this marker as fixed covariate did not remove 

the marker covariation across traits and families, suggesting there were other common 

QTL affecting the two traits or segregating in different families. Therefore, another factor 

model was fitted in the presence of the BTA26 QTL as fixed effect. The likelihood ratio 

test showed a significant FA1 model. The marker with highest LOD score was located on 

BTA16. Fitting this marker as fixed covariate removed the marker correlation across the 

traits and families, leading to non-significant FA1 model compared with DIAG model 

(Table 6.14).  

 

Table 6.14 Summary of residual log-likelihoods (RLL) and sequential likelihood ratio tests 
(REMLRT) for the models fitted to the trait × family× marker interaction effects a.  

Model Total  
variance 
parameters 

RLL REMLRT DF  

Diag 12 -2244.1    
FA1 24 -2232.3 23.6 12 P<0.05 
      
Diag + QTL1 12 -2125.4    
FA1+ QTL1 24 -2113.9 23.0 12 P<0.05 
      
Diag + QTL1+ QTL2 12 2014.7    
FA1+ QTL1+ QTL2 24 2009.1 11.2 12 N.S. 

 a Fatty acid traits included mono-unsaturated fatty acids percent and melting point. QTL1=BTA26, 27cM; QTL2=BTA16, 89Cm 
 

Considering the two identified QTL (BTA26 and BTA16 QTL) as fixed covariates, 

the DIAG model was fitted to test for evidence of trait or family specific QTL. The results 

showed significant marker random regression variances in sire families 417 and 394 for the 
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two traits and a significant marker variance for melting point in sire family 368 (Table 

6.15), indicating that there was evidence for family or trait-specific QTL. 

 

Table 6.15 Results of residual log-likelihoods (RLL) and likelihood ratio test (REMLRT) 
for the marker effects for individual fat composition traits and families. 

  MUFA  Meltpt  
Model  RLL           REMLRT  RLL          REMLRT  

Full  -1193.4   -1059.0   
Family 398  -1193.4 0.0  -1059.0 0.0  
Family 368  -1194.2 1.6  -1061.9 5.8  
Family 361  -1193.4 0.0  -1059.0 0.0  
Family 417  -1195.5 4.2  -1060.7 3.4  
Family 402  -1193.4 0.0  -1059.0 0.0  
Family 394  -1199.8 12.8  -1060.8 3.6  

Full model: a DIAG model for the family by marker interaction. Family i model: A DIAG model for the family by marker interaction in 
which the marker variance for family ith was fixed to zero. REMLRT was compared with a 5% critical value of 2.79; the highlighted 
values were significant. MUFA= total mono-unsaturated fatty acids. Meltpt= melting point of the fat tissue.   

 
 
Characterisation of identified QTL. The analysis of the fat colour score on biopsy 

samples (FCB) and beta-carotene content (BC) data revealed putative QTL distributed over 

17 autosomes; most of them affected both traits (Table 6.16). A marker located at the 

centromeric region of BTA1 was linked to a QTL with highly significant effects on fat 

colour score (LOD=7.0). �-carotene content was also implicated with this marker. The 

estimated allele substitution effects of QTL for fat colour score and �-carotene were 32% 

and 22% of the traits means, respectively. The animals that inherited the Jersey allele in 

this QTL deposited more beta-carotene and produced fat with more yellow colour than 

those who inherited the Limousin allele.  

A QTL was located at the proximal end of BTA4 also affected the fat colour score 

and �-carotene. Similar to the BTA1 QTL, the Jersey allele was associated with more 

yellow fat colour and higher �-carotene deposition.   

The analysis provided significant evidence for a pleiotropic QTL linked to a marker 

at 37 cM on BTA9 affecting both fat colour score and �-carotene. The QTL was 

segregating in three families with allele substitution effects ranging from 16 to 36% of the 

trait means in different sire families. In sire families 394 and 417, the Jersey allele was 

responsible for more yellow fat but in family 398, the Limousin allele was associated with 

higher �-carotene concentration and more yellow fat. 
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Table 6.16 Identified QTL for fat colour and �-carotene content with their chromosomal 
(BTA) position and size of effects as a percentage of the trait means.  

BTA Trait Positiona Marker Family Mean Effect (L-J) LOD 
1 BC 15 BMS2321 394 1.7 -21.7 2.0 
1 FCB 15 BMS2321 398 1.9 -32.1 7.0 
2 FCB 109 BMS356 398 1.9 20.3 2.9 
4 BC 13 BMS1788 394 1.7 -25.5 3.2 
4 FCB 13 BMS1788 398 1.9 -21.5 4.3 
8 FCB 21 RM372 361 1.9 15.1 2.5 
9 FCB 37 RM216 394 1.6 -15.9 2.3 
9 BC 37 RM216 398 1.1 35.9 5.1 
9 FCB 37 RM216 398 1.9 15.5 2.6 
9 FCB 37 RM216 417 1.6 -20.0 2.8 
11 BC 55 BMS1716 398 1.1 24.9 2.9 
11 FCB 55 BMS1716 398 1.9 20.0 4.0 
11 FCB 81 BMS1048 394 1.6 24.3 3.4 
12 FCB 57 BM6404 398 1.9 22.0 2.9 
12 BC 81 RM113 361 1.1 -20.0 2.1 
12 FCB 81 RM113 398 1.9 -22.9 2.7 
13 BC 23 BMS1742 394 1.7 -22.4 3.0 
13 FCB 23 BMS1742 394 1.6 -17.4 2.6 
14 FCB 14 BMS1678 361 1.9 15.6 3.1 
14 BC 14 BMS1678 398 1.1 -45.0 5.4 
14 FCB 14 BMS1678 398 1.9 -22.9 3.6 
14 FCB 80 BM4513 394 1.6 -17.3 2.5 
15 BC 14 BMS2533 398 1.1 -29.3 3.5 
15 FCB 14 BMS2533 398 1.9 -28.0 6.5 
15 FCB 39 JAB4 402 1.6 -29.7 4.3 
16 BC 26 BMS538 394 1.7 -22.0 2.8 
19 BC 59 BM17132 398 1.1 -23.4 2.5 
19 FCB 59 BM17132 398 1.9 -15.1 2.4 
22 BC 83 BM4102 398 1.1 28.4 2.6 
22 FCB 83 BM4102 398 1.9 -22.7 3.5 
23 BC 42 CYP21 394 1.7 34.2 5.5 
23 FCB 42 CYP21 394 1.6 16.1 2.1 
24 BC 8 BM7151 394 1.7 -17.5 2.0 
24 FCB 8 BM7151 394 1.6 -22.1 3.5 
27 FCB 10 BM6526 398 1.9 24.2 3.6 
28 BC 25 BL25 394 1.7 19.1 2.1 
28 FCB 25 BL25 394 1.6 18.7 2.5 
28 BC 25 BL25 398 1.1 -25.8 2.4 

BC: �-carotene content. FCB: Fat colour score on biopsy samples. a QTL position (cM) based on Ihara et al. (2004). Signs represent 
effect of Limousin-derived minus Jersey-derived alleles. LOD: logarithm of odds. 

 

The factor analytic model revealed a pleiotropic QTL at 55 cM on BTA11 affecting 

both fat colour score and �-carotene. The QTL was segregating in sire family 398. Fitting 

this QTL as a fixed covariate in sire family 394 did not remove the marker variance for fat 

colour score in this family. Individual family analysis in the presence of this QTL as fixed 

indicated another marker at position 81 cM associated with fat colour score. 
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BTA14 was significantly linked to the both �-carotene content and fat colour score 

(LOD=2.5-5.4 for different families and traits). A pleiotropic QTL segregating in sire 

families 361 and 398 was mapped in the proximal end of the chromosome. In sire family 

398, the Jersey allele was associated with higher �-carotene deposition and more yellow 

fat. The allele substitution effects of the QTL for fat colour score and �-carotene content in 

this family were 23 to 45% of the trait means, respectively. The individual family analyses 

in the presence of this QTL as fixed covariate revealed another QTL located at 80 cM on 

BTA14 segregating in sire family 394 affecting fat colour score. 

A marker located in the centromeric region of BTA15 was significantly associated 

with both �-carotene content (LOD=3.5) and fat colour score (LOD=6.5). The offspring 

who inherited the Jersey allele in this QTL accumulated more �-carotene and hence had fat 

with more yellow colour. The other pleiotropic QTL for �-carotene content and fat colour 

score were located on BTA19, 22, 23, 24,and 28. Trait-specific QTL were also mapped on 

BTA2, 8 and 27 for fat colour score and on BTA16 for �-carotene content (Table 6.16).     

Markers with significant effects on both total mono-unsaturated fatty acids (MUFA), 

and melting point of the fat tissue (Meltpt) were identified on BTA2, 16 and 26. There 

were also chromosomal regions linked only to either total mono-unsaturated fatty acids 

(BTA4, 7, 9, 17, 19 and 28) or Meltpt (BTA3, 13, 22 and 24) (Table 6.17).    

A marker located on the distal end of BTA2 was significantly associated with both 

mono-unsaturated fatty acids and melting point. The QTL linked to this marker was 

segregating in sire families 398 and 417. However, the QTL affected both traits only in sire 

family 417. In this family, the offspring inheriting the Limousin allele had higher mono-

unsaturated fatty acids and lower melting point values when compared with those 

inheriting the Jersey allele. This QTL influenced melting point in sire family 398 with the 

allele substitution effect of 4% of the trait mean. However, in this family, the Limousin 

allele was associated with higher melting point values. 

The effect of a Limousin allele on BTA16 was a decrease in the mono-unsaturated 

fatty acids, and subsequently, an increase in melting point of the adipose tissue (Table 

6.17). The estimated allele substitution effects of the QTL were –3.2 to 3.6 for mono-

unsaturated fatty acids and melting point, respectively. 

There was evidence supporting the presence of a QTL located at 27 cM on BTA26 

segregating in multiple sire families affecting both mono-unsaturated fatty acids and 

melting point. The effect of the Limousin allele in this QTL for mono-unsaturated fatty 
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acids and melting point ranged from 2.6 to 4.3% and –3.4 to 3.2% of the trait means, 

respectively (Table 6.17).    

 

Table 6.17 Identified QTL for fatty acid composition with their chromosomal (BTA) 
position and size of effects as a percentage of the trait means.  

BTA Trait Positiona Marker Family Mean Effect (L-J) LOD 
2 Meltpt 115 BM2113 398 36.9 4.0 2.1 
2 Meltpt 115 BM2113 417 37.5 -3.6 2.6 
2 Mufa 115 BM2113 417 50.8 2.4 2.0 
3 Meltpt 126 BMC4214 368 36.9 3.2 2.0 
4 Mufa 34 BMS1237 394 50.8 -2.3 2.1 
7 Mufa 80 BMS792 368 50.4 -3.6 2.0 
9 Mufa 91 BM4208 394 50.8 2.8 2.3 
13 Meltpt 91 AGLA232 394 37.5 -2.8 2.1 
16 Meltpt 89 HUJ625 394 37.5 3.6 3.2 
16 Mufa 89 HUJ625 394 50.8 -3.2 3.6 
17 Mufa 81 BM1862 417 50.8 -3.0 3.0 
19 Mufa 43 BMS2142 394 50.8 2.8 2.9 
22 Meltpt 49 BMS390 417 37.5 -3.7 2.6 
24 Meltpt 26 CSSM31 368 36.9 3.4 2.0 
26 Meltpt 27 BM1314 394 37.5 -3.4 2.0 
26 Mufa 27 BM1314 394 50.8 3.2 2.5 
26 Mufa 27 BM1314 398 50.4 4.3 2.3 
26 Meltpt 27 BM1314 402 37.5 -3.3 2.9 
26 Mufa 27 BM1314 402 50.8 2.6 2.7 
26 Meltpt 27 BM1314 417 37.5 3.2 2.1 
28 Mufa 25 BL25 394 50.8 2.8 2.7 

Meltpt: Melting point of the fat tissue, Mufa: Total mono-unsaturated fatty acids. a QTL position (cM) based on Ihara et al. (2004). Signs 
represent effect of Limousin-derived minus Jersey-derived alleles. LOD:  logarithm of odds. 

 

6.4 Discussion  

Multi-trait multiple QTL modeling across six half-sib families was performed to 

search for DNA markers linked to the traits related to meat yield and quality. The analysis 

provided evidence for several QTL associated with yield and carcass fatness, plus meat and 

fat quality. The identified QTL were distributed on almost all the bovine autosomes.   

6.4.1 Yield traits 
Seven linkage groups (BTA3, 5, 7, 10, 14, 15 and 17) were found for hot carcass 

weight, eye muscle area, weight of the M. longissimus dorsi muscle and silverside weight 

(Table 6.4). Five of the identified QTL had pleiotropic effects on these traits. In all of the 

identified QTL, except QTL on BTA5, the Limousin allele increased yield, as was 

expected based on the breed characteristics. Two QTL specific to the M. longissimus dorsi 
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muscle weight were identified (BTA7 and BTA15). However, there was no indication of 

QTL specific for eye muscle area as an indication of meat yield. 

Evidence for the existence of a pleiotropic QTL associated with yield traits was 

identified on BTA3. Previous studies reported QTL for carcass traits on BTA3 close to the 

marker found herein (Casas et al., 2004b; Casas et al., 2003; Casas et al., 2001). Retail 

product yield is an estimate of the amount of saleable product from a given carcass and is 

considered an important carcass composition trait (Casas et al., 2001). Evidence of a QTL 

affecting this trait and also marbling score on chromosome 3 has been reported (Casas et 

al., 2004b; Casas et al., 2001). Casas et al. (2003) also reported a QTL on BTA3 for fat 

yield and carcass fat percent predicted from rib dissection.  

BTA5 has been also implicated in the expression of several quantitative traits in beef 

cattle (Casas et al., 2003; Casas et al., 2000; Mizoshita et al., 2004; Stone et al., 1999). 

Stone et al. (1999) reported a QTL close to marker BL37 on BTA5 affecting bone, 

dressing percentage and wholesale rib fat yield. This marker is located at 52 cM on BTA5 

and was linked to a number of yield traits in the present study. Casas et al. (2000) 

identified QTL on BTA5 for fat thickness, USDA yield grade, retail product yield, and 

meat tenderness in offspring from a Piedmontese × Angus sire. Casas et al. (2003) also 

found a QTL for eye muscle area, marbling, and fat yield on BTA5 in the same region 

where yield QTL resided in the present study (Table 6.4). Mizoshita et al. (2004) reported 

QTL for carcass yield estimate and marbling score on BTA5 at 50 cM and 30 cM, 

respectively. Thus, to date, there are several independent lines of evidence to support the 

existence of QTL for carcass traits on bovine chromosome 5. Although QTL from different 

studies lie in the same genomic region, it would be expected that different genes may be 

affecting different traits. Significant QTL for M. longissimus dorsi area are important 

because this trait is of great value in the beef industry. Further studies are needed to 

identify whether the same gene or genes are responsible for the observed QTL effects for 

eye muscle area and the other yield traits. 

It is perhaps premature to suggest candidate genes for the observed QTL effects; 

however, it is interesting that the marker linked to the yield traits on BTA5 was located at 

52 cM between two strong candidate genes MYF-5 and 6 (18 cM) and IGF-1 (73 cM). 

Moody et al. (1997) found an association between IGF1 and growth in Hereford cattle. 

Curi et al. (2005) also reported the effects of a polymorphism in the IGF-I gene on growth 

and carcass traits in beef cattle, suggesting the possibility that this or a neighboring gene 

could be associated with the observed QTL effects on BTA5.    
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Both the prenatal formation of muscle tissue (myogenesis) and postnatal muscle 

tissue growth (hypertrophic growth of myofibers without the formation of new myofibers) 

are regulated by the muscle regulatory factors (MRF) gene family (te Pas and Soumillion, 

2001). The MRF gene family consisting of four genes: myogenin, MyoD1, myf-5, and myf-

6. The importance of this gene family in relation to meat production has been discussed (te 

Pas and Soumillion, 2001). While the MRF genes are the central regulators of myogenesis, 

insulin-like growth factor-I (IGF-I) and other growth factors form a regulatory network 

influencing MRF gene expression pattern. Whether MYF-5 or IGF-1 or both of them were 

associated with the observed QTL effects remains to be discovered. 

The myogenic regulatory factor, MYOD1, maps to 40 cM on BTA15 and is a 

transcription factor expressed in during skeletal muscle myogenesis and regeneration 

(Atchley et al., 1994). A QTL specifically affected weight of the M. longissimus dorsi 

muscle was identified at 77 cM on this chromosome. Although this gene is located 37 cM 

apart from the marker linked to the QTL, low resolution of the marker span used herein 

makes it difficult to ascertain whether this gene could possibly underlie the observed QTL 

effect.  

The telomeric region of BTA10 was linked to all of the yield traits. Casas et al. 

(Casas et al., 2003) suggested the presence of a QTL for hot carcass weight in a family 

obtained from a crossbred Brahman by Hereford sire on chromosome 10, spanning from 0 

to 30 cM. However, the pleiotropic QTL identified for yield traits on BTA10 in the study 

herein was linked to a marker located at 97 cM. It is unlikely that the same gene (or group 

of genes) on this chromosome is underlying the same trait in the two studies. Differences 

in breed composition may influence the expression of different genes affecting yield traits. 

Compelling evidence was observed for a QTL linked to a marker at 52 cM on 

BTA14 that affects yield traits. This Limousin-derived pleiotropic QTL affected the 

carcass size but had no effect on eye muscle area.  Kim et al. (2003) reported a suggestive 

QTL for carcass weight on BTA14 linked to RM011, which is located at 44 cM on the map 

used in the present study. Mizoshita et al. (2004) reported QTL for carcass weight and 

growth traits at 32-49 cM on this chromosome. There are many possible candidate genes in 

this region. One of the most promising is myc, a transcription factor known to activate 

growth promoting genes and repress growth arresting genes.  

This is the first report of evidence for pleiotropic QTL affecting yield traits on 

BTA10 and 17. Also there is no other report of QTL for yield traits on BTA7 and 15 where 

the present study found QTL that specifically affected the weight of M. longissimus dorsi 
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muscle. Further research aimed at fine mapping the identified QTL will help to discover 

the gene or genes responsible for the observed effects.  

6.4.2 Carcass fatness 

The problem of excess fat in carcass is ubiquitous and has serious consequences for 

the animal industry on four levels: health perceptions of consumers, wasteful production of 

an undesired biological component, labour costs associated with trimming waste fat, and 

lower biological efficiencies of fatter animals (Eisen, 1989). Breeding for optimal fatness 

distribution is therefore one of the major goals for increasing profitability in the beef 

industry.  Mapping of QTL and identification of causative genes that affect fat metabolism 

will enhance the progress toward this goal. 

Several chromosomes exhibited evidence for the presence of putative QTL for 

carcass fatness (Table 6.7). Two DNA regions on BTA1 were linked to the fatness traits, 

one at the centromeric end of the chromosome at 15 cM (affecting external fat measured as 

fat thickness at P8) and the other at the telomeric end of the linkage group at 122 cM 

(affecting internal fat). Kim et al. (2003), using a random model mapped a QTL at the 

telomeric end of BTA1 (126 cM), affecting external fat deposition measured as 

subcutaneous fat thickness between the 12th and 13th ribs but using a line-cross model, they 

found a QTL at the centromeric region of the chromosome (at 1cM) for this trait from the 

same data set.   

A possible candidate gene for the fatness QTL on BTA1 is cystatin B, which maps to 

94 cM on this chromosome. Russo et al. (2002) reported association between cathepsin B 

and cystatin B genes with backfat thickness and average daily gain in pigs, respectively. 

Cystatin B is a member of the Family 1 (stefin) cysteine proteinase inhibitors and was 

originally discovered as an inhibitor of cathepsin B (Russo et al., 2002).   

It was shown that myostatin gene affected fatness traits in the population studied 

herein (Chapter 4). However, after removing the effect of this gene, a DNA marker located 

at 97 cM on BTA2 was linked to subcutaneous fat thickness between the 10th and 11th ribs. 

MacNeil and Grosz (2002) detected a QTL at 120 cM on chromosome 2 for marbling score 

using a double backcross derived from a Line 1 Herefords and a Composite Gene 

Combination line. However, Casas et al. (2004b) and Stone et al. (1999) showed evidence 

suggesting the presence of a QTL for marbling score between 25 and 45 cM on 

chromosome 2. It is possible that two QTL for fatness traits are segregating on this 
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chromosome, one in the middle of the chromosome and another in the telomeric region of 

the chromosome. The finding herein supports Casas et al. (2004b), who suggested that 

other genes on BTA2 apart from myostatin are involved in fatness.  

 Evidence exists for QTL affecting fatness in two regions of chromosome 3, one in 

the middle of the chromosome, affecting internal fat, and the other in the telomeric region, 

influencing external fat deposition. QTL on BTA3 for intramuscular fat, measured as 

marbling score, have been reported between 0-42 cM  (Casas et al., 2004b; Casas et al., 

2003) and 40-90 cM (Casas et al., 2001). Brennan et al. (2006) have identified NHLH2 as 

a central nervous system regulator of adult body weight, and mapped the bovine NHLH2 

gene on the middle of BTA3. In mice, targeted deletion of the neuronal transcription factor 

nhlh2 resulted in adult-onset obesity because of reduced exercise (Brennan et al., 2006). 

A pleiotropic QTL affecting both internal fat and intramuscular fat was found on 

BTA4. The Limousin allele was associated with increased intramuscular fat (12-18% of 

the trait mean) and decreased channel fat (23% of the trait mean). The leptin (87 cM) and 

insulin-like growth factor binding protein-3 (IGFBP-3) (72 cM) genes are on BTA4. The 

increased leptin production derived from the leptin gene has been associated with fat 

deposition in swine (Houseknecht et al., 1998). Geary et al. (2003) reported that serum 

concentrations of leptin were associated with marbling, back fat depth and kidney, pelvic, 

and heart fat and quality grad in beef cattle. Polymorphisms in the bovine leptin promoter 

have been associated with serum leptin concentration, growth, feed intake, feeding 

behavior, and carcass fatness (Nkrumah et al., 2005). However, no association was found 

between polymorphisms in leptin gene and carcass traits (Sellick, 2002) in the mapping 

population studied herein. 

The centromeric end of BTA6 was associated with both internal and external fat 

depositions. Additionally, a marker located at 78 cM was linked to the internal fat depots. 

The Limousin allele in both DNA regions and in all the segregating families was 

associated with decreased fat. However, whether the two QTL regions represent the same 

QTL or separate QTL for internal fat and backfat thickness remains to be determined. Li et 

al. (2004) found three haplotypes spanned regions on BTA6 (8.2-11.8 cM, 63.6-68.1 cM 

and 81.5-83.0 cM) that had significant associations with back fatness. Numerous 

researchers have studied QTL on BTA 6 in dairy cattle, indicating the presence of multiple 

QTL affecting milk yield, fat and protein percentage on this chromosome (Freyer et al., 

2002; Mosig et al., 2001; Olsen et al., 2002; Spelman et al., 1996; Wiener et al., 2000). 
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These results suggest that same gene or a cluster of genes in this part of the bovine genome 

is responsible for fatness regardless of breed.  

Various studies have proposed candidate genes for the QTL on BTA6 based on their 

putative physiological role on the trait of interest (Cohen-Zinder et al., 2005; Sanders et 

al., 2006; Weikard et al., 2005). Both the bovine peroxysome proliferator-activated 

receptor-� coactivator-1� (PPARGC1A, also known as PGC1� located at 21 cM on BTA6) 

and cholecystokinin A receptor (CCKAR) genes stand out as strong positional and 

functional candidates underlying the BTA6 QTL effect on fat. Weikard et al. (2005) 

identified PPARGC1A as a plausible positional and functional candidate gene for milk fat 

QTL on BTA6 because of its chromosomal position and its key role in energy, fat, and 

glucose metabolism. Weikard et al. (2005) observed a significant association between an 

SNP in intron 9 of the PPARGC1A gene and milk fat yield in a major dairy cattle 

population. The CCKAR gene has been implicated in the development of obesity based on 

the obesity gene map (Snyder, et al., 2004). In addition, Cohen-Zinder et al. (2005) 

reported that ATP binding cassette, subfamily, G, member 2 (ABCG2) gene located on 

BTA6 decreased milk yield and increased both protein and fat concentration. Moreover, 

Olsen et al. (2005) postulated that the function of polycystin 2 (PKD2) best corresponds 

with the BTA6 QTL effect, while Cohen-Zinder et al. (2005) suggested that the secreted 

phosphoprotein 1 (SPP1) has an essential role in mammary gland differentiation and 

branching of the mammary epithelial ductal system, and therefore, is a prime candidate. 

The association of the above mentioned candidate genes for the observed QTL effects on 

BTA6 for beef fatness needs to be discovered. 

BTA9 was linked to both internal and intramuscular fat. Casas et al. (2003) reported 

a QTL for marbling score between 46 and 76 cM on chromosome 9. Marbling score was 

used as an estimation of the level of intramuscular fat deposition at the region between the 

10th to 11th ribs of the M. longissimus dorsi. The marbling data were not analysed using the 

method presented in this chapter. However, the regression interval mapping revealed a 

marbling QTL in this region of the chromosome (Chapter 2). Georges et al. (1995) 

detected a significant QTL for fat yield in this chromosome in dairy cattle. The QTL for 

internal fat deposition in the study herein, the marbling QTL and the milk fat yield QTL all 

reside in a similar location. It could be hypothesized that the same gene or genes in this 

genomic region on BTA9 could be responsible for production of fat that is deposited 

intramuscularly and the level of fat in the milk of cattle. 
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There was evidence suggesting that a QTL in the centromeric region of BTA10 

associated with both internal and intramuscular fat deposition. QTL for marbling have 

been reported at 0 to 28 cM on BTA10 (Casas et al., 2003).  

A DNA region between 44-52 cM on BTA14 was linked to carcass fatness. Casas et 

al. (2000) reported a suggestive QTL for fat deposition traits at 33 cM on chromosome 14.  

Zhang et al. (1998) reported QTL in similar location for fat percentage and fat yield in 

dairy cattle. A number of studies found QTL in the centromeric region of this chromosome 

in both beef cattle (Moore et al., 2003) and dairy cattle (Ashwell et al., 2004; Ashwell et 

al., 2001; Rodriguez-Zas et al., 2002). It is feasible that BTA14 harbors genes responsible 

for fat production in cattle, regardless of specialisation (beef versus dairy breeds). 

Making use of the information contained in the genetic bovine map 

(http://www.ensembl.org/Bos_taurus), several positional candidate genes can be identified 

on BTA14 that are directly related to fat deposition. As an example, the fatty acid binding 

protein (A-FABP) has been reported to be associated with intramuscular fat content in pigs 

(Gerbens et al., 1998) and this could be a candidate gene for the observed QTL effect on 

intramuscular fat content. Recently, Michal et al. (2006) reported that the bovine fatty acid 

binding protein 4 gene is significantly associated with marbling and subcutaneous fat depth 

in Wagyu and Limousin cross animals. 

Barendse (1999) identified the gene encoding thyroglobolin (TG) as a positional 

candidate, based on its close linkage to the microsatellite locus CSSM66 on BTA14. 

Furthermore, as its product is the precursor of hormones involved in lipid metabolism, TG 

was also considered as a functional candidate gene. McPeake (2003) indicated that the TG 

gene has been associated with intramuscular fat deposition in long-fed cattle.  

The gene encoding diacylglycerol O-acyltransferase 1 (DGAT1) enzyme, which 

catalyses the final step of the triglyceride synthesis, has been demonstrated to affect the fat 

content of milk (Grisart et al., 2002; Winter et al., 2002). Thaller et al. (2003) reported 

significant effects of both TG and DGAT1 on the fat content of muscle in German Holstein 

and Charolais breeds. Moore et al. (2003) detected a QTL linked to the CSSM66 locus, 

which located between DGAT1 and TG, for backfat in a commercial line of Bos taurus. 

However, they reported neither of the two polymorphisms of candidate genes tested, 

DGAT1 and TG, showed a significant association with backfat. Recently, Casas et al., 

(2005) reported association between a SNP marker in the thyroglobulin gene and fat 

thickness and eye muscle area but not with marbling score. They found no associations 

between a SNP in the DGAT1 gene and carcass composition traits in a population of Bus 
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indicus. The low precision of the QTL mapping makes necessary further studies to 

evaluate the possible implication of these candidate genes.   

The identified QTL on BTA15 for internal fat was linked to a marker located at 110 

cM on the chromosome. QTL for internal fat on this chromosome have been reported 

(Casas et al., 2003; Kim et al., 2003). However, it is unlikely that the QTL found in the 

study herein represents the same QTL on this chromosome as the position of the suggestive 

QTL reported by Kim, et al. (2003) and Casas, et al. (2003) were between 1-61 cM and 

21-69 cM.  

A marker located at 81 cM on BTA17 was associated with fat depth measured at the 

P8 site in a sire family from the Australian project. There was also another marker located 

at 66 cM on BTA17 affecting kidney fat in a sire family from the New Zealand project. 

The Limousin allele was associated with increased fat thickness and decreased kidney fat 

on this chromosome. It is likely that the P8 fat QTL on BTA17 represents the same 

pleiotropic QTL found for yield traits linked to a marker located at 92 cM on this 

chromosome. MacNeil and Grosz (2002) suggested a QTL for internal fat deposition 

located at 78 cM on this chromosome. These results, collectively, support the existence of 

a pleiotropic QTL in this region of the chromosome affecting carcass fatness and yield.  

A QTL linked to BMS1069 located at 77cm on BTA19 was associated with internal 

fat deposition. QTL affecting external fat on this region of the chromosome have been 

reported (Kim et al., 2003; Li et al., 2004; Taylor et al., 1998). However, there was no 

indication of the effect of this QTL on external fat in this chromosome. It is possible that a 

gene or genes involving in bovine fatness are located in this genomic region but their 

function may differ depending on genetic background and environmental conditions.   

A highly significant QTL for kidney fat was located at the centromeric region of 

BTA21. The fatness QTL on this chromosome is unique as it was not associated with 

intramuscular fat content, which is important in beef industry.  

Two neighboring markers in the centromeric region of BTA26 were linked to 

channel fat and fat thickness measured at the 10th to 11th ribs. Stone et al. (1999) and Casas 

et al. (2004b) suggested the presence of a QTL for retail product yield and fat yield in this 

region of the chromosome. The present research also found another QTL in the middle 

region of the chromosome affecting omental fat.  

There was evidence for a QTL in the telomeric region of BTA27 for omental fat 

segregating in sire family 394 linked to the microsatellite marker BM203. QTL have been 

reported close to the telomeric region of BTA27, affecting marbling (Casas et al., 2000), 
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fat percentage and fat yield (Zhang et al., 1998) in dairy cattle. The combined results of 

these studies suggest that a putative QTL associated with fat deposition is located in this 

genomic region in cattle. However, more studies would be necessary to establish whether 

the same genes in this genomic region influence fat deposition in bovine. 

6.4.3 Meat quality 

Eating quality of meat depends on several important characteristics, including 

appearance, color, taste, fat content, texture, and tenderness. A number of DNA regions 

were linked to the beef tenderness, pH and cooking loss.   

Tenderness. Meat tenderness, which is a very critical trait in determining consumer 

satisfaction, can be dominated by a number of environmental influences, although the 

genetics of the animal can also play a significant role (Shackelford et al., 1994). Nine 

linkage groups have been identified as harboring QTL for meat tenderness (Table 6.10).   

A DNA region in the middle of BTA5 was linked to shear force measured on both M. 

semitendinosus and longissimus muscles. This finding confirmed the detected QTL for 

meat tenderness by Casas et al. (2000) who reported a QTL located at 70 cM on this 

chromosome. Additionally, a marker located at 35 cM on this chromosome was linked to 

shear force measured on the M. semitendinuosus muscle. These results suggest two QTL 

for meat tenderness are located on BTA5, one QTL affecting meat from different muscles 

and another QTL with muscle-specific effects.  

Tenderness of meat is determined by the rate and extent of post-mortem proteolysis. 

The calpain proteolytic system has been identified biochemically as having a critical role 

in meat tenderisation. The calpain system is a family of calcium-dependent proteases, 

consisting of µ-calpain (encoded by the calpain-1 gene and the calpain small subunit gene, 

and requires micromolar Ca2+ for activity), m-calpain (encoded by the calpain-2 gene and 

the calpain small subunit gene and requires millimolar Ca2+ for activity), and calpastatin 

(endogenous inhibitor of calpains). The calpain-1 large subunit (CAPN1), calpain small 

subunit 1 (CAPNS1or CSS1), calpain-2 gene (CAPN2) and calpastatin (CAST) are found on 

BTA29 (Smith et al., 2000), BTA18 (Band et al., 2000), BTA16 (http://www.ensembl.org/ 

Bos_taurus) and BTA7 (Bishop et al., 1993), respectively. There was evidence of QTL on 

both BTA29 and BTA18 affecting tenderness of both the M. semitendinosus and M. 

longissimus dorsi muscles. However, there was no indication of tenderness QTL on BTA7 

and BTA16.  
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Tenderness QTL on BTA29 have been reported previously (Casas et al., 2000) and 

there are a number of studies showing the association of the DNA variants at CAPN1 gene 

with meat tenderness (Casas et al., 2005; Casas et al., 2006; Morris et al., 2006; White et 

al., 2005). There was association between a SNP in this gene and meat tenderness in the 

population studied herein (Morris et al., 2006) suggesting that the genetic variation at the 

CAPN1 locus could contribute to the heritable component of meat tenderness. However, 

other DNA variants may be responsible as well.  

A QTL linked to a marker located at 24 cM on BTA10 affected the tenderness of 

both the M. semitendinosus and M. longissimus dorsi muscles. Interestingly, the calpain-3 

(Calcium-activated neutral proteinase 3) gene, assigned at 17 cM (http://www.ensembl.org/ 

Bos_taurus), is on this chromosome. 

 There was a QTL on BTA22 specifically affecting the tenderness of the M. 

semitendinosus muscle. The QTL was associated with shear force measurements at 

different times after slaughter and the Limousin allele decreased the shear force values 

(i.e., the Limousin allele was associated with more tender meat). Calcium channel, voltage-

dependent, alpha 2/delta 3 subunit maps to 35 cM on BTA22 and could be a possible 

candidate gene for this QTL. 

There was evidence for QTL linked to a marker located at 39 cM on BTA15. The 

Limousin allele was associated with meat toughness. A tenderness QTL at 23 cM on 

BTA15 has been reported in animals with both Bos indicus and� Bos taurus inheritance 

(Keele et al., 1999). The QTL coincides with the region identified herein, suggesting that 

this DNA region may be involved in beef tenderness regardless of genetic background.   

Rexroad et al. (2001) proposed calcitonin (CALCA) gene and myogenin 

differentiation 1 (MyoD1) as two candidate genes for the detected QTL by Keele et al. 

(1999) for tenderness in this position. Calcitonin involves regulation of intracellular 

calcium, which is known to play a role in meat tenderness by influencing the calpains 

(Wheeler et al., 1997). Calpain-5 (CAPN5) also maps on this chromosome; MYOD1, 

CALCA and CAPN5 are assigned to 40 cM, 43 cM and 35 cM on BTA15, respectively. A 

direct mechanism by which allelic variation in MyoD1 during early muscle development 

might affect postmortem tenderisation is not immediately obvious. However, as pointed 

out by Rexroad et al. (2001), it is possible that genetic variation in this gene (changing its 

ability to influence the expression of structural components of muscle) could affect meat 

tenderness. Furthermore, a locus on BTA15 affected the weight of the muscle. Thus, it is 
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possible that this gene has pleiotropic effects on both muscle development and meat 

tenderness similar to the indirect effects of myostatin on meat tenderness (Chapter 4). 

In summary, in addition to confirming the previously reported tenderness QTL on 

BTA5, 15 and 29, the present study found evidence for QTL affecting beef tenderness on 

BTA10, 13, 18, 22, 27 and 28. If validated, these QTL can be used to select animals that 

produce tender meat. It will be important to fine map these regions to be able to identify 

candidate genes for these QTL and ascertain their association with these traits in other 

populations. 

pH. The ultimate pH in beef is an economically relevant characteristic, where values 

higher than 5.5 negatively affect meat attributes such as tenderness and colour (Smith et 

al., 1996). Meat colour is the first criterion used to judge meat quality and acceptability 

(Conforth, 1994). No QTL were identified for meat colour. However, a number of DNA 

regions were linked to the ultimate pH of meat (Table 6.11). 

While pH is an important meat quality trait, there is no previous evidence of a QTL 

affecting meat pH in other QTL experiments in cattle. Combined knowledge of gene 

function and also comparative mapping will be useful to identify candidate genes for the 

observed effects of the identified QTL in the present study. For example, the 5’-AMP-

activated protein kinase (AMPK) is part of an ancient stress response system whose 

primary function is regulation of cellular ATP. Activation of AMPK, which is instigated by 

environmental and nutritional stresses, initiates energy-conserving measures that protect 

the cell by inhibition and phosphorylation of key enzymes in energy-consuming 

biochemical pathways (McKay et al., 2003).  The RN (Rendement Napole) gene, which is 

a mutated PRKAG3 gene (protein kinase AMP-activated, γ3 subunit) (Milan et al., 2000), 

is well known to affect meat quality traits (pH, glycogen potential, water-holding capacity) 

in pigs (Ciobanu et al., 2001). The RN gene has been mapped to SSC15, which is 

homeologous to BTA27.  This chromosome harbours QTL for pH (Table 6.11). PRKAG1 

is one of the genes that comprise the bovine AMPK family and has been mapped to BTA5 

(McKay et al., 2003). PRKAG1 could be a possible candidate gene for the identified QTL 

for pH measured on the M. semitendinosus muscle. Malek et al. (2001) reported a QTL for 

water holding capacity of raw pork on SSC2, which is homeologous to the QTL on BTA7 

identified herein, although there are no obvious candidate genes in that region. 

Glycogen content of muscle is an important determinant of the pH decreases post 

mortem and hence the ultimate pH. Thus, the level of the muscle glycogen affects meat 
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colour and tenderness (Shorthose and Harris, 1991). Therefore, genes encoding enzymes 

involve in the glycogen metabolism can be possible candidate genes for the identified QTL 

affecting meat pH. In this respect, glucose-6 phosphate transporter (G6PT) located on 

BTA15 can be a candidate because of possible effects on glycolytic processes and potential 

effects on muscle pH. Since BTA15 was also linked to the meat tenderness, a direct role of 

allelic variation at this locus on meat tenderness appears straightforward.  

Fuji et al. (1991) reported the effects of RYR1 (ryanodine receptor 1) on pork pH, 

water holding capacity and colour. This gene maps to BTA18 where a QTL affecting pH 

measured on the M. longissimus dorsi muscle was found.  

It is worth noting, consequently, that only the QTL for ultimate pH on BTA24 was 

observed to be in a similar location for the two different muscle types examined herein, the 

oxidative M. longissimus dorsi and the glycolytic M. semitendinosus.   

Cooking loss. Low cooking loss in meat is associated with improved juiciness as judged 

by sensory panels (Perry et al., 2001b). The study herein found four linkage groups related 

to the cooking loss. The results from the “Southern Crossbreeding Project” (Pitchford et 

al., 2002b) showed that the Limousin × Hereford crossbred animals have a high cooking 

loss compared to the Jersey × Hereford crossbred animals  and the current study found 

three Limousin-derived QTL with increased cooking loss (BTA6, 14, 24, Table 6.11). 

However, there was also one Limousin derived QTL with decreased cooking loss 

(BTA15).  

Pitchford et al. (2002b) reported that the Jersey × Hereford crossbred animals had 

high intramuscular fat and less cooking loss than the Limousin × Hereford crossbred 

animals. Although Pitchford et al. (2002b) concluded that the breed differences in cooking 

loss were a function of maintaining cell integrity during storage and cooking, the present 

study found that BTA14 was linked to both intramuscular fat content and cooking loss 

supporting that hypothesis that cooking loss could be associated with intramuscular fat 

content since fat cells have lower moisture content than muscle cells.   

Due to their physiological properties, fatty acid-binding protein (FABP) loci are 

candidate genes for intramuscular fat content and possibly on cooking loss.  Fatty acid-

binding proteins are intracellular transporters that deliver fatty acids either to the sites of 

fat storage or to the sites of energy production. Damon et al. (2006) reported that the 

adipocyte fatty acid binding protein 4 (FABP-4) content in M. longissimus dorsi muscle 

was 2-fold greater in pigs with high lipid concentrations in the M. longissimus dorsi muscle 

than in pigs with low lipid concentrations, and positive correlation coefficients were 
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reported between the FABP-4 level and adipocyte number and lipid content. Additionally, 

significant association between marbling and the bovine fatty acid binding protein 4 gene  

has been reported (Michal et al., 2006). The fatty acid-binding protein, adipocyte gene 

(AFABP) located at 25 cM on BTA14 and the cooking loss QTL are linked to a marker 

located at 14 cM on this chromosome. The importance of this region of the genome for 

fatness traits was discussed above. Further, the yield pleiotropic QTL found at 52 cM on 

this linkage group was associated with intramuscular fat content supporting the hypothesis 

that the AFABP gene may be the underlying gene for both intramuscular fat and cooking 

loss QTL. 

The melanocortin 4 receptor (MC4R) is expressed in the appetite-regulating areas of 

the brain, where it is central in the regulation of feed intake and energy balance. There is 

evidence that this gene is associated with fatness in pigs (Bruun et al., 2006).  MC4R is 

located at 43 cM on BTA24 and the cooking loss QTL was linked to a marker located at 44 

cM on this chromosome.  

Clearly, additional QTL mapping experiments and further research must be 

undertaken for meat quality traits. However, if the genes and pathways controlling meat 

quality traits in pork are found to control these traits in beef, then identifying molecular 

markers for selection in cattle should proceed rapidly. 

6.4.4 Fat quality 

In some markets, white fat is preferred to yellow fat. The degree of yellowness is 

associated with concentration of �-carotene (the yellow pigment). On the other hand, high 

intramuscular fat content and high mono-unsaturated fatty acids are both properties that 

attract premium prices for beef. Thus, in this study, fat colour and fatty acids 

characteristics of the intramuscular fat were considered as important fat quality traits. A 

number of QTL were identified for fat quality traits (Tables 6.16 and 6.17). 

Fat colour. Thirteen QTL with pleiotropic effects on fat colour score and �-carotene 

concentration were identified. Yellow coloration of fat in the meat is mainly due to the 

presence of carotenoids (beta-carotene) deposited in the adipose tissue. High positive 

correlations between beef fat colour and the carotene concentration in either blood plasma 

(0.67) or beef fat (0.92) have been reported (Morgan and Everitt, 1968). Thus, the large 

number of pleiotropic QTL identified herein could explain the relationship between these 

two traits. In addition, this indicates that genes involved in �-carotene metabolism are good 
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candidates for the observed QTL effects for fat colour or �-carotene. For example, beta, 

beta-carotene 9',10'-dioxygenase (BCDO2) maps to BTA15 where the present study found 

a QTL affected both fat colour and �-carotene. A single nucleotide polymorphism in 

BCDO2 gene was associated with fat colour (Tian, 2006) in the population studied herein. 

The QTL segregated in two sire families, one from the Australian project and another one 

from the New Zealand project. In the Australian sire family, the QTL affected both fat 

colour and �-carotene content. However, in the New Zealand sire family, the QTL only 

influenced fat colour. In both sire families, the Jersey allele was responsible for the fat 

yellowness, which was expected based on the breed differences reported for Jersey and 

Limousin (Kruk et al., 1997a; Pitchford et al., 2002a).      

�-carotene is a precursor of vitamin A (retinol) and genes involved in vitamin A 

metabolism are also good candidates for the identified QTL for �-carotene and fat colour. 

In this respect, the bovine epidermal retinal dehydrogenase 2 (RDHE2) gene resides at 11 

cM on BTA14 (http://www.ensembl.org/ Bos_taurus). This gene is a member of short-

chain alcohol dehydrogenase/reductase (superfamily. RDHE2 carries out the oxidation of 

retinol to produce retinal, which is the first and rate-limiting step in the retinoic acid 

synthetic pathway from retinol. The present study found a pleiotropic QTL linked to a 

marker located at 14 cM on BTA14, which affected both fat colour and �-carotene 

concentration. Thus, RDHE2 could be a strong candidate responsible for the observed QTL 

effects.  Additionally, retinal dehydrogenase 1 maps at 23 cM on BTA8. A QTL affecting 

fat colour was linked to a marker located at 21 cM on this chromosome. Further, 

peripherin, a Retinal degeneration slow protein, is located at 17 cM on BTA23 and a 

marker located at 42 cM on this linkage group was associated with both fat colour and �-

carotene. Furthermore, RPE-retinal G protein-coupled receptor (RGR_BOVIN) maps to 

29.6 cM on BTA28 (http://www.ensembl.org/ Bos_taurus) where the analysis herein found 

a pleiotropic QTL located at 25 cM on this chromosome affecting fat colour and �-

carotene. A number of QTL specifically affected fat colour and had no effect on �-carotene 

concentration, suggesting other carotenoids or pigments might be involve in fat colour.  

Carotenoid-dependent colouration is also obvious in milk fat and studies showed that 

genetic variation exists in milk fat colour (Winkelman et al., 1999), plasma and milk 

carotenoid concentration in dairy cattle (Morris et al., 2002). Thus, the findings herein 

should be useful to characterise individual genes responsible for the genetic variation in fat 

colour in cattle and should have applications in both beef and dairy cattle breeding 

programs.  
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Fatty acids. Fatty acids are involved in various technological aspects of meat quality. 

Because they have very different melting points, variation in fatty acid composition has an 

important effect on the firmness or softness of the fat in meat, especially the subcutaneous 

and intermuscular (carcass fats), but also the high intramuscular (marbling) fat (Wood et 

al., 2004). Eight QTL affecting melting point and nine QTL influencing mono-unsaturated 

fatty acids were identified, three of which were pleiotropic QTL affecting both melting 

point and mono-unsaturated fatty acids.  

This is the first report of QTL affecting on fat quality in beef cattle and there is no 

comparable published information for QTL affecting fatty acids in cattle, although there 

have been some studies in pigs (Clop et al., 2003; Perez-Enciso et al., 2000) and one study 

in sheep (Karamichou et al., 2006). Karamichou et al. (2006) found QTL for fatty acids on 

sheep chromosome 2 (conservation of synteny with BTA2). A QTL linked to a marker 

located at 115 cM on BTA2 was identified in the present study, which affected both 

melting point and total mono-unsaturated fatty acids.   

Karamichou et al. (2006) reported QTL affecting fatty acids on sheep chromosomes 

1 and 5. The study herein found QTL for melting point and total mono-unsaturated fatty 

acids located on BTA3 and BTA7, which are homeologous to sheep chromosomes 1 and 5, 

respectively. Additionally, Clop et al. (2003) found a QTL for fatty acid composition on 

pig chromosomes 8 and 12, which are homeologous to bovine chromosomes, BTA17 and 

BTA19, respectively. The present study found QTL affecting total mono-unsaturated fatty 

acids on both BTA17 and BTA19. Moreover, both Perez-Enciso et al. (2000) and Clop et 

al. (2003) reported QTL for fatty acid composition on pig chromosome 4, which has 

homeologous regions on both BTA3 and BTA14. There was no indication of QTL 

affecting fatty acid characteristics on BTA14, but BTA3 was linked to melting point of 

adipose tissue.  

A large number of genes involved in complex metabolic pathways can influence 

fatty acid metabolism. Several genes might be selected as positional and functional 

candidate genes for explaining the QTL found in this research. For example, the acetyl-

CoA carboxylase A (ACACA) gene catalyzes the carboxylation of acetyl-CoA to malonyl-

CoA, which is the precursor of de novo synthesized fatty acids (Wakil et al., 1983). 

ACACA maps to 25 cM on BTA19 and the BTA19 QTL for total mono-unsaturated fatty 

acids was linked to a marker located at 43 cM on this chromosome. Similarly, the fatty 

acid synthase (FASN) gene, which involved in the synthesis of long-chain fatty acids 

(Wakil, 1989), maps to 44 cM on BTA19.   
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There was compelling evidence for a QTL linked to a marker at 27 cM on BTA26, 

affecting both total mono-unsaturated fatty acids and melting point. The QTL in both sire 

families 394 and 402 lowered melting point and increased total mono-unsaturated fatty 

acids. The stearoyl-coenzyme A (CoA) desaturase (SCD) gene encoding the �9-desaturase 

enzyme has been assigned to 26.7 cM on BTA26 (http://www.ensembl.org/ Bos_taurus), 

making SCD a strong candidate for the identified QTL on BTA26. �9-desaturase is the 

enzyme responsible for conversion of the saturated fatty acids into monounsaturated fatty 

acids in mammalian adipocytes. This enzyme is important to the fatty acid composition in 

both beef and milk in cattle because it is responsible for the majority of monounsaturated 

fatty acids and the totality of conjugated linoleic acids in these products (Soyeurt et al., 

2006).  

On BTA 24, a QTL for melting point was linked to a marker located at 26cM, which 

is adjacent to a marker for cooking loss at 44 cM. As mentioned above, the melanocortin-4 

receptor (MC4-R) gene is also located on BTA24 at 44cM. Association analysis between 

the allelic variants of these genes and fatty acid content and metabolic ratios should be 

performed in order to understand the molecular basis of fatty acid composition and its 

influence on meat quality. 

Fatty acid composition in both milk fat and meat fat has received considerable 

interest in view of its implications for human health. While the nutritional quality of beef 

and milk fat is important, there is no information regarding the genes involving in the 

expression of this characteristic in cattle. Genetic variation in fatty acid composition within 

and between breeds for both milk fat (Soyeurt et al., 2006) and beef fat (Pitchford et al., 

2002a) have been reported. Thus, the findings herein should be useful to characterise 

individual genes responsible for the genetic variation in fatty acid composition in cattle.  

In summary, taking advantage of the multiple trait multiple QTL method developed 

herein and also the large differences in yield, fatness, meat and fat quality traits between 

the Jersey and Limousin breeds, the present study was able to identify QTL affecting these 

traits. However, future research is necessary to identify the genes underlying these QTL 

that are segregating within breeds or commercial lines.   



 

   

 

166
 

 Chapter 7: General discussion 
 
 

Carcass and meat quality traits constitute extremely important considerations of 

modern beef production systems, where consumer health concerns and marketing 

perspectives play increasingly prominent roles. Consequently, genetic improvement of 

beef quality has become the subject of several studies during the last decade (Marshall, 

1999). Genetic improvement of meat quality by traditional breeding is difficult, and 

hampered by the need for extensive and expensive measurements of traits on slaughtered 

relatives. It is expected that for these types of traits, knowledge of the underlying genes 

will greatly contribute to the efficiency of selection. 

Identification of genes and DNA sequence differences that contribute to relatively 

minor (but still of substantial economic importance) variation in production and carcass 

traits is a major goal of beef genomic research. Single genes that affect carcass and meat 

quality attributes provide opportunities for beef breeders to increase meat production and 

improve meat quality. Using appropriate breeding programs, animals that carry major 

genes, which affect carcass and meat quality attributes, also provide opportunities to 

decrease product variability and to exploit differentiation required for specific markets.  

A number of studies reported the identification of QTL in beef cattle for a variety of 

traits (Casas et al., 2004b; Casas et al., 2000; MacNeil and Grosz, 2002; Stone et al., 2005; 

Stone et al., 1999). However, QTL information for meat quality traits is relatively limited. 

Thus, the main goal of this study was to identify genomic regions associated with carcass 

quality in beef cattle. Initially, interval mapping based on regression analysis was used to 

map QTL for a wide range of economically important traits in beef cattle. Secondly, the 

effects of a myostatin (MSTN) functional single nucleotide polymorphism on growth, 

carcass and meat quality were studied. Thirdly, a multiple trait QTL mapping technique 

was developed. Finally, the multiple trait method was applied to map quantitative trait loci 

influencing carcass and meat quality traits.  

7.1 Interval mapping-one QTL model  

Regression has always been an important tool for quantitative geneticists. In the first 

attempt to map QTL for economically important traits in the beef industry, the present 
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study used the linear regression method described by Knott et al. (1996), which uses a 

model that fits a separate QTL effect for each sire and a common error variance.  

The preliminary analysis of the data from the Australian project using the regression 

interval mapping showed significant association between DNA markers and economically 

important traits in beef production. Several linkage groups were found to be linked to the 

different traits studied. However, BTA2 was found to be the most significant linkage group 

related to the carcass traits that were the main focus of the present research. The identified 

QTL were located at the centromeric end of BTA2 close to the map location of the 

myostatin gene. The QTL affected a number of carcass traits including muscling, meat 

tenderness and carcass fatness. Therefore, in the second step of the research, the 

association between a previously reported functional SNP (SNP 413) in the myostatin gene 

and a wide range of growth, carcass and meat quality traits was evaluated.  

7.2 Pleiotropic effects of myostatin SNP 413 

This research provided strong evidence for the pleiotropic effects of the myostatin 

SNP 413 on carcass and beef quality. This DNA variant significantly decreased overall 

adiposity, increased muscle mass and improved meat quality attributes including 

tenderness and cooking loss. This is the first report of the effects of the myostatin SNP 413 

on many traits in two different environments. It was shown that despite differences in 

climate, feeding regimens and age of slaughter in two countries (Australia and New 

Zealand), the allele is expressed similarly in two different environments. The present 

research found no evidence for the effect of the myostatin variant allele on birth weight 

and growth traits. It can be argued that the allele variant described herein should be active 

as only a single amino acid substitution is present (Chapter 4). By complete sequencing of 

the myostatin codon regions and splice junctions, Sellick (2002) has shown the absence of 

any loss-of-function or deleterious myostatin mutations in the six sire families studies 

herein.  

Overall, the findings suggest an opportunity exists for increasing the efficiency of 

beef production without the associated increases in calf mortality analogous with complete 

loss-of-function myostatin mutations (Casas et al., 2004a). The use of DNA technology 

permits the identification of individuals carrying the SNP at an early stage in life, thus 

allowing flexibility in mating schemes in using this DNA variant to improve carcass 

composition. 
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Lastly, while calving problems associated with full double muscling observed in the 

Belgian Blue and Piedmontese doubled-muscle breeds have historically dominated the 

controversy over the desirability of breeding for the double-muscled phenotype (Arnold et 

al., 2001), the study herein emphasises that even the drawbacks associated with mutations 

causing the total loss of function of the myostatin gene do not imply that these mutations 

are worthless. Appropriate breeding strategies that can take advantage of the useful nature 

of a myostatin knockout mutation, while selecting against undesirable companion traits, 

can help to avoid these problems. In addition, increased knowledge about mechanisms of 

function and expression patterns of myostatin has already hinted at some possible 

techniques to avoid the deleterious effects of a full myostatin knockout. For example, the 

work of Lee and McPherron (2001) on agents that block myostatin receptor binding and 

action may offer a way to “turn off” myostatin function in adult animals, bypassing the 

problems at parturition and in newborn calves.  

7.3 Modelling multiple traits 

The current research was directed toward the development of an efficient technique 

for modelling multiple phenotypes. The developed approach considered an unstructured 

covariance model for the residuals for the traits and fitted a multiplicative model for the 

trait by marker effects. The particular multiplicative model considered herein was the 

factor analytic model. This provided a parsimonious model specification to limit the 

number of parameters to be estimated. Factor analysis is an exploratory statistical method 

for multivariate data based on the assumption that the observed data are produced by a few 

unobserved factors. It was the assumption of the present work that these unobserved 

factors are the QTL with common location across traits or sire families of which the scored 

markers are constituents. 

Combining information across traits exploiting multivariate analysis, such as that 

proposed in this study can substantially increase the power, as was shown in the simulation 

study, and the robustness of quantitative trait locus mapping studies. The model proposed 

has a number of advantages. It is quite flexible and can easily accommodate covariates and 

multiple linked loci. It requires the sequential running of a series of models. The number of 

models is directly related to the number of pleiotropic QTL in the data. Therefore, the 

model is considerably less computational intensive than the number of models required by 

other methods that might sequentially fit each pair of contiguous markers in a regression to 



 

   

 

169
 

locate the QTL. In addition, QTL mapping data collected in different trials routinely 

exhibit heterogeneity of error and genetic variance among trials. The proposed approach 

can accommodate all of these sources of heterogeneity.    

This new method brings QTL detection into the general mixed model framework. 

One of the nice properties of the mixed model framework is its ability to handle a large 

number of fixed and random effects. The multiple trait all-marker analysis developed 

herein has fully taken advantage of this property and the results of the simulation study and 

data analysis have clearly verified this notion.   

The present work has taken the same reasoning as Smith et al. (2005), who fitted 

variety effects as random when studying genotype x environment interaction in multi-

environment trials. If the main aim of the analysis is to find the most likely position of the 

QTL or marker selection (to identify the closest marker of those under consideration in the 

QTL), then rankings of the estimated marker effects are required to be as close as possible 

to the rankings of the true marker effect. By definition, this implies the use of BLUP so 

that marker effects should be regarded as random. However, because of the different 

marker/QTL phases, the sign of the effects is not of interest so the absolute values of the 

BLUP are taken. It is clear that the aim of the analysis is selection so that the use of 

random marker effects is appropriate. An additional key advantage with the use of random 

marker effects is that it allows a valid analysis of data combined across sire families and 

mapping experiments. The analysis of such data is crucial since it provides a more reliable 

QTL location by accumulating information across families or mapping projects.  

REML and BLUP have been used for many years as the basis for selection and 

estimation of breeding values and genetic parameters in animal breeding programs. This 

research has applied a well-known area in animal breeding to analyse the marker and trait 

associations in the general mixed model framework. To do this, the present work used a 

“one stage” approach in which the model for residual effects was estimated simultaneously 

with models for trait by marker effects. Hence, in statistical terms, all the available 

information was used.  

Molecular techniques have developed dramatically with the effect that experiments 

are now possible with many more individuals sampled, many more traits recorded 

(including expression data on thousands of transcripts) and very dense marker maps. 

Increasing sample size has only beneficial effects for QTL mapping, irrespective of the 

approach, and can easily be accommodated with the mixed model framework. With more 

traits, there is much more, potentially useful, information to help determine the networks or 
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pathways of genes involved. Multiple trait QTL mapping developed for the current 

research can easily be applied to many traits. However, the behaviour of the approach 

using very dense marker maps (e.g., 100,000 SNPs) needs to be investigated. The fact that 

the same variance for the total markers of the entire genome is used is problematic, since 

the majority of the markers will not be linked to the QTL and they may dominate the 

estimate of the marker variance/covariance. Consequently, the estimate of the genome 

variance/covariance will be close to zero. It should be noted that the extra markers on a 

chromosome would not dilute the marker variance associated with the chromosome 

because they also have covariances between them (Gilmour, personal communication). 

However, adding extra chromosomes may dilute the genome variance, as most of the 

linkage groups are not linked to the QTL.  Therefore, one solution is to allow the markers 

of the same linkage group have common variance (Gilmour, 2007). The extension of this 

approach to the multivariate analysis would be removing the linkage groups with non-

significant variance for the traits of interest, then those traits that had non-zero variances 

for a chromosome were combined and the factor model fitted across the chromosome 

instead of the genome. 

Correlations among phenotypes can arise from several different causal processes, 

which may have different implications for the power and performance of the multivariate 

linkage analysis. Allison et al. (1998) depicted five different models involving a QTL and 

two phenotypes of interest, labelled “X1” and “X2.” In model 1, X1 and X2 are both 

functions of the QTL. They referred to this situation as “mosaic pleiotropy.” In this case, 

substantial power can be gained by conducting a multivariate linkage analysis (Allison et 

al., 1998; Boomsma, 1996) and the factor model used herein for the  trait by marker 

effects performed well in this situation in the simulation study. Model 2, termed as 

“relational” pleiotropy is where the QTL directly impacts X1, and X1 in turn, directly 

impacts X2. Model 3 depicts the situation in which X2 might be termed an “exogenous” 

variable. Here, both the QTL and X2 exert a causal influence on X1. However, the QTL 

does not influence X2. Model 4 depicts the situation in which X1 and X2 are correlated 

because each is influenced by an additional variable, Z. However, Z is not observed. 

Finally, in model 5, X2 is an intermediary phenotype between the QTL and X1 (Allison et 

al., 1998). Obviously, further studies using the approach suggested herein for multitrait 

QTL mapping that specifically consider these five situations should be undertaken. 
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7.4 Joint analysis 

By exploiting the factor analytic model, the present study has addressed the issue of 

joint analysis of multiple families or experiments in QTL identification. The proposed 

approach considered separate residuals for the trials and fitted a factor analytic model for 

family by marker interaction term (or in the case of multiple traits and multiple families, 

trait by family by marker interaction). The results from joint analysis of six simulated 

families revealed that gathering information across families could remarkably increase the 

power. The ability to detect QTL, when QTL were segregating in all families, in the 

simulation data set resulted in the same power as increasing the sample size. Thus, it was 

shown that a joint analysis is helpful for loci too small to be detected by individual family 

analyses, if the QTL are segregating in multiple families (chapter 5).   

Experience in fitting the factor analytic model has suggested some computational 

issues when complex marker by trait by family models are fitted to the data. Difficulties 

with convergence of factor analytic models may be due to the choice of starting values. To 

overcome this problem, the univariate analyses of the traits were performed to estimate the 

genome variances for the traits in each family and then these estimates were used as initial 

values to estimate specific variances and loadings across sire families for a particular trait. 

Finally, these estimates were used as initial values for factor model across traits and sire 

families.    

In practice, however, there are a number of issues that need to be addressed before 

joint analyses can be performed. For example, phenotype definition differs between 

studies, that is, the animals are reared in different environments with different testing 

regimes and different markers may be used in different populations. As far as phenotypes 

are concerned, it may be possible to adopt a standard trait measurement protocol to some 

extent, although this may never be achieved completely. Hence, environmental differences 

and other factors will always need to be considered in such studies. In the proposed 

approach, it is easily possible to account for the within trial variation while allowing 

different trials to have different residual variations/covariations. As far as the markers are 

concerned, with the development of consensus maps and distributed primer sets, it is now 

much easier to select markers that are used by others. However, markers will vary in the 

information they provide on different populations and so it would never be possible to 

completely standardise the marker choice. This being the case, the strategy adopted in the 

present study was to treat uninformative markers in different sire families as missing and 
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impute the marker scores using flanking markers as was done for the other missing 

markers.  

Lastly, the present work has demonstrated joint analysis in the case of availability of 

raw data from different studies. However, access to the raw data may not be feasible. In 

this case, meta-analysis of published results may be a powerful and informative approach 

(Allison and Heo, 1998). Meta-analysis would be facilitated if results were reported in the 

form of LOD scores along the chromosome. Applying the Fisher formula (Fisher, 1954) to 

results from many studies, the summed LOD score along the chromosome combines 

information on a QTL at a given point. The summed LOD score is equivalent to one that 

would be obtained from a model that fits a single QTL at a given location allowing its 

effects and even the residual variance to vary between trials. However, for general 

applicability, this strategy would require that LOD profiles were recorded in an accessible 

format to make future meta-analyses possible.  

7.5 QTL congruency for beef traits 

The complexity of beef yield and quality traits is one of the problems associated with 

its genetic analysis. Complexity can arise as a consequence of one carcass quality trait 

having multiple components such as fatness, tenderness, colour, pH, cooking loss. The 

genetic covariance that exists between components of beef yield and quality indicates that 

pleiotropic loci should affect combinations of these components.  

Most of the results of QTL findings in beef cattle have been reported on the basis of 

univariate regression mapping analyses of individual families until now. Such results 

provide only partial information on the genetic architecture of beef production, and 

univariate analyses do not optimally use the available information. In this study, the above-

mentioned factor analytic model was used in order to combine information across traits 

and sire families to increase power and to locate possible pleiotropic QTL affecting beef 

traits. Thus, the main feature of this work was to give a broad picture of QTL influencing 

carcass and beef quality traits. In order to summarise the identified QTL for yield, carcass 

fatness, meat and fat quality, each chromosome was divided into approximate 40 cM 

segments and the related LOD scores for the identified QTL for different traits were placed 

in these regions (Table 7.1).  

The myostatin gene, which had major effect in the expression of many carcass traits 

(Chapter 4), resides at the centromeric end of BTA2. This research adopted a strategy to 
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remove the effects of the myostatin variant to identify additional quantitative trait loci 

scattered throughout the genome associated with carcass traits. To do this in the models 

used for all of the analyses (Chapter 6), the genotype of the animals for this gene was 

considered as a fixed factor. Therefore, no QTL can be observed in the region of this gene 

on BTA2 (Table 7.1). However, in the distal region from the location of the myostatin 

gene, QTL for fatness (external fat deposition) and fat quality (both fat colour and fatty  

acids) were mapped. Unlike the myostatin variant, which affected both fatness and yield, 

this DNA region influenced only fat related traits. This finding supports the observation of 

Casas et al. (2004b) who found other genes apart from the myostatin gene on BTA2 are 

involved in fatness. 
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Table 7.1 Summary of the results for yield, fatness, meat and fat quality traits associated with each bovine autosome (BTA) divided into three 
segments (I, II, III)a 

  BTA1  BTA2 BTA3 BTA4 BTA5 BTA6 BTA7 BTA8 BTA9 BTA10 BTA11 BTA12 BTA13 
Trait I II III III II III I III I II I II III I II I III I II III I III I II III II III I III 
EMA     2.0     2.3            2.0        
HCW     3.9     5.2            3.2        

LD               3.6       3.0        
SS     2.7     4.5            2.3        

IMF        4.3           4.2  4.8         
Kidfat   4.1  2.5   5.3 2.3  6.6 2.4  2.3     5.2  3.4  2.2      2.6 

Omenfat      2.7     3.0                  2.9 
P8am 3.3          3.9                   
Rbft    2.7  2.6                        

CLLD           3.2                   
PHld  3.0         2.6 2.9 2.9  2.7  2.3  5.5       5.5   3.6 
PHst                     2.7         

wbld1          2.8           2.8       2.0  
Wbld2                     2.8         
Wbld3                              
Wbld4          2.0                    
wbst1         2.7 2.7                    
Wbst2         3.5            2.1         
Wbst3         2.7            2.3         
Wbst4          2.4                    

BC 2.0      3.2           5.1      2.9   2.1 3.0  
FCS 7.0   2.9   4.3         2.5  2.8      4.0 3.4 2.9 2.7 2.6  

Meltpt    2.6  2.0                       2.1 
Mufa    2.0   2.1        2.0     2.3          
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Table 7.1 continued  
BTA14 BTA15 BTA16 BTA17 BTA18 BTA19 BTA21 BTA22 BTA23 BTA24 BTA25 BTA26 BTA27 BTA28 BTA29 

Trait I II III I II III I II II I II III II I I II II I II II I II I II I II II 
EMA         3.2                   
HCW  3.8       3.0                   

LD  3.1   3.4    2.5                   
SS  3.6       2.7                   

IMF  2.7                          
Kidfat  2.3    3.0  2.7 2.8    2.7 5.5 2.7     5.1 2.6      2.7 

Omenfat           3.2           3.5  4.0    
P8am         3.4                   
Rbft                     2.0     4.4  

CLLD 5.9    3.3              3.3         
pHld      3.0  5.5  4.3        2.3     5.9     
pHst                  2.2          

wbld1            3.0                
Wbld2    2.4        2.1               4.5 
Wbld3    2.9        2.6               6.0 
Wbld4            2.2           3.5     
wbst1            2.3   4.1           2.2 2.2 
Wbst2                            
Wbst3               2.3        2.4    2.0 
Wbst4               2.1            2.0 

BC 5.4   3.5   2.8      2.5   2.6  2.0       2.4   
FCS 3.6  2.5 6.5         2.4   3.5  3.5     3.6  2.5   

Meltpt        3.2       2.6  5.5 2.0   2.9       
Mufa        3.6 3.0    2.9    2.1    2.7    2.7   

EMA: Eye muscle area (cm2), HCW: Hot carcass weight (kg), SS: Silverside weight (kg), LD: Striploin weight (kg), P8am: Fat depth at position 8 on the rump (mm), Kidfat: channel fat, Omenfat: Omental fat Rbft: 
Fat depth between the 10th and 11th ribs (mm), IMF: Intramuscular fat content, Wbst1, 2, 3 and 4: Shear force measurements on M. semitendinosus muscle on days 1, 5, 12 and 26 after slaughter in Australia; Wbld1, 
2, 3 and 4: Shear force measurements on M. longissimus dorsi muscle on days 1, 5, 12 and 26 after slaughter in Australia and tenderness measurements on M. longissimus dorsi muscle on days 0, 1/3, 1 and 4 post 
mortem in New Zealand, pHld: pH measured on the M. longissimus dorsi muscle, pHst: pH measured on the M. semitendinosus muscle, CLld: Cooking loss of the M. longissimus dorsi muscle, BC: �-carotene content, 
FCS: Fat colour score on biopsy samples, Meltpt: Melting point of the fat tissue, Mufa: Total mono-unsaturated fatty acids. a Values are LOD scores. I, II and III: First, second and third 40 cM segments on the 
chromosome 
 



 

   

 

176
 

A number of studies reported QTL for carcass composition on BTA3, 5, 14 (Casas et 

al., 2003; Casas et al., 2000; Mizoshita et al., 2004; Stone et al., 1999). The present study 

confirmed these reported QTL and also found additional loci linked to carcass traits on 

BTA10 and 17. BTA14 seems to be only linked to a gene or genes controlling the size of 

the animal. The other pleiotropic markers found on BTA3, 5, 10 and 17 were linked to loci 

affecting both size and muscling, suggesting that selecting animals based on these markers 

may lead to increased whole carcass weight (that is, fat, bone and meat yield). However, 

there was no indication of QTL specific for eye muscle area (which is an indication of 

meat yield), suggesting that the myostatin variant accounted for most of the variation 

observed in the expression of muscle mass. In addition, the size of the QTL effects as a 

percentage of the trait means were similar for all of the yield traits. Further, four of the five 

pleiotropic QTL (BTA3, 5, 10, 14) were close to the identified birth weight QTL (Chapter 

3; Morris et al., 2003) in the population studied herein. The direction of the birth weight 

QTL effects were similar to those of the yield traits. That is, the Limousin allele on BTA3, 

10 and 14 increased birth weight and on BTA5 decreased the trait value. The pleiotropic 

QTL effects could explain the high positive genetic correlations reported for birth weight, 

eye muscle area and hot carcass weight in the Australian ‘Southern Crossbreeding Project’ 

(Pitchford et al., 2006) in which the Limousin and Jersey breeds were a part of the study.  

These results collectively suggest that selecting animals based on the identified QTL for 

yield traits will increase the size of animals and birth weight, and consequently would 

increase calving difficulties.  

It should be noted that above-mentioned pleiotropic QTL were linked to a number of 

other carcass and beef quality traits (Table 7.1). For example, the DNA region in the 

middle of BTA5 was linked to both yield and meat tenderness. Moreover, BTA3 was 

linked to both yield and internal fat.  The Limousin allele for this BTA3 QTL increased 

both yield traits and internal fat. Furthermore, the yield pleiotropic QTL on BTA17 was 

very close to the P8 fat QTL and the Limousin allele increased all the yield traits and also 

external fat depositions. These provide additional evidence that the yield pleiotrpic QTL 

identified herein and reported in several studies involving different breed composition 

(Casas et al., 2004b; Casas et al., 2003; Casas et al., 2001) will increase the overall body 

size rather than meat yield. However, the size of the BTA3 QTL for channel fat (12% of 

the trait mean, Table 6.7) was twice the yield traits (5-6% of the trait means, Table 6.4), 

indicating that selecting animals against this QTL will decrease internal fat depositions. 

Similarly, the BTA14 QTL was linked to both yield traits and carcass fatness (Table 7.1). 
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The Limousin allele for the BTA14 QTL had a negative effect on channel fat and 

intramuscular fat (allele effects of 11-12% and 31% of the trait means, respectively, Table 

6.7) and a positive effect on yield traits (allele effects of 3-9 % of the trait means, Table 

6.2). Again this provides an opportunity to decrease internal fat depositions. However, 

intramuscular fat will be more affected for this QTL.  

These results emphasise that the identified QTL for carcass and beef composition in 

these regions of the genome, which confirmed the results from other studies (Casas et al., 

2003; Casas et al., 2000; MacNeil and Grosz, 2002; Mizoshita et al., 2004; Stone et al., 

1999), require further investigation. Overall, these findings lead to the question of whether 

the common genomic regions identified for different traits are representing one gene or 

closely linked loci.  

The proximal region of BTA6 was linked to both internal and external fat depots. In 

addition, meat quality traits including cooking loss and meat pH were affected by this part 

of the chromosome. Fatness QTL in this DNA region have been reported in beef cattle (Li 

et al., 2004) and many studies in dairy cattle (Freyer et al., 2002; Mosig et al., 2001; Olsen 

et al., 2002; Spelman et al., 1996; Wiener et al., 2000). It is noteworthy that this region of 

the genome had no effect on intramuscular fat content, offering an opportunity for 

decreasing fatness without decreasing intramuscular fat (marbling). This is also true for 

BTA21 where a highly significant QTL located at the centromeric region of the 

chromosome was found for channel fat. The Limousin allele increased fatness (allele effect 

of 24% of the trait mean, Table 6.7). Birth weight QTL in this region were also identified. 

Limousin allele decreased birth weight (by of 9% of the trait mean) (chapter 3). Two 

independent studies using different beef cattle breeds reported birth weight QTL on this 

position of the chromosome (Casas et al., 2003; Davis et al., 1998). Since this region was 

not linked to yield traits and intramuscular fat, it would be a unique opportunity to decrease 

channel fat without increasing birth weight. Also this selection will not affect 

intramuscular fat and yield. In this regard, the BTA4 QTL was also interesting because the 

Limousin allele increased intramuscular fat (12-18% of the trait mean) and decreased 

channel fat (23% of the trait mean). Therefore, identifying gene(s) responsible for these 

effects would help to select animals to increase intramuscular fat and decrease internal fat 

in beef cattle. 

A number of fatness and meat quality traits were linked to the centromeric end of 

BTA10. The identified QTL fell in a region of the chromosome proximal from the 

identified pleiotropic QTL for yield traits, such that it could be ruled out that they reflect 
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different QTL. The traits affected by this DNA region were internal fat, intramuscular fat, 

meat pH and tenderness. A marbling QTL in this genomic region has been reported (Casas 

et al., 2003). However, this study provided an additional insight into the effects of this 

QTL on internal fat. Although the QTL were segregating in different sire families, the 

Limousin allele decreased both intramuscular and internal fat (16 and 18% of the trait 

means, respectively; Table 6.7). Therefore, selection against these QTL in order to increase 

intramuscular fat will also lead to increased internal fat. Further research is required to fine 

map and narrow the identified region affecting multiple traits on this linkage group.  

BTA15 was associated with four characteristics measured on the strip loin (pH, 

cooking loss, tenderness and weight). However, whether there is one gene with pleiotropic 

effects on the overall muscle characteristics including weight, pH, tenderness and cooking 

loss or a cluster of closely linked genes each affecting different traits is not clear.     

A number of the identified QTL mapped at DNA regions similar for both the fatness 

traits and fatty acids (BTA2, BTA3, BTA13, BTA16, BTA17, BTA19, BTA22 and 

BTA26). This is in accordance with the review of De Smet et al. (2004), where they 

reported that differences in fatty acid composition between breeds and genotypes could be 

largely explained by differences in fatness. However, after correction for fat level, 

genotype differences in the fatty acid composition have been reported, reflecting the 

possible genetic differences in fatty acid metabolism independent of fatness (De Smet et 

al., 2004). Siebert et al. (1996) also supports this but it depends on how the fat extraction 

were undertaken. Moreover, there were DNA markers that were only linked to mon-

unsaturated fatty acids and melting point herein (BTA4, BTA7, BTA9, BTA23, BTA24, 

BTA28).  

The marker span used in the present study was too coarse for accurate gene targeting 

and marker-assisted selection. Differentiating the effects of closely linked QTL from the 

effects of one pleiotropic QTL remains problematic in segregating populations of modest 

size. Separating multiple linked QTL requires a very large sample size that provides 

enough recombinants or mapping populations over several generations. A linkage 

relationship will be broken in the following generations, while pleiotropic effects will 

remain unaltered. 

Finally, theoretical and computer simulation studies have been used to explore the 

potential increase in selection response that could come from the marker-assisted selection 

(Meuwissen and Goddard, 1996; Spelman and Bovenhuis, 1998). For instance, Meuwissen 

and Goddard (1996) found that the use of DNA marker information increased the genetic 
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gain for a production trait, where records were collected before selection (e.g. growth rate), 

by almost 9%. However, for a carcass trait, which was recorded by slaughtering half the 

progeny and selecting amongst the remaining half, these researchers found that marker-

assisted selection increased the rate of genetic progress by almost 64%. Presently, meat 

quality is receiving increasing attention of consumers because of food safety reasons. Thus, 

if validated, the QTL identified herein could provide valuable information to improve 

carcass and beef quality using marker assisted-selection.  

7.6 Future directions 

7.6.1 Confirmation and Validation 

The new identified QTL with low statistical support need to be confirmed by other 

studies. In addition, the results presented in this thesis pertained to alleles that segregate in 

crosses between the Limousin and the Jersey breeds. To be useful in marker-assisted 

selection, alleles with important effects that segregate within breeds must be identified. 

This requires an intensive validation program. 

7.6.2 Fine mapping  

Fine mapping of the identified QTL in this experiment will enable breeding schemes 

to employ marker-assisted selection and will allow positional candidate gene analyses to 

proceed with high levels of accuracy and precision. This would involve comparative 

mapping between the bovine and human genomes, which is the most efficient way to 

identify positional candidate genes, as it makes use of the wealth of data available from the 

human map and biomedical community.  

New technology has provided highly saturated single nucleotide polymorphism 

genetic maps. Using this technology, the cost of genotyping is decreasing to the point that 

in the future it may become cheaper to genotype populations than to collect the phenotype 

data necessary for identifying QTL. Eventually, thousands of markers can be used to refine 

the position of the identified QTL. The approach in this thesis can be used to analyse such 

data. However, the behavior of the method in the situation of high marker density needs to 

be investigated.  
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7.6.3 Epigenetics  

Understanding the role of epigenetics is increasingly important in livestock research. 

For example, epigenetic effects, such as genomic imprinting causing monoallelic gene 

expression, have been identified as being involved in QTL affecting complex traits such as 

growth and fatness traits in sheep and pigs (Cockett et al., 1996; de Koning et al., 2000).  

However, the design of this experiment did not allow the identification of possible 

imprinted genes and studying the importance of their role in carcass and beef traits. Also X 

and Y chromosomes effects have not been tested herein. Thus, the contribution of the non-

Mendelian inheritance including paternally imprinted or maternally imprinted gene effects 

on beef traits may be worth investigating. 

7.6.4 Epistasis 

The issue of detecting epistatic interactions between pairs of QTL is an important 

challenge, driven by the biological interest in finding genetic interactions, but hampered by 

the intense diversity of tests in performing an exhaustive search. Having identified additive 

QTL, it is straight forward in the proposed approach to test for interactions either among 

QTL or with other factors. However, this depends on the effects being large enough to 

appear as significant additive terms in the first instance. Thus, further work requires 

extending the proposed approach for the epistatic model. 

7.6.5 Pleiotropic vs. linked QTL. 

The approach presented herein does not distinguish between pleiotropy and linkage. 

However, if the goal is to look at the possible consequences of marker assisted selection 

for other traits, it is less relevant if the QTL is a pleiotropic QTL or if there are two closely 

linked QTL. Distinguishing between these two situations can be important from several 

perspectives. For gene discovery and positional cloning of gene(s), it is obviously 

important to know if one or two genes are responsible for the genetic correlation. From an 

animal breeding perspective, it is also important to know whether the genetic correlation 

due to a QTL can be dissociated. This could be possible in the case of two linked QTL, but 

not if the correlation is due to a single pleiotropic QTL. Thus, developing an approach to 

test for pleiotropy vs. linked QTL is another area that needs more investigation. 
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7.7 Conclusions 

This thesis has quantified the pleiotropic effects of the myostatin SNP 413 on 

growth, carcass and beef traits in two different environments. It was established that this 

myostatin variant was associated with increased meat yield, reduced fat deposition and 

increased meat tenderness, but had no significant effect on birth weight and other live 

weights. Thus, this DNA variant is an ideal candidate for genotype-assisted selection to 

improve carcass composition. 

The thesis has developed a mixed model multiple marker approach, allowing all 

markers of the entire genome to be included in the analysis simultaneously. Further, the 

approach was extended to the multitrait or multiple family situations. It was shown through 

the simulation study that modeling multiple traits and multiple families in a single linkage 

analysis simultaneously could substantially increase power, compared to modeling of each 

phenotype or family separately. To examine the behavior of the approach in experimental 

data, myostatin was used as a model for pleiotropy gene action and the developed method 

was tested on this gene. The results clearly showed that fitting a factor analytic model 

across traits and families gave a much better indication of the QTL position than a single 

trait or separate family analysis. 

Application of the developed approach to the phenotypic data revealed that different 

genomic regions control beef traits. A number of previously reported QTL were confirmed 

and new QTL were identified. In addition, trait-specific QTL and QTL with pleiotropic 

effects were mapped. Overall, the thesis provides a strong basis from which fine mapping 

can be launched for subsequent gene discovery and marker-assisted selection.  
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 Appendices 
 
 
Appendix A Most likely positiona, flanking markers, F-statistic values and allelic effects 
of putative QTL detected by individual family analysis. 
BTA Trait Position Left Marker Right Marker Effect S.E. F-Value Family 

1 P8 fat depth, mm 16 BMS2321 BMS711 2.8800 0.8266 12.2 361 

1 Body length at birth, cm 28 BMS711 BMS4017 1.8381 0.6613 7.7 398 

1 Birth weight, kg 46 BMS4017 INRA49 2.7400 0.9600 8.1 398 

1 Fat colour on biopsy samples 56 BMS4017 INRA49 0.3176 0.1153 7.6 361 

1 Aging rate on LDb, kg 67 BMS4017 INRA49 0.0036 0.0012 8.9 361 

1 Marbling, score 69 INRA49 CSSM032 0.3613 0.1220 8.8 361 

1 M. semitendinosus, kg 70 INRA49 CSSM032 0.2324 0.0756 9.5 398 

1 Silver side, kg 74 INRA49 CSSM032 0.5249 0.1509 12.1 398 

1 Channel fat, kg 91 CSSM032 BMS1789 2.3200 0.6882 12.0 398 

1 Birth weight, kg 92 CSSM032 BMS1789 2.2800 0.7800 8.6 368 

1 Carcass length, cm 107 BMS1789 BM1824 35.1100 13.1100 7.4 398 

1 Fat depth at summer, mm 136 BMS2263 DIK5034 0.8573 0.3005 8.1 368 

2 Peak force on STc, kg 10 ILSTS26 TEXAN2 0.1025 0.0231 19.6 361 

2 M. semitendinosus, kg 10 ILSTS26 TEXAN2 0.2696 0.0712 14.3 361 

2 Silver side, kg 10 ILSTS26 TEXAN2 0.5034 0.1595 10.0 361 

2 Meat yield, % 10 ILSTS26 TEXAN2 1.6620 0.4015 17.1 361 

2 Eye muscle area, cm2 10 ILSTS26 TEXAN2 7.3182 2.0734 12.5 361 

2 Peak force on ST, kg 14 ILSTS26 TEXAN2 0.0809 0.0262 9.6 398 

2 Mono-unsaturated fatty acids, % 15 ILSTS26 TEXAN2 1.9716 0.7475 7.0 361 

2 Peak force on ST, kg 16 ILSTS26 TEXAN2 0.1278 0.0237 29.1 368 

2 Eye muscle area, cm2 16 ILSTS26 TEXAN2 10.5970 2.7511 14.8 368 

2 Meat to bone ratio 17 ILSTS26 TEXAN2 0.2238 0.0770 8.4 361 

2 Meat to bone ratio 19 ILSTS26 TEXAN2 0.2838 0.0866 10.7 368 

2 Meat to bone ratio 19 ILSTS26 TEXAN2 0.2903 0.0871 11.1 368 

2 Meat yield, % 20 ILSTS26 TEXAN2 2.2804 0.5111 19.9 368 

2 Carcass fat,% 20 ILSTS26 TEXAN2 1.6100 0.5424 8.8 368 

2 Silver side, kg 21 ILSTS26 TEXAN2 0.7218 0.1889 14.6 368 

2 Meat yield, % 26 TEXAN2 OARHH30 1.3992 0.4117 11.6 398 

2 Carcass fat,% 27 TEXAN2 OARHH30 1.2324 0.4104 9.0 398 

2 M. semitendinosus, kg 36 TGLA377 URB042 0.2266 0.0598 14.4 398 

2 Silver side, kg 36 TGLA377 URB042 0.3627 0.1272 8.1 398 

2 �carotene concentration, µg/g fat 72 RM356 BMS2626 0.2249 0.0846 7.1 361 

2 Body girth at birth, cm  72 RM356 BMS2626 2.0926 0.7596 7.6 398 

2 Heart, % 86 BMS2626 BM6444 0.0384 0.0384 8.7 361 

2 Liver, % 97 BM6444 BMS356 0.1128 0.0365 9.5 361 

2 Melting point, oC 99 BM6444 BMS356 1.5238 0.5679 7.2 398 

2 Ultimate pH of ST 109 BMS356 BM2113 0.0353 0.0098 9.3 398 

3 Pelvic width, mm 0 INRA006 BMS963 4.4283 1.5845 10.6 361 

3 Pelvic area, mm2 0 INRA006 BMS963 11.9572 3.0682 15.2 361 

3 Stifle width at weaning, cm 12 INRA006 BMS963 1.4620 0.4774 9.4 398 

3 Fat depth at ribs, mm 14 INRA006 BMS963 2.5413 0.8408 9.1 398 

3 Heart, % 16 INRA006 BMS963 0.0389 0.0134 8.3 368 

3 Marbling, score 38 BM4129 HUJ246 0.3757 0.1394 7.3 398 

3 Ultimate pH of LD 46 BL41 MCM58 0.0244 0.0092 7.0 398 

3 Meat yield, % 50 HUJ246 BMS2145 1.2537 0.4284 8.6 398 

3 Carcass fat,% 59 HUJ246 BMS2145 1.3376 0.4628 8.3 398 
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Appendix A continued  
BTA Trait Position Left Marker Right Marker Effect S.E. F-Value Family 

3 Ultimate pH of LD 73 HUJ246 BMS2145 0.0521 0.0192 7.3 361 

3 Aging rate on ST, kg 74 HUJ246 BMS2145 0.0030 0.0008 12.0 368 

4 Carcass fat,% 45 MAF70 MAF50 1.4502 0.5177 7.8 368 

4 M. semitendinosus, kg 46 MAF70 MAF50 0.3678 0.1396 7.0 368 

4 M. semitendinosus, kg 50 MAF70 MAF50 0.1691 0.0575 8.7 398 

4 Aging rate on LD, kg 52 MAF50 BMS495 0.0035 0.0010 11.7 361 

4 Pelvic width, mm 96 BMS648 TGLA159 7.9348 2.5892 8.6 398 

4 Body hight at birth, cm  100 BMS648 TGLA159 2.0247 0.7267 7.8 361 

4 Desaturation index, % 100 BMS648 TGLA159 2.1849 0.8148 7.2 361 

5 Body hight at birth, cm  27 BMS610 AGLA293 3.3594 0.8921 14.2 398 

5 Peak force on ST, kg 33 AGLA293 OARFCB05 0.0818 0.0218 14.1 361 

5 Body length at birth, cm 34 AGLA293 OARFCB05 1.7574 0.6468 7.4 398 

5 Body girth at birth, cm  34 AGLA293 OARFCB05 2.5308 0.7812 10.5 398 

5 Birth weight, kg 34 AGLA293 OARFCB05 2.8957 0.8058 12.9 398 

5 M. semitendinosus, kg 35 AGLA293 OARFCB05 0.1933 0.0610 10.0 398 

5 M. Longissimus dorsi, kg 45 OARFCB5 BL37 0.5855 0.1609 13.2 368 

5 Hot carcass weight, kg 50 OARFCB5 BL37 26.0647 7.2230 13.0 368 

5 Peak force on ST, kg 65 MAF23 CSSM22 0.1350 0.0428 10.0 368 

5 Ultimate pH of ST 78 CSSM22 BMS1248 0.0572 0.0216 7.0 368 

5 Fat depth at weaning, mm 105 BMS1248 BMS772 0.5338 0.1879 8.1 368 

5 FDistance, meter 114 BMS772 BM2830 2.7797 0.8366 11.0 368 

6 Aging rate on LD, kg 8 INRA133 BM1329 0.0033 0.0010 8.6 361 

6 Eye muscle area, cm2 17 INRA133 BM1329 6.4681 2.3936 7.3 398 

6 Pelvic area, mm3 35 INRA133 BM1329 10.5400 3.2400 8.8 361 

6 Meat colour, score  37 BM1329 BM143 0.2994 0.1059 8.0 398 

6 Age at Puberty, day 39 BM1329 BM143 22.8040 7.7878 8.0 361 

6 Pelvic width, mm 42 BM1329 BM143 5.6720 1.5021 14.3 361 

6 Fat colour on biopsy samples 49 BM143 BMS483 0.2524 0.0856 8.7 361 

6 Fat colour after slaughter, score 57 BM143 BMS483 0.4611 0.1554 7.4 361 

6 Fat colour on biopsy samples 70 BMS483 BM4621 0.2600 0.0901 8.3 368 

6 Aging rate on ST, kg 73 BM4621 BM415 0.0026 0.0009 7.7 368 

6 Ultimate pH of ST 87 BM415 BM8124 0.0492 0.0183 7.2 368 

6 Heart, % 120 BM8124 BM2320 0.0924 0.0253 13.3 398 

7 Fat depth at ribs, mm 8 BM7160 RM006 1.9393 0.6157 9.9 368 

7 Fat depth at weaning, mm 51 BM741 BM6117 0.5501 0.1960 7.9 368 

7 Intramuscular fat content, % 58 BM741 BM6117 0.7880 0.2672 8.7 361 

7 Fat depth at ribs, mm 102 BMS1331 BM9065 2.2865 0.7412 9.5 361 

7 Peak force on ST, kg 116 BM9065 BMS522 0.0666 0.0222 9.0 398 

8 Silver side, kg 21 RM321 RM372 0.3748 0.1378 7.4 398 

8 Pelvic width, mm 40 BMS1591 BM4006 4.7783 1.6008 8.9 368 

8 Fat depth at winter, mm 45 BMS1591 BM4006 0.4356 0.1390 9.8 368 

8 Eye muscle area, cm2 46 BMS1591 BM4006 6.6710 2.5153 7.0 398 

8 Fat colour after slaughter, score 48 BMS1591 BM4006 0.6955 0.2171 10.0 361 

8 Eye muscle area, cm2 62 BMS1341 BMS2072 6.6510 2.0976 10.1 361 

8 M. Longissimus dorsi, kg 69 BMS2072 BM711 0.6914 0.2573 7.2 361 
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Appendix A continued 
BTA Trait Position Left Marker Right Marker Effect S.E. F-Value Family 

8 Hot carcass weight, kg 76 BMS2072 BM711 25.1371 8.6334 8.5 361 

8 Cooking loss of LD, % 115 BM711 CSSM47 0.7475 0.2730 7.5 398 

9 M. Longissimus dorsi, kg 42 BMS817 BMS1148 0.4939 0.1787 7.6 361 

9 Docility, score 50 BMS817 BMS1290 0.9374 0.3360 7.8 361 

9 Marbling, score 58 BMS1148 BMS1290 0.5473 0.1211 20.4 398 

9 Eye muscle area, cm2 66 BMS1290 TGLA73 5.8013 2.0351 8.1 361 

9 Fat colour after slaughter, score 75 BMS1290 TGLA73 0.4576 0.1700 7.2 368 

9 Marbling, score 76 TGLA73 BM4208 0.3664 0.1328 7.6 368 

9 Cooking loss of ST, % 85 TGLA73 BM4208 0.7427 0.2617 8.1 361 

9 Intramuscular fat content, % 105 BM4208 BMS1967 0.7760 0.2441 10.1 361 

10 Birth weight, kg 11 CSSM38 BMS528 2.0964 0.7476 7.5 398 

10 Meat colour, score  23 CSSM38 BMS528 0.2799 0.1038 7.3 398 

10 Melting point, oC 35 BMS528 BMS861 1.5209 0.5300 8.2 368 

10 Docility, score 39 BMS528 BMS861 1.0035 0.3624 7.7 361 

10 Carcass bone, % 45 BM875 BM888 0.7794 0.2666 8.5 398 

10 Body girth at birth, cm  76 BMS1620 TGLA272 2.0969 0.7549 7.7 361 

10 Blood cortisol, µg/dL  85 BMS1620 TGLA272 9.1621 3.1621 7.9 361 

10 Peak force on LD, kg 87 BMS1620 TGLA272 0.1180 0.0383 9.5 368 

10 Gestation length, day 99 TGLA272 BMS2614 3.5524 1.0586 11.3 398 

11 Ultimate pH of LD 18 BM827 BMS2131 0.0291 0.0097 7.3 398 

11 Aging rate on ST, kg 40 BM304 RM096 0.0026 0.0009 8.1 368 

11 Desaturation index, % 50 RM096 INRA111 2.8993 0.8421 11.9 361 

11 Birth weight, kg 74 BMS1822 RM150 2.1507 0.7576 8.1 361 

11 Carcass bone, % 86 BMS1048 BMS989 0.6565 0.2459 7.1 398 

11 Aging rate on ST, kg 98 BMS989 RM363 0.0025 0.0009 7.0 398 

11 Fat colour on biopsy samples 122 BMS2315 HEL13 0.3049 0.0770 15.7 368 

12 Body hight at weaning, cm 0 BMS410 BM6108 2.4418 0.8167 9.0 361 

12 Silver side, kg 3 BMS410 BM6108 0.4593 0.1658 7.7 361 

12 Meat yield, % 9 BMS410 BM6108 1.5177 0.4352 12.2 361 

12 Age at Puberty, day 11 BMS410 BM6108 25.3900 8.1798 9.6 361 

12 Meat to bone ratio 30 BM6108 AGLA226 0.3532 0.0869 16.5 361 

12 Meat to bone ratio 31 BM6108 AGLA226 0.3539 0.0876 16.3 361 

12 Desaturation index, % 37 BM6108 AGLA226 2.1705 0.8198 7.0 368 

12 Carcass bone, % 38 AGLA226 BM6404 1.1806 0.3389 12.1 361 

12 Eye muscle area, cm2 38 AGLA226 BM6404 8.3900 2.6864 9.8 361 

12 Intramuscular fat content, % 61 BMS975 RM113 0.9853 0.2993 10.8 398 

12 Ultimate pH of LD 64 BMS975 RM113 0.0500 0.0179 7.8 361 

12 Cooking loss of ST, % 64 BMS975 RM113 0.7404 0.2648 7.8 368 

12 Fat colour after slaughter, score 72 BMS975 RM113 0.6846 0.1743 15.4 368 

12 �carotene concentration, µg/g fat 92 RM113 BMS1316 0.3185 0.1120 8.1 361 

12 Ossification, score 92 RM113 BMS1316 28.9910 10.4415 7.7 361 

13 Aging rate on ST, kg 9 TGLA23 BMS1742 0.0024 0.0009 7.1 398 

13 Aging rate on LD, kg 9 TGLA23 BMS1742 0.0037 0.0011 12.0 361 

13 M. Longissimus dorsi, kg 9 TGLA23 BMS1742 0.4064 0.1133 12.9 398 

13 Ultimate pH of LD 9 TGLA23 BMS1742 0.0303 0.0090 11.3 398 

13 Birth weight, kg 43 BMS1742 ILSTS59 1.9811 0.7457 7.1 398 

13 Peak force on ST, kg 57 HUJ616 BMS1669 0.0646 0.0219 8.7 368 

13 Desaturation index, % 77 RM327 BL1071 1.9274 0.6821 8.0 368 
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Appendix A continued 
BTA Trait Position Left Marker Right Marker Effect   S.E. F-Value Family 

13 Elongation index, % 78 BL1071 AGLA232 3.0103 0.7361 16.7 398 

14 Fat colour on biopsy samples 14 BMS1678 ILSTS011 0.3278 0.0841 15.2 361 

14 Cooking loss of LD, % 16 BMS1678 ILSTS011 1.6859 0.4508 14.0 368 

14 Elongation index, % 16 BMS1678 ILSTS011 2.1189 0.7218 8.6 398 

14 Body hight at weaning, cm 16 BMS1678 ILSTS011 2.3510 0.7393 10.1 398 

14 Desaturation index, % 20 BMS1678 ILSTS011 2.3925 0.8229 8.4 368 

14 Desaturation index, % 20 ILSTS011 RM011 2.3925 0.8230 8.4 368 

14 Docility, score 22 BMS1678 ILSTS011 1.0454 0.3586 8.5 368 

14 Carcass length, cm 25 ILSTS011 RM011 28.4500 9.4327 9.1 361 

14 Body hight at weaning, cm 37 RM011 ILSTS008 3.0471 0.8293 13.5 361 

14 Hot carcass weight, kg 42 RM011 ILSTS008 24.4697 7.3781 11.0 361 

14 Heart, % 43 RM011 ILSTS008 0.0312 0.0104 9.0 361 

14 Liver, % 43 RM011 ILSTS008 0.1030 0.3260 10.0 361 

14 Stifle width at weaning, cm 43 RM011 ILSTS008 1.2027 0.4509 7.1 361 

14 Body length at birth, cm 43 RM011 ILSTS008 2.1443 0.5457 15.4 361 

14 Body hight at birth, cm  43 RM011 ILSTS008 2.4653 0.6662 13.7 361 

14 Body hight at birth, cm  43 RM011 ILSTS008 2.4515 0.6839 12.9 361 

14 Birth weight, kg 43 RM011 ILSTS008 2.8260 0.6862 17.0 361 

14 Weaning weight, kg 43 RM011 ILSTS008 20.3987 5.6869 12.9 361 

15 Liver, % 48 JAB4 POTCHA 0.1688 0.0570 8.8 368 

15 Fat colour on biopsy samples 49 JAB4 POTCHA 0.5345 0.1958 7.4 398 

15 Desaturation index, % 68 POTCHA BM4325 1.7612 0.6366 7.7 368 

15 Channel fat, kg 102 BM848 BMS429 2.3512 0.6530 13.0 398 

16 Marbling, score 2 BMS357 HUJ614 0.3818 0.1366 7.8 368 

16 �carotene concentration, µg/g fat 51 BMS1907 CSSM28 0.2205 0.0817 7.3 361 

16 Age at Puberty, day 72 CSSM028 BM719 24.7004 6.8891 12.9 398 

16 Body length at weaning, cm 81 BM3509 INRA13 3.9044 1.2148 10.3 398 

16 Stifle width at weaning, cm 82 BM3509 INRA13 1.2813 0.4600 7.8 398 

16 Weaning weight, kg 83 INRA13 HUJ625 20.1550 5.3118 14.4 398 

16 Peak force on ST, kg 84 INRA13 HUJ625 0.0628 0.0217 8.4 361 

16 Eye muscle area, cm9 84 INRA13 HUJ625 6.9334 2.5376 7.5 368 

16 Pelvic area, mm2 84 INRA13 HUJ625 10.5077 3.6571 8.3 368 

16 M. Longissimus dorsi, kg 87 INRA13 HUJ625 0.4485 0.1377 10.6 368 

17 Blood cortisol, µg/dL  2 RM156 BMS2220 7.4398 2.4398 8.3 398 

17 M. Longissimus dorsi, kg 14 RM156 BMS2220 0.3876 0.1383 7.8 398 

17 Cooking loss of LD, % 20 BMS2220 BMS941 0.8220 0.3128 7.0 398 

17 Elongation index, % 26 BMS2220 BMS941 2.2486 0.7961 8.0 398 

17 Silver side, kg 42 OAFCB48 ILSTS23 0.4749 0.1409 11.4 361 

17 Meat yield, % 43 BMS941 OARFCB48 1.1140 0.3835 8.4 361 

17 Kidney, % 55 OARFCB48 ILSTS23 0.0364 0.0117 9.7 368 

17 Meat yield, % 68 ILSTS23 BM8125 1.6441 0.5597 9.0 368 

17 Pelvic area, mm2 74 ILSTS23 BM8125 12.0229 4.4004 7.5 398 

17 M. Longissimus dorsi, kg 77 ILSTS23 BM8125 0.4062 0.1403 8.4 368 

17 �carotene concentration, µg/g fat 81 BL50 BM1862 0.1981 0.0675 8.6 368 

17 Hot carcass weight, kg 86 BM1862 BM1233 20.0303 7.4778 7.2 368 

17 Liver, % 88 BM1862 BM1233 0.1393 0.0498 7.8 368 
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Appendix A continued 
BTA Trait Position Left Marker Right Marker Effect   S.E. F-Value Family 

17 Meat to bone ratio 90 BM1862 BM1233 0.2630 0.0722 13.0 368 

17 Meat to bone ratio 90 BM1862 BM1233 0.2617 0.0726 13.3 368 

17 Eye muscle area, cm2 90 BM1862 BM1233 9.4391 2.4401 15.0 368 

17 Carcass bone, % 93 BM1862 BM1233 0.8563 0.2609 10.8 368 

17 P8 fat depth, mm 93 BM1862 BM1233 3.3244 0.9195 13.1 368 

17 Ossification, score 94 BM1862 BM1233 17.2189 6.3332 7.4 368 

17 Heart, % 99 BM1862 BM1233 0.0367 0.0139 7.0 368 

18 Silver side, kg 16 BMS1355 TEXAN10 0.4703 0.1683 7.8 361 

18 Pelvic hight, mm 21 TEXAN10 INRA121 8.0722 2.8584 8.0 398 

18 Pelvic width, mm 40 BM8151 INRA63 4.4943 1.6104 7.8 368 

18 Peak force on LD, kg 42 BM8151 INRA63 0.1611 0.0382 17.8 361 

18 Meat colour, score  43 BM8151 INRA63 0.3411 0.1264 7.3 361 

18 Channel fat, kg 44 BM8151 INRA63 1.7126 0.5597 9.4 361 

18 Melting point, oC 81 ILSTS2 TGLA227 1.3255 0.4819 7.6 361 

19 FDistance, meter 0 BM9202 HEL10 1.9728 0.7098 7.7 361 

19 Aging rate on LD, kg 21 HEL10 BMS2142 0.0043 0.0013 10.4 398 

19 Meat colour, score  23 HEL10 BMS2142 0.4093 0.1388 8.7 361 

19 Body hight at weaning, cm 45 BMS2142 BP20 2.0183 0.6911 8.5 398 

19 Carcass fat,% 76 BM17132 ETH3 1.5298 0.4988 9.4 361 

19 Pelvic width, mm 99 RM388 BMS601 4.8343 1.7796 7.4 368 

20 Channel fat, kg 9 BM1225 TGLA304 1.6989 0.6306 7.3 368 

20 Pelvic hight, mm 11 BM1225 TGLA304 9.0400 3.2881 7.6 398 

20 Aging rate on ST, kg 53 BM4107 BMS1120 0.0025 0.0008 8.0 398 

21 Birth weight, kg 6 BM8115 RM151 2.2116 0.7117 9.7 368 

21 Blood cortisol, µg/dL  15 BM3413 AGLA233 6.9502 2.5058 7.7 398 

21 Cooking loss of ST, % 36 BM103 BMC4228 0.7795 0.2567 9.2 361 

21 Gestation length, day 36 BM103 BMC4228 2.9361 1.0293 8.1 398 

21 Silver side, kg 39 BM103 BMC4228 0.3724 0.1156 10.4 398 

22 Fat depth at weaning, mm 3 INRA26 BM1558 0.6958 0.2523 7.6 361 

22 Pelvic area, mm2 5 INRA26 BM1558 10.5044 3.0760 11.7 361 

22 Body hight at birth, cm  18 BM1558 BM1303 2.3589 0.7070 11.1 368 

22 M. semitendinosus, kg 36 AGLA13 BMS390 0.1962 0.0741 7.0 361 

22 Kidney, % 70 BMS875 HMH1R 0.0294 0.0098 9.0 361 

22 Birth weight, kg 79 HMH1R BM4102 2.5136 0.9198 7.5 368 

23 Gestation length, day 20 INRA132 CYP21 4.0898 1.2222 11.2 361 

23 Elongation index, % 70 BM1905 BM1443 2.1290 0.6390 11.1 361 

23 Hot carcass weight, kg 73 BM1905 BM1443 19.1037 7.0128 7.4 368 

24 Mono-unsaturated fatty acids, % 15 BM7151 CSSM31 2.2860 0.7865 8.5 398 

24 Saturate fatty acids, % 17 BM7151 CSSM31 2.2587 0.8208 7.6 398 

24 Fat depth at weaning, mm 35 CSSM31 BMS1743 0.6318 0.2078 9.2 398 

24 Cooking loss of LD, % 52 BMS1743 INRA90 1.1223 0.4072 7.6 368 

24 Intramuscular fat content, % 55 BMS1743 INRA90 0.9227 0.2426 14.5 368 

25 Peak force on LD, kg 14 BM4005 BP28 0.0995 0.0341 8.5 398 
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Appendix A continued 
BTA Trait Position Left Marker Right Marker Effect   S.E. F-Value Family 

25 Carcass fat,% 14 BM4005 BP28 1.3589 0.3990 11.6 398 

25 Hot carcass weight, kg 41 BM737 BMS1353 23.3609 7.6110 9.4 398 

25 Weaning weight, kg 42 BM737 BMS1353 15.8900 5.7238 7.7 398 

25 F-Distance, meter 44 BM737 BMS1353 1.9091 0.7186 7.1 398 

25 Carcass length, cm 45 BM737 BMS1353 33.4671 10.6295 9.9 398 

25 P8 fat depth, mm 47 BM737 BMS1353 2.6197 0.1919 8.1 398 

25 Docility, score 47 BM737 BMS1353 0.7986 0.2850 7.8 368 

26 Elongation index, % 3 BMS651 BM1314 2.2175 0.7140 9.7 398 

26 Fat depth at weaning, mm 17 BMS651 BM1314 0.5861 0.2064 8.1 368 

26 Saturate fatty acids, % 23 BMS651 BM1314 2.4430 0.8466 8.3 398 

26 Meat colour, score  32 BM1314 BM6041 0.4081 0.1514 7.3 361 

27 Silver side, kg 4 BMS2168 BM6526 0.3921 0.1233 10.1 398 

27 Meat yield, % 9 BMS2168 BM6526 1.0803 0.4072 7.0 398 

27 M. semitendinosus, kg 10 BMS2168 BM6526 0.1638 0.0596 7.6 398 

27 Stifle width at weaning, cm 20 BM6526 CSSM43 1.5910 0.6000 7.0 361 

27 Blood cortisol, µg/dL  43 CSSM43 INRA134 9.5450 2.5037 14.5 398 

28 Marbling, score 8 BMC6020 BL25 0.3557 0.1106 10.3 361 

28 Aging rate on ST, kg 34 BL25 BM6466 0.0024 0.0009 7.1 368 

28 Docility, score 39 BM6466 BMS1714 1.0354 0.2908 12.7 368 

28 Body hight at weaning, cm 50 BMS1714 BMC2208 2.3679 0.7897 9.0 368 

28 Pelvic width, mm 50 BMS1714 BMC2208 4.3362 1.3845 9.8 361 

28 Ossification, score 52 BMS1714 BMC2208 19.6979 6.4625 9.3 368 

28 Fat depth at ribs, mm 57 BMS1714 BMC2208 1.7577 0.6133 8.2 361 

29 Peak force on LD, kg 49 OARHH22 BMC1206 0.1356 0.0450 9.1 361 

29 Peak force on LD, kg 56 OARHH22 BMC1206 0.1126 0.0346 10.6 368 

29 Kidney, % 59 BMC1206 BMS1948 0.0301 0.0089 11.3 368 

29 Mono-unsaturated fatty acids, % 62 BMC1206 BMS1948 1.9402 0.7018 7.6 398 

29 Saturate fatty acids, % 62 BMC1206 BMS1948 2.0309 0.7195 8.0 398 
a  Map position based on Ihara et al. (2004). b LD: M. Longissimus dorsi muscle.  cST: M. semitendinosus muscle. 
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Appendix B Information content derived from 29 Bovine autosomes (BTA) 
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Appendix B continued 
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Appendix B continued 
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Appendix C Australian results for additive (a) and dominance (d) effects of myostatin and breed effects for traits measured on live animals, 
carcass and beef quality traits  
Trait Abbreviation N Mean S.D. Min Max Limousin  

a (s.e.) 
Limousin 
 d (s.e.) 

Jersey 
 a + d (s.e) # 

Breed  
difference (L-J) 

Birth weight, kg Bwt 366 26.45 6.09 12.80 44.70 0.68 (0.52) -0.84 (0.65) 0.24 (0.47) 8.55 (0.98)*** 
Body height at birth, cm Birht 366 68.73 5.03 54.00 84.00 -0.26 (0.52) -0.17 (0.66) 0.18 (0.52) 5.29 (0.10) 
Body length at birth, cm  Birlg 366 114.48 6.97 97.00 132.00 0.54 (0.76) 0.12 (0.96) 0.13 (0.76) 7.28 (1.45) *** 
Body width at birth, cm Birwd 366 53.36 3.73 38 65.00 0.14 (0.41) -0.56 (0.52) 0.04 (0.41) 4.01 (0.79)*** 
Gestation length, day Gl 363 283.69 5.04 273.00 293.00 0.70 (0.68) 0.13 (0.86) -0.02 (0.68) 1.05 (1.30) 
Weaning weight, kg Wwt 365 228.55 32.01 112.00 308.00 3.50 (3.53) -3.36 (4.47) 4.61 (3.54) 25.65 (6.72) *** 
Body hight at weaning, cm Wht 359 109.94 4.94 90.00 120.00 0.91 (0.53) 0.71 (0.68) 0.12 (0.53) 3.48 (1.01) 
Hip width at weaning, cm Whip 365 34.72 2.43 26.00 45.00 -0.17 (0.27) -0.21 (0.34) 0.26 (0.27) 0.59 (0.51) 
Stifle width at weaning, cm Wsti 365 28.11 2.96 18.00 36.00 0.71 (0.29)* -0.86 (0.37)* 0.38 (0.29) 2.98 (0.55) *** 
Fat depth at weaning, mm Wfat 364 0.49 1.14 0.00 5.00 -0.24 (0.16) -0.13 (0.20) -0.13 (0.16) 0.39 (0.29) 
Body weight at 400 days, kg 400Wt 365 252.30 36.46 137.00 361.00 4.64 (3.40) -3.16 (4.32) 2.51 (3.42) 25.46 (6.49) *** 
Body hight at 400 days, cm 400Ht 365 119.41 5.10 100.00 143.00 -0.13 (0.59) 0.66 (0.75) 0.55 (0.59) 4.80 (1.12) *** 
Hip width at 400 days, cm 400Hip 288 39.05 1.99 32.00 46.00 -0.42 (0.27) -0.62 (0.34) 0.11 (0.26) 1.50 (0.52) ** 
Stifle width at 400 days, cm 400Sti 288 28.86 2.82 22.00 40.00 0.47 (0.34) -0.43 (0.42) 0.60 (0.32) 3.86 (0.64) *** 
Fat depth at 400 days, mm 400Fat 364 1.06 1.37 0.00 5.00 -0.14 (0.09) 0.00 (0.12) 0.06 (0.09) 0.03 (0.18) ns 
Body weight at 600 days, kg 600Wt 362 361.38 43.37 235.00 492.00 1.42 (4.21) -5.59 (5.34) 4.37 (4.24) 54.42 (8.04) *** 
Body hight at 600 days, cm 600Ht 363 126.02 5.62 108.00 140.00 0.47 (0.50) 0.39 (0.64) -0.10 (0.51) 5.10 (0.96) *** 
Hip width at 600 days, cm 600Hip 363 42.99 2.06 37.00 49.00 -0.41 (0.27) -0.97 (0.34)** -0.07 (0.27) 1.89 (0.52) *** 
Stifle width at 600 days, cm 600Sti 363 31.93 3.51 22.00 45.00 0.90 (0.30)** -0.53 (0.38) 0.45 (0.30) 3.93 (0.57) *** 
Fat depth at 600 days, mm 600Fat 362 1.63 2.37 0.00 12.00 -0.89 (0.24)*** -0.11 (0.31) -0.63 (0.25)* 0.77 (0.47) ns 
Age at puberty, days AP 181 420.00 47.20 289.00 506.00 -3.38 (4.78) 1.57 (6.43) -6.32 (5.51) -0.85 (9.13) ns 
Marbling, score Mar 355 1.53 0.79 0.00 4.00 -0.26 (0.09)** 0.01 (0.11) 0.01 (0.09) -0.40 (0.17)* 
Carcass fat depth on the rump, mm P8 356 12.27 5.23 3.00 30.00 -2.30 (0.61)*** 0.17 (0.77) -0.26 (0.63) 3.26 (1.17)** 
Meat colour, score MC 355 1.95 0.92 1.00 6.00 0.02 (0.10) -0.01 (0.12) 0.06 (0.10) -0.24 (0.07)** 
Fat colour, score FC 355 1.78 1.40 0.00 7.00 0.04 (0.13) 0.04 (0.17) 0.15 (0.14) -0.98 (0.25)*** 
�-carotene concentration, µg/g fat Bcbio 363 1.15 0.55 0.10 4.20 0.03 (0.06) 0.10 (0.08) 0.06 (0.07) -0.24 (0.12) 
Fat colour on biopsy samples, score Fcb 363 2.02 0.61 1.00 5.00 -0.06 (0.08) 0.02 (0.10) 0.03 (0.08) -0.36 (0.15)* 
Eye muscle area, cm2 EMA 355 80.69 17.00 26.00 166.00 8.50 (1.49)*** -5.08 (1.89)** 3.42 (1.53)* 15.42 (2.85)*** 
Carcass length, cm Carclg 356 139.04 5.76 120.0 155.50 -4.42 (6.28) 1.75 (7.96) -3.02 (6.45) 29.71 (12.02)* 
Pelvic area, cm2 PA 356 278.72 45.06 170.50 451.00 -6.20 (4.77) 0.40 (6.05) 2.51 (4.90) 40.71 (9.13)*** 
Channel fat, kg Chanfat 356 12.52 3.86 4.70 22.80 -0.27 (0.43) 0.16 (0.54) -0.80 (0.44) -1.71 (0.82)* 
Omental fat, kg Omenfat 266 12.02 4.14 3.30 24.50 -0.23 (0.46) -0.37 (0.58) 0.01 (0.44) -1.09 (0.89) 
Heart weight, kg Heart 351 1.81 0.33 0.96 5.96 -0.04 (0.04) -0.05 (0.05) -0.02 (0.04) 0.07 (0.08) 
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Appendix C continued 
Trait Abbreviation N Mean S.D. Min Max Limousin  

a (s.e.) 
Limousin 
 d (s.e.) 

Jersey 
 a + d (s.e) # 

Breed  
difference (L-J) 

Liver weight, kg Liver 334 5.89 0.96 1.50 9.30 -0.07 (0.11) -0.09 (0.13) 0.07 (0.11) 0.22 (0.20) 
Kidney weight, kg Kidney 353 1.05 0.17 0.59 1.60 -0.03 (0.02) 0.00 (0.02) -0.03 (0.02) 0.05 (0.03) 
Fat depth at ribs 12th  and 13th, mm Rbft 356 9.68 3.64 3.00 24.00 -0.91 (0.46)* 0.13 (0.58) -0.73 (0.47) 0.41 (0.87) 
Ossification, score  Ossms 356 225.45 47.12 140.00 400.00 -2.95 (4.90) -2.29 (6.22) -0.68 (5.04) 14.43 (9.38) 
Butt shape, score Butt 356 2.51 0.68 1.00 4.00 0.16 (0.07)* -0.20 (0.08)* 0.01 (0.06) 0.81 (0.12)*** 
Intramuscular fat content, % Imf 355 5.25 1.71 1.43 11.1 -0.43 (0.19)* 0.15 (0.24) -0.21 (0.19) -1.36 (0.36)*** 
Melting point, oC Melpt 355 37.40 3.09 31.00 46.00 -0.34 (0.37) 0.42 (0.46) 0.17 (0.38) 2.12 (0.70)** 
Mono-unsaturated fatty acids, % of 
triacylglyceride 

MUFA 355 49.17 5.18 36.02 61.10 0.68 (0.50) 0.59 (0.63) -0.32 (0.51) -3.18 (0.95)** 

Hot standard carcass weight, kg Hscw 356 334.71 61.68 168 479.6 8.90 (4.96) -8.42 (6.29) 3.87 (5.10) 76.07 (9.49)*** 
Meat weight, kg# Meat 330 230.40 48.47 114.50 355.16 16.82 (3.65)*** -9.74 (4.63)* 4.97 (3.75) 55.84 (6.98)*** 
Fat weight, kg# Fat 330 45.30 11.32 11.30 82.40 -7.48 (1.32)*** 0.67 (1.68) -0.78 (1.35) 10.22 (2.51)*** 
Bone weight, kg# Bone 330 58.89 9.98 33.53 88.70 -0.44 (0.78) 0.63 (1.00) -0.20 (0.80) 10.17 (1.50)*** 
Flight distance, meter F-dist 357 9.66 3.82 1.50 23.00 -0.48 (0.51) 0.68 (0.64) 0.62 (0.51) -0.05 (0.96) 
Docility, score Docsco 362 12.27 1.73 7.50 15.80 0.10 (0.22) -0.61 (0.28)* -0.19 (0.22) 0.51 (0.42) 
Weight of longissimus dorsi, kg LD 351 6.27 1.49 3.11 11.48 -0.15 (0.32) -0.33 (0.39) 0.07 (0.31) 1.83 (0.60)** 
Weight of semitendinosus, kg ST 349 2.49 0.84 1.14 10.00 0.27 (0.14) -0.17 (0.18) 0.11 (0.15) 1.24 (0.27)*** 
Weight of silverside, kg SilverS 346 8.48 2.26 3.82 16.40 0.49 (0.07)*** -0.23 (0.09)* 0.10 (0.07) 0.71 (0.14)*** 
pH of Longissimus dorsi muscle  pHld 355 5.63 0.12 5.43 6.70 -0.01 (0.01) 0.04 (0.01) 0.02 (0.01) 0.00 (0.02) 
pH of semitendinosus muscle pHst 351 5.69 0.10 5.45 6.38 -0.01 (0.01) -0.40 (0.01) -0.01 (0.01) 0.00 (0.02) 
Cooking losses of LD muscle, % Clld 355 21.82 1.89 14.46 39.05 0.01 (0.24) 0.25 (0.30) 0.14 (0.24) 0.91 (0.45)** 
Cooking losses of ST muscle, % Clst 351 26.25 1.81 19.04 31.05 -0.66 (0.18)*** 0.20 (0.23) -0.04 (0.19) 0.83 (0.35)* 
SFa of LDb on day 1 post-mortem, kg Wbld1 355 4.87 1.34 2.60 13.20 -0.21 (0.16) -0.03 (0.21) 0.20 (0.17) 0.57 (0.31) 
SF of LD on day 5 post-mortem, kg Wbld2 355 4.42 1.03 2.50 10.30 -0.13 (0.12) -0.02 (0.16) -0.09 (0.13) 0.58 (0.24)* 
SF of LD on day 12 post-mortem, kg Wbld3 355 4.19 1.04 1.80 10.60 -0.05 (0.12) 0.05 (0.16) -0.17 (0.13) 0.39 (0.24) 
SF of LD on day 26 post-mortem, kg Wbld4 355 3.96 0.99 2.10 9.90 -0.05 (0.11) 0.07 (0.14) -0.02 (0.12) 0.48 (0.22)* 
SF of STc on day 1 post-mortem, kg Wbst1 352 5.30 0.88 3.50 10.30 -0.30 (0.09)** 0.30 (0.12)* -0.29 (0.10)** -0.62 (0.18)*** 
SF of ST on day 5 post-mortem, kg Wbst2 352 5.07 0.84 2.60 7.40 -0.39 (0.09)** 0.19 (0.11) -0.28 (0.09)** -0.39 (0.17)* 
SF of ST on day 12 post-mortem, kg Wbst3 352 4.93 0.84 2.70 8.70 -0.32 (0.08)**  0.17 (0.10) -0.25 (0.08)** -0.46 (0.15)** 
SF of ST on day 26 post-mortem, kg Wbst4 351 4.67 0.79 2.70 8.40 -0.22 (0.08)** 0.31 (0.10)** -0.11 (0.08) -0.56 (0.15)*** 
# Estimated from prediction equations. a SF= Warner-Bratzler Shear force. bLD: M. Longissimus dorsi muscle. cST: M. semitendinosus muscle.*: P <0.05, **: P< 0.01, *** : P<0.001. 
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Appendix D New Zealand results for additive (a) and dominance (d) effects of myostatin and breed effects for traits measured on live animals, 
carcass and beef quality traits  
Trait Abbreviation N Mean S.D. Min Max Limousin  

a (s.e.) 
Limousin 
 d (s.e.) 

Jersey 
 a + d (s.e) # 

Breed  
difference (L-J) 

Birth weight, kg Bwt 306 29.53 5.72 14.00 50.00 0.22 (0.64) -2.23 (0.80)** 0.40 (0.58) ns 8.78 (1.39)*** 
Body weight at 400 days, kg 400Wt 241 267.66 38.21 194.00 371.00 1.25 (3.98) -8.04 (5.14) -2.62 (3.09) 67.76 (8.08)*** 
Body weight at 600 days, kg 600Wt 413 435.65 67.05 286.00 642.00 7.27 (6.23) -7.03 (7.80) 0.13 (4.58) 63.15 (12.89)*** 
Gestation length, day Gl 185 284.52 5.86 258.00 301.00 0.04 (0.94) -0.45 (1.21) 0.69 (1.28) 2.07 (1.45) 
Age at puberty, day Pubert 139 371.19 48.58 199.00 466.00 -2.63 (9.60) -2.46 (13.00) 1.91 (9.43) -29.70 (20.12) 
Fat weight at side, kg Fatwt 401 9.48 2.58 3.34 22.81 -0.77 (0.37)* 1.42 (0.46)** -0.67 (0.27)* -0.32 (0.76) 
Bone weight, kg Bonewt 401 23.88 3.90 15.89 35.52 -0.06  (0.33) -0.28 (0.42) -0.11 (0.25) 3.99 (0.69)*** 
Meat weight, kg Meatwt 401 74.13 16.70 44.48 126.09     4.39  (1.26)***  -4.98 (1.58)** 1.58 (0.93) 22.54 (2.61)*** 
Rump meat weight, kg Rumeat 406 5.09 1.16 3.02 8.42 0.27 (0.09)** -0.34 (0.12)** 0.08 (0.07 1.80 (0.19)*** 
Hot carcass weight, kg Hscw 413 227.65 43.86 136 369 7.70 (3.72)* -8.29 (4.65) 1.74 (2.73) 53.39 (7.68)*** 
Weight of longissimus dorsi, kg LD 405 6.03 1.35 2.93 10.77 0.36 (0.12)** -0.14 (0.15) 0.01 (0.08) 1.40 (0.25)*** 
Weight of silverside, kg SilverS 406 8.37 2.24 4.36 16.09 0.60 (0.15)*** -0.87 (0.19)*** 0.21 (0.11) 3.27 (0.32)*** 
Eye muscle area, cm2 EMA 326 58.96 13.62 37.25 111.75 2.84 (1.25)* -7.64 (1.57)*** 2.60 (0.91)** 21.35 (2.60)*** 
pH of  M. longissimus dorsi muscle  pHld 413 5.44 0.06 5.34 6.19 -0.00 (0.01) 0.01 (0.01) 0.01 (0.01) -0.00 (0.02) 
SFa of LDb on rigor mortis, kg Wbld1 413 14.59 2.81 5.36 2.74 -0.16 (0.58) -1.49 (0.72)* 0.87 (0.42)* 2.78 (1.19)* 
SF of LD on day 1.3 after rigor mortis, kg Wbld2 413 10.87 2.88 2.74 20.01 -0.99 (0.44)* -1.26 (0.54)* 0.75 (0.32)* 4.13 (0.90)*** 
SF of LD on day 2.0 after rigor mortis, kg Wbld3 413 7.44 1.73 3.31 17.43 0.29 (0.45) -0.44 (0.57) 0.52 (0.33) 2.27 (0.94)* 
SF of LD on day 2.3 after rigor mortis, kg Wbld4 400 6.80 1.39 4.04 16.66 -1.15 (0.53)* -1.61 (0.65)* 0.15 (0.38) 3.97 (1.10)*** 
SF of LD on day 4.0 after rigor mortis, kg Wbld5 413 5.83 1.21 3.59 15.55 0.74 (0.47) -0.02 (0.59)  0.10 (0.34) 0.42 (0.97) 
Cooking loss of LD on rigor mortis, % Clld1 413 23.39 4.96 8.65 53.88 0.16 (0.41) 0.86 (0.52) 0.42 (0.30) -0.57 (0.85) 
Cooking loss of LD at day 1.3, % Clld2 413 23.55 3.99 12.39 39.27 -0.67 (0.45) 0.69 (0.57) -0.27 (0.33) 0.52 (0.94) 
Cooking loss of LD at day 2.0, % Clld3 413 23.05 3.96 8.79 47.80 -0.67 (0.28)* -0.25 (0.35) 0.09 (0.20) 1.41 (0.58)* 
Cooking loss of LD at day 2.3, % Clld4 400 21.66 4.05 7.68 45.16 -0.46 (0.23)* 0.03 (0.28) 0.13 (0.17) 1.18 (0.47)* 
Cooking loss of LD at day 4.0, % Clld5 413 23.83 4.19 7.74 48.80 0.02 (0.17) 0.23 (0.21) 0.33 (0.12) 0.66 (0.34) 
Fat depth at ribs 12th and 13th, mm Rbft 325 7.40 2.91 1.00 20.00 -0.65 (0.49) 0.82 (0.62) -0.83 (0.36)* -0.65 (1.02) 
Meat colour L, score ColL 411 39.75 1.95 34.07 45.77 0.13 (0.27) -0.45 (0.34) -0.03 (0.20) 1.34 (0.56)* 
Meat colour a, score Cola 411 17.22 1.81 11.62 22.25 0.03 (0.26) -0.14 (0.32) -0.03 (0.19) 0.38 (0.54) 
Meat colour b, score Colb 411 8.10 1.06 4.12 10.92 -0.08 (0.15) -0.15 (0.19) 0.08 (0.11) 0.56 (0.31) 
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Appendix D continued 
Trait Abbreviation N Mean S.D. Min Max Limousin  

a (s.e.) 
Limousin 
 d (s.e.) 

Jersey 
 a + d (s.e) # 

Breed  
difference (L-J) 

Side Length, cm Carclg 413 126.97 4.62 99.60 140.50 0.27 (0.60) -0.01 (0.74) -0.43 (0.44) 2.68 (1.23)* 

Pelvic area, cm2 PA 413 212.59 26.33 141.50 288.40 0.01 (3.08) -0.97(3.85) 1.50 (2.27) 6.88 (6.37) 

Kidney fat, kg Kidfat 413 7.10 3.23 1.50 19.51 -0.35 (0.36) 0.74 (0.45) -0.83 (0.27)** -2.82 (0.75)*** 
Omental fat, kg Omenfat 413 3.96 2.09 0.58 12.46 -0.25 (0.19) 0.22 (0.24) -0.03 (0.14) -1.10 (0.40)** 
Pericardial fat, kg Prcarfat 409 0.51 0.21 0.14 1.76 -0.01 (0.02) 0.02 (0.03) -0.03 (0.02) -0.03 (0.06) 
Rump fat, kg Rumfat 406 0.46 0.15 0.00 1.00 -0.03 (0.02) 0.05 (0.02)* -0.04 (0.01)** -0.03 (0.04) 
Silverside fat, kg Silversfat 406 0.54 0.14 0.17 1.02 -0.04 (0.02) 0.06 (0.03)* -0.02 (0.01) -0.01 (0.04) 
Intramuscular fat content, % Imf 341 4.22 2.27 0.40 12.80 -0.30 (0.34) 0.38 (0.44) -0.23 (0.26) -2.00 (0.72)** 
Melting point, oC Mp 405 37.23 2.61 28.50 44.00 0.90 (0.40)* 0.24 (0.50) 0.52 (0.29) 0.79 (0.83) 
Mono-unsaturated fatty acids, % of 
triacylglyceride 

Mufa 402 51.18 3.03 42.40 59.30 -1.10 (0.44)* 0.10 (0.56) -0.44 (0.33) -0.98 (0.92) 

Fat colour on biopsy samples, score Fcb 410 1.69 0.65 1.00 4.00 0.03 (0.10) 0.06 (0.12) -0.06 (0.07) -0.60 (0.20)** 
Heart weight, kg Heart 413 1.65 0.24 1.09 2.49 0.02  (0.03) -0.01 (0.04) -0.03 (0.02) 0.02 (0.06) 
Liver weight, kg Liver 412 6.22 0.88 3.78 8.98 -0.03 (0.09) -0.03 (0.12) -0.03 (0.07) 0.04 (0.20) 
Kidney weight, kg Kidney 413 0.95 0.13 0.62 1.53 -0.01 (0.02) 0.01 (0.02) -0.02 (0.01) 0.01 (0.03) 
Docility, score Docsco 155 12.67 1.43 9.88 16.8 0.35 (0.42) 0.86 (0.51) 0.04 (0.27) -0.85 (0.86) 
a SF: Shear force . bLD: M. Longissimus dorsi  muscle.*: P <0.05, **: P< 0.01, *** : P<0.001. 
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Appendix E Residual variances, covariances and correlations of live animal measurements (Australian data)a   
  Bwt Birht Gl Wwt Wht Whip Wsti Wfat 400wt 400ht 400hip 400sti 400fat 600wt 600ht 600hip 600sti 600fat Ap 
Bwt 13.47 0.64 0.04 0.41 0.45 0.27 0.21 -0.07 0.42 0.42 0.30 0.18 -0.10 0.45 0.38 0.35 0.18 0.13 0.00 

Birht 8.77 13.84 0.10 0.38 0.44 0.30 0.18 -0.07 0.36 0.41 0.30 0.16 -0.10 0.41 0.36 0.33 0.17 0.02 -0.04 

Gl 0.69 1.76 23.32 0.07 0.01 0.04 0.06 0.07 0.07 0.03 0.02 0.07 -0.02 0.12 0.02 0.06 -0.03 0.04 0.02 

Wwt 37.86 35.33 8.01 627.75 0.60 0.65 0.60 0.17 0.86 0.55 0.67 0.45 0.14 0.78 0.57 0.54 0.37 0.20 -0.25 

Wht 6.17 6.18 0.10 56.39 14.21 0.41 0.36 0.08 0.58 0.59 0.43 0.36 0.09 0.58 0.58 0.39 0.28 0.13 -0.09 

Whip 1.88 2.11 0.41 31.39 2.93 3.66 0.54 0.08 0.60 0.39 0.54 0.30 0.10 0.56 0.40 0.48 0.28 0.14 -0.17 

Wsti 1.56 1.38 0.59 31.10 2.77 2.11 4.21 0.14 0.59 0.32 0.47 0.39 0.11 0.47 0.30 0.30 0.29 0.14 -0.20 

Wfat -0.29 -0.27 0.40 4.75 0.33 0.16 0.31 1.23 0.16 0.02 0.14 0.18 0.40 0.05 0.01 0.12 0.10 0.27 -0.12 

400wt 37.35 32.44 7.74 522.96 53.17 27.93 29.51 4.26 585.17 0.58 0.70 0.46 0.15 0.81 0.60 0.59 0.43 0.19 -0.24 

400ht 6.40 6.37 0.60 57.82 9.32 3.13 2.72 0.10 58.43 17.52 0.50 0.31 0.04 0.54 0.56 0.37 0.27 0.12 -0.03 

400hip 1.98 1.96 0.18 29.64 2.91 1.84 1.71 0.27 30.03 3.69 3.16 0.43 0.12 0.62 0.50 0.60 0.32 0.19 -0.14 

400sti 1.40 1.23 0.71 23.69 2.88 1.22 1.70 0.42 23.29 2.76 1.62 4.40 0.14 0.40 0.28 0.31 0.32 0.06 -0.21 

400fat -0.25 -0.25 -0.07 2.34 0.22 0.13 0.15 0.30 2.43 0.11 0.14 0.20 0.46 0.06 0.02 0.05 0.08 0.19 -0.12 

600wt 49.29 45.55 17.25 582.51 65.87 32.06 28.92 1.64 587.09 68.18 33.04 24.89 1.26 896.41 0.64 0.62 0.45 0.26 -0.17 

600hit 4.97 4.83 0.41 51.21 7.83 2.76 2.22 0.04 51.62 8.36 3.16 2.09 0.05 68.23 12.71 0.43 0.29 0.14 -0.02 

600hip 2.46 2.37 0.55 26.09 2.84 1.77 1.18 0.26 27.63 3.00 2.06 1.25 0.07 35.88 2.98 3.72 0.41 0.18 0.00 

600sti 1.40 1.36 -0.32 19.56 2.28 1.14 1.28 0.24 22.09 2.42 1.20 1.42 0.11 28.73 2.20 1.70 4.54 0.09 -0.26 

600fat 0.85 0.14 0.34 8.52 0.84 0.48 0.50 0.52 8.05 0.85 0.59 0.22 0.22 13.38 0.89 0.59 0.35 3.02 -0.14 

Ap 0.47 -4.28 2.80 -179.81 -9.62 -9.20 -11.45 -3.90 -165.06 -3.75 -7.29 -12.24 -2.39 -141.89 -2.36 -0.23 -15.45 -7.04 803.82 
aAbbreviations have been defined in Appendix C 
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Appendix F Residual variances, covariances and correlations of carcass traits (Australian data)a   
  Ema Ld St Ss Bs P8 Mar Chanfat Omenfat Rbft Imf Hscw Heart Liver Kidney Pa Carclg Dent Ossms 
Ema 111.60 0.24 0.44 0.51 0.32 0.10 0.00 0.08 -0.04 0.01 -0.04 0.57 0.15 0.28 0.19 0.29 0.23 -0.03 0.02 

Ld 4.49 3.22 0.27 0.30 0.18 0.04 -0.02 0.08 0.01 0.08 0.00 0.42 0.15 0.23 0.15 0.30 0.46 -0.03 0.24 

St 4.74 0.49 1.03 0.37 0.30 0.28 0.02 0.23 0.22 0.10 0.01 0.69 0.18 0.33 0.23 0.29 0.42 0.04 0.03 

Ss 2.82 0.28 0.20 0.27 0.31 0.13 -0.08 0.11 -0.04 0.02 -0.09 0.56 0.14 0.23 0.16 0.26 0.33 0.03 0.03 

Bs 1.52 0.14 0.13 0.07 0.20 0.17 -0.04 0.05 -0.05 0.04 -0.06 0.38 0.10 0.10 0.09 0.24 0.11 0.07 0.08 

P8 4.50 0.34 1.22 0.30 0.34 18.91 0.06 0.12 0.13 0.25 0.09 0.33 0.07 0.13 0.15 0.03 0.20 0.00 0.09 

Mar 0.02 -0.02 0.01 -0.03 -0.01 0.18 0.40 0.10 0.11 0.11 0.53 0.03 0.05 0.09 0.04 0.00 0.03 -0.01 -0.03 

Chanfat 2.56 0.46 0.71 0.17 0.06 1.63 0.20 9.28 0.11 0.08 0.17 0.33 0.10 0.23 0.23 0.08 0.24 0.02 0.00 

Omenfat -1.05 0.04 0.60 -0.06 -0.06 1.55 0.20 0.95 7.47 -0.05 0.08 0.11 0.18 -0.14 0.07 0.02 0.11 -0.04 -0.03 

Rbft 0.48 0.44 0.33 0.04 0.06 3.56 0.23 0.83 -0.46 10.47 0.15 0.18 0.03 0.14 0.05 0.10 0.18 -0.02 0.08 

Imf -0.57 0.01 0.02 -0.06 -0.03 0.55 0.45 0.71 0.31 0.66 1.80 0.08 0.02 0.16 0.05 -0.06 0.03 0.02 -0.06 

Hcw 211.08 26.42 24.84 10.18 5.95 50.81 0.65 35.05 10.78 20.39 3.73 1240.96 0.27 0.53 0.43 0.41 0.63 0.00 0.11 

Heart 0.46 0.08 0.05 0.02 0.01 0.09 0.01 0.09 0.14 0.03 0.01 2.81 0.09 0.01 0.32 0.18 0.21 -0.04 0.03 

Liver 2.22 0.31 0.25 0.09 0.03 0.43 0.04 0.53 -0.27 0.33 0.16 13.87 0.00 0.55 0.43 0.18 0.44 0.10 0.11 

Kidney 0.27 0.04 0.03 0.01 0.01 0.09 0.00 0.10 0.03 0.02 0.01 2.06 0.01 0.04 0.02 0.13 0.37 0.04 0.09 

Pa 103.47 18.07 10.03 4.58 3.58 4.88 0.01 8.12 1.64 11.46 -2.59 488.42 1.79 4.58 0.59 1148.39 0.37 0.00 0.10 

Carclg 106.16 36.57 18.84 7.59 2.10 38.93 0.84 32.14 13.85 25.48 1.73 991.30 2.75 14.56 2.25 560.44 1988.65 0.02 0.10 

Dent -0.25 -0.05 0.03 0.02 0.03 0.01 -0.01 0.05 -0.11 -0.05 0.03 -0.04 -0.01 0.07 0.00 -0.02 0.94 0.83 -0.09 

Ossms 49.52 15.24 1.06 0.58 1.21 13.14 -0.60 -0.39 -2.46 8.83 -2.97 129.42 0.26 2.86 0.42 115.91 161.35 -2.98 1212.37 
aAbbreviations have been defined in Appendix C 
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Appendix G Residual variances, covariances and correlations of meat and fat quality traits (Australian data)a   
  Wbld1 Wbld2 Wbld3 Wbld4 Wbst1 Wbst2 Wbst3 Wbst4 Clst Clld pHld pHst Mc Fc Fcb Bc Mt Mufa Fdist Docsco 
Wbld1 1.32 0.73 0.68 0.68 0.28 0.21 0.26 0.16 0.04 0.11 0.19 0.10 0.27 0.01 0.09 0.04 -0.08 0.08 -0.05 0.03 

Wbld2 0.73 0.77 0.74 0.69 0.29 0.22 0.30 0.22 -0.02 0.10 0.21 0.19 0.31 0.00 0.06 0.07 -0.09 0.06 -0.01 0.01 

Wbld3 0.69 0.57 0.77 0.72 0.19 0.19 0.21 0.18 0.02 0.11 0.14 0.13 0.29 0.02 0.11 0.06 0.01 0.03 -0.03 -0.01 

Wbld4 0.63 0.49 0.51 0.64 0.22 0.19 0.24 0.22 0.00 0.04 0.19 0.23 0.29 -0.01 0.09 0.05 -0.08 -0.06 -0.01 0.00 

Wbst1 0.22 0.17 0.11 0.12 0.45 0.40 0.43 0.40 0.07 0.02 0.12 0.09 0.18 0.12 0.03 0.01 -0.12 0.12 0.12 0.08 

Wbst2 0.15 0.12 0.10 0.09 0.17 0.38 0.47 0.37 0.07 0.06 -0.03 0.00 0.03 0.04 0.04 0.03 -0.05 0.03 -0.16 -0.37 

Wbst3 0.17 0.15 0.11 0.11 0.17 0.17 0.33 0.51 0.14 0.09 0.09 0.07 0.10 0.07 0.01 0.01 -0.08 0.09 -0.11 0.08 

Wbst4 0.10 0.10 0.09 0.10 0.15 0.13 0.16 0.30 0.07 -0.02 0.17 0.23 0.16 0.06 0.02 0.01 -0.05 0.09 -0.10 0.05 

Clst 0.05 -0.02 0.02 0.00 0.06 0.06 0.11 0.05 1.70 0.33 -0.33 -0.34 -0.26 -0.08 0.01 0.01 0.12 -0.11 -0.03 0.01 

Clld 0.21 0.14 0.16 0.05 0.03 0.06 0.09 -0.02 0.71 2.82 -0.30 -0.26 -0.15 -0.04 -0.05 0.04 -0.01 -0.01 -0.03 -0.02 

pHld 0.02 0.02 0.01 0.01 0.01 0.00 0.01 0.01 -0.04 -0.05 0.01 0.70 0.54 0.02 -0.05 0.05 -0.02 0.05 -0.04 0.09 

pHst 0.01 0.01 0.01 0.02 0.01 0.00 0.00 0.01 -0.04 -0.04 0.01 0.01 0.47 0.02 -0.01 -0.01 -0.02 0.09 0.05 -0.03 

Mc 0.21 0.18 0.17 0.16 0.08 0.01 0.04 0.06 -0.23 -0.17 0.04 0.03 0.47 0.08 -0.01 0.00 -0.06 0.08 -0.03 0.03 

Fc 0.01 0.00 0.01 -0.01 0.07 0.02 0.04 0.03 -0.10 -0.06 0.00 0.00 0.05 0.90 0.36 0.29 -0.23 0.19 0.08 -0.06 

Fcb 0.06 0.03 0.05 0.04 0.01 0.02 0.00 0.01 0.00 -0.05 0.00 0.00 0.00 0.19 0.31 0.51 0.02 0.04 -0.06 0.10 

Bc 0.02 0.03 0.03 0.02 0.00 0.01 0.00 0.00 0.01 0.03 0.00 0.00 0.00 0.13 0.13 0.22 0.05 0.01 0.02 -0.04 

Mp -0.25 -0.20 -0.17 -0.16 -0.21 -0.08 -0.12 -0.07 0.41 -0.03 -0.01 -0.01 -0.10 -0.56 0.03 0.07 6.79 -0.62 0.01 -0.02 

Mufa 0.34 0.18 0.09 0.18 0.29 0.06 0.18 0.17 -0.52 -0.03 0.02 0.03 0.19 0.64 0.08 0.01 -5.70 12.41 -0.08 0.05 

Fdist -0.20 -0.03 -0.09 -0.02 -0.18 -0.36 -0.24 -0.20 -0.15 -0.17 -0.01 0.02 -0.08 0.28 -0.13 0.04 0.11 -1.06 12.77 -0.37 

Docsco 0.05 0.02 -0.01 -0.01 0.08 -0.04 0.07 0.04 0.03 -0.04 0.01 0.00 0.03 -0.08 0.08 -0.03 -0.10 0.26 -2.06 2.46 
aAbbreviations have been defined in Appendix C 
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Appendix H Residual variances, covariances and correlations of meat and fat quality traits (New Zealand data)d   

  Bonewt Liver Kidney Heart Carclg Meatwt Hcw Rumeat Ld Silverswt EMA Rbft Marb Fatwt Chanlfat Omentfat Prcarfat Rumpfat Silversfat 

Bonewt 3.74 0.59 0.63 0.65 0.76 0.84 0.88 0.77 0.66 0.78 0.46 0.24 0.11 0.44 0.27 0.21 0.25 0.27 0.28 

Liver 0.63 0.30 0.54 0.51 0.52 0.60 0.63 0.56 0.49 0.53 0.33 0.22 0.10 0.43 0.33 0.26 0.22 0.26 0.26 

Kidney 0.12 0.03 0.01 0.53 0.52 0.56 0.59 0.50 0.40 0.50 0.26 0.21 0.09 0.36 0.30 0.21 0.22 0.24 0.20 

Heart 0.22 0.05 0.01 0.03 0.57 0.61 0.65 0.55 0.55 0.51 0.35 0.17 0.10 0.40 0.39 0.31 0.28 0.28 0.25 

Carclg 5.09 0.98 0.18 0.35 11.87 0.66 0.70 0.62 0.56 0.60 0.34 0.18 0.09 0.37 0.25 0.21 0.19 0.25 0.26 

Meatwt 11.84 2.40 0.40 0.78 16.61 53.28 0.98 0.89 0.84 0.93 0.68 0.25 0.12 0.47 0.33 0.28 0.26 0.32 0.26 

Hcw 36.52 7.44 1.25 2.44 51.98 152.82 461.56 0.88 0.84 0.89 0.62 0.31 0.17 0.62 0.41 0.35 0.32 0.42 0.36 

Rummeat 0.81 0.17 0.03 0.05 1.15 3.50 10.23 0.29 0.75 0.82 0.58 0.29 0.14 0.48 0.31 0.29 0.19 0.35 0.28 

Ld 0.89 0.19 0.03 0.07 1.34 4.28 12.66 0.28 0.49 0.72 0.63 0.33 0.13 0.56 0.42 0.33 0.33 0.44 0.31 

Silverswt 1.34 0.26 0.04 0.08 1.84 6.01 16.94 0.39 0.45 0.79 0.67 0.17 0.05 0.36 0.21 0.17 0.17 0.20 0.17 

Ema 6.01 1.23 0.17 0.42 7.87 33.69 91.38 2.14 3.00 4.07 46.42 0.01 0.07 0.24 0.21 0.16 0.15 0.15 0.06 

Rbft 1.21 0.31 0.05 0.08 1.61 4.73 17.49 0.40 0.60 0.40 0.12 6.77 0.07 0.49 0.33 0.31 0.21 0.39 0.28 

Mar 0.40 0.10 0.02 0.03 0.58 1.64 6.67 0.14 0.17 0.09 0.85 0.35 3.55 0.29 0.20 0.18 0.12 0.26 0.20 

Fatwt 1.79 0.49 0.08 0.15 2.73 7.28 28.19 0.54 0.83 0.68 3.50 2.67 1.17 4.47 0.60 0.52 0.46 0.67 0.62 

Chanlfat 1.11 0.38 0.06 0.14 1.80 5.13 18.65 0.35 0.63 0.39 2.95 1.78 0.79 2.68 4.43 0.60 0.40 0.45 0.35 

Omenfat 0.46 0.16 0.02 0.06 0.80 2.30 8.34 0.18 0.26 0.16 1.21 0.89 0.38 1.23 1.41 1.24 0.31 0.37 0.31 

Prcarfat 0.08 0.02 0.00 0.01 0.11 0.30 1.11 0.02 0.04 0.02 0.16 0.09 0.04 0.16 0.14 0.06 0.03 0.38 0.25 

Rumpfat 0.06 0.02 0.00 0.01 0.10 0.27 1.06 0.02 0.04 0.02 0.12 0.12 0.06 0.17 0.11 0.05 0.01 0.01 0.45 

Silversfat 0.07 0.02 0.00 0.01 0.11 0.23 0.95 0.02 0.03 0.02 0.05 0.09 0.05 0.16 0.09 0.04 0.01 0.01 0.02 
aAbbreviations have been defined in Appendix D 
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Appendix I Residual variances, covariances and correlations of meat and fat quality traits (New Zealand data)a  
  Clld1 Clld2 Clld3 Clld4 Clld5 Wbld1 Wbld2 Wbld3 Wbld4 pHld ColLAv ColaAv ColbAv FCb mufa MP 

Clld1 11.08 0.22 0.17 0.17 0.13 0.11 -0.03 0.02 0.07 -0.06 0.10 -0.01 0.00 0.01 -0.10 0.09 

Clld2 1.87 6.35 0.33 0.29 0.25 0.05 0.02 -0.02 0.00 -0.24 0.08 0.08 0.07 0.02 -0.06 0.09 

Clld3 1.44 2.14 6.85 0.34 0.16 0.11 0.09 0.11 0.07 -0.18 0.04 0.08 0.09 -0.04 -0.14 0.17 

Clld4 1.64 2.12 2.62 8.58 0.20 -0.01 0.03 0.03 0.02 -0.18 0.06 0.05 0.13 0.07 -0.13 0.13 

Clld5 1.22 1.69 1.16 1.61 7.39 0.04 0.11 0.08 0.09 -0.18 0.00 0.03 0.04 0.04 -0.05 0.05 

Wbld1 0.91 0.30 0.66 -0.05 0.23 5.72 0.56 0.50 0.49 0.07 0.00 0.00 -0.03 -0.03 0.00 0.02 

Wbld2 -0.22 0.15 0.63 0.27 0.79 3.52 6.88 0.78 0.73 0.09 -0.07 -0.04 -0.04 -0.02 -0.02 0.04 

Wbld3 0.12 -0.07 0.47 0.12 0.33 1.93 3.31 2.59 0.85 0.21 -0.02 -0.09 -0.09 -0.08 -0.04 0.08 

Wbld4 0.01 -0.02 -0.01 -0.02 -0.04 -0.02 -0.10 -0.03 -0.02 0.34 -0.07 -0.11 -0.09 -0.03 0.02 -0.02 

pHld -0.01 -0.03 -0.02 -0.03 -0.02 0.01 0.01 0.02 0.01 0.00 -0.13 -0.28 -0.25 -0.01 0.00 0.00 

ColLAv 0.54 0.30 0.18 0.26 -0.02 -0.01 -0.30 -0.05 -0.01 -0.01 2.47 -0.41 -0.27 0.08 -0.11 0.09 

ColaAv -0.03 0.30 0.33 0.22 0.13 -0.01 -0.15 -0.22 -0.25 -0.02 -0.97 2.25 0.86 -0.07 -0.02 0.04 

ColbAv 0.01 0.15 0.21 0.33 0.10 -0.05 -0.08 -0.12 -0.15 -0.01 -0.37 1.13 0.77 0.05 -0.04 0.05 

FCb 0.01 0.02 -0.05 0.12 0.06 -0.04 -0.03 -0.07 -0.04 0.00 0.07 -0.06 0.03 0.32 0.14 -0.10 

mufa -0.82 -0.41 -0.93 -0.98 -0.36 -0.01 -0.15 -0.19 -0.13 0.00 -0.44 -0.09 -0.10 0.20 6.59 -0.77 

MP 0.73 0.51 1.04 0.88 0.30 0.13 0.25 0.30 0.23 0.00 0.33 0.15 0.11 -0.13 -4.57 5.33 
aAbbreviations have been defined in Appendix D 
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Appendix J Prediction equations used to estimate carcass composition 
 
Year 1996 and 1997: 
 
Meat percent = 67.28 + 0.69×ts + 1.59×st + 1.07×of + 0.38×ru + 0.45×ld + 1.67×tln + 0.15× rib -1.16×femwt + 1.29×tibwt - 0.33×fqwt -

0.0735×hscw - 0.092×p8 +0.040×ema  
 
Fat percent = 12.48 -0.92×ts - 1.45×st - 0.93×of - 0.35×ru - 0.47×ld - 1.36×tln + 0.20×rib -0.86×femwt - 1.96×tibwt -0.52×fqwt + 0.1196×hscw 

+ 0.103×p8 - 0.037×ema  
 
Bone percent = 20.24 + 0.23×ts - 0.14×st - 0.14×of - 0.04×ru + 0.02×ld - 0.31×tln - 0.34×rib + 2.02×femwt + 0.67×tibwt + 0.85×fqwt - 

0.0461×hscw - 0.010×p8 - 0.003×ema  
 
Year 1998: 
Meat percent = 66.88 + 2.40×st + 1.18×of + 0.98×kn + 0.51×ld + 3.10×ct -0.46×bones - 0.0747×hscw - 0.075×p8 +0.049×ema  
 
Fat percent = 13.70 -1.93×st - 0.90×of - 0.95×kn - 0.33×ld - 3.12×ct - 2.75×bones + 0.1032×hscw + 0.083×p8 - 0.042×ema  
 
Bone percent = 19.42 - 0.46×st - 0.28×of - 0.02×kn - 0.18×ld + 0.03×ct + 3.12×bones - 0.0285×hscw - 0.009×p8 - 0.007×ema  
 
Meat to bone ratio = Meat percent / Bone percent 
 
Abbreviations: 
 
ts, kg Topside  femwt, kg Femur ct, kg Chuk tender 
st, kg M. semitendinosus muscle tibwt, kg Tibia Bones, kg Radius/ulna + humerus 
of, kg Outside flat fqwt, kg Forequarter bone weight  
ru, kg Rump  hscw, kg Hot standard carcass weight 
ld, kg M.longissimus dorsi muscle p8, mm Rump fat depth  
tln, kg Tender loin ema, cm2 Eye muscle area 
rib, kg Ribset  kn, kg Knuckle 
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