Ca²⁺ and Phosphoinositides Regulations in α-actinin-4 F-actin Binding

by

Huang-Hui Chen, M. Sc.

A thesis submitted in fulfillment of the requirements for the degree of Doctor of Philosophy

Discipline of Biochemistry School of Molecular and Biomedical Science The University of Adelaide Adelaide, South Australia

June 2008

Contents

Summary	vi
Declarations	ix
Acknowledgements	X
List of Abbreviations	xi

CHAPTER 1 General Introduction and Literature Review

1.1 Introduction1
1.2 Structure of α-actinin1
1.2.1 Spectrin Superfamily1
1.2.2 α-actinin2
1.2.3 Isoforms of α-actinin2
1.2.4 Calponin Homology Domains
1.2.4.1 F-Actin Binding Sites on the CH Domains (2X CH)4
1.2.4.2 Phosphoinositides Binding Site on the CH2 Domain
1.2.5 The Three-Dimensional Structure of the CH Domains (2X CH)5
1.2.6 Mutation on α-actinin-4 CH Domains in Human Diseases6
1.3 The Biological Function of α-actinin in Mammals7
1.3.1 Structure and Function of Focal Adhesions7
1.3.1.1 Structural Organisation of Focal Adhesions
1.3.1.2 Regulatory Signaling of Focal Adhesions
1.3.1.2.1 Integrin Mediated Signaling9
1.3.1.2.2 Receptor Mediated Signaling10
1.3.1.2.3 Regulation of Focal Adhesions by Phosphoinositides10
1.3.1.2.4 Regulation of Actin Assembly by Integrins12
1.3.2 Cytoskeleton Proteins as Tumor Suppressors12
1.3.2.1 Point Mutation of α-actinin-4 in Non-Small Lung Cancer (NSCLC)15
1.3.2.2 Alternative Splicing of α -actinin-4 in Small Cell Lung Cancer (SCLC)16
1.3.3 Required for Normal Glomerular Function17
1.3.3.1 Mutation of α -actinin-4 in Focal Segmental Glomerulosclersis (FSGS)18
1.4 Aims and Approaches

CHAPTER 2 Materials and Methods

2.1	Materials	21
	2.1.1 Chemicals and Reagents	21
	2.1.2 Solutions	23
	2.1.3 Bacterial Strains	24
	2.1.4 Mammalian Cell Line	24
	2.1.5 Bacterial Growth Media	24
	2.1.6 Mammalian Cell Growth Media	25
	2.1.7 Kits	25
	2.1.8 DNA and Protein Molecular Weight Standards	25
	2.1.9 Plasmid Vectors	25
	2.1.10 Antibodies	26
	2.1.11 Oligonucleotides	26
	2.1.12 Miscellaneous Materials	27
2.2	Methods	28
	2.2.1 Molecular Biology Techniques	28
	2.2.1.1 Mini-Preparation of Plasmid DNA	28
	2.2.1.2 Midi-Preparation of Plasmid DNA	28
	2.2.1.3 Polymerase Chain Reaction (PCR)	28
	2.2.1.4 Restriction Enzyme Digestion	29
	2.2.1.5 Purification of DNA Fragment from Agarose Gel	29
	2.2.1.6 Purification of DNA Fragment from PCR Reaction	29
	2.2.1.7 Ligation	29
	2.2.1.8 Preparation of Competent Cells	29
	2.2.1.9 Heat Shock Transformation	30
	2.2.1.10 Colony Cracking Screening	30
	2.2.1.11 Automated DNA Sequencing	30
	2.2.1.12 Site-Directed Mutagenesis by PCR	31
	2.2.1.13 Agarose Gel Electrophoresis	31
	2.2.2 Protein Chemistry Techniques	31
	2.2.2.1 Induction and Purification of GST-fusion Proteins	31
	2.2.2.2 Determination of Protein Concentration Using Bradford Assay	32

2.2.2.3 Concentration and Buffer Exchange of Recombinant Proteins	32
2.2.2.4 SDS-PAGE	32
2.2.2.5 Size Exclusion Chromatography	
2.2.2.6 Actin Polymerisation	
2.2.2.7 Preparation of the F-actin Coated 96-well Plates	33
2.2.2.8 FITC Labeling Reaction	33
2.2.2.9 Solid Phase F-actin Binding Assay	34
2.2.2.10 Western Blot	34
2.2.3 NMR Spectroscopy Techniques	35
2.2.3.1 NMR Sample Preparation	35
2.2.3.2 NMR Experiments and Resonance Assignments	35
2.2.3.3 Structural Restraints	
2.2.3.4 Structure Calculations	36
2.2.3.5 Structure Analyses	
2.2.3.6 NMR-based Ligand Titration Experiments	
2.2.4 Tissue Culture Techniques	37
2.2.4.1 Passage of Mammalian Cells	
2.2.4.2 Transfection	
2.2.4.3 Fixing and Staining	

CHAPTER 3 Regulation of F-actin Binding Activity of α -actinin-4 by Ca²⁺

3.1 Introduction
3.2 Aims and Approaches
3.3 Results
3.3.1 Cloning, Expression and Purification of α-actinin-44
3.3.2 Establishment of the Solid Phase F-actin Binding Assay43
3.3.3 Ca^{2+} Enhances the F-actin Binding Activity of α -actinin-4
3.3.4 Calmodulin-Like Domain Assists the F-actin Binding Activity of α -actinin-444
3.3.5 Dimerisation of the CH Domains
3.4 Discussions
3.4.1 The Advantages and Disadvantages of the Solid Phase F-actin Binding Assay4
3.4.2 Ca^{2+} enhances the F-actin binding activity of α -actinin-4 <i>in vitro</i>

3.4.3 Calmodulin-like Domain Assists the F-actin Binding Activity of α-actinin-450

CHAPTER 4 Structure Determination of α-actinin-4 CH2 Domain

4.1	The CH2 Domain	.51
4.2	Structural Determination by Nuclear Magnetic Resonance Spectroscopy	51
	4.2.1 The NMR Spectroscopy	.51
	4.2.2 The Strategy of Structure Determination by NMR	.54
	4.2.3 Structure Calculation of α-actinin-4 CH2 Domain	56
4.3	Aims	.57
4.4	Results and Discussions	.58
	4.4.1 Cloning, Expression and Purification of α-actinin-4 CH2 Domain	.58
	4.4.2 Sample Preparation for NMR Experiments	58
	4.4.3 Nuclear Magnetic Resonance Data Collection	.58
	4.4.4 Resonance Assignment of α-actinin-4 CH2 Domain	.59
	4.4.5 Structural Determination of α-actinin-4 CH2 Domain	.60
	4.4.6 Comparison of Other CH2 Domain from Spectrin Superfamily	.63

CHAPTER 5 Regulation of the F-actin binding activity of $\alpha\text{-actinin-4}$ by

phosphoinositides

5.1 Introduction
5.2 Aims and approaches
5.3 Results
5.3.1 Sample Preparation for NMR Spectroscopy69
5.3.2 NMR-based HSQC Ligand Titration Assay70
5.3.3 The Inositol Binding Residues on the α -actinin-4 CH2 Domain70
5.3.4 The Phosphoinositide Binding Residues on the α -actinin-4 CH2 Domain71
5.3.5 Inhibiting the F-actin Binding Activity of α -actinin-4 by Phosphoinositides73
5.3.6 Site-directed Mutagenesis of Important Phosphoinositide Binding Residues on the
CH2 Domain74
5.3.7 HSQC Ligand Titration Analysis on the α -actinin-4 CH2 Mutants
5.3.8 Abrogation of Phosphoinositide Inhibitory Effect on F-actin Binding Activity of
α -actinin-4 Mutants

5.4 Discussion	8
5.4.1 The Phosphoinositide Binding Site on the α -actinin-4 CH2 Domain7	8
5.4.2 Phosphoinositides Inhibit Binding by Blocking the Binding of α -actinin-4 to	
F-actin	30
5.4.3 Concentration of Phosphoinositides in Typical Mammalian Cells8	\$1

CHAPTER 6 Rearrangement of Actin Filament by EGF in NIH3T3 Cells

6.1 Introduction	83
6.2 Aim and Approach	84
6.3 Results	85
6.3.1 Subcellular Localisation of α-actinin-4	85
6.3.2 Induction of Actin Filaments and α -actinin-4 Reorganisation by EGF in NI	НЗТЗ
Cells	85
6.3.3 Validation of α-actinin-4 Mutants in NIH3T3 Cells	86
6.4 Discussion	87
6.4.1 Subcellular Localisation of α-actinin-4	87

CHAPTER 7 Final Discussion

7.1 Role of α-actinin-4	
7.2 Role of Phosphoinositides in α-actinin-4	91
REFERENCES	94
APPENDIX	109

Summary

 α -actinin-4 is a non-muscle isoform of α -actinin that belongs to the spectrin superfamily. It comprises three functional regions: an N-terminal actin-binding region that consists of two calponin homology (CH) domains, a central region that consists of four copies of the spectrin-like repeat domain and a C-terminal calmodulin-like domain that is predicted to bind Ca²⁺. α -actinin-4 is organised as an antiparallel homodimer formed by the interaction of four spectrin-like repeats between the two monomers, giving a rod-like shape, with actin binding regions at both ends.

 α -actinin-4 is an abundant actin-bundling protein, which provides a direct link between actin filaments and integrins, and is believed to play an important role in stabilising cell shape and adhesion and regulating cell migration. It also acts as a tumor suppressor and influences the metastatic potential and invasiveness in human cancers. A cluster of three actin binding motifs have been identified in the CH domains (2X CH) from other members of the spectrin superfamily, utrophin and dystrophin. Two of them reside in the CH1 domain and the third resides in the first α -helix of the CH2 domain. In addition, a PIP2 binding site has been mapped on a region adjacent to actin-binding site-3. These observations imply the F-actin binding activity would be regulated by phosphoinositides. Five mutations of α -actinin-4, K122N, an alternative splice variant, K255E, T259I and S263P, have been reported to be involved in three human diseases, non-small lung cancer (NSCLC), small cell lung cancer (SCLC) and focal segmental glomerulosclerosis (FSGS). The mutation site within these mutants is located on the actin binding region. Therefore, the actin binding region is presumed to be associated with the progression of human disease.

The aims of this thesis focused on the regulation of the F-actin binding activity of α -actinin-4 by phosphoinositides (PIP2 and PIP3), the calmodulin-like domain and Ca²⁺, determination of the three-dimensional structure of the CH2 domain in solution and identification of the phosphoinositide binding site on the CH2 domain. In order to investigate the F-actin binding activity quantitatively, a novel *in vitro* F-actin binding assay (solid phase) was established to replace the semi-quantitative actin bundling assay.

Using this novel solid phase F-actin binding assay, Ca^{2+} was shown to enhance the F-actin binding activity of α -actinin-4 in a concentration dependent manner. The presence of 10 mM Ca^{2+} results in a two-fold increase in the F-actin binding activity. Both PIP2 and PIP3 inhibited the F-actin-binding activity of α -actinin-4 in a concentration dependent manner with an approximate IC₅₀ of 75 and 45 μ M, respectively.

In order to characterise how phosphoinositides regulated the F-actin binding activity of α -actinin-4, the solution structure of α -actinin-4 CH2 domain was determined and the phosphoinositide binding residues within the CH2 domain were identified using NMR spectroscopy. The solution structure of α -actinin-4 CH2 domain contained six α -helices and was similar to that of other spectrin superfamily members. The strategy used in identification of the phosphoinositide binding site was an NMR-based 2D ¹H-¹⁵N HSQC ligand titration assay to replace the traditional semi-quantitative protein-lipid overlay assay. Using the NMR-based ligand titration assay, the recognition site for the inositol head group resides in residues Trp 172, Tyr 265 and His 266 and the binding region of acyl chains resides in the first α -helix structure which is one of the putative F-actin binding sites. In order to examine the interaction of phosphoinositides with this site, Y265A and H266E mutants of α-actinin-4 CH2 domain were generated using site-directed mutagenesis and verified the interaction with phosphoinositides and the inositol head group using an NMR-based ligand titration assay. These results confirmed the phosphoinositide binding site on the CH2 domain and residues, Tyr 265 and His 266, are critical for interacting with phosphoinositides.

Wildtype and mutants (Y265A and H266E) of α -actinin-4 were expressed in mammalian cells as EGFP-fusion proteins. Wildtype α -actinin-4 was shown to be co-localised with focal adhesions and actin stress fibres. However, Y265A and H266E mutants of α -actinin-4 were co-localised with actin stress fibres but poorly co-localised with focal adhesions. Moreover, both Y265A and H266E mutants of α -actinin-4 were co-localised with actin in the cytoplasm rather than localised along the cell membrane after EGF stimulation for 30 minutes. These results suggested that PIP2 assists the co-localisation of α -actinin-4 with focal adhesions.

Taken together, the results described in this thesis concluded that Ca^{2+} enhanced the F-actin binding activity of α -actinin-4 *in vitro*. However, phosphoinositides (PIP2 or PIP3) inhibited the F-actin binding activity *in vitro*. Moreover, the results described in this thesis provided a phosphoinositide binding site on α -actinin-4 CH2 domain. Binding to PIP2 is important to the localisation of α -actinin-4 in focal adhesions.

Declarations

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Libraries, being made available for loan and photocopying.

SIGNATURE:.....

DATE:	 ••••
Huang-Hui Chen	

Acknowledgments

Thankyou to Professor Richard Ivell for providing me the opportunity to study a PhD in the Department of Biochemistry, School of Molecular and Biomedical Science, University of Adelaide.

I am sincerely grateful to Dr. Grant Booker for his supervision, patience and support throughout these studies. Thanks to Grant also for leading me to the NMR world where I've never been and reading of this thesis and all the help you have given to make it complete. My dear friends Iain Murchland and Cvetan Stojkoski kindly provided me the technical support of computer software and hardware, especially anything about NMR and useful discussions for the experimental results. I couldn't have finished the structure calculation without the help you gave me and I really appreciated it. Ethan Chen, thanks for sharing some relaxing times together. Other lab members, Dr. Steven Polyak, Belinda Ng, Lungisa Mayende, John Sharley, and past lab members, Lucky Chan, Daniel Altmann, Daniel Bird, Phillippa Smith, provided invaluable friendship and assistance at various times. I would like to thank the entire Wallace group for help received throughout these years. Other members in department Biochemistry, Dr. Dan Peet and Dr. Keith Shearwin, thanks for your recommendations. A special thanks to Phil Clements in department Chemistry for maintenance of the NMR spectrometer.

A big thanks to Tiffany for your constant encouragement and everything in Adelaide, and a huge thankyou to my family for love and support throughout this journey.

List of Abbreviations

2D	two-dimensional
3D	three-dimensional
4D	four-dimensional
ABD	Actin binding domain
Amp	ampicillin
ARIA	Ambiguous Restraints of Iterative Assignment
Arp 2/3	actin-related protein 2/3
ATP	adenosine triphosphate
bp	base pair
BSA	bovine serum albumin
C-	carboxyl-
CamLD	calmodulin-like domain
CCPNMR	Collaborative Computing Project for the NMR
cDNA	complementary DNA
СН	Calponin Homology
CTLs	cytotoxic T lymphocytes
COSY	Correlation Spectroscopy
CSI	chemical shift index
DAG	diacylglycerol
DAPI	4',6-diamidino-2-phenylindole
DMEM	Dulbecco's modified eagles medium
DMSO	dimethyl sulfoxide
DNA	deoxyribonucleic acid
DOL	degree of labeling
DTT	dithiothreitol
E. coli	Escherichia coli
ECL	enhanced chemiluminescence
ECM	extra-cellular matrix
EDTA	ethylene diamine tetraacetic acid
EGF	Epidermal growth factor

EGFP	enhanced green fluorescent protein
ENTH	epsin N-terminal homology
ER	endoplasmic reticulum
Erk 1/2	extracellular signal-related kinase 1/2
ES	embryonic stem
EtBr	ethidium bromide
F-actin	filamentous actin
FAK	focal adhesion kinase
FBS	fetal bovine serum
FERM	4.1-ezrin/radixin/moiesin
FITC	fluorescein isothiocyanate
FP	fluorescence polarisation
FRET	forster resonance energy transfer
FSGS	focal segmental glomerulosclerosis
FYVE	the first letters of four proteins, Fab1p, YOTB, Vac1p and
	EEA1
G-actin	globular actin
GLB	gel loading buffer
GST	glutathione-S-transferase
HSQC	Heteronuclear Single Quantum Coherence
ILK	integrin-linked kinase
IP3	inositol 1,4,5-trisphosphate
IP4	inositol 1,3,4,5-tetraphosphate
IPTG	isopropyl-β-D-thiogalactopyranoside
Kan	kanamycin
kb	kilobase pair
Kd	equilibrium dissociation constant
kDa	kilo Dalton
LB	Luria broth
LCC	large cell lung cancer
LPA	lysophosphatidic acid
A	milli amparas

MEKK 1	mitogen-activated protein/extracellular signal-related kinase
	kinase 1
N-	amino-
NMR	nuclear magnetic resonance
NOESY	Nuclear Overhauser Enhancement Spectroscopy
NSCLC	non-small cell lung cancer
OD _{600nm}	optical density at 600 nm wavelength
PBS	phosphate-buffered saline
PCR	polymerase chain reaction
PDB	protein data bank
PDGF	Platelet-derived growth factor
PH	pleckstrin homology
PI3K	phosphatidylinositol 3-kinase
PIP 5K	phosphatidylinositol-4-phosphate 5-kinase
PIP2	phosphatidylinositol 4,5-bisphosphate
PIP3	phosphatidylinositol 3,4,5-trisphosphate
РКС	protein kinase C
PLC	phospholipase C
PMSF	phenylmethylsulfonylfluoride
PPD	<i>p</i> -Phenyldiamine
ppm	parts per million
РТВ	phosphotyrosine binding
PX	Phox homology
RNA	ribonucleic acid
SCLC	small cell lung cancer
SDS	sodium dodecyl sulphate
SDS-PAGE	sodium dodecyl sulphate polyacrylamide gel electrophoresis
SH	Src homology
SV40	simian virus 40
TAE	Tris-acetate EDTA
TBS	Tris buffered saline
TE	Tris-EDTA

TILs	tumor infiltrating lymphocytes
TOCSY	Total Correlation Spectroscopy
Tris	Tris(hydroxymethyl)aminoethane
TRITC	Tetramethylrhodamine isothiocyanate
TTBS	Tris buffered saline/0.1% Triton X-100
Tween 20	polyethylene-sorbitan monolaurate
UV	ultra violet
V	volts
V	volume
W	weight
X-GAL	5-bromo-4-chloro-3-indoyl-galactopyranoside