The Modelling and Analysis of Command and Control Decision Processes using Extended Time Petri Nets

Fred David John Bowden B.Sc. Hons. (Applied Mathematics)

Thesis submitted for the degree of

Doctor of Philosophy

at

The University of Adelaide

Department of Applied Mathematics

Faculty of Mathematical and Computer Sciences

June 2001

I dedicate this thesis to my wife Lesley. Without whom this, along with many other things, would never have been possible. Thank you, for all your love, faith, patience, support and assistance.

CONTENTS

List of Figures	iv
List of Tables	vi
Declaration	vii
Acknowledgements	viii
Abstract	ix
Glossary of Symobols	Х
Chapter 1 Introduction	1
PART I PETRI NETS	4
Chapter 2 Petri Nets	6
2.1 Basic Concepts and Definitions	6
2.2 Analysis	18
2.2.1 Reachability Analysis	18
2.2.2 Matrix Analysis	20
Chapter 3 Introducing Time Into Petri Nets	23
3.1 Holding Durations	24
3.2 Enabling Durations	31
3.3 Comparison of Holding and Enabling Durations	40
3.4 Combination Model	44
3.5 Relative Time	48

Chapter 4 Generating Durations	49
Chapter 5 Execution Strategies	53
5.1 Holding Durations	53
5.2 Enabling Durations	57
Chapter 6 Super-Class	66
6.1 Super-Class Definition	66
6.2 Representing Holding Durations	71
6.3 Representing Enabling Durations	72
6.4 Representing Transition Enabling and Holding Durations	72
6.5 Revisiting Some PN Definitions	72
6.6 Analysis	75
Chapter 7 Rewards in Timed Petri Nets	78
Chapter 8 Part I Conclusions	80
PART II EVALUATION OF DECISION PROCESSES	83
Chapter 9 Decision Process Model	86
Chapter 10 Current TPN Analysis Techniques	91
10.1 Structural and Behavioural Analysis	91
10.2 Performance Analysis	92
Chapter 11 Markovian analysis	98
11.1 Discrete-Time Markov Chains	99
11.2 Continuous-Time Markov Chains	111
11.3 Semi-Markov Chain	118

11.4 Final Remarks	123
Chapter 12 STPN Decision Process Building Block	125
12.1 Analysis	126
12.2 HTPN Building Blocks	137
12.3 ETPN Building Blocks	139
12.4 Example of Decision Process Analysis	140
12.5 Algorithm for Analysing a Decision Process	143
Chapter 13 Extending the Basic Building Block	146
13.1 Reducing More Complex Circuits	146
13.2 Absorbing States as Part of Circuits	150
13.3 Crossovers	160
Chapter 14 Part II Concluding Remarks	165
Chapter 15 Conclusions	166
Appendix I Firing Time Petri Nets	170
I.1 Firing Durations Definition	170
I.2 Comparing Firing and Holding Durations.	174

References

176

LIST OF FIGURES

Figure 2.1: Example of a Petri net	6
Figure 2.2: Reachability graph for the PN in Figure 2.1	19
Figure 3.1: TPN with holding durations	26
Figure 3.2: TPN with enabling durations	32
Figure 3.3: Simple ETPN illustrating problems caused by loops	34
Figure 3.4: ETPN with duration functions associated with input arcs	39
Figure 3.5: TPN showing the difference between holding and enabling durations	42
Figure 3.6: TPN with enabling and holding times.	46
Figure 4.1: Examples of multi-server queues	51
Figure 5.1: ETPN With Concurrent Enabling of the Same Transition	59
Figure 5.2: ETPN With Concurrent Enabling of the Same Transition	60
Figure 6.1: Example STPN	67
Figure 6.2: Reachability graph of the STPN in Figure 6.1	76
Figure 9.1: Sample decision process	87
Figure 9.2: The decision process building block	89
Figure 9.3: Decision process building blocks for Figure 9.1	90
Figure 12.1: Simple decision process building block	125
Figure 12.2: Simple decision process building block state space	126
Figure 12.3: Circuit as stand alone PN	134
Figure 12.4: State space of PN in Figure 12.3	135
Figure 13.1: Example of sub-circuits	147
Figure 13.2: First reduction of the CTPN in Figure 13.1	150

Figure 13.3: Example of an absorbing state within a circuit	151
Figure 13.4: Building blocks of the STPN in Figure 13.3	154
Figure 13.5: Two components of STPN in Figure 13.4(a)	157
Figure 13.6: Components of the STPN in Figure 13.3 with initially marked place p4	160
Figure 13.7: STPN with crossover place	161
Figure 13.8: Building blocks for STPN in Figure 13.7	163
Figure I.1: TPN with firing durations	171

LIST OF TABLES

Table 9.1: Descriptions of transitions in Figure 9.1	88
Table 12.1: Sample mean durations for the STPN in Figure 9.1	141
Table 12.2: Results for STPN in Figure 9.3(a) with the values in Table 12.1	142
Table 12.3: Results for STPN in Figure 9.3(b) for the values in Table 12.1	142
Table 12.4: Results for STPN in Figure 9.1 for the values in Table 12.1	143

DECLARATION

This thesis contains no material which has been accepted for the award of any other degree or diploma in any university and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text of the thesis.

I give consent to this thesis being made available for photocopying and loan if accepted for the award of the degree.

Fred David John Bowden

ACKNOWLEDGEMENTS

I would like to thank my family for never doubting that I would complete this thesis. They always asked by "when" I would complete rather than "if".

I would like to acknowledge the Defence Science and Technology Organisation for its support during this research. In particular I would like to thank John Coleby, Mike Davies, David Fogg, Paul Gaertner, Stephen Hood and Darryn Reid for their support at various stages.

I would like to thank my co-supervisors Jonathan Billington, Mike Davies and Peter Taylor. In particular I thank Peter and Mike for their comments on my final draft. I would also like to thank Lesley, Lars Kristensen and Darryn for reading and commenting on certain portions of my thesis at varying stages of its readiness.

Above all I would like to thank my principal supervisor Charles Pearce. He was initially my teacher, then my mentor and is now my friend. No one could ask for more than Charles has given me and it has been my privilege to have him as my supervisor. I hope that in the future our lives continue to be entangled.

ABSTRACT

Effective command and control is crucial to both military and non-military environments. Accurate representations of the processes associated with the inter and intra activities of nodes or agencies of such systems is essential in the analysis of command and control. One of the most important things is to be able to model the decision processes. These are the parts of the system that make decisions and then guide the direction of other elements in the system overall.

This thesis uses a new type of extended time Petri net to model and analyse command and control decision processes. A comprehensive review of existing time Petri net structures is given. This concludes with the introduction of a time Petri net structure that incorporates the most commonly used time structures. This extended time Petri net structure is then used in the definition of the basic modelling blocks required to model command and control decision processes. This basic modelling block forms the basis of the direct analysis techniques that are introduced in the thesis.

Due to the transient nature of the systems being modelled and the measures of interest a new type of measure is introduced, the mean conditional first hitting reward. This measure does not currently appear to be part of the stochastic process literature. Explicit procedures are given to determine the hitting probabilities and mean conditional first hitting reward for decision process models and discrete, continuous and semi-Markov chains. Finally the some extensions of the decision process sub-class are considered.

GLOSSARY OF SYMBOLS

κ	100	Sub-set of states of interest in reaching the first time
Λ	106	Diagonal matrix containing elements a _i
$\Omega(\tau)$	127	Probability no transition fires before transition t
τ	25	Time
τ_{c_i}	135	Mean time spent in circuit C _i
τ_{s_k}	135	Mean holding time of absorbing transition R_k
ρ	26	Range of possible duration functions
μ'	123	Vector of mean times spent in i before going to j
μ_{ij}	121	Mean time spent in i before going to j for a semi-
		Markov chain
А	89	Absorbing part of a decision process building block
a _i	100	Probability of reaching κ from state i
A _j	88	The j th absorbing state of a decision process building
		block
^A M	26	Available tokens marking in a time Petri net
В	100	Finite set of states with access to κ
С	20	Incidence matrix
С	88	Circuit part of a decision process building block
c _i	88	First transition in the i th circuit of a decision process
		building block

D	27	Duration function
$^{E}D(t)(\tau)$	45	Enabling duration function of transition t
$E_{pt}(\tau)$	126	Enabling duration function for the arc from place p to
		transition t
^E M	32	Enabling marking in a time Petri net
$ ^{E}M(t) $	36	Enabling degree of transition t
F	20	Firing sequence count vector
$^{H}D(t)(\tau)$	46	Holding duration function of transition t
$H_{tp}(\tau)$	126	Holding duration function for the arc from transition t to
		place p
Ι	88	Initially marked place of a decision process building
		block
$I_i(\tau)$	127	Probability that transition C_i fires before time τ
$J_j(\tau)$	127	Probability that transition S_{j} fires before time $\boldsymbol{\tau}$
L	88	Number of absorbing states in a decision process
		building block
М	8	A marking
M0	7	Initial marking
$[\mathbf{M} angle$	13	Reachability set for the marking M
$\mathbf{M}[\mathbf{t}]\mathbf{M}'$	13	Marking M' is the marking reached from M when
		transition t fires
$M[S\rangle M'$	13	M' is the marking reach from marking M with firing
		sequence σ
Ν	88	Number of circuits in the a decision process building

Р	7	Set of places
р	100	Transition probability matrix
p'	106	Transition probability matrix containing only states in B
$p \succ p'$	162	Place p is upstream to place p'
p _{ij}	99	Single step transition probability from state i to state j
^P M	32	Token marking in a Petri net with enabling durations
q'	117	Vector with q _i as its elements
Q	112	Transition rate matrix
q_{ij}	112	Transition rate from state i to state j
q_i	112	$-\sum_{i\neq j}q_{ij}$
R_0^+	56	Nonnegative reals
R _i	103	Mean conditional first-passage reward from state i to $\boldsymbol{\kappa}$
R_{ij}	103	Mean reward gained as a result of a transition form state
		i to state j
s _j	88	The j^{th} transition to an absorbing state of a decision
		process building block
Т	7	Set of transitions
Т	108	Mean conditional first-passage time matrix
t•	10	Set of output place for transition t
•t	10	Set of input place for transition t
T _i	102	Mean conditional first-passage time from state i to κ
U	103	Dual matrix
U_{ij}	103	Dual transition probabilities

^U M	26	Unavailable tokens marking in a time Petri net
v	105	Mean conditional next step passage reward vector
v _i	104	Mean conditional next step passage reward from state i
W	8	Weighted flow function
Lx]	37	Greatest integer less than or equal to x
Z^+	7	Positive integers
Z_0^+	7	Nonnegative integers