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ABSTRACT 

Effective command and control is crucial to both military and non-military environments. 

Accurate representations of the processes associated with the inter and intra activities of 

nodes or agencies of such systems is essential in the analysis of command and control. One of 

the most important things is to be able to model the decision processes. These are the parts of 

the system that make decisions and then guide the direction of other elements in the system 

overall. 

 

This thesis uses a new type of extended time Petri net to model and analyse command and 

control decision processes. A comprehensive review of existing time Petri net structures is 

given. This concludes with the introduction of a time Petri net structure that incorporates the 

most commonly used time structures. This extended time Petri net structure is then used in the 

definition of the basic modelling blocks required to model command and control decision 

processes. This basic modelling block forms the basis of the direct analysis techniques that 

are introduced in the thesis. 

 

Due to the transient nature of the systems being modelled and the measures of interest a new 

type of measure is introduced, the mean conditional first hitting reward. This measure does 

not currently appear to be part of the stochastic process literature. Explicit procedures are 

given to determine the hitting probabilities and mean conditional first hitting reward for 

decision process models and discrete, continuous and semi-Markov chains. Finally the some 

extensions of the decision process sub-class are considered. 
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CHAPTER 1 INTRODUCTION 

Effective command and control is crucial to both military and non-military environments. In 

the analysis of command and control systems it is important to develop accurate 

representations of the processes associated with the inter and intra activities of nodes or 

agencies of that system. One of the most important things is to be able to model the decision 

processes. These are the parts of the system that make decisions and then guide the direction 

of other elements in the system overall. 

 

In the modelling of any system a certain amount of abstraction is required, often necessitating 

stochastic ingredients. This is particularly true in the case of modelling human decision 

processes, which are usually too complex to represent completely. Also, realistic modelling of 

decision processes involves uncertainty in the way a model reacts to a given situation. Thus 

for an initial state there could be a number of possible final decisions. So the technique 

chosen to construct such a model must allow for stochastic behaviour in reaching the final 

state. Other desirable features of the chosen modelling technique include the ability to 

represent both concurrent and sequential activities, allow for modelling of resource sharing 

and accommodate both timed and non-timed events. Petri nets (PN) are able to represent all of 

the desirable features described above, and hence have been chosen as a tool to model 

decision processes in command and control systems. The use of PNs to model decision 

processes is not new and has been reported in many papers such as [28], [29], [31]-[34], [68], 

[96], [98]-[102], [108], [111], [133]-[135], [144], [157], [160], [174] and [179]-[181]. 

 

Another convenient feature of PNs is that models can be built in a modular fashion. This is 

particularly important in designing larger models and if parts or all of the model are to be 
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reused. The role-based design and implementation method ([28], [29], [33] and [34]) proposes 

a way of modelling the decision process of a command and control system such that part of 

complete models can be reused. Particular parts of a model can be presented to whatever level 

of detail required. PNs are seen as a way of representing role based models ([33]). This 

modelling method has been used in the design of decision processes as part of the distributed 

interactive C3I1 effectiveness simulation environment, as described in [31], [32] and [68].  

 

One of the key issues pursued in [28] and [29] is validating the decision process models. 

These papers describe the development of an explanation capability that allows a person 

unfamiliar with PNs to investigate how a PN model of a decision process works. Thus it 

allows a person who has expertise in a given decision process to comment on the way the 

model reacts to given situations. This capability is currently very fundamental in that it gives 

basic information such as possible reachable states, the path taken to reach a given state and 

initial states required for a given state to be reached. 

 

The aim of the explanation capability described in [28] and [29] is to aid in the development 

of decision process models to be included as part of larger distributed simulations. However, 

this tool can be extended to carry out analysis in its own right. There are two measures that 

are very important not only in validating a model’s suitability to be part of a larger system but 

also in analysing a decision process in general: the probability and the mean conditional time 

of reaching a given state for the first time. Further there is the issue of the mean conditional 

reward or cost of reaching a given state for the first time. This would be an invaluable 

measure in determining the cost of possible courses of action. 

 

1 Command, Control, Communications and Intelligence. 
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As described above, PNs are a technique for representing the decision processes of a 

command and control system. This thesis focuses on developing a way of representing 

decision processes in order to determine the probability of what will be defined as the mean 

conditional first-hitting reward. It begins by investigating the different ways of modelling 

time in PNs. Next it presents a modular approach, involving what is referred to as decision 

process building blocks, to build and analyse decision processes. Some of the developments 

arising in this thesis are: 

• a new type of time PN representation, including the representation of rewards; 

• the definition of a decision process building block; 

• the definition of a new measure of a system, the mean conditional first-hitting 

reward; 

• the theory behind calculating mean conditional first-hitting rewards in Markov 

chains; 

• the determination of the probability of hitting a given state in a decision process; and 

• the determination of the mean conditional first-hitting reward in a decision process. 



 

 

PART  I   

PETRI  NETS 

PNs were originally developed in 1962 by Carl Adam Petri in his doctoral thesis titled 

“Communication with Automata” [140]. Since their development, PNs have been used to 

model many different types of discrete event systems, in fields including computer science (as 

in [137]), manufacturing systems ([12], [63], [84] and [165]), transport systems ([2]), project 

management ([93]), and more recently command and control ([11], [22], [28], [33], [34], [95], 

[98]-[102], [122], [133], [148] and [174]). 

 

This Part of the thesis introduces the basic PN concepts that will be used. It concentrates on 

how time is represented in PNs and amalgamates the current time representations into a single 

representation to allow for the benefits of the alternative representations. The structure of this 

Part is as follows: 

• Chapter 2 introduces PNs and gives a number of fundamental properties and analysis 

techniques. 

• Chapter 3 defines and compares the different methods of representing time in PNs. 

• Chapter 4 overviews the three ways of generating time delays. 

• Chapter 5 discusses some of the subtle particulars of execution policies. 

• In Chapter 6, the super-time Petri net class is introduced and used to represent all the 

previously defined time Petri nets. 
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• Chapter 7 extends the super-time Petri net class further by introducing the more general 

idea of rewards. 

• Finally in Chapter 8 some concluding comments are presented. 



 

CHAPTER 2 PETRI NETS 

In this chapter the basic concepts of PNs will be introduced. It gives the PN definition that 

will be built on when time is introduced and defines many of the terms and notation used 

throughout this thesis. It also gives a brief outline of the main analysis techniques for PNs. 

2.1 Basic Concepts and Definitions 

A PN can be represented by a bipartite directed graph with two types of nodes: places and 

transitions. Pictorially, places are drawn as circles and represent features such as conditions, 

buffers, servers, resources and queues. Transitions are displayed as rectangles and represent 

activities in the system being modelled such as processors, algorithms and events. Directed 

arcs can only appear between different types of nodes. That is, a directed arc can only go from 

a place to a transition, or a transition to a place. As a representational abbreviation, when 

more than one arc is going in the same direction between two nodes, only one arc is drawn 

with a weight representing the actual number of arcs placed next to it. Figure 2.1 shows a PN 

with 5 places, 4 transitions and 12 arcs. 

2

t4

p1
2

p3

t1 p2

p5t3

t2 p4

 

Figure 2.1: Example of a Petri net 
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Tokens make up the final element in a PN. Tokens are associated with places and are 

represented graphically by identical dots. The movement of tokens between places is 

controlled by the transitions of the PN. In a PN, the distribution of tokens defines the state of 

the system such as conditions satisfied, items in a buffer, number of free servers, availability 

of resources and entities in a queue. The distribution of tokens through the PN is called the 

PN’s marking. The PN in Figure 2.1 has the marking of two tokens in place p1 and one in 

place p3. 

 

The standard mathematical way of defining a PN is using a tuple. There are two main tuple 

representations. The one introduced by Reisig ([147]) is called a place transition system and is 

the 5-tuple 

PN = (P, T, F, W, M0)2

where: P = {p1, p2, ..., pn} is the set of places; 

T = {t1, t2, ..., tm} is the set of transitions; 

P ∩ T = ∅; 

F is the flow relationship, which defines the set of arc relations between T and P, such 

that, F ⊆ {T × P} ∪ {P × T}; 

W is the weight function, which is a map: F→ , where  is the set of positive 

integers, giving the weights of the arcs; and 

+Z +Z

M0 is the initial marking, which is a mapping: P→ , where   ∪ {0}, giving 

the number of tokens initial in each place.

+
0Z +

0Z  = +Z

3
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2 Normally this definition includes a sixth element called the capacity. However, this is not 

relevant here and so has not been included. See [147] for more information on this. 
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An alternative representation is given by Peterson ([137] and [138]), who calls these PNs 

marked PNs and uses 5-tuple 

PN = (P, T, I, O, M0), 

where: P, T and M0 are as given in the earlier definition; 

I is a mapping: P × T→  and defines the weights of the input arcs such that, if the 

input arc from p to t has a weight of l, then I(p, t) = l; and 

+
0Z

O is a mapping: T × P→  and defines the weights of the output arc such that, if the 

output arc from t to p has a weight of l, then O(t, p) = l. 

+
0Z

 

These two definitions have been introduced since it is a combination of these that will be used 

in this thesis. Here a PN will be defined by the 4-tuple 

PN = (P, T, W, M0). 

In this definition P, T and M0 are as defined earlier and W is the weighted flow function. The 

weighted flow function is a mapping: {T × P} ∪ {P × T}→ . Thus, this is simply the same 

definition as Reisig’s 5-tuple (P, T, F, W, M0) with W being defined directly from the places 

and transitions, allowing the explicit definition of F to be left out. It can also be considered to 

be a merging of the input and output arc functions, I and O, of Peterson’s 5-tuple (P, T, I, O, 

M0) into the single function W. 

+
0Z

 

Consider once more the PN in Figure 2.1. This PN has the tuple representation: 

P = {p1, p2, p3, p4, p5}; 

T = {t1, t2, t3, t4}; 

 8

                                                                                                                                                         

3 In this thesis general markings will be denoted by M. 
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W(p1, t1) = 2, W(p2, t2) = 1, W(p3, t2) = 1, W(p3, t3) = 1, W(p4, t4) = 1, 

W(t1, p2) = 1, W(t2, p4) = 1, W(t3, p5) = 1, W(t4, p1) = 2, W(t4, p3) = 1; and 

M0(p1) = 2, M0(p3) = 1. 

For brevity, weighted flow definitions that are zero and unmarked places are not given here. 

This is often done in PNs. 

 

There are a number of basic definitions that will be used during this thesis that will now be 

introduced. 

 

Definition 2.1: Input arc 

For p∈P and t∈T an input arc, (p, t), exists from place p to transition t if and only if 

W(p, t) ≠ 0. 

 

That is, the input arcs of a transition are all the directed arcs going from some place to the 

transition. In Figure 2.1 transition t2 has one input arc from both places p2 and p3. In a 

similar fashion the input arcs of a place can be defined, as in [171]. In this thesis an input arc 

will always refer to a transition input arc. 

 

Definition 2.2: Output arc 

For p∈P and t∈T an output arc, (t, p), exists from transition t to place p if and only if 

W(p, t) ≠ 0. 

 

That is, the output arcs of a transition are all the directed arcs going from the transition to any 

place. In Figure 2.1 transition t4 has two output arcs, one to place p1 and one to place p3. The 
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transition t4 is the only transition in this net that has more than one output arc. In a similar 

fashion the output arcs of a place can be defined as in [171]. In this thesis an output arc will 

always refer to a transition output arc. 

 

Definition 2.3: Input place 

The set of input places for t∈T, denoted by •t ⊆ P, is defined by 

•t = {p: p∈P and W(p, t) ≠ 0}. 

 

That is, the input places of a transition are all those places with input arcs to that transition. In 

Figure 2.1, •t1 = {p1}, •t2 = {p2, p3}, •t3 = {p3} and •t4 = {p4}. In a similar fashion the input 

transitions of a place, denoted by •p, are defined as all the transitions with place input arcs to 

the place, for example see [172]. 

 

Definition 2.4: Output place 

The set of output places for t∈T, denoted by t• ⊆ P, is defined by 

t• = {p: p∈P and W(t, p) > 0}. 

 

That is, the output places of a transition are all those places connected by output arcs from 

that transition. In Figure 2.1 t1• = {p2}, t2• = {p4}, t3• = {p5} and t4• = {p1, p3}. Once more, 

output transitions of a place, denoted by p•, can be defined in an analogous way. It should be 

noted that Definition 2.3 and Definition 2.4 hold for sets of transitions and places. For 

example in Figure 2.1 the set of transitions T1 = {t1, t2} have •T1 = {p1, p2, p3} and 

T1• = {p2, p4}. 
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The semantics of a PN are defined in two stages. First, if a transition is enabled, then it may 

fire. 

 

Definition 2.5: Enabling of a transition 

The transition t∈T is enabled in marking M if and only if for all p∈P,   M(p) ≥ W(p, t). 

 

The PN in Figure 2.1 with the shown marking has the enabled transitions t1 and t3. Thus the 

multi-set of enabled transitions is {t1, t3}. The term multi-set has been used to illustrate the 

possibility of multiple enablings of the same transition. For example if there were two tokens 

in place p3 of Figure 2.1 then transition t3 would be enabled twice making the enabling 

multi-set {t1, t3, t3}. 

 

Definition 2.6: Firing of a transition 

When the enabled transition, t, fires (occurs) in the marking M, a new marking M’ is obtained 

according to the firing rule  

for all p∈P,     M’(p) = M(p) + W(t, p) - W(p, t). 

 

Thus when a transition fires it removes tokens from the transition’s input places and creates 

tokens in its output places. For example, if transition t1 in Figure 2.1 fires, then two tokens 

are removed from place p1 and one is created in place p2. Alternatively if transition t3 fires 

then one token is removed from place p3 and one token is created in place p5. 
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Definition 2.7: Firing sequence 

Any possible sequence of transition firings is called a firing sequence. 

 

A PN may have a number of different possible firing sequences for a given initial marking. 

Multiple firing sequences occur if more than one transition is enabled at the same time during 

the firing sequence. Consider the PN shown in Figure 2.1. Some possible firing sequences for 

this net with the shown initial marking are {t1, t2, t4, t1, t2, t4, t3, t1}, {t3, t1}, and {t1, t3}. 

In Murata [125] the firing sequence contains not only the list of transitions that fire but also 

the marking reached. This is also referred to as the execution sequence in [7]. 

 

Definition 2.8: Execution Sequence 

An execution sequence is a firing sequence which includes not only the transitions that fire 

but also the initial, intermediate and final markings. 

 

Consider the firing sequence {t3, t1} for the PN shown in Figure 2.1. This firing sequence has 

the three markings M0 = (2, 0, 1, 0, 0)4, M1 = (2, 0, 0, 0, 1) and M2 = (0, 1, 0, 0, 1). Thus the 

execution sequence would be {M0, t3, M1, t1, M2}. 

 

 

4 In this representation, the markings are represented by ordered pentuples, where the first 

value specifies the number of tokens in place p1, the second the number in p2 and so on. Thus 

if there are two tokens in p1, one token in p3 and no tokens in the rest of the net, then 

(2, 0, 1, 0, 0) would be the specification of the marking. 
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Definition 2.9: Immediately Reachable 

The marking M’ is immediately reachable from M if there exists t∈T enabled by M such that 

for all p∈P,     M’(p) = M(p) + W(t, p) - W(p, t). This is denoted by [ 'MtM .  

 

In the PN of Figure 2.1, the marking with one token in place p2 and one token in place p3 is, 

through the firing of transition t1, immediately reachable from the marking shown. 

 

Definition 2.10: Reachable 

The marking M’ is reachable from M if there exists a firing sequence S = {ti, tj, tk, …,tn} 

such that for all p∈P,      

M’(p) = M(p) + W(ti, p) - W(p, ti) + W(tj, p) - W(p, tj) +  

    W(tk, p) - W(p, tk) + W(tn, p) - W(p, tn).  

This is denoted by [ 'MSM .  

 

The marking of one token in place p4 is reachable from the illustrated marking when the 

firing sequence {t1, t2} occurs. It is possible that there may be a variety of ways to reach the 

same marking. For example, an alternative firing sequence which gives the marking of one 

token in place p4 from the marking shown in Figure 2.1 is {t1, t2, t4, t1, t2}. 

 

Definition 2.11: Reachability Set 

The set of markings reachable from a given initial marking are defined as the PN’s 

reachability set for the given initial marking. The reachability set for the marking M is 

denoted [M . Thus M’ is reachable from M if and only if M’∈[M . 

 13
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The PN in Figure 2.1 with the shown initial marking has the reachability set 

(2, 0, 1, 0 ,0), (0, 1, 1, 0, 0), (2, 0, 0, 0, 1), (0, 0, 0, 1, 0), (0, 1, 0, 0, 1). 

 

Definition 2.12: Deadlock 

A PN is said to have reached a deadlock when its execution halts. 

 

This definition is not the usual one given but is more general and holds for PNs that include 

time. For the semantics defined above, deadlock occurs when the current marking does not 

enable any of the PN’s transitions. This is the normal definition of deadlock. The more 

general definition was given here as in some PNs with time there is the possibility of having 

no enabled transitions and yet still not have reached a deadlock. This will become clear later 

in this Part. 

 

The PN shown in Figure 2.1 reaches deadlock when the marking of one token in p2 and one 

token in p5 is reached. Markings that result in deadlock will be referred to as absorbing 

markings or absorbing states. A knowledge of the absorbing states is very important in 

system design as they define the states for which the system stops. Absorbing states may be 

desirable in some models as in the case of a decision maker, indicating a decision has been 

reached, or undesirable as in the case of a manufacturing plant, indicating production has 

stopped. 

 

Definition 2.13: Loop 

A loop exists between p∈P and t∈T if p∈•t ∩ t•. 
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Thus, a loop exists in a PN if a place is both an input and output place to the same transition. 

The PN in Figure 2.1 has no loops. 

 

Definition 2.14: Structural Conflict 

The transitions t1, t2, …, tn are in structural conflict if •t1∩•t2∩…∩•tn≠∅, that is, if they 

share an input place. 

 

Figure 2.1 has a structural conflict between t2 and t3 as these transitions share the input 

place p3. In [5] and other papers in the literature structural conflict is defined as existing 

between transitions tm and tl if  

for all p∈•tm ∩ •tl,    W(p, tm)∩{W(p, tl) - W(tl, p)} ≠ ∅.  

This varies from Definition 2.14 as it does not consider the case when loops exist. The 

definition given here, is used as loops are seen as an important part of the decision process 

building block that will be defined later. 

 

Definition 2.15: Conflict 

Consider the case when a given marking enables more than one transition. If the firing of an 

enabled transition disables some of the other enabled transitions, then the transitions which 

become disabled are said to be in conflict with the transition that fired. The set of transitions 

which are in conflict for a given marking are referred to as the marking’s conflict set [47]. 

 

Conflict occurs in marking M if the removing of the input tokens of a transition enabled by M 

results in another enabled transition becoming disabled. For example, if the marking of one 
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token in place p2 and one in place p3 occurs in the PN shown in Figure 2.1, then transitions t2 

and t3 are in conflict. Once more this varies from the usual definition of conflict which again 

does not consider conflict to exist in the case of loops. Due to the introduction of time later in 

this Part of the thesis it is important that this case is not ignored. 

 

Definition 2.16: Concurrent enablings 

If more than one transition is enabled by the same marking and the firing of any of these 

transitions does not disable any of the others, then the transitions are referred to as being 

concurrently enabled.  

 

This definition is the same as that given in [8]. With the marking shown in Figure 2.1 the 

transitions t1 and t3 are concurrently enabled. 

 

Definition 2.17: Confusion 

Confusion exists when a marking has two (or more) concurrently enabled transitions but the 

firing of one before the other(s) means the still enabled transition(s) is (are) in conflict with a 

newly enabled transition. Thus confusion is the result of possible conflict. 

 

Confusion is an aspect of PNs that is often overlooked although it is not a new concept, being 

introduced in papers such as [162]. The PN in Figure 2.1, with the marking shown, illustrates 

confusion as transitions t1 and t3 are concurrently enabled but the firing of t1 results in a 

conflict between t3 and the newly enabled transition t2. Although confusion does not directly 

influence the properties of a system it is important in the consideration of the PN semantics. If 

confusion exists in a PN then the order in which concurrently enabled transitions fire is 
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important. Confusion is considered in greater detail later when time is added to the PN 

structure. 

 

Definition 2.18: Place invariant 

The set of weights yi form the place invariants (S or P-invariant) for a PN if for all M∈[ 0M , 

. c)pi(Myi
Ppi

=∑
∈

 

Thus place invariants relate to the conservation of the number of tokens in the net for all 

reachable markings. 

 

The PN in Figure 2.1 has the place invariant where place p1 has a weight of ½, places p2, p3 

and p5 each a weight of 1, and place p4 a of weight 2. This gives for all M∈[ 0M  a constant 

value of 2. 

 

Definition 2.19: Transition invariants  

A transition invariant (T-invariant) is a firing sequence that returns the PN to its starting 

marking. That is, the firing sequence S is a T-invariant if [ MSM . 

 

Figure 2.1 has the T-invariant S = {t1, t2, t4}. 

 

It should be noted that the definition given above is the same as that given in [2] but is not the 

definition usually used. This is discussed further in Section 2.2.2, where the more common 

definition of T-invariants will be given.  
 17
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Definition 2.20: Circuit 

A circuit is an execution sequence that returns the PN to its starting marking. 

 

Thus in the definitions given here a circuit and a T-invariant are similar except a circuit 

includes the markings as well as the firing transitions. 

 

Definition 2.21: Simple Circuit 

A circuit where each transition and marking appears only once is called a simple circuit. 

 

2.2 Analysis 

There are two main forms of analysing a PN: reachability and matrix. This Section gives a 

brief introduction to these two. 

2.2.1 Reachability Analysis 

The primary way of analysing PNs is using their state space. This involves the generation of 

the complete reachability set and then using it to check for properties. The reachability set is 

represented by the reachability graph, which contains not only information about the 

reachable markings but also the firing sequences required to move between them. 

 

The first entry in the reachability graph is the initial marking. Below this marking, each of the 

possible immediately reachable markings is listed. Directed arcs going from the initial 

marking to each of the immediately reachable markings are drawn and labelled with the 
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transition required to fire to reach the specified marking. This process is then repeated for 

each new marking. If a new immediately reachable marking is identical to one which appears 

earlier in the graph, then the generating marking is connected to the earlier marking by an arc 

labelled with the appropriate transition. If a PN is confusion free then the reachability graph 

can be reduced by firing all the concurrently enabled transitions at once, making the next 

node in the reachability graph that reached by firing of the set of concurrently enabled 

transitions. The reachability graph for the PN in Figure 2.1 is given in Figure 2.2.  

{2, 0, 1, 0, 0} 

t1    t3 

{0, 1, 1, 0, 0}           {2, 0, 0, 0, 1} 

  t4            t2               t3              t1          

{0, 0, 0, 1, 0}         {0, 1, 0, 0, 1} 

Figure 2.2: Reachability graph for the PN in Figure 2.1 

 

A problem with this method is that for many practical systems the PN state space, and thus 

the reachability graph, is very large. The larger the reachability graph, the harder it is to 

identify properties. PNs may also have infinitely many states in which case the reachability 

graph would also have to be infinite. In [138] an algorithm is defined that will always 

generate a finite graph, but this does not get around the problem of dealing with very large 

state spaces. Much work has been done to help over come this problem, see references such as 

[46], [86], [132], [168] and [169]. 

 19
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2.2.2 Matrix Analysis 

It is easy to see that the tuple representation can be placed in a matrix form. A PN with m 

transitions and n places is represented by the m×n matrix C called the incidence matrix ([58]). 

The elements of incidence matrix is defined by 

Cj i = W(tj, pi) - W(pi, tj). 

 

The incidence matrix for the PN in Figure 2.1 is 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−−

−
−

=

0100
1010

1110
0011
2002

C . 

 

The PN marking can be represented by a vector of size n called the marking vector, where 

Mi = M(pi). Hence if there are l tokens in the ith place then Mi = l. This means that the 

marking vector for the initial marking shown in Figure 2.1 is 

M0 = [2 0 1 0 0]. 

 

The firing sequence of a PN can also be represented by a m-row vector, F, called the firing 

vector. In this vector, if the jth transition fires k times in a given firing sequence, then Fj = k. 

Thus the firing sequence {t1, t2, t4, t1, t2} is represented by the vector 

F = [2 2 0 1]t. 

Here the “t” super-script stands for transpose. 

 

If the firing sequence is known, the resulting marking can be calculated using 

M = M0 + C F.  
 20
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In the PN shown in Figure 2.1, a firing sequence is {t1, t2, t4, t1, t2, t4, t3, t1} which gives 

the firing vector as [3 2 1 2]t. The resulting marking would be given by 

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣
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⎢
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⎥
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⎢
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⎢

⎣

⎡

−
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−
−

+
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2
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0
0
1
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2

1M . 

 

The matrix representation can be used to detect properties such as reachability, P-invariants 

and T-invariants. In matrix analysis, P-invariants are defined to be given by the nonnegative 

and nonzero solutions to  ([58]) and T-invariants by the nonnegative and nonzero 

solutions to  ([58]). This is where the difference in the definitions of T-invariants 

arises. In the earlier definition, it was stated that a T-invariant related to a firing sequence that 

returned the PN to its initial marking. However, a nonnegative solution to 

0CW =

0FC =

0FC =  is not a 

firing sequence but rather a vector containing a count of the number of firings of each 

transition in a firing sequence that returns the PN to its initial marking. Such a vector may not 

relate to a realisable firing sequence. This is a problem with the matrix method in general and 

comes from the fact that solutions to matrix equations are not guaranteed to be realisable in 

the PN. 

 

There are two distinct problems with the matrix method. The first is the fact that the incidence 

matrix holds only net change in the number of tokens in a place, not the overall input and 

output requirements. So when a loop is included as part of the model, information is lost in 

the calculation of the elements of C. Another problem is that the firing vector does not 

represent the order in which transitions fire, just the number of firings of each. Thus all 

solutions given by this technique must been checked in terms of the semantics of the PN to 

 21
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determine if they are an achievable firing sequence. For large models with long firing 

sequences this can be difficult. 



 

 

                                                

CHAPTER 3 INTRODUCING TIME INTO PETRI NETS 

There are three different ways of representing time durations in PNs: firing durations, holding 

durations and enabling durations. Since firing durations ([143]) are just a sub-class of holding 

durations (see [37] and Appendix I), only holding and enabling durations need to be 

considered5. The actual name used in the literature for each time representation varies with 

researchers. In general, timed Petri nets [155] are associated with holding durations and time 

Petri nets [118] and stochastic Petri nets ([7]) with enabling durations. A more comprehensive 

list of the different names used on PNs extended to include time is given in [176]. From this 

point on all PNs including time will be referred to as timed Petri nets (TPN). 

 

An interesting aside is that there is some disagreement in the literature on the temporal 

interpretation of PNs without time. Papers [109], [110] and [175] consider transitions in 

non-timed PNs to fire the instant they are enabled. That is, each transition takes zero time to 

fire. Others, [64], [66], [117], [156], [163] and [164], consider PN transitions to take a time 

anywhere between zero and infinity to fire. Thus even on this simple matter there are 

conflicting views. This is further highlighted by the fact that there is not even a standard part 

of the PN to which time is assigned. In fact, time has been assigned to transitions, places and 

arcs. In all cases, the PN representation and semantics can be defined in a similar way. 

Throughout this chapter, the concepts of holding and enabling durations are explained using 

deterministic durations with global absolute time. In using global absolute time the clock is 

implicit and the ordering of events is such that time is non-decreasing. It is the shortest time 

that determines which of the execution step occurs next. Alternative duration functions are 

 

5 For completeness Appendix I discusses firing durations. 
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discussed in Chapter 4. Relative time, the alternative to absolute global time, will be 

considered in the last section of this chapter. 

 

It should be noted that some of the definitions given in Chapter 2 now need to be reconsidered 

in light of the inclusion of time. Rather than dealing with this on an individual basis for each 

TPN representation, the changes to these definitions will be discussed further as they are 

relevant to the topics being covered in this chapter. The relevant definitions will also be 

redefined for TPNs in general in Chapter 6. 

3.1 Holding Durations 

Holding durations work by classifying tokens into two types, available and unavailable (also 

referred to as reserved and unreserved (non-reserved), see [61] and [88]). Available tokens 

can be used to enable a transition whereas unavailable tokens cannot. When an enabled 

transition fires, it removes and creates tokens in the same time instant. However, it can only 

remove available tokens and the tokens created are defined as unavailable. Unavailable tokens 

remain so for a specified time period, the holding time, before becoming available tokens. 

PNs with holding durations will be referred to as holding time Petri nets (HTPN). 

 

The holding time of a token can be determined by the transition which created the token (as in 

[1], [2] and [131]), the output place in which the token was created (see [14], [110], [155] and 

[175]), or the output arc from the creating transition to the output place (as in [37] and [126]). 

The use of holding durations is increasing in popularity, particularly in high-level nets where 

the time an unavailable token becomes available can be stored as part of the token structure 

(as in [2], [74], [85], [131] and [177]). No definition for high-level nets is given here, because 

a definition would take considerable time and such nets are peripheral to this thesis. 
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Figure 3.1 illustrates the execution of a HTPN with holding durations associated with 

transitions. In this figure, filled tokens represent available tokens while unfilled ones are 

unavailable. Thus the tokens in places p1 and p2 of Figure 3.1(a) are both available so 

transition t1 is enabled at time τ = 06. On firing, this transition removes an available token 

from each of its input places, p1 and p2, and creates an unavailable token in p3 (see 

Figure 3.1(b)). Since the created token is unavailable it cannot be used to enable transition t2. 

This means that transition t2 is not enabled at this time and cannot be enabled until the 

unavailable token in p3 becomes available. In this example holding durations have been 

assigned to the transitions and so created tokens remain unavailable until the holding duration 

of their “creator” transition has passed. So the token in place p3 becomes available at τ = 1, as 

shown in Figure 3.1(c), enabling transition t2. The HTPN goes through the same process with 

t2, as shown in Figure 3.1(d) and (e). The final state has now been reached as the HTPN is in 

deadlock. 

 

Note that Figure 3.1(b) and (d) show the reason why deadlock was defined in the manner 

given in the previous chapter. In both these cases there are no enabled transitions, however, 

the execution of the PN has not ended. In particular, consider the case of the marking in 

Figure 3.1(b). This marking goes on to enable a further transition. 

 

 

6 Due to the use of t as a transition throughout this thesis time will be referred to by τ. 
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p2

p1

p2

p1

(1 <= τ < 5)

(a) Initial state

p3

(0 <= τ < 1)

(b) Transitions t1 fired, token in p3
is unavailable

(d) Transition t2 fired, token in p4
is unavailable

p2 D =1d

t1

p1

p2 D =1d

dD =4

t2 p4

dD =4

p2

p1

t1 p3 t2

D =1d

p4

(τ = 0)

t1 p3

(c) Token in p3 is now available

D =1d

t1

(τ = 5)
(e) Final state

p3

D =1d

(τ = 1)

dD =4

t2 p4

dD =4

t1

dD =4

p3

t2 p4

t2 p4

 

Figure 3.1: TPN with holding durations 

 

Since there are two classes of tokens, there is a need to redefine the marking function. The 

marking is now made up of two parts, one defining the available tokens, the other the 

unavailable tokens. The available tokens function, AM, is a mapping: P→ , that maps each 

place into the number of available tokens in that place. This takes the same form as the 

marking function of a PN. The unavailable tokens function 

+
0Z

UM is a mapping: 

P→{(n, x): n∈  and x∈ρ}, where ρ is the range of the possible timing functions. In the 

ordered pairs the first element is the number of unavailable tokens and the second the time 

that these tokens become available. For example in Figure 3.1(d) 

+
0Z

UM(p4) = {(1, 5)}.  

 

As with a PN, a HTPN can be represented by a multi-tuple. In this case the pentuple: 

 26
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HTPN = (P, T, W, D, M0), 

where P, T and W are as given in the PN definition of Chapter 2; 

for each t∈T, D(t)(τ)7 is the distribution function of the durations associated with 

transition t. Further, deterministic duration functions which return the value of k with 

probability one and zero for other values will be written as Dd(t) = k where 

⎩
⎨
⎧

≥τ
<τ

=τ
k1
k0

))(t(Dd . 

As with PNs, M0 is the initial marking of the HTPN. In this case M0 is the union of 

AM0 and UM0, where for place p∈P, AM0(p) is the initial number of available tokens 

in place p and UM0(p) that of unavailable tokens in p. 

 

The TPN in Figure 3.1 has the pentuple definition: 

P = {p1, p2, p3, p4},  

T = {t1, t2},  

W(p1, t1) = 1, W(p2, t1) = 1, W(t1, p3) = 1, W(p3, t2) = 1, W(t2, p4) = 1, 

Dd(t1) = 1, Dd(t2) = 4 

AM0(p1) = 1, AM0(p2) = 1. 

As before weighted flows of zero and the marking of places with no tokens are not included 

in the definition. 

 

 27

                                                 

7 For brevity, the distribution function for a given transition is referred to as the transition’s 

duration function, that is, D(t)(τ) will be referred to as D(t). Chapter 4 outlines the various 

forms that duration functions take. 
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The semantics of the HTPN can be defined using its pentuple definition. The enabling of a 

transition in a HTPN is very similar to that of the PN. The transition t is enabled if 

for all p∈•t,     AM(p) ≥ W(p, t). 

Thus a transition is enabled if sufficient available tokens are in its input places. 

 

If transition t fires at time x then 

for all p∈•t,     AM’(p) = AM(p) - W(p, t) and 

for all p∈t•,     UM’(t) = UM(t) ∪ {(W(t, p), x+y)}, where y is the holding time of 

transition t and is generated by the duration function D(t). 

In the above definition it is assumed that the holding durations have been assigned to 

transitions. If this were not the case it would be simply a matter of using the appropriate 

holding time function D. Thus in the case of holding duration assigned to places, the duration 

function would be given by D(p), and for output arcs by D(t, p). These alternative possibilities 

will be discussed in more detail shortly. 

 

There is another step to the semantics of a HTPN, when unavailable tokens become available 

tokens. At time x+y for (n, x+y)∈UM’(p) 

AM’(p) = AM(p) + n and 

UM’(p) = UM(p)\{(n, x+y)}. 

 

This definition allows for the case of concurrent firings of the same transition. A concurrent 

firing would simply mean adding more than one unavailable token to the output places of the 

firing transition. In terms of the semantics this would mean adding multiple entries to UM, one 

for each concurrent firing. 
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Until now the focus has been on transition holding durations. Some modellers prefer to 

associate holding durations with places or output arcs. This does not affect the semantics of a 

HTPN, rather it just redefines where the holding durations come from. That is, it changes the 

domain of D from T (the transitions) to P (the places) or T×P (the arcs). 

 

When place holding durations are used, the time delays refer to the length of time that 

unavailable tokens created in a given place, by any transition, remain unavailable. Holding 

durations were first assigned to places in [154] and also appear in [14], [59], [110], [155], 

[171] and [175]. In [16] holding durations are assigned to both places and transitions. 

 

One technique is not intrinsically better than the other. Rather they are two different ways of 

modelling and the one chosen largely depends on what is being modelled. The reason that 

time is more often associated with transitions is that transitions are generally seen to represent 

events or activities in a model while places are considered to be conditions. Thus it is natural 

to consider events or activities to take time rather than time to be related to conditions. 

However, there are some situations where this is not the case. It is stated in [15], [16] and 

[155] that associating time with places or with transitions has equivalent modelling power. It 

is up to the modeller to decide which technique will represent the system being modelled in a 

more natural fashion. 

 

One way to add further flexibility to HTPNs is by assigning time to output arcs ([37] and 

[126]). In this case the holding durations taken by unavailable tokens are determined by the 

output arcs of the firing transition. This will be further discussed in Chapter 6. 
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A slight variation to the definition given here appears in [88]. In this paper, enabled 

transitions reserve their input tokens in the input places. The tokens are then defined as being 

unavailable for the required time. Once the time delay has passed the transition fires, 

removing the input tokens and creating available tokens in the output places. This approach 

runs into problems when a place is the input place to more than one transition, as it may not 

be clear which unavailable tokens in a given place were used to enable which transition. Thus, 

extra “bookkeeping” is required to keep track of the tokens. 

 

One way of representing is to flag tokens with their holding times. This is sometime referred 

to as using time stamps. This approach allows for the merging of AM and UM into one 

function. The new marking function, TM, is a mapping: P→{x: x∈ρ}, where as stated earlier 

ρ is the range of the duration functions. That is, each token is now identified by the time it 

becomes available. Clearly if this approach is taken then the semantics must be changed. For 

completeness these semantics will now be given. 

 

Define the set B(p, x) as the set of tokens in place p available at time x or less, that is, 

B(p, x) = {b: b∈TM(p) ∧ (b ≤ x)}. 

Define the set Cn(p, x) as the subset of B(p, x) containing the n smallest time values in 

B(p, x). Since time is not explicitly represented, the notational abbreviations B(p) and Cn(p) 

are used to represent B(p, x) and Cn(p, x) at τ = x. 

 

The transition t∈T is enabled at the present time if 

for all p∈•t,     ⏐B(p)⏐ ≥ W(p, t), 

where ⏐A⏐ is the cardinality of the set A. 
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If the transition t∈T fires at time x with a holding time of y, given by the function D(t), then 

for all p∈•t and b∈B(p),     M’(p) = M(p)\CW(p, t)(p) and 

for all p∈t•,     W(t, p) of the x+y elements are added to M(p) to form M’(p). 

 

This notation will not be used in the remainder of this thesis. It has been presented for 

completeness as the author was unable to find a reference that gave a formal definition for 

holding times in high level PNs. 

3.2 Enabling Durations 

The alternative way of representing time in PNs is using enabling durations. This technique 

was first introduced by Merlin to model recoverable communication protocols ([118]). With 

enabling durations the firing of the transition is done immediately, that is, tokens are removed 

and created in the same instant and all tokens are the same. However, before a transition can 

fire it must be enabled for the associated enabling duration. That is, time delays are 

represented by forcing transitions to be enabled for a specified period of time before they can 

fire. TPNs with enabling durations will be referred to as enabling time PNs (ETPN) from now 

on. 

 

Consider the PN shown in Figure 3.2(a), which is structurally the same as the example used in 

the previous section (Figure 3.1). As in the former case transition t1 is enabled at τ = 0. 

However, now before the transition can fire it must remain enabled for t1’s enabling duration, 

that is, 1 time unit. So transition t1 does not get to fire until τ = 1, at which instant it removes 

the tokens from the input places p1 and p2 and creates an available token in its output place 

p3 (see Figure 3.2(b)). Now t2 goes through a similar process as t1 to give the final marking 

in Figure 3.2(c) at τ = 5. 



Part I   Petri Nets 
 

 

p3

 (0 <= τ < 1)
(a) Initial state, transition t1 enabled
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(1 <= τ < 5)
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p4

dD =4
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Figure 3.2: TPN with enabling durations 

 

As in the case of HTPNs the formal definition for ETPNs can be expressed by the same 6-

tuple as given in Section 3.1. In this case the marking function is made up of two parts, one 

relating to the places and one to the transitions. The first part, PM, is a mapping: P→  and 

relates to the number of tokens in each place, as in the marking function of PNs. The second 

part, 

+
0Z

EM, is a mapping: T→ρ and maps the transitions into the remaining enabling time of the 

transition. If a transition t is not enabled then EM(t) undefined. 

 

The ETPN semantics can be formally defined using its tuple notation. The transition t∈T is 

enabled at time x if 

for all p∈•t,     PM(p) ≥ W(p, t) and 

EM(t) is undefined. 

 32
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Thus the transition is enabled if its input token requirements are met and it does not currently 

have an enabling time associated with it8. There is another step to the enabling of transitions 

in ETPNs the scheduling of the firing of enabled transitions. If transition t is enabled at time 

x, then 

EM’(t) = x+y, 

where y is the enabling duration of transition t given by the function D(t). 

 

The firing of an ETPN transition is done in one step. If EM(t) = x, where x ≤ EM(t’) for all 

t’∈T\{t}, then at time x 

for all p∈P, PM’(p) = PM(p) + W(t, p) - W(p, t) and 

EM’(t) is undefined. 

 

There is a major practical problem with the above definition. If a net includes loops and 

conflict, then the above definition can fail to work correctly. Consider the very simple ETPN 

shown in Figure 3.3. If there is a token in place p1, then both transitions t1 and t2 are enabled. 

That is, EM(t1) = 4 and EM(t2) = 3, so t2 fires first at τ = 3. Now because t2 is part of a loop, 

this means that the token p1 is removed and created at this time. But the above semantics do 

not consider how this effects t1. Under the above defined semantics t1 would fire at τ = 4. 

Clearly this should not be the case as in the firing of t2 the token in place p1 was removed 

disabling t1. Thus an additional step in the semantics needs to be included, the disabling of 

conflicting transitions. 

 

8 This second condition will be returned to shortly. 
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Figure 3.3: Simple ETPN illustrating problems caused by loops 

 

If the transition t fires at time x, then  

for all t’∈T, where EM’(t’) is defined, if there exists p∈•t such that W(p, t) ≥ PM(p) - 

W(p, t’), then EM’(t’) is undefined. 

This is the disabling of all transitions disabled by the firing of t. The application of the first 

step in the semantics, that is, the enabling of transitions, will re-enable any transitions that 

become enabled by the creation of tokens in the output places. Thus the above step would 

disable t1 in Figure 3.3 for it to be re-enabled in the next step. For this example these two 

steps would be repeated continuously. 

 

The above definition, which is similar to that presented in [53], does not allow for concurrent 

enablings of the same transition. Allowing for concurrent enablings of the same transition has 

been overlooked in the ETPN literature. Papers [24], [60], [116], [146] and [151], do mention 

the concept but say it will not be considered for the sake of simplicity. This assumption 

certainly does simplify a number of issues, as will be seen in this Section and Section 5.2. In 

[27], [72] and [106], it is stated that concurrent enablings of the same transition are not 

considered without explanations as to why. In [39] the authors state that concurrent enablings 

of the same transition requires multiple timing distributions to be assigned to transitions. As 

 34
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will be seen in this thesis, this is not the case unless the system being modelled requires it. 

The authors in [70] go further in excluding concurrent firing of any type, in either timed or 

non-timed PNs. In [4], [12], [13], [41], [50], [73], [113], [114], [145], [156] and [171], this 

issue is avoided by only considering TPNs that do not allow for this to occur in their 

structure. It should be noted that when exponential enabling times are used, such as in [7], 

[82], [120], [128] and [159], the memoryless property of the exponential distribution negates 

the need to consider concurrent enablings. Papers [19], [75], [104] and [117], define ETPNs 

for which concurrent enablings of the same transition could occur but simply ignore the 

possibility. In [8] and [47] marking dependent generation functions are introduced and used to 

represent multiple enablings of the same transition. However, as will be discussed later, this 

approach requires the construction of marking dependent time generation functions that take 

into account enablings and disablings at different epochs of multiply-enabled transitions as 

well as requiring detailed information about the reachable states.  

 

The only papers that the author found which dealt with concurrent enablings of the same 

transition in ETPNs were [23], [25], [47] and [48]. Of these only [23] and [25] discussed 

(although very briefly in the case of [23]) the possible ramifications of allowing for 

concurrent enablings of the same transition. Section 5.2 discusses in more detail the problems 

that can arise when concurrent enablings of transitions are allowed. 

 

The definition given earlier can be extended to allow for concurrent firings by letting the 

transition part of the marking, EM, map T to a multi-set of times, in this case enabling times. 

Thus EM is a mapping: T→{x: x∈ρ}. Before considering the semantics of an ETPN with 

concurrent enablings of the same transition, a number of definitions are required. 
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Definition 3.1: Enabling degree 

The number of concurrent enablings of a transition t in the current marking is the transition’s 

enabling degree. 

 

Thus the enabling degree of transition t, denoted by ⏐EM(t)⏐, is the number of elements 

currently in the multi-set EM(t). This definition is also used in [8] and [47]. Three types of 

transitions are considered in these papers, single server transitions which have a maximum 

enabling degree of one, multiple server transitions with a specified maximum enabling degree 

and infinite server transitions which have no bounds on the enabling degree. The semantics 

defined earlier assumed that each transition was a single server transition. The semantics 

defined below consider all transitions to have infinite enabling degree, leaving it to the 

modeller to use input places to restrict the enabling degree where required. 

 

Definition 3.2: Fresh enabling 

A fresh enabling of a transition is an enabling that was not possible in the previous marking. 

 

A fresh enabling may be the first enabling of a transition or it may be a later enabling. 

However, a fresh enabling is an enabling for which there does not currently exist an element 

in EM(t). The ETPN semantics can now be redefined to allow for concurrent enablings. 

 

The transition t∈T has fresh enabling at time x if 

for all p∈•t,     PM(p) ≥ (⏐EM(t)⏐+1)  W(p, t). 

If there is a fresh enabling of the transition t at time x which has enabling duration y, then 

EM’(t) = EM(t) ∪ {x+y}. 
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This new element is added at the end of the current multi-set. 

 

This definition can be made more general by extending it to generate the number of fresh 

enablings allowed by the current marking. In the marking M the number, n, of fresh enablings 

of t is given by 
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where  is the greatest integer value less than or equal to x. For each fresh enabling at time 

x an enabling duration y

⎣ ⎦x

i (i = 1, 2, …, n) is determined by the function D(t). The elements 

x+yi, i = 1, 2, …, n, are added to EM(t). Thus in total n elements are added to EM(t). Also if 

transition t is scheduled to fire at τ = x, then 

for all p∈P PM’(p) = PM(p) + W(t, p) - W(p, t) and 

EM’(t) = EM(t) \ {x}. 

 

As with non-concurrent enabling there is a need to define a disabling step. In this case there is 

the chance that multiple disablings could occur in the same step. Problems related to this are 

dealt with in Section 5.2. Suppose the transition t fires at time x,  

if for all t’∈T, where EM’(t’) ≠ {∅}, there exists p∈•t such that  

(⏐EM(t’)⏐+1)  W(p, t’) ≥. PM(p) - W(p, t), 

then an enabling must be removed from EM(t’). 

There is the possibility that more than one enabling must be removed. In this case the number 

of enablings of transition t’ that must be removed when transition t fires is given by  
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The semantics defined above assume that transitions always fire once their enabling time 

expires. Some definitions of ETPNs do not force this to happen. In [164] and [156] two types 

of firing rules are considered, strong and weak firing rules. Transitions with strong firing 

rules fire immediately their enabling time expires. Transitions with weak firing rules are not 

forced to fire once their enabling time expires, however, if they do not fire at this time they 

cannot fire later. Weak firing rules are an implicit way of representing time outs. If a 

transition does not fire when its enabling time expires it is considered to have timed out. A 

problem here is that the designer does not have any direct control on which transitions time 

out and which do not. To do this transitions must be further classified into two types, those 

that time out and those that do not. There is also the need to specify a way of determining 

when the transition does and does not time out, something not considered in [164], since this 

only considers reachability analysis. One could also argue that this “hiding” of time outs 

within transitions makes it harder to determine where time outs occur in the system, as there 

do not exist any places that are marked when a time out occurs. The advantage of this 

approach is that it does reduce the model and state space size. 

 

An interesting development in ETPNs was given in [171] and used in [37], [64] and [80]. In 

this paper the enabling timing durations were assigned to the transition input arcs. Figure 3.4 

shows an example of time associated with transition input arcs. When time is assigned in this 

manner under the definition given in [171], it is the same as placing the maximum of these 

values on the related transition. Under this definition the preconditions of the transitions must 

first hold before the timing is considered. That is, all the input places must contain the 

required number of tokens before its enabling time is considered. The enabling time of the 

transition is then the largest value associated with the input arcs. In Figure 3.4 transitions t1 

and t2 are enabled to fire. Now t1 is scheduled to fire at τ = 5, due to the arc from p2 to t1 
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having this duration, and t2 at τ = 2. Thus t2 fires disabling t1. The domain of the duration 

functions is now the input arcs instead of the transitions. As with relating holding durations to 

places or arcs rather than transitions, arc enabling durations are simply a different way of 

modelling the same type of delays as transition enabling durations. Their advantage is that 

they allow greater modelling flexibility. 

 

D =5
t2p2

D =2d

d

p4

t1p1
D =1d

p3

 

Figure 3.4: ETPN with duration functions associated with input arcs 

 

In [64] Diaz and Sénac give an alternative interpretation to the way enabling times assigned to 

input arcs work. Here the input arc (p, t) is considered to become enabled as soon as W(p, t) 

tokens are present in the place p. Following enablement, the enabling time of the input arc 

begins to count down. It is this reduced time which is used in calculating the enabling time of 

a transition once the transition is enabled. This means that each arc has an individual starting 

time and the resulting time that the transition fires depends not so much on the time the 

transition became enabled, as on the time at which the input arc conditions were satisfied. 

This approach appears to contradict the concept of a transition not being activated until all its 

input conditions are satisfied, particularly when some of the different semantics introduced in 

[64] are considered. However, it has proved useful for modelling hypermedia systems, as 

 39
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shown in [152] and [153]. These papers also give good examples of systems where assigning 

time to arcs is more natural. 

 

In the above semantics the question of conflict has not been considered in any detail. In 

ETPNs this is dealt with using the race policy, that is, the transition with the lowest enabling 

time fires first. This is a very simple way of resolving conflict. However, now consideration 

must be given to how a newly disabled transition will react to such a firing. Section 5.2 deals 

with this question as well as considering how the choice of a given policy effects the PN 

behavior and the analysis techniques that can be applied to the model. 

3.3 Comparison of Holding and Enabling Durations 

The difference in semantics between holding durations and enabling durations is best 

illustrated by a TPN with confusion. Consider the TPN shown in Figure 3.5(a). If holding 

durations are used, transitions t1 and t3 fire concurrently at τ = 0, placing one unavailable 

token in place p2 and one in p5. The token in p2 becomes available at τ = 1 and the token in 

p5 at τ = 5. No further transitions are enabled by this marking. Thus this is the final state of 

the HTPN, shown in Figure 3.5(b). By contrast if enabling durations are used, initially 

transitions t1 and t3 are enabled and t1 is scheduled to fire after one time unit and t3 after 

five. Thus at τ = 1, t1 fires removing a token from p1 and creating a token in p2. This enables 

transition t2 to fire after two time units have passed, that is, when τ = 3. Transition t3 is still 

enabled and still scheduled to fire at τ = 5. Thus t2 fires (before t3) at τ = 3, removing the 

tokens from p2 and p3, and placing a token in p4. No further transitions are enabled so this is 

the final state of the ETPN (see Figure 3.5(c)). This example shows how changing the timing 

policy of the TPN can cause a dramatic change to the way the net executes. Both final 

markings are possible in the PN, but when deterministic time is included only one can be 
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reached in TPNs. It is the interruption to the enabling of t3 in the case of enabling durations 

that changes the outcome of the model. It was the requirement to model such interruptions in 

systems with time outs that led to the development of enabling durations. 

 

Holding durations can be modelled using enabling durations if immediate transitions ([6]) are 

used. Immediate transitions have zero enabling durations and always fire before transitions 

with nonzero enabling durations. As outlined in [30] and [117], a simple rule for transforming 

a HTPN to an equivalent ETPN representation is to precede each transition by an immediate 

transition output place pair. An equivalent ETPN to the HTPN shown in Figure 3.5(b) is 

given in Figure 3.5(d). In this example there is no need to include the first immediate 

transition, which is included only for completeness. In fact immediate transitions need only to 

be placed before those transitions that can be in conflict with another transition. To be safe 

this should be done for each transition that is in structural conflict with another one. 
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(c) Final marking using enabling times

D =2D =1 D =1

(d) Representing holding times with enabling times
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(b) Final marking using holding times
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(a) Initial marking of a TPN with confusion
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Figure 3.5: TPN showing the difference between holding and enabling durations 

 

The above transformation from HTPNs to ETPNs can be defined on the tuple definitions 

given earlier. Let P be the set of places and T the transitions in the HTPN. 

1. Each place in the HTPN is mapped to a place with the same name in the ETPN. These 

places form a subset of places, OP, in the ETPN. 

2. If the transition t∈T is not in structural conflict with any other transition in T, then it is 

mapped directly to Ht in the ETPN, with W(p, Ht) = W(p, t), W(Ht, p) = W(t, p) and 

 42
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e timing function. 

3. 

mapped

3.1. 

transition It has the 

3.2. 

places as its 

HTPN transition. Thus tokens held in 

4. The ini  is transformed in two parts.  

4.2. 

bling time to this transition is x and 

D(Ht) = D(t). Thus the transition in the ETPN has the same input and output places as 

the transition in the HTPN as well as having the sam

Each transition t∈T which is in structural conflict with another transition in T is 

 to two transitions, It and Et, and a place, tp. 

For all places p∈P(=OP) the transition It, formed from t(∈T), has 

W(p, It) = W(p, t), W(It, tp) = 1 and Dd(It) = 0. That is, the 

same input places as the original transition t∈T and one output arc to the newly 

created place tp. This transition is an immediate transition. 

The second created transition Et has W(tp, Et) = 1, W(Et, p) = W(t, p) for all 

places p∈P(=OP) and D(Et) = D(t). That is, the second transition has the newly 

constructed place tp as its input, the original transitions output 

outputs and the same time function as the 

place p of the HTPN are held in place tp of the equivalent ETPN. 

tial marking

4.1. The available tokens are directly transformed, that is, PM0(p) = AM0(p) for all 

p∈P(=OP). 

If place p∈P initially has unavailable tokens, then for each (n, x)∈UM(p) a new 

place, Up, and a new transition, Ut, are constructed. The transition Ut has one 

input arc from Up and one output arc, with weight n to place p, that is, 

W(Up, Ut)) = 1 and W(Ut, p) = n. The ena

place Up initially has one token in it, that is, D(Ut) = x and M0(Up) = 1. It should 

be noted that Ut will only ever fire once. 

Note that the flow function for all possible arcs not outlined above is set to zero. Let IT be the 

set of transitions It, ET the set of transitions Et, HT the set of transitions Ht, UT the set of 
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 0P, tP and UP. This transformation holds only for transition holding times. 

owever, similar transformations can be constructed when time is associated with places or 

e actions of the HTPN mimic those of an ETPN. This means defining a function 

that is dependent on how long a given transition was in the process of firing before it was 

interrupted. 

roach. Due to the fact that a definition of TPNs with firing 

transitions Ut, tP the set of places tp and UP the set of places Up. The set of transitions of the 

ETPN is the union of the sets IT, ET, HT and UT, and the set of places in the ETPN is made up 

of the sets

H

input arcs. 

 

The reverse transformation cannot be defined as there is no way of representing interruptions 

of ETPNs in HTPNs. In [182] interruptions were introduced into FTPNs in the form of special 

arcs called escape arcs. Escape arcs go from a place, referred to as the escape place, to a 

transition. If a transition is in the process of firing and a token arrives in one of its escape 

places, then the firing of the transition stops and the tokens are returned to their input places. 

This new type of arc goes a long way towards duplicating the interruptions of enabling times. 

However, to do this the conflict resolution function used must be defined in such a way as to 

ensure that th

3.4 Combination Model 

In [145] (and [146]), Razouk and Phelps define a PN structure where both firing and enabling 

durations are used. Although this technique creates a very powerful and versatile modelling 

method, most researchers have not used it. A comprehensive search showed a number of 

references to this paper but only a few recognised it as a combined model ([37], [58], [66], 

[78], [124], [130], [136], [158], [175], [176] and [183]). Of these only [37], [58], [66] and 

[136] use this combined app
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abling durations of all 

e transition to zero. Similarly an ETPN can be represented in this structure by setting the 

enabling time function and the second to the 

olding time function. Let ED(t) be the function determining enabling durations for transition 

durations is not given in the main text, this section will discuss the combination model in 

terms of HTPNs and ETPNs. 

 

Consider the TPN shown in Figure 3.6(a). This is the same PN with the same initial state as in 

Figure 3.1 and Figure 3.2, however, now enabling and holding durations have been assigned 

to each transition. As before initially transition t1 is enabled. This time it must be enabled for 

0.6 of a time unit before it can fire. Thus at τ = 0.6 transition t1 fires (see Figure 3.6(b)). Due 

to the holding duration of 0.4 the token created in place p3 does not become available until 

τ = 1 (see Figure 3.6(c)). At this time transition t2 is enabled. This transition has an enabling 

time of 1 so it fires at τ = 2, as shown in Figure 3.6(d). The holding duration of transition t2 is 

3 and so the token created in p4 is not available until τ = 5 (see Figure 3.6(e)). Thus as before 

the same marking is reached at the same time as in the previous examples. As discussed in 

Section 3.3 the major difference between HTPNs and ETPNs is that in ETPNs enabled 

transitions can be interrupted during their enabling. When both enabling and firing times are 

used the transition can be interrupted only during the enabling part of the process. Clearly a 

HTPN can be represented by this time representation by setting the en

th

firing durations of all the transition to zero. Thus this time representation allows for a 

compact way of representing the features of both HTPNs and ETPNs. 

 

The same tuple definition can be used for this combination model as was used in the earlier 

time representations. In this definition P, T and W are as given earlier. Now D maps to two 

duration functions, the first relating to the 

h
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t, that is D(t) = (ED(t), •). Similarly define HD(t) to be the function which specifies the holding 

time for transition t, where D(t) = (•, HD(t)). 

 

(a) Initial state, transition t1 enabled
(0 <= τ < 0.6)

(2 <= τ < 5)

(d) Transition t2 fired, token in p4
is unavailable

(0.6 <= τ < 1)

(b) Transitions t1 fired, token in p3
is unavailable
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 in [145] and [146] where 

olding times have been used instead of firing times. This change allows for concurrent 

 

Figure 3.6: TPN with enabling and holding times. 

 

As before M0 relates to the initial marking of the TPN. The marking in this case is made up of 

3 elements, the available tokens, AM, remaining enabling times, EM, and the unavailable 

tokens, UM. The first two are as defined in Section 3.1 and EM is as defined in Section 3.2. 

This definition is an adaptation of that given by Razouk and Phelps

h
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ncept. 

 

The semantics of this model are a combination of those for holding and enabling durations. 

firings of the same transition as well removing some other problems with the original 

definition. However, it retains the principle of the original co

The number of fresh enablings of transition t∈T is given by 
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sh enabling of the transition t at time x, the element x+y is added to the remaining 

enablin ed separately by ED(t) for each fresh enabling. That is, if t is 

eshly enabled at time x with the enabling duration y, which is determined by the function 

 

), 

EM”(t) = EM’(t) \ {x} and 

t). 

 

The ot lates to unavailable tokens becoming available. At 

of this chapter the clock is implicit. The ordering of events is such 

that time is non-decreasing. Thus the ordering of the firing of a transition and the availability 

)t,p(W
)p(M E

A

tp allfor 

For each fre

g time, where y is generat

fr

ED(t), then 

EM’(t) = EM(t) ∪ {x+y}. 

Consider the situation when transition t is to fire at the current time, x. Then at τ = x 

for all p∈P,     AM’(p) = AM(p) - W(p, t

for all p∈P and W(t, p) > 0,   UM’(p) = UM(p) ∪ {(W(t, p), x+y)}, where y is the holding 

duration of transition t given by HD(

her process in the semantics re

τ = x+y+z for (n, x+y+z) ∈ UM(p), 

AM’(p) = AM(p) + W(t, p) and  

UM’(p) = UM(p) \ {(n, x+y+z)}. 

As stated at the beginning 
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times in EM and UM. The shortest of these times determines which 

of these steps occurs first. 

So far in this section all the discussion has focused on the concept of absolute global time. In 

[23]-[25] relative time is used. To understand the concept of relative time, consider the case 

of HTPN with the unavailable marking of M(p1) = {(2, 3), (3, 7)} and M(p2) = {(1, 4), 

(3, 9)}. This implies that the next token(s) to become available will be two tokens in place p1. 

In absolute global time this means that the global clock progresses to time + 3 and then the 

tokens become available. In relative time this means that the tokens also become available in 

3 time units only now there is no global clock, but rather each of the other times in the 

marking are reduced by the 3 time units making the new unavailable marking M(p1) = {(3, 

4)} and M(p2) = {(1, 1), (3, 6)}. Thus when relative times are used there is no need to retain 

a global clock as only the time remaining before an event occurs is actually used. In this 

thesis the use of relative times will not be considered further as the analysis that is of interest 

relies on a global absolute clock. 

of tokens depends on the 

3.5 Relative Time 

U U

U

U



 

CHAPTER 4 GENERATING DURATIONS 

The TPN literature distinguishes four different, although not distinct, forms that the duration 

functions take: deterministic, stochastic, interval and fuzzy. Of these deterministic, stochastic 

and interval will be discussed in depth. The fuzzy duration function will be briefly introduced, 

as it is are currently only a fringe form of duration function. Each of these has been applied to 

the different types of time representations defined in Chapter 3. The form that the functions 

take depends on the system being modelled, analysis being conducted and the information 

available about the time delays. Throughout this chapter time durations will be discussed in 

relation to transitions, however, the discussions are equally valid when time is assigned to 

places or arcs. 

 

In early HTPN models, as in [143], deterministic time delays were used in a similar way to 

the examples given in Chapter 3. In [166] and [167] the positive integers are used, in [14], 

[17], [81] and [109] the nonnegative reals and in [149] the nonnegative rationals. This is the 

simplest representation used, in this case the holding or enabling durations taking a fixed 

value for all firings of t. Thus  

⎩
⎨
⎧

≥τ
<τ

=τ
k1
k0

))(t(Dd . 

 

With stochastic time delays the duration of an event is determined by a probability 

distribution function. Originally the exponential distribution was used, as in [3], [120], [128], 

[159] and [182]. In these early works the duration functions were the set of exponential 

distributions and were expressed in terms of the transition firing rates. This was extended to 

allow the durations to be generated by an arbitrary distribution function (see [4], [18], [45], 

49 
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[75], [103] and [123]). Thus the holding (enabling) duration of transition t at a particular 

firing (enabling) is given by the random variable y, with the probability distribution function 

D(t)(τ). Stochastic time delays can mean that not only are the times of the durations 

non-deterministic but the final marking may also become non-deterministic. This is because 

for HTPNs the time tokens become available and for ETPNs the time transitions fire can 

impact the firing sequence and thus the final marking. 

 

Interval time delays were first introduced in [118] and [119]. In this case the durations 

defined in the TPN are the minimum and maximum time that a transition takes to fire. The 

actual duration for a particular firing (enabling) of a transition is considered to take some 

value in this interval. Studies in this area generally do not specify how the time is sampled, 

simply saying that it was calculated from this interval, as in [24], [116], [117], [119] and 

[171]. In this case the actual duration is not important, it is only the interval of possible 

durations that is considered. This type of representation is useful if the delays in the real 

system are variable but not enough is known about delays to determine their distribution. In 

this case the duration functions of take the form of ρ × ρ. In [25], [27], [39], [60], [97], [149] 

and [151], ρ consists of the positive rational numbers while in [2], [117] and [119] it is the 

positive reals. Generally interval durations of this form are used for the calculation of 

performance bounds ([1], [25] and [27]). Thus the holding (enabling) duration of transition t 

is y∈[min, max].  

 

The relationship between the three time generation functions is very simple. Clearly 

deterministic duration functions are a subset of both stochastic and interval duration 

functions. Also, as mentioned above interval duration functions are similar to stochastic 

duration functions in that they specify a set of possible durations. The difference is that in the 
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case of stochastic duration functions a probability of selecting a particular time is also 

specified. In papers [89] and [151] the idea of interval durations is extended so that a 

probability density function is associated with each interval making stochastic and interval 

duration functions equivalent.  

 

Further variations are introduced by researchers who allow for duration functions which are 

marking dependent ([5], [8], and [120]) and history dependent ([7]). Marking dependent 

duration functions are often used to represent different types of queues. Such features can also 

be represented using concurrent enablings of the same transition. Concurrent enablings of the 

same transition represents an infinite-server queue. This can be restricted by having restrictive 

input places that reduce the number of concurrent firings. Figure 4.1 shows how an input 

place can be used to control the number of concurrent firing of a transition and thus be used to 

represent different types of servers. 

 

(a) Infinite server queue (b) Single server queue (c) Three server queue  

Figure 4.1: Examples of multi-server queues 

 

This final method of specifying duration functions is by fuzzy duration functions. In [126] 

these are assigned to output arcs of HTPNs. This is similar to the work in [89] and [151] 

where probability functions are added to interval generating functions. 
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The remainder of this thesis focuses of stochastic generation functions, because interval 

timings are not relevant to the analysis techniques discussed in the latter Part. 
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CHAPTER 5 EXECUTION STRATEGIES 

The execution strategies outlined in Chapter 3 give the general enabling and firing rules of 

TPNs. These strategies varied depending on the time representation used and need to be 

extended when conflict is considered. In some papers, for example [1], [2], [64] and [167], 

conflict is not discussed as the generation of the reachability graph is used for analysis. In 

these cases, as with non-timed PNs, all paths are considered and a mechanism for deciding 

which transitions should fire is not required. This approach is generally taken when interval 

duration functions are used, while in [42], [175] and [182] only nets in which conflict never 

occurs are considered. The effect of conflict is now considered separately for holding and 

enabling durations. 

5.1 Holding Durations 

The most common ways of resolving conflict in HTPNs is with the use of firing frequencies, 

as in [81] and [184], or firing weights, as in [55] and [142]. In these specifications each 

transition is assigned a value which determines how often this transition fires in relation to 

other transitions enabled at the same time. For example, consider the net in Figure 3.5 with 

one token in each of the places p2 and p3. This causes a conflict between transitions t2 and t3. 

Let the firing frequencies 0.75 and 0.25 be assigned to transitions t2 and t3 respectively. This 

means that when conflict occurs between these transitions, transition t2 will fire with a 

probability of three quarters and t3 one quarter of the time. With both the above extensions 

the PN tuple is extended to involve another element which defines the firing frequency of 

each transition, as in [81]. The difference between firing frequencies and firing weights is that 

in the case of firing frequencies the sum of firing frequencies of the enabled transitions for all 

the reachable markings must equal one, while for the case of firing weights this is not true. 



Part I   Petri Nets 
 

 54

Firing weights work in a similar way to firing frequencies as they determine the probability of 

a transition firing over other transitions it is in conflict with. Here the actual probability that a 

given transition fires in a marking is calculated from the ratio of the transition’s firing weight 

to the sum of the firing weights of the other transitions enabled at the same time. This is a 

trivial difference in itself but does make a difference to model construction and execution. It 

has been mentioned as in more complex conflict resolution policies this subtle difference can 

have a large impact. 

 

Conflict resolution or pre-selection policies can be grouped into two types: global and local 

([7]). Global policies resolve conflicts throughout the whole PN, as in the case of firing 

frequencies, while local ones choose only between a subset of transitions, as with firing 

weights. Pre-selection policies can be as simple as the assigning of firing frequencies or may 

be a function of a TPN’s history and marking. 

 

Global preselection policies can lead to model design problems. In the TPN in Figure 3.5 it 

was easy to see where conflict existed. However, for larger nets it is not always as easy. Some 

papers, such as [5], even suggest that the only way to be sure that a policy is correct is by 

generating the reachability graph of the corresponding PN before the policy is specified. 

Although this may be true in some cases it is more likely that what is required is a study of 

those transitions in structural conflict. Such a study may not help in cases of confusion where 

order in which concurrent transitions fire is also important. A counter argument is that in 

creating the model the designer should be or at least become aware of all instances of conflict 
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and confusion9, and construct a preselection policy so that the model reflects the behaviour of 

the real system. 

 

Unlike global policies, local ones operate only on a certain set of transitions. Since the 

transitions included in a given specification are well defined the state space does not need to 

be calculated before the policy is specified. However, this technique can lead to problems in 

the case of undetected conflict or confusion. In such cases the local policy may not be 

extensive enough to correctly resolve some conflicts. 

 

One way around the problems of global preselection policies is using priorities. Each 

transition is given a priority. Only transitions with the same priority levels can be in conflict 

as the enabling of higher priority transitions disables all the transitions with lower priorities. 

Thus the modeller can specify which events are in conflict in the real system, give the 

corresponding transitions in the model the same priority level and then determine the relevant 

policy for each group of transitions with the same priority level. The use of priorities is a 

simple but effective way of converting a global preselection policy into a local one. To see 

how priorities work consider the case where the transitions t1, t2, t3, t4 and t5 are enabled 

with the pre-selection policy defined as ƒ(t1) = (1, 0.5), ƒ(t2) = (3, 0.75), ƒ(t3) = (2, 0.5), 

ƒ(t4) = (3, 0.75) and ƒ(t5) = (3, 0.5), where the first value is the priority and the second the 

firing weight. Thus the transitions t2, t4 and t5 are in conflict and t2 and t4 fire with 

 

9 Confusion is only an issue in the case where there are some transitions with zero holding 

durations. The problem of conflict resolution becomes more complicated as the chosen policy 

must not only resolve conflict but also resolve the problem of confusion and so must select 

which transition fires first even if no conflict exists. 
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probability 3/8 and t5 with probability 1/4. It should be noted that the problem caused by 

conflicting transitions in HTPNs is the same one faced by conflicting immediate transitions in 

ETPNs ([47]). 

 

In [123] a HTPN representation is defined in which the modeller has the freedom to define the 

selection policy of their choice. It may be using frequencies, priorities, through the use of 

modeller-defined functions or any combination of these. Generally, the more complicated the 

policy the more the modeller needs to know about the behaviour of the PN before the policy 

can be defined. 

 

The pre-selection policy used in a HTPN becomes the sixth element of the tuple definition as 

in [183]. The form of this function depends on the pre-selection policy chosen. Consider the 

case of firing frequencies. In this case the pre-selection policy is a mapping: T→[0, 1]. In the 

case of firing weights the function is a mapping: T→ . Priorities with firing weights give 

rise to a mapping: T→  × , where  denotes the nonnegative reals. In this case the 

first value is the priority and the second the transition weight. 

+
0Z

+
0Z +

0R +
0R

 

Some consideration must also be given to the changes pre-selection policies make to the 

HTPN semantics. The enabling semantics are unchanged but the firing semantics must be 

altered. The firing process is now preceded by the application of the selection process which 

determines which of the currently enabled transitions actually fires. Once a transition has 

been chosen to fire the firing proceeds as defined in Section 3.1. In the generation of the 

reachability graph this means generating only those paths with non-null probabilities. The 
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definition of a pre-selection policy may also include the order in which concurrently enabled 

transitions fire is defined, whereas previously this may not have been the case.  

 

As touched on earlier, this is not required if the probability of reaching a given state is 

unimportant and the entire state space is being explored. That is, in cases such as this all 

firings need to be explored and so the ordering of transition firings in not relevant. 

5.2 Enabling Durations 

In ETPN conflict between two transitions is resolved using the race policy in which the 

transition with the shorter enabling duration fires first. Although this would appear to be a 

straightforward way of solving conflict there are still a number of issues that must be 

considered. 

 

The first issue is how to determine which enablings of a transition, t say, are removed from 

EM(t) when the number of possible enablings of t is reduced by the firing of a conflicting 

transition, that is, a disabling policy must be determined. This is an issue overlooked in most 

the literature. Two exceptions are [23] and [25]. Both these papers use the complications of 

multiple enablings as a justification for not allowing for them10. Because these papers use 

interval duration functions some of the complications mentioned here do not arise. However, 

 

10 As highlighted by these papers a secondary issue that will not be dealt with here arises 

when interval enabling durations are used. In this case there is a need for a firing choice 

function. So if the remaining enabling intervals of a given transition overlap the firing choice 

function can be used to determine which of the current enablings of the transition fires first. 
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they serve to highlight the fact that the use of multiple enablings has added complications as 

will be seen in the following discussion on disabling policies. 

 

There are numerous disabling policies that can be used. The simplest is to use a first-in first-

out policy. This policy is easy to execute by virtue of the fact that new elements are added to 

the end of EM. However, it may not represent the system being modelled. 

 

Consider the PN shown in Figure 5.1. To illustrate the problems that can arise let Dd(t1) = 3, 

Dd(t2) = 5 and let D(t3) be stochastic. Also let the place portion of the initial marking be 

PM0(p1) = 1, PM0(p2) = 1 and PM0(p3) = 1 as shown. For this marking, transitions t1, t2 and t3 

are enabled. Transitions t2 and t3 are in conflict. Assume that D(t3) generates an enabling 

time of 6, that is, the transition enabling part of the marking is EM(t1) = {3}, EM(t2) = {5} 

and EM(t3) = {6}. The defined semantics means that transition t1 fires at τ = 3 changing the 

place portion of the marking to PM(p2) = 2 and PM(p3) = 2. Assume that the second enabling 

of transition t3 is an enabling of 1 so EM(t2) = {5, 10} and EM(t3) = {6, 4}. The next 

scheduled firing is of transition t3 at τ = 4. This firing will cause the disabling of one of the 

enablings of transition t2 and thus require the removal of an element from EM(t2). However, 

if the policy of first-in first-out is used then 5 will be removed from EM(t2), although this 

enabling does not actually relate to the firing of t3 at τ = 4. In fact this policy means that 

transition t2 does not fire at all. In this example it is easy to see that the second enabling of 

the transition t2 actually relates to the second enabling of transition t3 and thus when t3 fires 

at τ = 4 it is the second enabling of  t2 that should be removed, that is, the one set for 10 time 

units. In this case a more representative rule might be to remove the element corresponding to 

the transition that just fired. So for the above situation the second enabling of transition t2 

would be removed meaning transition t2 fires at τ = 5. 
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Figure 5.1: ETPN With Concurrent Enabling of the Same Transition 

 

Sometimes it is not as easy to determine which enablings of a given transition in a conflict set 

relates the enablings of the other transitions in the conflict set. Consider the example of the 

ETPN shown in Figure 5.2. In this case the enabling durations of transitions t1 and t2 are 

deterministic while the enabling of transition t3 is stochastic. Assume that the first two 

enabling durations generated by D(t3) are 10 and 5. Thus EM0(t1) = {4}, EM0(t2) = {7} and 

EM0(t3) = {10, 5}, so transition t1 fires at τ = 4. This firing results in the enabling of transition 

t2 for a second time making EM(t2) = {7, 11}. The next firing is at τ = 5 when transition t3 

fires. This firing actually disables one of the enablings of t2, but which one? Since tokens are 

indistinguishable there in no real way of saying which of the two tokens in p3 relates to which 

enabling. Thus a further rule must be defined. The main problem is not defining a rule but 

realising its consequences and making sure that these do not invalidate the model. 

 

 59



Part I   Petri Nets 
 

t3

D(t3)

p1 t2

D =7

(τ)

d

t1

D =4d

p3

p2

 

Figure 5.2: ETPN With Concurrent Enabling of the Same Transition 

 

In summary there are different disabling policies that can be defined. In their simplest form 

these policies can be for example first-in first-out, last-in first-out, smallest time removed or 

largest time removed. In all these cases the disabling policy is independent of the actual 

situation that lead to the enablings of the transition. Another policy that is independent of the 

situation is that of a random selection, where a probability function is defined for each 

transition and this function is used to determine which enabling will be removed. For 

example, if there were three enablings of a transition and a recent firing resulted in the 

transition now being only enabled two times, then the probability function could be used to 

generate three random numbers and the enabling corresponding to the smallest value would 

be removed. A more complex disabling policy is to try and keep track of which tokens lead to 

each enabling. However, as shown above this is not always possible and so an alternative 

disabling policy must also be specified for those cases when the disabling cannot be related to 

the token removed by a conflicting transition. Policies that trace the tokens removed and use 

this to determine the disabling policy no longer view tokens as indistinguishable. 

 

As mentioned in Section 3.2, some articles, for example [8] and [47], use marking dependent 

generation functions to represent concurrent enablings of the same transition. These papers 
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express that concurrent enablings of the same transition can be dealt with using marking 

dependent generation functions. Although this may be true in some cases, to truly represent 

concurrent enablings of the same transition the time generations functions must be marking 

and history dependent. As an example of this consider the PN in Figure 5.2 with the enabling 

durations given by Dd(t1) = 6, Dd(t2) = 2 and Dd(t3) = 7. Now in the case of the initial 

marking M(p1) = 2 and M(p3) = 2 with concurrent enablings of the same transition, transition 

t1 fires twice at τ = 6 and t3 fires twice at τ = 7 reaching a final state of M(p2) = 2. For the 

case of the initial marking M(p2) = 2 and M(p3) = 2 with concurrent enablings of the same 

transition, transition t2 fires twice at τ = 2 reaching a final state of no tokens in the net. There 

is no way of representing both these behaviours with the same net definition using marking 

dependent generation functions that are not history dependent. Further complications are 

introduced when multiple enablings and disablings of transitions occur at different epochs. 

Also for marking dependent generation functions to work there is a need to know the 

complete state space before specifying the generation functions. 

 

Having decided on a disabling policy there is still a need to answer the question of what 

enabling time a disabled transition should take the next time it is enabled. This question is 

solved by defining a memory policy. In [7] and [8] three memory policies are defined. These 

are essentially the same policies as in [19] only defined in a more straightforward way. 

 

The first method is referred to as resampling. In resampling, each time a transition fires, a 

new value of the enabling time is assigned for each enabled transition. That is, the time 

durations distribution functions of all enabled transitions are resampled irrespective of 

whether or not their enabling conditions were affected by the firing. This approach is of little 

practical use (except in the case when exponentially distributed durations are used) as it 
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removes one of the most important advantages of modelling with PNs, a true representation of 

concurrency. A PN cannot be considered to have concurrent events if every time an event 

occurs all the other events that are concurrently in the process of occurring stop and have to 

restart. Having the enabling times recalculated each time another transition fires has this 

effect and so removes concurrency from the model. However, this approach does allow the 

PN reachability graph to be considered as a semi-Markovian process, as outlined in [53]. This 

may also be an appropriate representation of some systems. If resampling is used then the 

disabling selection policy can be ignored as all enablings are removed and enabling times are 

recalculated after each firing. 

 

Age memory refers to the case where transitions remember how long they were enabled 

regardless of which transitions fire. That is, even if a transition becomes disabled, it still 

remembers the remaining time it is required to be enabled before it will fire and next time it 

becomes enabled it uses this time as its enabling duration. This method is a good way of 

representing shared processor systems. 

 

As an example of how the above two semantics work, consider the PN in Figure 2.1 with the 

shown marking. Let the enabling durations for each transition be Dd(t1) = 2, Dd(t2) = 3, 

Dd(t3) = 6 and Dd(t4) = 1. Initially transitions t1 and t3 are enabled to fire at times 2 and 6. 

Regardless of which of the two semantics is used, transition t1 will fire at τ = 2 removing and 

creating tokens. It is at this point that the two methods differ. 

 

If resampling is used then when t1 fires, all of the enabled transitions must now resample their 

enabling duration functions to determine when they will be scheduled to fire. Transition t2 is 

enabled to fire at τ = 5, after being enabled for 3 time units, while transition t3 is enabled to 



Chapter 5   Execution Strategies 
 

 63

fire at τ = 8, after being enabled for 6 time units. Thus t2 fires first disabling t3. The next 

transition to fire is t4 which fires at τ = 6 restarting the same process with a time shift of 6 to 

the right. So for this memory policy transition t3 never fires. 

 

In the case of age memory things do not turn out quite the same way. When transition t1 fires 

the first time, the enabling time of transition t3 is not recalculated so it is still scheduled to 

fire at τ = 6. However, transition t2 still fires first at τ = 5, as its enabling duration is 3. This 

action disables transition t3 when it has only 1 time unit remaining on its enabling time. The 

remaining enabling time to transition t3 is remembered for the next time it becomes enabled, 

which occurs after the firing of transition t4 at τ = 6. As before transition t1 is scheduled to 

fire at τ = 8, however, the new enabling of transition t3 has only 1 time unit remaining in its 

age memory and so is enabled to fire at τ = 7. Thus it is transition t3 which fires next at τ = 7 

and then t1 at τ = 8, reaching a deadlock that could not be reached using resampling. 

 

An extension of age memory defined by me in [37] is to have age memory with loss. In this 

case the age memory slowly degrades between enablings of the transition. For example, if the 

memory degradation function was time dependent, then if there was a sufficiently long time 

between enablings the transition will lose any memory of previously being enabled. Age 

memory with loss is a good way of representing human actions. Consider the case when 

someone is working on a task and gets interrupted by a higher priority task. The person 

carries out the second task leaving the first where it is. The longer the time until the first task 

is returned to, the more time the person must spend refamiliarising themself with the original 

task. However, if the task is returned too  soon after it was left then there will be minimal 

loss. 
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The final memory policy is called enabling memory. In this method transitions retain the time 

they have been enabled as long as they remain enabled. This is the rule used in the enabling 

duration description given in Section 3.2 and Section 3.3. This method provides a simple way 

of representing resource-sharing systems where the resource can be used by only one process 

at any time and the process must complete its work to make any gains. It is this technique that 

is used in most ETPNs. 

 

It is possible to make the rules defined above part of the time generation function, meaning 

that all transitions do not have to have the same rule. This results in a model that combines all 

three memory policies. 

 

In [26] and [161] the age and enabling memory policies are referred to as pre-emptive resume 

and pre-emptive repeat different. Yet another rule is also introduced, that of pre-emptive 

repeat identical. This is a policy that is a compromise between age and enabling memories. In 

this case a disabled transition retains its enabling duration but restarts at the beginning of this 

time when it is re-enabled. This is just a special case of age memory with loss, where the loss 

is always all the work done so far. In the case of deterministic enabling durations the pre-

emptive repeat identical policy is the same as the resampling policy. Also introduced in [26] 

are some special types of arcs that reset the enabling durations of transitions further 

enhancing the time representation. 

As mentioned earlier the inclusion of immediate transitions means ETPNs must also use 

preselection policies in a similar way to that discussed in Section 5.1. A preselection policy 

may also need to be used if there is the possibility that two or more conflicting transitions 

have the same enabling duration. In this case the race policy cannot decide which of the 
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transitions will fire first. Thus despite the use of the race policy ETPNs can have the same 

difficulties in resolving conflicts as HTPNs. A similar situation arises if conflicting transitions 

have the same enabling times. In this case some kind of preselection policy must be used to 

determine which will fire. 
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CHAPTER 6 SUPER-CLASS 

In this section a new type of TPN is introduced. All the above defined TPNs form sub-classes 

of this TPN. For this reason it will be referred to as the super-class TPN (STPN). The STPN 

was first introduced by me in [37]. Here a more comprehensive definition will be given.  

 

Although any of the TPNs introduced can be represented with ETPNs, using ETPNs may 

mean that the relationship between the system being modelled and the model is blurred, 

making it harder to construct and interpret such models. However, it is still advantageous to 

have a way of representing all types of TPNs in one form. This new representation makes it 

easier to translate from one form to another as well as allowing greater modelling flexibility. 

The STPN definition has enabling durations associated with the input arcs and holding 

durations with the output arcs. This representation allows modelling of resource holding (as 

modelled in HTPNs) and interruptions (as modelled in ETPNs) in the most flexible way 

possible (using arc durations). 

6.1 Super-Class Definition 

Consider the TPN in Figure 6.1, which has enabling times assigned to input arcs and holding 

times assigned to output arcs. Figure 6.1(a) shows the initial state in which transition t1 is 

enabled. The semantics used mean that the enabling time of a transition is given by the 

maximum value of its input arcs. Alternatives to this have been mentioned in Section 3.2. In 

the case of transition t1 there are two input arcs, one from place p1 and one from place p2. 

One has the enabling duration 0.4 and the other 0.2. This means that the overall enabling 

duration is 0.4 given by the arc from place p1 to transition t1. So transition t1 fires at τ = 0.4, 

removing the available tokens and creating unavailable tokens. The holding time of each 
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created tokens depends on the output arc from the transition to the output place the token is 

created in. In Figure 6.1 transition t1 has two output places p3 and p4. The output arc from 

transition t1 to place p3 has the holding duration 0.4 while the output arc from transition t1 to 

place p4 has the holding duration 0.6. Thus the token created in place p3 by the firing of 

transition t1 at τ = 0.4 will be available at τ = 0.8 (see Figure 6.1(b) and Figure 6.1(c)). The 

token created in place p4 by the firing to transition t1 at τ = 0.4 will be available at τ = 1 (see 

Figure 6.1(d)). 
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Figure 6.1: Example STPN 

The tuple representation for the STPN, as defined for other TPNs in Chapter 3, is given by 
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STPN = {P, T, W, D, M0}. 

In this definition P, T and W are as defined earlier. The duration functional D is defined on 

both the input and output arcs. That is, D(•) defines the duration function of a specified arc. In 

the case of the input arc, D(p, t) defines the enabling duration function for the input arc (p, t). 

For the output arc (t, p), D(t, p) defines the holding duration function of the W(t, p) tokens 

created in place p by the firing of transition t. Also for all p∈P and t∈T where W(t, p) = 0, 

define D(t, p)(τ) as the improper distribution function given by D(t, p)(τ) := 0 for all finite τ. 

Similarly for all p∈P and t∈T with W(p, t) = 0, define D(p, t)(τ) as the improper distribution 

function given by D(p, t)(τ) := 0 for all finite τ. Assigning durations to arcs gives greatest 

modelling flexibility. This way transition, place and arc durations can be defined by the same 

TPN definition. As before M0 is the initial marking, only now the marking takes a different 

form. 

 

The marking is made up of three parts: available tokens (AM), unavailable tokens (UM) and 

remaining enabling times (EM). Each of these takes the same form as the equivalent marking 

functions defined earlier. That is, UM is a mapping: P→{(n, x):n∈  and x∈ρ}, +
0Z AM is a 

mapping: P→  and +
0Z EM is a mapping: T→{x: x∈ρ}. 

 

The semantics of STPNs can be defined, as with the other TPNs, using the pentuple 

definition. The semantic definition given here actually relates only to strong firings. The 

reason for this will be given later. Alternative firing rules, such as those mentioned in 

Section 3.2 are not considered here. The number of fresh enablings of transition t∈T is given 

by 

 68
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For each fresh enabling an enabling time for the transition must be generated. Thus if there 

are n fresh enablings then n enabling times must be generated11. Define yp, t, generated from 

the duration function D(p, t), as the enabling time associated with the arc (p, t). If transition t 

is freshly enabled at τ = x, then 

EM’(t) = EM(t) ∪ {x+y}, where y = max{yp, t: for all p∈•t}. 

 

If transition t is scheduled to fire at time x then 

for all p∈•t,     AM’(p) = AM(p) - W(p, t), 

EM(t) = EM(t)\{x} and 

for all p∈t•,     UM(p) = UM’(p) ∪ {(W(t, p), x+y)}, where y is the holding duration of 

the arc (t, p) and is generated using D(t, p). 

 

As discussed earlier there is a need to recheck the enabled transitions when a transition fires 

in case a conflicting transition has become disabled. In the case of the STPNs there is no need 

for an extra step to be defined as created tokens take the form of unavailable tokens in the 

new marking. Making a simple application of the enabling rule sufficient to determine which 

transitions may now have fewer enablings than before. 

 

The other step in the semantics of a STPN occurs when unavailable tokens become available. 

If {(n, x)}∈UM(p) then at τ = x  

AM’(p) = AM(p) + n and 

                                                 

11 In the case of interval delays this means generating n intervals. 
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UM’(p) = UM(p)\{(n, x)}. 

 

This definition allows for the case of concurrent enabling and firings of the same transition. 

Both the process of firing a transition and that of a token becoming available will be referred 

to as being part of the firing process of a STPN. 

 

As with the previously defined semantics there are still a number of issues. Due to the 

concurrent enablings of the same transition a disabling selection policy needs to be 

considered. There is a need for a memory policy and possibly a preselection policy. The final 

consideration is which firing operation takes precedence. This has already been discussed for 

transitions with zero enabling times, in which case a preselection policy for the transitions is 

specified. However, now a preselection policy must be specified to determine if tokens 

become available before transitions fire or vice versa. Thus, if a transition is to fire at the 

same time as a token becomes available, which event goes first? 

 

As an example of how a preselection policy affects a STPN, consider the PN in Figure 2.1 

where time durations are assigned to the arcs. If the marking was AM(p3) = 1, 

UM(p2) = {(1, 2)}, EM(t3) = {2} and t2 has a zero enabling time, then at τ = 2 transition t3 is 

scheduled to fire and the token in place p2 is scheduled to become available. If transitions fire 

first, then t3 fires and the STPN reaches an absorbing state once the tokens become available. 

However, if tokens become available first then transition t2 could fire before t3 and so the 

same state is not reached. 

 

Once these three selection policies (preselection, disabling and memory) have been specified 

the semantics of the STPN are fully defined. 
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Now consider the representation of existing TPN structures using the STPN. To form one of 

the previously defined TPNs using the STPN, restrictions must be placed on the form of the 

duration function D and in some cases minor changes to the STPN semantics must be made. 

6.2 Representing Holding Durations 

With HTPNs the enabling durations selected are always zero, that is, for all t∈T and p∈P 

D(p, t)(τ) = 1 for all τ ≥ 0. If holding durations are assigned to output arcs, then this is the 

only restriction that is required. When holding durations are assigned to transitions a further 

two restrictions apply, as specified below. 

 

Restriction A 

All the output arcs from a given transition have the same duration function. Formally, for all 

t∈T and for all p, p’∈t•,     D(t, p) = D(t, p’). 

 

Restriction B 

Each time a transition fires, the holding durations of the tokens created by the output arcs 

from it are the same for all the created tokens and calculated from a single sampling of the 

relevant duration function. That is, for all t∈T and for all p∈t•,   D(t, p) is only sampled once 

each time t fires. 

 

In the case of places with holding durations we get one restriction that is similar to 

restriction A. However, now each output arc to the same place has the same duration function. 

This can be expressed as , for all p∈P and for all t, t’∈p•,     D(t, p) = D(t’, p). 
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6.3 Representing Enabling Durations 

For ETPNs the holding durations are always zero, that is, for all t∈T and p∈t•, D(p, t)(τ) = 1 

for all τ ≥ 0. This is the only restriction required when enabling durations are associated with 

input arcs. For transition enabling durations, restrictions C and D below must hold. These 

restrictions are similar to restrictions A and B but relate to the input arcs instead of the output 

arcs. 

 

Restriction C 

All the input arcs from a given transition have the same duration function. Formally, for all 

t∈T and for all p, p’∈•t,     D(p, t) = D(p’, t). 

 

Restriction D 

Each time an enabling duration is determined for a transition, the enabling durations of the 

input arcs to the transition are all the same and are calculated by a single sampling of this 

duration function. That is, for all t∈T and for all p∈•t,   D(p, t) is only sampled once for each 

enabling of t. 

6.4 Representing Transition Enabling and Holding Durations 

When enabling and holding durations are assigned to transitions, restrictions A, B, C, and D 

hold. 

6.5 Revisiting Some PN Definitions 

This section reconsiders some of the definitions given for PNs in Chapter 2. Those that have 

not changed have not be included in this discussion. 
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Definition 2.7’: Firing sequence 

Any possible sequence of transition firings is called a firing sequence. 

 

This definition is the same as for PNs. However, now a firing sequence can include a 

combination of both transitions firing and tokens becoming available. Each element in the 

firing sequence is expressed by the duration function that caused it. Thus the firing sequence 

shown in Figure 6.1 would be expressed as {D(p1, t1), D(t1, p3), D(t1, p4), D(p3, t2), 

D(t2, p5)}. Note that, it is the largest time that determines the entry in the firing sequence. So 

in the firing of transition t1 only the duration relating to the arc (p1, t1) was expressed as this 

timing was greater than that of the arc (p2, t1). 

 

Definition 2.8’: Execution Sequence 

An execution sequence is a firing sequence which includes not only the firing processes but 

the markings created as well. 

 

As with the firing sequence definition this is the same as that given originally. The point to 

note here is that the firing process now involves both the firing of transitions and the process 

of tokens becoming available. 

 

Definition 2.9’: Immediately Reachability 

The marking M’ is immediately reachable from M if either 
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t is enabled by M and for all p∈P, AM’(p) = AM(p) - W(p, t), 

UM’(p) = UM(p) ∪ (W(t, p), y) and EM’(t) = EM(t)\{y}, 

or 

(n, x)∈UM(p) and UM’(p) = UM(p)\{(n, x)}, AM’(p) = AM(p) + n and EM’ is given by 

adding an enabling to EM for each fresh enabling resulting from the placing of n tokens 

in place p. 

 

The properties of deadlock, structural conflict and conflict were defined in Section 2.1 in such 

as way as to allow them to be applied to both TPNs and PNs. Deadlock was defined as the 

state where none of the steps in the semantics can occur. In the case of PNs this meant no 

more transitions were enabled, however, for STPNs this means no transitions are enabled and 

there are no unavailable tokens. Structural conflict and conflict were defined to include 

transitions sharing input places even if some of those transitions did not reduce the number of 

tokens in the place. Clearly if time is included, the net change in the number of available 

tokens is what is important. Confusion now can exist not only between firings but also 

between firing processes. This along with conflict is dealt with by the selection policies. 

 

Definition 2.18’: Place invariants 

The set of values yi form the place invariants for a TPN if for all M∈[ 0M  

( ) c)pi(M)pi(Myi
Ppi

AU =+∑
∈

. 

 

 74



Chapter 6   Super-Class  

 

 75

6.6 Analysis 

A major question still to be determined for STPNs is how performance analysis can be carried 

out. Clearly it is possible to apply those existing analysis technique applicable to a given 

subclass of TPNs to their STPN representation. Also using the semantics defined above it is 

possible to generate the model’s state space, that is, its reachability graph.  

 

In generating such a state space it should be noted that after the firing of each transition, EM 

should be checked to see if any current enabling has been disabled by the recent firing. For a 

given marking the total number of enablings needing to be removed is given by 

)t('M)t(M EE − . The checking of EM before this final stage is done to ensure that loops 

result in the disabling of other transitions that share them as input places. If this were not the 

case, then loops with zero durations on their input and output arcs would not result in the 

above mentioned disablings. This then becomes part of the firing process of the transition. 

 

A new node in the reachability graph should be defined each time a transition fires or a token 

becomes available. Even those markings that exist for zero time should be represented by a 

node in the reachability graph. Such states can be removed later. The arcs between nodes are 

labelled with the duration function that brought about the change. By using the procedure 

outlined above the state space of the STPN can be defined in the form of its reachability 

graph. 

 

Figure 6.2 shows the reachability graph of the STPN in Figure 6.1. This reachability graph is 

more general as it does not use the specified deterministic durations on the arcs of the STPN 

in Figure 6.1. Strictly speaking the firing sequence {Max(D(p1, t1), D(p2, t1)), D(t1, p4), 
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D(t1, p3) - D(t1, p4)} is not possible in Figure 6.1 since D(t1, p3) < D(t1, p4). However, the 

more general form was used to show how complex the reachability graph has become by the 

introduction of durations on arcs. Also if D(t1, p3) = D(t1, p4), which is not possible for the 

duration functions defined in Figure 6.1, then these tokens become available concurrently. 

 

 

Max(D(p1, t1), D(p2, t1)) 

UM(p3) = {(1, D(t1, p3))}, UM(p4) = {(1, D(t1, p4))} 

AM(p1) = 1, AM(p2) = 1, 
EM(t1) = Max(D(p1, t1), D(p2, t1)) 

D(t1, p4) D(t1, p3) 

AM(p3) = 1, 
UM(p4) = {(1, D(t1, p4) - D(t1, p3))}

AM(p4) = 1, 
UM(p3) = {(1, D(t1, p3) - D(t1, p4))}

D(t1, p4) - D(t1, p3) 
D(t1, p3) - D(t1, p4) 

AM(p3) = 1, AM(p4) = 1

D(t1, p3) 
= D(t1, p3)

 

Figure 6.2: Reachability graph of the STPN in Figure 6.1 

 

Even for this simple example with no conflict the state space has been more than doubled 

when compared to the state space of the non-timed PN. The state space explosion is even 

worse in the case of the PN shown in Figure 2.1 with durations assigned to its arcs. In this 

case when enabling memory is used the state space expands from the 5 states shown in 

Figure 2.2 to 36 states. As with the example given above this may be reduced depending on 

the choice of durations functions. 
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An alternative analysis technique is that of simulation. To make any such simulation more 

efficient, a number of changes should be made to how the above semantics should be applied. 

The main issue is the checking of the enabling of transitions. Instead of checking all the 

transitions in the net, it is more efficient to check for fresh enablings only for those transitions 

whose input places have had newly available tokens placed in them. That is, when 

unavailable tokens become available in place p, for all t∈T such that p∈•t, the transition t is 

freshly enabled n times, where n is given by 
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The second step in the enabling process is unchanged. There is still the need to initially check 

all the transitions, but after that one needs only to check transitions in whose input places 

have experienced a change in the number of available tokens. The other change that can be 

made to make things more efficient is to only check those transitions in structural conflict 

with the fired transition for disenabling. Technically it is actually better to check only the 

transitions in conflict with the fired transition. However, as stated earlier determining such 

conflict sets can be difficult without the complete state space. 
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CHAPTER 7 REWARDS IN TIMED PETRI NETS 

In the early 1990s the idea of rewards was introduced into Petri nets in [52]. This was a 

concept that does not seem to have been picked up in the literature. This may be because, in 

general, the measure of a system’s performance is time and so there is not a great demand for 

the more general use of rewards. However, this is not the case here. There is interest not only 

in time but also in the reward (cost) of the system. 

 

There are three reward functions defined in [52]. The first allocates a reward dependent on the 

time spent in a given marking. The second allocates a reward once a transition fires. Finally a 

reward can be gained from the stochastic process as a whole. Of these three rewards only the 

first two can be easily represented by the definition given here. 

 

A reward STPN (RSTPN) can be represented by the 8-tuple 

RSTPN = {P, T, W, D, C, M0}. 

In this definition P, T, W, D and M0 are as defined earlier. The functional C is defined for 

each arc in the same way as the duration functional and gives the function that determines the 

reward gained by the firing of the transition associated with the arc in question. The reward 

function can be a function of time. Thus in the case of the input arc, C(p, t) defines the reward 

duration function for the input arc (p, t). Let C(p, t)(τ) = rp t(τ), which defines the reward 

gained from the input place p when transition t fires after being enabled for time τ. For the 

output arc (t, p), C(t, p)(τ) (=rt p(τ)) defines the reward gained by the holding of W(t, p) tokens 

in place p for time τ by the firing of transition t. Also for all p∈P and t∈T where W(•) = 0, 

define r(•)(τ) := 0 for all τ. 
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Above it was stated that the reward could be time dependent. However, it may also be time 

independent, giving a fixed reward for each removal or creation of a token. In addition, it may 

be relevant at times to relate the rewards to transitions instead of actual input arcs. In fact 

under the semantics defined in Chapter 6 this would be more logical than assigning it to arcs, 

as transition enabling time is determined by taking the maximum of input arc enabling times. 

 

The basic idea of including rewards to the STPN structure is not complex. It is just another 

element of the net. It is during the analysis that it has its greatest impact, where the reward 

gained must be calculated. An example of the types of measures that can be calculated using 

rewards will be shown in Part II. 
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CHAPTER 8 PART I CONCLUSIONS 

In [64] it is stated that the advantage of using ETPNs with time on the input arcs is that 

models with this time representation achieve a closer resemblance to the real system than 

using transition times, making them easier to construct and understand. Although in many 

models this may not be true, the principle behind this statement is important. Every good 

modeller knows that when representing a system the choice of modelling technique should 

depend on the system being modelled and the purpose of the model. It is these factors that 

should determine the time representation chosen by a modeller. As shown earlier it is possible 

to represent a HTPN as an ETPN, but even in the simple example given in Figure 3.5 the 

model size increases considerably. Another example of this is the ETPN in Figure 1 of [44]. 

As a HTPN this model would have its number of nodes reduced by 40%, its number of arcs 

reduced by 30% and the number of states in its state space reduced by 30%. Such a 

transformation may also obscure the link between the real system and the model. Despite this 

there is a need to allow the different time representations to be understood by all researchers. 

Ideally, what is required is a transformation that takes ETPNs and converts them to HTPNs 

similar to the one defined for converting HTPNs to ETPNs. However, this is not possible. The 

best possible outcome is to introduce a standard form that can be understood by all 

researchers but allows either representation to be used. In the case of time related to 

transitions this has, in a way, been done, as outlined in Section 3.4. This does not have the 

flexibility of allowing for the cases where time is not associated with transitions. This is one 

of the reasons for my definition of STPN representation. STPNs give modellers a common 

definition to base their models on. It also gives a common definition that can be used in 

computer tools and analysis techniques being developed. It should be noted that the STPN 

definition gives an overarching syntactical representation. The semantic definition given does 
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not have the flexibility of some other definitions found in the literature. Issues such as the 

enabling of arcs (as introduced by Diaz and Sénac in [64]) and strong and weak firings have 

not been included here. However, these concepts can be introduced if required, although as 

outlined in Section 3.2 the use of weak firings rules is not recommended. 

 

The confusion created by these multiple representations can be seen in [164]. In this paper it 

is stated that representing time in places or transitions does not give equivalent modelling 

power. This, as the authors state, is in contradiction to many other papers which state the 

equivalence between these two representations. To demonstrate the difference in modelling 

power the authors use an example. Unfortunately the problem here is that the transition 

timings used in the example are enabling times while the place timings are holding times. 

Clearly, as illustrated in this Part of the thesis these two representations are not equivalent. 

What previous papers have expressed as being equivalent is the representation of holding 

times in places or transitions. 

 

The problem of a lack of a standard has been recognised by the PN research community and 

will hopefully be overcome with the development of the PN standard ([139]). Work on this 

standard is still in its infancy but hopefully the STPN can be incorporated as the mechanism 

to represent time. Putting this issue aside, PNs are a useful way of representing discrete event 

systems. They are particularly useful in representing conflict, concurrence, synchronisation 

and resource sharing. The introduction of time has meant that PN models can now also be 

used for performance analysis. 

 

The STPN is not only a standard representation in which all other TPN representations can be 

placed, it is also the most flexible TPN representation available. It allows for the holding of 
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resources during an activity, in the same way as HTPNs, as well as representing the 

interruption of activities, as in ETPNs. It also allows time to be assigned to any part of the PN 

or a variety of different parts, that is, time can be assigned to places in one part, transitions in 

another and arcs in yet another. 

 

Another advantage of the STPN is that all analysis techniques developed under the super-

class can be applied to the sub-classes and those developed for the sub-classes may be more 

easily extended to other sub-classes due to the common representation. A major issue that still 

needs to be considered in much greater detail is the issue of analysis, not only the 

consideration of new analysis techniques, but also how existing methods can be applied to the 

new structure. The next chapter outlines a direct analysis technique for a sub-class of STPNs. 
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PART II    

EVALUATION OF 

DECISION PROCESSES 

In the modelling of any system a certain amount of abstraction is required, often necessitating 

probabilistic ingredients. This is particularly true in the case of modelling human (or 

non-human) decision processes as such systems are too complex to represent completely. 

Also, realistic modelling requires uncertainty in the way a model reacts to a given situation. 

Thus for some initial state there could be a number of possible final or absorbing states that 

may be reached. This Part considers the calculation of the probability of reaching a given 

absorbing state and the mean reward (cost) until absorption in the given state. Unlike much 

other PN research ([4], [53] and [76] to note but a few) the aim here is to look at transient 

behaviour. It should be noted that traditional transient analysis, as in [50], [73] and [114], is 

more concerned with the distribution of states before an equilibrium is reached. Here the 

interest is in absorption, or more generally the first-hitting properties for states that may have 

a probability less than one of being reached. The modelling and analysis approach outlined is 

planned to be applied in two areas: course of action analysis and decision process model 

analysis and validation. 

 

In considering possible courses of action it is important that the overall cost of each action is 

considered, that is, the mean conditional reward. Thus the theories defined in this paper can 

be used to determine the “best” course of action. The use of rewards means that any measure 
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can be used to determine what “best” means for given situations. For example, the rewards 

may relate to the time taken to conduct a course of action, the resources used in a course of 

action, the possible risk to personnel to carry out a course of action or any combination of 

these. 

 

When developing models of decision processes either for inclusion in a larger model or to be 

directly analysed, two important measures are the probability of reaching a given decision and 

the mean time to reach that decision. These values are particularly useful to any subject 

matter adviser who might be validating a model as they can be related back to the real system 

without any knowledge of the mathematical detail of the model. They are also valuable 

measures in analysing any decision process directly. The use of these types of measures to 

validate decision processes is a further extension of the validation methods outlined in [28]. 

 

This Part specifies what is meant by a decision process and shows how it can be modelled and 

analysed using PNs. The structure of this part is as follows: 

• Chapter 9 defines a command and control decision process and how it can be modelled 

using a STPN. 

• Chapter 10 gives a general review of current PN analysis techniques is given. This makes 

clear that the area is still the subject of considerable ongoing research  

• Chapter 11 introduces some basic concepts of Markov chains and in some cases 

improvements are made to current theory. Also the concept of conditional first-hitting 

rewards is introduced, which is not currently found the Markov chain literature.  

• In Chapter 12 the STPN decision process building block is directly analysed to determine 

the absorption probabilities and mean conditional absorption rewards for this 

representation. An algorithm is defined to show how the analysis techniques developed 
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for the STPN decision process building block can be used to analyse a complete PN made 

up of these building blocks.  

• Chapter 13 considers some extensions of the basic building block are considered. 
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CHAPTER 9 DECISION PROCESS MODEL 

As an example of a decision process consider the case of a friendly military unit which is 

given the mission of finding and destroying a particular enemy unit. Initially the friendly unit 

seeks to find the designated target. Suppose there are four possible alternative outcomes of the 

searching:  

• the friendly unit is found and neutralised by the enemy,  

• the target is located,  

• the desired target is not found or  

• the desired target is not observed so the unit decides to rest before continuing its search.  

Once the enemy target is located a battle begins. There are three possible outcomes of such a 

battle: 

• the friendly unit is neutralised,  

• the enemy unit is neutralised or  

• no resolution is reached and the battle continues.  

Figure 9.1 shows a PN model of this decision process. Each of the eight component processes 

is represented by a transition in the PN. Table 9.1 indicates which transition corresponds to 

which process. With the initial marking shown in Figure 9.1 there are three possible 

absorbing states (a token in p2, p5 or p6). These relate respectively to the three possible 

outcomes of the system: the friendly unit is neutralised before it locates its target; the friendly 

unit is neutralised by the target during the battle; or the mission is successfully completed. 

That is, the enemy unit is neutralised. 
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The PN in Figure 9.1 is an example of the type of model that will be considered in this thesis. 

This example will be used to illustrate the analysis techniques that are developed to calculate 

absorption probabilities and mean conditional absorption rewards. 

 

t1

t2

t3

t4

p3

p2

p4

p1

t8

t7

t6 p6

t5 p5

 

Figure 9.1: Sample decision process 

 

The basic building block that underlies the decision processes considered here is made up of 

two parts. One comprises a number of decisions and actions that take the system from its 

initial state back to the initial state. In the example above such a sequence of events occurs 

when the friendly unit is unable to find the target so decides to rest before continuing to 

search. The second part of the decision process involves a set of possible decisions (events) 

regarding actions that move the system one step closer to a final decision (an absorbing 

marking in PN terms). The location of the target by the friendly unit is an example of an 

action that shifts the systems towards an absorbing marking. 
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Table 9.1: Descriptions of transitions in Figure 9.1 

Transition Description 

t1 The friendly unit is located and neutralised by the enemy. 

t2 The target is located and the friendly unit prepares to attack. 

t3 The desired target is not located and the friendly unit continues to 

search. 

t4 The desired target is not located so the unit decides to rest before 

continuing its search. 

t5 The friendly unit is neutralised during the battle. 

t6 The enemy unit is neutralised during the battle. 

t7 No resolution is reach and the battle continues. 

t8 The unit rests before returning to the search. 

 

The decision process building block is made up of a series of simple circuits and a number of 

transitions that lead to possible absorbing states. Figure 9.2 shows the decision process 

building block. The initial state of this decision process has a token is in place I and is 

referred to as state I. The system comprises N circuits each starting with a transition ci, where 

i = 1 to N. The simple circuits are referred to as the C part of the system. The circuit which 

begins with ci is called the ith circuit. In addition there are L transitions referred to as 

absorbing transitions. Each absorbing transition leads to an absorbing state of the decision 

process building block and consequently there are L possible absorbing states. The jth 

absorbing state is reached when a token is in place Aj, which occurs when the transition sj 

fires, where j = 1 to L. The marking with one token in place Aj is referred to as state j. Each of 

the absorbing states relates to an outcome that can be reached by the decision process. The 
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absorbing part of the decision process will be referred to as the A part of the system. The 

place Aj at times will be referred to as an absorbing place j. State I is considered part of the C 

system. The restrictive building block allows for a wide variety of systems to be modelled and 

will be generalised later in this Part. 

 

I

. . .. . .. . . 1
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s 1
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Figure 9.2: The decision process building block 

 

The example given in Figure 9.1 has two building blocks. These are shown separately in 

Figure 9.3. The initial building block, shown in Figure 9.3(a), comprises two simple circuits, 

one starting with t3 and the other with t4 so N = 2. There are two absorbing markings (L = 2), 

one when a token is in place p2 and the other when a token is in place p3. That is, two 

outcomes can be reached; the friendly unit is neutralised or the target is located. For the 

second building block shown in Figure 9.3(b) N = 1 and L = 2, since there is one circuit and 

two absorbing states. One absorbing state corresponds to a token is in place p5, representing 

the case when the friendly unit is neutralised during the battle. The other absorbing state 
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occurs when a token is in place p6, representing the case when the target is neutralised during 

the battle. 

 

t1

t2

t3

t4 p4

p3

p2

p1

t8

 

 

 

p3

t7

t6 p6

t5 p5

 

(a) Initial building block (b) Final building block 

Figure 9.3: Decision process building blocks for Figure 9.1 

 

Developing an analysis technique for the decision process basic building block makes it 

possible to produce an recursive method of calculating the absorption probability and mean 

conditional absorption reward for each of the absorbing states of a total system. The 

techniques developed allow the calculation of the probability that the final marking has one 

token in place Aj as well as the mean reward gained in reaching this state, given the state is 

reached. These results can then be used in a recursive manner to analyse a full system. 
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CHAPTER 10 CURRENT TPN ANALYSIS 

TECHNIQUES 

This chapter gives a brief overview of the current types of analysis carried out on TPNs. It 

considers structural, behavioural and performance analysis. Although structural and 

behavioural analysis techniques are important, they are of limited relevance to the analysis in 

this thesis. This Section will give an overview of these techniques and concentrate on 

performance analysis. 

 

As with PNs one of the key ways of analysing TPNs is using their corresponding reachability 

graphs. These can be constructed using the semantics defined in Part I. The key requirement 

is in the definition of a state and the transitions between states. In papers [1], [24], [25], [27], 

[117], [151] and [153] ways of generating TPN reachability graphs are defined. 

10.1 Structural and Behavioural Analysis 

When PNs were first introduced they were used to carry out analysis on the structure and 

behaviour of a system, that is, search for structural and behavioural properties such as 

deadlocks and T-invariants. The introduction of time into PNs has meant that performance 

analysis can be carried out using PN models. Therefore, most of the research on TPNs has 

been in this area and most structural and behavioural analysis is carried out using the 

techniques developed for PNs without time. Although these techniques are still valid the 

interpretation of such analysis is important. For example, a deadlock predicted by PN 

techniques may not exist in the corresponding TPN. 
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Some researchers have worked on problems of structural analysis of TPNs. In [166] a method 

of converting a TPN with deterministic firing durations into a PN is described. Thus the 

results of PN structural analysis can be applied to the converted PN. In [167] the underlying 

timed process of TPNs with deterministic firing durations is considered. The underlying timed 

process representation is then used to study structural and behavioural properties of the TPN. 

In [25], [116] and [119] the reachability graph is used to carry out this type of analysis, while 

[59] and [171] develop theorems for TPNs which define when given PN properties hold. In 

[117] the issue is discussed of which PN properties also hold for the corresponding TPN with 

deterministic firing times. These papers give the general feel for the work done on structural 

and behavioural analysis. That is, work in this area is either looking at links between 

structural and behavioural analysis of PNs or analysis of the reachability graph. 

10.2 Performance Analysis 

The main advantages of including time in PNs is that it allows for performance analysis. The 

work in this area is vast and this section will only outline the main areas of this work, giving 

references to papers where more details can be found. 

 

The first type of performance analysis that will be considered is that of performance bounds. 

Generally performance bounds are used in conjunction with interval durations, as in [1], [25] 

and [89]. This is done by generating a reachability graph of the TPN. This reachability graph 

contains not only the obtainable markings, but also the minimum and maximum times it takes 

to reach the marking, allowing the analyst to read off these values and identify problems such 

as underutilised resources and critical paths. In [2] performance bounds are used to the 

analysis of railway stations to determine station operating schedules, minimise train waiting 

durations and determine train platform assignments. A problem with this type of analysis is 
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that it depends on the time intervals assigned to the transitions. If the intervals are large then 

the bounds quickly become large and make any overall performance bounds meaningless. 

 

A popular way of analysing PNs with stochastic timings is by constructing reachability graphs 

which are Markovian or semi-Markovian processes. This was originally done with ETPNs, 

where the time an event takes is considered to have an exponential distribution (see [78], [79], 

[120], [128] and [159]). Under certain restrictions this work has been extended to allow this 

type of analysis on more general distributions (see [5], [6] and [8]). The main problem with 

this is that it reduces the class of TPNs that can be analysed. In [4], [50], [73], [77], [113] and 

[114] deterministic and exponential enabling durations, are used, where the number of 

concurrently enabled deterministic transitions is restricted to one so that the reachability 

graph is still Markovian. This has been extended, in papers [56], [72] and [105], where the 

restriction on the number of concurrently enabled non-exponential transitions is loosened. In 

[18] generally distributed enabling durations are considered, however, the reachability graph 

of these nets is only semi-Markovian under given conditions on the enabling of transitions 

with general duration functions. In [141] concurrent enabling of transitions with 

non-exponential enabling generation functions is allowed for but only if the tranistions 

become enabled concurrently. In [53] the resampling execution policy, which is not always a 

realistic representation of a system (see Section 5.2), is used to ensure that the reachability 

graph of a TPN with deterministic and exponential enabling durations is a Markov process. 

Another way used to introduce non-exponential distributions into ETPNs is to model these 

distributions within the PN using exponential distributions as in [8] and [173]. The above 

references show the type of work being done in the area of Markovian reachability analysis. 

A feature of this approach is that (for better or worse) a stochastic process can be modelled by 

someone who is not fully aware of its complexities. The information obtainable from such 
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analysis is not restricted to equilibrium values (references [8], [9], [42], [48], [58], [78], [82], 

[87], [106], [112], [113], [161] and [172] are a sample of TPN equilibrium analysis), although 

these are by far the most popular measures considered. Recently there has been some research 

into the area of transient analysis, for example [50], [56], [73] and [114], which look at the 

system behaviour before equilibrium is reached. 

 

If the state space is chosen in such a way that the process on it is non-Markovian it is still 

possible to carry out some Markovian analysis. There are three ways in the literature of 

dealing with state spaces that are not Markovian. The first is the use of state space 

aggregation, see [4], [18], [40] and [53]. This is where the state space is partitioned in such a 

way that the process on the partitions are memoryless. The complication here is in defining 

the transition rates between the partitions. Alternatively supplementary variables can be used 

(see [104]). In this case the states of the reachability graph are expanded to include all the 

required information so that each state is memoryless. However, this leads to a very complex 

state space which is very difficult to analyse. In [104], [105] and [115] this problem is 

overcome using numerical techniques. The third method is to use Markov regenerative or 

renewal processes as in [67], [75], [87] and [141]. This is case the measures of interest are 

such that they can be calculated from a state space that regenerates at given points. An issue 

all these techniques is that they are applicable only to a sub-class of TPN models. In [54] a 

review of some different ETPNs is considered. This paper discusses how the increase in 

modelling flexibility decreases ease of analysis. 

 

The main problem with both the above mentioned analysis techniques is that as the models 

become more complicated their state spaces, that is, the reachability graphs, grow rapidly 

making their generation time consuming and any analysis more difficult. The problem of state 
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space explosions is one that affects all techniques that use the reachability graph for analysis. 

In [40], [76] and [92] the problem of the size of the state space is dealt with using numerical 

techniques. This is taken one step further in [115] where numerical techniques are defined 

over a distributed network of computers. Papers [51] and [178], approach this problem by 

carrying out modular analysis, while in [62] a combination of modular and numerical analysis 

to overcome the state space explosion problem. In [151] the generation of the reachability 

graph is restricted to those states with a sufficiently high probability of occurring. The 

probability of reaching a given state is generated simultaneously with the reachability graph 

and those states with a probability lower than the specified threshold probability do not have 

their successive states generated. This increases the effectiveness of the analysis but at the 

cost of accuracy and potentially leaves the analysis open to missing important states that the 

process may reach from initial states of low probability. In [97], [146] and [156] reduction 

rules are defined to reduce the TPN and thus reduce the state space generated. Although these 

techniques do appear to go some way toward helping with state space explosions, what they 

are really doing is increasing the number of states that can be analysed without overcoming 

the basic problem. 

 

Some direct analysis techniques have been derived for a restricted class of PNs. In [16] 

analysis is carried out directly on a sub-class of HTPNs. In this case the class of PNs has been 

reduced considerably to allow for analysis that does not require the generation of the 

reachability graph. To overcome the problem of state space explosion, [43] decomposes a 

sub-class of ETPNs so that an iterative technique can be applied directly to the smaller 

ETPNs in approximating some performance measures. Another area of work involves the 

calculation of performance bounds, as in [13], [42], [48], [107], [172] and [106], where the 

net structure is used to set up a system of equations that must hold for equilibrium to be 
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reached. These equations are then solved using linear programming techniques to determine 

performance bounds. 

 

As with most modelling techniques, analytic performance analysis of TPNs can be carried out 

only  under restrictive conditions. This is not to say these techniques are not useful, only that 

they do not provide the solution to every problem. If the system being modelled can be 

represented by a given class of TPNs, then the appropriate technique can be applied. If this is 

not the case the only alternative is to use simulation. Due to the discrete nature and tuple 

structure of TPNs they can be easily simulated using computers. Many papers, for example 

[109], [110], [122], [130] and [131], use simulation as an analysis tool for TPNs. There exist a 

number of packages that allow a user to draw a TPN and then simulate the resulting net. One 

such package is described in [123]. In [10] a technique for applying parallel simulation 

methods to TPNs is described, thus allowing more rapid simulation of large nets. Also [65] 

looks at the use of structural properties to improve the speed of simulations by improving the 

management of the scheduling of events. A problem with simulation is that any set of 

simulation runs may not search the complete state space so the results may not be conclusive. 

 

Unfortunately none of the above approaches has considered the problem of finding the mean 

reward (cost) to reach a given state for the first time, given the state is reached. That is, the 

mean conditional first-passage reward. This is one of the key questions that will be 

considered in this thesis. There was some promising work done at Duke University in the late 

80’s but this was not developed beyond the basic definition stage. This work is discussed 

further in Section 11.4. 
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One lesson that is clear from the TPN performance literature is that any new analysis is 

generally applicable only to a sub-class of TPNs. This is also the case in the analysis 

presented here. Unfortunately an extensive search of the literature located no papers 

discussing methods of calculating the mean conditional first-passage reward either directly on 

a TPN or on a Markov process defined from the state space of a TPN. 
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CHAPTER 11 MARKOVIAN ANALYSIS 

The majority of TPN analysis is achieved using the state space. This is due to the fact that 

direct analysis techniques are generally restricted to special classes of TPNs. In the case of 

TPNs with stochastic timings, state space analysis generally means analysing the underlying 

Markov process. The question of how Markovian analysis can be used to determine the 

absorption probability and mean conditional first-passage (first-hitting) reward (cost) is the 

primary focus of this chapter. 

 

The literature pertaining to these ideas utilises a variety of forms. Many of the key ideas 

already appear in [90], though predicated to determining necessary and sufficient conditions 

for transience or recurrence of communicating classes in discrete-time Markov chains. In [83] 

the question of determining the probability that, for an initial transient state, the process stays 

forever amongst the transient states is addressed. They proceed to the consideration of 

absorption probabilities in persistent states and the associated absorption times. Papers [57] 

and [91] make use of notions from potential theory for a general treatment. In [69] and [127] 

simular results to the above references are given as is a brief consideration of rewards in the 

case of discrete-time Markov processes.  

 

This chapter begins with some of the basic concepts of Markov chains. A more detailed and 

thorough treatment of the Markov structures on which we build is given in the above 

mentioned references as well as [94], [129] and [150]. 
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11.1 Discrete-Time Markov Chains 

Definition 11.1: Discrete-time (homogeneous) Markov chain 

A discrete-time (homogeneous) Markov chain is a process with the following four 

characteristics: 

1. A countable number of states. 

2. Changes of state occur only at a countable number of time points, which without loss of 

generality we can label 0, 1, 2, …. For definiteness we define Xn to be the state of the 

process just before time n. 

3. P(Xn + 1 = j ⏐ Xn = i, Xn-1 = h, …, X0 = k) = P(Xn + 1 = j ⏐ Xn = i) (memoryless or 

Markovian property). 

4. P(Xn+1 = j ⏐ Xn = i) = P(Xm+1 = j ⏐ Xm = i), that is, probability of changing state is 

independent of the absolute time. 

 

Thus a discrete-time (homogeneous) Markov chain is a process with a countable set, S, of 

states for which, given the history of the process to date, the probability of moving to a given 

state is dependent only on the current state. The fourth condition is referred to as the 

time-homogeneity property. In this thesis all the discrete-time Markov chains are 

time-homogeneous and so for brevity will be referred to as discrete-time Markov chains 

instead of discrete-time homogeneous Markov chains. 

 

Definition 11.2: Transition Probabilities 

The probability P(Xn+1 = j ⏐ Xn = i) is called the transition probability from i to j and is 

written pi j. 
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The statistical behaviour of a discrete-time Markov chain is defined by its initial state, X0, and 

the transition probabilities, pi j. 

 

Definition 11.3: Transition matrix 

The matrix p with elements pi j which are the transition probabilities of a Markov process is 

defined as the transition matrix for the Markov process. 

 

Definition 11.4: Access 

The state i is said to have access to state j if there is a non-null probability of reaching state j 

from state i in a positive number of steps. 

 

In this and the following chapter let κ be a nonempty set of states in a discrete-time Markov 

chain and B the set of states which have access to κ but do not belong to κ. Suppose B is also 

nonempty. For i∈B, denote by ai the probability that for initial state i the process ever reaches 

κ. 

 

Theorem 11.1 

The probabilities ai (i∈B) provide the minimal nonnegative solution to the equations 

∑∑
∈κ∈

+=
Bj

jji
j

jii appa  (i∈B). 
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Proof: 

That ai satisfies the equations follows from the theorem of total probability applied to the 

event of reaching κ from initial state i, conditioning on the outcome of the first step. 

 

For minimality, let (bi) be any nonnegative solution to the equations in Theorem 11.1. Then 

∑
κ∈

≥
j

jrr pb  (r∈B).  (eq1) 

Let (`pi j) denote the restriction of (pi j) to B and denote by ( ))n(
jip  the matrix of corresponding 

n-step transition probabilities. Then for each n≥1 

∑∑ ∑∑
= ∈ κ∈κ∈

+≥
n

1m Br j
jr

)m(
ri

j
jii pp̀pb  (i∈B). (eq2) 

This follows by mathematical induction. For the basis, note that since 

∑ ∑
κ∈ ∈

+=
j Br

rrijii bppb ,  (eq3) 

then from (eq1) 
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For the inductive step, assume that (eq2) holds for some n ≥ 1. Then by (eq3) and (eq1) 
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giving the inductive step. 

Letting n → ∞ in (eq2) yields 
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∑∑ ∑∑
∞

= ∈ κ∈κ∈

+≥
1m Br j

jr
)m(

ri
j

jii pp̀pb  (i∈B). (eq4) 

The right-hand side gives the probability of ever reaching κ from i conditioned by the time of 

first entry, so that (eq4) reads 

bi ≥ ai. ν 

 

It is implicit in this formulation that there may be taboo states entry to which precludes the 

subsequent entry of the process into κ. If m is such a taboo state then of course m∉B∪κ. 

 

The above version of the basic theorem for hitting probabilities has the advantages of 

minimising the size of the state space involved in calculations and of removing the need for 

any boundary conditions. 

 

A corresponding version of the standard first-passage time theorem is the following. 

 

Theorem 11.2 

Suppose that ai = 1 for all i∈B and let Ti denote the first-passage time to κ from initial state 

i∈B. Then (Ti)i∈B is the minimal nonnegative solution to the equations 

∑
∈

+=
Bj

jjii Tp1T      (i∈B). 

 

This theorem is inappropriate when ai < 1 for any state i∈B. In this situation the first-passage 

time from i to κ is infinite with positive probability and so Ti = ∞. Thus the theorem does not 

provide a useful first-passage time result if κ is reached from i with probability less than 
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unity. An appropriate version can be formulated based on only those paths which reach κ. 

However, this result is subserved by a yet more general result involving rewards, which is 

detailed below. A reward Ri j is associated with the single-step transition from state i to state j. 

This reward can be an arbitrary function of i and j. This induces for an in general multi-step 

transition from i to j an aggregated reward equal to the sum of the rewards associated with the 

individual single-step transitions involved. Define for i∈B Ri as the mean reward associated 

with first-passage to κ from initial state i, conditional on such passage occurring. 

 

It is useful for the evaluation of the rewards Ri to define the dual as the embedded chain with 

the one-step transition probabilities  

i

jji
ji a

ap
:U =  

for i, j∈B and put U := (Ui j)i, j∈B. The entry Ui j may be interpreted as the probability of a 

single-step transition from i to j, conditional on the process eventually entering κ.  

 

Note that for i∈B 

∑∑
∈κ∈

+=
Bj

jji
j

jii appa , 

so that 

1
a
p

U
j i

ji

Bj
ji =+ ∑∑

κ∈∈

. 

This means the matrix U is substochastic. 

 

Denote by  (n ≥ 1) the matrix of corresponding n-step conditional transition 

probabilities. Define 

ji
n)n(

ji )U(U =
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⎩
⎨
⎧

=
otherwise0

j=i if1
U )0(

ji . 

 

Also, define 

∑
κ∪∈

=
Bj i

jijji
i a

Rap
:v ,     (i∈B) (eq5) 

where 

aj := 1 for j∈κ. 

The interpretation of vi is as the expected reward from the first step conditional on κ being 

reached in that step or later. 

 

Theorem 11.3 

The mean conditional rewards Ri satisfy 

∑
∈

+=
Bj

jjiii RUvR      (i∈B). (eq6) 

 

Proof: 

Represent by Ai the event that Xn∈κ for some n ≥ 1 and X0 = i∈B. Then by conditioning on 

the first step 

.)RR()A  jX(PR)A  jX(PR
Bj

jjii1
j

jii1i ∑∑
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For j∈B, 
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AjXP)A  jX(P

i

j01

i

0j1

i

i1
i1

==
=
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Thus for j∈B 

i

jji
i1 a

ap
)A  jX(P ==  (eq9) 

 

Substituting from equations (eq8) and (eq9) into equation (eq7) gives 

.R
a
ap

R
a
ap

R
a
p

)RR(
a
ap

R
a
p

R

Bj
j

i

jji

Bj
ji

i

jji

j
ji

i

ji

Bj
jji

i

jji

j
ji

i

ji
i

∑∑∑

∑∑

∈∈κ∈

∈κ∈

++=

++=

 

Thus 

∑∑
∈κ∪∈

+=
Bj

j
i

jji

Bj
jijji

i
i R

a
ap

Rap
a
1R . (eq10) 

The desired result follows by substituting from equation (eq5) for the first summation on the 

right-hand side. ν 

 

In many applications, B contains a finite number of states. Since each state i∈B has access to 

κ and U is substochastic, I - U is invertible, where I is the ⏐B⏐×⏐B⏐ identity matrix. Also 

define R := (Ri)i∈B and v := (vi)i∈B. Then (eq6) can be expressed as 

R = (I - U)-1 v. 

In fact, if 
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Λ := (diag(ai))i∈B, 

and p’ be the matrix (pi j)i, j∈B then 

R = (I - Λ-1 p’ Λ)-1 v. (eq11) 

 

An alternative form that equation (eq6) can take, namely 

( )∑
κ∪∈

+=
Bj

jjijii RRUR  (i∈B), 

where Rj := 0 for j∈κ. The original form of Theorem 11.3 was presented to allow for the 

derivation of the matrix form of the result. These forms will be used interchangeably without 

distinction. 

 

An advantage of looking at rewards is that they are fairly general, allowing factors other than 

time. For example, a reward may relate to the combination of the time and the resources 

required. Different single-step transitions may be associated with different rewards. Note also 

that the reward associated with a transition from i to j can be function of i alone or a function 

of j alone. 

 

 

 

Corollary 11.1 

Suppose that ai = 1 for all i∈B. Then (Ri)i∈B satisfies the equations 

∑
∈

+=
Bj

jjiii RpvR       (i∈B). 
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Proof: 

This result simply follows by substituting ai = 1, for all i∈B, into equation (eq10). ν 

 

This is similar to the general mean first-passage reward as found in references [69] and [127]. 

 

A set of matrix equations can be expressed for this case also by adapting equation (eq11) 

when |B| is finite. When ai = 1 then Λ = I so equation (eq11) becomes 

R = (I - p’)-1 v. (eq12) 

 

Consider now the special case when the first-passage reward is just the total time taken to 

reach κ. This is given by Ri j = 1. 

 

Definition 11.5: Mean conditional first-passage time 

The mean conditional first-passage time, Ti, from state i ∈ B to the set of states κ is the mean 

time it takes to go from i to any of the states in κ given such a passage occurs. 

 

 

Corollary 11.2 

The mean conditional first-passage time to κ from initial state i∈B satisfies the equations 

∑
∈

+=
Bj

jjii TU1T  (i∈B). (eq13) 
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Proof: 

To get this result it must be shown that vi = 1 when Ri j = 1. Substituting Ri j = 1 in equation 

(eq5) gives 

∑
κ∪∈

=
Bj i

jji
i a

ap
v . 

Since , the desired result follows. ν ∑
κ∪∈

=
Bj

jjii apa

 

Suppose |B| < ∞. Putting T = (Ti)i∈B and writing 1 for a column vector of length ⏐B⏐ 

consisting of ones allows (eq13) to be expressed in the form 

T = (I - Λ-1 p’ Λ)-1 1. (eq14) 

 

This result is presented in [35] and [38]. 

 

Corollary 11.3 (Theorem 11.2) 

Suppose that ai = 1 for all i∈B. Then (Ti)i∈B satisfies the equations 

∑
∈

+=
Bj

jjii Tp1T  (i∈B). 

 

Proof: 

This result follows directly by substituting ai = 1 for all i, j∈B into equation (eq13). ν 

 

Using equation (eq14) for finite B and the case when ai = 1 for each i∈B gives Λ = I and so 

T = (I – p’)-1 1. 

 
 108



Chapter 11   Markovian analysis 
 

The existence of an explicit formula for R when B is finite means that Theorem 11.3 defines 

each Ri uniquely in that case. The following strengthening of Theorem 11.3 provides a unique 

solution in the general case under light conditions. 

 

Theorem 11.4 

If either 

a) Ri j ≥ 0 for all i∈B and j∈B ∪ κ, or 

b) Ri j is bounded below and each conditional mean first-passage time Ti < ∞, 

then (Ri)i∈B is the minimal nonnegative solution to 

∑
∈

+=
Bj

jjiii RUvR  (i∈B). 

 

Proof: Consider first case (a). By considering the contribution to Ri for the first or (n+1) step 

(n ≥ 1). A characterisation of Ri is given by 

∑∑
∞

= ∈

+=
1n Bj

j
)n(

jiii vUvR  , 

which can be expressed as 

∑∑
∞

= ∈

=
0n Bj

j
)n(

jii vUR . 

 

It will be shown by mathematical induction that if (Si)i∈B is any nonnegative solution to (eq6) 

then 

∑∑
= ∈

≥
n

0m Bj
j

)m(
jii vUS  (eq15) 

for each i∈B and any nonnegative n.  
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From (eq6) 

∑
∈

=≥
Bj

i
)0(

jiii vUvS , 

which gives the basis (n = 0) for the induction. 

 

For the inductive step, suppose equation (eq15) holds for all i∈B for some nonnegative 

integer n. Then substituting this into (eq6) gives 

,vU

vUvU

vUUvS

1n

0m Bj
j

)m(
ji

n

0m Bk
k

)1m(
kj

Bj
j

)0(
ji

n

0m Bk
k

)m(
kj

Bj
jiii

∑∑

∑∑∑

∑∑∑

+

= ∈

= ∈

+

∈

= ∈∈

=

+=

+≥

 

giving the inductive step so (eq15) is proved. 

 

 

 

 

Now letting n → ∞ yields 

i
0m Bj

j
)m(

jii RvUS =≥ ∑∑
∞

= ∈

 

as required. 

 

Now consider case (b). We may associate with the process another process with the same 

transition probabilities but rewards 
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Zi j := Ri j + K where ( )ji
Bj

Bi
Rinf:K

κ∪∈
∈

−=   

Note that K < ∞, since Ri j is bounded below. 

The conditional first-passage reward for the new process for initial state i is Ri + K Ti ≥ 0, 

where under the assumptions of the theorem, each Ti < ∞. Thus the new process is covered by 

case (a). The desired result follows. ν 

 

The fact that Theorem 11.3 gives the smallest nonnegative solution means that the results in 

Corollary 11.1, Corollary 11.2 and Corollary 11.3 also give smallest nonnegative solutions. 

Furthermore in the cases of Corollary 11.2 and Corollary 11.3 in which the reward gained 

simply relates to time the reward is always positive, so condition (b) of Theorem 11.4 need 

not be considered. 

11.2 Continuous-Time Markov Chains 

A continuous-time Markov chain differs from a discrete-time Markov chain in that the 

process is now defined for a time parameter in the nonnegative reals instead of nonnegative 

integers. Denote the state at time τ by X(τ). 

 

Definition 11.6: Continuous-time (homogeneous) Markov chain 

A continuous-time (homogeneous) Markov chain is a process (X(τ),τ ∈ R+) which has the 

properties 

1. A countable number of states. 
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2. For all finite sequence of times τ1 < τ2 <…< τn∈R+ and corresponding states x1, x2, 

…, xn∈S whenever the conditioning path has positive probability 

)x)(Xx)(X(P)x)(X,,x)(Xx)(X(P 1n1nnn111n1nnn −−−− =τ=τ==τ=τ=τ K . 

3. 0)t(P)i)'s(Xj)'s(X(P)i)s(Xj)s(X(P ji ≥===+τ===+τ  for all s, s’ and 

τ∈R+ and i, j∈S. 

 

The above definition means that the occupancy time of a state before it moves has an 

exponential distribution. The mean firing rates of the exponential distributions are given by 

ji
ji

0
q

)(P
lim =

τ

τ
+→τ

 for i ≠ j. Since all the continuous-time Markov chains considered here are 

time-homogeneous, for brevity they will simply be referred to as continuous-time Markov 

chains. 

 

Definition 11.7: Q-matrix 

The firing rate of each transition is given by the Q-matrix, Q, which is defined over the state 

space S and has the properties: 

1. 0q
t

)(P
lim ji

ji

0
≥=

τ
+→τ

 exists for all i ≠ j; 

2.  for all i. ∞≤=−≤ ∑
≠ij

jiii q:q0

Traditionally iii q:q −= . 
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Definition 11.8: Embedded discrete-time Markov chain 

The embedded discrete-time Markov chain of a continuous-time Markov chain is given by 

considering the system only at those instances when the process changes state. It has 

transition probabilities given by 

⎩
⎨
⎧

=
≠

=
ji0
jiqq

p iji
ji . 

 

The hitting probabilities are the same in the continuous-time process and on its embedded 

chain, so that (ai)i∈B is given by Theorem 11.1. 

 

Suppose now that a reward is gained when a transition from state i to state j occurs. In the 

general case the reward may be dependent on the time spent in state i before the transition 

occurs as well as on i and j. For this case the reward from a transition is given by the function 

ri j(t), where t is the time spent in state i before the transition to state j. 

 

Here the same definition of vi and Ui j as were given in the discrete-time Markov chain are 

used. Also define  

)q(rqR i
*
jiiji =  

where  is the Laplace transform of reward function r)q(r i
*
ji i j(τ). 

 

 

Theorem 11.5 

If Ri is the mean conditional first-passage reward to κ from initial state i∈B, then (Ri)i∈A 

satisfies 
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∑
∈

+=
Bj

jjiii RUvR  (i∈B). (eq16) 

 

Proof: 

Because the process is only being viewed at the times that it changes state the proof of 

Theorem 11.3 gives the general form of the solution to mean conditional first-passage reward. 

The only difference is in the form that Ri j takes in the continuous-time case. 

 

The expected reward from a single transition from i to j will be given by 

∫
∞

ττ=
0

jijiji )(dG)(rR  (eq17) 

where Gi j(t) is the time distribution function which determines the time spent in i before the 

transition to j occurs, given such a transition occurs. Thus . It should be noted 

that G

τ−−=τ iq
ji e1)(G

i j is parameterised by qi and not qi j, because in the case of a continuous-time Markov 

chain the rate at which the transition from state i to state j occurs depends on all the 

transitions out of i. 

 

Substituting Gi j into (eq17) gives 

)q(rqdeq)(rR i
*
jii

0

q
ijiji

i =ττ= ∫
∞

τ− , (eq18) 

where  is the Laplace transform of r)q(r i
*
ji i j(τ). 

The desired result follows by substituting from (eq18) into (eq6). ν 
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Since the form of the result is the same as that of the discrete-time case, for |B| < ∞ the matrix 

representation of continuous-time case is also given by (eq11). As with the theorem the only 

difference is that the representation of Ri j in the calculation of v. 

 

As in the discrete case, the problems of mean first-passage reward, mean conditional 

first-passage time and mean first-passage time are all special cases of the above theorem. Also 

when the reward is independent of the time spent in the state, the embedded discrete-time 

Markov chain can be used to determine the reward. This result also flows from Theorem 11.5, 

as in this case 

ji
0

q
iji

0

q
ijiji rdeqrdeqrR ii =τ=τ= ∫∫

∞
τ−

∞
τ− , 

since 

1deq
0

q
i

i =τ∫
∞

τ− . 

The discrete-time case is thus a special case of the continuous-time case, as expected. 

 

Corollary 11.4 

Suppose that ai = 1 for all i∈B. Then (Ri)i∈B satisfies the equations 

∑
∈

+=
Bj

jjiii RpvR . (i∈B). 
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Proof: 

This result follows directly form Theorem 11.5 by substituting ai = 1 for all i∈B∪κ in the 

same way that Corollary 11.1 followed from Theorem 11.3. ν 

 

As with the conditional case, the matrix representation of this solution is equivalent to that in 

the discrete-time case. So for |B| < ∞ the matrix solution of Corollary 11.4 is given by (eq12), 

where the Ri j defined in Theorem 11.5 is used to calculate v. 

 

Corollary 11.5 

The mean conditional first-passage time to κ from initial state i∈B satisfies the equations 

∑
∈

+=
Bj

jji
i

i TU
q
1T  (i∈B). 

 

Proof: 

When the reward gained is the expired time, then ri j(τ) = τ so 

i0

q
i

0

q
ijiji q

1deqdeq)(rR ii =ττ=ττ= ∫∫
∞

τ−
∞

τ− . 

Thus 

iBj i
jji

i
i q

1
q
1ap

a
1v == ∑

κ∪∈

, (eq19) 

since 

∑
κ∪∈

=
Bj

jjii apa . 

The desired result follows by substituting from (eq19) into (eq16). ν 
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Once more using the fact that U is substochastic, the matrix form of this result in the case of 

|B| < ∞ can be given as  

T = (I - Λ-1 p’ Λ)-1 q’, 

where T, I, Λ and p’ are as defined earlier and q’ := (qi)i∈B. 

 

This result is the same as that presented in [35], [38], [49] and [170]. 

 

Corollary 11.6 

Suppose that ai = 1 for all i∈B. Then (Ti)i∈B satisfies the equations 

∑
∈

+=
Bj

jji
i

i Tp
q
1T  (i∈B). 

 

Proof: 

In the case when ai = 1, as with the discrete case, Ui j = pi j so the result in Corollary 11.5 

simply reduces to this variation of the standard mean time result. ν 

 

Once more using the fact that p’ is substochastic, the matrix form of this result when |B| < ∞ 

can be given as  

T = (I – p’)-1 q’, 

where T, I, p’ and q’ are as defined earlier. 

 

The minimality result for Theorem 11.5 is the same as that for the discrete case as the solution 

takes the same form. Thus provided the conditions of Theorem 11.4 hold this result is also 

true for the continuous case. It should be noted that the conditions of the theorem restrict only 
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the expected rewards, that is, the values of Ri j’s. So ri j(t) need not be well-behaved so long as 

the expected reward behaves as specified in Theorem 11.4. Similarly Corollary 11.4, 

Corollary 11.5 and Corollary 11.6 give minimal solutions as with the equivalent discrete 

cases. 

11.3 Semi-Markov Chain 

Definition 11.9: Semi-Markov chain 

Suppose  is a Markov chain with states X( )∞
=0nnX 0, X1, X2, … entered at times S0, S1, S2, …, 

further suppose that  

)jX,iXSS(P)(F 1nnn1nji ==τ≤−=τ ++ . 

If z(τ) is the state of the above defined process at time τ, then (z(τ))τ≥0 is called a 

Semi-Markov chain. 

 

Semi-Markov chains are a further extension of continuous-time Markov chains. The 

difference is that now a general distribution can be used to determine the time before a 

transition occurs. A continuous-time Markov chain is a semi-Markov chain with 

τ−−=τ iq
ji e1)(F . 

 

A semi-Markov chain is defined by the initial state and 

)(F)iXjX(P

)jX,iXSS(P)iXjX(P

)iXSS,jX(P)(p

jin1n

1nnn1nn1n

nn1n1nji

τ===

==τ≤−===

=τ≤−==τ

+

+++

++

. 

In this definition )iXjX(P n1n ==+ is the transition probabilities of going from state i to 

state j of the embedded discrete-time Markov chain. So as with continuous-time Markov 
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chain in the semi-Markov chain, the probability of reaching the set of states κ given the 

process starts in state i is determined by the embedded Markov chain. So it is given by 

Theorem 11.1. 

 

Consider the case where a reward is gained when a transition is made from state i to state j. In 

the general case the reward is dependent on the time spent in state i before the transition 

occurs. Again let ri j(τ) be the reward gained if the time in state i before the transition to state j 

is t. 

 

Here the same definition of vi and Ui j as were given in the discrete and continuous-time 

Markov chains are used. Also define 

∫
∞

ττ=
0

jijiji )(dF)(r:R  (eq20) 

as the reward gained from the transition from state i to state j, given the transition occurs. 

 

Theorem 11.6 

The mean conditional first-passage reward Ri satisfies 

∑
∈

+=
Bj

jjiii RUvR  (i∈B). 

 

Proof: 

The proofs of Theorem 11.3 and Theorem 11.5 give the general form of the solution to mean 

conditional first-passage reward. The only difference is in the form taken by Ri j. In this case 

the form of Ri j is given by equation (eq17), where Gi j(τ) = Fi j(τ). ν 
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Since the form of the result is the same as that of the discrete-time and continuous-time cases, 

for |B| < ∞ the matrix representation of semi-Markov case is also given by (eq11). As in the 

theorem the only difference here is in the representation of Ri j. Thus v is determined using 

(eq20) instead of the original definition of Ri j.  

 

As in the discrete-time and continuous-time cases the problems of mean first-passage reward, 

mean conditional first-passage time and mean first-passage time are all special cases of the 

above theorem.  

 

Corollary 11.7 

Suppose that ai = 1 for all i∈B. Then (Ri)i∈B satisfies the equations 

∑
∈

+=
Bj

jjiii RpvR  (i∈B). 

 

Proof: 

This result follows directly form Theorem 11.6 by substituting ai = 1 for all i∈B in the same 

way as done in the proof of Corollary 11.1. ν 

 

As with the conditional case the matrix representation of this solution is equivalent to that in 

the discrete and continuous-time cases. So for |B| < ∞ the matrix solution of Corollary 11.7 is 

given by (eq12), where vi is defined using Ri j as defined in earlier in this section. 
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Before proceeding to give the time results, denote the mean time spent in i before going to j, 

conditional on this transition occurring, by µi j, which is given by 

∫
∞

ττ=µ
0

jiji )(dF . 

 

Corollary 11.8 

The mean conditional first-passage time to κ from initial state i∈B satisfies the equations 

∑
∈

+=
Bj

jjiii TUvT  (i∈B). 

 

Proof: 

When the reward gained is elapsed time, then ri j(τ) = τ so 

ji
0

ji
0

jijiji )(dF)(dF)(rR µ=ττ=ττ= ∫∫
∞∞

. 

Thus 

∑
κ∪∈

µ
=

Aj i

jijji
i a

ap
v . ν 

 

Once more since U is substochastic, for |B| < ∞ the result in Corollary 11.8 can be expressed 

as equation (eq11), where Ri j = µi j. 

Denote the mean time spent in i by µi which is given by 

∫
∞

ττ=µ
0

ii )(dH , (eq21) 

where 
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∑ τ=τ
j

jijii )(Fp)(H . 

 

Corollary 11.9 

Suppose that ai = 1 for all i∈B. Then (Ti)i∈B satisfies the equations 

∑
∈

+µ=
Bj

jjiii TpT  (i∈B). 

 

Proof: 

Expanding (eq21) gives 

.p

)(dFp

)(dFp

)(Fpd

)(dH

j
jiji

0
ji

j
ji

0 j
jiji

0 j
jiji

0
ii

∑

∫∑

∫ ∑

∫ ∑

∫

µ=

ττ=

ττ=

⎥
⎦

⎤
⎢
⎣

⎡
ττ=

ττ=µ

∞

∞

∞

∞

 

Now in the case when ai = 1 for all i, then B∪κ is the complete state space so 

i
j

jiji
Bj

jijii ppv µ=µ=µ= ∑∑
κ∪∈

. 

 

Also as with the discrete case, Ui j = pi j, so the result in Corollary 11.8 simply reduces to the 

desired result. ν 
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Once more using the fact that p’ is substochastic, the matrix form of this result where |B| < ∞ 

can be given as  

( ) '' 1µpIT −−= , 

where T, I and p’ are as defined earlier and µ’ := (µi)i∈B. 

 

The minimality result is the same as that for the discrete and continuous cases as the solution 

takes the same form. Thus provided the two conditions of Theorem 11.4 hold then (Ri)i∈B is 

the smallest nonnegative solution to (eq16) due to Theorem 11.4. Once more this also holds 

for the results in the corollaries to Theorem 11.4. 

11.4 Final Remarks 

This chapter has primarily explored ways of calculating the mean first-passage rewards for 

different types of Markov processes. Such measures have been largely ignored in the 

literature and are very useful measures for some systems. It should be noted that in the mid to 

late 80’s, some work was done on conditional first-passage times. In this work the state 

spaces of ETPNs with exponential and deterministic generation functions assigned to 

transitions were constructed in such a way as to be continuous or semi-Markov processes. 

This work seems to begin with [19], where the concept of mean first-passage time to a set of 

markings was considered but only in the case when reaching these states was certain. This 

was then extended in [18] which discussed briefly the concept of conditional distributions for 

the first-passage time to a given κ after starting in state i at τ = 0, defined as Fκ(τ). These 

results also appear to much the same level in [19]-[21], [71] and [107]. These papers focus on 

reliability modelling of fault-tolerant computer systems and give a general formula for the 

mean conditional first-passage time to a given state. This formula is 
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)(P
)(P

)(F
i

i

∞

τ
=τ

κ

κ
κ , 

where Pi κ(τ) is the probability of reaching κ in time ≤ τ. No indication is given of how to 

calculate any of these values. 

 

This chapter has presented methods for calculating absorbing probabilities and mean 

conditional first-hitting rewards for discrete, continuous and semi Markov chains. It should be 

noted that this analysis can be extended to the analysis of non-Markov processes if state 

aggregation or supplementary variable techniques are used. These techniques have been 

briefly noted in Section 10.2. 

 

The focus of this thesis is the assessment of decision processes and courses of action. The 

remainder of this Part focuses on the problem at hand, that of determining absorbing 

probabilities and mean conditional first-hitting rewards for decision processes. In particular it 

considers the case where a decision process is modelled using a subclass of STPNs defined in 

the introduction to this Part. 
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CHAPTER 12 STPN DECISION PROCESS BUILDING 

BLOCK 

Consider the case when time in the decision process building block is represented by enabling 

durations associated with input arcs and holding durations are associated with output arcs. 

Thus STPNs are used. 

 

To simplify the analysis, initially a simpler decision process building will be used. Here the 

circuits are loops, as shown in Figure 12.1. The reason for this simplification will become 

evident later. 

 

I

. . .1 Ncc

. . .

sL

1s

AL

A1

 

Figure 12.1: Simple decision process building block 

 

The state space of the simple decision process building block is very similar to the PN, see 

Figure 12.2. This similarity is due to the almost Markovian nature of the building block. Thus 

the Markov chain results given in Chapter 11 can be used to develop theories on the 
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absorption probabilities and the mean conditional first-hitting rewards for the state space and 

thus the STPN building block. 

 

I

. . .

. . .

A

1

1A

Ncc

L Ls

1s

 

Figure 12.2: Simple decision process building block state space 

12.1 Analysis 

The delay (time) functions associated with the arcs will be referred to in terms of their 

transitions. This can be done without confusion as each transition has at most one input and 

output arc. Define  

Ep t(τ) := D(p, t)(τ) and 

Ht p(τ) := D(t, p)(τ). 

Also for the brevity in the case of the decision process building block define 

Ec i(τ) := D(I, ci)(τ) (i = 1 to N) and Es j(τ) := D(I, sj)(τ) (j = 1 to L) as the enabling 

duration functions for the C and A transitions; and  

hc i(τ) := D(ci, I)(τ) (i = 1 to N) and hs j(τ) := D(sj, Ak)(τ) (j = 1 to L) as the holding 

duration function for the C and A transitions. 
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For this analysis the race policy will be used to resolve conflict and enabling memories will 

be used as the memory policy. 

 

In considering the states of the simple decision process building block, state i is defined as a 

state in c1 to cN. Similarly j is used to describe states in s1 to sL. What is of interest are the 

probability and mean conditional first-passage reward associate with reaching state Ak, for 

k∈[1, …, L]. 

 

Define Ω(τ) := P(no transition fires before time τ). Then 
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Define Ii(τ) to be the probability that transition ci fires before time τ. Note that for ci to fire no 

other transition can fire first. Similarly define Jj(τ) as the probability that transition sj fires 

before time τ. So, 

).u  timebeforen  transitiono
du)+u (u, period  timein the fires c transition(P
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∫
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If there is a positive probability that two or more transitions fire at the same time, then the 

above result does not hold. In such cases the race policy cannot be used to resolve conflict so 

an extra conflict resolution policy must be specified. If an alternative conflict resolution 

policy were specified for those transitions that could have identical enabling durations, then 
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the following results could be adjusted to allow for this. This situation will not be considered 

further. 

 

Expanding the conditional probability in Ii(τ) gives 

.
)u  timebefore firenot  does c transition(P

)du)+u (u, period  timein the fires c transition(P
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A similar argument gives 

∫
τ

−

Ω
=τ

0 js

js
j )u(E1

)u(dE)u(
)(J . 

 

The probability that a transition in the c system fires by time t is given by 

∑
=

τ=τ
N

1i
i )(I)(I . 

The probability that a transition in the A system fires by time t is given by 

∑
=

τ=τ
K

1j
j )(J)(J . 

This means that the probability that transition ci (sj) fires is given by Ii(∞) (Jj(∞)). So in terms 

of the Markov process in Figure 12.2 

)(Ip isI i
∞=  and )(Jp jcI j

∞= . 

Also the probability that a C (A) transition fires is I(∞) (J(∞)). That is, 
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Now 
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Similarly 

)(J
)(J

)fires j earlier or   at time fires j(P
j

j

∞

τ
=τ . 

 

Theorem 12.1 

In a STPN simple decision process building block the absorption probability of state k, given 

that the probability that two transition will have the same enabling time is zero, is given by 

)(J
)(J)k(P k

∞
∞

= . (eq22) 

 

Proof:  

For the state space shown in Figure 12.2, κ = Ak and B = {I, c1, …, cN, sk}, which means 

Theorem 11.1 gives 

∑
∈

+=
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xxwAww appa
k

. 
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as required. ν 

 

The above result means that the probability of reaching a given absorbing state is independent 

of the number of elements in the circuits. Therefore the above result holds not only for the 

simple decision process building block but also for the more complex ones with non-loop 

circuits. Accordingly we have the following. 

 

Corollary 12.1 

The probability of reaching the absorbing state j of a STPN decision process building block is 

given by Theorem 12.1. 
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Theorem 12.2 

The mean conditional first-passage reward for state Ak of a STPN simple decision process 

building block is given by 
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 (eq23) 

where rI w(τ) is the reward gained by spending time τ in I before a transition 

w (∈{c1, …, cN} ∪ {sk}) fires, )(r Ici
τ  the reward gained by the token in I being held for time 

τ after transition ci fires and )(r
kk As τ  the reward gained by the token spending a holding time 

of τ in place Ak after the firing of transition sk. 

Proof: 

As with Theorem 12.1 the results from Chapter 11 can be applied to the state space shown in 

Figure 12.2 to get the desired result. In this case Theorem 11.6 is used. Once more κ = Ak and 

B = {I, c1, …, cN, sk} so applying Theorem 11.6 gives 
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For x∈{c1, …, cN},  for all w ≠ I giving 0p wx =

IIxxx RUvR +=   
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since 
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The expected reward gained by the firing of transition ci given this transition occurs is given 

by 

⎟
⎟
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Thus  is the expected reward gained in state I before a transition is made to state c
icIR i. 

Similarly 
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is the expected reward for going from state I to state sj. 

 

Since there is only one possible transition out of states ci and sk, the expected rewards from 

these states are simply given by 

∫
∞

ττ=
0

icIcIc )(dH)(rR
ii

 and  (eq26) 

∫
∞

ττ=
0

ksAsAs )(dH)(rR
kkkk

. (eq27) 

 

Substituting from equations (eq25) to (eq27) into (eq24) provides (eq23), the required result.

  ν 

 

To get the more general result that applies to the decision process building block (as shown in 

Figure 9.2) the meaning of equation (eq26) must be examined in greater detail. In a broader 

sense this term gives the expected reward gained in the circuit. Thus to expand this result 

from the simple decision process building block is simply a matter of determining the 

expected reward of the more complex circuit. 
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Consider the PN shown in Figure 12.3. This is representation of the circuits shown in 

Figure 9.2. The corresponding state space is given in Figure 12.4. Clearly the expected reward 

for such a state space is the sum of the expected rewards of the individual state transitions, 

which yields the following corollary. 

 

Corollary 12.2 

The mean conditional first-passage reward for state Ak of a STPN decision process building 

block is given by 
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 (eq28) 

where rI w(τ) and  are as defined in Theorem 12.2 and  is the expected reward 

gained in circuit c

)(r
kk As τ

icR

i. 

 

 

 

i 1c p . . .
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Figure 12.3: Circuit as stand alone PN 
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1ic p . . .1t t Z I
 

Figure 12.4: State space of PN in Figure 12.3 

 

Corollary 12.3 

The mean first-passage time for state Ak of a STPN decision process building block is given 

by 
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where  is the mean time spent in the circuit c
icτ i and 

ksτ  the expected holding time of 

transition Rk. 

 

Proof: 

If the reward of interest is the time taken, then ri j(τ) := τ for all i and j. Substituting this into 

equation (eq28) provides 
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This yields the desired result, since when the reward gained is given by the time taken 

. ν 
ii ccR τ=
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Consider the case when the transitions have exponentially-distributed enabling durations. Let 

the firing rate of the transition ci, i = 1 to N, be λi and that of sj, j = 1 to L be µj. This means 

that 

τλ−−=τ ie1)(E ic  (eq29) 

and 

τµ−−=τ je1)(E js . (eq30) 

Also define  and . ∑
=

λ=Λ
N

1i
i: ∑

=

µ=Μ
L

1j
j:

 

Equations (eq29) and (eq30) give 
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Corollary 12.4 

The absorption probability of state k of a decision process building block with exponentially 

distributed enabling durations is given by 

Μ
µ

= k)k(P . 

 

Proof: This follows by substituting the above stated values of Jk(∞) and J(∞) into (eq22). ν 
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Corollary 12.5 

The mean conditional absorption time of a decision process building block with exponentially 

distributed enabling durations is given by 
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which on simplification gives the desired result. ν 

Note that, as before, this result is independent of the distribution function of the second 

transition in the circuit. So the enabling duration distributions of the transitions in the circuits 

do not have to be exponential. 

 

12.2 HTPN Building Blocks 

Consider the case when a building block has only holding durations. In this case Ii(∞) and 

Jj(∞) are the relative firing probabilities that transitions ci and sj. Clearly, from the derivation 

of the result in Theorem 12.1, this result holds for the special case of HTPN building blocks.  
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As with the definition of HTPNs as a sub-class of STPNs in Section 6.2, there is a need to 

determine the meaning of Ii(τ) and Jj(τ). This redefinition is very similar to these earlier cases. 

These two functions take the form of step functions each taking a value of zero for τ < 0 and 

the values of Ii(∞) and Jj(∞) for τ ≥ 0. Thus, the derivative of these functions is the Dirac delta 

centred at zero. Placing this into the result in Theorem 12.2, gives the equivalent result for 

HTPNs. 

 

Corollary 12.6 

The mean conditional first-passage reward for state k of a HTPN decision process building 

block is given by 
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Further, if the reward is time then Corollary 12.3 simplifies to give the following result. 

Corollary 12.7 

The mean conditional absorption time in a state k of a HTPN decision process building block 

is given by 
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12.3 ETPN Building Blocks 

Finally consider the case when the decision process building block has only enabling times. 

In this case the result in Theorem 12.1 holds directly. Also, as outlined in Part I,  

⎩
⎨
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≥τ
<τ

=τ
01
00

)(H ic  and 

⎩
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≥τ
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=τ
01
00
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Thus for this special case Theorem 12.2 can be rewritten to allow for zero holding times. 

 

Corollary 12.8 

The mean conditional absorption reward for state k of an ETPN decision process building 

block is given by 
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Similarly the result were rewards relate to time can be given. 

 

Corollary 12.9 

The mean conditional absorption time for state j of an ETPN decision process building block 

is given by 
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where εi is the sum of the mean enabling times of the transitions in the ith circuit excluding the 

first transition. 
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12.4 Example of Decision Process Analysis 

The decision process shown in Figure 9.1 will now be used to illustrate the application of the 

results in this section. Some sample time functions for this STPN are given in Table 12.1. The 

enabling durations of transitions t1 to t4 relate to the time spent by the friendly unit searching 

for its target. In the case of t4 more time is spent searching as the unit knows that once the 

decision to rest is made the search will not resume for a relatively long period of time. Due to 

the exponential distribution being selected for these transitions, the mean time before one of 

the transitions t1 to t4 fires is the reciprocal of the sum of the rates of the enabled transitions. 

Thus the individual rates of the transitions really reflect only the relative probability of a 

certain transition firing. The holding duration of transition t1 reflects the time it takes for the 

friendly unit to be neutralised by the enemy. The holding duration of transition t2 relates to 

the time the unit spends preparing to attack the target. The holding duration of t3 is the time 

taken to determine where next to search for the enemy. The holding duration of transition t4 is 

the time spent making camp, resting and breaking camp. The enabling durations of 

transitions t5 to t7 are the times spent in battle between the friendly unit and the target. If no 

outcome is reached then the holding duration of t7 is the time between direct exchanges. If the 

friendly unit is neutralised then the holding duration of transition t5 is the time taken to 

confirm the neutralisation of the friendly unit and vice versa in the case of transition t6. Due 

to the fact that the result is independent of enabling time distribution functions of transitions 

internal to a circuit no distribution is given for the enabling distribution of transition t8. The 

enabling time of this transition relates to the time spent resting and the holding time to the 

time taken to pack up camp and returning to the search. 
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Table 12.1: Sample mean durations for the STPN in Figure 9.1 

Transition Enabling duration, (λi)-1 or (µj)-1 Mean holding duration (s), τi or φj

 Distribution Parameters  

t1 Exponential µ1 = 1/5 φ1 = 10 

t2 Exponential µ2 = 1/5 φ2 = 10 

t3 Exponential λ3 = 1/5 τ3 = 5 

t4 Exponential λ4 = 1/50 τ4 = 50 

t5 Exponential µ5 = 1/10 φ5 = 10 

t6 Exponential µ6 = 1/10 φ6 = 10 

t7 Erlang α7 = 2, λ7 = 1/10 τ7 = 20 

t8 - λ8 = 1/50 τ8 = 100 

 

The results for the decision process building block shown in Figure 9.3(a) are given in 

Table 12.2. The results for the second decision process building block shown in Figure 9.3(b) 

are given in Table 12.3. For these tables the values for P(j) are calculated using 

Corollary 12.4 while those TI are calculated using Corollary 12.5. 
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Table 12.2: Results for STPN in Figure 9.3(a) with the values in Table 12.1 

Decision 

(state j is reached) 

Probability of reaching 

decision (P(j)) 

Mean conditional time to 

reach decision (Tj) 

The friendly unit was neutralised 

before it located the target (state 2). 

½ 7 

The target was found (state 3). ½ 7 

 

The results for the second decision process building block shown in Figure 9.3(b) are given in 

Table 12.3. The results in Table 12.3 are the values for the probability and mean conditional 

absorption time for the PN in Figure 9.3(b) where the initial marking is one token in place p3. 

Thus, these results relate only to this building block, not the overall model. 

 

Table 12.3: Results for STPN in Figure 9.3(b) for the values in Table 12.1 

Decision 

(state j is reached) 

Probability of reaching 

decision (P(j)) 

Mean conditional time 

to reach decision (Tj) 

The friendly unit was neutralised during 

the battle (state 5’). 

½ 10.2 

The mission was completed (state 6’). ½ 10.2 

 

As earlier the results in Table 12.3 are the values for the probability and mean time given for 

the PN in Figure 9.3(b) where the initial marking is one token in place p3. Thus, these results 

relate only to the movement of the token from place p3 to either place p5 or place p6. By 
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combining the results in Table 12.2 and Table 12.3 we can derive the overall results of the 

decision process shown in Figure 9.1. These are given in Table 12.4. 

Table 12.4: Results for STPN in Figure 9.1 for the values in Table 12.1 

Decision 

(state j is reached) 

Probability of reaching 

decision (P(j)) 

Mean conditional 

time to reach decision 

(Tp1) 

The friendly unit was neutralised 

before it found the target (state 2). 
2

1)2(P =  Tp1 = 7 

The friendly unit was neutralised 

during the battle (state 5). 
4

1)'5(P)3(P)5(P =×=  Tp1(3) + Tp3(5) = 17.2

The mission was completed (state 6). 
4

1)'6(P)3(P)6(P =×=  Tp1(3) + Tp3(6) = 17.2

12.5 Algorithm for Analysing a Decision Process 

An algorithm for analysing a STPN decision process can be established to calculate the 

absorption probability and mean conditional absorption reward for each absorbing state. 

 

In this algorithm two lists are used, the marking list and the absorption list. The marking list 

contains a list of markings (this list is not the complete reachability set) along with the 

absorption probabilities and mean conditional absorption rewards for each of these markings. 

These values are referred to as the local absorption probabilities and local mean conditional 

absorption rewards as the markings they relate to may not be absorption markings, but rather 

the initial place of the next building block. The absorption list is the algorithm output and 

takes a similar form to the marking list but contains only the absorption probabilities and 
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mean conditional absorption rewards of the absorbing markings. If the local absorption 

probabilities and local mean conditional absorption rewards of other markings in the marking 

list are of interest then these can also be retained. 

 

The algorithm is as follows. 

1 Start with the initial marking in the marking list. 

2 Set the local absorption probability of the initial marking to be 1 and its mean 

conditional absorbing reward to 0. 

3 For each marking, M, in the marking list: 

3.1 Determine all the circuits involving the current marking. The first transition of 

each circuit is a transition in C. 

3.2 Calculate the mean reward gained in each of the circuits. These are the 

values in Corollary 12.2. 

icR  

3.3 Determine all the transitions enabled by M but not in C. These transitions make 

up A. 

3.4 For each immediately reachable marking, M’, reached by the firing of an s 

transition: 

3.4.1 Add this marking to the marking list. 

3.4.2 Apply Theorem 12.1 to calculate the absorption probability of this 

immediately reachable marking. 

3.4.3 Apply Corollary 12.2 to calculate the mean conditional absorption 

reward for this marking. 

3.4.4 Multiply the absorption probability, given by step 3.4.2, by the local 

probability of M, to get the local absorption probability of M’. 
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3.4.5 Add the mean conditional absorption reward, given in step 3.4.3, to the 

local mean conditional absorption reward of M, to get the local mean 

conditional absorption reward of M’. 

3.5 If there are no transitions enabled by M, the local absorption probability and 

local mean conditional absorption reward along with M are stored in the 

absorption list as the absorption probability and mean conditional absorption 

reward of the absorbing state M. 

3.6 Remove M from the marking list. 

4 Read off from the absorption probabilities and mean conditional absorption rewards 

for the absorbing states given in the absorption list. 

 

This algorithm can be simplified if all circuits are reduced to loops before the process begins. 

This will simplify step 3.1 by requiring only the search for loops. 

 

One of the problems with this algorithm is that it does not allow for more complex circuits. 

The next chapter looks at this problem. 
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CHAPTER 13 EXTENDING THE BASIC BUILDING 

BLOCK 

This chapter considers how to analyse some extended building blocks. Initially Corollary 12.1 

and Corollary 12.2 are used to reduce complex C elements to loops. Next the problem of the 

C system containing absorbing states is considered. Finally the case when there is more than 

one path to an absorbing place is dealt with. 

13.1 Reducing More Complex Circuits 

In the previous sections the C system was made up of simple circuits, as shown in Figure 9.2. 

As outlined in Section 12.5 simple circuits could be reduced to loops using the holding 

duration component of the STPN. This was a very simple case of net reduction which was 

made possible by the time representation used. This section considers reduction of more 

complex C systems to single loops using Corollary 12.2. Consider the case where a circuit has 

within it a number of circuits. Figure 13.1 shows an example of such a STPN. 

 

To help describe how such STPNs can be reduced and thus analysed in the same way as those 

defined earlier, some terminology will now be introduced.  

 

Definition 13.1: Branching place 

A branching place is a place which is the input to more than one transition. That is, if the 

number of elements in the set of output transitions, p•, for place p is greater than 1, then p is a 

branching place. 
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In Figure 13.1 places p1, p4 and p5 are branching places.  

 

p4t3

p2

p3p1 t2

t1

t5

t4 p5

t6

t7

 

Figure 13.1: Example of sub-circuits 

 

Definition 13.2: Sub-branching place 

The branching place p’ is a sub-branching place with respect to place p, if there exists a 

marking M in a circuit with the initial marking M0 (≠M) such that M0(p)≠0 and M(p’)≠0. So a 

sub-branching place is a place inside a circuit which starts at a marking for which the 

sub-branching place has no tokens. 
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In Figure 13.1 places p4 and p5 are sub-branching places with respect to p1 since both are 

branching places and part of the c3 part of the STPN12. There is some symmetry in this 

definition in that a sub-branching place of a branching place has the original branching place 

as a sub-branching place. 

 

Definition 13.3: Sub-circuit 

The circuit C’, with initial marking M’, is a sub-circuit of the circuit C, with initial marking 

M, if M’∈C\{M} and C’≠C. So a sub-circuit is a circuit within another circuit. 

 

It should be noted for the above definition to hold at least one place marked by the marking 

M’ must be a branching place. Figure 13.1 has a number of sub-circuits. Consider the circuit 

c3 = {p1, t3, p4 ,t5}, where the place name, p, is given to represent the marking where there is 

a single token in place p13. This circuit has sub-circuit c4 = {p4, t4, p5, t6} which itself has the 

sub-circuit c7 = {p5, t7}. 

 

The process of removing sub-circuits may need to be applied several times to a circuit before 

all its sub-circuits are removed. Consider the simple circuit c’, with initial marking p, which is 

 

12 Thoughout this Chapter for brevity circuits will be referred to by their initial transition. 

Thus the circuit involving t3 is referred to as c3. 

13 The notation of using the place name to represent the marking can (and will) be used for all 

the STPN decision processes that will be considered in the remainder of this thesis. Although 

this is an abuse of notation it is convenient and makes many aspects of the descriptions easier 

to follow. When the meaning is unclear the marking will be explicitly stated. 
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a sub-circuit of the simple circuit c, so p∈c. Let t(∈c) and p’(∈c) be the transition and 

marking such that p[t>p’. Finally for place p let •p={t’}. The following steps will remove the 

sub-circuit c’. 

1. Use Corollary 12.2 to calculate the mean conditional absorption reward of p’ from p. 

2. Add the result from step 1 to the mean reward of circuit c. That is, this value is added 

to Rc. 

3. Set t’• = {p’}, removing c’ and t from the STPN. 

 

Although the above procedure has been applied to a sub-branching place with only one circuit 

to remove (c’ above), it is valid if there are multiple circuits that need to be removed. Also if 

there are multiple sub-circuits with different branching places these can be removed one at a 

time using the above procedure. 

 

Consider the circuit {p4, t4, p5, t6} and its sub-circuit {p5, t7} in Figure 13.1. To remove the 

sub-circuit the mean conditional absorption reward of p4 from p5 must be calculated. This is 

then added to the mean reward  gained in circuit c
4cR 4. Finally set t4• = {p4}, removing t7, t6 

and p4 from the STPN as shown in Figure 13.2. 

 

The above procedure can then be applied a second time to remove the inner circuit {p4, t4’} 

of the reduced net shown in Figure 13.2. After this next application of reduction the circuit 

will be a loop allowing Corollary 12.2 to be applied to the overall STPN to calculate the mean 

conditional absorption reward. The absorption probabilities are not changed by this reduction 

as it does not change any of the c or s transition enabling durations. 
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t1

t2

t3 p4

p1 p3

p2

t5

t4'

 

Figure 13.2: First reduction of the CTPN in Figure 13.1 

13.2 Absorbing States as Part of Circuits 

In the previous section the problem of circuits within circuits was considered. In this section 

this problem is taken one step further by allowing absorbing places and circuits as part of 

circuits. So as in the previous section the circuits can have sub-branching places in them, only 

now these branches may lead to absorbing states. To calculate the mean conditional 

absorption rewards, each branching process which can lead to an absorbing marking is 

considered separately. 

 

Consider the STPN shown in Figure 13.3 with the displayed marking. This STPN has three 

circuits: {p1, t3, p4, t8}, {p1, t4} and {p2, t5, p5, t9}. It has four absorbing states, represented 

by a token in place p3, p6, p7 or p8. 
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Figure 13.3: Example of an absorbing state within a circuit 

 

To help describe how to analyse STPNs with absorbing states as part of their circuits, some 

more definitions are helpful. 
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Definition 13.4: Non-re-enabling transition 

A non-re-enabling transition for the marking M is a transition that can fire only once for the 

given marking M. That is, transition t is non-re-enabling if it is enabled for some marking M 

and is never enabled for all markings in the set [ 'M , where [ 'MtM . 

 

By definition a non-re-enabling transition cannot be part of a circuit.  

 

In Figure 13.3 transitions t1, t2, t6, t7 and t10 are non-re-enabling transitions. Transitions t2, 

t6, t7 and t10 result in absorbing markings while transition t1 does not. If a transition is 

non-re-enabling for the initial marking then it is simply called non-re-enabling. 

 

Definition 13.5: Absorbing branching place 

An absorbing branching place is a branching place for which at least one of its output 

transitions is a non-re-enabling transition. Thus if for some non-re-enabling transition t∈p• 

and p•\t ≠ {∅} then p is an absorbing branching place. 

 

The set of absorbing branching places is a subset of the net’s branching places. The branching 

places, p1, p2, p4 and p5, in Figure 13.3 are all absorbing branching places, p1 because of 

transitions t1 and t2, p2 because of t6, p4 because of t7 and p5 because of t10. On the other 

hand, places p4 and p5 of Figure 13.1 are branching places but not absorbing branching 

places. 
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Definition 13.6: Initially marked place 

The place in a decision process which is initially marked is called the initially marked place. 

 

This definition can hold for either a building block or an entire net. For example, for the 

building blocks of the STPN in Figure 9.1, shown in Figure 9.3, the initially marked places 

are p1 and p3 while for the entire net the initially marked place is p1. The decision process 

building block shown in Figure 9.2 has the initially marked place I. 

 

Definition 13.7: Absorbing sub-branching place 

An absorbing sub-branching place with respect to place p is a sub-branching place with 

respect to p for which at least one of its output transitions is a non-re-enabling transition. 

 

The set of absorbing sub-branching places for a given STPN is a sub-set of the net’s 

sub-branching places.  

 

In Figure 13.3 place p4 is an absorbing sub-branching place with respect to place p1 and vice 

versa. Also place p5 is an absorbing sub-branching place with respect to place p2 and vice 

versa. Note that place p2 is not an absorbing sub-branching place with respect to place p1 as it 

is not part of a circuit involving p1. When the absorbing sub-branching place is with respect 

to the initially marked place, then it is referred to as an absorbing sub-branching place. So 

place p4 of both Figure 13.3 and Figure 13.4(a) are absorbing sub-branching places. Also 

place p5 of Figure 13.4(b) is an absorbing sub-branching place. 
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(a) First building block of Figure 13.3 (b) Second building block of Figure 13.3 

Figure 13.4: Building blocks of  the STPN in Figure 13.3 

 

Definition 13.8: Initial component 

The set containing the initially marked place and its absorbing sub-branching places is  called 

the initial component. 

 

In Figure 13.3 and Figure 13.4(a) the initial component is {p1, p4}. The STPN in 

Figure 13.4(b) the initial component {p2, p5}. 

 

The algorithm in Section 12.5 did not include any way of defining the decision process 

building blocks. This is because any STPN built from the decision process building blocks of 
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the form shown in Figure 9.2 is such that the algorithm automatically goes through each of its 

building blocks without explicitly defining them. This is also true in the case when circuits 

contain circuits as defined in Section 13.1. However, if there are absorbing sub-branching 

places then it is very important that the decomposition is carried out correctly. It is the 

decomposition that allows this extended structure to be analysed. 

 

The first step in analysing a STPN with absorbing places as part of its circuits is to divide the 

STPN into similar building blocks as described in Section Chapter 9. As before the central 

element of any building block is its initially marked place, shown as I in Figure 9.2. For the 

STPN in Figure 13.3, places p1 and p2 are the initially marked places of the two building 

blocks. Once these places have been determined the building blocks can be defined around 

them. 

 

For simplicity consider the case when the STPN’s initially marked place is an absorbing 

branching place. If this is not the case then the following process can be started at the first 

absorbing branching place reached. The building blocks can be constructed by using an 

algorithm based around the initially marked places. 

1 The STPN’s initially marked place is the initial entry in the initially marked place list. 

2 For each place, p, in the initially marked place list: 

2.1 The place p is the initially marked place of a newly formed building block. 

2.2 For each non-re-enabling transition enabled by a token in place p: 

2.2.1 This transition is added to the list of transitions in A for the building block. 

2.2.2 The output place of this transition is an absorbing place of the building 

block. 

2.2.3 The output place of this transition is added to the initially marked place list. 
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2.3 Any transition part of a possible firing sequence that does not contain a transition 

in R forms part of the C system of this building block. 

Thus each building block contains the initially marked place, all non-re-enabling transitions 

enabled by a token in this place and their output places, and all parts of the net that are in 

some way connected to the circuits of the initially marked place. Figure 13.4 shows the 

building block breakdown of the STPN shown in Figure 13.3. 

 

It should be noted that the building blocks are initially marking dependent. For example, if 

place p4 was the initially marked place of the STPN in Figure 13.3, then there would only be 

one building block involving the entire net. This is because the only one non-re-enabling 

transition is enabled when there is a token in place p4 and its output place is an absorbing 

place. 

 

Having determined the decision process building blocks, next each of the different absorbing 

processes within the building block is separated into different STPNs, referred to as 

components. Each element, p, of the initial component set forms a different component with p 

as its initially marked place. For each place, p’, which is an absorbing sub-branching-place 

with respect to p, all but one of p’ conflict transitions are removed. The transition that remains 

is the one in the circuit containing place p. 

 

Consider the building block shown in Figure 13.4(a). Since its initial component set has 2 

elements, p1 and p4, two components must be constructed. The first component, which has p1 

as its initially marked place, is shown in Figure 13.5(a). In this case the set of output 

transitions of the absorbing sub-branching place p4 is reduced to the single transition t8’. 
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Figure 13.5(b) shows the second component, which has p4 as its initially marked place and 

the absorbing sub-branching place p1, has all its output transitions except for t3 removed. 

 

t2

t4

t3 p4

p1

t1

p3

p2

t8'

 

 

 

t3'p4 t8

t7
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(a) First component of Figure 13.4(a) (b) Second component of Figure 13.4(a) 

Figure 13.5: Two components of STPN in Figure 13.4(a) 

 

The removed transitions cannot be ignored as they will influence the reward gained from the 

circuit, as well as change the probability of reaching a given absorbing marking. Thus the 

probability of staying in the circuit must be calculated along with the mean reward gained in 

the circuit conditional on staying in the circuit. 
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The best time to calculate the influence of the removed part of the net is during its removal. 

This is done by considering the initial component of each building block. Let t be the 

transition that is not removed in the construction of the component STPN and pt be the output 

place of this transition. What needs to be calculated is the probability of firing transition t1 

(given by Corollary 12.1) and mean conditional absorption reward of place pt (given by 

Corollary 12.2). The absorption probability calculated here is the probability of remaining 

within the circuit. This process may be repeated multiple times. Each time it is repeated the 

different absorbing probabilities are multiplied by the value calculated so far to form an 

overall probability of remaining in the component. The mean conditional absorption reward in 

place pt is used in the component as the mean reward gained in the firing  of transition t. The 

application of Corollary 12.2 to the component (with the new mean reward gained by firing t) 

gives the mean conditional absorption reward of the absorbing places remaining in the 

component. When Corollary 12.1 is applied to the component the result is multiplied by the 

probability of remaining in the component to give the probability of absorption for each 

absorption place in the component. 

 

Consider the case when the absorbing branching place of a component is not the initially 

marked place of the building block. For example, the absorbing branching place of the 

component in Figure 13.5(b) is p4 while the initially marked place of this components 

building block is p1. In this case the mean conditional reward to get from the initially marked 

place of the building block to the absorbing branching place of the component must be added 

to the mean conditional absorption reward of the component. In Figure 13.5(b) this means the 

mean conditional reward gained by firing transition t3’ is added to the mean conditional 

absorption reward of p7 given by the component in Figure 13.5(b). As before a recursive 
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algorithm can be defined to determine the absorption probabilities and mean conditional 

absorption rewards of all absorbing branching places. 

 

There is one further matter to consider. In some cases the components must be broken into 

building blocks and then components. This breakdown must continue until the system is in a 

form that can be analysed. Consider once more the STPN in Figure 13.3 where the initially 

marked place is p4. In this case initially there is only one building block which becomes the 

two components shown in Figure 13.6. Clearly the component shown in Figure 13.6(b) is 

made up of two building blocks with the initially marked places p1 and p2. The second 

building block of this component is made up of two components. This illustrates how such a 

breakdown may occur. 
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(a) First component (b) Second component 

Figure 13.6: Components of the STPN in Figure 13.3 with initially marked place p4 

 

13.3 Crossovers 

Consider the case when there is more than one non-re-enabling transition that has the same 

output place. This is a situation that has not been considered yet, but, it is not difficult to 

allow for. Indeed this has already been done implicitly in a number of places. To illustrate this 

consider the STPN in Figure 13.7. In this example the absorbing branching place p3 can be 
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reached by the two non-re-enabling transitions t1 and t4. Once more some definitions will 

make it easier to describe how to analyse this type of structure. 

 

p3
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t7

t8 p6
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Figure 13.7: STPN with crossover place 

 

Definition 13.9: Crossover place 

A crossover place is a place that is the output place of more than one non-re-enabling 

transition. 

 

Crossover places can be identified by considering the number of input transitions associated 

with a branching place. Given that the circuits of a STPN have been reduced to loops, then a 

place is a crossover place if there exists t and t’∈T, where t ≠ t’, such that 
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W(t, p) = W(t’, p) = 1 and W(p, t) = W(p, t’) = 0. Clearly p3 in Figure 13.7 is a crossover 

place since W(t1, p3) = W(t4, p3) = 1 and W(p3, t1) = W(p3, t4) = 0. 

 

From now on a building block will be referred to by its initially marked place. Thus the 

building block in Figure 9.3(a) is referred to as the p1 building block. 

 

Definition 13.10: Upstream building block 

An upstream building block with respect to the place p is a building block for which p is an 

absorbing place. 

 

Also define a relation f such that p f p’ if the building block p is upstream with respect to p’. 

 

This definition holds not only for STPNs with crossover places but for all STPNs. The only 

difference here is that now there may be more than one upstream building block while 

previously there was a maximum of one. The STPN in Figure 9.1 has two building blocks, 

shown in Figure 9.2, and clearly the p1 building block is an upstream building block with 

respect to place p3. Thus p1 f p3. 

 

The first step in analysing a decision processes with crossover places is the same as before, to 

break the STPN into its different building blocks. The building blocks of the STPN in 

Figure 13.7 are shown in Figure 13.8. Once the building blocks have been determined they 

can be analysed independently, as was done in Chapter 12, using Corollary 12.1 and 

Corollary 12.2 to determine the local absorption probabilities and mean conditional 

absorption rewards. 



Chapter 13   Extending the Basic Building Block 
 

 

p3

p1

t1

t2

t3

p2

 

p3

p2

t4

t5

t6

p4

 

 

 

p3

t7

t8 p6

p5

 

(a) First building block (b) Second building block (c) Third building 
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Figure 13.8: Building blocks for STPN in Figure 13.7 

 

Next the building blocks are ordered. The main aim in this step is to determine which building 

blocks are upstream of each other building block and thus how to combine analysis of the 

individual building blocks to give the overall absorption probabilities and mean conditional 

absorption rewards. 

 

Clearly for the STPN in Figure 13.7 p1 f p2, p1 f p3 and p2 f p3. So to calculate the 

absorption probabilities and mean conditional absorption rewards of the absorbing places of 

building block p3 the fact that p3 can be reached via more than one other building block must 

be considered. That is, to calculate the absorption probability and mean conditional 

absorption reward of places p5 and p6 all three building blocks must be considered while to 

calculate the same values for p4 only building blocks p1 and p2 need to be considered.  
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The absorption probability of place p is given by adding the local absorption probability of p 

for each of the building blocks that are upstream with respect to p. Thus in the case of the 

building block in Figure 13.8(c) this means adding the local absorption probability of 

place p3 from building block p1 and building block p2. In the case of building block p2 this is 

the product of the absorption probability of place p2 from building block p1 and the 

absorption probability of place p3 for building block p2. Thus 

P(p3) = P(p3 from p1) + P(p2 from p1) * P(p3 from p2), 

where P(p from p’) is the absorption probability of place p for building block p’. 

 

The mean conditional absorption reward of place p is given by summing the mean conditional 

absorption rewards of p for each of its upstream building blocks multiplied by the probability 

of taking that route to p. So for the building block in Figure 13.8(c) this is a combination of 

the local mean conditional absorption reward of place p3 directly from building block p1 and 

the mean reward via building block p2. Thus 

E[p3] = E[p3 from p1] * P(p3 from p1) + 

 (E[p3 form p2] + E[p2]) * P(p2 from p1) * P(p3 from p2), 

where E[p from p’] is the mean conditional first-hitting reward of p in the building block p’. 

 

Thus to analyse a STPN decision process with crossovers it is a matter of first ordering the 

building blocks and then combining the local absorbing probabilities and local mean 

conditional absorption rewards in the appropriate manner to get the overall values. 
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CHAPTER 14 PART II CONCLUDING REMARKS 

Unfortunately the direct analysis techniques developed in this part can be used only for a sub-

class of STPNs. When a decision process cannot be modelled using the decision process 

building blocks, then the direct analysis techniques cannot be used for this part of the model. 

The best way around this is to aggregate the non-conforming actions into a single action so 

that the building block structure can be maintained. The aggregated actions must first be 

analysed separately so that their properties are not lost. Hopefully this analysis can be done 

directly on the STPN model. If this is not possible then the state space has to be used. To aid 

in the analysis of such state spaces some useful results have been given. These results define 

how to calculate the absorption probabilities and mean conditional absorption times of 

discrete, continuous and semi-Markov chains. The results can also be used to analyse a 

general STPN provided the process it defines on its state space forms a Markov chain. 

 

There is one final analysis method that should be mentioned. This is the use of simulation. 

Although not ideal it should be recognised as a useful way of analysing large models that can 

not be dealt with any other way. 
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CHAPTER 15 CONCLUSIONS 

The aim of this thesis is to present a way of modelling and analysing the decision processes of 

command and control systems. To do this required a modelling technique that could represent 

variable outcomes for the same initial state, timed and non-timed events, modular design, 

concurrent and sequential activities and resource sharing. The first three of these issues were 

of particular interest and were the focus of the work presented.  

 

Part I presented a comprehensive study of the ways of representing time in PNs. It presented a 

unified way of representing time in PNs through so-called STPNs. This representation can 

represent both HTPNs and ETPNs in a very flexible way. The STPN is then extended to 

include rewards to allow more general costs to be modelled. The decision process building 

block was then introduced as a STPN model. This is the basic building block used to build up 

a complex series of decisions. 

 

The other issue considered in this thesis was determining ways of analysing the decision 

process building blocks. Two areas of interest were identified: course of action analysis and 

model validation.  

 

The first of these looks at the problem of determining the best course of action. To do this 

there needs to be a way of determining the cost of making a certain set of decisions. Thus the 

average cost of reaching a certain state, given it is reached, for a model of the decision 

process needs to be calculated. Thus theories and techniques for determining the mean 

conditional absorption reward were developed. 
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The other area of interest is the validation of decision process models that are to be used as 

part of larger simulations and models. In the case of validating models there needs to be a way 

of comparing the model to the real system. Two good measures for this are the probability of 

reaching a given state and the mean time it takes to reach a state for the first time, given it is 

reached. Due to the general approach of using rewards, the theory required for the mean 

conditional absorption time is simply a special case of rewards. In addition, theories and 

techniques for calculating the absorption probability for decision processes were developed. 

 

An appealing feature of the results is that they hold in a more general setting. In fact the mean 

conditional absorption results are actually results for the mean condition first-hitting reward 

and time. This means that these results are not restricted to absorption states, which is useful 

when considering ways of extending how decision process building blocks are combined, as 

covered towards the end of the thesis. 

 

One of the problems with the decision process building block analysis is that it relates only to 

a restrictive class of STPNs. This is an issue often faced by analysis methods applied directly 

to a PN instead of its state space. However, this has been covered by the fact that the 

calculation of the mean conditional first-hitting reward for discrete, continuous and 

semi-Markov chains has also been developed in this thesis. This appears to be a completely 

new area of analysis for Markov chains and although not presented here can most likely be 

extended to more general Markovian processes. The Markov chain results mean that provided 

the process defined on the state space of a model is a Markov chain it is possible to give 

equations prescribing the required results. Also due to the modular modelling approach taken 

it is only those modules of the net that do not conform to the building block that need to be 
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analysed through their state spaces. Of cause if all else fails then simulation can be used to 

help determine the desired values. 

 

Clearly there are still some areas of future work. These relate to the extension of the analysis 

to a wider range of problems.  

 

As stated earlier, this thesis has focused on three of the five modelling capabilities required. 

The two that have been largely unconsidered are those of concurrency and resource sharing. 

These issues are certainly catered for in STPNs models but the analysis results presented to 

date do not allow for them. Thus if one wishes to have these features represented then the 

analysis needs to be carried out on the state space. It is hoped that more direct analysis 

techniques can be explored. Also, as alluded to earlier there is potential to extend the Markov 

chain results to a larger range of Markovian systems. This will also further extend the types of 

models that can be analysed.  

 

One of the issues with the use of STPNs is that the models can become very large. 

Management of these large models then becomes an issue. This is partially dealt with through 

using a modular design approach but can still result in complex and hard-to-manage models. 

This is a general problem with PNs which is a major motivation for the development of high 

level PNs. The aim is to extend both the time representation and analysis results in this thesis 

to high level PNs. 

 

Finally on the validation side of the analysis there is a need to implement these results with a 

tool such as that described in [28]. This would further enhance the ability of an expert to 

determine if the model is a valid representation of the process being modelled. Such a tool 
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would also be an ideal way of implementing the general analysis techniques presented in this 

thesis. 

 

Although this thesis has focused on the modelling of decision processes the results are not 

seen to be tied to this application. There are many systems for which the STPN structure 

would provide a good modelling technique. Also the mean conditional first-hitting reward is 

applicable not only to decision processes, but also to any system where there is an interest in 

the mean reward to reach a given state where there is no certainty that the state of interest will 

be reached. 



 

APPENDIX I  FIRING TIME PETRI NETS 

I.1  Firing Durations Definition 

The use of firing durations to represent time in PNs was introduced by Ramchandani ([143]) 

and has since been used in [81], [121], [142], [166], [167], [182] and [184] and many other 

papers. In firing time Petri nets (FTPN) firing durations are associated with the transitions. 

These values relate to the times taken for the events, represented by the transitions, to occur. 

To illustrate how FTPNs work, consider the example in Figure I.1, which depicts a simple 

FTPN with deterministic firing durations (Dd) associated with each of its transitions. 

 

(a) Initial state
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Figure I.1 TPN with firing durations 
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Figure I.1(a) shows the initial state of the FTPN. The FTPN shown in Figure I.1(a) is 

structurally the same as the HTPN in Figure 3.1(a). With this initial marking transition t1 is 

enabled and as expressed above immediately begins to fire, removing the tokens from the 

input places, p1 and p2. This state is shown in Figure I.1(b). In Figure I.1 a filled transition 

indicates a transition in the process of firing. Transition t1 completes firing when τ = 1, at 

which time the output tokens are created, in this case a single token in place p3 (see 

Figure I.1(c)). Transition t2 is now enabled. In the case of the HTPN this is due to the tokens 

becoming available at this time while for the FTPN the enabling of t2 was due to the token 

being created in place p3 at this time. Transition t2 now goes through a similar process as 

described for the firing of transition t1, as shown in Figure I.1(d) and (e). Thus the final state 

and the time it is reached are the same as that for the HTPN example in Figure 3.1. 
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ts firing.  

Changes to the PN semantics resulting from the introduction of firing times can be seen from 

the simple example in Figure I.1. Not only have the PN execution rules changed from those of 

a PN, but also new states are created. These new states are shown in Figure I.1(b) and 

Figure I.1(d). This creates a need to redefine the state space (reachability graph) generated by 

the PN. Each state of a FTPN is now defined not only by the marking, but also by the 

condition of its transitions. Thus the marking can be considered to be made up of two parts; 

the number of tokens in each place, PM, and the firing time of each transition, FM. So PM is a 

mapping: P→ +
0 . Also Z FM is a mapping: T→ρ, where FM(t) gives the time at which 

transition t completes i

 

As with the other TPNs, a FTPN can be represented by a multi-tuple. In this case the 6-tuple 

FTPN = (P, T, W, D, M0) 
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can be used. In this definition P, T, W and D are as given in the main part of the text. In this 

case the duration functions are associated with the transitions. As with other TPNs, M0 is the 

initial marking of the FTPN, only now it is the union of the PM0 and FM0, where for place 

p∈P, PM0(p) is the initial number of tokens in place p and for transition t∈T, FM0(t) is the 

time at which the transition t completes firing. In general FM0 will be infinity for all the 

transitions, that is, initially none of the transitions are in the process of firing. Thus the TPN 

in Figure I.1 has the tuple definition: 

P = {p1, p2, p3, p4},  

T = {t1, t2},  

W(p1, t1) = 1, W(p2, t1) = 1, W(t1, p3) = 1, W(p3, t2) = 1, W(t2, p4) = 1, 

Dd(t1) = 1, Dd(t2) = 4, 

PM0(p1) = 1, PM0(p2) = 1. 

As before weighted flows of zero and the marking of places with no tokens are not included 

in the definition. Also only the finite FM0 elements of any marking are given in the FTPN 

tuple definition. 

 

The semantics of FTPNs can be defined using the above tuple representation. The enabling of 

the transitions requires two conditions to hold. The first is the same as for PNs, that is, 

for all p∈•t,     PM(p) ≥ W(p, t). 

The second condition requires the transition not to be currently firing, that is, 

for t∈T,     FM(t) is not defined. 

Thus a transition is enabled if there are sufficient tokens in the input place (as with PNs) and 

it is not currently in the process of firing. 
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The firing of transition t enabled at time x is done in two stages. First at time x when the 

transition becomes enabled the marking is changed so that 

for all p∈•t,     PM’(p) = PM(p)-W(p, t) and  

FM’(t) = x+y, where y is the firing time of transition t and is generated by the duration 

function D(t). 

So once a transition is enabled it begins to fire by removing the specified tokens from its input 

places and sets the firing time of the transition to form the new marking. The second stage of 

firing occurs at time FM’(t) and is defined by 

for all p∈t•,     PM”(p) = PM’(p)+W(t, p) and  

FM”(t) is not defined. 

Thus once the firing time has been reached, the output tokens are created in the output places 

and the transition’s firing time is set to infinity. The first step in this process will be referred 

to as the start of the firing of the transition and the second as the end of the firing of the 

transition. It should be noted that there is the possibility that the end of the firing of a 

transition, t say, may not be the event to that directly follows the start of firing transition t. 

That is, if enabled (firing), another transition may begin (end) firing during the firing process 

of transition t. 

 

The above definition is the one found in the majority of the literature and assumes that the 

same transition cannot be enabled while it is in the process of firing, that is, concurrent firings 

of the same transition cannot occur. Some papers, such as [166] and [167], allow for this but 

they are in the minority. To allow for concurrent firings of the same transition FM must map 

to multiple firing times. Thus, FM is now a mapping from T to a multi-set of firing times. The 

semantics must also be changed. First the second enabling condition, relating to FM, is 
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removed. The firing definition is now such that if transition t is enabled at time x, then the 

first stage of the transition firing is defined by 

for all p∈•t,     PM’(p) = PM(p) - W(p, t) and 

FM’(t) = FM(t) ∪ {x+y}, where y is as defined earlier. 

Thus the first part is the same as before except now the transition part of the marking can 

have multiple entries for a given transition. The second stage of the firing is defined to occur 

at x+y by 

for all p ∈ t•,     PM”(p) = PM’(p) + W(t, p) and  

FM’(t) = FM(t)\{x+y}. 

 

Assigning holding durations to transitions is the same way of representing time as firing 

durations, the only difference being that in FTPNs the output tokens are ‘held’ in the 

transitions, while in HTPNs they are ‘held’ in the places. From this point on there will be no 

distinction made between holding and firing durations. Holding durations will be used as they 

have greater flexibility in their representation allowing the assignment of time to transitions, 

places or output arcs. 

 

I.2  Comparing Firing and Holding Durations. 

The equivalence of these two representations can be shown using the respective state space 

definitions. Consider the case where there are two TPNs, one a FTPN and the other a HTPN, 

with equivalent definitions of  P, T, W and D. In this case clearly PM of the FTPN marking 

definition is equivalent to AM of the HTPN marking definition. The only thing that needs to 

be shown is that an equivalence transformation exists to transform FM of the FTPN definition 

to UM of the HTPN definition and vice versa. 
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First consider the transformation from FM to UM. Define the transformation function F2H 

which maps FM to UM. This function is defined such that, for all t∈T and s∈FM(t), F2H(t, s) 

creates the element (W(t, p), s) in UM(p) for each p∈t•. Thus any FTPN state space can be 

transformed into the equivalent HTPN state space. 

 

The transformation in the other direction cannot be defined quite as easily. In fact the function 

from UM to FM, H2F, cannot be defined unless the definition of UM is expanded to include the 

transition that created each entry in UM. If this is include,d then H2F is defined so for each set 

t• the set of elements (W(t, •), s, t) of UM, where there is one element from UM is removed for 

each p∈t•, is mapped such that the element s is added to FM(t). Thus one element is removed 

from the UM for each output place of the transition t. These elements must each have the same 

time at which their tokens become available, the same creator transition t and a weight given 

by W(t, •). 
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