Design of a Direct Downconversion Receiver for IEEE802.11a WLAN

by

Yingbo Zhu

B.S.(Physics) (The University of Science and Technology of China) 1994

Thesis submitted for the degree of

Doctor of Philosophy

in

Department of Electrical and Electronic Engineering, School of Engineering, Computer and Mathematical Sciences

University of Adelaide, Australia

2007

© Copyright 2007 Yingbo Zhu All Rights Reserved

Typeset in $\operatorname{{}\!PTE} X \, 2_{\operatorname{\mathcal{E}}}$ Yingbo Zhu

Contents

Contents	iii
Abstract	vii
Statement of Originality	ix
Acknowledgements	xi
List of Figures	xiii
List of Tables	xxi
List of Abbreviations	ххііі
Chapter 1. Introduction	1
1.1 Motivation \ldots	1
1.2 Thesis Organisation	4
1.3 Publications	5
Chapter 2. Receiver Architectures	7
2.1 Introduction	7
2.2 Heterodyne	8

2.3	Image-	Rejection Mixer and Low-IF Architectures	10
2.4	Direct	Downconversion Architecture: Chances and Challenges	14
2.5	Summa	ary	18
Chapte	r 3. IE	EE802.11a Receiver System Level Analysis	21
3.1	Introdu	action	21
3.2	IEEE8	02.11a Physical Link	21
3.3	Pulse S	Shaping and Raised Cosine-Rolloff Filter	25
3.4	Therm	al Noise	30
3.5	Flicker	Noise	32
3.6	Phase	Noise	36
3.7	Quadra	ature Mismatch	39
3.8	Summa	ary	42
Chapte	r 4. Re	ceiver Circuit Design	45
Chapte 4.1	r 4. Re Introdu	ceiver Circuit Design	45
Chapte 4.1 4.2	r 4. Re Introdu From 7	ceiver Circuit Design action	45 45 46
Chapte 4.1 4.2	r 4. Re Introdu From 7 4.2.1	ceiver Circuit Design action Inction Che Classic Two-Port Network Noise Theory to The LNA Design The Classic Two-Port Network Noise Theory and The Noise Figure Prediction	45 45 46 46
Chapte 4.1 4.2	r 4. Re Introdu From 7 4.2.1 4.2.2	ceiver Circuit Design action Inction The Classic Two-Port Network Noise Theory to The LNA Design The Classic Two-Port Network Noise Theory and The Noise Figure Prediction Vod and Ids constrained LNA Design Methodologies	 45 46 50
Chapte 4.1 4.2	r 4. Re Introdu From 7 4.2.1 4.2.2 4.2.3	ceiver Circuit Design action The Classic Two-Port Network Noise Theory to The LNA Design The Classic Two-Port Network Noise Theory and The Noise Figure Prediction Vod and Ids constrained LNA Design Methodologies (Ids, Qin) Constrained Design Methodology	 45 45 46 50 57
Chapte 4.1 4.2 4.3	r 4. Re Introdu From 7 4.2.1 4.2.2 4.2.3 Mixer 1	ceiver Circuit Design action Inction The Classic Two-Port Network Noise Theory to The LNA Design The Classic Two-Port Network Noise Theory and The Noise Figure Prediction Vod and Ids constrained LNA Design Methodologies (Ids, Qin) Constrained Design Methodology Design	 45 45 46 50 57 64
Chapte 4.1 4.2 4.3	r 4. Re Introdu From 7 4.2.1 4.2.2 4.2.3 Mixer 7 4.3.1	ceiver Circuit Design action The Classic Two-Port Network Noise Theory to The LNA Design The Classic Two-Port Network Noise Theory and The Noise Figure Prediction Vod and Ids constrained LNA Design Methodologies (Ids, Qin) Constrained Design Methodology Design Conversion Gain of a Gilbert Mixer	 45 45 46 50 57 64 66
Chapte 4.1 4.2 4.3	r 4. Re Introdu From 7 4.2.1 4.2.2 4.2.3 Mixer 7 4.3.1 4.3.2	ceiver Circuit Design action The Classic Two-Port Network Noise Theory to The LNA Design The Classic Two-Port Network Noise Theory and The Noise Figure Prediction Vod and Ids constrained LNA Design Methodologies (Ids, Qin) Constrained Design Methodology Design Conversion Gain of a Gilbert Mixer Flicker Noise In a Gilbert Mixer	 45 45 46 50 57 64 66 69
Chapte 4.1 4.2 4.3	r 4. Re Introdu From 7 4.2.1 4.2.2 4.2.3 Mixer 7 4.3.1 4.3.2 4.3.3	ceiver Circuit Design action Inction The Classic Two-Port Network Noise Theory to The LNA Design The Classic Two-Port Network Noise Theory and The Noise Figure Prediction Vod and I_{ds} constrained LNA Design Methodologies (I_{ds}, Q_{in}) Constrained Design Methodology Design Conversion Gain of a Gilbert Mixer Flicker Noise In a Gilbert Mixer Circuit Design of a 5.25 GHz Gilbert Mixer with inductor degeneration	 45 45 46 50 57 64 66 69 74

Contents

4.5	Chann	el-selection Filter Design	82
4.6	Summ	ary	85
Chapte	r 5. Si	gma-Delta ADC Fundamentals	89
5.1	Introd	uction \ldots	89
5.2	Quant	isation Noise and Noise Shaping	90
	5.2.1	White Noise Approximation	91
	5.2.2	SNR and Oversampling	92
	5.2.3	Noise Shaping and Sigma-Delta Modulation	93
5.3	Discre	te-Time NTF Synthesis	97
5.4	Simula	ations and Spectrum Analysis	103
	5.4.1	Simulations in State-Space	103
	5.4.2	Simulations using SIMULINK	106
	5.4.3	Spectrum Analysis	108
5.5	Bandp	ass Sigma-Delta Modulators	112
5.6	Variab	ele Centre Frequency Bandpass Sigma-Delta Modulators	117
5.7	Contir	nuous-Time Sigma Delta Modulators	128
	5.7.1	CT SDM with NRZ DAC Pulse	129
	5.7.2	CT SDM with RZ DAC Pulse	131
	5.7.3	Distributed feedback CT SDM	134
5.8	Summ	ary	137
Chapte	r 6. Do	esign of a 1 GHz Lowpass Sigma-Delta Modulator	139
6.1	Introd	uction	139
6.2	System	a Level Analysis and NTF Synthesis	140
6.3	Loop l	Filter Design	146

6.4	High Speed Quantiser Design	150
6.5	Modulator Simulations and Layout	152
6.6	Summary	156
Chapte	r 7. Summary and Future Work	157
7.1	Summary	157
7.2	Future Work	159
Appendix A 161		
Bibliog	Bibliography 16	

Abstract

Wireless communication technologies are no longer limited for voice band applications, but have entered the era for multimedia data link. The IEEE802.11 family, which occupies a bandwidth in the multi-mega hertz region with the highest data rate of 54 Mbps, now has become the most widely deployed wireless LAN standards. The rapid adoption of IEEE802.11 for computer wireless networks and their growing popularity in mobile applications highlight the need for a low cost, low power consumption, and monolithic solution.

To meet this challenge, traditional RF techniques, which revolved around the superheterodyne architecture can no longer be used. On the contrary, new receiver frontend architectures need to be developed to satisfy the demand of system level integration. Direct downconversion receivers directly translate the RF spectrum to the baseband by setting the LO frequency equal to the RF. Due to the single frequency translation, expensive and bulky off-chip filters and 50 ohm I/O matching networks at IF are no longer required. Also, the single-stage quadrature mixers further simplify the receiver design and reduce the power dissipation. Subsequent baseband components and ADCs are also possible to be integrated with the RF frontend to achieve a monolithic receiver chip.

Despite the previously mentioned advantages, the implementation of a direct downconversion receiver has its own set of performance challenges. In particular, the performance is plagued by DC offset, flicker noise, linearity and mismatches etc. The main objective of this project is to investigate the feasibility of using direct downconversion architecture for the IEEE802.11a standard, and implement the design in a 0.18 µm CMOS technology.

By approaching the design issue at a theoretic point of view, extensive modeling and simulations based on a SIMULINK IEEE802.11a physical layer theme have been carried

Abstract

out to evaluate the receiver performance. SER results of the receiver demonstrate that the impairments associated with zero IF can be minimised to an acceptable level. Under the guidance of the system level analysis, the circuit level design of a monolithic direct downconversion receiver has been implemented in a 0.18 µm RF CMOS process, including the building blocks of an LNA, mixer, baseband amplifier and a channel-selection filter. Particularly, a novel LNA design methodology with an improved noise figure and less power consumption has been developed. The mixer conversion gain and phase noise have been analysed by a novel approach. The combination topology of the highpass DC offset removal filter and the baseband amplifier provids the best linearity with a negligible noise figure degradation. Circuit simulations are performed using the foundry provided RF design kit with enhanced noise models to capture the extra noise of passive and deep submicron devices. Circuit level simulations show a qualified receiver frontend for the IEEE802.11a standard.

As data converters are important building blocks in wireless receivers, research on high performance Sigma-Delta modulators is also included. MATLAB based programs have been developed for both the discrete and continuous time transfer function synthesis. A BPSDM chip with variable centre frequencies has been developed to verify the SDM transfer function algorithm and the design methodology. The design of an ultra fast continuous time SDM is particularly focused on for a broadband data conversion. To alleviate the challenge of the comparator speed limit, a novel noise transfer function with a unit clock delay has been synthesised. With such a delayed transfer function, a threestage comparator can be acheieved that solves the comparator gain and speed tradeoff. The full chip simulation shows an acceptable performance for the IEEE802.11a standard.

Statement of Originality

This work contains no material that has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of the thesis, when deposited in the University Library, being available for loan and photocopying.

Signed

Date

This page is blank

Acknowledgements

First of all, I would like to thank my supervisors Dr. Said Al-Sarawi and Mr. Michael Liebelt for offering me the great opportunity to study in ChipTec. They have provided me the freedom in choosing the research direction, inspiring discussions, and passionate encouragement.

Also I would like to acknowledge Kiet To, Bobby Yao and Tony Sarros for their cooperation in EDA tools setup and helpful discussions on wireless receiver and Sigma-Delta modulator areas.

The last but not the least, I would like to thank my parents and brother for their insistent encouragement. Also my wife Shunhui Xu and son Xinkai Zhu, without their patience, support and trust, it is not possible for me to pursue the fondness for research and design.

Yingbo Zhu

This page is blank

1.1	Spectrum allocation at 2.4 GHz ISM band	1
1.2	Spectrum allocation at 5 GHz band	2
2.1	RF spectrum with a weak desired signal and strong adjacent interferers	8
2.2	Heterodyne architecture	8
2.3	(a) Image issue and (b) channel-selection issue in heterodyne receivers	9
2.4	Trade-off between image-rejection and channel-selection. (a) High IF issue; (b) low IF issue	10
2.5	Image-rejection architectures. (a) Hartley; (b) Weaver	11
2.6	Low IF receiver architecture	13
2.7	GPS C/A band low-IF downconversion with a very weak image inside the P band.	13
2.8	Direct downconversion architecture block diagram	14
2.9	Design issues in the direct downconversion architecture	15
2.10	Spectrum of a raised-cosine filtered 10 MHz QPSK signal	16
2.11	SERs of a received 10 MHz QPSK signal with a 10 kHz and a 500 kHz highpass filtering	16
2.12	Receiver baseband noise spectrum and the highpass filter frequency response.	17
3.1	IEEE802.11a OFDM PHY frequency channel plan	22

3.2	IEEE802.11a PHY link. The zero-padding technique makes the direct downconversion architecture more feasible.	24
3.3	SERs of the 64-QAM modulated 802.11a PHY link with zero-padding technique.	25
3.4	Spectrum of a QPSK signal at baseband without pulse shaping	26
3.5	Inter symbol interference.	26
3.6	Discrete signal and zero ISI filtered output	28
3.7	(a) Impulse and (b) frequency responses of a raised cosine-rolloff filter with different α values	29
3.8	Raised cosine-rolloff filter approximation	29
3.9	Raised cosine-rolloff filtered QPSK signal. (a) Time domain waveform; (b) eye-diagram	30
3.10	Spectrum of a QPSK signal at the baseband. (a) Without pulse shaping; (b) raised cosine-rolloff filtered (α =0.3)	30
3.11	IEEE802.11a PHY link SIMULINK model for SER simulations	32
3.12	Simulated (symbols) and calculated (lines) SERs of the IEEE802.11a PHY link corrupted by the thermal noise.	32
3.13	PSDs of the flicker noise and the thermal noise.	34
3.14	Frequency response of the discrete filter of Eq. 3.18	34
3.15	Thermal noise source and the output flicker noise	35
3.16	Flicker noise PSD estimated by the averaged periodogram method. \ldots .	36
3.17	Simulated SERs of the IEEE802.11a PHY link corrupted by the flicker noise.	37
3.18	LO spectrum. (a) Ideal; (b) with the phase noise	37
3.19	Reciprocal mixing.	38
3.20	Constellation of a 64-QAM signal corrupted the phase noise with 2 degrees error	38

3.21	Simulated SER of the IEEE802.11a PHY link corrupted by the phase noise.	39
3.22	Downconversion with the I, Q gain mismatch.	40
3.23	Effect of the I, Q gain mismatch on a QPSK signal	40
3.24	Simulated SER of the IEEE802.11a PHY link corrupted by the I, Q gain mismatch	41
3.25	Downconversion with the I, Q phase mismatch.	41
3.26	Effect of the quadrature phase mismatch on a QPSK signal. \ldots	42
3.27	IEEE802.11a PHY link SIMULINK model for SER simulations corrupted by the phase mismatch	43
3.28	Simulated SER of the IEEE802.11a PHY link corrupted by the phase mis- match	43
4.1	Two-port network noise approximation	46
4.2	MOSFET minimum noise figure prediction	48
4.3	MOSFET minimum noise figures Vs. f_T at 2.4 GHz and 5.25 GHz	51
4.4	Schematic of a CS LNA	52
4.5	LNA impedance matching by L_g and L_s tuning	52
4.6	Input stage of the CS LNA for the noise figure calculation	53
4.7	V_{od} constrained noise figure optimisations at 2.4 GHz	56
4.8	I_{ds} constrained noise figure optimisations at 2.4 GHz	58
4.9	LNA input stage with an extra gate capacitor C_{ext}	59
4.10	(I_{ds}, Q_{in}) constrained noise figure optimisations at 2.4 GHz	60
4.11	(I_{ds}, Q_{in}) constrained noise figure optimisation of a 2.4 GHz LNA	61
4.12	(I_{ds}, Q_{in}) constrained noise figure optimisation of a 5.25 GHz LNA	62
4.13	LNA schematic for simulations.	64
4.14	Structure of the RF bond-pad provides C_{ext} and ground shield	65

4.15	Schematic of a CMOS passive mixer	65
4.16	Schematic of a single balanced Gilbert mixer.	66
4.17	Behaviour model of a single balanced Gilbert mixer	67
4.18	Mixer driven by an overlapped differential square-wave LO signal	68
4.19	Current leakage via C_P is cancelled by inductor L_D	69
4.20	Single balanced mixer with the current bleeding technique	70
4.21	Low frequency noise introduced by the mixer direct feed through	71
4.22	Switching transistor flicker noise self-modulation process	71
4.23	(a) Indirect switch noise process due to the parasitic capacitance at nodeP; (b) differential indirect switch noise model	73
4.24	Mixer LO signal jitter due to the flicker noise of the switching transistors	74
4.25	Schematic of the 5.25 GHz direct downconversion mixer	75
4.26	(a) LNA, mixer combination for the NF simulation; (b) broadband input matching for other mixer simulations.	76
4.27	(a) OTA-R and (b) OTA-C VGA architectures.	78
4.28	OTA-C amplifier and HPF with resused C_{in}	78
4.29	Single-stage OTAs. (a) Telescopic; (b) low voltage folded	79
4.30	Schematic of the two-stage low voltage OTA	79
4.31	Small signal model of the OTA half circuit	80
4.32	Simulated gain and phase responses of the two-stage OTA	81
4.33	Simulated frequency response of the VGA with different gains	82
4.34	Calculated frequency responses of (a) the 2nd-order Butterworth LPF, (b) the 4th-order Chebyshev II LPF, and (c) the combination of (a) and (b).	83
4.35	Block diagram of the channel-selection filter and the VGA	84
4.36	Simulated frequency response of the baseband circuit	84

4.37	Block diagram of the direct downconversion receiver
5.1	Sigma-Delta modulator block diagram
5.2	Transfer curve and quantisation error of a 2-bit ADC
5.3	Inband noise power inband. (a) Nyquist sampling; (b) oversampling 92
5.4	Sigma-Delta modulator block diagram with the quantiser linear model 94
5.5	First-order SDM block diagram
5.6	Magnitude response of the NTF with different orders
5.7	Separated NTF zeros and poles synthesis
5.8	NTF magnitude responses with Butterworth and split zeros
5.9	Bilinear mapping of the Chebyshev type II zeros from the <i>s</i> -plane to the <i>z</i> -plane
5.10	Flowchart of the Chebyshev II type zeros synthesis
5.11	Bilinear mapping of the Butterworth poles from the s -plane to the z -plane. 102
5.12	Flowchart of the Butterworth type poles synthesis
5.13	Synthesised 4th-order NTF with OSR=32 and OOBG=1.5. (a) Pole-Zero plot; (b) magnitude response
5.14	Block diagram of a general SDM separated into a linear TF-Filter and a nonlinear quantiser
5.15	MATLAB script for SDM simulations in state-space
5.16	(a) Calculated quantisation noise PSD, and (b) simulated PSD of the 4th- order SDM of Eq. 5.31
5.17	Simulated dynamic range of the 4th-order LPSDM with OSR=32 107
5.18	SIMULINK model of the 4th-order SDM using the CRFB topology 107
5.19	PSD of the 4th-order SDM simulated by SIMULINK
5.20	PSD of the 4th-order SDM with square windowed output

5.21	(a) Hann and (b) Blackman window functions
5.22	PSDs of the 4th-order SDM with (a) Hann windowed and (b) Blackman windowed outputs
5.23	PSD of a discrete sinusoid with the frequency (a) located on the frequency bin, and (b) shifted by 0.5 frequency bin
5.24	PSD of the 4th-order SDM with signal power splatter due to the input sinusoid frequency shifted from the frequency bin
5.25	Digital downconverter architecture using a BPSDM
5.26	NTF and STF of a 4th-order BPSDM
5.27	NTF synthesis of a BPSDM by tuning the zeros and poles at the centre frequency.
5.28	Block diagram of a general SDM separated into a linear TF-filter including two filters H and F , and a non-linear quantiser
5.29	Pole-zero plot of the NTF and STF of the synthesised BPSDM. The STF, NTF share the same poles; the NTF zeros are in blue and the STF zeros are in red
5.30	(a) Estimated quantisation noise spectrum, and (b) simulated PSD of the4th-order BPSDM of Eq. 5.44.
5.31	Simulated dynamic range of the 4th-order BPSDM with OSR=64 118
5.32	BPSDM centre frequency tuning by rotating the NTF zeros and poles. $\ . \ . \ 118$
5.33	Topologies of the VCF resonator
5.34	The magnitude response of $R(z)$ with different values of $a. \ldots \ldots \ldots 120$
5.35	Switched-capacitor circuitry realisation of the resonator shown in Figure 5.33(a).121
5.36	Topology of a 4th-order BPSDM with the resonator of Eq. 5.51. $\dots \dots 122$
5.37	Magnitude response of the VCF NTF with different values of $a.$
5.38	The centre frequency of the VCF NTF Vs. $a.$
5.39	Output spectrum of the VCF 4th-order BPSDM with different value of a_{\cdot} . 123

5.40	(a) Simulated dynamic range with $a=-0.95$; (b) SNR Vs. a with an input sinusoid that has one-half full scale amplitude. $\ldots \ldots \ldots$
5.41	Circuit realisation of the 4th-order VCF BPSDM using switched-capacitor technique.
5.42	Capacitor array for the discrete centre frequency selection
5.43	(a) Layout and (b) microphotograph of the 4th-order VCF BPSDM imple- mented in a 1.5 μm CMOS process
5.44	Measured PSDs of the 4th-order VCF BPSDM at 9 different centre fre- quencies
5.45	Measured DR of the 4th-order VCF BPSDM at a centre frequency of 350 kHz
5.46	Architecture of a CT SDM
5.47	NRZ and RZ DAC pulses
5.48	Topology of a 2nd-order CT LPSDM
5.49	MATHEMATICA code for the DT loop filter to CT conversion with an NRZ DAC.
5.50	MATLAB code for the DT loop filter to CT conversion with an NRZ DAC. 131
5.51	MATHEMATICA code for the DT loop filter to CT conversion with an RZ DAC
5.52	MATLAB code for the DT loop filter to CT conversion with an RZ DAC 133
5.53	Delayed RZ and NRZ feedback pulses
5.54	3rd-order CT LPSDM using the distributed feedback topology 135
5.55	Simulated PSDs of the 3rd-order LPSDM using the distributed feedback topology with an (a) NRZ DAC and (b) RZ DAC
6.1	(a) Weak output pulses due to the comparator speed limitation; (b) whitenedPSD in the signal band due to the jitter effect
6.2	Delayed NRZ DAC pulse as a linear combination

6.3	MATHEMATICA code for the CT loop filter to DT conversion with a delayed NRZ DAC
6.4	(a) Pole-Zero plot of the NTF Vs. the delay; (b) magnitude response of the NTF with different delays
6.5	Output spectrums of the 2nd-order LPSDM of Eq. 6.3 with different delays.144
6.6	SIMULINK models of the 2nd-order CT LPSDM with a delayed NTF. (a) Transfer function model and (b) topology realisation
6.7	Circuit realisation of the CT loop filter using the $G_m - C$ technique 146
6.8	Continuous-time integrator modelling. (a) Ideal, (b) lossy due to the resis- tance bias, (c) with active loads, and (d) with resistance loads and negative transconductance compensation
6.9	Integrator circuit realisation of Figure 6.8(d)
6.10	Simulated G_{int} transconductance and scaled input voltage histograms of the two integrators
6.11	Integrator gain boost by the negative transconductance tuning 150
6.12	Frequency response of the CT loop filter
6.13	Schematic of the delayed quantiser
6.14	quantiser output at each stage with a \pm 10 mV differential sinusoidal input.153
6.15	Circuit diagram of the 2nd-order CT LPSDM
6.16	Transistor level simulated PSD of the 2nd-order CT LPSDM
6.17	Layouts of the 2nd-order CT LPSDM. (a) stand-along chip; (b) modulator core

List of Tables

1.1	IEEE802.11a PHY specification summary.	2
1.2	IEEE802.11a data rate Vs. receiver sensitivity and adjacent channel rejection.	3
4.1	Transistor sizes and component values of the 2.5 GHz and 5.25 GHz LNAs.	63
4.2	Summary of the simulated performance of the 2.5 GHz and 5.25 GHz LNAs.	63
4.3	Transistor sizes and component values of the 5.25 GHz downconversion mixer.	76
4.4	Simulated performance summary of the 5.25 GHz downconversion mixer. $% \left({{{\rm{C}}}_{{\rm{B}}}} \right)$.	77
4.5	Receiver performance comparison of published results in [30], [31], [32], [33], and [34].	85

This page is blank

List of Abbreviations

3G	the third generation
ADC	analog-to-digital converter
AGC	automatic gain control
AWGN	additive white Gaussian noise
BER	bit error rate
BiCMOS	bipolar complementary metal oxide semiconductor
BPSDM	bandpass Sigma-Delta modulator
BPSK	binary phase shift keying
\mathbf{BW}	bandwidth
C/A band	coarse/acquisition band
\mathbf{CG}	common gate
CDMA	code division multiple access
CMFB	common mode feedback
CMOS	complementary metal oxide semiconductor
CRFB	cascade of resonators feedback
\mathbf{CS}	common source
\mathbf{CT}	continuous time
DAC	digital-to-analog conversion
dB	decibels
DC	direct current
DR	dynamic range
DSSS	direct sequence spread spectrum
\mathbf{DT}	discrete time
FDM	frequency division multiplexing

\mathbf{FFT}	fast Fourier transform
\mathbf{GPS}	global positioning system
\mathbf{GSM}	global system for mobile
IEEE	Institute of Electrical and Electronics Engineers
IF	intermediate frequency
IFFT	inverse fast Fourier transform
IIP3	input third-order intercept point
I/O	input, output
I/Q	inphase, quadrature
IRR	image-rejection ratio
ISI	intersymbol interference
ISM	industrial, scientific, and medical
HPF	highpass filter
LAN	local area network
LHP	left half plane
LNA	low noise amplifier
LO	local oscillation
\mathbf{LPF}	lowpass filter
LPSDM	lowpass Sigma-Delta modulator
LTI	linear time invariant
Mbps	megabits per second
MOS	metal oxide semiconductor
MOSFET	metal oxide semiconductor field effect transmitter
NF	noise figure
NMOS	N-type metal oxide semiconductor
NRZ	non-return to zero
NTF	noise transfer function
OFDM	orthogonal frequency division multiplexing
OOBG	out-of-band gain
OSR	oversampling ratio
OTA	operational transconductance amplifier
OTA-C	operational transconductance amplifier, capacitor

OTA-R	operational transconductance amplifier, resistor
P band	precise band
\mathbf{PC}	personal computer
\mathbf{PDF}	probability density function
PHY	physical
PMOS	P-type metal oxide semiconductor
\mathbf{PN}	P-type, N-type
\mathbf{PSD}	power spectral density
\mathbf{QAM}	quadrature amplitude modulation
QPSK	quadrature phase shift keying
\mathbf{RC}	resistor capacitor
\mathbf{RF}	radio frequency
RHP	right half plane
\mathbf{RSA}	regenerative sense amplifier
$\mathbf{R}\mathbf{Z}$	return to zero
SAW	surface acoustic wave
\mathbf{SCL}	source coupled logic
\mathbf{SDM}	Sigma-Delta modulator
SER	symbol error rate
\mathbf{Si}	silicon
SiGe	silicon germanium
SiO2	silicon dioxide
\mathbf{SNR}	signal-to-noise ratio
SOC	system on chip
SPICE	simulation program with integrated circuit emphasis
\mathbf{STF}	signal transfer function
\mathbf{TF}	transfer function
TSMC	Taiwan semiconductor manufacturing company
U-NII	unlicensed national information infrastructure
VCCS	voltage controlled current source
VCF	variable centre frequency
VGA	variable gain amplifier

WCDMA	wideband code division multiple access
WLAN	wireless local area network
ZPK	zero, pole, gain