
 

 

 

 
Carbon Acquisition in Variable Environments:  

Aquatic Plants of the River Murray, Australia 

 

 

 
Melissa S. Barrett 

 
 
 

A dissertation submitted to The University of Adelaide 
in partial fulfilment of the requirements for  

the degree of Doctor of Philosophy 
 
 
 
 

July 2007 
 



 
 

II 
 



 
 

III 
 

 
 
 
 
 

Declaration 
 

 
This work contains no material which has been accepted for the award of any other 
degree or diploma in any University or other tertiary institution and, to the best of my 
knowledge and belief, contains no material previously published or written by another 
person, except where due reference is made in the text. 
 

I give consent to my thesis, when deposited in the University Library, being available 
for loan and photocopying. 
 

 

__________________________________ /       / 

Melissa S. Barrett 

 



 
 

IV 
 



 
 

V 
 

Abstract 

This thesis considers the implications of changes in the supply of resources for photosynthesis, 

with regard for modes of carbon acquisition employed by aquatic plants of the River Murray. 

Carbon supplies are inherently more variable for aquatic plants than for those in terrestrial 

environments, and variations are intensified for plants in semi-arid regions, where water may be 

limiting. In changeable environments the most successful species are likely to be those with 

flexible carbon-uptake mechanisms, able to accommodate variations in the supply of resources. 

Studies were made of plants associated with wetland habitats of the Murray, including Crassula 

helmsii, Potamogeton tricarinatus, P. crispus and Vallisneria americana. The aim was to 

elucidate the mechanisms of carbon uptake and assimilation employed, and to determine how 

flexibility in carbon uptake and/or assimilation physiology affect survival and distribution. 

Stable carbon isotopes were used to explore the dynamics of carbon uptake and assimilation, 

and fluorescence was used to identify pathways and photosynthetic capacity. The studies 

suggest that physiological flexibility is adaptive survival in changeable environments, but 

probably does not enhance the spread or dominance of these species. 

V. americana is a known bicarbonate-user, and it is shown here that it uses the Crassulacean 

Acid Metabolism (CAM) photosynthetic pathway under specific conditions (high light intensity 

near the leaf tips) concurrently with HCO3
- uptake, while leaves deeper in the water continue to 

use the C3 pathway, with CO2 as the main carbon source. However, V. americana does not use 

CAM when under stress, such as exposure to high light and temperature. The diversity of 

carbon uptake and assimilation mechanisms in this species may explain its competitive ability 

in habitats associated with the Murray. In this way it is able to maximise use of light throughout 

the water column. In shallow, warm water, where leaves are parallel to the surface, CAM ability 

is likely to be induced along the length of the leaf, allowing maximal use of carbon and light. 

The amphibious C. helmsii is shown to use CAM on submergence, even where water levels 

fluctuate within 24 hours. This allows continued photosynthesis in habitats where level fluctuat-

ions prevent access to atmospheric CO2. It appears that stable conditions are most favourable 

for growth and dispersal, and that the spread of C. helmsii is mainly by the aerial form. 

Carbon uptake by P. tricarinatus under field conditions is compared with that of P. crispus to 

demonstrate differences in productivity associated with aqueous bicarbonate and atmospheric 

CO2 use. P. tricarinatus uses HCO3
- uptake to promote growth toward the surface, so that CO2 

can be accessed by floating leaves. Atmospheric contact provides access to light and removes 

the limitation of aqueous diffusive resistance to CO2, thereby increasing photosynthetic 

capacity above that provided by submerged leaves. 
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