SPATIAL AND TEMPORAL ALTERATIONS OF GENE EXPRESSION IN RICE

Darren Craig Plett

School of Agriculture, Food & Wine

Discipline of Plant & Food Science

March 2008

TABLE OF CONTENTS

ABSTRACT	viii
STATEMENT	ix
ACKNOWLEDGEMENTS	X
LIST OF FIGURES	xi
LIST OF TABLES	xvii
LIST OF ABBREVIATIONS	xviii
CHAPTER 1: GENERAL INTRODUCION	
1.1 Introduction	1
1.2 Rice	1
1.2.1 Review of importance	l
1.2.1.1 History	1
1.2.1.2 Use	2
1.2.1.3 Distribution	2
1.2.1.4 Monocot model species	2
1.2.2 Kice morphology	3
1.2.2.1 Germination	3
1.2.2.2 Seeding	3
1.2.2.3 Illiering	3
1.2.2.4 Panicle initiation	3
1.2.2.5 Heading	4
1.5 Samily and crops	4
1.3.1 Definition	4
1.3.2 Causes	5
1.3.5 Effects off plant fleatur	07
1.5.4 Management based solutions	7
1.3.4.1 water and vegetation management	7
1.3.4.2 Soli iccialitation 1.3.4.2 Use of selt televant or helenbytic group	7
1.2.5 Development adoptations to solinity	/ Q
1.3.5.1 Cellular processes	8
1.3.5.1 1 Intracellular compartmentation	8
1.3.5.1.1 Intractitudit compartmentation 1.3.5.1.1.1 Pumping Na ⁺ into the vacuale	8
1.3.5.1.1.1 runping Na into the vacuole	0 10
1.3.5.1.2 Synthesis of osmoprotectants 1.3.5.1.2 Tolerance of high cytoplasmic Na ⁺	11
1.3.5.1.2 Toterance of high cytoprasmic Na 1.3.5.1.3 Damage response and renair	12
1.3.5.1.4 Genomic-scale observations of alterations in	1 4
expression of genes	12
1 3 5 1 4 1 Signalling nathways	12
1.5.5.1. 1.1 Signating pathways	15

1.3.5.1.4.2 Cytosolic calcium activity	14
1.3.5.1.4.3 Protein phosphorylation	
and dephosphorylation	14
1.3.5.1.4.4 The sos mutants	14
1.3.5.1.4.5 Transcription factors and small RNAs	15
1.3.5.1.4.6 Cell-specific signalling responses	16
1.3.5.2 Whole plant processes	16
1.3.5.2.1 Regulation of Na^+ transport to the shoot	17
1.3.5.2.1.1 Pathways for initial entry to the root	17
1.3.5.2.1.1.1 The Ca ²⁺ - sensitive pathway	18
$1.3.5.2.1.1.2 \text{ Ca}^{2+}$ -insensitive pathway	19
1.3.5.2.1.1.3 Bypass flow	20
1.3.5.2.1.1.4 Na ⁺ efflux out of the root	20
1.3.5.2.1.1.5 Control of net uptake	21
1.3.5.2.1.2 Control of xylem loading	22
1.3.5.2.1.3 Retrieval from the xylem	23
1.3.5.2.2 Recirculation in the phloem	25
1.3.5.2.3 Compartmentation within the shoot	25
1.3.5.2.4 Salt glands	26
1.3.5.2.5 Control of transpiration- stomatal closure	27
1.4 Cell-specific genetic technology	27
1 4 1 Gene trans	27
1 4 1 1 Gene trapping	28
1 4 1 2 Promoter trapping	28
1 4 1 3 Enhancer trapping	29
1 4 2 GAL4-GFP enhancer trap	30
1 4 2 1 Construction	31
1 4 2 2 Use in Arabidonsis	31
1.4.2.3 Use in rice	32
1 4 3 Chemically-inducible gene expression	33
1.4.3.1 Introduction	33
1.4.3.2 Bacterial repressor-operator systems	33
1.4.3.2.1 Tetracycline regulation	33
1.4.3.2.2 Pristinamycin regulation	34
1.4.3.3 Transcription activation systems from fungi	34
1.4.3.3.1 Copper induction	34
1.4.3.3.2 Ethanol induction	34
1.4.3.4 Steroid receptor-based activation of transcription	35
1.4.3.4.1 Glucocorticoid induction	35
1.4.3.4.2 Estrogen induction	36
1.4.3.4.3 Ecdysone agonist induction	36
1.4.3.5 Dual control system	37
1.5 Project Aims	37
U U	-

CHAPTER 2: UNIDIRECTIONAL ²² Na ⁺ INFLUX IN RICE	
2.1 Introduction	39
2.2 Materials and Methods	40
2.2.1 Plant material	40
2.2.2 Growth conditions	41
2.2.3 Pre-treatment	43
2.2.4 Influx treatments	43
2.2.5 Rinse solution, time and temperature	43
2.2.6 Weighing, scintillation counter	44
2.3 Results and Discussion	46
2.3.1 Experiment 1	46
2.3.2 Experiment 2	47
2.3.3 Experiment 3	48
2.3.4 Experiment 4	49
2.3.5 Experiment $5 - 10$ mM, Experiment $6 - 30$ mM,	
Experiment $7 - 3 \text{ mM}$	50
2.3.6 Experiment 8	52
2.4 General Discussion	54
CHAPTER 3: Na ⁺ -REGULATED ENHANCERS	
3.1 Introduction	59
3.2 Materials and Methods	
3.2.1 Plant materials	60
3.2.2 Seed preparation	60
3.2.3 T_1 seed screen and microscopy information	60
$3.2.4 T_1$ seedling screen	61
$3.2.5 \text{ Na}^+$ screen	61
3.2.6 Re-screen of T_1	61
$3.2.7 T_2$ screen	61
3.3 Results and Discussion	62
3.3.1 Initial T_1 screen	62
3.3.2 Re-screen of T_1	64
$3.3.3 T_2$ screen	64
3.4 General Discussion	85
CHAPTER 4: VECTOR CONSTRUCTION AND DEVELOPME	NT OF
TRANSGENIC PLANTS	
4.1 Introduction	89
4.2 Materials and Methods	92
4.2.1 General materials and methods for vector construction	92
4.2.1.1 PCR conditions	92
A 2 1 2 Restriction digests	02

	-
4.2.1.2 Restriction digests	92
4.2.1.3 Ligations	93
4.2.1.4 Dephosphatasing	93
4.2.1.5 Agarose gel electrophoresis and gel extraction of DNA	93
4.2.1.6 Cloning	93

4.2.2 Cloning of <i>AtHKT1</i> ; 1, <i>PpENA1</i> , <i>GUS</i> , <i>GFP</i> and <i>RFP</i> and	
Gateway [®] recombination	95
4.2.3 Vector construction starting material	97
4.2.4 Agrobacterium transformation	97
4.2.5 Rice transformation	98
4.2.6 GAL4-GFP enhancer trap lines	100
4.2.7 Ethanol switch induction in callus and plants	103
4.2.8 Microscopy	103
4.2.9 Production of transgenic Arabidopsis	103
4.2.9.1 Cloning of artificial microRNA constructs	104
4.2.9.2 Inducible expression of <i>AtHKT1</i> ; 1 and <i>RFP</i> in	
Arabidopsis	108
4.2.9.3 Arabidopsis transformation	108
4.3 Results and Discussion	109
4.3.1 Vector construction	109
4.3.1.1 pMDC100 + 35Sx2 + nos (kan)	111
4.3.1.2 pMDC100 + 35Sx2 + RNAi	112
4.3.1.3 pMDC100 + 35Sx2 + RNAi (hyg)	113
4.3.1.4 pMDC100 + UAS + EtOH + nos	114
4.3.1.5 pMDC100 + UAS + EtOH + RNAi	116
4.3.1.6 pMDC100 + 35 Sx2 + EtOH + nos	117
4.3.1.7 pMDC100 + 35Sx2 + EtOH + RNAi	118
4.3.1.8 pMDC123 + 35 Sx2 + EtOH + nos	119
4.3.1.9 pMDC123 + UAS + EtOH + nos	120
4.3.1.10 pMDC123 + UAS + EtOH + RNAi	121
4.3.1.11 pMDC99 + 35 Sx2 + EtOH + nos	122
4.3.1.12 pMDC99 + 35Sx2 + EtOH + RNAi	123
4.3.1.13 pMDC100 + UAS + nos	124
4.3.1.14 pMDC100 + UAS + RNAi	125
4.3.1.15 pMDC123 + UAS + nos	126
4.3.1.16 pMDC123 + UAS + RNAi	127
4.3.1.17 pMDC100 + alcA + nos + bar	128
4.3.1.18 pMDC100 + alcA + RNAi + bar	129
4.3.2 Rice transformation	130
4.3.2.1 1 st transformation	130
4.3.2.1.1 Reporter gene expression in callus	131
4.3.2.1.2 Reporter gene expression in plants	133
4.3.2.2 2 nd rice transformation	135
4.4 General Discussion	137
4.4.1 amiRNA-mediated silencing of <i>AtHKT1;1</i>	137
4.4.2 Inducible overexpression of <i>RFP</i> and <i>AtHKT1;1</i> in	
Arabidopsis	138
-	

CHAPTER 5: CELL TYPE-SPECIFIC, ETHANOL-INDUCIBLE	
EXPRESSION OF TRANSGENES	
5.1 Introduction	139
5.2 Materials and Methods	140
5.2.1 Plant Material	140
5.2.2 Ethanol induction	141
5.2.3 Tissue sampling and Q-PCR analysis of <i>PpENA1</i> and <i>AtHKT1;1</i>	
Lines	141
5.2.4 Screening of the RFP lines	142
5.3 Results and Discussion	143
5.3.1 Q-PCR analysis background	143
5.3.2 Q-PCR analysis of <i>PpENA1</i> lines from Transformation 10	143
5.3.3 Q-PCR analysis of <i>AtHKT1;1</i> lines from Transformation 11	147
5.3.4 Ethanol induction of cell-type specific <i>RFP</i> expression	150
5.4 General Discussion	153
CHAPTER 6 - CELL-TYPE SPECIFIC EXPRESSION OF AtHKT1;1	
6.1 Introduction	157
6.2 Materials and Methods	159
6.2.1 Plant materials	159
6.2.2 Quantitative-PCR (Q-PCR)	159
$6.2.3 \text{ T}_0 \text{ Na}^+$ accumulation analysis	159
$6.2.4 \text{ T}_1$ Growth conditions	160
$6.2.5 \text{ T}_1 \text{ Na}^+$ accumulation analysis – Experiment 1	160
$6.2.6 \text{ T}_1 \text{ Na}^+$ accumulation/Na ⁺ stress tolerance analysis – Experiment 2	161
6.2.7 35S:: <i>AtHKT1;1</i> experiments	161
6.2.8 ²² Na influx analysis	162
6.2.9 Cryoscanning electron microscopy and X-ray microanalysis	162
6.3 Results and Discussion	163
6.3.1 T ₀ Q-PCR vs. Na ⁺ accumulation	163
$6.3.2 \text{ T}_1 \text{ Na}^+$ accumulation – Experiment 1	170
6.3.3 T ₁ Na ⁺ accumulation/Na ⁺ stress tolerance – Experiment 2	176
6.3.4 358::AtHKT1;1 experiments	188
6.3.4.1 Seed germination and seedling growth	188
6.3.4.2 Seed elemental profile	192
6.3.5 ²² Na influx analysis	194
6.3.6 X-ray microanalysis	196
6.3.6.1 Photographs of cell-types analysed	196
$6.3.6.2 \text{ Na}^+$	199
$6.3.6.3 \text{ K}^+$	201
6.4 General Discussion	202
6.5 Future Work	208

CHAPTER 7: CELL-SPECIFIC EXPRESSION OF <i>PpENA1</i>	
7.1 Introduction	211
7.2 Materials and Methods	212
7.2.1 Plant Materials	212
7.2.2 Quantitative-PCR (Q-PCR)	212
7.2.3 T_0 Na ⁺ Accumulation Analysis	213
7.2.4 T ₁ Growth Conditions	213
7.2.5 T_1 Na ⁺ Accumulation Analysis	213
7.3 Results and Discussion	213
7.3.1 T ₀ Q-PCR vs. Na ⁺ Accumulation	213
7.3.2 T_1 Na ⁺ Accumulation	219
7.4 General Discussion	224
CHAPTER 8: GENERAL DISCUSSION	
8.1 Summary	229
8.1.1 Completed Work	229
8.1.2 Future Work	231
8.2 Transport studies in rice versus <i>Arabidopsis</i>	232
8.2.1 Will knowledge of transport in Arabidopsis inform research in	
rice?	232
8.2.2 What are the crucial differences between the model species	
concerning transport?	233
8.2.2.1 Rice has at least two Casparian bands	233
8.2.2.2 Apoplastic flow is significant in rice	234
8.2.2.3 Aerenchyma	235
8.2.2.4 Rice has a leaf sheath where toxic ions may be stored 8.2.2.5 The CaMV35S promoter may not provide constitutive	236
expression in rice	237
8.3 Final Remarks	237
APPENDIX I: PRIMERS	239
APPENDIX II: EXTRA VECTORS	243
APPENDIX III: MEDIA	247
APPENDIX IV: CI ⁻ , Mg ²⁺ AND Ca ²⁺ XRMA RESULTS	255
REFERENCES	259

ABSTRACT

Two problems hampering efforts to produce salt-tolerant plants through constitutive expression of transgenes include:

- 1. Spatial control. Particular cell-types must respond specifically to salt stress to minimise the amount of Na⁺ delivered to the shoot; and,
- 2. Temporal control. Transgenes are typically expressed in plants at similar levels through time, irrespective of the stress encountered by the plant, which may exacerbate pleiotropic effects and means that, particularly in low-stress conditions, costly and/or detrimental metabolic processes may be active, thus reducing yield.

To address these issues, Gateway[®] destination vector constructs were developed combining the GAL4 UAS (upstream activating sequence) with the ethanol-inducible gene expression system to drive inducible cell-specific expression of Na⁺ transporter transgenes (or to silence salt transporter transgenes inducibly and cell-specifically). Rice (*Oryza sativa* L. cv. Nipponbare) GAL4-GFP enhancer trap lines (Johnson *et al.*, 2005: *Plant J.* **41**, 779-789) that express *GAL4* and *GFP* specifically in either the root epidermis or xylem parenchyma (and therefore 'trap' cell-type specific enhancer elements) were transformed with this GAL4 UAS – ethanol switch construct, thereby allowing both spatial and temporal control of transgenes. In preliminary experiments, the expression system successfully limited the expression of *RFP* to specific cell-types after induction with ethanol. Other genes expressed using this system include *PpENA1*, a Na⁺-extruding ATPase from the moss, *Physcomitrella patens*, and *AtHKT1;1*, a Na⁺ transporter from *Arabidopsis thaliana*.

The two enhancer trap rice lines were also transformed with the GAL4 UAS driving stable expression of AtHKT1;1 and PpENA1 specifically in root epidermal or xylem parenchyma cells. Expression of AtHKT1;1 in root epidermal cells reduced Na⁺ accumulation in the shoots, while expression in the root xylem parenchyma appeared to have little effect on shoot Na⁺ accumulation. Using cryo-scanning electron microscopy (SEM) X-ray microanalysis, the outer cells of the roots of the line expressing AtHKT1;1 in the epidermal cells were found to accumulate higher levels of Na⁺ than the parental enhancer trap line. Additionally, this line had decreased unidirectional ²²Na⁺ influx. Similar results were observed for plants expressing AtHKT1;1 driven by the CaMV 35S promoter, but these plants were stunted, presumably from expressing AtHKT1;1 at increased levels.

STATEMENT

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being made available for loan and photocopying, subject to the provisions of the Copyright Act 1968.

Signed

Date

ACKNOWLEDGEMENTS

I must acknowledge and sincerely thank several people who have made the work presented in this thesis lighter and my time overseas enriching and worthwhile.

My principal supervisor, Mark Tester, has piqued my scientific curiosity, bolstered my confidence in the value of my ideas, advised me in wise career choices and has been a wonderful person to laugh with.

Alex Johnson, my co-supervisor, has been a constant support during my shaky beginnings as a PhD student in Montpellier and during my time in Adelaide. He has been a crucial source of scientific advice and the best kind of friend.

My second co-supervisor, Andrew Jacobs, was extremely valuable in guidance with lab work and settling into Adelaide.

Olivier Cotsaftis and Inge Møller have been fantastic listeners and problem solvers and even better friends.

Emmanuel Guiderdoni at CIRAD in Montpellier, France hosted me in his laboratory and provided me with some important supervision during my time there.

The Australian Centre for Plant Functional Genomics (ACPFG) provided fantastic people, facilities and resources enabling me to grow immensely as a scientist. The Australian Genome Research Facility (AGRF) and Neil Shirley were responsible for the production of cDNA and Q-PCR analysis, respectively. Matt Gilliham provided me with expert training for the cryo-SEM work.

My financial support was provided by the Department of Education, Science and Training, the University of Adelaide and the ACPFG.

My Mom, Dad and Taryn were constantly supportive of my endeavors, regardless of whether I was up or down.

Thank-you all.

LIST OF FIGURES

Figure 1.1:	Rice seed, seedling and plant morphology.	4
Figure 1.2:	Na ⁺ transport within higher plants.	8
Figure 1.3:	The GAL4-GFP enhancer trap.	30
Figure 2.1:	Root Na ⁺ uptake over 10 min in Nipponbare and Pokkali in	
	10 and 50 mM influx Na^+ concentrations.	46
Figure 2.2:	Root Na ⁺ uptake over 10 min in Nipponbare in 10 mM influx	
	Na ⁺ concentration.	47
Figure 2.3:	Root and shoot Na^+ uptake over 10 min in Nipponbare in 10	
	mM influx Na^+ concentration.	48
Figure 2.4:	Na^+ uptake in 2 min in Nipponbare in 10 mM influx Na^+	
	concentration with various rinse treatments.	50
Figure 2.5:	Na ⁺ uptake over 20 min in Nipponbare in 3, 10 and 30 mM	
	influx Na ⁺ concentrations.	51
Figure 2.6:	Na ⁺ uptake in 2 min in 11 rice cultivars in 30 mM influx	
	Na ⁺ concentration.	53
Figure 2.7:	Influx rate is plotted against influx concentration for the	
	studies presented in Table 2.4.	56
Figure 3.1:	Summary of GFP fluorescence in response to 30 mM Na	~
F ! A A	treatment in line AUQ G09.	67
Figure 3.2:	Summary of GFP fluorescence in response to 30 mM Na	(0)
Б. ЭЭ	treatment in line AUX C04.	68
Figure 5.5:	summary of GFP fluorescence in response to 30 mM Na	(0
Figure 2.4.	treatment in line AUZ EIU.	69
Figure 5.4:	summary of GFP fluorescence in response to 30 mivi Na	70
Figure 2.5.	Example 1 in the AVG CO8. Summary of CED fluorogeones in response to $20 \text{ mM} \text{ Ms}^+$	/0
rigure 5.5.	treatment in line AVH E10	71
Figuro 3.6.	Summary of CEP fluorescence in response to 30 mM Ma^+	/ 1
Figure 5.0.	treatment in line AVK C01	72
Figure 3 7.	Summary of GEP fluorescence in response to 30 mM Na^+	12
1 igui e 5.7.	treatment in line AVK D10	73
Figure 3.8:	Summary of GFP fluorescence in response to 30 mM Na ⁺	15
i igui e eioi	treatment in line AVL C07	74
Figure 3.9:	Summary of GFP fluorescence in response to 30 mM Na ⁺	
8	treatment in line AVN D05.	75
Figure 3.10:	Summary of GFP fluorescence in response to 30 mM Na ⁺	
8	treatment in line AVP C11.	76
Figure 3.11:	Summary of GFP fluorescence in response to 30 mM Na ⁺	
0	treatment in line AVP D11.	77
Figure 3.12:	Summary of GFP fluorescence in response to 30 mM Na ⁺	
-	treatment in line AVS G07.	78
Figure 3.13:	Summary of GFP fluorescence in response to 30 mM Na ⁺	
	treatment in line AVT D09.	79

Figure 3.14:	Summary of GFP fluorescence in response to 30 mM Na ⁺	
	treatment in line AVY H12.	80
Figure 3.15:	Summary of GFP fluorescence in response to 30 mM Na ⁺	
	treatment in line AWC E12.	81
Figure 3.16:	Summary of GFP fluorescence in response to 30 mM Na ⁺	
	treatment in line AWD D07.	82
Figure 3.17:	Summary of GFP fluorescence in response to 30 mM Na ⁺	
	treatment in line AWD G08.	83
Figure 3.18:	Summary of GFP fluorescence in response to 30 mM Na ⁺	
	treatment in line AWF E04.	84
Figure 4.1:	Diagrammatic representation of GAL4 transactivation of	
	a gene of interest (GOI) and GAL4 transactivation combined	
	with the ethanol switch.	92
Figure 4.2:	The pCR8/GW/TOPO TA Gateway [®] entry vector used to	
	clone PCR amplified products.	96
Figure 4.3:	GAL4-GFP enhancer trap lines described in chapter 4.	102
Figure 4.4:	pRS300 vector for amiRNA construction.	105
Figure 4.5:	PCR strategy for site-directed mutagenesis of pRS300 to	100
	develop gene-specific amiRNA.	106
Figure 4.6:	The vector pTOOL2 used to constitutively overexpress	100
T: 4 F	genes via the CaMV358 promoter.	108
Figure 4.7:	Vector diagram of pMDC100 + 35 Sx2 + nos (kan) used for	111
F [•] 4.0.	constitutive expression of transgenes in plants.	111
Figure 4.8:	vector diagram of pMDC100 + 355x2 + KNAI used for	110
F :	Constitutive diskinal gene stiencing in plants.	112
Figure 4.9:	vector diagram of pWDC 100 + 355x2 + KNAI (nyg)	112
F :	Used for constitutive gene stiencing in plants.	113
Figure 4.10:	vector diagram of piviDC100 + UAS + EIOH + hos used for	
	transgenes in CALA CED enhancer tran rise lines	115
Figure 1 11.	transgenes in GAL4-GFP enhancer trap fice lines. Vector diagram of $pMDC100 \pm UAS \pm EtOH \pm DNAi used for$	113
rigure 4.11.	cell type specific, ethenol inducible dsPNAi gene silencing	
	in GALA GED enhancer tran rice lines	116
Figuro 4 12.	In OAL4-OFF children up file lines. Vector diagram of $nMDC100 \pm 35Sy2 \pm EtOH \pm nos used for$	110
Figure 4.12.	inducible gene overexpression in plants	117
Figure / 13.	Nector diagram of $nMDC100 + 35Sy2 + EtOH + RNAi$	11/
Figure 4.15.	used for ethanol-inducible dsRNAi gene silencing in plants	118
Figure 4 14.	Vector diagram of $nMDC123 + 35Sx2 + FtOH + nos used$	110
1 igui e 4.14.	for ethanol-inducible gene overexpression in plants	119
Figure 4 15.	Vector diagram of $nMDC123 + IIAS + EtOH + nos used for$	117
1 igui (7,13,	cell-type specific ethanol-inducible gene overexpression in	
	GAI 4-GFP enhancer tran <i>Arabidonsis</i> lines	120
Figure 4.16.	Vector diagram of $pMDC123 + UAS + EtOH + RNAi used for$	120
5ar0.	cell-type specific ethanol-inducible dsRNAi gene silencing in	
	GAL4-GFP enhancer tran <i>Arabidonsis</i> lines	121

Figure 4.17:	Vector diagram of pMDC99 + 35Sx2 + EtOH + nos used for	
	ethanol-inducible gene overexpression in plants.	122
Figure 4.18:	Vector diagram of pMDC99 + 35Sx2 + EtOH + RNAi used for	
	ethanol-inducible dsRNAi gene silencing in plants.	123
Figure 4.19:	Vector diagram of pMDC100 + UAS + nos used for cell-type	
	specific gene overexpression in GAL4-GFP enhancer trap rice	
	lines.	124
Figure 4.20:	Vector diagram of pMDC100 + UAS + RNAi used for cell-type	
	specific dsRNAi gene silencing in GAL4-GFP enhancer trap	
	rice lines.	125
Figure 4.21:	Vector diagram of pMDC123 + UAS + nos used for cell-type	
	specific gene overexpression in GAL4-GFP enhancer trap	
	Arabidopsis lines.	126
Figure 4.22:	Vector diagram of pMDC123 + UAS + RNAi used for cell-type	
	specific dsRNAi gene silencing in GAL4-GFP	105
F! (AA	enhancer trap Arabidopsis lines.	127
Figure 4.23:	Vector diagram of pMDC100 + alcA + nos + bar used for	
	crossing transgenes into lines expressing <i>RFP</i> inducibly via	100
F ' 4.24	the ethanol switch in order to inducibly overexpress transgenes.	128
Figure 4.24:	Vector diagram of pNIDC $100 + aicA + KNA1 + bar used for$	
	crossing dskinAl constructs into lines expressing <i>KFP</i> inducibly	120
Figure 4 75.	Ethonol switch test on AOS AOS calli transformed with	129
rigure 4.25:	Ethanol switch lest on AOS AOS call transformed with $pMDC100 \pm UAS \pm EtOH \pm pag construct to call time$	
	production + UAS + ELOH + hos construct to cen-type	127
Figure 1 76.	Specifically express OFF in an euranor-inductore manner.	132
rigui e 4.20.	T in 1^{st} round of rice transformation (nMDC100 + UAS +	
	Fight $+$ nos used to express <i>REP</i> in root specific GAL4-GEP	
	enhancer tran line AOS A05)	134
Figure 5 1.	OsGAPDH expression in independent T ₀ lines expressing $PnENA$	1
i igui e com	in the xylem parenchyma root cells of rice under control of the	1
	ethanol switch	143
Figure 5.2:	<i>PpENA1</i> expression in independent T_0 lines expressing <i>PpENA1</i>	
8	in the xylem parenchyma root cells of rice under control of the	
	ethanol switch. Raw data is not normalised.	144
Figure 5.3:	<i>PpENA1</i> expression in independent T_0 lines expressing <i>PpENA1</i>	
C	in the xylem parenchyma root cells of rice under control of the	
	ethanol switch. Data is normalised with the 1 st normalisation	
	protocol.	145
Figure 5.4:	<i>PpENA1</i> expression in independent T_0 lines expressing <i>PpENA1</i>	
	in the xylem parenchyam root cells of rice under control of the	
	ethanol switch. Data is normalised with the 2^{nd} normalisation	
	protocol.	146
Figure 5.5:	OsGAPDH expression in independent T ₀ lines expressing	
	AtHKT1;1 in the xylem parenchyma root cells of rice under	
	control of the ethanol switch.	147

Figure 5.6:	<i>AtHKT1;1</i> expression in independent T_0 lines expressing	
	<i>AtHKTT</i> , fin the xylem parenchyma root cells of rice under	1.40
	control of the ethanol switch. Raw data is not normalised.	148
Figure 5.7:	AtHKT1; I expression in independent T_0 lines expressing	
	AtHK11,1 in the xylem parenchyma root cells of rice under	
	control of the ethanol switch. Data is normalised with the	1 40
F: 7 0	l ^o normalisation protocol.	149
Figure 5.8:	AtHK11;1 expression in independent I_0 lines expressing	
	AtHK11;1 in the xylem parenchyma root cells of rice under	
	control of the ethanol switch. Data is normalised with the 2	1.50
F' 5 0.	normalisation protocol.	150
Figure 5.9:	KFP Inforescence in Outer EtOH KFP, Inner EtOH KFP	
	and 355ElOH.: <i>RFP</i> lines in response to 24 n ethanol	151
Figure 5 10.	treatment (1%).	151
Figure 5.10:	New strategy to produce fice lines expressing transgenes in a	156
Figure (1.	cell type-specific and ethanoi-inducible manner. T. $25S_{ii}$ (tHVT), Lling. No ⁺ concentration (mM) in the VED	130
rigure 0.1:	I_0 555 $AIIIKIIII$ lines – Na concentration (IIIVI) in the YEB	
	for each independent transformant	164
Figuro 6 7.	To reach independent transformatic. T. $35S \cdot t + HKT + 1$ lines K^+ concentration (mM) in the VEB	104
Figure 0.2.	T_0 555 $AuTRTT, T$ fines – K concentration (finite) in the TED varsus normalised $AtHKT1:1$ conv number/ul cDNA in the root	
	for each independent transformant	165
Figure 6 3.	To Outer $4tHKT1$: lines – Na ⁺ concentration (mM) in the VEB	105
rigure 0.5.	versus normalised <i>4tHKT1</i> :1 conv number/ul cDNA in the root	
	for each independent transformant	166
Figure 6.4:	To Outer AtHKT1: 1 lines – K^+ concentration (mM) in the YEB	100
i igui e oi ii	versus normalised <i>AtHKT1</i> : <i>I</i> copy number/ul cDNA in the root	
	for each independent transformant	168
Figure 6.5:	T_0 Inner AtHKT1: 1 lines – Na ⁺ concentration (mM) in the YEB	100
	versus normalised <i>AtHKT1:1</i> copy number/ul cDNA in the root	
	for each independent transformant.	168
Figure 6.6:	T_0 Inner AtHKT1;1 lines – K ⁺ concentration (mM) in the YEB	
0	versus normalised <i>AtHKT1;1</i> copy number/µl cDNA in the root	
	for each independent transformant.	170
Figure 6.7:	Na ⁺ accumulation in the leaf blades of two Outer <i>AtHKT1;1</i>	
0	and two Inner <i>AtHKT1;1</i> T_1 lines selected from T_0 analysis.	171
Figure 6.8:	Na ⁺ accumulation in the roots of two Outer <i>AtHKT1</i> ; 1 and	
	two Inner <i>AtHKT1;1</i> T ₁ lines selected from T ₀ analysis.	172
Figure 6.9:	K ⁺ accumulation in leaf blades of two Outer <i>AtHKT1;1</i> and	
	two Inner AtHKT1;1 T ₁ lines selected from T ₀ analysis.	174
Figure 6.10:	K ⁺ accumulation in the roots of two Outer <i>AtHKT1;1</i> and two	
	Inner <i>AtHKT1</i> ; <i>1</i> T_1 lines selected from T_0 analysis.	175
Figure 6.11:	Na ⁺ accumulation in all leaf blades of WT Nipponbare,	
	35S::AtHKT1;1 (14-A1), Outer Background, Outer AtHKT1;1	
	(2-B5), Inner Background and Inner <i>AtHKT1;1</i> (5-C4) lines.	176

Figure 6.12:	Na ⁺ accumulation in the sheath tissue of WT Nipponbare,	
	35S:: <i>AtHKT1;1</i> (14-A1), Outer Background, Outer <i>AtHKT1;1</i>	
	(2-B5), Inner Background and Inner <i>AtHKT1;1</i> (5-C4) lines.	179
Figure 6.13:	Na ⁺ accumulation in the roots of WT Nipponbare,	
	35S:: <i>AtHKT1;1</i> (14-A1), Outer Background, Outer <i>AtHKT1;1</i>	
	(2-B5), Inner Background and Inner <i>AtHKT1;1</i> (5-C4) lines.	180
Figure 6.14:	K accumulation in all blades of WT Nipponbare,	
	35S:: <i>AtHKT1;1</i> (14-A1), Outer Background, Outer <i>AtHKT1;1</i>	100
	(2-B5), Inner Background and Inner AtHKT1; I (5-C4) lines.	182
Figure 6.15:	K accumulation in the sheath tissue of W I	
	Nipponbare, 358:: <i>AtHK11;1</i> (14-A1), Outer Background,	
	Outer AtHK11;1 (2-B5), Inner Background and Inner	107
E :auro (1(,	AIRKII; I (5-C4) lines. V^+ accumulation in the note of WT Minnenhore	183
rigure 0.10:	25S: AtHKT1.1 (14 A1) Outer Declarground Outer AtHKT1.1	
	(2 D5) Inner Deekground and Inner AtHKT1:1 (5 C4) lines	19/
Figure 6 17.	(2-D3), finite background and finite All $K11$, $1(3-C4)$ fines. EW of all blodes of WT Ninnenbare $25S \cdots 4tHVT1 \cdot 1(14, A1)$	104
rigui e 0.17.	Outer Background Outer AtHKT1:1 (2-B5) Inner Background	
	and Inner <i>AtHKT1</i> :1 (5-C4) lines	185
Figure 6 18.	FW of roots of WT Ninnonhare 358. <i>AtHKT1</i> :1 (14-A1)	105
i igui e 0.10.	Outer Background Outer AtHKT1:1 (2-B5) Inner	
	Background and Inner <i>AtHKT1</i> :1 (5-C4) lines	187
Figure 6.19:	35S. <i>AtHKT1:1</i> seedlings after 5 d growth on RO water	107
	RO water $+ 5 \text{ mM NaCl or RO water } + 5 \text{ mM KCl.}$	189
Figure 6.20:	35S:: <i>AtHKT1</i> ;1 seedlings shown in Figure 6.19 were analysed	
8	for Na^+ and K^+ accumulation in shoots and roots after growth	
	on RO water, RO water $+ 5 \text{ mM Na}^+$ or RO water $+ 5 \text{ mM KCl}$.	190
Figure 6.21:	Unidirectional influx into roots of WT, 35S::AtHKT1;1,	
	Outer Background, Outer AtHKT1;1, Inner Background	
	and Inner AtHKT1;1 lines.	194
Figure 6.22:	Scanning electron microscope photograph of rice root sectioned	
	4 mm from the root tip highlighting general root features.	196
Figure 6.23:	Scanning electron microscope photograph of the outer cell	
	layers of a rice root sectioned 4 mm from the root tip.	197
Figure 6.24:	Scanning electron microscope photograph of the inner cell	100
F' ()5	layers of a rice root sectioned 4 mm from the root tip.	198
Figure 6.25:	Na content (P/B) measured by x-ray microanalysis in 9 root	
	Dealeround and Inner AtHVT1: 1 lines	100
Figuro 6 76.	Dackground and miler Altrix $I_{1,1}$ miles. V^{+} content (D/D) measured by x ray microanalysis in 0 root	199
rigure 0.20:	colletin (F/B) incastical by x-ray incroanalysis in 9 100t	
	Background and Inner <i>4tHKT1</i> ·1 lines	201
Figure 7 1•	T_0 35S·· <i>PnEN41</i> lines – Na ⁺ concentration (mM) in the VER	201
5 ⁴¹ (/ · 1 ·	versus normalised <i>PnENA1</i> copy number/ul cDNA in the root	
	for each independent transformant	214
	ist each macpendent transformatit.	<i>-</i> 1 T

Figure 7.2:	T_0 35S:: <i>PpENA1</i> lines – K ⁺ concentration (mM) in the YEB	
	versus normalised <i>PpENA1</i> copy number/µl cDNA in the root	
	for each independent transformant.	215
Figure 7.3:	T_0 Outer <i>PpENA1</i> lines – Na ⁺ concentration (mM) in the	
	YEB versus normalised <i>PpENA1</i> copy number/µl cDNA in	
	the root for each independent transformant.	216
Figure 7.4:	T_0 Outer <i>PpENA1</i> lines – K ⁺ concentration (mM) in the YEB	
	versus normalised <i>PpENA1</i> copy number/µl cDNA in the root	
	for each independent transformant.	217
Figure 7.5:	T_0 Inner <i>PpENA1</i> lines – Na ⁺ concentration (mM) in the YEB	
	versus normalised <i>PpENA1</i> copy number/µl cDNA in the root	
	for each independent transformant.	218
Figure 7.6:	T_0 Inner <i>PpENA1</i> lines – K ⁺ concentration (mM) in the YEB	
	versus normalised <i>PpENA1</i> copy number/µl cDNA in the root	
	for each independent transformant.	219
Figure 7.7:	Na ⁺ accumulation in two Outer <i>PpENA1</i> and two Inner	
	<i>PpENA1</i> T_1 lines selected from T_0 analysis.	220
Figure 7.8:	Na ⁺ accumulation in two Outer <i>PpENA1</i> and two Inner <i>PpENA1</i>	
	T_1 lines selected from T_0 analysis.	222
Figure 7.9:	K' accumulation in two Outer <i>PpENA1</i> and two Inner <i>PpENA1</i>	
	T_1 lines selected from T_0 analysis.	223
Figure 7.10:	K accumulation in two Outer <i>PpENA1</i> and two Inner <i>PpENA1</i>	
	T_1 lines selected from T_0 analysis.	224

LIST OF TABLES

Table 2.1:	ACPFG growth solution for hydroponic rice culture.	42
Table 2.2:	Summary of conditions in each experiment used to develop	
	a unidirectional influx experimental protocol for rice.	45
Table 2.3:	Summary of Na ⁺ uptake, rank, FW, average leaf number, and	
	reported Na ⁺ tolerance in 11 rice cultivars.	54
Table 2.4:	Summary of 11 experiments measuring Na ⁺ influx using ²² Na ⁺ .	55
Table 3.1:	Frequency of GFP fluorescence in various tissues of rice	
	GAL4-GFP enhancer trap lines.	63
Table 3.2:	Comparison of data from this study with other studies which	
	have screened gene trap populations for stress-regulated genetic	
	elements.	86
Table 4.1:	Summary of entry vectors used to construct all binary vectors	
	used in rice transformation.	96
Table 4.2:	Summary of vectors used as starting material for vector	
	construction.	97
Table 4.3:	Summary of Gateway [®] entry vectors and the Gateway [®]	
	Destination vectors transformed into Arabidopsis.	104
Table 4.4:	List of PCRs to clone amiRNAs.	107
Table 4.5:	Summary of Gateway [®] Destination vectors constructed.	110
Table 4.6:	1 st round of rice transformations.	130
Table 4.7:	2 nd round of rice transformations.	136
Table 5.1:	RFP fluorescence in Outer EtOH RFP, Inner EtOH RFP	
	and 35S::EtOH:: <i>RFP</i> independent T ₀ lines.	153
Table 6.1:	ICPAES analysis of the elemental profile of 35S:: <i>RFP</i> ,	
	35S:: <i>AtHKT1;1</i> , Outer RFP, Outer <i>AtHKT1;1</i> , Inner RFP and	
	Inner AtHKT1; 1 seed.	193

LIST OF ABBREVIATIONS

(NH ₄)SO ₄	ammonium sulfate
°C	degrees Celsius
μCi	microCurie(s)
μg	microgram(s)
μΙ	microliter(s)
μΜ	micromolar
10-yeb	youngest emerged blade after 10 mM Na ⁺ treatment
2,4-D	2,4-Dichlorophenoxyacetic acid
22 Na ⁺	²² Na ⁺ radiotracer
2X35S	dually-enhanced CaMV 35S promoter
3'	three prime end of a nucleic acid
358	CaMV 35S promoter
35Sx2	dually-enhanced CaMV 35S promoter
5'	five prime end of a nucleic acid
50-old	older leaf blade after 50 mM Na ⁺ treatment
50-yeb	youngest emerged blade after 50 mM Na ⁺ treatment
AB	AB medium
ABA	abscisic acid
ABRE	ABA-responsive element
Ac/Ds	activator/dissociator transposon system
ace1	activating copper-MT expression transcription factor
ACPFG	Australian Centre for Plant Functional Genomics
ACX	acyl-CoA oxidase
AGRF	Australian Genome Research Facility
AKT	Arabidopsis potassium channel
Al^{3+}	aluminum ion
alcA	alcA promoter
alcR	alcR transcription factor
AleI	AleI restriction enzyme
amiRNA	artificial microRNA
amp	ampicillin
AscI	AscI restriction enzyme
AtHKT1;1	Arabidopsis thaliana HKT
ATP	adenosine triphosphate
ATPase	enzyme utilising ATP
attL1	L1 Gateway [®] recombination site
attL2	L2 Gateway [®] recombination site
attR1	R1 Gateway [®] recombination site
attR2	R2 Gateway [®] recombination site
AVP	Arabidopsis vacuolar pyrophosphatase
В	boron
B.C .	Before Christ
BAP	benzylaminopurine
Basta (R)	basta resistance gene

Basta	basta herbicide
Bla (amp)	ampicillin resistance gene
BlpI	<i>BlpI</i> restriction enzyme
BÔR	high boron requiring
bp	base pair(s)
C ₄	C_4 carbon fixation
Ca	calcium
Ca ²⁺	calcium ion
$Ca(NO_3)_2$	calcium nitrate
$Ca(NO_3)_2 * 4H_2O$	calcium nitrate
CaCl ₂	calcium chloride
CaMV35S polyA	CaMV 35S 3' UTR poly A signal
CaMV35S	CaMV 35S promoter
CaMV35Sx2	dually-enhanced CaMV 35S promoter
САТ	chloramphenicol acyltransferase
CBL	calcinuerin B-like protein
ccdB	cytotoxic ccdB gene
cDNA	complementary DNA
CF	cortical fiber
Chloramphenicol (R)	chloramphenicol resistance gene
СНХ	cation/hydrogen exchanger
СІРК	CBL-interacting protein kinase
Cl	chloride ion
cm	centimeter(s)
CNGC	cyclic nucleotide-gated channel
CoCl ₂ *6H ₂ O	cobalt chloride
ColE1	ColE1 replication origin
CSIRO	Commonwealth Scientific and Industrial Research
	Organisation
Cu	copper
CuSO ₄	copper sulfate
CuSO ₄ *5H ₂ O	copper sulfate
d	day(s)
dH ₂ O	deionised water
DHHC	DHHC domain
DMSO	dimethyl sulfoxide
DNA	deoxyribonucleic acid
dNTP	deoxyribonucleotide triphosphate
DRE	dehydration-responsive element
dS/m	deciSiemens per meter
dsRED	Discosoma sp. RFP gene
dsRNAi	double-stranded RNA interference
DT-A	diphtheria toxin A
E. coli	Escherichia coli
EBC	epidermal bladder cell
EC	electrical conductivity
	-

EcoRI	<i>EcoRI</i> restriction enzyme
EcoRV	<i>EcoRV</i> restriction enzyme
EcR	ecdysone receptor
EDAX	energy dispersive spectroscopy
EDTA	ethylenediaminetetraacetic acid
EEO	electroendosmosis
EN	endodermis
ENA	exitus natru
EP	epidermis
EX	exodermis
ER	estrogen receptor
ESP	exchangeable sodium percentage
EtOH	ethanol
F ₂	F_2 generation
FACS	fluorescently-activated cell sorting
FAO	Food and Agriculture Organization
Fe	iron
Fe ³⁺	iron ion
FeEDTA	iron EDTA
FeSO4*7H2O	iron sulfate
FST	flanking sequence tag
FW	fresh weight
g	acceleration of gravity
g g	gram(s)
GAL4	GAL4 transcription factor
GAPDH	glyceraldehyde 3-phosphate dehydrogenase
GFP	green fluorescent protein
GLR	glutamate receptor
GOI	gene-of-interest
Gos2	Gos2 promoter
GPI	glycosylphosphatidylinositol
GR	glucocorticoid receptor
GSK	glycogen synthase kinase
GUS	β-glucoronidase
GVG	GVG chimeric transcription factor
h	hour(s)
\mathbf{H}^{+}	hydrogen ion
H ₃ BO ₃	boric acid
ha	hectare(s)
НАК	high-affinity potassium transporter
HCl	hydrochloric acid
НКТ	high-affinity potassium transporter
HVP	barley vacuolar pyrophosphatase
HVT	nucleic acid helicase
hyg	hygromycin
Hygromycin (R)	hyromycin resistance gene

IC	inner cortex
ICPAES	inductively coupled plasma-atomic emission
	spectroscopy
In2-2	In2-2 promoter
IRRI	International Rice Research Institute
Κ	potassium
K ⁺	potassium ion
kan	kanamycin
kanamycin (R)	kanamycin resistance gene
KCI	potassium chloride
kg	kilogram(s)
KH ₂ PO ₄	potassium phosphate
KI	potassium iodide
KNO3	potassium nitrate
KønI	<i>KpnI</i> restriction enzyme
KUP	potassium uptake transporter
kV	kilovolt(s)
L	liter
LacZ	B-galactosidase
LB	left border sequence
LCT	low-affinity cation transporter
LEA	late embryogenesis abundant
LexA	LexA bacterial repressor
LhG4	LhG4 chimeric transcription factor
LiCl	lithium chloride
LR	LR Gateway [®] recombination
luc	firefly luciferase
m	meter
MAP	mitogen activated protein
Mbp	mega base pairs
Mg	magnesium
Mg^{2+}	magnesium ion
MgSO ₄ *7H ₂ O	magnesium sulfate
min	minute(s)
miRNA	microRNA
mL	milliliter(s)
mm	millimeter(s)
mM	millimolar
Mn	manganese
MnCl ₂ *4H ₂ O	manganese chloride
MnSO ₄ *H ₂ O	manganese sulfate
mRNA	messenger RNA
mV	millivolt(s)
MX	metaxylem
N_2	molecular nitrogen
Na	sodium

Na ⁺	sodium ion
Na ₂ EDTA	sodium EDTA
Na ₂ MoO ₃	sodium molybdate
NAA	napthaleneacetic acid
NAC	NAM, ATAF and CUC transcription factors
NaCl	sodium chloride
NaFe(III)EDTA	sodium iron EDTA
NaH ₂ PO ₄	sodium dihydrogen phosphate
NaH ₂ PO ₄ *H ₂ O	sodium dihydrogen phosphate
Nax	sodium excluding
NB	NB medium
NBS	NBS medium
ng	nanogram(s)
NG	not germinated
NH4 ⁺	ammonium ion
NH ₄ Cl	ammonium chloride
NH ₄ NO ₃	ammonium nitrate
NHA	sodium/hydrogen antiporter
NHX	sodium/hydrogen exchanger
nm	nanometer(s)
nM	nanomolar
NO ₃	nitrate
Nos	nopaline synthase
nosT	nopaline syntase terminator
nptII	neomycin phosphotransferase II protein
NSCC	non-selective cation channel
OC	outer cortex
OCS term	octopine synthase terminator
OD ₆₀₀	optical density at 600 nm
OEX	overexpression
Р	P media
P	phosphorus
P/B	peak/background
P35S	CaMV 35S promoter
pA35S	CaMV 35S promoter
palcA	alcA promoter
pAnos	nopaline synthase promoter
Pat (basta)	basta resistance gene
pBR322 bom	pBR322 basis of mobility
pBR322 ori	pBR322 origin of replication
PCR	polymerase chain reaction
PDK	pyruvate dehydrogenase kinase intron
рН	per hydrogen
PmeI	PmeI restriction enzyme
Pnos	nopaline synthase promoter
рОр	pOp artificial promoter

PpENA1	Physcomitrella patens ENA
PP _i	pyrophosphate
PR	pericycle
PR-1a	PR-1a promoter
PR-AG	PR-AG medium
pVS1 rep	pVS1 replication function
pVS1 sta	pVS1 stability function
Q-PCR	quantitative PCR
QTL	quantitative trait locus
\overline{R}^2	coefficient of determination
R2-CL	R2-CL medium
R2-CS	R2-CS medium
R2-S	R2-S medium
RB	right border sequence
RCD	radical-induced cell death
RFP	red fluorescent protein
RK2 ori	RK2 origin of replication
RN	RN medium
RNA	ribonucleic acid
RNAi	RNA interference
RO	reverse osmosis
ROS	reactive oxygen species
rpm	revolutions per minute
ŔŢ	room temperature
S	second(s)
SacI	SacI restriction enzyme
SARDI	South Australian Research and Development Initiative
SAS	sodium overaccumulation in shoots
SCABP	SOS3-like calcium-binding proteins
SDS	sodium dodecyl sulfate
SE	standard error
siRNA	short interfering RNA
SKC	small conductance calcium-activated potassium channel
SKOR	stelar potassium outwardly rectifying channel
SOS	salt overly sensitive
Spec prom	spectinomycin promoter
spec	spectinomycin
Spectinomycin R	spectinomycin resistance gene
t	tonne(s)
T ₀	T_0 generation
T ₁	T ₁ generation
T ₂	T_2 generation
T ₃	T_3 generation
ТАТА	TATA box DNA sequence
T-Border (left)	left border sequence
T-Border (right)	right border sequence

T-DNA	transferred DNA
TetR	tetracycline repressor gene
TGV	TGV transcriptional activator
TIGR	The Institute for Genomic Research
T _m	melting temperature
Tris-EDTA	trishydroxymethylaminomethane-EDTA
tRNA	transfer RNA
TYNG	TYNG medium
UAS	upstream activation sequence
uidA	β-glucoronidase enzyme
UN	United Nations
US	United States
USSL	United States Salinity Lab
UTR	untranslated region
UV	ultraviolet
VP16	herpes simplex virus transcriptional activator
WT	wild type
ХР	xylem parenchyma
XRMA	x-ray microanalysis
XVE	XVE chimeric transcription activator
YEB	youngest fully emerged blade
Zn	zinc
ZnSO ₄ *7H ₂ O	zinc sulfate