
Acid-Free Copy

SURF: AN ABSTRACT MODEL OF

DISTRIBUTED GARBAGE COLLECTION

William Brodie-Tyrrell

February 2008

A THESIS SUBMITTED FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN THE SCHOOL OF COMPUTER SCIENCE

UNIVERSITY OF ADELAIDE

c© Copyright 2008

by

William Brodie-Tyrrell

Contents

Abstract v

Declaration vii

Acknowledgments ix

1 Introduction 1

1.1 Garbage Collection . 3

1.2 Distribution . 6

1.3 Distributed Object Stores and GC . 8

1.4 Models of (Distributed) Garbage Collection 12

1.5 Contributions & Structure of Thesis 14

2 Distributed Storage Management 17

2.1 Distributed Computation . 18

2.2 Distributed Termination Detection 19

2.3 Distributed Garbage Collection . 21

2.4 Models of Distributed Garbage Collection 31

2.5 Requirement for a New Model of Distributed GC 38

2.6 Summary . 38

3 Unifying Distributed Garbage Collection 41

3.1 System Model . 42

3.2 Definition of Garbage Collection . 45

3.3 Surf: the Abstract Model of GC . 48

3.4 Proving Safety and Completeness of Surf 61

3.5 Instantiating the Model . 74

3.6 Limitations of the Model . 82

3.7 Conclusion . 83

i

4 Applying the Surf Model 85

4.1 Distributed Marking . 86

4.2 Train Algorithm . 90

4.3 Hughes’ Algorithm . 94

4.4 Back Tracing . 97

4.5 Reference Counting . 103

4.6 Trial Deletion . 105

4.7 Conclusion . 111

5 Experimenting With Trains 113

5.1 Mapping . 114

5.2 Design . 119

5.3 Experimentation . 134

5.4 Conclusion . 150

6 The Tram Algorithm 153

6.1 Design of the Tram Algorithm . 154

6.2 Discovering Topology . 165

6.3 Comparisons with Other Collectors 169

6.4 Conclusions . 175

7 Conclusion 177

7.1 Overview . 177

7.2 Further Work . 180

7.3 Conclusion . 181

Bibliography 183

ii

List of Figures

1 Reachability Examples . 5

2 Relativistic Light Cone . 7

3 Causality in Distributed Systems . 8

4 Erroneous Reference Count . 24

5 Erroneous Reference Count . 24

6 (Usefully) Dead Regions . 50

7 Inter-Region Pointers are Work . 52

8 Distance Heuristic for Suspicion . 102

9 DPMOS Architecture . 119

10 Progress by Younger-First . 131

11 Progress by Older-First . 131

12 Layered Architecture for Measurement 136

13 Mesh of Triangles . 139

14 Grid of Meshes . 139

15 Complexity to Completion, FEA . 144

16 Cost to Completion, FEA . 144

17 Remembered Set Cache Performance 145

18 Page Cache Performance . 146

19 Accuracy of Progress Prediction, OO7 147

20 Accuracy of Progress Prediction, FEA 149

21 Progress Histogram, Reverse FIFO 149

22 Witness Request Protocol . 158

23 Witness Request Denied . 158

24 Labelling from Heuristic . 163

25 Optimally Labelled Regions . 173

iii

iv

Abstract

Garbage collectors (GCs) automate the problem of deciding when objects are no

longer reachable and therefore should be reclaimed, however, there currently exists no

automated process for the design of a correct garbage collector. Formal models exist that

prove the correctness of individual GCs; more general models describe a wider range

of GCs but do not prove their correctness or provide a concrete instantiation process.

The lack of a formal model means that GCs have been designed in an ad-hoc manner,

published without proof of correctness and with bugs; it also means that it is difficult to

apply experience gained from one implementation to the design of another.

This thesis presents Surf, an abstract model of distributed garbage collection that

bridges the gap between expressibility and specificity: it can describe a wide range of

GCs and contains a proof of correctness that defines a list of requirements that must be

fulfilled. Surf’s design space and its requirements for correctness provide a process that

may be followed to analyse an existing collector or create a new GC.

Surf predicts the abstract behaviour of GCs; this thesis evaluates those predictions

in light of the understood behaviour of published GCs to confirm the accuracy of the

model. A distributed persistent implementation of the Train Algorithm is created as

an instantiation of Surf and the model is used to analyse progress in the GC and drive

the design of a partition selection policy that provides a lower bound on progress and

therefore reduces the GC’s complexity to completeness. Tests with mesh data structures

from finite element analysis confirm the progress predictions from Surf.

Published GCs cluster mostly in one corner of the Surf design space so this thesis

explores the design of a GC at an unoccupied design point: the Tram Algorithm.

Analysis via Surf leads to the prediction that Trams are capable of discovering topology

in the live object graph that approximately identifies the strongly connected components,

permitting O(1) timeliness that is unique to the Tram Algorithm.

v

vi

Declaration

This work contains no material which has been accepted for the award of any

other degree or diploma in any university or other tertiary institution and, to the

best of my knowledge and belief, contains no material previously published or

written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University of

Adelaide Library, being made available in all forms of media, now or hereafter

known.

William Brodie-Tyrrell

May 3, 2008

vii

viii

Acknowledgments

I would like to thank my supervisors, Assoc. Prof. David S. Munro and

Dr Katrina Falkner, for their unceasing support, insight, guidance and

motivation; this thesis would not exist without their Herculean efforts. The

Jacaranda Research Group has provided a friendly research environment; I thank

Dr Henry Detmold for the breadth and sharpness of his insight, the postgraduate

students of the School for their time, encouragement and camaraderie, and the

staff of the School for their support.

I also thank my family for their years of unquestioning support and

encouragement. In particular, my parents have demonstrated that the term

“standing on the shoulders of giants” refers not only to the work of previous

academics.

This work was supported by the Commonwealth of Australia through an

Australian Postgraduate Award and Australian Research Scholarship (National).

Cluster computation time for experimentation was donated by the South

Australian Partnership for Advanced Computing.

ix

Chapter 1

Introduction

Computation has three fundamental requirements: a processing unit that

performs arithmetic and logical operations, software that defines the actions

taken by the processing unit and storage containing the data that the computation

is operating over. This thesis is concerned with automatic storage management,

specifically an abstract model of distributed garbage collection, i.e. analysis of

the class of algorithms concerned with reclaiming unused storage in a distributed

system.

The ability to re-use storage space is important because it is a finite resource;

programs typically generate new state and there must exist some means to

reuse the space that is occupied by state that is no longer required, i.e. no

longer live. Manually deallocating space when it is no longer required has

proven to be error-prone and it is a particularly difficult task in distributed

systems because the liveness of any particular piece of data is a global predicate.

Detecting that some data is no longer live in a distributed system requires

the knowledge that no references to that data exist on any other site or in

transit between other sites; obtaining this knowledge in the face of asynchronous

communication is a non-trivial task. It is therefore desirable to have some means

of automatically analysing the state of a program and determining which storage

regions are no longer required; providing this functionality can improve the

reliability of programs by removing the opportunity for application programmers

to erroneously discard state that is still in use or fail to reclaim all unused space.

There exists a spectrum of abstractions for representing storage, varying in the

interface, underlying mechanism and the manner in which updates are applied.

The interface defines how storage is accessed: addressing, granularity of access

and whether the store understands any semantics beyond numerical values; at

the simplest extreme is a linear array of numbers while more complex systems

introduce the concepts of pointers, records and strong typing [1, 25]; still other

systems may represent data as tables of records that may be searched [29]. The

2 CHAPTER 1. INTRODUCTION

combination of records and pointers produces the object abstraction: typically

small regions of memory composed of fields where some fields contain pointers:

the names of other objects. The contents of an object store form a directed graph

wherein each object is a node of that graph and the pointers represent directed

edges between objects. Since it is possible to construct a graph wherein one

region is unreachable from another region, this admits the possibility that some

objects will be unreachable from a special root object from which the application

operates; these objects are unusable to the application and should be reclaimed.

The process of detecting and reclaiming unreachable objects is referred to as

garbage collection (GC).

A distributed system is one composed of a number of physically separate

computing sites, each site typically containing a processing unit, store and

software of its own with some means to communicate with other sites in the

system. The distinction between a simple network of computers and a distributed

system is that the latter closely cooperates to perform a particular task, typically a

computation that is distributed across a number of sites with the aim of increasing

the net performance of the computation. Distributed systems have become an

attractive way to construct computing systems that are scalable in their storage

and computing power: if software can be made scalable, then the performance

and available storage space of a distributed system may be increased merely

by adding storage and computing resources. This is in contrast to uniprocessor

systems where there is a nonlinear relationship between price and performance

so financial and physical constraints severely limit their scalability.

The increasing use of distributed software to solve compute-intensive

problems brings with it a need for distributed storage systems that provide the

same abstractions as available on uniprocessor systems, including the ability

to operate over objects and have them automatically reclaimed. Providing

the object abstraction with garbage collection in a distributed system implies

the existence of a distributed garbage collector: a mechanism that is capable

of finding isolated components of an object graph that is distributed over

physically separated sites. The existence of distributed garbage collection permits

application programmers to more easily construct reliable distributed programs,

thereby reducing the cost of producing reliable scalable software.

Garbage collectors are often published [2, 18, 49, 67, 68] as a mechanistic

description of the collector, tightly bound to the programming system in

which it exists, as opposed to an abstract exposition of the garbage collection

algorithm that underlies the collector. For this reason, it can be difficult

to compare different collectors either empirically or analytically and it is

difficult to apply knowledge and experience gained in the implementation

1.1. GARBAGE COLLECTION 3

of one collector to the design of new collectors. Empirical comparisons are

constrained by uncontrolled factors relating to the systems in which collectors

are implemented. Analytic comparisons require a means to extract the essential

garbage collection algorithms from detailed descriptions of implementations

and then some common theoretical framework in which the algorithms may

be analysed and compared. A secondary problem with the individual and

mechanistic publication of collectors instead of algorithms is that the algorithm

may not be proved and in some cases, published collectors have later been shown

to be incorrect [42, 43, 87, 102].

A more recent trend (mostly but not entirely within the last decade) is the

emergence of formal models of GC [64, 82, 102] that may be used to define

one or more GC algorithms. If a model is capable of describing a range of

garbage collection algorithms, it may be used to extract the essential garbage

collection algorithm from an implementation, prove its correctness and serve

as the common theoretical framework in which multiple algorithms may be

analysed and compared. Formal models of GC therefore provide a rigorous

means to analyse, construct and compare GC algorithms independently of the

programming systems in which they may be implemented. As of the publication

of this thesis, the most general existing model does not provide a concrete process

to instantiate or analyse a collector, while the most formal and concrete models

are very specific in the range of collectors they are capable of describing; these

models are discussed in detail later.

The primary contribution of this thesis is the definition of a formal model of

distributed garbage collection, Surf, that is capable of defining a range of garbage

collectors, contains a formal proof of correctness that is applicable to collectors

conforming to the model and provides a concrete process that may be followed

to instantiate a new collector or analyse an existing collector.

Before going into detail on the specifics of existing research and the new

Surf model in later chapters, this introduction will outline the required and

desirable properties of a garbage collector, define what exactly is difficult about

programming in a distributed system then introduce the intersection of these two

areas of research: distributed garbage collectors and the models that describe

them.

1.1 Garbage Collection

The purpose of a garbage collector is to reclaim those objects that are no longer

required by the computation. Objects that will be accessed by the computation at

a later time are considered live and all others are considered dead; most collectors

4 CHAPTER 1. INTRODUCTION

take a conservative approach by equating reachability and liveness. Clearly an

object which is reachable will not necessarily be accessed but there is no way of

exactly determining this without an analysis of the computation that is equivalent

to the halting problem [23, 96]; techniques exist whereby compilers may be able

to detect some such reachable dead objects though they are not considered here.

For the purpose of this thesis, analysis of the computation is ignored and

reachable objects are defined as live, thereby reducing the GC problem to one

of graph analysis. The GC problem is solvable only because unreachability is

a stable property: once becoming unreachable, there is no way for an object to

become reachable again since applications are permitted only to copy pointers,

not manufacture them; the stability of garbage is critical in distributed systems

because the global system state is not instantaneously observable.

This thesis is concerned only with the detection of garbage; methods of

representing free space, allocating space and returning detected-as-unreachable

space to the free pool are system specific and considered no further.

1.1.1 Required Properties of a Garbage Collector

The graph-connectivity definition of garbage collection produces the first two

requirements for a garbage collector:

• safety: that the garbage collector will never reclaim a live object, and

• completeness: that the garbage collector will eventually reclaim every dead

object.

Safety is clearly a necessary property since a collector that reclaims live objects

will interfere with and likely break the computation it is meant to be supporting.

Completeness is more interesting as it has been argued by some that “obscure”

forms of garbage do not typically arise and where they do, that they will

constitute only a small portion of the space consumed in the system; in fact

it is possible to prove for a small subset of languages that such structures

will never occur. For general purpose languages operating on arbitrary data

structures, it is more difficult to argue the case against completeness since it

transpires that the “obscure” form of garbage is formed by a very common

data structure used in scientific and engineering applications: the finite element

analysis mesh. Supporting the general case and these important applications

requires completeness, therefore this thesis is concerned only with complete

garbage collectors.

Figure 1 shows a very small but representative object graph with three kinds

of objects: reachable (white), acyclic garbage (black) and cyclic garbage (grey). A

1.1. GARBAGE COLLECTION 5

r

Figure 1: Reachability Examples

safe collector must detect no white objects as garbage and a complete collector

will detect all grey and black objects as garbage. Incomplete collectors are

typically incomplete with respect to cycles of garbage, i.e. they are unable to

reclaim the grey objects.

1.1.2 Desirable Properties of a Garbage Collector

The primary benefit of garbage collection is reduced application complexity in

conjunction with increased reliability: the determination of liveness is a difficult

problem and a frequent cause of bugs in languages lacking GC. Clearly the

determination of reachability inside the collector has non-zero cost and this

cost should be minimised where it has any impact on application performance.

The cost of GC however does not constitute a good argument against garbage

collection in complex applications because the “manual” approach will reduce

to the application programmer implementing an ad-hoc GC, e.g. by writing

reference-counting smart pointer classes.

The desire for high performance garbage collection and minimal impact

on application performance results in the following three additional desirable

properties of a garbage collector:

• high throughput,

• good timeliness, and

• low induced latency.

Throughput refers to the rate at which the collector can detect and reclaim

garbage; where throughput is lower than the garbage creation rate, the store will

eventually fill with garbage, making the allocation of new objects impossible and

6 CHAPTER 1. INTRODUCTION

destroying the illusion of infinite space by preventing or deferring the allocation

of memory by the application.

Timeliness refers to the delay between an object becoming garbage and its

being detected as such by the collector; good timeliness means that the quantity

of floating (undetected) garbage in the systems will be reduced, resulting in

improved performance [56] and the ability to allocate more live objects before

space is exhausted.

Induced latency refers to pauses induced in the computation due to garbage

collection operation, e.g. a pause while the collector is executing or the temporary

inability to access data or create objects due to collector activity. Poor induced

latency is the typical argument presented against the use of garbage collection

on performance grounds however garbage collectors have improved in this

regard over the previous three decades with a move away from stop-the-world

collectors to incremental and concurrent collectors. A stop-the world collector

halts mutator1 activity so that it may have exclusive access to the object graph

to perform an entire phase of GC, incremental collectors interrupt mutators

for shorter periods of time in which they perform some small increment of

collection work and concurrent collectors are capable of operating without

mutator interruption. Concurrent collectors are more difficult to construct than

stop-the-world because they must be safe in the face of concurrent mutations to

the graph.

Garbage collection has been an active area of research for approximately half

a century, the term being coined by early LISP researchers [30]. Wilson [101]

provides a good summary of the existing approaches to the problem as it applies

to uniprocessor (non-distributed) systems and Jones & Lins [56] provide an

overview of the field in textbook form. Reviewing the literature reveals the

wide range of approaches to designing, describing and occasionally proving

the correctness of garbage collectors; there is no single framework capable of

describing the wide range of approaches taken in the literature to the detection

of garbage.

1.2 Distribution

For the purposes of this thesis, a distributed system is one composed of a

number of physically separate computational resources connected by some

communications medium and cooperating on a single computation. The physical

separation of the resources — sites — implies that there is non-zero latency in

1The mutator is the computation which operates over and mutates the object graph that the
garbage collector is observing

1.2. DISTRIBUTION 7

precedes

follows

space
tim

e

no

causality

no

causality

Figure 2: Relativistic Light Cone

communication between sites and that it is therefore impossible to have up-to-

date knowledge of the global system state. This limitation is identical to the

concept of a light cone in special relativity [37]: one event precedes another if it is

possible for a photon to travel between the two events, likewise an event precedes

another in a distributed system only if there was communication between the

sites that the two events were located at. Relativistically, there is no causal

relationship between events separated by more space than time and likewise

there is no causal relationship between events at two sites if there exists no

communication.

A light cone is illustrated in Figure 2 and the corresponding causality

relationships in a distributed system are shown in Figure 3, in each case an event

is denoted by a circle. In the distributed-systems case, message transmission

is indicated by dotted lines and the vertical lines indicate the progression of

computation at each site. The lack of causality in the grey areas with respect to the

central event of these diagrams means that events occurring in those grey areas

are not observable to the central event nor may they observe the central event,

therefore it is never possible to have instantaneous knowledge of the global state

of a distributed system.

Despite these observability difficulties, distributed systems may be used to

solve computational problems where both the computation itself and the data

that it operates over may be partitioned; each site within the system performs

some part of the computation using local knowledge and then communicates

with other sites in the system. The more work that may be done independently

by a site, i.e. without communication or synchronisation with other sites, the

more amenable the computation is to application in a distributed system and

such computations are said to be scalable.

The benefit of running such readily distributed applications on a distributed

8 CHAPTER 1. INTRODUCTION

no

causality

no

causalitytim
e

site1 site2 site3

follows

precedes

Figure 3: Causality in Distributed Systems

system is that much lower price per throughput is achievable at higher levels

of throughput than with uniprocessor systems, hence the recent popularity of

computational clusters using commodity hardware [90]. It is simpler and cheaper

to scale the performance of a distributed system: one needs only to add new sites

and networking infrastructure to the system and, assuming a suitably scalable

application, the performance will increase. In contrast, the performance of a

uniprocessor system may be increased only by replacing components of the

system with faster instances and there are physical and financial limits to the

performance available from a single processor.

A secondary benefit of a distributed system is the ability to build in

redundancy and therefore fault tolerance [83, 88, 91]: computations may be

designed in such a way that the loss of some computing resources will at

worst reduce the performance of the computation, not the correctness. Such an

approach is not possible on uniprocessor systems: the failure of the processor

implies that the computation will halt and it is likely that data will be lost. By

distributing a system physically across large distances, the system may gain

immunity not only from random component failures but also from external

disasters and/or malicious interference, the canonical example of such a system

being the Internet.

1.3 Distributed Object Stores and GC

Given the performance scalability available from distributed systems, there is

a need for programming techniques for such systems that are reliable, high

performance and preferably not significantly more difficult to use than their

uniprocessor counterparts. One approach to high performance distributed

computation is to have the programming model represent the underlying

computational structure, i.e. a collection of processes that communicate via the

1.3. DISTRIBUTED OBJECT STORES AND GC 9

transmission and reception of messages, e.g. MPI [44]. A drawback to this

approach is that it is more difficult to achieve determination of global state than

in a uniprocessor system because each site may not observe the state on any other

site, they must perform all communications explicitly.

An approach that is friendlier to programmers is to implement a global

address space, i.e. permit an application at any site to view any piece of data

within the distributed system, though with constraints implied by consistency.

There are many examples of such systems, taking a variety of approaches to

decisions such as granularity of sharing [53, 54], naming [22, 38], replication [62],

consistency [3, 58], update models [45], persistence [10, 8] and fault tolerance [7,

40].

More importantly, the existence of a distributed object store implies the

necessity of a distributed garbage collector, i.e. a means to determine the

reachability of objects given the presence of inter-site pointers. This is a difficult

problem because unreachability is a property requiring knowledge of the global

state and the nature of distributed systems makes it difficult to obtain a consistent

view of this state. The lack of instantaneous global knowledge means that the

feasibility of distributed garbage collection is dependent on the stability property

of garbage; once an object becomes unreachable it is permissible to detect it as

such some finite time later, by definition this latency will in the general case be

non-zero due to the time required to propagate reachability information across

the distributed system.

The cost of communication makes it desirable to make decisions locally where

possible, i.e. without requiring interaction from other sites; the reason being

that message round-trip times are typically large compared to processor cycle

times, often by a factor of 105 or more. The significance of synchronisation

delays within a distributed system brings additional desirable properties for a

distributed garbage collector:

• asynchrony or decoupling, and

• scalability.

Asynchrony and decoupling refer to the ability of the collector to perform work

concurrently and without synchronisation. Specifically, performing collection

work at one site may or may not require:

• synchronisation with the mutator, or

• synchronisation with collection effort at other sites.

10 CHAPTER 1. INTRODUCTION

Synchronisation with the mutator is particularly problematic since it may require

mutator activity to halt for unacceptably long periods of time, resulting in poor

induced latency. Synchronisation between collector instances is also undesirable

because it reduces the throughput of the collector, making it unscalable; a

system with an unscalable garbage collector cannot support scalable applications

because the garbage creation rate will outstrip the detection and reclamation rate

as the system grows.

Garbage collection scalability is a function both of the collector’s ability

to operate concurrently, i.e. without synchronisation and also its ability to

operate without any communication with sites where such communication

is not required. For example, it should be possible to reclaim a garbage

component without communication with any site that the component does not

span; a requirement for any such communication reduces the scalability and

robustness of the system by introducing unnecessary dependencies between

sites. Distributed collectors that achieve asynchrony and decoupling often

interact with mutators in a similar way to concurrent uniprocessor collectors;

in each case the assumption is that the graph is being mutated concurrently

with collection and in the case of a distributed collector, those mutations may

be occurring remotely.

A common technique for safely performing local work within a distributed

garbage collector is to partition the graph into small pieces and introduce the

remembered set: a data structure for recording the presence of inter-partition

(including remote, or inter-site) pointers and thereby decoupling collection at one

site from mutations at another. Such collectors exhibit the desirable properties

of asynchrony and scalability but they are not complete because they use only

local knowledge of connectivity. There exists an unavoidable tension between

completeness on the one hand and asynchrony and scalability on the other

because reachability is a distributed predicate: evaluating it exactly requires

knowledge of state that is distributed across multiple sites. The evaluation only

of local predicates on the object graph requires no communication and is by

definition asynchronous and scalable but approaches using only local predicates

cannot exactly detect reachability. For example, a collector constructed using only

remembered sets will not be complete in the face of distributed cycles of garbage.

Asynchronous, scalable and complete garbage collection therefore requires

some additional process for detecting unreachable regions of the graph: the

process should be able to proceed without mutator interruption and terminate

when such isolated regions are found. Likewise, the termination of that

process should ideally be detectable without negative effects on the collector’s

scalability, i.e. with minimal synchronisation. Attempts at solving the distributed

1.3. DISTRIBUTED OBJECT STORES AND GC 11

GC problem have resulted in a large quantity of significant research with

Jones’ online garbage collection bibliography [55] referring to several thousand

published articles.

There are a number of approaches to complete distributed garbage collection

presented in the literature, with a wide range of complexity and performance.

Some examples are distributed marking [57], controlled migration [67],

back tracing [68], Hughes’ algorithm [52] and the train algorithm [49, 51, 65,

64, 82]. Each of these systems has its benefits and its drawbacks and most have

been implemented but each within different programming systems, making fair

empirical comparisons of their performance difficult due to the requirement that

test programs be translated between systems and due to other implementation

details that differ between systems, such as the update model in use. Without

implementing a number of collectors within a single programming system, an

analytic approach to comparing the behaviour and performance of garbage

collection algorithms would be fairer.

Because garbage collection is an exercise in graph labelling, the purpose of a

GC is to gradually apply labels to objects according to their connectivity and at

some point decide that the labelling has meaning, i.e. that one particular label

is applied only to dead objects. This thesis defines the essence of a collector

to be the means by which it makes progress in the application of labels to

objects and also the means by which it decides when it has reached a labelling

that accurately describes the presence of garbage. Abstract analysis of garbage

collection algorithms require some means to describe the essence of each collector,

preferably formally so that comparisons may be drawn.

Extracting the essence of a collector can be difficult because the published

descriptions of some systems, notably DMOS [49], are highly mechanistic. For

example, DMOS contains the train algorithm but also a mechanism for object

substitution (migration support) and for the maintenance of train membership;

separating this mechanism from the train algorithm for the purposes of

comparing trains to other collectors such as Hughes’ algorithm or back tracing

is non-trivial. Namely, how does one decide where to draw a line through

a collector and claim that certain components define the essential nature of

the garbage collection algorithm in use and that other components are merely

support mechanism that may be replaced without affecting the essence of the

collector?

This thesis asserts that a rigorous way to compare GC algorithms is to use an

abstract model of garbage collection that is capable of describing the essence of

any particular garbage collector. The reason for this approach is that a model of

garbage collection should contain an abstract description of the way in which

12 CHAPTER 1. INTRODUCTION

graphs are analysed to determine their connectivity (the “additional process”

described above as being necessary for complete and scalable collection); if some

part of a published garbage collector can be described by the abstract model, then

it may be said that that component is the essence of the collection algorithm.

Comparing GC algorithms via their essence can reveal features such

as correctness, time-complexity of operation and minimal requirements for

synchronisation but because the comparison does not take into account the

implementation details, specific measures of performance (e.g. throughput,

timeliness, space overheads, etc) are not available. For example, mark-sweep and

semi-space copying collectors [101] both make progress by a forward trace of the

object graph from the root but the specific mechanisms for allocating objects and

representing free space differs, resulting in differences in real-world performance,

particularly with respect to space overheads. Therefore mark-sweep and semi-

space-copy arguably are both the same essential garbage collection algorithm

and they differ only in the mechanisms of their implementation. While the

implementation differences between these collectors appear significant on the

surface, they are both O(live count), both apply one of two labels to each

object, both traverse the live object graph in a wave from the root, both may

use snapshot-at-the-beginning for concurrent operation, both operate in distinct

phases and both require global synchronisation at a phase change.

A model that is capable of describing a large number of collection algorithms

is defined here as broad, while a model that describes an algorithm in detail, e.g.

containing a proof of correctness, is defined as specific. While it is possible that

some models may merely be only broad or only specific, a model that is both

broad and specific may be used to perform a detailed analytic comparison of

multiple garbage collection algorithms.

1.4 Models of (Distributed) Garbage Collection

Bacon and Rajan [13] discovered similarities between forward-tracing and

reference-counting uniprocessor collectors, noting that optimised versions of

each collector behave similarly and have similar performance traits because they

seem to be composed of the same underlying tracing actions; the approach is

applicable only for uniprocessor systems. Their observation is not so much a

model, but implies that there may exist a single model that is sufficiently broad

to describe both forward tracing and reference-counting collectors.

Abdullahi and Ringwood [2] present a survey of distributed garbage

collection as of 1998 which, in listing a brief description of a large number of

collectors, highlights the fractured nature of descriptions of distributed garbage

1.4. MODELS OF (DISTRIBUTED) GARBAGE COLLECTION 13

collectors; each collector is described in its own terms, with different assumptions

as to the nature of the underlying system and other implementation details.

Some research has been performed with respect to building generic models

of distributed garbage collection, e.g. Lowry [64] defines a formal model

of the Train Algorithm using wave-based Distributed Termination Detection

Algorithms (DTDAs), Norcross [82] describes the construction of Train-based

collectors by the composition of DTDAs and arbitrary local collectors and

Zigman [102] describes the creation of compound collectors by composing

multiple collectors to operate on sub-graphs. These approaches all provide

models of modern, high-performance (asynchronous, decoupled and scalable)

approaches to distributed garbage collection, the limiting factor being that the

most formal — and therefore specific — literature is relevant only to Train-like

approaches to garbage collection, i.e. it is not broad. Likewise, the broadest

model (Zigman’s) is not very specific.

Moreau et al [74] present a formal proof of Birrell’s Reference Listing [18, 19]

by introducing a graphical representation of the algorithm’s state space and

permitted transitions therein. This proof will become more valuable as a model of

GC if it can be extended to describe the whole of a complete garbage collector but

it is not yet clear how this will be achieved, i.e. the model is highly specific but

not broad. The proof also seems to be entirely manually derived, i.e. there is no

mechanical process that will permit another proof to be derived for a different

collector. Tel and Mattern [94] present an alternative approach to proving

the completeness of pointer tracking algorithms by showing that the issue is

equivalent to Distributed Termination Detection (DTD) [93], a well-understood

problem.

Tel’s “proof by association” seems a better approach because it does not

require the manual derivation of all states within a system and the discovery

of order and meaning within those states, rather it uses existing proofs of well-

known DTD algorithms to prove the correctness of a collector by showing

congruence between the collector and a solution to the DTD problem. The

limitation to this approach so far is that it is capable only of describing collectors

that detect trivial unreachability (lack of pointers directly to an object) and are

therefore incomplete. In other words, Tel’s model of GC formalises the approach

wherein collection decisions are made using only local knowledge of graph

connectivity; the model contains no process to discover distributed regions of

garbage.

The current state of the art therefore is that there are a number of known

distributed garbage collectors, each not necessarily having a rigorous proof of

correctness. Currently, each collector must be analysed and understood on its

14 CHAPTER 1. INTRODUCTION

own terms and it is a non-trivial task to invent new garbage collectors by building

on the knowledge gained from previous efforts. While it is possible to manually

prove the correctness of collectors by traditional means (e.g. the proof of Birrell’s

reference counting above), a more automated approach is desirable, i.e. the use

of an abstract model.

An ideal model should be broad, specific and formal: it should be possible

to instantiate a wide range of garbage collectors, prove their correctness using

the model and perform comparative analysis between all collectors that may be

described by the model. Abstract models of GC exist and are discussed in the

following chapter but none exhibits the combination of all desirable properties.

1.5 Contributions & Structure of Thesis

The primary contribution of this thesis is that it presents the Surf abstract

model of distributed garbage collection that is both general enough to describe

a wide range of collectors and specific enough that its proof may be applied to

collectors instantiated from the model. Due to the detail present in the model,

describing a collector in terms of the model provides insight into some properties

of the collector: where synchronisation is required for safety and how much this

impacts concurrency, the expected scalability of the means by which the collector

makes progress and/or detects isolation and broad generalisations regarding the

collector’s computing overhead and expected timeliness. A proof of correctness

for Surf is supplied that defines a list of requirements that an implementation

must fulfil and these requirements are the means by which this analysis occurs.

The Surf model provides a design space within which each collector represents

a single point; the process of choosing a point in the design space and fulfilling

the requirements for completeness constitutes a concrete instantiation process.

The existence of a well defined process that a designer can follow means that the

creation of correct new garbage collectors is now more mechanistic and less error-

prone than it was previously: by analogy, garbage collectors deny programmers

the opportunity to incorrectly free memory and a model of garbage collection

makes it difficult to design an incorrect collector.

The limitations of the Surf model arise primarily from the system model

within which it is defined: sites and communications are assumed to be reliable

(no crashing or restarting, no byzantine behaviour, no packet loss or corruption)

and the collection process defined by the model is valid only for a shared-nothing

storage model with no object migration. The model in its current state is therefore

incapable of describing fault-tolerant systems because it does not permit the

replication of objects and therefore has no model of coherency. The formality

1.5. CONTRIBUTIONS & STRUCTURE OF THESIS 15

of the model requires that it be aware of every pointer, therefore it is applicable

only to closed systems: no federated stores [79], persistent [10, 8] or otherwise

open systems may be described by the model without extending it. Use of the

Surf model to design a new collector is no guarantee that that collector will

exhibit high performance because the model is capable of describing collectors

with a broad range of performance characteristics. A related limitation is that

the model describes only the essence of a collection algorithm, i.e. the means

by which the collector makes progress in labelling objects and deciding when

the labelling implies the presence of garbage. An implementation contains not

only this essential garbage collection algorithm but also a number of support

mechanisms which may have significant effects on the collector’s performance.

The thesis begins by examining the published history of distributed garbage

collectors and models thereof in Chapter 2. The result of this examination is the

discovery of a need for models of distributed garbage collection that are both

general and formal; existing models are either general or formal but not both.

Having identified the need for a new model of distributed GC, Chapter 3

provides a formal definition of a distributed system using an event/transition

model. The safety and completeness requirements of a collector are then defined

in terms of the event/transition model and reachability. The system model is

used to define all the components of the Surf abstract model of distributed GC

then a proof of correctness is built on the system model and a mapping between

the Distributed Termination Detection [93] abstraction and the isolation of graph

regions. A summary of the model is provided as a definition of the design-space

that the model represents and a list of requirements that a collector must fulfil for

the model’s proof to apply; this design space and list of requirements constitute

a concrete process for analysing the performance of collectors and instantiating

new collectors.

To verify the descriptive power of the model and its accuracy, a number of

existing garbage collection algorithms are described in Chapter 4 in terms of

the Surf model by applying the analysis process from the previous chapter. For

each collector so analysed, some behaviour is predicted and in each case, this

behaviour matches what is already known about these collectors. Demonstrating

that the Surf model’s predictions match reality is the first step in validating the

Surf model and the accuracy of its analytical power; admittedly these predictions

are post-hoc but by definition they must be if they are to be compared with the

known properties of existing collectors.

The next step in validating Surf’s analytical power is to make entirely new

and untested predictions and test those predictions empirically. Where progress

of collection is tied by performance-driven implementation choices to garbage

16 CHAPTER 1. INTRODUCTION

collection activity within partitions, the partition selection policy is critical to

enabling progress. The Surf model of progress is therefore applied in Chapter 5 to

a distributed persistent garbage collector that is an instance of the train algorithm;

Surf provides insight into where progress is available and this information is

used to define the partition selection policy. The Surf model predicts that

with the chosen policy, approximately linear complexity (collector invocations

required to reach completeness) is attainable, in contrast to the quadratic seen

with naive policies previously published or the lack of progress seen with policies

designed to detect acyclic garbage. The predictions of linear performance are

then confirmed in experimentation using an implementation constructed for the

purpose of measuring and analysing collector performance; this collector is also

believed to be the first implementation of the train algorithm in a distributed

persistent store. Having made new predictions and verified them experimentally,

the Surf model’s predictive value is thereby further validated.

The Surf model provides a design space within which collectors may be

instantiated; previously published and implemented collectors that fit within the

model (explored in Chapters 4 & 5) are heavily biased to one corner of the design

space. In an attempt to explore the as-yet-unknown regions of design space,

Chapter 6 describes a new GC algorithm that the Surf model predicts to have

a behaviour unlike any other published collector: the ability to detect topology

in the object graph other than disconnectedness and thereby detect garbage with

excellent timeliness in certain circumstances.

In conclusion, abstract formal models of distributed garbage collection are

a rigorous way of designing, proving, analysing and comparing distributed

garbage collection algorithms. This thesis presents such a model, proves its

correctness and verifies its predictions against the known behaviour of existing

collectors and a new implementation. Exploration of the model’s design space

results in predictions of the existence of a new class of garbage collection

algorithms.

Chapter 2

Distributed Storage Management

This thesis is primarily concerned with the presentation of a new abstract

model of garbage collection, therefore this literature review chapter presents an

overview of existing techniques for, and abstract models of, garbage collection.

Fundamental to any discussion of distributed garbage collection is a system

model and a formalised language for describing the operations that may occur

within that system; such a model is introduced here so that it may be used to

describe models of garbage collection throughout this thesis.

Unreachability of an object is a stable property, i.e. once an object becomes

garbage it cannot become live again. The Distributed Termination Detection

(DTD) abstraction is a formal description of a class of computation over which

stable properties may be detected and a DTD Algorithm (DTDA) is a solution to

the DTD problem, i.e. a DTDA is a concrete algorithm that is capable of detecting

stable properties. The DTD abstraction is therefore critical to distributed garbage

collection because the fundamental requirement of a garbage collector is to detect

a stable property of the object graph. For this reason, DTD is introduced in this

chapter and two approaches to the description of DTD Algorithms are presented.

DTD Algorithms are a core component of some existing models of distributed

garbage collection and likewise they are a core component of the Surf model

presented in this thesis.

Individual garbage collection techniques as represented by published

collectors are reviewed here, leading to the conclusion that models of garbage

collection are desirable because they provide a framework within which

collectors can be constructed, proven and compared. The literature contains

incorrect published collectors (errors noted in [42, 43, 87, 102]), in each

case it seems the algorithms are published as mechanistic descriptions of

implementations. A more rigorous approach to the design of collectors is via

formal models of garbage collection. Two existing models are presented in

this chapter — the Train Algorithm and Hierarchical Collectors — and each is

18 CHAPTER 2. DISTRIBUTED STORAGE MANAGEMENT

analysed in light of how well it achieves the desirable properties of an abstract

model of garbage collection, namely:

• the model should have a proof of safety and completeness that may be

applied to collectors instantiated therefrom,

• the model should be capable of describing a wide range of garbage

collectors,

• the instantiation process should be as mechanistic as possible, leading to

rigour in the application of the correctness proof, i.e.

– the model should define a design space within which each

instantiation represents a point,

– the model should provide a concrete list of constraints that the

instantiation must fulfil in order to satisfy the proof,

• the model should provide analytical insight into the behaviour of its

instantiated collectors, and

• the model should be easy to understand and analyse.

Note that there are no properties here relating to the performance of individual

collectors such as throughput or asynchrony; such details will depend on the

details of a particular instantiation. Predictions regarding collector performance

are one form of insight that it is desirable a model may provide into individual

collectors.

2.1 Distributed Computation

Computation in a distributed system may be represented in a number of ways but

a common factor to all representations is that they can express concurrency in the

system, a necessary property due to the concurrency inherent in having multiple

computing resources present in the system. Examples of such methods include

Communicating Sequential Processes (CSP) [47] that use synchronous message

passing and no shared storage, Distributed Processes [46] use asynchronous

message passing and have no shared storage while Synchronizing Resources [5]

use shared resources (storage). Java [6, 41] permits communication by remote

procedure call (RPC) [100].

For the purposes of describing distributed algorithms within this thesis, an

approach is taken similar to that of Distributed Processes. Each site executes

at an arbitrary rate and communication is by the transmission and receipt of

2.2. DISTRIBUTED TERMINATION DETECTION 19

asynchronous messages. The model is described in detail in Section 3.1 and

summarised here as follows:

• computation at each site is represented as a chain of states that a site

assumes in sequence,

• the atomic transition between two states is referred to as an event,

• events may occur at an arbitrary rate, with no bound on relative execution

rates between sites,

• the transmission of a message to some other site is an event,

• the receipt of a message is an event, and

• causality exists only between subsequent events at the same site and

between the send/receive event pair of each message.

The lack of shared storage and the strong definition of causality in this model

make it a lowest common denominator approach to describing distributed

systems.

This computation model and further discussion in this thesis do not include

any concept of fault tolerance, i.e. communications and sites are assumed to be

reliable. Packets are never lost, sites do not crash or restart and do not exhibit

Byzantine behaviour.

2.2 Distributed Termination Detection

The Distributed Termination Detection (DTD) problem [39, 36] is fundamental to

distributed computation because solutions to it may be adapted to the detection

of stable properties within a computation, for example detecting that a system

has deadlocked or that some region of a graph has become unreachable. A stable

property [86] is a condition within a distributed system wherein some predicate

evaluated over the states on every site within the system is true and will remain so

regardless of the events that the computation may perform in the future. Clearly

it is possible to safely evaluate only stable properties within a distributed system

due to the lack of instantaneous knowledge; a global predicate that is true only

momentarily may not necessarily be detected and if detected, may be detected

after it is no longer true.

The classic model of the DTD problem concerns a distributed computation

and the detection of its termination with the following assumptions as to its

nature:

20 CHAPTER 2. DISTRIBUTED STORAGE MANAGEMENT

1. a site may be active or passive,

2. only active sites may transmit messages,

3. an active site may spontaneously become passive, and

4. a passive site may become active only on receipt of a message.

The system is considered terminated when every site is passive and there are

no messages in flight. Termination is a stable property: rule 2 ensures that no

messages may be sent and rule 4 ensures that no site may become active.

A DTD Algorithm (DTDA) is a distributed computation that observes some

other distributed computation with the aim of detecting when it has terminated;

surveys and classifications of such algorithms are presented by Tel [93] and

Matocha & Camp [70].

Livesey et al [63] recently presented Doomsday, which contains two distinct

concepts: the Doomsday model of DTD and the Doomsday protocol for

constructing DTDAs. The Doomsday model of DTD expresses the problem

slightly differently from the classic model:

1. A task is an active computation.

2. A task may migrate between sites.

3. A new task may be created at a site if it is witnessed by an existing task.

4. A task may spontaneously die and cease to exist.

5. A job is a collection of tasks with its origin in the birth of one or more tasks

at a nominated home site.

Under Doomsday, the purpose of a DTDA is to detect termination of a job, i.e the

lack of existence of any tasks within that job.

It is shown later in this thesis that the two models of DTD are substantially

identical with the exception that under the Doomsday model, the nominated

home site may spontaneously create tasks, therefore a Doomsday DTDA may

detect termination only at the home site while classic DTDAs may safely detect

termination at any site. The Doomsday system model is presented here because

its job/task notation can describe the application of multiple instances of a DTD

algorithm within a single computation, i.e. it explicitly permits the observation

of finer-grained stable states than termination of an entire computation. The

Doomsday system model notation is used for reasons of clarity later in this thesis

without implying that the Doomsday protocol must be used to implement the

DTDAs.

2.3. DISTRIBUTED GARBAGE COLLECTION 21

DTDAs may be broadly classified in two dimensions: synchronous or

asynchronous, and wave-like or Doomsday.

A synchronous DTDA is one that requires message transmission to be

synchronous, i.e. sites may perform no computation during the time in which a

message is in transit or, alternatively phrased, message delivery is instantaneous;

such a DTDA will not function correctly given the system model of Section 2.1.

An asynchronous DTDA is one which makes no assumptions regarding message

delivery times with respect to computation rates, i.e. messages may be arbitrarily

delayed though some DTDAs require FIFO (in-order) delivery of messages on a

given channel.

A wave-like algorithm is one which polls the system with a wave, visiting

all sites and determining whether termination has been reached. A Doomsday

algorithm using the Doomsday protocol of [63], i.e. correct operation requires

only that task birth is witnessed by an existing task at the same site and that birth

and death messages are delivered to a home site where termination is be decided.

The Doomsday protocol appears to unify all non-wave-like DTDAs.

DTD may be extended from the detection of computation termination to the

detection of arbitrary stable properties merely by a change in terminology as

long as the same underlying constraints on the computation are observed, i.e.

the property being detected is stable due to the same constraints that make

termination a stable property. For example, Chandy & Misra [73] show that

deadlock detection is congruent with termination detection and therefore that

a DTDA may be used to implement deadlock detection.

Because unreachability is a stable property, the Surf model of distributed

garbage collection presented in this thesis relies heavily on the DTD abstraction,

as does much of the existing garbage collection literature as described below.

2.3 Distributed Garbage Collection

Garbage collection is the process of detecting the reachability of an object from a

nominated root. If an object is directly or indirectly reachable, it is considered

live, otherwise it is garbage and may be reclaimed. The garbage collection

problem is well understood in the uniprocessor context where instantaneous

knowledge of the entire object graph is available; see Wilson [101] for a survey of

techniques.

A distributed store implementing a single address space implies both that

there are objects at multiple sites and that they can contain pointers to arbitrary

other objects, including objects at remote sites, in turn implying the presence of

inter-site pointers. The presence of inter-site pointers is what makes the creation

22 CHAPTER 2. DISTRIBUTED STORAGE MANAGEMENT

of a complete and scalable collector difficult: the garbage collector must have

global knowledge of the state of the graph but must be able to make progress in

the detection of garbage without synchronising with other sites or interrupting

the mutator of the graph that it is observing.

The distributed GC problem is soluble because unreachability is a stable

property and may therefore be detected in a distributed system via use of DTD

algorithms.

The problem with much existing literature is that garbage collectors are

constructed in an ad-hoc fashion from designs that contain elements specific to

particular applications and without a clear view as to how the correctness of the

design may be proved, if it is in fact correct at all. For example, the original

DMOS [49] publication includes an optimisation by combining multiple pointer

tracking messages into a single message instead of merely presenting the pointer

tracking algorithm as implemented and proving its correctness. It is therefore

desirable to have a model of garbage collection that describes clearly how a class

of collectors operates and proves their correctness. Creation of a new collector

should therefore occur as an instantiation of the model, reusing the model’s proof

of correctness by showing how the new instantiation conforms to the constraints

specified by the model.

By making the construction of a collector a mechanistic process that starts

from a model, it may be possible to reduce the probability of the resulting

collector being incorrect in some way. Conversely, it is undesirable to restrict the

design of collectors more than necessary, i.e. permitting a model to instantiate a

wider range of collection algorithms is an improvement to that model if rigour is

not compromised.

Jones & Lins [56] and Abdullahi & Ringwood [2] review a number of

approaches to distributed garbage collection. Uniprocessor garbage collection

is not considered here in detail except where necessary in the application of a

particular model or approach.

This section proceeds by describing approaches to detecting trivial

unreachability (the lack of pointers to an object), culminating in its equivalence

to the DTD problem. The review then moves onto globally complete collectors,

presenting a range of published approaches and the issues that they have been

found to face; previously these issues were thought to be specific to certain

collectors but later chapters of this thesis will generalise the problems across

a wide range of collection approaches and give specific reasons as to exactly

why each collector does or does not suffer from each specific problem. Finally,

hybrid and compound collectors are presented, each being composed of two

or more other collectors for performance reasons; for example, a hybrid may

2.3. DISTRIBUTED GARBAGE COLLECTION 23

contain both a high performance collector using only local information (e.g.

reference counting) to reclaim acyclic garbage and a complete collector with

poorer timeliness to detect distributed cyclic garbage.

The diversity of the literature described here leads to difficulty in applying

lessons learned from the design of prior algorithms to the design of newer

algorithms therefore mistakes and discoveries are repeated and wheels are

reinvented.

2.3.1 Trivial Unreachability

Trivial unreachability is defined as the lack of pointers to a particular object; the

detection of this circumstance via reference counting [30] constituted the first

attempt at garbage collection in a uniprocessor system. In a distributed context,

the class of algorithms that detect trivial unreachability are referred to collectively

as pointer tracking algorithms.

The nature of pointer tracking, wherein metadata (the remembered set1) is

attached to an object and updated on receipt of messages from other sites where

pointer creations and deletions have occurred, leads to a collector with good

decoupling and scalability, though care must be taken with correctness where

a pointer is transmitted between two remote sites. A single integer counter with

simple increment/decrement messages at pointer creation/destruction events is

not correct, as illustrated in Figure 4 where a naive and incorrect implementation

of reference counting is shown. Site A contains a pointer to an object on site H ,

A sends a copy of the pointer to B and then erases its local copy. There is no

way to guarantee the ordering of increment and decrement message arrival in

this implementation, therefore it is possible that the reference count will unsafely

reach zero as shown in Figure 4. Though it seems that a simple change such

as having the transmitting site send an increment instead of the receiving site,

Figure 5 shows that this also is unsafe.

The lack of safety is inherent in the fact that increment and decrement

messages arrive from different sites and therefore an ordering on their

transmission order does not imply an ordering on their receipt order. Lermen and

Maurer [60] rearrange the pattern of message passing to ensure safety through

the FIFO properties of channels used in their system; Birrell’s Algorithm [18]

separately lists each remote reference to each object; Watson & Watson’s weighted

reference counting [99] permits each reference to hold a different weight and

divides that weight when the reference is duplicated; DMOS [49] uses vectorised

reference counts in its pointer tracking algorithm [50]. In proving Birrell’s

1The term “remembered set” is used here to describe any form of metadata used by a pointer
tracking algorithm in the determination of trivial unreachability.

24 CHAPTER 2. DISTRIBUTED STORAGE MANAGEMENT

copy

0

1

1

unsafe

erase

inc

dec

A B

tim
e

R
C

H

Figure 4: Erroneous Reference Count

copy

1

0

1

unsafe

dec

inc

erase

A B

tim
e

R
C

H

Figure 5: Erroneous Reference Count

Algorithm, Moreau et al [74] show diagrams of a number of published pointer

tracking algorithms, each of which takes a different approach to ensuring safety.

Trivial unreachability is a stable property: once there exist no pointers to an

object, no pointers to that object may exist in the future. Tel and Mattern [94]

showed the equivalence of the pointer tracking and DTD abstractions, which

means that a solution to one problem is a solution to the other and therefore that

a correct DTDA is a solution to the pointer tracking problem. A garbage collector

constructed using only a pointer tracking algorithm is incomplete with respect to

cyclic garbage; though the whole cycle is unreachable from the root, no object in

the cycle will be trivially unreachable.

The equivalence of pointer tracking and DTD is the path by which Doomsday

came to existence: the DMOS pointer tracking algorithm was described first,

evolved into the Task Balancing DTDA and then generalised into the Doomsday

model of DTD, of which Task Balancing is one instance. Likewise, weighted

reference counting is identical to the credit-recovery DTDA [71]: they are the

same algorithm and solve the same problem but were described separately in

different contexts.

2.3. DISTRIBUTED GARBAGE COLLECTION 25

2.3.2 Globally Complete Collection

Complete distributed garbage collectors may be broadly classified according to

how they detect garbage:

• forward tracing algorithms,

• backward tracing algorithms, and

• region isolation-detecting algorithms.

Each of these approaches are elaborated below.

2.3.2.1 Forward Tracing Collectors

The forward-tracing group of collectors are akin to the mark-sweep approach as

seen in uniprocessor systems [72, 89, 17, 35]: the collector operates in phases,

incrementally marking objects according to their reachability and starting at the

root. At the end of a phase, all reachable objects are marked and the unmarked

objects have been detected as garbage. Distributed collectors taking this approach

include those of Hudak & Keller [48], Augusteijn [11] and Derbyshire [33]. This

approach has scalability and timeliness issues since the marking wave must

traverse the entire distributed heap before any garbage may be reclaimed.

Hughes [52] extends the distributed concurrent marking approach to permit

multiple concurrent waves acting in pipeline fashion and in what seems a first

for distributed garbage collection, makes explicit use of a distributed termination

detection algorithm (Rana’s [84]) to detect termination of each wave. Once a

wave has terminated, every object marked with a wave number (epoch) lower

than the terminated wave is detected as garbage. Hughes’ collector is therefore

the first algorithm to explicitly map the detection of unreachability (a distributed

stable property) onto the DTD problem and thereby apply a DTDA to detect the

unreachability of regions in the graph.

A forward tracing collector typically obtains safety in its interaction with

concurrent mutators using a policy known as snapshot at the beginning (SATB):

every object that is the target of an erased pointer will be marked and therefore

considered live for the current mark phase. SATB is named as such because the

policy results in every object that is reachable at the beginning of a phase not

being reclaimed during that phase regardless of its reachability at the end of the

phase. SATB implies that every pointer in the system constitutes marking work,

even after the pointer is erased.

26 CHAPTER 2. DISTRIBUTED STORAGE MANAGEMENT

2.3.2.2 Backward Tracing Collectors

Backward tracing collectors perform actions similar to forward tracing collectors

in that they mark objects according to their connectivity, however the direction

that the marking wave takes is reversed. At each step, the mark bit will progress

from object x to objects y and z if there exist pointers from y and z to x. The wave

begins at a suspected object and progresses until no further progress is available

or the root object is reached; in the former case, all marked objects have been

detected as garbage.

An example of such a collector is Thor’s completeness mechanism [68] which

has the stated design goal of increasing locality of collection, it does so by

attempting to constrain traversals to unreachable regions and thereby obviate

the need for participation of sites not spanned by the garbage component being

detected.

Thor further constrains the tracing region by having multiple levels of

suspicion based on an estimate of distance [67, 66] from the root; objects closer

than a certain threshold are assumed live with the aim of preventing the back

trace repeatedly traversing live regions of the graph.

2.3.2.3 Region Isolation-Detection: the Train Algorithm

MOS [51] (Mature Object Space) is a uniprocessor GC which divides the object

graph into regions referred to as trains using what it refers to as a reassociation

policy; progress of the collector is dependent on the correct operation of

the reassociation policy to move objects between trains according to their

connectivity. When there exists no inter-region pointers to a particular train,

it is isolated and therefore detected as garbage. The MOS algorithm and its

derivatives — the MOS family of collectors — are collectively referred to as the

Train Algorithm.

PMOS [78, 81] extends the Train Algorithm for use in a uniprocessor

orthogonally persistent [10, 8, 9, 28, 76] system by making the collector aware

of hard-drive related input/output costs, specifically the high access latency.

DMOS [49] extends the Train Algorithm for use in a distributed store by

the addition of a pointer tracking algorithm, Task Balancing [50], and the

use of a DTDA to detect train isolation where trains span multiple sites,

making it the second distributed GC to make explicit use of DTD to detect

unreachability. Lowry [64] and Norcross [82] have subsequently provided more

formal definitions of distributed instances of the train algorithm so the term

DMOS is used in this thesis to refer to the original 1997 publication.

2.3. DISTRIBUTED GARBAGE COLLECTION 27

2.3.2.4 Operation of DMOS

DMOS [49] partitions the object space into cars and trains; each object is entirely

contained within a car and each car is entirely contained within a site and a train.

Trains may span sites and their isolation is the mechanism whereby distributed

garbage is detected and reclaimed. Metadata (remembered sets) is maintained to

track the existence of inter-car pointers and a pointer tracking algorithm operates

to ensure that this metadata is maintained safely. The means by which the

collector makes progress is two-fold:

• acyclic garbage is reclaimed via repeated operation of a partition (car)

collector at each site, and

• objects are reassociated between trains so that each cycle of garbage is

collapsed into a train and all live objects are removed from that train.

The typical, though not necessary, arrangement is that the partition collector

is a copying collector; while it is operating, any object in that partition is a

candidate for reassociation to other trains. The reason for this is convenience:

object reassociation policies are typically based on connectivity, i.e. objects are

reassociated into a train from which they are reachable, and the operation of the

partition collector is an efficient means to determine the set of objects within a

partition that are reachable from some other train.

Object reassociation does not imply that objects migrate between sites2, only

that they become contained within a different train. Because objects are contained

within cars and cars contained within trains, DMOS implementations use a

copying partition collector that evacuates a car by copying every object therein

to other cars, whether they be in the same or some other train; the space occupied

by the evacuated car is reclaimed. To prevent infinite reassociation of garbage

objects, trains are strongly ordered and objects may be reassociated only in one

direction with respect to the ordering on trains.

Protocols are provided to permit sites to join a train when they have an object

that the reassociation policy indicates should be reassociated to that particular

train, and for sites to leave a train when they contain no remaining cars in

that train. A DTD job exists for each train, with tasks of that job being objects

within the train that are reachable from other trains. When the job is detected as

terminated, it contains no tasks and therefore the train is isolated from all other

trains and may be reclaimed.

Lowry [64] showed that cars are not necessary for the train algorithm; they

exist only as a convenient implementation technique to hybridise trains with

2No known distributed train implementations support object migration though the published
algorithm supports it.

28 CHAPTER 2. DISTRIBUTED STORAGE MANAGEMENT

a partition collector and thereby rapidly reclaim acyclic garbage. The train

algorithm requires only that objects exist inside trains and are reassociated

between trains where necessary to make progress. Likewise, the original DMOS

publication specifies the collector to the point where trains exist in rings and

ring-specific protocols are defined for train management; trains in rings are an

example of implementation mechanism defined by DMOS that is not essential to

the distributed train algorithm.

2.3.2.5 Issues with Distributed Trains

Applying trains in a distributed context raises a number of correctness issues that

have been discovered over time:

• various race conditions [64, 102], relating to concurrent reassociation, train

maintenance and train isolation detection,

• the unwanted relative problem [49], related to isolated trains not remaining

isolated, and

• a no-progress bug [87] wherein concurrent mutator activity may hide a

reference from the reassociation process.

Race conditions between train joining/leaving and isolation detection exist in the

DMOS paper and were discovered by Zigman [102]; the problem is that the DTD

model constraints are not observed where train membership is being updated.

The unwanted relative problem occurs where the reassociation policy imports

a live object into an unreachable train, thereby making the train reachable again.

The original DMOS paper recognises the unwanted relative problem and solves

it by introducing the concept of an epoch, i.e. the partitioning of a train by age

of objects. Epochs are delimited by a consistent cut obtained by passing a token

around all member sites of a train, which are arranged in a ring; when isolation is

detected, it is detected per epoch. This solution means that the isolation detection

DTD is running on a non-growing subset of the train and isolation of that subset

is stable; the solution is similar to that proposed by Lowry [64] where a train is

closed to all reassociation and object creation while the DTDA operates.

The unwanted relative race was described in more detail and more

formally by both Lowry and Norcross, each solving the problem by requiring

synchronisation between the reassociation process and train isolation DTDA.

Both Lowry and Norcross define models of distributed garbage collection

using the train algorithm and their contributions are discussed in more detail

below; solving this particular race condition requires that reassociation fits the

constraints of task creation within the region isolation DTDA.

2.3. DISTRIBUTED GARBAGE COLLECTION 29

The progress bug was discovered by Seligmann and Grarup [87] in the

original MOS [51] and is due to the collector using discrete sampling of

remembered sets at each site to discover inter-train pointers and therefore work

for the reassociation process. Consider the case where train A is reachable from

train B but the object in A that is directly reachable is rapidly changing due to

mutator activity in B; the sampling of remembered sets at different sites in A

means that there is no guarantee that any site in A will observe the presence of

the pointer. Discrete sampling means that the collector is aware of the presence

of work at a given site only at certain points in time; if that work moves amongst

the sites of a train due to mutator activity, it is possible that no site will observe

the work and act upon it. The system remains safe because the pointer tracking

algorithm (a DTDA job) for each object is safe and correctly integrated with the

region isolation DTDA, but the collector may make no progress.

A solution to the progress bug is to consider pointers to represent

reassociation work in certain circumstances even after those pointers have

been erased. The extreme case is to consider all erased pointers to represent

reassociation work, an approach that is equivalent to snapshot at the beginning

both in its implementation and in its effect: all objects that were ever reachable

from some other train will be reassociated out of their current train. A more

constrained solution that considers fewer erased pointers as reassociation work

is presented by [87] but it places undesirable constraints on other parts of the

system, namely the partition selection policy. DMOS proposes the use of a sticky

bit that represents reassociation work after a pointer has been erased.

While the train maintenance race conditions are specific to DMOS because

they are an artefact of the train maintenance protocols, the progress bug and

unwanted relative problem do not seem specific to the train algorithm: they

relate to how progress is found and executed and how the isolation of regions

is detected, fundamental operations in any garbage collector. This raises the

question of whether other distributed garbage collectors may or may not be

subject to these problems and if not, what is the critical difference between

those other collectors and the train algorithm that makes them immune from

these problems that have been observed with distributed trains? It is therefore

desirable that these problems be predicted by a formal model of GC when

instantiated with the train algorithm; inspection of the difference between the

train instantiation and other instantiations should provide insight into why the

train algorithm is subject to these issues and what properties of other collectors

make them immune (or not) to the issues described in this subsection.

30 CHAPTER 2. DISTRIBUTED STORAGE MANAGEMENT

2.3.3 Hybrid and Compound Collectors

Hybrid collectors are an approach whereby multiple garbage collection

algorithms are combined to produce a collector exhibiting the better properties

of all the collectors from which it was formed.

Generational GC [61, 97] is a technique for composing multiple collectors

in a uniprocessor system and frequently inspecting the newest region of the

graph in the assumption that the probability of an object becoming garbage

within any particular timespan reduces with the object’s age. It is a form of

incremental GC in that only a small portion of the store is inspected during each

collector invocation; MOS [51] was first described as an algorithm for performing

incremental GC within the (relatively large) mature space, therefore the original

application of the Train Algorithm was as one GC within a system that contained

at least two. This concept is extended by Beltway [21] for uniprocessor systems,

a mechanism for dividing the heap by object age and performing incremental

collection with high performance.

An early example of hybrid collection in a distributed system is [59], which

combines pointer tracking with a distributed tracing algorithm; the result is a

collector which will rapidly detect acyclic garbage due to the use of reference

counting and occasionally reclaims cyclic garbage by invoking the tracing

collector. In a similar vein, [85] combine Birrell’s reference listing [18] with

Derbyshire’s distributed marking [33].

Implementations of the Train Algorithm [24, 78, 82, 87] generally contain two

collectors: the Train Algorithm itself in addition to a copying partition collector.

Each invocation of the partition collector copies all objects in a partition that

are not trivially unreachable to some other partition; where the reassociation

policy indicates that an object should be moved to another train, it is at this time

that it occurs. The use of a pointer tracking algorithm to generate remembered

sets for each partition means that acyclic garbage will be reclaimed by the

partition collector; the Train Algorithm is necessary only to reclaim inter-partition

(including distributed) cyclic garbage.

Zigman [102] describes a method for composing hierarchical garbage

collectors by dividing the graph into regions, applying a separate collector

within each region and specifying requirements for how objects must migrate

between regions so that a higher-level collector may detect cycles of garbage.

The resulting model encompasses the Train Algorithm and a variety of other

collectors, permitting arbitrarily deep nesting of collectors; it is described in more

detail below.

2.4. MODELS OF DISTRIBUTED GARBAGE COLLECTION 31

2.4 Models of Distributed Garbage Collection

A number of distributed garbage collectors are listed above, employing a

wide range of approaches that seemingly do not fit into any one single

model, though there exist some recently defined models which each encompass

some part of the literature. The term “model” is used here to represent

formalisms which encompass a range of garbage collectors or even approaches

to garbage collection; each typically provides a design space within which

specific algorithms exist. An instantiation of a model is a specification of all

the parameters of the model’s design space, sufficient to describe a particular

garbage collection algorithm. A number of existing models are summarised here;

the models of Norcross, Lowry and Zigman are explored in detail below.

The objectives of a model of garbage collection, restated, are:

• the model should have a proof of safety and completeness that may be

applied to collectors instantiated therefrom,

• the model should be capable of describing a wide range of garbage

collectors,

• the instantiation process should be as mechanistic as possible, leading to

rigour in the application of the correctness proof, i.e.

– the model should define a design space within which each

instantiation represents a point,

– the model should provide a concrete list of constraints that the

instantiation must fulfil in order to satisfy the proof,

• the model should provide analytical insight into the behaviour of its

instantiated collectors, and

• the model should be easy to understand and analyse.

The models analysed in this section vary in their fulfilment of each of these

objectives and are analysed in terms of such.

The first model is the equivalence of DTD and pointer tracking as shown by

Tel and Mattern [94]; it is important because it shows that a particular garbage

collection issue is identical to a well understood distributed computing problem.

In showing this congruence, it is now possible to solve the pointer tracking

problem by application of a known, proven and well understood solution to the

DTD problem, i.e. a DTDA.

The second model is implicit in Hughes collector [52] where a DTDA is used

to detect termination of some process that identifies garbage. Tel et al [95]

32 CHAPTER 2. DISTRIBUTED STORAGE MANAGEMENT

construct an explicit model of similar forward-tracing distributed collectors,

mapping termination of the marking process (a diffusing computation) to

DTD. This approach is described and informally generalised in Starting with

Termination [20], wherein uniprocessor collectors are extended to a distributed

context by application of a DTDA and additional design work. The paper shows

that garbage collection in a distributed context generally contains a process that

conforms to the DTD system constraints and therefore the termination of this

process may be detected by a DTDA; the specification of this garbage collection

process is not formalised and therefore left to the designer.

Norcross [82] and Lowry [64] have both presented models of the Train

Algorithm within a distributed context, both specifying that the isolation of

a train may be detected using a DTDA; their theses are formal examples of

the Starting with Termination approach that produce high performance hybrid

garbage collectors. Norcross’ specification of the Club Rules defines how a

partition collector must operate in order for it to correctly interact with the train

algorithm, thereby providing a formal separation between the complete collector

(Trains) and the partition collectors.

Zigman [102] takes a slightly different and more general approach, permitting

the use of arbitrary collection approaches at each layer of a hierarchy of

subgraphs. Each collector is free to operate as it chooses, treating subgraphs as

individual nodes of the graph that it can observe and the motion of objects (and

therefore pointers) between subgraphs as mutator activity.

2.4.1 The Train Algorithm (Lowry)

Lowry [64] defines a formal event/transition model of the train algorithm,

starting without cars and defining how progress must be made by reassociation

to achieve separation of the live and dead objects and therefore complete garbage

collection. The behaviour of the mutator is defined in terms of allowable events

that it may execute and from there, the garbage collector is defined in terms

of the events that it may execute and which events are required to achieve

completeness. The model is then extended to permit asynchronous updates to

metadata, i.e. stale knowledge of train membership at remote sites, then extended

again to re-introduce cars as a performance optimisation.

Having presented a formal model of the collector events, safety and

completeness are used to define when each reclamation event may occur. These

rules are used to derive protocols that manage the train structures, i.e. for

creating, joining, leaving, detecting the isolation of and finally destroying trains.

Lowry recognises the race condition present in the original DMOS paper

and uses synchronisation to solve the problem, i.e. reassociation progress and

2.4. MODELS OF DISTRIBUTED GARBAGE COLLECTION 33

the train maintenance protocols are halted while the train isolation DTDA is

executing. Lowry’s trains use asynchronous wave-based (of unconstrained

topology, e.g. ring or tree) DTDAs to detect isolation; while the wave is in

progress, no reassociation is permitted. To achieve this synchronisation, a closing

wave traverses the train, receipt of which indicates to member-sites that no

reassociation into or object creation within that train should occur; once the

closing wave has returned, DTDA execution begins. If the DTDA wave returns

without detecting isolation, an opening wave traverses the train to indicate that

reassociation is to begin again. By ensuring that the reassociation process may not

occur concurrently with the DTDA, the unwanted relative problem is no longer

dangerous and the system retains its safety. Because closure prevents sites joining

a train, creating objects in a train and reassociation into a train, train closure

introduces race conditions whereby those three activities are indefinitely delayed

because each attempt to perform the relevant activity is blocked by the closure

of a train; the approach presented by Lowry is to have the collector remember

such instances of blocked progress and perform them immediately that the train

is reopened, thereby restoring liveness.

Lowry’s formal description of the train algorithm improves on DMOS in a

number of ways, largely relating to asynchrony, i.e. the ability of the collector

to reclaim garbage without synchronising with other sites. For example, Lowry’s

trains segregate private objects (to which no external references exist) from public

objects, permitting the reclamation of private garbage with no communication,

whereas in DMOS, public and private garbage may be intermixed. Likewise,

Lowry’s trains permit concurrent collection within a site and there is less mutator

disruption due to the explicit description of the algorithm in terms of a concurrent

readers, exclusive write model of data access.

Lowry’s thesis presents a convincing argument-by-analogy that it is safe: train

isolation detection is mapped to distributed termination detection. For each

concept within the DTD paradigm (jobs, tasks, messages, etc), a corresponding

concept is found in the isolation of trains (train, reachable objects, pointer

tracking messages, etc) and the collector is constructed so that the accuracy of

the analogy is not violated. For example, by mapping a task of the DTDA to an

object that is reachable from outside the train, the constraints on task behaviour,

notably creation, must be observed by ensuring that the same constraints apply

to the reachability of objects from outside the train.

Completeness in the train algorithm is proven via use of a finite set of

constraints on the instantiated collector; the proof combines the effects of these

constraints to show that a garbage object will be reclaimed within finite time. The

presence of these constraints is beneficial in that it provides a mechanistic path to

34 CHAPTER 2. DISTRIBUTED STORAGE MANAGEMENT

the instantiation of a garbage collector: if an implementor fulfils the constraints,

the result should be a safe and complete distributed garbage collector.

The downside to this level of rigour and detail is that the abstract model of

trains can describe only a narrow class of garbage collectors, i.e. all instantiations

are merely variations on the train algorithm. It may be argued that this is not

a meaningful drawback: Lowry observes that the train algorithm exhibits all

the desirable properties of a high quality garbage collector in terms of safety,

completeness, asynchrony and concurrency. In some ways however, Lowry’s

model is unnecessarily restrictive because it describes operation only with a

wave-based DTD: the closure of trains is disruptive to collection progress because

all sites within a train must cease reassociation activity while isolation detection

occurs. In contrast, the use of a Doomsday-class DTDA as described by Norcross

contains sufficient synchronisation to make the system safe but it does not force

synchronisation on all other sites within a train to achieve that safety.

Given that Lowry’s thesis focuses on high quality (high performance) garbage

collection through asynchrony and concurrency, much of the analysis that Lowry

presents is aimed at constraining the development of a train-algorithm garbage

collector to a high performance solution. As such, the derivation of the model

and the stated goals in that derivation provide insight into the likely high

performance of collectors instantiated from Lowry’s model; conversely, the

narrowness of the model means that it provides little in the way of analysis tools

that may be used to compare the relative performance of different collectors that

it may instantiate.

The model is readily comprehensible at an abstract level (if not the details of

the proof) and relatively easy to apply to a new collector design.

2.4.2 The Train Algorithm (Norcross)

Norcross [82] focuses on the application of the Task Balancing (TB) distributed

termination detection algorithm in the creation of distributed garbage collectors

based on trains. Task Balancing was first defined as a pointer tracking

algorithm [50] for DMOS and work performed on proving that algorithm was

generalised into the Doomsday [63] approach to DTD (of which Task Balancing

is an instance). Norcross advocates the use of TB in garbage collectors because

it is asynchronous, concurrent (non-interrupting) and scalable. While Norcross’

thesis uses TB to solve all DTD requirements in the collectors so derived, it does

not appear that the model defined therein is restricted to the use of TB.

Norcross’ major contribution is to formally define an interface between

the train algorithm and the car collectors that reclaim acyclic garbage.

Because reassociation (and therefore progress of the train algorithm) is tied by

2.4. MODELS OF DISTRIBUTED GARBAGE COLLECTION 35

convenience and efficiency to the car collector, there are requirements that a car

collector must fulfil for it to work correctly within the train algorithm: these

requirements are dubbed the club rules. The aim of the club rules is that they

sufficiently specify the behaviour of partition garbage collection at each site so as

to completely capture the interface between local collector and train algorithm.

The next step is to note that local collectors do not interact except via train

algorithm mechanisms, therefore homogeneity of local collection is not required;

any heterogeneous selection of local collectors may be implemented within a

system so long as every local collector conforms to the club rules.

To derive the club rules, the Starting With Termination [20] approach is used

to define a mapping from a uniprocessor collector to a distributed collector,

then one must decide which critical state has been made distributed and what

predicate must be evaluated over that state. Once this is decided, a mapping

of the termination predicate to the DTD paradigm is made and the club rules

are derived from this mapping. The rules are chosen such that they constrain

local collector behaviour to be conformant with the mapping to DTD, i.e.

all information that the DTDA requires is made available and local sites are

prevented from acting in ways that do not conform with the DTD model, e.g.

spontaneous task creation.

A number of uniprocessor collectors (mark-sweep, generational and reference

counting) are mapped to distributed systems and club rules defined for each

using this process. Finally, an abstract informal definition of MOS is presented —

Unordered MOS (UMOS) — which when transformed into a distributed system,

yields a variant of the distributed train algorithm and a set of club rules. There

are two mappings-to-DTD used: one for object isolation from other trains and

one for train isolation. Because the Starting With Termination approach is taken,

Norcross noted the existence of the unwanted relative problem in distributed

trains.

By using a Doomsday-class DTDA to detect train isolation, the only

synchronisation required for a site wishing to perform an unwanted-relative

reassociation is to request a witness task of the train isolation job from the home

site of the train. Once this witness task has been received, the reassociation

(task creation) may go ahead. If the train was detected as isolated and therefore

reclaimed while the witness request was in flight, a denial message will be sent

back; in this case the train is about to be reclaimed and there is no longer any

requirement to reassociate objects into it. This witness-request synchronisation

introduces a small degree of centralisation but it avoids the problem present in

Lowry’s model of forcing synchronisation on all other sites that are members of

the same train; the Doomsday synchronisation approach therefore exhibits more

36 CHAPTER 2. DISTRIBUTED STORAGE MANAGEMENT

concurrency and less interruption than Lowry’s train closure and wave DTDAs.

Norcross’ model is safe if it is proven that the derived club rules are sufficient

to ensure that the DTD model requirements are met but such a proof is not given.

On the assumption that the club rules are sufficient; the club rules provide a

highly mechanistic approach to the design of local collectors within a distributed

collector based on the train algorithm. Even if the club rules stated by Norcross

were proved to be insufficient, the central idea of stating the requirements on a

local collector in terms of club rules is valid. No proof of completeness is given.

The model is similar to Lowry’s in its narrowness: it is capable of describing

only a narrow range of collectors, i.e. those based on the train algorithm;

the primary parameter that is permitted to vary within the model is the local

collector. The construction of the model is based on the use of Task Balancing

for both object isolation and train isolation, though it seems that since the club

rules ensure satisfaction of the DTD model constraints that any asynchronous

Doomsday-class DTDA would work. No means of analysing the collectors

instantiated from the model are provided, nor is the approach tested with other

DTDAs, i.e. an implementor gains no information from the model as to the

relative merits of selecting particular local collectors or DTD algorithms.

The model is readily comprehensible and while lacking a formal proof, the

concrete list of club rules means that it is relatively easy to apply to a new collector

design.

2.4.3 Hierarchical Collectors (Zigman)

Zigman [102] presents a model of hierarchical collectors that permits a designer

to compose multiple garbage collection algorithms into a single larger algorithm.

The model involves dividing the object graph into subgraphs and operating a

separate garbage collector in each subgraph. To ensure completeness at the top

level, objects must be able to migrate between subgraphs and thereby isolate

garbage within a subgraph. By recursively dividing the graph, a multi-level

collector of arbitrary depth may be formed, though typical instantiations will

contain only two or three levels. Since subgraphs appear to be single graph nodes

to the upper levels, the migration of objects between the subgraphs will change

the topology observable to the upper levels in the same way that mutator activity

does; garbage collection activity at the lower levels is therefore represented as

mutation to the upper levels.

The propagation of reachability information in a tracing collector is

represented as work: where reachability of a graph node is known, there exists

work for each pointer that it contains. The processing of that work may result

in new work being generated; the process continues processing work until none

2.4. MODELS OF DISTRIBUTED GARBAGE COLLECTION 37

remains and the reachable portion of the graph is completely discovered. This

model of work is applied to the growth of subgraphs, or rather the motion

of subgraph boundaries across the object graph, resulting in structure-based

reorganisation of the subgraphs. The model asserts that where there is an

ordering on subgraphs, only simple isolation detection — reference counting

— is required at the upper level of the collector to detect isolation of the

lower level subgraphs; the reason for this is that the ordering on subgraphs

will, in conjunction with liveness of reorganisation, result in every cycle of

garbage eventually being entirely contained within a subgraph and all live objects

removed from that subgraph. Conversely where no such ordering exists, the

isolation of a given subgraph is not guaranteed but it is possible for cycles of

subgraphs to become isolated; in that case, a complete collector is required at the

upper level.

Zigman’s model is very general and seems to encompass a very wide range

of published garbage collection algorithms: the structural reorganisation process

formulated as tracing work means that the model is capable of unifying tracing

algorithms and explicit reorganisation approaches such as the Train Algorithm

as different points within a single design space. The drawback to this level of

generality is that there is no concrete process that permits the model to be used

in the construction of a new collector.

The model does not explicitly consider distribution but instead is concerned

with mutation of an abstract graph of nodes. However, Zigman describes DMOS

in terms of the model, breaking it down into the components defined by the

model: definition of subgraphs, reorganisation processes, etc. In doing so, it is

noted that state has become distributed: what would have been a reference count

in a uniprocessor system is now distributed and requires additional means to

determine when it has reached zero. The description of DMOS notes the presence

of race conditions in the original DMOS publication and observes that these are

due to state being distributed without a formal means to account for its coherency.

Zigman’s model does not address these concerns, it merely notes that where

state is to be distributed, a more formal approach than that taken originally with

DMOS is likely advisable. Likewise, the hierarchical model does not prove safety

or completeness of distributed trains but it does provide informal assurance that

the MOS algorithm is correct in its most abstract formulation.

The primary value of the model seems not to be in constructing or

proving particular garbage collection algorithms but rather an analysis of

what components are necessary in the construction of a garbage identification

algorithm.

38 CHAPTER 2. DISTRIBUTED STORAGE MANAGEMENT

2.5 Requirement for a New Model of Distributed GC

The previous section describes three models of garbage collection, each exhibiting

a different mixture of desirable properties:

• Lowry’s model contains a formal model and proof of the distributed train

algorithm and uses it to instantiate a high quality collector; the drawback is

that the model is highly specific in that it describes only the train algorithm

with wave-like DTDAs.

• Norcross’ model formally separates the operation of partition collection

from the train algorithm, permitting heterogeneous local collection if the

club rules are followed; it too is specific to the train algorithm.

• Zigman’s model is extremely general but contains little in the way of

specific detail; it provides no proof of correctness or safety and no guidance

in the construction of a new collector.

There is therefore a need for a model to bridge the gap between these existing

models. Ideally, this new model should fulfil all of the requirements stated earlier.

Despite the respective drawbacks of each of these models, they have collectively

provided great inspiration for and strongly influenced the Surf model that is

presented in this thesis.

2.6 Summary

Distributed garbage collection has been a fertile research field for 30 years and

in that time, some parts of the problem have become well understood while a

number of incorrect collectors have been published because they were designed

without the benefit of a formal framework that may be used to prove their

correctness. The recent emergence of models of garbage collection that provide a

somewhat mechanistic process for designing collectors is encouraging; the rigour

of the derivation process leads to rigour in applying a proof constructed for the

model to an instantiation of the model.

This chapter reviews three models of garbage collection at different levels

of abstraction and therefore providing different sets of desirable properties.

The most flexible models published do not provide a mechanistic means for

deriving collectors from the model and thereby proving them, while the models

concerning the Train Algorithm may provide a rigorous proof and a mechanistic

process for arriving at an instantiation but they are limited to producing a narrow

class of collectors. There is therefore a need for a new abstract model of garbage

2.6. SUMMARY 39

collection which not only describes a wide range of garbage collection algorithms

but also provides a proof that may be applied to any instantiation, a relatively

simple process for ensuring that the proof is valid for an instantiation and some

analysis that may be applied to an instantiation to gain some idea of its likely

performance characteristics.

This thesis presents such a model.

Chapter 3

Unifying Distributed Garbage

Collection

This chapter presents Surf1, an abstract model of distributed garbage collection

that is intended to capture the essence of all possible fundamental garbage

collection algorithms, i.e. those that are not composed of other collectors. The

aim of this model is to build a formal system for describing the operation of

a garbage collector: the means by which it makes progress in applying labels

to objects and how it decides when the labelling implies that certain objects

are garbage. Surf provides a unified description of how distributed garbage

collectors make progress and brings together a wide range of collectors within

a single framework. According to the Surf model, a fundamental collector

is composed of one or more relabelling processes and distributed termination

detection algorithms that detect termination of relabelling. Relabelling processes

are constructed so that work within each process corresponds to the existence of

pointers into a particular graph region; termination of a process therefore permits

inferences to be drawn regarding unreachability of that region.

In contrast, a composed collector contains one or more smaller garbage

collection algorithms; for example, practical instances of the train algorithm

contain an instance of the train algorithm [64] at the top level and partition

collectors below that to reclaim acyclic garbage and perform some actions as

required by the train algorithm [82]. The compound general case is described

in Zigman’s thesis [102]. One may not construct a compound collector unless

one already has an existing fundamental collector therefore the description of

fundamental collectors is a necessary step in the construction of compound

collectors.

1Surf is so named because the typical execution pattern is of a number of waves passing
concurrently over the object graph.

42 CHAPTER 3. UNIFYING DISTRIBUTED GARBAGE COLLECTION

By using the Distributed Termination Detection (DTD) abstraction to make

decisions as to the reachability of regions within the graph, the Surf model

requires no extension for application in a distributed context. Because the DTD

paradigm can detect stable states, it may be used to detect isolation since that

is a stable property of garbage. The Surf model defines processes that a DTD

algorithm may observe; these processes are constructed in such a way that their

termination permits inferences regarding unreachability to be drawn.

The model is conceptually simple and the proof of its safety and completeness

identifies a number of constraints on the ways in which it may be instantiated;

these constraints define the bounds of a constructive approach to the creation

of new garbage collectors. The model may be used as an aid in proving the

correctness (or otherwise) of specific garbage collectors and it may be used to

derive new garbage collectors.

Described in this chapter are the system model within which the abstract

model of collection is described, a definition of safe and complete garbage

collection and the Surf abstract model of garbage collection. The safety and

completeness of the model are proven in this chapter; later chapters explore the

descriptive power of the model by describing existing collectors using the model,

investigate the performance of an instantiation of the model and then explore

new areas of the design space provided by the model. A summary of the model

is given as a description of the design space that the model defines as well as

a list of the constraints that an individual collector must fulfil for the proof of

correctness to apply.

3.1 System Model

3.1.1 Objects and Pointers

The system is composed of objects and pointers; each object can contain any

number of pointers that refer to other objects. There exists a special root object

which defines reachability: any object (in)directly reachable from the root is

considered live. The collection of objects (nodes) and pointers (edges) forms

a directed graph, the topology being defined by the application (mutator) that

manipulates the object graph for its own ends.

Each pointer contains the name of an object, which is by definition enough

information to locate the object and perform operations (see Allowable events,

Section 3.1.4) thereon. Objects may contain non-pointer data which is irrelevant

to any abstract discussion of garbage collection.

3.1. SYSTEM MODEL 43

The system must provide referential integrity, i.e. there is no method to

manufacture pointers and the system must be aware of every pointer contained

therein. The only way of accessing an object is via a pointer to that object,

obtained from some other object. Mutators only know the name of the root object,

therefore to access an object in the system there must be a chain of pointers to it

from the root, hence the definition of liveness.

Objects that are no longer reachable from the root are not accessible to the

mutator; they are garbage and should be reclaimed by the system. A more

rigorous definition is given in Section 3.2.

An object y may contain a pointer to an object x (which may or may not be

distinct from y); the pointer inside y is denoted y.x.

The term component is used throughout this thesis to describe a connected

region of the graph. A strongly connected component is one where every object

in the component is reachable from every other object in the component.

3.1.2 Distributed Computation

In distributed instantiations of the model, each object resides entirely on a single

site and is not split across site boundaries or duplicated between sites2. For the

purposes of the proof and generality thereof, each object may be considered

as existing at its own site in the distributed system except where a specific

instantiation of the model requires otherwise; this implies that objects and the

computations accessing them operate asynchronously.

Computation at each site is modeled as a sequence of events that define

atomic transitions between two subsequent states for that site. Individual states

are denoted Sk
P where P defines the site ID (subscripts in general denote site IDs)

and k defines the sequence number of that state, a number which is local to, and

with meaning only within, the site described by that state. The event at site P

leading to state Sk
P is denoted Ek

P ; its predecessor state is Sk−1
P . The happens-

before relationship is denoted by the symbol ≺ and it is used to describe the

presence of ordering between events and states.

States have identity and occur in order, i.e. Ek
P ≺ Sk

P ≺ Ek+1
P ≺ Sk+1

P . Even

though two distinct states may be functionally identical, i.e. be represented by

the same bit pattern on the site in question, they are distinct states and have their

own place in the total ordering on states. This implies that there is no concurrent

computation within a site; where concurrency exists it is represented in the model

as computation on separate sites.

2It may be possible to extend this model to consider objects that are themselves distributed by
replication or splitting across site boundaries but no such extension is considered here.

44 CHAPTER 3. UNIFYING DISTRIBUTED GARBAGE COLLECTION

3.1.3 Predicates

The expression of local predicates on a particular state is as follows and indicates

that the stated predicate is true for that state:

Sk
P : {predicate}

The statement predicate � event is taken to mean that should predicate become

true, event must be executed within finite time, likewise predicate�̃event means

that event is permitted to occur after predicate becomes true. In other words, an

event described in this way may only occur if a predicate that permits the event

was true at some state preceding (by causal ordering) the event in question:

∃event⇒ ∃Sk
P |

(
Sk

P : {predicate} ∧ predicate�̃event ∧ Sk
P ≺ event

)

Communication between sites is by asynchronous message passing; not

necessarily FIFO though some instantiations of the model may require that as

an additional constraint. Fault tolerance is not considered in the system model:

all messages are delivered in finite time without corruption or duplication, sites

do not crash and do not exhibit Byzantine behaviour.

Message transmission and receipt are two separate events, typically occurring

at different sites; for a message sent from site P to Q:

sendP ≺ recvQ

This causal relationship between events is provided by the message traversing

the network between sites; it is the only mechanism by which a causal ordering

between states and events on different sites may be established. Computation

speed at a given site is unbounded, i.e. message transmission provides

an ordering only of the send and receive events, not any events following

transmission or prior to reception.

3.1.4 Allowable Events

Events of interest to the collector involve the mutator modifying the graph

structure and the transport of pointers between sites in messages. The allowable

mutator events are:

create(y.x← (x = new))k
P

object x created at site P at timestep kP and pointer copied into y.

Sk−1
P : {∃y ∧ ¬∃x} ∧ Sk

P : {∃x ∧ ∃y.x}

In other words, given the event createk
P , y exists at the prior state while

x does not, Sk−1
P but x does exist at the following state, Sk

P and there

3.2. DEFINITION OF GARBAGE COLLECTION 45

also exists a pointer to x in y.

“←” has no formal meaning as an operator outside of the create event;

informally it is syntactic sugar indicating that pointer assignment

occurs as part of a create event.

send(y.x→ Q)k
P

site P sends a copy of the pointer-to-x in object y to site Q. No change

of graph state at P but the event must be observable to the garbage

collector.

Sk−1
P : {∃y.x}

“→” has no formal meaning as an operator outside the definition

of the send, recv and plus events; informally it is syntactic sugar

indicating the transmission of a pointer value in the direction of the

→ from one site to another occurring during one of these events.

recv(P → z.x)k
Q

site Q receives a copy of the pointer-to-x from site P and stores it into

object z

Sk
Q : {∃z.x}

minus(y.x)k
P

erasure of pointer to x in object y at site P . x does not necessarily

reside at P .

Sk−1
P : {∃y.x} ∧ Sk

P : {¬∃y.x}

plus(z.x→ y.x)k
P

This is not actually an event in its own right, it is the composition of a

send and recv pair on the same site wherein z sends a pointer-to-x to

y.

All mutator activity is defined in terms of sequences of the above events, one

sequence executing at each site in the system.

3.2 Definition of Garbage Collection

Garbage collection (GC) is defined as an exercise in the determination of graph

connectivity. Stated simply, an object is live if it is within the transitive closure of

the root, otherwise dead. Since the mutator may access objects only via the root

and therefore only live objects, dead is a stable property: once true, it remains true

since there is no means for the mutator to obtain the name of a dead object. The

purpose of a garbage collector is to detect objects that are dead so that the space

46 CHAPTER 3. UNIFYING DISTRIBUTED GARBAGE COLLECTION

they occupy may be reclaimed but the Surf abstract model deals only with the

detection of garbage; allocation and reclamation of objects are mechanistic details

dependent on the store architecture, irrelevant to detection and not considered

here.

Two necessary properties for a correct garbage collector are safety and

completeness. Safety refers to the property that no live object will ever be

detected as garbage and completeness refers to the property that dead objects will

be detected as garbage within finite time. There are other desirable performance-

related properties of garbage collectors (throughput, timeliness of reclamation,

scalability and low space overhead) that are not considered here; this chapter is

entirely concerned with the correctness (safety and completeness) of a garbage

collector as expressible by the abstract model. Different instantiations of the

model will exhibit more or less desirable performance characteristics according

to the details of each particular instantiation.

A common-sense constraint on garbage collection is that it must be non-

interfering, i.e. must not mutate any live portion of the object graph. It exists

only to observe topological changes wrought by the mutator.

The GC has a single event that it may invoke on an object x, Reclaim(x). The

execution of this event indicates that the GC has determined that x is unreachable

and its space should be reclaimed.

3.2.1 Reachability

Consider objects a and b; a contains a pointer to b which is denoted a.b; the root

object is denoted r and its identity is known a priori. Each object, including the

root, may contain an arbitrary number of pointers. Referential integrity in the

store implies that ∃a.b ⇒ ∃a ∧ ∃b; as a matter of practicality this requirement

may be violated in dead regions of the graph because reclamation of distributed

regions that have been detected as unreachable will not be atomic. The exception

to referential integrity is not observable to the mutator nor to the algorithms that

detect garbage and is therefore ignored for the purposes of this thesis because we

are concerned only with the detection (not reclamation) of garbage.

Liveness of an object x is denoted by the predicate Live(x) and unreachability

as Dead(x)

Live(x) ≡ Reachable(r, x)

Reachable(z, x) ≡ (x = z) ∨ (∃z.x) ∨ (∃y | (Reachable(z, y) ∧ ∃y.x))

Dead(x) ≡ ¬Live(x)

3.2. DEFINITION OF GARBAGE COLLECTION 47

Furthermore, trivial unreachability is defined as the lack of pointers to an object;

clearly an object that is trivially unreachable is garbage but the converse does not

hold:

TriviallyUnreachable(x) ≡ ¬∃y.x

TriviallyUnreachable(x)⇒ Dead(x)

3.2.2 Safety and Completeness

Safety implies that at no time shall a live object be reclaimed; it is stated formally

∀x as:

∃Reclaim(x)k
P ⇒ Sk−1

P : {Dead(x)}

i.e., if the reclaim event is invoked on an object, the objects must be dead in the

state before the reclamation event.

Completeness states that all dead objects will be eventually reclaimed;

formally, the Reclaim(x) event must be executed for every dead object x:

Dead(x) � Reclaim(x)

3.2.3 Mutator

Mutators are modelled as processes that manipulate the graph topology via the

allowable events of Section 3.1.4. A mutator may invoke an event on an object if

it holds a pointer (inside the root) to that object:

∃event(x)P ⇒ ∃r.x

The copying of pointers to and from the root is governed by the allowable events.

3.2.4 Summary of GC

Liveness or otherwise of an object is defined in terms of its reachability from the

root object and the purpose of a garbage collector is to detect dead objects. A

garbage collector should be both safe and complete; these properties are defined

here formally and may be evaluated over any GC algorithm, regardless of its

construction. The definitions of safety and completeness provided here are the

goals of the abstract model’s proof, i.e. the proof operates by showing that these

properties are true where the model has been correctly instantiated.

48 CHAPTER 3. UNIFYING DISTRIBUTED GARBAGE COLLECTION

3.3 Surf: the Abstract Model of GC

The tests above define what a garbage collector must do, while the Surf abstract

model defines a constructive approach to GC; it lists a number of components that

are combined within certain constraints to produce a correct GC. Given that this

model is capable of expressing a wide range of existing GCs, there is no guarantee

that the collector created will have desirable performance characteristics: the

decisions made during composition will define the new collector’s performance.

The model provides only a guarantee of correctness; to specify further would

narrow the context of the model to a small subset of all possible fundamental

collectors.

A range of additional mechanisms (see Sections 3.5 and 3.5.10) are required

for each collector but these mechanisms are not part of the essence of a garbage

collector, i.e. they do not define the means by which the collector makes

progress. Specifying the design of any of these mechanisms would unnecessarily

restrict the model to that particular design whereas the model encompasses

collectors with every possible implementation of those mechanisms. Likewise,

the model defines a design space wherein it appears that certain areas of the

design space result in collectors with more desirable performance characteristics

than other areas (see Chapter 4 for examples); while it would be possible to

narrow the model to describe only high performance collectors, that would

be an unnecessary reduction of the model’s descriptive power. By taking the

broad approach, the model is also capable of describing the lower-performance

collectors — they are, after all, complete collectors and worthy of description and

proofs of correctness — and the model provides insight into why, even at the

abstract level, some collectors will have better performance than others.

The abstract model is composed of three important concepts: labels defining

regions, a relabelling process that changes the labels on objects and a distributed

termination detection algorithm that detects relabelling processes terminate and

therefore that regions are isolated. This section proceeds by explaining each of

these terms and how they cooperate within the model to form a safe and complete

garbage collector. Having shown the abstract process by which progress is

made and isolation of regions are detected, Remembered Sets are presented as

an implementation technique for detecting trivial isolation of objects and the

presence of inter-region pointers.

3.3.1 Labelling and Regions

Fundamental to the task of garbage collection is the process of labelling objects:

since a garbage collector must reclaim objects, it must decide which ones to

3.3. SURF: THE ABSTRACT MODEL OF GC 49

reclaim. Objects suspected of being garbage are given one label while objects

suspected of being live are given (a) different label(s). The process of applying

labels according to connectivity continues until it is known that no object with a

particular label, L is reachable from any object with a different label; if the label

on the root is not L then every object with that label is garbage by the definition

given in the previous section. Constructing a working garbage collector requires

a relabelling process that will result in isolated regions (a useful relabelling

process) and the means by which the such processes are constructed is described

below; this subsection merely explores the reasoning available with respect to

reachability that follows from a particular labelling of the graph.

Labels are described here in the most general sense in that they contain

information that the collector knows about a particular object. This information

may be implicit in the execution of the GC, it may be encoded in each object’s

name (address), it may be represented by a collection of tag bits associated

with each object yet invisible to the mutator; it may be any combination of this

information. A GC may use any number of labels and the meaning of any given

label may change with time. The label of an object is referred to by the function

label(x) that may be evaluated at any time (i.e. in any state) at the site containing

x. Labels are not observable by the mutator.

The set of objects with a particular label is defined as a region, the region

named by a Gothic version of the label in question. Regions may span many sites

within the system.

L ≡ {x | label(x) = L}

(label(x) = L) ≡ x ∈ L

It is now necessary to define a useful labelling, i.e. one wherein the labels convey

information about the reachability of objects. For a labelling to be useful, at

some point in time the GC must be able to decide that certain regions contain

only unreachable objects and therefore that those regions may be reclaimed. We

extend the Dead predicate to regions and define it to be true when every object

in a region is dead:

Dead(L) ≡ (x ∈ L⇒ Dead(x))

For the purposes of detecting that a region is dead, we define a subset of the

dead regions referred to as the usefully-dead regions; these regions are not only

dead but there exist no pointers from other regions into a usefully-dead region. A

usefully dead region does not contain the root and for every object in the region,

there are no pointers to that object from objects in other regions:

50 CHAPTER 3. UNIFYING DISTRIBUTED GARBAGE COLLECTION

r

UsefulDead

L

M

Dead

N

Figure 6: (Usefully) Dead Regions

UsefulDead(L) ≡ r /∈ L ∧ x ∈ L⇒ (¬∃y.x | y /∈ L)

UsefulDead(L)⇒ Dead(L)

Since a usefully-dead region may not contain the root and there are no pointers

to it from other regions, it must also be a dead region. These regions are usefully

dead since it is possible to detect the lack of pointers into a region and therefore

detect that the region is dead. The abstract model operates on the basis of

constructing usefully dead regions through relabelling and then detecting them

as such; merely creating (non-useful) dead regions would not permit the step

of detecting that a region is dead. The detection of usefully dead regions (lack

of pointers to a region) is bound up in the definition of a useful relabelling

process and the termination thereof, described below: a useful relabelling process

terminates when there exist no inter-region pointers for some combination of

regions that the process is operating over.

The concepts described above are illustrated in Figure 6. Region L is usefully

dead since there are no pointers into the region, Region M is dead but not usefully

dead because it contains only dead objects but it is the target of an inter-region

pointer and Region N is not dead because it contains live objects.

Because a Surf-derived GC operates by reclaiming whole regions, only dead

regions may be reclaimed otherwise safety will be violated. Completeness

requires that every dead object is labelled as part of a usefully dead region within

finite time and may therefore be reclaimed; this requirement is the core definition

of a useful labelling scheme that will result in a safe and complete collector:

Dead(x) � (x ∈ L ∧UsefulDead(L))

In other words, every dead object must be relabelled to a usefully dead region or

the region that contains it must become usefully dead within finite time.

3.3. SURF: THE ABSTRACT MODEL OF GC 51

This collection-by-labelling approach requires two algorithmic components: a

means to apply labels to objects and a means to decide when a region is isolated;

these components are described below.

3.3.2 Relabelling Process

The relabelling process is driven by a set of rules defining how labels are applied

to objects; the design of this component provides a useful labelling, which is

necessary to have liveness and therefore completeness of collection. Since the

goal is a useful labelling, implying a lack of inter-region pointers, the purpose

of the relabelling process is to change the labels on objects so that inter-region

pointers become intra-region pointers. Applying a different label to an object is

an event under the system model, i.e. it is instantaneous. For historic reasons,

the event of relabelling may be referred to as reassociation or reorganisation —

terms used by existing collectors to describe the application of a new label. The

relabelling process only changes the labels on objects (its only permitted event is

relabel); it does not mutate the graph and therefore is invisible to the mutator. At

least one relabelling process is required, though a collector may have several.

The relabelling event of object x at site P , timestep k to label L is denoted

relabel(x→ L)k
P

To form usefully dead regions, each relabelling process must discover the

locations where a pointer exists between two regions and then relabel either the

source or destination of that pointer so that both source and target objects are

within the same region.

The candidate region of a particular relabelling process is the region for which

an inference may be drawn regarding its being usefully dead at the termination

of that relabelling process. Because relabelling processes are defined differently

for each instantiation of the model, the way in which this inference is drawn

varies between collectors; the heart of the definition though lies in the definition

of work for a relabelling process being equivalent to the existence of certain inter-

region pointers. Termination of a relabelling process therefore implies a lack

of pointers to a certain region, perhaps from a subset of other regions. If there

are no pointers from other regions then the region in question is usefully dead.

Where the definition of a relabelling job includes only pointers from some subset

of other regions, external logic is required to infer region deadness from one or

more relabelling jobs terminating and external conditions that are dependent on

the relabelling job definitions.

The region containing the root is not a candidate region of any relabelling

process; other regions not containing the root may or may not be candidates of

different relabelling processes.

52 CHAPTER 3. UNIFYING DISTRIBUTED GARBAGE COLLECTION

Work

y

x

M

L

Figure 7: Inter-Region Pointers are Work

candidate(L)⇒ r /∈ L

Given two objects in different regions, the presence of a pointer between those

regions implies there is work for the relabelling process:

label(x) = L, label(y) = M

(∃y.x | (L 6= M ∧ candidate(L))) ≡ work(L)

The presence of work means that an object must be relabelled across the region

boundary to eliminate the work, i.e. make progress:

work(L) �̃ [relabel(y → L) or relabel(x→M)]

Note that the above defines work only for L because L is the target region so

the processing of this work will make progress towards the lack of inter-region

pointers to L. Processing this work may involve relabelling an object in L or M.

The above expression defines work for the relabelling process; there are often

a number of relabellings possible since objects may contain an arbitrary number

of pointers and be the target of an arbitrary number of pointers. Where work

is available for the relabelling process, it must be processed within finite time

to guarantee liveness. The situation is illustrated in Figure 7; the presence of

an inter-region pointer from y to x implies that there is work for the relabelling

process for which L is candidate.

By the definition of work, the lack of work means that there exist no inter-

partition pointers to objects in candidate regions of the relabelling process for

which there is no work. The lack of any such inter-region pointers in combination

with a region not containing the root is identical to the definition of a usefully

dead region, therefore the lack of work on a candidate region implies that the

region is usefully dead.

¬work(L) ∧ candidate(L) ≡ r /∈ L ∧ ∀y.x | (x ∈ L), y ∈ L

≡ r /∈ L ∧ ¬∃y.x | (x ∈ L ∧ y /∈ L)

≡ UsefulDead(L)

3.3. SURF: THE ABSTRACT MODEL OF GC 53

The above definition of work for a relabelling process implies that termination

of relabelling (no remaining work) is equivalent to isolation of a region. A

mapping of this problem to Distributed Termination Detection is provided in the

Proof (Section 3.4) which applies equally to the detection of isolation and the

termination of relabelling.

Relabelling is a diffusing process since the performance of a unit of work —

the removal of an inter-region pointer by relabelling either the source or target of

that pointer — may result in the creation of more work at adjacent objects in the

graph. Consider a pointer y.x that constitutes work, i.e. is inter-region, the only

ways to process the work are to relabel either x or y to make the pointer intra-

region; doing so may change the inter-region status of other pointers associated

with the object that is relabelled. There are four cases to consider: pointers to and

from the relabelled object and whether the relabelled object is the source of target

of the pointer that caused relabelling.

Where the source of the pointer (y for y.x) is relabelled, intra-region pointers to

the source (z.y | label(z) = M) will become inter-region pointers (z.y | label(z) 6=

L) to the destination region, L. Intra-region pointers contained in the source

(y.z | label(z) = M) will become inter-region pointers (y.z | label(z) 6= L) to

the source region, M . Inter-region pointers related to y may remain as such if

their other endpoint is not in L, however the nature of the work they represent

will change.

Where the target of the pointer (x for y.x) is relabelled, intra-region pointers

to the target (z.x | label(z) = L) will become inter-region pointers (z.x | label(z) 6=

M) to the source region, M . Intra-region pointers contained in the target (x.z |

label(z) = L) will become inter-region (x.z | label(z) 6= M) pointers to the target

region, L. Inter-region pointers related to x may remain as such if their other

endpoint is not in M and the nature of the work they represent will change.

Therefore the processing of a unit of work (inter-region pointer) may result in

the creation of new units of work at adjacent portions of the graph; this creation

of work (and by implication, the processing of work) does not cease until regions

become isolated. Safety requires that this potential creation of work tasks is

correctly fitted into the DTD model, see below. Liveness of the collector depends

on the relabelling process selecting appropriate units of work to process from

the many available at any given time so as to ensure that objects do not move

cyclically amongst regions; one approach to preventing cyclic relabelling is to

impose an ordering on regions and permit relabelling in a single direction only

though it is by no means the only approach permitted by the model. An ordering

on regions is by necessity global so careful design is required to avoid global

synchronisation either in the creation of new regions or the evaluation of the

54 CHAPTER 3. UNIFYING DISTRIBUTED GARBAGE COLLECTION

ordering between regions.

Preventing cyclic relabelling is necessary for liveness of the relabelling

process: it ensures that for a finite graph size and a bounded region creation

rate, the relabelling process will successfully terminate, i.e. achieve usefully dead

regions. Proving completeness requires not only liveness of relabelling but a

guarantee that all unreachable objects will eventually be moved into usefully

dead regions; different collectors ensure this property in different ways and it

forms one of the constraints on collector construction.

Having shown how the relabelling processes can form usefully dead regions,

the only remaining component in the creation of a garbage collector is some

mechanism to detect termination of relabelling and therefore isolation of regions:

Termination Detection.

3.3.3 Distributed Termination Detection

Having determined that lack of work available for a relabelling process implies

the isolation of a region, a method is required to detect the termination of the

relabelling process. The Surf model uses the concept of Distributed Termination

Detection (DTD) to detect termination of the relabelling process, which requires

that the relabelling process fit the DTD system model.

Before presenting a description of how DTD fits into the abstract model, two

useful published definitions of DTD, the classic [93] and Doomsday [63], are

reviewed so that the terminology and concepts therein may be used.

3.3.3.1 Classic Distributed Termination Detection

This section describes the classic DTD problem, wherein the DTD algorithm

(DTDA) exists to determine when a computation has terminated. It contains the

following concepts:

Process Each physical site contains a process, which may be passive or active:

Passive(Sk
P) or Active(Sk

P) each being a predicate on the state of the

process at that site,

Comms Processes communicate via message passing which may be

synchronous or asynchronous, depending on the DTDA used

Active Active processes may perform an application event (ignored by DTD

model), send a message, receive a message or become passive:

Active(Sk−1
P)⇒ Ek

P ∈ {send, recv, passive}

Message The means by which an active process can make a previously-passive

process active.

3.3. SURF: THE ABSTRACT MODEL OF GC 55

Passive Execution of the passive event by the computation makes a process

passive; this is the only way a process may become passive:(
Ek

P = passive
)
⇒ Passive(Sk

P)

The only permitted event for a passive process is the receipt of a

message, i.e. there exists no other permissible events that are not recv:

Passive(Sk−1
P)⇒

(
¬∃Ek

P | E
k
P 6= recv

)

and receipt of a message makes a process active:(
Ek

P = recv
)
⇒ Active(Sk

P)

Term The computation is defined as terminated (a global stable property)

when all processes are passive and there are no messages in flight and

therefore no more possible events in the system:

Term(Sk∗

∗
) ≡ ∀P,

(
Passive(Sk

P) ∧ ¬∃Ek+1
P

)

The above defines the Distributed Termination Detection Problem using the

system model and syntax of Section 3.1; i.e. a class of application behaviour.

A valid Distributed Termination Detection Algorithm (DTDA) is an algorithm

which can detect termination of a computation within finite time. It does so by

executing a decide event on any site within the system within finite time and must

not execute decide before termination is reached.

Term(Sk∗

∗
) � decideP

i.e., once the system is terminated, a decide event must be executed somewhere

and it must be executed after the state in which termination is reached.

3.3.3.2 Doomsday

The Doomsday model of DTD is presented here because the terminology it

contains is used to describe and prove the correctness of the Surf abstract model

of garbage collection. The use of Doomsday terminology does not require that

Doomsday style DTDAs must be used when instantiating the model; wave-based

DTDAs are equally permissible.

Doomsday expresses the DTD problem explicitly as a diffusing computation

instead of communicating processes and provides a constructive approach to

solving the problem. This approach generates only non-wave-like DTDAs but

the diffusing approach is sufficient to describe the behaviour of the relabelling

process. In Doomsday:

Jobs Each computation is referred to as a Job, J ; Jobs may be spontaneously

created at any site, making that the Job’s home site, H = Home(J)

56 CHAPTER 3. UNIFYING DISTRIBUTED GARBAGE COLLECTION

Tasks Each Job consists of multiple Tasks, spread across a number of sites:

T n
P ∈ J

Location At any given time (state), each task has a location site; the task state is

part of that site’s state:

Site(T n
P) = P

or a task may be in transit, contained in a message:

Site(T n) = ◦

Birth A Job’s home site may spontaneously create tasks of that Job, i.e. there

exist events at the home site wherein a task that does not exist before

the event will exist after the event:

∃Ek
H = birth(T n)H |

(
Sk−1

H : {¬∃T n} ∧ Sk
H : {∃T n

H}
)

Tasks may create new tasks at their current site

∃Ek
P = birth(Tm)P |

(
Sk−1

P : {∃T n
P ∧ ¬∃T

m} ∧ Sk
P : {∃Tm

P }
)

Death Tasks may spontaneously cease to exist:

∃Ek
P = death(T n)P |

(
Sk−1

P : {∃T n
P } ∧ Sk

P : {¬∃T n}
)

Migration Tasks may migrate, which is a two-step process involving leaving one

site then arriving at another:(
∃EkP

P = send(T n)P

)
∧

(
∃E

kQ

Q = recv(T n)Q

)
∧

(send(T n)P ≺ recv(T n)Q)(
SkP−1

P : {∃T n
P } ∧ SkP

P : {¬∃T n
P }
)
∧
(
S

kQ−1
Q : {¬∃T n

Q} ∧ S
kQ

Q : {∃T n
Q}
)

This is not directly part of the Doomsday model, rather it is part of the

Doomsday system model

Decide If a Job has no extant tasks, the Home site may decide(J) that the Job

is terminated:

¬∃T n ∈ J �̃ decide(J)H

Safety requires that decide only occur if there is a causal relationship

between all tasks ceasing to exist and the state in which decide occurs:

∃Sk
H | S

k
H ≺ decide(J)H ⇒ ∀T

n ∈ J, death(T n) ≺ Sk
H

That final causal relationship between task deaths and decision of

termination is provided by the transmission of control messages that

establish causal relationships between states that would not exist due

to the computation alone. The DTDA may send such messages in

response to the birth and death events of each Task.

The Doomsday Model of DTD requires that the creation of a remote task is

witnessed by an existing task, i.e. the Birth has cover. As long as the DTDA

can observe Birth and Death events and it can be guaranteed that no Birth events

3.3. SURF: THE ABSTRACT MODEL OF GC 57

occur spontaneously on a site other than the Home site then any Doomsday-

derived DTDA may be used. The Doomsday system model specifies the use of

message passing and states that tasks must migrate inside messages therefore

when mapping GC tasks onto Doomsday below, it is necessary to show not

only that the Doomsday requirements (Birth, Death, Cover) are met but also that

the motion of tasks conforms to the Doomsday system model. To this end, a

Migration entry is added to each mapping to show how the motion of a Task is

performed by an underlying message of the system model of Section 3.1. Since

the system model used here is compatible with Doomsday, showing that Task

Migration is performed by messages is a necessary step in showing that the

mapping to Doomsday is correct.

3.3.3.3 Comparison of DTD Models

This section shows how the two DTD models are congruent: they solve the same

problem though they use different terminology. The Doomsday approach to

constructing DTDAs results only in non-wave-based algorithms but that does

not reduce its descriptive power with respect to mapping computations onto the

DTD problem.

The two models, though expressed differently are substantially similar

because any application that can be mapped into one description can be mapped

into the other, as follows:

Classic Doomsday

Computation Job

Active Process Site with non-zero tasks

Idle Process Site with zero tasks

Message Migrating Task

The primary difference between the two models is that Doomsday explicitly

includes the concept of a Home site and permits the Home site to spontaneously

create tasks at any time, thereby allowing termination to be detected safely only

at the Home site. The Classic model does not include this restriction and permits

an additional class of solutions to the Termination Detection problem based on

wave algorithms.

For the purposes of this model, the Job abstraction permits the description of

multiple overlapping DTDA executions (Jobs) within a single system. This aids

clarity since it explicitly states that the scope of DTDA execution may be smaller

than the entire system and it permits detection of the termination of multiple

concurrent computations (Jobs) within the system.

58 CHAPTER 3. UNIFYING DISTRIBUTED GARBAGE COLLECTION

3.3.3.4 Application of Termination Detection

By defining a Job for some combination of regions (typically just one region) and

appropriate inter-region pointers as Tasks of that job, termination of the job is

equivalent to isolation of the region(s). A mapping of the relabelling process into

the Doomsday model of DTD is provided in the Proof section below, showing

how termination of relabelling may be detected using the DTD framework. Also

provided here is a mapping of the pointer tracking problem (remembered sets)

into the DTD model

3.3.4 Remembered Sets & Pointer Tracking

A Remembered Set (remset) is a mechanism whereby each object keeps track of

the pointers that refer to that object. Reference Counting is a degenerate form

of remsets suitable only for uniprocessor systems in that the total number of

references to each object is recorded. For the purposes of this model, the reference

counts for each object must be broken down by the labels applied to the object

containing the references, in other words the reference counts are a compound

structure, indexed by source region.

Remsets therefore detect trivial unreachability of objects and also serve as a

source of information as to the presence of inter-region pointers. The message

passing mechanism used to correctly maintain a remembered set is referred to

as a pointer tracking protocol. Table 1 summarises the mapping of the remset /

pointer tracking problem to the DTD abstraction; this mapping means that any

DTDA may be used to solve the remset problem and thereby determine when an

object is trivially unreachable, i.e. there exists no pointers to that object.

For the purposes of the Surf model, remsets are used to detect not only trivial

unreachability of objects but also the existence, or lack thereof, of references from

particular regions. The data structures maintained at the home site (the location

of the object in question) contain safe estimates of the existence or otherwise of

tasks (pointers) in other parts of the system; it is necessary to partition these

data structures by the region in which those tasks exist. By partitioning the

data structures, it is now possible to determine which regions contain pointers

to particular objects and therefore the existence (or otherwise) of inter-region

pointers; this knowledge is useful (but not sufficient, see the Proof) in discovering

the presence of relabelling work and it also defines the reachability of each object

from other regions.

The reachability of an object from another region implies that the region is

not usefully dead. Surf operates by forming and detecting usefully dead regions;

therefore pointer tracking is used as a source of information as to the existence

3.3. SURF: THE ABSTRACT MODEL OF GC 59

DTD
Concept

Meaning wrt Remembered Sets

Job Direct reachability of each object is a Job; the home site of the
Job is the location (P) of the object in question:

J |= xP

Task Each pointer to the object of interest is a Task of that object’s
Job:

T n
P ∈ J |= y.x

Birth The first pointer to an object is created when the object is
created (definition of object creation), all subsequent pointers
to that object may be created only as copies of existing
pointers to the object:

birth(T n)k
P |= send(y.x→ Q)k

P

Migration Pointers may travel across the network in messages, which is
modelled by the migration of tasks:

send(T n)P |= send(y.x→ Q)k
P

recv(T n)Q |= recv(P → z.x)k
Q

Death Each task ends when the relevant pointer is erased:

death(T n)P |= minus(y.x)k
P

Termination The lack of pointers to an object is equivalent to the lack of
Tasks in (termination of) the Job:

¬∃T n ∈ J |= ¬∃y.x

Table 1: Remembered Sets mapped to DTD

60 CHAPTER 3. UNIFYING DISTRIBUTED GARBAGE COLLECTION

or otherwise of inter-region pointers and therefore permits determination of

whether a region is usefully dead.

Doomsday-derived algorithms are particularly suitable for solving the remset

problem because the nature of pointers being copied throughout the store

resembles a diffusing process. Safety of the DTD implies that an object will never

erroneously decide that it is not the target of any pointers and liveness of the DTD

implies that every trivially dead object (TrivialDead(x) ≡ ¬∃y.x) will decide

within finite time that it is not reachable from other objects.

It should be noted that remembered sets are not a necessary component of an

instantiation of the model, merely that they provide a mechanism for detecting

trivial isolation and the presence of inter-region pointers. Remembered sets

provide information as to the reachability of a single object from other regions;

this reachability information is considered in aggregate to determine when a

region becomes usefully dead. Some instantiations of the model use degenerate

forms of remembered sets: constraining remembered set operation makes an

implementation simpler at the cost of greater conservatism and therefore poorer

timeliness.

3.3.5 Summary of Abstract Model

Having shown that a relabelling process can form usefully dead regions and

asserted that the problem of relabelling termination is solvable with a DTDA,

the conclusion is that the only necessary components for construction of a safe

and complete garbage collector are:

• a useful Relabelling Process to form usefully dead regions,

• a DTDA to detect the presence of inter-region pointers,

• a DTDA to detect termination of the relabelling process and therefore region

isolation, and

• some constraints on their combination and application.

The constraints are derived below in the Proof; they are the conditions which

must hold true for the proofs of safety and completeness to be correct. An

instantiation of the model that fulfils the constraints stated below will result in

a safe and complete garbage collector.

It should be noted very carefully that there are typically two DTDAs present

in a given instantiation of the model: one performing remembered set / pointer

tracking functionality (the lower level) and one detecting the isolation of regions

(the upper level). It is important not to confuse the two DTD mappings as

3.4. PROVING SAFETY AND COMPLETENESS OF SURF 61

they have different job scopes and detect different properties of the graph. The

two DTDs interact: the lower level acts in many cases as the task-migration

mechanism (see Section 3.3.3.2) for the upper level and this is described further

below. An unterminated job (object reachable from another region) of the lower

level DTDA is a task of the upper level DTDA; when no such tasks exist, there

are no inter-region pointers to that region.

There is an important property of DTDAs as applied to pointer tracking

(lower level) that enables the use of a DTDA to detect region isolation (upper

level): when a pointer is copied, a birth message is sent — perhaps indirectly

— to the home site of the referred-to object. This message conveys the notion

of liveness from the task-creation site to the home site and is the mechanism of

task migration in the upper level. Mapping the isolation problem (upper level)

to Doomsday requires that tasks may migrate only in messages; this behaviour

of the lower level DTDA is the means by which tasks of the upper level are

guaranteed to be transported in messages and thereby attain compatibility with

the Doomsday system model.

It must be carefully noted that the Surf model describes only the abstract

process whereby collectors make progress and detect termination of that

progress. The model does not specify exactly how the collector is implemented

and requires a range of additional protocols and mechanisms outside the essence

of the collection algorithm described by Surf. Surf defines requirements on these

mechanisms in order that they be correct but different implementation choices

will have an impact on collector performance; these requirements are derived

in the Proof (Section 3.4 immediately below) and a summary of the additional

protocols is provided in Section 3.5.

3.4 Proving Safety and Completeness of Surf

The correctness proof for Surf is founded on formally describing the actions of

the model in terms of DTD and using the knowledge that a particular DTDA

is correct to show that an instantiation of the model is correct. The bulk of this

proof consists of showing how the abstract model fits the DTD description of how

a computation must behave and deriving constraints on instantiations to ensure

that the validity of the mapping to DTD remains valid.

This proof is in multiple parts for clarity: the relabel-source and relabel-target

approaches are considered separately; each is described first without a concurrent

mutator then the permissible events due to mutator activity are introduced and

their effects analysed. The reason for introducing concurrent mutator activity

later is that the proofs are clearer in the case where the object graph is static;

62 CHAPTER 3. UNIFYING DISTRIBUTED GARBAGE COLLECTION

the concurrent proofs are built on the static proofs by admitting the possibility

of mutator events. It is possible to use the static proofs to construct garbage

collectors that do not require interaction with a mutator, i.e. stop-the-world

collectors.

Safety is proven first for each case (relabel-source and relabel-target) and

then a set of requirements for providing completeness are derived from the

fundamental requirement of completeness that dead objects eventually enter a

usefully dead region.

Having shown how Surf forms safe and complete collectors and derived a set

of requirements that ensure the proof is valid with respect to an instantiation,

some approaches present in the published literature are investigated as to

whether they fulfil the model requirements.

3.4.1 Termination Detection and Relabel-Target

This section describes the mapping of the region isolation / relabelling

termination problem into the Doomsday DTD framework on the assumption that

target objects of inter-region pointers (x in y.x) are relabelled. This mapping

constitutes the core of the proof of correctness for relabel-target instantiations:

fulfilling the requirements derived in this section ensures that an instantiation

represents a safe mapping to DTD and therefore correct operation of the resulting

garbage collector.

The first step in the mapping is to have knowledge of which objects are

the targets of inter-region pointers and this task is performed by the pointer

tracking/remset DTD as described above. Having constructed accurate remsets

and described some necessary properties of their behaviour, it becomes possible

to map objects with non-zero inter-region remsets to DTD tasks and thereby

determine isolation of a region. Note that the mapping here uses target objects as

tasks of the relabelling-termination DTD; that choice means that termination will

allow the algorithm to infer isolation of a region. The opposite approach of using

source objects as tasks would permit the algorithm to infer only when a region

contains no pointers to another, which is not useful result in the general case.

The approach of relabelling the target of inter-partition pointers implies that

this represents the class of forward tracing collectors, i.e. collectors where the

progress of relabelling activity travels in the same direction as the pointers in the

graph. If cyclic relabelling (i.e. object x goes from region L to M to L), then the

relabelling process will not be cyclic in the face of cyclic data structures because

an object can enter or leave a particular region only once. Under the relabel-target

approach, acting on a task in a job results in a reduction of the number of objects

in that job because the object representing the task is moved to a different region.

3.4. PROVING SAFETY AND COMPLETENESS OF SURF 63

DTD Concept Meaning wrt Relabel-Target

Job The reachability of each region is a Job:

J |= L ≡ {x | label(x) = L}

Task Each object reachable via an inter-region pointer constitutes a
Task of the region (Job) in which it exists:

T n
P ∈ J |= xP | ∃y.x ∧ label(y) 6= L

Birth Object becoming reachable from another region by
relabelling (mutator activity disallowed); can be as a result of
an object entering the region of interest while being reachable
from other regions:

birth(T n) |= relabel(x→ L) ∧ ∃y.x | label(y) 6= L

or as a result of an object leaving the region of interest while
containing what were intra-region pointers:

birth(T n) |= relabel(x→M) ∧ L 6= M ∧ ∃x.y |
label(y) = L

These are two of the four cases discussed in Section 3.3.2; the
other two cases result in creation of tasks for other regions
and are the transpose of these two cases, i.e. are described by
applying this mapping to other regions.

Death Object becoming unreachable from another region; either by
relabelling or (later) by a mutator erasing a pointer

Migration Birth messages of pointer tracking mechanism.
Termination Region becomes usefully dead

Table 2: Relabel-Target mapped to DTD

The approximate process is that a candidate region will shrink until it contains

no live objects, at which point it is reclaimed.

3.4.1.1 Static Proof

Given the presence of accurate remsets, each object is aware of the presence

of inter-region pointers to itself and will decide the point in time when no

such pointers exist. This information provides the local knowledge required to

determine when a region is usefully dead, since this occurs when no objects in

the region are the target of pointers from outside the region. What remains is to

map the determination of isolation of a whole region (not merely a single object

as performed by Remembered Sets) onto the DTD problem; this mapping is listed

in Table 2.

64 CHAPTER 3. UNIFYING DISTRIBUTED GARBAGE COLLECTION

To make this mapping correct, it is necessary to ensure that allowable events at

any given time do not violate the primary constraint of the DTD model, namely

that tasks may not be spontaneously created at sites other than the home site.

Ignoring the mutator for this portion of the proof, it remains to be shown that the

Birth events may only occur in the presence of an existing Task; in the second case

(object leaving region) this holds true but in the first case (object entering region)

it does not.

Therefore the mapping is not correct without further modification because a

reachable object can be imported into an otherwise unreachable region; this is

known as the unwanted relative problem. The “unwanted relative problem”

term, though defined in the DMOS literature, is generalised by this thesis to

all relabel-target collectors conforming to the Surf model that permit objects

to be relabelled into candidate regions; the term will be further generalised to

the relabel-source approach in Section 3.4.2.1. To solve the unwanted relative

problem, a number of approaches may be taken, each of which amounts to

making the DTDA safely aware of the newly created task. To do this requires

synchronisation between the DTDA and relabelling process, thereby destroying

the non-interfering properties of DTDAs but this loss seems unavoidable.

The synchronisation required will depend on the nature of the DTDA chosen

for a particular instantiation of the model and two example approaches are

described briefly here for illustrative purposes; they do not define the model.

The first approach applies to use of a probing wave DTDA wherein relabelling is

halted while the wave DTDA is executing. Should the wave not find termination,

relabelling is re-started.

The second approach applies to the use of any Doomsday DTDA; what

is required is to satisfy the cover rule by providing a witness to the birth.

The relabelling process sends a message to the region’s home site requesting a

witness, the witness is created at the home site, travels to the site of relabelling,

observes the task creation and then dies or migrates back to the home site.

Should termination be detected before the request for witness arrives, the request

will be denied and that information conveyed to the site requesting relabelling;

termination implies isolation therefore reclamation of the region and so no further

need to relabel an object into that region.

Where an object leaves the region of interest, it will do so only where an

inter-region pointer to that object existed and therefore the object in question

constitutes a task of the DTDA. When the object is relabelled, any intra-region

pointers it contains will cause other objects in the region to become tasks of

the region DTD; these new tasks should be considered as being created at the

relabelling site (satisfying the Doomsday cover rule) and then migrating to the

3.4. PROVING SAFETY AND COMPLETENESS OF SURF 65

newly-externally-reachable objects in the form of pointer tracking messages.

This is an instance of the DTD control messages of the lower layer (pointer

tracking) acting as task-bearing agents in the higher layer (region isolation) DTD

as described above for Remembered Sets. The region isolation DTDA is not

aware of the migration; this explanation involving migration serves only to show

how the cover rule is satisfied and that task migration is performed by the

transmission and receipt of a message.

Therefore, with the synchronisation between relabelling and termination

detection described above, the task of detecting region isolation can be safely

mapped to the DTD problem: a collector constructed in this manner with a useful

relabelling process and no concurrent mutator will be safe and complete.

3.4.1.2 Concurrent Proof: Safety

The proof of relabel-target garbage collection safety with concurrent mutator(s)

is identical to the static proof above with the exception that additional events

are permitted: the mutator may copy, erase and transmit pointers between sites.

Remset behaviour was shown to be correct with concurrent mutator activity

above (Section 3.3.4); what remains is to show the correctness of the region

isolation DTD with mutator activity, thereby guaranteeing that regions will not

be erroneously detected as isolated due to mutator activity.

Pointer erasure (minus(y.x)P) may occur at any time and may result in an

object becoming unreachable from other regions and therefore the death of a

region-isolation task. Since a task may die at any time, this is permissible.

A pointer may be duplicated for transmission: send(z.x→ Q)P ; if the pointer

is inter-region (label(x) 6= label(z)) then x already represents a region-isolation

task so no new task is created, otherwise the pointer is intra-region. For the

event to be allowed, the mutator must hold a pointer to z, which represents

a task (∃r.z | label(r) 6= label(z)) or the region is not a candidate (label(r) =

label(z)). The duplication of the pointer-to-x at z represents task birth at z and is

witnessed/covered by the task already at z; the newly created task of the upper

level DTDA is carried to x by the pointer tracking (lower level) DTDA control

messages.

The reception of a message containing a pointer (recv(P → y.x)Q) is merely

the completion of the pointer duplication process that began with send. The

pointer so received will be stored in an object and may result in a new inter-region

pointer-to-x but this was accounted for during the send event.

Object creation results in an object labelled either in the same region as the

object that refers to it, a region of its own or a non-candidate region. The

new object is directly reachable from some object that is reachable from a root:

66 CHAPTER 3. UNIFYING DISTRIBUTED GARBAGE COLLECTION

create(y.x)k
P ⇒ Sk−1

P : {∃r.y}. Reachability is unchanged for all existing candidate

regions; no tasks are created or destroyed.

Having shown that all allowable mutator events conform to the DTD model

as it relates to the region-isolation DTD mapping, it is clear that relabel-target

garbage collection is safe with the following constraint: non-candidate regions

may not become candidates without synchronisation with the DTD since task

creation in non-candidate regions need not conform to the DTD rules.

3.4.1.3 Concurrent Proof: Completeness

Completeness requires that mutator events do not interact with the relabelling

process in such as way as to prevent progress towards a state wherein live

and dead objects are separated along region boundaries. More specifically, all

unreachable objects must eventually be labelled as members of a usefully dead

region, which defines the primary completeness requirement:

Dead(x) � x ∈ L ∧UsefullyDead(L)

For garbage to be reclaimed, garbage objects must be inside usefully dead regions

because the reclamation of such regions is the mechanism whereby garbage is

detected: a matter of definition regarding collector operation under this abstract

model. Fulfilling this condition requires that:

• the system must have at least two regions: one for live and one for dead

objects,

• initial conditions are such that dead objects may not perpetually remain in

a live region, i.e.

– dead objects must eventually not be in the same region as the root, and

• the relabelling process must retain liveness in the face of mutator

interaction.

The conditions above are justified as follows:

Two Regions

A minimum of two regions are required since any fewer will require

that the root is a member of the only region, making it a non-candidate

and not usefully dead,

r ∈ L⇒ ¬candidate(L)

therefore with a single region, no candidate regions are available to

become usefully dead and reclaim garbage.

3.4. PROVING SAFETY AND COMPLETENESS OF SURF 67

Initial Conditions

Should an unreachable portion of the graph reside entirely in a region

containing the root, no relabelling work will exist to separate the

live and dead objects. Therefore, any region containing garbage

objects must eventually become a candidate region to permit the

reclamation of that garbage since the garbage will never be removed

from the region in question, the reachable objects must be removed

instead. This requirement is effectively a restatement of the primary

completeness requirement above but taking into account the case

where an entire garbage component may lie entirely within a region

and therefore never leave the region.

Dead(x) ∧ x ∈ L � candidate(L)

Relabelling Liveness

This requirement is trivial in meaning; should liveness of relabelling

be lost, the system may not ever generate usefully dead regions.

Proving that a given collector exhibits this property is more difficult

and is covered below.

liveness⇒ (candidate(L) � UsefullyDead(L))

Combining the definition of all three of these conditions results in a proof that

completeness is achieved:




(Dead(x) ∧ x ∈ L) � candidate(L)

∧

candidate(L) � UsefullyDead(L)




⇒ Dead(x) � (x ∈ L ∧UsefullyDead(L))

The initial conditions requirement implies that all regions in which garbage exists

must eventually become candidate regions. This in turn implies the repeated

creation of new regions as old regions are reclaimed so as to fulfil the two-regions

requirement. In a system with exactly two regions, the creation of a new region

on the reclamation of an old one implies that the root will be relabelled into

the newest region, leaving all other objects initially in the surviving old region,

making it a candidate region. Safety requires that this operation be synchronised

with the DTD (Section 3.4.1.2), thereby implying that the collector operates in

distinct phases.

Where more than two regions are present, it is possible to avoid changing

non-candidate regions into candidates and thereby avoid synchronisation.

Maintaining liveness of relabelling requires that mutator activity not prevent

the discovery of inter-region pointers; the exact manner in which this is ensured

68 CHAPTER 3. UNIFYING DISTRIBUTED GARBAGE COLLECTION

depends on whether the system inspects pointers or remsets to determine the

presence of work for the relabelling process. Since the mutator by definition

cannot access dead objects, it is not possible for the mutator to affect the

relabelling of an unreachable component into a single region; the only possible

effects of the mutator pertain to the relabelling of live objects. Liveness also

implies the prohibition of infinite cyclic relabelling.

3.4.2 Termination Detection and Relabel-Source

This is the second section to describe a mapping of the abstract model to DTD;

it serves exactly the same purpose within the proof as Section 3.4.1 insofar as

showing correctness in mapping the abstract model to DTD provides correctness

of each instantiation.

Described here is the back-tracing approach to collection: the existence of an

inter-region pointer implies that the source of the pointer (the object containing

the pointer, i.e. y in y.x) will be relabelled into the region that contains the target

of the pointer. These are so-called back-tracing collectors because the relabelling

activity progresses in the opposite direction to the pointers in the system, which is

the converse of the approach described above (Section 3.4.1) wherein the targets

of inter-region pointers are relabelled.

A very similar mapping of the problem onto the Doomsday system model

is provided to that above, namely that the isolation of each region is a Job and

pointers into the region in question are represented by Tasks. The primary

difference between the two is due to the direction of relabelling: relabel-target

requires synchronisation when an object enters the region while relabel-source

requires synchronisation when an object leaves the region.

Under this approach, acting on a task of a region results in an increase in the

number of objects in that region; instead of a region shrinking until it contains

only garbage objects, the common case is that it grows until it contains the

entirety of all components that are partially within that region. Should the root

object be relabelled into the region, it is no longer a candidate region and may not

be reclaimed.

3.4.2.1 Static Proof

The general approach to collection is the same as for relabel-target: detect the

isolation of a region using a DTD. For the same reasons as the relabel-target

collectors, tasks model inter-region pointers into a region of interest instead of

pointers out of the region. Once again, Remembered Sets (Section 3.3.4) provide

a mechanism whereby each object is made aware of the inter-region pointers of

3.4. PROVING SAFETY AND COMPLETENESS OF SURF 69

DTD Concept Meaning wrt Relabel-Source

Job The reachability of a region is a Job

J |= L ≡ {x|label(x) = L}

Task Each object reachable via an inter-region pointer constitutes a
Task of the Job (region) in which it exists

T n
P ∈ J |= xP | ∃y.x ∧ label(y) 6= L

Birth Object becoming reachable from another region by
relabelling; can be as a result of an object entering the region
of interest while being reachable from other regions:

birth(T n) |= relabel(x→ L) ∧ ∃y.x | label(y) 6= L

or as a result of an object leaving the region of interest while
containing what were intra-region pointers:

birth(T n) |= relabel(x→M) ∧ L 6= M ∧ ∃x.y |
label(y) = L

These are two of the four cases of Section 3.3.2; the other two
cases result in creation of tasks for other regions and are the
transpose of these two cases, i.e. are described by applying
this mapping to other regions.

Death Object becoming unreachable from another region; either by
relabelling or (later) by a mutator erasing a pointer

Migration Tasks in messages
Termination Region becomes usefully dead

Table 3: Relabel-Source mapped to DTD

which it is a target. The mapping to the Doomsday system model is listed in

Table 3.

It should be noted that this mapping is so far identical to that of the relabel-

target approach of Section 3.4.1; the only differences are in the justification for

correctness of the mapping (ensuring that the cover rule is satisfied) and the

synchronisation required between relabelling processes and DTDAs. Where an

object enters a region, a task exists for the region due to the inter-region pointer

from the object to be relabelled. This task spawns and migrates (in a network

message) to the relabelled object; if that object is the target of inter-region pointers

after relabelling then the task it received remains. The cover rule is therefore

satisfied for the job that the object is relabelled into.

Where an object is relabelled out of a region, there is no guarantee that the

object represents a task. Should it contain intra-region pointers, tasks must be

70 CHAPTER 3. UNIFYING DISTRIBUTED GARBAGE COLLECTION

created in the job to deal with these pointers that now exist in another region

and the cover rule is not automatically satisfied in this case. Therefore, a safe GC

requires synchronisation between the relabelling process and the DTD of the Job

which an object leaves.

This mapping shows a symmetry between the relabel-target and relabel-

source approaches:

• relabel-target requires synchronisation for the job that an object enters

(unwanted relative), and

• relabel-source requires synchronisation for the job that an object leaves

(victimised relative).

By describing the Surf model in terms of a mapping between relabelling process

termination and the DTDA system model, specific cases are identified where

synchronisation is required. One of these specific cases is the unwanted

relative problem as described by DMOS, therefore the Surf model contains

a generalisation of the unwanted problem across relabel-target collectors and

defines the symmetric case for relabel-source collectors.

The location where synchronisation is required depends on the direction

of tracing over the graph and this synchronisation may be avoided in either

case by careful design of the relabelling process to ensure that cases requiring

synchronisation never occur.

The mapping provided here shows that isolation detection of a region under

a relabel-source relabelling scheme is safe insofar as the use of a DTDA to

detect region isolation will not erroneously claim a (live) region to be isolated if

relabelling is synchronised with the job that an object is leaving due to relabelling.

3.4.2.2 Concurrent Proof: Safety

The proof of safety of the relabel-source approach is identical to that given for the

relabel-target approach (Section 3.4.1.2) because the mappings are identical. The

static proof above shows that the mapping is safe in the face of relabelling events;

the concurrent proof of safety of relabel-target shows how the identical mapping

is safe in the face of mutator events.

3.4.2.3 Concurrent Proof: Completeness

Proving completeness in the face of mutator activity requires a different approach

than given for relabel-target because the collector proceeds across the object

graph in the opposite direction. Instead of pulling potentially live objects out of

a region until it is usefully dead, the relabel-source approach grows regions from

3.4. PROVING SAFETY AND COMPLETENESS OF SURF 71

a suspected garbage object until all other objects that can reach the originally-

suspected object are included in the region. Should the region still remain a

candidate at the completion of this growth process, the region is garbage.

The primary completeness requirement remains unchanged from relabel-

target: all garbage objects must eventually reside in a usefully dead region so

that they may be reclaimed:

Dead(x) � x ∈ L ∧UsefullyDead(L)

Satisfying the primary completeness requirement implies that the following

conditions must hold:

• the system must have at least two regions: one for live and one for dead

objects,

• the relabelling process must retain liveness in the face of mutator

interaction,

• garbage must be suspected as such, and

• candidate regions must be permitted to grow to completion before objects

are removed from them.

The meaning of these requirements is defined as follows:

Two Regions

The first requirement is obvious: if only a single region is present,

it is not a candidate and cannot be reclaimed so no garbage may be

reclaimed. There may also be no progress (relabelling) with only a

single region. This is the same situation as relabel-target.

Relabelling Liveness

The second requirement is the same as given for relabel-target:

mutator activity may not be permitted to hide pointers from the

relabelling process. The proof of safety above shows that a region will

not be erroneously reclaimed while reachable; liveness of relabelling

and therefore completeness require that the relabelling process be

capable of observing the pointer(s) constituting tasks of any given

region.

Suspicion

Completeness requires that every dead object or some other dead

object reachable therefrom must eventually be suspected after they

72 CHAPTER 3. UNIFYING DISTRIBUTED GARBAGE COLLECTION

become dead:

Dead(x) �

(
suspected(x)∨

(suspected(y) ∧Dead(y) ∧Reachable(x, y))

)

A stronger and simpler to evaluate version is the strong suspicion

guarantee, i.e. ensure that every dead object is suspected:

Dead(x) � suspected(x)

Region Growth

If a dead object is the suspect, the region that grows from it must be

dead because

Dead(x)⇒ ¬∃y.x | Live(y)

Growth of the region without bound (i.e. no new regions are created

until no relabelling progress is available) will result in a dead region

forming around x once the extent of that garbage component has been

discovered because

Reachable(x, suspect)

The reason for requiring that candidate regions grow to completion

is to ensure that dead regions become usefully dead. A dead yet not

usefully dead region is referred to only by pointers from dead objects:

Dead(L) ∧ ¬UsefullyDead(L)⇒ (∀z.x, (x ∈ L ∧ z /∈ L)⇒ Dead(z))

therefore a dead region will always grow into a usefully dead region

if given the opportunity.

The detection of isolation and hence reclamation of regions implies that regions

must be created to satisfy the first (≥ 2 regions) requirement.

The combination of the suspicion guarantee and a guarantee that a region is

permitted to grow to completion will ensure that every dead object is eventually

a member of a usefully dead region and therefore that the collector is complete.

The suspicion guarantee ensures that every dead object will eventually be in a

dead region:

Dead(x) � x ∈ L ∧Dead(L)

3.4. PROVING SAFETY AND COMPLETENESS OF SURF 73

While unlimited growth of a region ensures that dead regions become usefully

dead:

Dead(L) � UsefullyDead(L)

Therefore the collector fulfils the primary completeness requirement:

Dead(x) � x ∈ L ∧UsefullyDead(L)

As a counter-example to show the necessity of the region-growth requirement,

consider the case where a dead object contains a pointer to other dead objects

and also a live object:

(∃z | Dead(z)) ∧ (∃z.y | Live(y)) ∧ (∃z.x | Dead(x))

Should z be relabelled into the region containing y from the region containing

x, it will prevent the isolation of the region containing x. Therefore the region

containing x must be permitted the opportunity to grow to completeness and be

reclaimed before z is removed from that region. This requirement stems from

the assumption that cyclic relabelling is prohibited; the prohibition implies that z

may not rejoin x’s region.

Permitting finite cyclic relabelling behaviour removes the growth requirement

but it becomes much more difficult to prove liveness, let alone ensure efficiency.

The model admits the possibility of finite cyclic relabelling but the constraints on

its application to satisfy liveness are not explored in this thesis.

3.4.3 Approaches to Fulfilling Requirements

This section examines published techniques in terms of the requirements for

safety and completeness derived in the proof above.

One requirement for completeness is that mutator activity not be permitted to

hide work from the garbage collector, therefore some pointers must be considered

work after they are erased if the GC is to terminate. One approach to ensuring

liveness of relabelling in the face of mutator activity is known as snapshot at the

beginning (SATB), wherein relabelling work (an inter-region pointer) that exists

at some point in time (state) is considered to continue to exist for all subsequent

states despite the mutator’s erasure of the pointer in question. It is so named for

its use in collectors exhibiting phases of operation wherein any object live at the

beginning of a phase will survive that phase and objects becoming unreachable

in a phase will not be reclaimed until the next phase. Generalising SATB to a

non-phased collector, i.e. one with three or more regions results in every object

that is reachable from outside a region at any time being relabelled out of that

74 CHAPTER 3. UNIFYING DISTRIBUTED GARBAGE COLLECTION

region; the region that reclaims an object is the region that the object entered after

becoming unreachable:

Sk
P : {Live(x) ∧ x ∈ L} ⇒ Sk

P ≺ relabel(x→M)l
P

Sl−1
P : {Dead(x)} ∧ ∃relabel(x→ M)l

P

⇒ Sm
P : {x ∈M ∧UsefulDead(M)} ∧ Sl

P ≺ Sm
P

SATB is merely one approach to guaranteeing relabelling liveness; it is simple

to implement but overconstrains the solution somewhat by ensuring that every

inter-region pointer representing work is preserved as work despite the erasure

of that pointer. It is necessary only to guarantee that at least one inter-region

pointer to each component is considered to represent relabelling work.

An incorrect approach is to inspect remsets in search of inter-region pointers;

the reason for incorrectness is that remsets discard a significant quantity of

information. Consider a reachable cycle being continuously traversed by the

mutator: a pointer to each object will be created and destroyed for each traversal

of the cycle and isolation of the region containing the objects will not be detected

due to the presence of these pointers. A discrete-time sampling of any object’s

remset is not guaranteed to observe that there is work available, therefore the

repeated discrete sampling of all remsets in a region is no guarantee that the

presence of work will be visible. Liveness of relabelling is therefore lost.

The fault in the remset approach is that after send/recv then minus events

have occurred, the remset returns to its original zero-state: all knowledge that the

object was reachable from outside the region is lost. The same problem applies

when pointers out of a region are sampled in a discrete-time manner: there is

no guarantee that the pointers will be observed if they are subject to frequent

mutation.

3.5 Instantiating the Model

Having defined all of the components required to build a fundamental garbage

collector in previous sections, this section shows a concrete process that an

algorithm designer may follow to either analyse an existing collector or construct

an entirely new garbage collector.

In summary, instantiating the model requires five major decisions:

• direction of relabelling progress: relabel-target (forward) or relabel-source

(backward),

• configuration of regions: two or many,

3.5. INSTANTIATING THE MODEL 75

• definition of the relabelling job(s),

• choice of the relabelling termination DTDA(s), and

• choice of the remset DTDA.

These five choices define a five-dimensional space in which a collector may exist;

the totality of the space represents the universe of collectors represented by the

Surf model and each collector occupies a point in that space. Having selected

the fundamental components that define the collector, a number of requirements

must be fulfilled to ensure that the safety and completeness proofs defined above

are valid for the collector:

• If the collector is subject to the unwanted relative or victimised relative

problem, synchronisation is required between relabelling and the region

isolation DTDA.

• Relabelling liveness must be preserved in the face of mutator activity.

• The system must have at least two regions.

• For relabel-target collectors:

– The initial conditions at the creation of a region must provide

completeness.

• For relabel-source collectors:

– The suspicion algorithm should support the strong suspicion

guarantee, though other approaches are feasible, they are unproven

here, and

– Dead candidate regions must be permitted to grow to usefully dead

regions.

The proof provided in this chapter is applicable to any collector that satisfies

the requirements stated above, therefore a designer can use them as a checklist

to quickly determine if a particular garbage collector is correct or not and to

draw some broad generalisations as to the relative performance of the collector.

Having defined how the collector functions in terms of the model, the collector

still requires some further design work since there may be functionality and/or

protocols required that are not covered by the mode.

Having shown how to fit a collector into the model, it becomes possible to

analyse the behaviour of a collector in terms of how it fits into the model. The

76 CHAPTER 3. UNIFYING DISTRIBUTED GARBAGE COLLECTION

point in design-space that the collector occupies will define its behaviour to a

large extent and the means by which the safety and completeness requirements

are satisfied will also have a bearing on its performance. The effects of each of

the choices are discussed briefly here; examples of this analysis are presented in

Chapter 4.

3.5.1 Direction of Progress

Relabel-target algorithms start with a seed of knowledge — the known

reachability of the root — and grow that knowledge as a diffusion across the

object graph. They therefore have a defined complexity and will reliably reclaim

garbage within a finite number of relabelling steps.

Conversely, relabel-source algorithms begin with a hypothesis and then

diffuse the hypothesis across the object graph to determine if it remains true

or not. If the hypothesis was false, the work done in testing that hypothesis is

likely to be lost, therefore progress of a relabel-source algorithm is dependent

upon the presence of a suspicion algorithm which can reliably pick dead objects

as suspects, i.e. tends to form correct hypotheses. A suspicion algorithm that

always begins from a correct hypothesis will cause a relabel-source collector

to always make progress but this may not be optimal progress. If the

suspicion algorithm never forms a correct hypothesis, the collector will make no

progress. However, Chapter 6 hypothesises that relabel-source collectors may

have excellent timeliness if constructed carefully.

3.5.2 Configuration of Regions

A collector with only two regions implies that one region is the candidate and the

other contains the root. This means that once the candidate is reclaimed, the non-

candidate region must become the candidate region and for this, synchronisation

is required. The synchronisation overhead is a cost not borne by multiple-

region systems. Likewise, all relabel-target collectors with only two regions must

operate in phases with global synchronisation between phases and they may

not reclaim any garbage until the end of the phase. The reason for this is the

combination of two requirements: that all garbage objects be in the candidate

region at the beginning of a phase and that all live objects be in the other region

at the end of the phase, therefore the algorithm must process every live object

within every phase.

Conversely, collectors with multiple regions can avoid the synchronisation

overhead by making the root a member of a special non-candidate region and

all other regions are candidates. This means that no synchronisation is required

3.5. INSTANTIATING THE MODEL 77

for non-candidates to become candidates, no phases are implied and the collector

does not need to operate over the entirety of the graph to reclaim garbage. Such

collectors are therefore more scalable than two-region collectors.

3.5.3 Definition of Relabelling Job

A relabelling termination job is defined by which inter-region pointers constitute

work for that job. For example, the train algorithm defines all pointers into

a region to constitute work for that region; termination of that region’s job is

therefore isolation of the region. Hughes Algorithm [52] defines work to be

every pointer from a younger region, i.e. regions in some direction according

to an ordering on the regions; termination of the job implies that the region

is unreachable from younger but not older regions and therefore the region is

isolated if it is the oldest region.

The choice of relabelling job definition will define what isolation may be

inferred from the termination of any particular group of jobs. It also defines

whether or not the algorithm is subject to the unwanted or victimised relative

problems. The unwanted relative problem occurs when an object is relabelled

into a candidate region of a relabel-target collector and there exist pointers to it

from other regions; the symmetric case is the victimised relative problem where

an object containing intra-region pointers is relabelled out of a candidate region

of a relabel-source collector. If the system is subject to either of these problems,

safety requires synchronisation between the relabelling process and relabelling-

termination DTDA.

3.5.4 Choice of Relabelling Termination DTDA

Having defined each relabelling process, it is necessary to determine when each

has terminated so that inferences about the isolation of graph regions may be

drawn. Any correct asynchronous DTDA should be a valid choice in terms of

correctness, but the choice has performance implications.

Systems using a wave-like DTDA may incur synchronisation overhead for a

greater number of sites than a Doomsday DTDA. A wave-like DTDA appears

to require synchronisation against an entire region (all sites in the region cease

relabelling while the DTDA executes), whereas a Doomsday DTDA requires

synchronisation only between the region’s home site and the site performing

an unwanted/victimised relative relabelling. However, a Doomsday DTDA

requires synchronisation for every relabelling event that would imply unsafe

task creation according to the definition of the unwanted- and victimised-relative

problems, whereas the wave-like DTDA synchronises only when the train is

78 CHAPTER 3. UNIFYING DISTRIBUTED GARBAGE COLLECTION

closing and therefore possibly isolated. Doomsday DTDAs therefore seem to

incur more frequent synchronisation overheads over a smaller number of sites

while wave-like DTDAs incur synchronisation over a greater number of sites but

less frequently.

3.5.5 Choice of Remset DTDA

Reachability of a single object is equivalent to the DTD problem, so in theory,

any DTDA may be used to solve that problem. However, the diffusing nature

of how pointers to a particular object are copied throughout the object graph

make Doomsday-style (diffusing) DTDAs a more sensible approach. Conversely,

a wave-like DTDA may be used but there is a requirement to determine the scope

of the wave and permitting the wave to visit every site within the system would

be an unscalable approach.

3.5.6 Unwanted and Victimised Relatives

Where synchronisation between relabelling and the relabelling-termination

DTDA is required due to the unwanted or victimised relative problems, the type

of synchronisation will depend on the DTDA that was chosen. As stated above,

wave-like DTDAs require broader synchronisation than Doomsday DTDAs and

therefore may offer reduced concurrency.

In the case of a wave-like DTDA, Lowry [64] defines a train-closure protocol

that may be used in conjunction with wave-like DTDAs.

In the case of a Doomsday-protocol DTDA, Norcross [82] defines a protocol

wherein the site wishing to relabel an object sends a request for witness to the

home site of the region in question; see Section 3.4.1.1.

3.5.7 Relabelling Liveness

Ensuring labelling liveness in the face of mutator activity means that at least

some inter-region pointers must continue to constitute relabelling work even after

they are erased; discrete-time sampling of the remembered sets of a region is not

sufficient to ensure progress since it discards all previous history. The selection

of work that is retained and how work is represented will have an effect on the

conservatism of the collector and therefore its garbage loading and throughput.

The extreme approach is snapshot at the beginning which preserves all work

after pointers are erased: any object that is reachable from outside a region will be

relabelled out of that region. A minimal approach would retain sufficient work

to ensure that every component reachable from outside the region is migrated

3.5. INSTANTIATING THE MODEL 79

out of that region; the determination of the minimal subset may be difficult.

One published approach [87] is to begin retaining pointers only when isolation

detection has failed yet no work is observable, though the implementation

described there had negative effects such as constraining the partition selection

policy.

The designer of an algorithm must also prove that the implemented

preservation of work is sufficient to provide completeness, i.e. a component

spread across two regions must eventually collapse into a single region.

3.5.8 Relabel-Target Completeness

Completeness of the relabel-target requires not only liveness of relabelling but

requires that every region that does not contain the root is eventually a candidate

and its relabelling job is permitted to run to termination. This requirement is

one reason that two-region collectors operate in phases with synchronisation, it

also has fairness implications for multiple-region collectors. For example, the

requirement that jobs be permitted to terminate means that jobs (and regions)

must not be created so rapidly that older jobs never perform any work.

3.5.9 Relabel-Source Completeness

Completeness within relabel-source collectors has been proven in this thesis only

for the case where there is a total ordering on regions and cyclic relabelling is not

permitted; a more relaxed definition of regions may be possible but this is not

proven here and would imply a different set of completeness requirements.

The strong suspicion guarantee places some fairness requirements on the

suspicion algorithm; it is possible to achieve completeness without strong

suspicion, particularly if assumptions about region growth can be made and this

is explored in Chapter 6.

The growth guarantee is required for completeness with the ordered-regions

assumption; with different assumptions, this growth may not be required —

see Zigman’s [102] model where a complete collector is used as the upper layer

instead of the DTD of Surf.

3.5.10 Support Algorithms & Additional Policies

Though this model describes fundamental collectors, it is likely that the

algorithm so specified will be used within a compound collector. For example,

implementations of the train algorithm typically contain trains at the upper level

and some form of copying partition collector at a lower level; both Lowry [64]

80 CHAPTER 3. UNIFYING DISTRIBUTED GARBAGE COLLECTION

and Norcross [82] describe this situation. Therefore the algorithm designer

must ensure that the implementation of the lower level does not violate the

requirements imposed by the upper level of collection. The use of a partition

collector and binding relabelling to operation of that collector has the effect of

batching the relabelling that is performed and the designer should analyse the

effects that this batching has on progress within the top-level collector; such an

analysis is presented in Chapter 5.

Algorithms are required in an implementation to perform support tasks such

as the creation and destruction of regions, synchronisation where defined by the

above requirements, etc. Not every site need participate in every region, therefore

protocols permitting sites to join and leave regions are required; these are not

considered here but the designer must ensure their correctness and that there

exist no race conditions between those protocols and the components defined

by the model. The Surf model does not in general define how these protocols

operate, it merely defines them to exist and provides some constraints on how

they must operate. These protocols are examined below; each derives from an

assumption of the system model or a safety or completeness requirement stated

by Surf.

Leaving the internal operation of these support algorithms undefined is one

means by which Surf achieves broad coverage over a wide range of garbage

collection algorithms. Clearly it would be possible to define solutions to all of

these requirements here, but that would make the Surf model specific to those

solutions. Instead, the approach of defining the existence of and requirements on

these algorithms permits the Surf model to be applied to many more collectors yet

still provides specific information to implementors in terms of what requirements

their implementations must fulfil in order to be correct.

3.5.10.1 System Support

The system model implies reliable (lossless, duplication-free) message passing,

non-crashing sites, etc. Mechanisms must be in place to fulfil these assumptions.

3.5.10.2 Free Space Management

The ability to create new objects and to return their space to the free region when

they are detected as dead implies the existence of mechanisms for managing free

space. Surf places no constraints on this mechanism. In other words, Surf defines

a GC and a GC may not exist without an object store to operate over.

3.5. INSTANTIATING THE MODEL 81

3.5.10.3 Region Membership Protocol

Regions are a distributed construct and assuming that they are not global for

scalability reasons, there must be some means to define membership of a region.

Specifically, there must be means for a site to join a region when it is to relabel

an object into that region and to leave a region when it contains no more objects

in that region. The joining and leaving of regions must not interfere with the

relabelling termination detection DTDA, otherwise an unsafe collector may be

produced. It is permissible that relabelling be paused or deferred on a site while

the join protocol requests membership for that site.

3.5.10.4 Region Creation Policy

The existence of regions in conjunction with regions being destroyed implies that

there must be mechanism to occasionally create new regions so as to satisfy the

completeness requirements.

In the case of a relabel-target collector, new regions must be created into which

live objects are relabelled. If the collector has only two regions, the policy is

simple: at the end of a phase, one region is discarded, an empty region is created

and the root is moved into that region. For a many-region collector, regions must

be periodically created to ensure that there are sufficient regions to satisfy the

completeness requirements; the exact creation rate for optimum performance is

dependent on mutator behaviour and not defined by Surf.

In the case of a relabel-source collector, new regions are created at suspect

objects. Therefore, an implementation must contain a suspicion algorithm that

provides the suspicion guarantee defined in the proof of completeness for relabel-

source collectors. A simple implementation might be to fairly suspect every

object, thereby providing the strong suspicion guarantee but more efficient

approaches are possible. Because garbage will be reclaimed only when the

suspect is dead, progress in a relabel-source collector is critically dependent on

the design of the suspicion algorithm.

3.5.10.5 Unbounded Region Growth

Another requirement for completeness in relabel-source collection is the

guarantee that a dead region be permitted to grow to be usefully dead. Creation

of new regions via suspicion is therefore permitted only when there exists no

relabelling work for any existing regions and an implementation must provide a

protocol to determine when this occurs. Because region growth is a diffusing

process that is congruent with relabelling progress, the termination of region

82 CHAPTER 3. UNIFYING DISTRIBUTED GARBAGE COLLECTION

growth may be detected by running a DTDA job for each region wherein intra-

region pointers to the region in question are tasks of that job. Termination of that

DTDA therefore implies that no further relabelling is available and that a new

region may be created.

It is not necessary to make the region-growth DTDA correct with respect to

concurrent mutator activity because completeness requires unbounded growth

only for dead regions. Should mutator activity falsely cause an early declaration

of termination, the region so affected was live and its growth is unnecessary for

completeness.

3.5.10.6 Work Ordering

In a typical implementation, work is performed serially: since there may be

thousands or millions of objects available for relabelling at any one moment, it

is not feasible to relabel them all concurrently. A policy is therefore required

to decide the order in which work is processed. At a minimum, it must be

starvation-free, i.e. every unit of available work must eventually be processed.

3.6 Limitations of the Model

An important restriction of this model is that objects may exist only on a single

site: they may not migrate or be replicated, which would introduce questions of

consistency. Garbage collectors supporting object replication are not described

directly by this model.

The model describes a methodology for constructing garbage collectors from

a set of components that are themselves not garbage collectors, i.e. fundamental

collectors. It does not consider compositional techniques for combining multiple

collectors into a larger, more complex and perhaps higher-performance whole,

e.g. Hierarchical Garbage Collectors [102] and more specifically, generational

collection [61, 97], the use of car-collectors in the Train Algorithm (see Section 5.2),

the use of partition collectors and site-marking in Thor [69], the Starting With

Termination [20] approach, etc. All of these compositional techniques require

one or more existing garbage collectors, they do not describe the construction

of a collector where none previously existed whereas the Surf model constructs

garbage collectors from first principles.

The model as described and proven here is a single-stage approach to garbage

collection: the collectors described by this model attempt only to generate

usefully dead regions. It is possible to extend the model so that regions are

generated for which other predicates are true and then compose multiple stages

of algorithm to find intersections, differences, etc of regions, finally resulting in a

3.7. CONCLUSION 83

dead region, which is the approach taken by Trial Deletion [12] and described in

Chapter 4.

The Surf model applies to closed-world collectors, i.e. those which have

full control of their heap and do not need to interact with other heaps or

collectors. Orthogonally persistent systems [8, 10] and federated stores [79]

require cooperation between multiple heaps in the system and therefore the

ability to track pointers in other heaps. This problem may be solved in a number

of ways that amount to implementation techniques that provide multiple root

objects; the maintenance of such roots sets is entirely outside the scope of the

model but addressed in Section 5.2.4.

The completeness proof presented above prohibits infinite cyclic relabelling

of objects to ensure that every cycle of garbage is eventually entirely contained

within a single usefully dead region; the typical means of ensuring this is

to place an ordering on regions. Zigman states that where no such ordering

exists, completeness may still be achieved if a more complex isolation detection

algorithm is used, i.e. one that may detect isolation of a group of regions. That

approach requires an additional complete collector, i.e. one requires an existing

collector to build a new collector; the Surf model in contrast can build a collector

from components that are themselves not collectors. Zigman’s hierarchical model

relies on the existence of a Surf-derived collector at the uppermost layer.

The Surf model leaves several important protocols and support mechanisms

within a collector undefined. This is necessary to achieve coverage of a broad

range of approaches to collection but it means that an implementor must prove

the correctness of these support protocols. Though the exact operation of these

protocols is undefined by Surf, the model does provide constraints on most of

these protocols that can aid in their design and proof. Decisions made in the

design of these support mechanisms will have an impact on the performance of

a collector.

3.7 Conclusion

Garbage collectors have previously been described without any formal or

universal framework, thereby making it difficult to compare different algorithms

published at different times or to prove the correctness of any given algorithm.

This chapter presents a novel model of garbage collection that permits the

description and construction of garbage collectors from Distributed Termination

Detection Algorithms and some other components and provides a framework for

proving their correctness. The model:

• is a constructive approach to building garbage collectors,

84 CHAPTER 3. UNIFYING DISTRIBUTED GARBAGE COLLECTION

• describes a wide variety of existing fundamental (not composed) garbage

collectors,

• may be used to analyse the safety and completeness of existing collectors,

• may be used to construct entirely new garbage collectors, and

• may be applied to analyse the behaviour of a collector and provide insight

into its operation.

Safety and completeness are defined formally in terms of object reachability and

the determination thereof in finite time. A formal proof of the model’s correctness

is presented using a system model founded on atomic state transitions and a list

of permissible events describing mutator activity. An analysis of the interaction

of mutator events and events internal to the garbage collector produces a set of

constraints that, if fulfilled, will result in the safety and completeness properties

holding; fulfilment of these constraints provides a simple process whereby the

correctness of a collector may be (dis)proved.

Inspection of existing collectors in terms of these constraints sheds light on the

correctness (or otherwise) of said collectors and some aspects of their operation.

The application of the constraints to an arbitrary selection of DTDA and useful

relabelling process should result in the creation of a correct garbage collector,

though the performance of the resulting garbage collector will depend heavily

on choices made in its construction that are not addressed by this model.

Chapter 4 illustrates the mapping of existing fundamental collectors into the

Surf model and thereby demonstrates the descriptive and analytic power of the

model; Chapter 5 describes the extension of the model for use in a partitioned

distributed persistent heap, analyses progress using the concept of work defined

in the model and verifies this analysis through experimentation; Chapter 6

explores a new area of the design space defined by the model to instantiate a new

garbage collector that is predicted to have unique and interesting properties.

Chapter 4

Applying the Surf Model

This chapter uses the Surf model of garbage collection to describe a number of

existing collectors by mapping each into the model and describing the collector as

an instantiation of the model according to the process presented in the previous

chapter (Section 3.5). Describing a number of existing collectors and using the

model to arrive at insights into those collectors is an illustration of the descriptive

power of the model; it is a demonstration that the model has the power to

describe a wide range of collectors and that describing them reveals important

information about the correctness, operation and performance characteristics of

those collectors.

Because Surf is an abstract description of how garbage is detected by the

application of labels to objects, implementation techniques and details such as

addressing and allocation are irrelevant to the mappings. However, an analysis

of each instantiation in terms of the type of distributed termination detection

algorithm (DTDA) chosen for isolation detection and the manner in which

progress is made can provide insight into policy decisions that may be required,

such as partition selection which is explored in Chapter 5.

It is also possible to map some incomplete collectors into the model;

degeneracy in the mapping shows why those collectors are incomplete and is

an indication, though not proof that every component of the model is necessary

to implement a complete distributed garbage collector, i.e. that the model is

minimal in the list of components that it requires a collector to possess. In other

words, explicitly attempting to capture the essence of how a garbage collector

makes progress in applying labels to objects and detects termination of that

progress can provide insight into how a collector operates and where a collector

is incomplete, the model shows that the collector is missing some component that

the model deems critical to complete garbage collection.

The complete collectors described in this chapter are: Distributed Marking [57,

69], the Train Algorithm [49, 64], Hughes Algorithm [52], Back Tracing [68] and

86 CHAPTER 4. APPLYING THE SURF MODEL

Trial Deletion [12]. For the purposes of illustrating a counter-example, Reference

Counting [30] is mapped into the model and its incompleteness explained in

terms of the model. Trial Deletion is not a simple fit for the model but the critical

part of its operation is found to match the model and it also turns out that certain

necessary preconditions are fulfilled by a second instantiation of the model; Trial

Deletion is therefore an amalgam of two cooperating instantiations of the model

that together form a safe and complete collector.

In mapping each collector into the model, the following elements are

considered:

• the classic definition of the collection algorithm,

• the definition of regions and their meaning,

• the direction of relabelling,

• the definition of the relabelling jobs,

• the approach to distributed termination detection for relabelling and trivial

reachability,

• whether the algorithm is subject to the unwanted or victimised relative

problem and if so, how it solves it,

• guarantees of liveness in the face of concurrency, where necessary, and

• any further inferences that the model allows to be drawn from how

mapping.

In each case, it is necessary to show that the combination of relabelling process

and region definitions will result in usefully dead regions, that the safety

requirements of DTD are met and that safety and liveness of relabelling are

preserved. Where all of those requirements have been met, the proof of

Section 3.4 is applicable to the mapping and shows the correctness of the collector.

4.1 Distributed Marking

Distributed tri-colour marking, similar to that seen in Emerald [57] and first

described for uniprocessor systems by Baker [14], is a concurrent collector

implementable in uniprocessor or distributed systems.

4.1. DISTRIBUTED MARKING 87

4.1.1 Classic Definition

The classic definition of the algorithm is that each object may be marked as white,

grey or black. All objects begin a phase coloured white except for the root, which

is grey. The collector proceeds by scanning the pointers in a grey object, marking

any white targets as grey and then changing the source to black. The invariant

so maintained is that white objects may be referred to only by white or grey

objects; once there remain no grey objects then all white objects are considered

dead because the root has become black. For safety in the face of concurrency,

snapshot-at-the-beginning (SATB) is implemented by makeing grey any white

object that is the target of a pointer erased by the mutator.

4.1.2 Mapping

The table below shows the correspondence between each component of the

model and the respective component in Distributed Marking. The Safety and

Completeness section at the bottom of the table indicates how the collector fulfils

the requirements listed as the second part of the mapping process.

Model

Concept

Mapping to Distributed Marking

Direction Progress is by relabel-target because the marking wave

travels in the same direction as the pointers.

Regions There are two regions, Black and White.

Grey objects are members of the white region.

Relabelling

job

Pointers from black to white objects constitute relabelling

work.

Black may not become White hence regions are ordered,

thereby avoiding infinite relabelling.

Relabelling

DTDA

Relabelling-termination DTDA is Dijkstra-Scholten [93]:

tasks diffuse in a tree fashion, following the mark bits,

termination occurs when no Grey objects remain.

There is one job, termination of which models termination of

the marking wave.

Each grey object is a task.

Each task spawns further tasks as a grey object’s pointers are

scanned (cover rule satisfied).

The transition to black marks the death of a task.

Remset

DTDA

Single bit (grey bit), conservative with SATB; see Analysis

below.

88 CHAPTER 4. APPLYING THE SURF MODEL

Model

Concept

Mapping to Distributed Marking

Safety &

Complete-

ness

Require-

ments

There are always two regions, which implies operation in

distinct phases with global synchronisation between phases.

The unwanted relative problem is avoided since objects are

always relabelled into the non-candidate (Black) region;

synchronisation is required only when relabelling into a

candidate region.

All live objects become white at phase-change, therefore all

garbage objects will become members of a candidate region

(initial conditions satisfied).

SATB provides correctness in the face of concurrent mutation.

4.1.3 Analysis

Distributed marking illustrates a corner case of the model: there are exactly

two regions and remembered sets (implemented with grey bits) are a very

conservative approximation.

Because there are only two regions, synchronisation is required to move all

objects from the black (non-candidate) region into the white (candidate) region

when the old white region has been reclaimed; the reason being that a non-

candidate region is becoming a candidate and this requires interaction with the

DTD as described in Section 3.4. As a matter of implementation, white objects are

reclaimed during this synchronisation period, logically if not physically. Because

there are only two regions, no garbage may be reclaimed until a relabelling job

completes, which requires traversal of the entire live graph, in turn implying that

the collector exhibits poor scalability.

The “remembered set” functionality in this collector is the grey bit on each

object; the approach is conservative because it indicates that an object is reachable

from outside the region if it was ever so reachable within the current phase. If

one starts with an accurate remembered set for trivial reachability (as defined in

Section 3.3.4) and:

• discards all remembered set information for objects in the non-candidate

(black) region,

• discards all remembered set information describing intra-region pointers,

• applies SATB to remove the possibility of remset counters decreasing, i.e.

ignore all pointer erasures by the mutator, and

4.1. DISTRIBUTED MARKING 89

• reduces the precision of the remset to one bit (it cannot be decremented, so

this remains safe),

then all that remains is a single bit of state which is set when the trace reaches

an object and can never be cleared, though it is later discarded. Grey bits may

therefore be described in terms of the DTD abstraction as follows:

• all white objects (the candidate region) have a remset job; a task is created

when that object:

– becomes directly reachable from the black region by relabelling

another object, or

– is discovered as reachable at phase-start due to mutator activity erasing

a pointer to it (SATB);

• the Job has one task, representing the first discovered pointer-from-black,

• the task cannot be destroyed because of SATB, so

• no further tasks need be created, and

• the Job is discarded when the object is scanned and therefore enters the

non-candidate region, i.e. is blackened.

The above shows that although the classic description of the algorithm does not

include remsets, it includes similar yet degenerate and conservative functionality

in the form of the grey bit.

Since all White objects reachable from Black objects are relabelling tasks, at

termination of relabelling the White region will be unreachable from the Black

region. The collector therefore forms usefully dead regions (white) because the

root is in the black region. The DTD safety requirements (cover rule) are fulfilled.

Since all objects except the root are made White at the beginning of a phase, all

garbage objects will eventually enter a White region and have the opportunity

to be reclaimed, so the initial conditions requirement is fulfilled. This mapping

therefore demonstrates that the collector is safe and complete.

In summary, this algorithm can perform concurrent collection — concurrency

between multiple instances of collection work and the mutator — but lacks

scalability due to the phase synchronisation. It should be noted that this mapping

describes a number of collectors often thought of as separate algorithms, namely

semi-space copying [14] and mark-sweep; the differences between them lie only

in how regions are represented and the order in which work is processed. For

example, marking collectors have an explicit tag bit to represent the region and

90 CHAPTER 4. APPLYING THE SURF MODEL

relabelling involves setting the mark bit, whereas copying collectors represent

regions in the addresses of objects and relabelling involves physically moving

(copying) the object between regions.

The model also does not define the order in which work is processed, only

that progress is made as a wave across the object graph. The shape of this wave

will depend on the order in which work is processed, e.g. depth-first, breadth-

first or some other ordering. Examples of published collectors conforming to this

mapping are:

• McCarthy’s mark-sweep collector [72], which operates in depth-first order,

• Cheney’s collector [27], which operates in breath-first order and

• Ben-Ari’s collector [16], which operates in lexical order.

4.2 Train Algorithm

The Train Algorithm has been instantiated in a number of contexts: uniprocessor

mature-space [51], persistent storage: PMOS [78, 81], distributed heaps [49, 65,

64, 82] and combinations thereof: DPMOS [24]. The classic description of the

algorithm is a very close match with the abstract model presented in the previous

chapter; in fact it served as a starting point for creation of the abstract model.

4.2.1 Classic Definition

The system contains a number of cars (partitions) and trains (regions), the

latter composed of many of the former. Each car resides entirely within one

physical site while trains span multiple sites and provide the mechanism to

reclaim distributed cycles of garbage. Collection proceeds independently and

concurrently inside the cars, reclaiming garbage that is locally isolated. When

collecting a car (by copying objects reachable from the car’s remembered set to

other cars), the collector may choose to reassociate (relabel) an object from the

train it is in to another train, according to a number of rules designed to ensure

completeness.

Reassociation proceeds until reachable and unreachable objects are separated

along train boundaries, at which point a train may be detected as isolated and

discarded.

4.2.2 Mapping

The collection of garbage inside cars is a throughput optimisation as far as

the abstract model is concerned and may be discarded from the model: the

4.2. TRAIN ALGORITHM 91

train algorithm is perfectly functional without it, though it will take longer

to detect acyclic garbage structures. Performing additional GC within cars is

a compositional technique therefore outside the scope of the model and not

considered further here; cars are not necessary for the mapping.

The mapping is summarised as follows:

Model

Concept

Mapping to Trains

Direction Progress is by relabel-target.

Regions Regions are trains and are identified by integer names.

Regions are ordered, preventing cyclic relabelling.

Each object has a train number attached to it, perhaps

indirectly; e.g. each partition may have a train number, if the

store is partitioned.

Relabelling

job

Relabelling is referred to as reassociation in the previous

literature.

An object is relabelled by changing its train number, e.g. by

moving it to a different partition if partitions there be.

Pointers from the root constitute relabelling work into the

youngest candidate region.

Pointers from a younger region to an older region constitute

relabelling work into the younger.

Isolation

DTDA

Isolation may be detected by any asynchronous DTDA.

The isolation of every candidate region is represented by a

job; each inter-region remset entry constitutes a task of the

region isolation job.

Remset

DTDA

Any valid asynchronous DTDA may be used to implement

remembered sets.

92 CHAPTER 4. APPLYING THE SURF MODEL

Model

Concept

Mapping to Trains

Safety &

Complete-

ness

Require-

ments

There are always at least three regions: the mutator train plus

two others; all non-mutator trains are candidates.

The unwanted relative problem exists because objects are

relabelled into candidate regions; two synchronisation

options have been described in the literature.

All non-root objects are always in candidate regions, so the

initial-conditions requirement is fulfilled if regions are

created to fulfil the three-region minimum.

Relabelling work is discovered by sampling remembered

sets, therefore a subset of remset entries must be preserved to

maintain liveness of relabelling in the face of mutator

activity; the exact requirements for preserving relabelling

work are derived in the Analysis below.

4.2.3 Analysis

There is very close correspondence between the abstract model and traditional

descriptions of the train algorithm; similar concepts are present in each. The

original uniprocessor description of trains had no concept of distribution;

DMOS [49] brought distribution to the system and this distribution causes two

additional complications over the uniprocessor case:

• without synchronisation, live objects could be reclaimed due to the

unwanted relative problem, and

• progress could fail due to mutator interaction.

The unwanted relative problem has been solved for the distributed train

algorithm in DMOS and then more formally by both Lowry [65, 64] and

Norcross [82]. Lowry’s approach involves wave-based DTD algorithms and

explicit synchronisation by preventing relabelling while the DTD is in operation.

Norcross takes the Doomsday approach, sending a coverage request to the home

site where necessary; a witness task is created at the home site and sent to the

relabelling site to satisfy the Doomsday cover rule. The Doomsday approach

appears to have minimal interruption: relabelling is halted at a single site when

an unwanted-relative relabel occurs and only until the cover request is fulfilled

(one message round-trip time); conversely, the wave-DTDA approach prevents

4.2. TRAIN ALGORITHM 93

relabelling at all sites in a train while the DTDA is in operation, regardless of

whether or not unwanted-relative operations are occurring.

Seligmann & Grarup [87] described the progress bug and propose a solution

that is a restricted form of SATB. Their solution is tied to a naive partition-

selection (for local collection) policy that requires that cars of a train be collected

in order so as to reduce the amount of remset data; when collection has been

performed on every car in a train and no progress made, it indicates that the

progress-bug is occurring. At this time, all pointers into the train are recorded in

a special set and forced to be relabelled in the next GC pass over the train.

Without the naive partition-selection policy and the ability to perform local

collection in arbitrary order, some other mechanism is required to ensure that

relabelling work is recognised without relying upon remset entries, as per

Section 3.4. This may take the form of SATB, i.e. considering all pointers to

represent relabelling even when they have been erased, or perhaps a more subtle

algorithm: DMOS defines the concept of a sticky bit that preserves a remset entry

as relabelling work after the erasure of a pointer. The minimum requirement for

correctness is that at least one inter-train pointer to every component in a train

that is reachable from younger trains is retained as relabelling work. Consider a

component x in train L that is reachable from train M due to pointers in objects

in the set rr; if this set is non-empty (the component is reachable from outside the

train) then at least one inter-train pointer to x is retained as work:

(Reachable(z, x) ∧ z ∈M ∧ x ∈ L)⇒ z ∈ rr

rr 6= ∅⇒ ∃y.x | y ∈ rr ∧ retained_as_work(y.x)

Because the Train Algorithm may have an arbitrary number of trains (regions),

it is possible to avoid the end-of-phase synchronisation problem present in

Distributed Marking; the reason for this is that at no time does a non-

candidate region become a candidate region and thereby violate DTD correctness

constraints. When relabelling an object, it will typically be moved to the region

containing the source of the pointer representing the work, the exception being

when the pointer is from the root, which resides alone in an infinitely-young

non-candidate train to which no other objects may be added. Objects that are

directly referred to by the root are moved to some candidate younger active train

which will not typically be the focus of collection effort but which does possess

an operating isolation DTDA job.

Completeness requires that live objects be separated from garbage

components that have coalesced into a single train, which in turn requires the

regular creation of new trains that are made active; this is a corollary of the

requirement that there be at least two or three regions in conjunction with the

reclamation of older regions.

94 CHAPTER 4. APPLYING THE SURF MODEL

Trains may be global or (for asynchrony and robustness reasons) span some

subset of the sites in the system; in either case the implementation must contain

mechanism related to the safe creation, growth, shrinkage and destruction of

trains. Train maintenance mechanism is outside the scope of the mapping and

its correctness must be separately proven by an implementor. The reason for

this is that Surf defines only the existence of regions and not the process of their

management because there clearly exists a range of approaches to keeping track

of which sites each region spans; specifying one approach would overconstrain

the model to one specific approach. Section 3.5.10 lists a number of such

mechanisms that are undefined by Surf and the reasoning for leaving them

undefined: Surf attempts to capture only the essence of a garbage collector.

Since trains need not be global, it is possible to reclaim distributed

components of garbage by involving only the sites containing the garbage. Since

detection of train isolation is performed by DTD, no synchronisation with other

trains or the mutator is necessary. The collector therefore offers scalability

because global cooperation is not required to reclaim a component of garbage

contained within some small subset of sites.

Therefore the Surf model shows that the train algorithm is safe, complete,

asynchronous and scalable: it does not interfere with the mutator, it can reclaim

garbage with the participation of a minimal number of sites and collection can

proceed concurrently on a number of sites without any form of synchronisation

other than between relabelling and region-isolation jobs as required by the

unwanted relative problem. Reclamation of garbage does not require the collector

to perform operations on the entire heap, e.g. all live objects. This mapping is an

illustration of how the Surf model, via the analysis process of Section 3.5 can

result in a designer drawing a range of conclusions about the performance of a

particular garbage collector before implementing it.

4.3 Hughes’ Algorithm

Hughes’ Algorithm [52] is very similar to both Distributed Marking and the

train algorithm: it is a generalisation of distributed marking that uses multiple

regions to increase concurrency, reduce synchronisation (no phase swaps)

and improve timeliness of collection. The way that the isolation DTD is

mapped in this collector avoids the unwanted relative problem at the cost of

preventing reclamation of an epoch until all older epochs are isolated, thereby

trading off scalability and timeliness in return for greater throughput via less

synchronisation overhead during operation compared to the train algorithm.

4.3. HUGHES’ ALGORITHM 95

4.3.1 Classic Definition

Instead of a single black/white mark bit on each object as per simple marking

algorithms, each object is marked with an epoch number. Where a simple

marking algorithm has a single wave progressing across the live portion of the

object graph, blackening objects, Hughes has multiple concurrent wavefronts,

each representing an epoch. When a wave reaches an object, the object’s epoch is

set to the wave’s epoch if the former was lower; each object therefore knows the

latest wave to have visited it.

When a wave completes, all objects marked with a lower epoch number

than that which completed are considered garbage and reclaimed. New epoch

waves are started regularly so that a number of them are operating concurrently.

Because there is a global ordering on regions (epochs) that may be evaluated

locally, Hughes uses global synchronisation in the starting of new epochs to

ensure that the beginning of an epoch is unique.

4.3.2 Mapping

The mapping of Hughes’ Algorithm to the abstract model of GC is summarised

as follows:

Model

Concept

Mapping to Hughes’ Algorithm

Direction Progress is by relabel-target.

Regions Regions are identified by increasing integer epoch numbers

Regions are ordered, preventing cyclic relabelling.

Relabelling

job

Pointers from younger regions to older regions constitute

relabelling work into the younger.

Relabelling

DTDA

Each job represents the progress of an epoch trace.

Tasks in a job represent objects in older epochs that are

reachable from that epoch.

Termination of a job implies that all older epochs are

unreachable from that epoch and are therefore garbage.

Remset

DTDA

Remsets consist of a single bit per epoch, as per Distributed

Marking.

96 CHAPTER 4. APPLYING THE SURF MODEL

Model

Concept

Mapping to Hughes’ Algorithm

Safety &

Complete-

ness

Require-

ments

Choice of DTD mapping avoids the unwanted relative

problem (see analysis below).

There are always more than two regions (epochs) because

regions are regularly created.

The regular creation of regions ensures that the

initial-conditions requirement is fulfilled.

SATB provides liveness of relabelling.

4.3.3 Analysis

On the surface, this mapping is similar to that of the train algorithm: an ordered

sequence of regions and objects relabelled from older regions to younger regions

according to connectivity, eventually leaving garbage behind to be reclaimed

in the oldest regions. There is, however, an important difference in how

the DTD algorithm is mapped into the system which has implications for the

synchronisation required and the scalability of the resultant garbage collector.

In the train algorithm, each train (region) has a job representing the

reachability of that region. Any pointer into that region constitutes a task of the

job, so a region will not be reclaimed until it is unreachable from all other regions.

In contrast, each DTD job in Hughes’ Algorithm represents the reachability

of an epoch and all older epochs only from younger epochs. Safety therefore

requires that region n must not be detected as isolated (though it may actually be

isolated) until all regions n − k | k ∈ Z+ — older epochs — are also isolated.

This restriction on the order in which regions may be reclaimed impacts the

timeliness of collection in comparison to the Train Algorithm but it requires

less synchronisation during operation because it avoids the unwanted relative

problem. Reclamation of epochs out of order is unsafe since there may exist

pointers from older epochs to younger epochs that are not tracked as work by

any relabelling job.

This mapping demonstrates the case where termination of a relabelling job

does not directly infer region isolation; relabelling job termination must be

combined with an additional condition — all older epochs/regions reclaimed —

to infer isolation of a region.

The Train Algorithm suffers the unwanted relative problem because any

object reachable from another region constitutes a task of the region isolation

job. In contrast, such objects are tasks only in Hughes’ Algorithm when they

4.4. BACK TRACING 97

are reachable from a younger epoch. Since all relabelling occurs in the direction

of older to younger, an imported object may have no unwanted relatives, i.e. it

will never require the creation of a task of the isolation job for the region into

which it is imported.

Since pointers from older epochs are ignored, only pointers to the newly

imported object from younger epochs are of import; any object that is the target

of pointers from younger epochs already constitutes a task. For this reason, no

task creation and therefore no synchronisation is required during relabelling. The

DTD safety requirements are fulfilled and the collector is safe.

Usefully dead regions are formed since the relabelling process will form

region boundaries along boundaries of reachability: if some garbage objects are

present in any non-youngest region, they will eventually be the only objects

in that region and it will therefore be usefully dead. Any object that becomes

garbage before the creation of a new epoch will be reclaimed; therefore with the

continual creation of epochs, it can be guaranteed that all garbage objects will

eventually be in a non-youngest region and therefore reclaimable. The collector

is therefore complete.

The use of SATB in conjunction with a simple forward trace means that

remsets degenerate to a single bit per epoch, using the same derivation provided

for Distributed Marking.

In summary, Hughes’ Algorithm represents an interesting point in the Surf

design space between distributed marking and the Train Algorithm. Its choice of

DTD mapping is similar to marking so avoids the unwanted relative problem

and the synchronisation that that entails; the tradeoff for this reduction in

synchronisation is poorer timeliness since it requires that live objects are migrated

out of older regions before newer regions may be detected as isolated. Its use of

more than two regions avoids the phase-change synchronisation present in tri-

colour marking.

4.4 Back Tracing

Back Tracing differs from the other collectors presented here in that it takes the

relabel-source approach instead of relabel-target. It provides complete garbage

collection with similar robustness properties to the Train Algorithm, i.e. the

only sites that need participate in the reclamation of garbage are those that the

garbage component spans. It is presented here to show that the new model is

capable of describing a wide variety of collectors that were previously thought to

be disparate.

98 CHAPTER 4. APPLYING THE SURF MODEL

Back Tracing is presented in Thor [68] as a completeness mechanism that

detects distributed cycles of garbage after other garbage collection algorithms

have reclaimed all acyclic garbage and non-distributed cyclic garbage. The

Thor system is a composition of three separate collectors: the partition

collector, site-marking collector and completeness algorithm. Other completeness

algorithms [67, 69] have been investigated in Thor but this section describes only

Back Tracing.

This section presents an instantiation of the model that represents back tracing

but not in exactly the same way implemented by Thor; the differences lie in

the way that Thor handles pointers held by the mutator (this incurs some

synchronisation cost), the batching of tracing into partition-sized chunks and

the use of a suspicion algorithm to bound the graph region that the back tracing

algorithm may operate over. These differences are explored later.

4.4.1 Classic Definition

Back Tracing begins with suspicion of an object: the suspicion algorithm

hypothesises that a particular object may be garbage and tracing begins at that

point. Pointers to the suspected object are discovered and followed back to

their source; this process proceeds recursively until no further incoming pointers

remain or the root is reached. If the root is reached, all objects so traced are

considered live and the operation abandoned; otherwise they are garbage and

are reclaimed.

Thor is a partitioned object store with per-partition remembered sets and a

forward tracing partition collector (PGC) that considers remembered set entries

to be roots. The PGC in conjunction with remembered set update will reclaim all

acyclic garbage.

The discovery of pointers to an object is heavily dependent on the

implementation of a heap and a number of techniques are available to fulfil this

requirement; such mechanisms may be very expensive. Thor uses remembered

sets and a pointer tracking protocol to keep track of inter-partition pointers,

including remote pointers. Back tracing uses this information as well as

connectivity within a partition to determine how to trace backwards over the

object graph; this connectivity information is computed by a variation on

Tarjan’s Algorithm [92] embedded in the PGC.

4.4.2 Mapping

The mapping of Back Tracing into the new model is summarised as follows:

4.4. BACK TRACING 99

Model

Concept

Mapping to Back Tracing

Direction Progress is by relabel-source because the progress wave

travels in the opposite direction to pointers in the object

graph.

Regions There are two regions: those marked by the trace (candidate

region) and those not yet marked (non-candidate).

Relabelling

job

Pointers into the candidate region constitute work of the

single relabelling process.

Relabelling

DTDA

The DTDA in use is Dijkstra-Scholten: tasks diffuse in a

tree-like fashion across the object graph, termination occurs

when no further diffusion progress is available.

There is one DTD job: the reachability of the candidate

region.

Each object reachable from the non-candidate region is a task.

Termination of the job implies that the marked region is

isolated; if it did not absorb the root then it is a candidate and

therefore usefully dead; otherwise the candidate region is

abandoned.

Remset

DTDA

Remsets are implemented using a DTDA that is similar to

Lermen and Maurer’s [60] pointer tracking in its use of FIFO

channels and a carefully chosen message path to ensure

safety.

Safety &

Complete-

ness

Require-

ments

Choice of the DTD mapping avoids the victimised relative

problem.

Synchronisation is required where the candidate region

absorbs the root.

SATB or similar is required to ensure progress.

The strong suspicion guarantee is satisfied by the suspicion

algorithm.

Candidate regions are permitted to grow without bound.

4.4.3 Analysis

The mapping as presented is relatively straightforward; the only complication

is ensuring that the suspicion algorithm is fair, i.e. that all garbage objects are

suspected within finite time. Classic descriptions of the algorithm are expressed

100 CHAPTER 4. APPLYING THE SURF MODEL

as a depth-first-search, therefore the termination detection (without concurrent

mutator activity) is identical to the approach taken by Dijkstra-Scholten.

As described in Section 3.4.2.1, the unwanted relative problem as described

in DMOS [49] can be generalised to a requirement for synchronisation where

relabelling implies the unsafe creation of region isolation detection tasks. In

the case of a relabel-source collector, this can manifest as the victimised relative

problem where objects containing intra-region pointers are relabelled out of a

candidate region. The victimised relative problem is avoided in Back Tracing

because objects are always relabelled from the non-candidate region into the

candidate region. Because no reachability DTDA job operates for the non-

candidate region, no unsafe task creation is required for objects leaving this

region so no synchronisation is required, hence Back Tracing does not exhibit

the victimised relative problem.

As ever, the collector must be aware of concurrent mutator activity: the

creation of a pointer into the candidate region has consequences for the safety

and progress of collection. If the DTDA is not made aware of the creation then

safety is compromised; if the relabelling process is not made aware then progress

will stall. Safety is simply provided by ensuring that pointers held by the mutator

(i.e. in the root) are represented by tasks in the DTDA. Progress may be ensured

by application of SATB or similar.

If the root should be relabelled into the candidate region, the region becomes

a non-candidate and the DTDA is abandoned, which requires synchronisation.

All sites must be notified of the region abandonment, all objects in the candidate

region are relabelled into the non-candidate region and then a single new region

is created at suspect object, chosen with the cooperation of all sites. This

requirement for global synchronisation is predicted by the model because the

instantiation presented here has only two regions and more than two regions are

required if such synchronisation is to be avoided.

It should be observed that this algorithm is very expensive if live objects are

suspected since it may repeatedly traverse significant portions of the live object

graph and discover no garbage in each phase. Efficient operation is therefore

critically dependent on the suspicion algorithm employed to select the object at

which the trace begins. It would also be valuable to bound the graph region

that the back tracing algorithm may operate over and prevent it from repeatedly

traversing live portions of the graph.

Concurrent operation of multiple instances of this collector is permitted so

long as each instance is unable to observe the operation of other instances, i.e.

each object is independently a member of the candidate or non-candidate region

of each collector instance; candidacy in one instance is no constraint on candidacy

4.4. BACK TRACING 101

in other instances.

4.4.4 Back Tracing in Thor

This subsection explores the differences between the simple mapping described

above and the approach taken in Thor. There are three primary differences: the

suspicion algorithm is defined, objects are divided into partitions and there is

a lack of mutator activity awareness. As mentioned earlier, Thor is actually

a composite of three collectors where back-tracing is required only to collect

distributed cycles of garbage; the structure of the other collectors and efficiency

reasons drive these differences from the mapping.

4.4.4.1 Suspicion

The Thor suspicion algorithm is based on distance from the root measured in

inter-site pointer spans. When performing a partition collection, distances of

pointers to the partition are propagated through the partition to pointers out of

the partition; the distance of each output pointer is the minimum of all incoming

pointer distances that can reach that outgoing pointer. When an outgoing

pointer’s distance changes, this change is transmitted to the target object and

remembered until the target object undergoes its own partition collection. Since

all live objects have finite distance from the root, their distance value remains

finite; in contrast, objects in a distributed garbage cycle will have ever-increasing

distances. Figure 8 illustrates the suspicion distances implemented in Thor,

wherein intra-site pointers have zero contribution to the distance.

Two distance thresholds provide suspicion: the threshold of suspicion, Ts and

the threshold of activity, Ta. Back tracing begins at objects where distance ≥ Ta

and halts at any object where distance < Ts. The distance-suspicion algorithm

therefore defines a starting point for back tracing and a bound on the graph region

that it may operate over. Where a back trace fails (discovers an unsuspected

object), all objects in that failed region have their threshold of activity increased

to prevent repeated futile scanning.

Since all local garbage is reclaimed by the other collectors in the system, the

distance metric is permissible. Local cycles of garbage will not have increasing

distance but they are reclaimed by the site-marking collector. Likewise, acyclic

garbage will not have increasing distances but it will be reclaimed by the partition

collector.

The suspicion algorithm employed by Thor is therefore sufficient in that it will

eventually nominate every garbage object within finite time that is not reclaimed

by another collector in the system. The bound on back tracing provided by

102 CHAPTER 4. APPLYING THE SURF MODEL

Site 1 Site 2

P R

Q T

root

0

0
1

3

2 1

1

1

S

U

329 328

2

V W

329 327 328

Figure 8: Distance Heuristic for Suspicion

Ts is believed to improve efficiency by preventing repeated scanning of live

objects but it may prove problematic where a back trace of a large circumference

garbage cycle is abandoned repeatedly; this will occur where circumference >

Ta − Ts. Circumference of a strongly connected component is defined here as the

difference between the largest and smallest distances within the component; for

a simple cycle is exactly equal to the circumference of the cycle in the distance

metric, inter-site pointers.

4.4.4.2 Partitions

The partition collector present in Thor is used to efficiently provide the

connectivity information required for back tracing. Inter-partition connectivity

is tracked using a variant of remembered sets (referred to as inrefs and outrefs);

intra-partition connectivity is stored only for suspected (distance ≥ Ts) objects

and is computed during the forward trace of the partition collector. This removes

the need to maintain connectivity information for the majority of live objects,

thereby increasing efficiency somewhat. Tarjan’s Algorithm [92] is used in a

modified form to determine connectivity between the suspected (distance > Ts)

incoming and outgoing pointers of each partition.

Back tracing therefore has two kinds of steps: local and remote. A local

step uses the intra-partition connectivity information computed during the last

partition collection and a remote step uses the remsets to determine the source of

pointers.

4.5. REFERENCE COUNTING 103

This is not a change to the mapping per se, merely a batching of operations

into partition granularity: the algorithm steps backwards a whole partition at a

time rather than one object at a time.

4.4.4.3 Mutator Ignorance

The most important difference between the mapping presented above and the

implementation in Thor is that the latter is unaware of concurrent mutator

activity. The reason is that it is designed for use in a transactional system and

makes use of the client pointer tracking algorithm of Amsaleg et al [4] that permits

it to be ignorant of many pointers held by the client, thereby reducing pointer

tracking costs. Note that the Surf model is closed-world, i.e. it contains every

pointer in the system, therefore it is incompatible with use in a persistent store

such as Thor without extension of the model. Extension is required to make

collection correct in the face of objects and pointers held by client caches and

an example of such an extension is presented in Chapter 5; the extension requires

that the tracking of pointers in client caches safely integrate with the Surf model.

The extension used in the Thor system does not provide sufficient information

regarding mutator activity to retain safety of the Surf model, therefore Thor adds

an additional safety-check synchronisation to ensure that unsafe mutations have

not occurred.

Were back tracing to be implemented in conjunction with a different client

pointer tracking algorithm, the safety assumptions of the model could be satisfied

and the additional synchronisation step avoided.

4.5 Reference Counting

Reference Counting [30] is an incomplete garbage collection algorithm because it

is incapable of reclaiming cycles of garbage. It is presented here to demonstrate

that an algorithm that does not contain all of the components specified by the

abstract model does not constitute a complete garbage collector and therefore

that all such components are necessary.

4.5.1 Classic Definition

Each object has a reference count associated with it. When a pointer to the

object is duplicated, the counter is incremented and when a pointer is erased,

the counter is decremented. The counter therefore represents the total number of

references to the object: when it reaches zero, the object is reclaimed. Reclamation

104 CHAPTER 4. APPLYING THE SURF MODEL

of an object requires that the pointers it contains be erased, possibly resulting in

the cascading reclamation of a large number of objects.

Correctness in a distributed system requires the use of more than a simple

counter due to the problems described in Section 2.3.1.

Note that this mapping does not apply to any particular published collector,

it is merely the extension of uniprocessor reference counting to a distributed

system.

4.5.2 Mapping

The degenerate mapping of reference counting into the new model is summarised

as follows:

Model

Concept

Mapping to Reference Counting

Direction There is no relabelling.

Regions Each object resides in its own region.

Relabelling

job

There is no relabelling job.

Isolation

DTDA

There is one job representing isolation of each region (object).

The object constitutes a task of its job if it is reachable.

Termination Detection is a local decision since no region is

distributed.

Remset

DTDA

A DTDA similar to Task Balancing would be used to

implement remembered sets, though any asynchronous

DTDA is a valid choice.

Safety &

Complete-

ness

Require-

ments

Without relabelling, there is no unwanted or victimised

relative problem.

Without relabelling, there is no liveness of relabelling, so the

collector is not complete.

4.5.3 Analysis

As shown in the description of Remembered Sets of Section 3.3.4, distributed

reference counting is equivalent to a remset: the trivial reachability of each object

is a job and the pointers that refer to the object are tasks of that job. Duplication

of pointers is modelled by the creation of tasks and the erasure of a pointer is the

4.6. TRIAL DELETION 105

death of a task. Termination is reached when the object is trivially unreachable,

i.e. there are no pointers to it.

Reference Counting collectors therefore have only the lower level of DTD, the

remset. Without a relabelling process and accompanying DTDA to detect when

relabelling has formed a usefully dead region, there can be no completeness.

Considered alternately, complete collection requires that the scope of the region-

isolation DTD (the one that detects usefully dead regions) to be at least as great

as the largest possible strongly connected component of garbage; in the case of

reference counting, the maximum DTD scope is a single object so any components

larger than that will not be reclaimed.

4.6 Trial Deletion

Trial Deletion [12] is a technique for discovering cycles of garbage in conjunction

with a reference counting collector that reclaims all acyclic garbage.

The core components of the model are present: regions, relabelling and (for

the distributed case) the use of DTD to detect termination of the relabelling

process. The difference is that two relabelling processes are used in sequence

to find the difference of two sets, reachable from suspect and reachable from

live. The difference so found comprises all of the cyclic garbage in the system.

Trial Deletion does not fit neatly into the model as stated in Chapter 3, rather

it implies an extension of the model to multiple phases and analysis of external

conditions to show correctness. Specifically, the collector operates in two phases,

each of which may be described in terms of the Surf model but neither alone

constitutes a correct garbage collector; additional logic not defined by the model

is required to combine the inferences drawn at the conclusion of each phase,

resulting in an indication of garbage. This extension to the model is examined

further in Section 4.6.4.

4.6.1 Classic Definition

Briefly, Trial Deletion is composed of two tracing phases:

• a first trace from suspect objects to discover the maximum possible extent

of all garbage cycles (Discovery), and

• a second trace to rescue objects that are reachable from outside the extent

discovered in the first trace (Rescue).

The correctness of the collector is dependent on the assumption that there is no

acyclic garbage in the system, which means that a forward trace from some point

106 CHAPTER 4. APPLYING THE SURF MODEL

in a cycle will reach every other object in the garbage component. Temporary

decrementing of reference counts due to pointers discovered in such a trace will

leave the reference counts at zero for every object not trivially reachable from

outside the component — this is where the lack of acyclic garbage is assumed.

Were acyclic garbage to be present and hold a reference to a garbage cycle, the

cycle would appear to be reachable.

Objects begin a cycle-collection round as Black, unless they are suspect objects,

in which case they are Purple and therefore members of a metadata set labelled

Roots. There must be at least one Purple object in each cycle of garbage, a

situation which is guaranteed by making objects Purple when they are the subject

of a decrement resulting in a non-zero reference count.

The first trace begins at each object in Roots (i.e. all the Purple objects) and

objects so discovered are marked Grey. Each time an object is marked as Grey, all

objects it refers to have their pointer counts decremented and the trace proceeds

to those child objects.

At the end of the first trace:

• all objects reachable from the suspects are marked as Grey and are

potentially garbage,

• the Grey region contains all possible cyclic garbage since every cycle must

have contained a Purple object,

• reference counts do not reflect the presence of any pointers within the Grey

region,

• Grey objects with zero reference counts have no pointers to them from

outside the Grey region, and

• Grey objects with non-zero reference counts are live due to the presence of

a pointer from outside the Grey region, i.e. from a live object.

The purpose of the second trace is find the transitive closure of the live objects

in the Grey region and mark them Black so that they are not reclaimed. All Grey

objects not so marked as Black will become White and are detected as garbage.

The algorithm therefore discovers two regions during its operation:

• Grey: reachable from a suspect and therefore containing all possible cyclic

garbage, and

• Re-Blacked: Grey objects reachable from outside the Grey region and

therefore live.

The difference between these two sets (the White region) is the entirety of cyclic

garbage in the system.

4.6. TRIAL DELETION 107

4.6.2 Mapping

The original description of Trial Deletion was presented for a uniprocessor

environment using scalar reference counts; it is extended here with the use

of vector reference counts (remsets) to a distributed environment. Since a

distributed reference-counting implementation is required as the basis of this

algorithm, refer to the mapping presented in Section 4.5. Trial Deletion provides

the mechanism (relabelling, region DTDA) that was degenerate in the reference

counting mapping, finally resulting in a complete collector.

Since two traces are performed by Trial Deletion, two separate mappings to

the new model are provided, one for each tracing phase. This description relies on

an external suspicion algorithm to nominate all necessary Purple objects before a

cycle-collecting phase begins.

The first phase, Discovery, is mapped as follows:

Model

Concept

Mapping to Trial Deletion, Discovery Phase

Direction Progress is by relabel-target.

Regions There are two regions: Grey (initialised from the suspected

objects) and Black (all other objects).

Relabelling

job

Every Black object reachable from a Grey object constitutes

relabelling work.

Grey objects may not become black, preventing infinite

relabelling.

Isolation

DTDA

Termination detection is by Dijkstra-Scholten.

There is one job: reachability of the Black region from the

Grey region.

Each Black object reachable from the Grey region is a task.

Remset

DTDA

Remsets are single-bit as per the Distributed Marking

mapping.

Safety &

Complete-

ness

Require-

ments

This phase alone is neither safe nor complete; its purpose is

to discover all objects reachable from some suspected

garbage object, i.e. the total suspected region.

SATB is required for safety and liveness, implied by the use

of single-bit remsets.

The phase begins by initialising the DTD with a number of extant tasks,

one per suspected (new Grey) object, and continues until no Black objects are

108 CHAPTER 4. APPLYING THE SURF MODEL

reachable from Grey objects. It alone is not a complete or safe collection algorithm

since none of the remaining regions (Black or Grey) are usefully dead.

The second phase rescues Grey objects that are reachable from the Black

region; thereby preventing live objects that are reachable from garbage from

being erroneously reclaimed. The Rescue phase is mapped as follows:

Model

Concept

Mapping to Trial Deletion, Rescue Phase

Direction Progress is by relabel-target.

Regions There are two regions: Black (live; non-candidate) and Grey

(candidate region).

Relabelling

job

Pointers from Grey objects to Black objects constitute

relabelling work.

Black objects may not become Grey, preventing infinite

relabelling.

Isolation

DTDA

Termination detection is by Dijkstra-Scholten.

There is one job: reachability of the Grey region from the

Black region.

Each Grey object reachable from the Black region is a task.

Termination implies that the Grey region is usefully dead.

Remset

DTDA

Remsets are single-bit as per the Distributed Marking

mapping.

Safety &

Complete-

ness

Require-

ments

Completeness is achieved only if the Grey region

encompasses all garbage at the start of this phase (the initial

conditions requirement).

Safety requires the use of SATB or similar to ensure that live

objects are Black at the end of the phase.

The unwanted relative problem is avoided since objects are

always entering a non-candidate region.

Synchronisation is required at the end of the phase because

there are only two regions.

At the end of this second phase, no Grey object is reachable from a Black

object, therefore the Grey objects (now White under the classic definition of Trial

Deletion) are garbage. As per the new model, the Grey region is usefully dead

at the end of this phase. It should be noted that this mapping is substantially

identical to that presented for Distributed Marking in Section 4.1 though the

choice of colour in each region differs.

4.6. TRIAL DELETION 109

4.6.3 Analysis

It should be noted that the trial decrementing of reference counts in the Discovery

phase and then subsequent re-incrementing in the Rescue phase has been elided

from the mapping since this is merely a mechanism to detect the presence of

pointers from Black objects to Grey objects.

Analysis of Trial Deletion initially appears much more complex than the other

collectors because it is mapped into the model in two separate phases. Relating

the second phase mapping (Rescue) to that of Distributed Marking is important

since it shows that Trial Deletion is merely an optimised version of Distributed

Marking that operates on a bounded region of the object graph instead of the

entire graph. Distributed Marking assumes liveness initially only for the root;

every other object is effectively suspect and must be rescued in the tracing

operation whereas Trial Deletion suspects only a smaller region of the graph and

then rescues live objects from that region.

Safety of Trial Deletion is provided by the fact that the second phase mapping,

the one that actually discovers garbage, is identical to the Distributed Marking

mapping.

Completeness of Trial Deletion requires additional reasoning; we must ensure

that all garbage present in the system at the beginning of the Rescue phase is

in the Grey region. Note that this requirement is practically identical to the

requirement provided in the Proof (Section 3.4.1.3) that all garbage objects must

eventually be in a candidate region. The need for this requirement is two-fold in

this case: garbage cannot be reclaimed if it is not in a candidate region and also

that garbage in the Black region may prevent the reclamation of garbage that is

in the Grey region.

Trial Deletion ensures that this requirement is fulfilled in two ways: acyclic

garbage is reclaimed by the reference counting mechanism and the Discovery

phase will find all objects that are reachable from a garbage cycle. Therefore the

only garbage in the system at the beginning of the Rescue phase is reachable from

a garbage cycle and such objects will have been marked Grey in the Discovery

phase.

4.6.4 Implications for Surf

The fact that Trial Deletion does not directly fit the Surf model as defined in

Chapter 3 would seem to imply that the model does not have broad applicability,

however, this section shows that Trial Deletion may be considered to fit within

the model if it is extended to permit the use of multiple relabelling jobs to infer

the unreachability of a region.

110 CHAPTER 4. APPLYING THE SURF MODEL

The Surf model in its simplest form decides the existence of garbage at the

termination of a relabelling job; it uses the definition of that job to infer that

there are no pointers to a region from some subset of other regions. If the

definition of the relabelling job is such that its termination implies that there are

no pointers to a region, the region is usefully dead when the job terminates. Such

collectors are referred here to as single stage, i.e. they reclaim garbage through

a single definition of a relabelling job. Though a single stage collector may have

many candidate regions, only a single relabelling job is responsible for detecting

when each region has become usefully dead and though Hughes’ Algorithm

(Section 4.3) applies external logic — an ordering on region reclamation — to

infer that a region is usefully dead, it is still a single-stage collector.

Trial Deletion contains two stages that map to the Surf model, but neither

stage alone is a correct garbage collector. By the definition of relabelling in the

first stage, termination of that phase allows one to infer that no live objects are

reachable from the suspected region. By the definition of relabelling in the second

phase, termination of that phase allows one to infer that no suspect objects are

reachable from the live region.

The second phase therefore appears to be a collector because the inference it

draws is that a region is usefully dead. However, it is not a complete collector

without the application of external logic (Section 4.6.3) to prove that the suspect

region contains all dead objects.

Therefore Trial Deletion is a Surf-compatible collector because it may be

described in terms of relabelling jobs, the detection of termination of these jobs

and the application of logic (as Hughes’ Algorithm does) to the definition of

termination for each relabelling job to infer that a region is usefully dead. The

shortcoming of the model with respect to Trial Deletion is that the instantiation

process provided with the model (Section 3.5) will result only in the instantiation

of single stage collectors and provides no guidance for the construction of multi-

stage collectors similar to Trial Deletion.

Since it is possible that unions, intersections and other combinations of regions

may be computed in multiple stages, Surf provides no formal framework for

constructing or proving the correctness of multi-stage collectors. However, Surf

does define that termination of a relabelling job implies the lack of a certain class

of pointer, i.e. the lack of connectivity between some subset of regions. It is then

up to the GC designer to combine multiple relabelling jobs so that the inferences

drawn by each (lack of connectivity between certain regions, according to the

definition of each relabelling job) may likewise be combined to show that a region

is usefully dead.

4.7. CONCLUSION 111

4.7 Conclusion

In conclusion, this chapter shows how the Surf model of abstract garbage

collection may be used to describe a number of existing collectors and thereby

demonstrates the descriptive power of the model. A wide spectrum of collectors

are described, spanning from the incomplete (Reference Counting) or unscalable

(Distributed Marking) to more scalable, asynchronous and robust collectors

(Train Algorithm).

Analysis of Trial Deletion in terms of the new model resulted in the

description of a new garbage collector: Distributed Trial Deletion.

Analysis of Back Tracing in Thor reveals that safety is achieved in that system

only by a final global synchronisation step when garbage is discovered; this

synchronisation could in fact be avoided by treating mutator activity differently.

This chapter therefore shows that the Surf model has descriptive and

analytical power: it can describe a wide range of collectors, provide insight

into those collectors and lead to the development of new collectors. The

continuation of this process is to experimentally confirm the predictions of the

model (Chapter 5) then explore the design-space provided by the model to arrive

at an entirely new garbage collector (Chapter 6).

Chapter 5

Experimenting With Trains

The purpose of this chapter is to demonstrate that the Surf model is an aid

to the design and analysis of new garbage collectors and then to confirm the

validity of that analysis through experimentation. Secondarily, the chapter also

demonstrates that the formality of the Surf model may be extended for use in

systems that do not exactly conform to the Surf system model.

The Surf abstract model of GC is applied to the design and analysis of a

distributed instantiation of the Train Algorithm [49, 51, 65, 78, 81, 82] similar to

that of Lowry [64] with the goal of providing insight into policy requirements.

Specifically, the understanding of progress as defined by the abstract model is

used to design a partition selection policy for the Train Algorithm. The empirical

confirmation in this chapter of the predictions made by the model demonstrate

that the model is capable of providing new insight into collectors in addition to

the previously-known insights presented in Chapter 4.

To reduce remembered set costs, implementations of the Train Algorithm [24,

64, 82, 87] typically compose trains with a partition collector (PGC). This means

that remembered sets need be stored only for inter-partition pointers rather

than every single pointer, thereby reducing space overheads for metadata. The

drawback is that the loss of per-object remsets means that progress of the train

algorithm is made most efficiently by performing all available relabelling in a

single partition batch-wise, i.e. during operation of the PGC. This arrangement

means that relabelling progress in the Train Algorithm is tied to operation of the

PGC and the partition selection policy which defines the order in which the PGC

processes partitions.

Where partitions containing no relabelling work are processed, no progress

is made. Likewise, if the partition selection policy exhibits starvation, the

train algorithm will not be complete. The partition selection policy is therefore

critically important to performance (throughput and timeliness) of the train

algorithm and this chapter investigates a partition selection policy which

114 CHAPTER 5. EXPERIMENTING WITH TRAINS

promotes relabelling progress, resulting in a predicted linear complexity to

completeness instead of the quadratic or worse seen with other policies.

The collector presented in this chapter operates over a distributed,

orthogonally persistent [10, 8] heap, DPMOS [24], designed for the purpose

of performance experimentation. Implementing the lower layer of a persistent

heap introduces the requirement of tracking pointers held in mutator caches; this

chapter demonstrates how the Surf model and its proof of safety may be extended

to fulfil this requirement.

In summary, this chapter presents a distributed persistent garbage collector as

an instantiation of the Surf model, makes extensions where necessary to permit

the caching of objects outside the system boundary, applies the Surf model

to derive a partition selection policy and confirms the model’s performance

predictions regarding partition selection policies via experimentation. It is

therefore demonstrated that the Surf model may be used to construct and

analyse entirely new garbage collectors and that the model not only provides

implementors with a concrete list of requirements that must be satisfied to

achieve correctness, it may also be used to provide insight into the design of

operational policies for such new collectors.

5.1 Mapping

The table below summarises the design of the DPMOS collector by presenting

it as a point in the Surf design space, following the instantiation process of

Section 3.5. Entries in the table below define the design decisions in each

dimension of the model and specify how the implementation satisfies the proof

requirements. Detailed descriptions of these design decisions follow the table.

Model

Concept

Mapping to Trains

Direction Progress is by relabel-target.

Regions Regions are trains and are identified by integer names

Regions are ordered, preventing cyclic relabelling.

Relabelling

job

Pointers from the root constitute relabelling work into the

youngest candidate region.

Pointers from a younger region to an older region constitute

relabelling work into the younger.

5.1. MAPPING 115

Model

Concept

Mapping to Trains

Isolation

DTDA

The isolation of every candidate region is represented by a

job; each inter-region remset entry constitutes a task of the

region isolation job.

Isolation is detected by Safra’s algorithm [34].

Remset

DTDA

Pointer tracking is performed by Task Balancing [50, 82].

Safety &

Complete-

ness

Require-

ments

There are always at least three regions: a virtual

mutator-train plus two others; all non-mutator trains are

candidates.

The unwanted relative problem exists because objects are

relabelled into candidate regions; train closure is used to

ensure safety.

All non-root objects are always in candidate regions, so the

initial-conditions requirement is fulfilled if regions are

created to fulfil the three-region minimum.

Relabelling work is discovered by sampling remembered

sets, therefore some entries must be preserved to maintain

liveness of relabelling.

5.1.1 Direction of Progress

Progress in the train algorithm is by relabel-target, i.e. it makes progress with

waves of relabelling travelling forwards — away from the root, in the same

direction as pointers — through the object graph. It is a single-hypothesis

collector, operating from the hypothesis (actually an axiom) that the root is

reachable.

5.1.2 Definition of Regions

Regions are trains, they are identified by integers, on which there is a complete

ordering. Because there are more than two regions, it is not necessary for a non-

candidate region to become a candidate, therefore the collector need not operate

with global phases and synchronisation. To achieve this, it is necessary that

no object that may be garbage at some point ever be in a non-candidate train,

therefore the root exists in a virtual mutator train which is by definition younger

than every other train in the system. There is one active train at each site which

116 CHAPTER 5. EXPERIMENTING WITH TRAINS

is the youngest train and objects reachable from the mutator train are relabelled

into the active train.

The definition of younger is based on the numerical ordering of train

identifiers; trains with a higher ID are considered younger. As trains are

reclaimed due to isolation or having all objects removed from them, newer,

younger trains are created. Each train has a defined home site which is

responsible for the maintenance of that train; the train ID is a composition of the

home site ID (lower bits) and a sequence number maintained at that site (upper

bits).

Trains are organised into a ring topology and use the train-maintenance

protocols defined by Lowry [64].

5.1.3 Relabelling Job

Pointers from younger trains to older trains constitute relabelling work and

indicate that the target (in the older train) should be relabelled into the younger

train. Objects are never relabelled into the mutator train, therefore where a

pointer from the root (in its virtual train) exists, the relabelling work is into the

active train.

Because relabelling always causes objects to enter trains that are candidate

regions, the collector suffers from the unwanted relative problem and

synchronisation is required.

Collection progress is made entirely by the relabelling job, therefore analysing

how much relabelling is required to reach completeness will reveal the

complexity of the collector. In the Train Algorithm, reaching completeness

requires that garbage components do not span train boundaries, i.e. each

component is collapsed into a single train though they need not be separate

trains, and that all live objects are relabelled out of trains that contain garbage.

Consider a worst-case scenario where live and dead objects are intermixed

across a number of trains and an empty active train exists into which all live

objects will be relabelled. Each object can be reassociated at most once across

each train boundary. Since there is garbage in all trains, each live object will be

relabelled up to O(train count) times to reach the active train. Assuming that all

garbage is strongly connected, collapsing the garbage into a single train requires

each garbage object to be relabelled up to O(train count) times.

The net complexity for the collector to reach completeness is therefore

O(object count× train count) relabelling events.

5.1. MAPPING 117

5.1.4 Isolation DTDA

Isolation of trains is detected by Safra’s Algorithm, an asynchronous ring-wave

DTDA. The mapping is such that each train has a DTD job and every object with

a non-zero inter-train remset constitutes a task of the job. Termination of a train’s

job indicates that no objects within the train are reachable from without and the

train is therefore isolated. See Section 3.4 for a more detailed explanation of how

remembered-set jobs (the “lower level” DTDA) can act as tasks of the isolation

(“upper level”) DTDA.

5.1.5 Remembered Sets

Pointer tracking in the remembered sets is implemented by Task Balancing. Each

object has a job wherein inter-region pointers to that object are tasks of the job,

termination of the job implies that the object is not reachable from outside the

train. Because the collector is extended for use as the lower layer in a persistent

heap, the pointer tracking algorithm is extended for this purpose as described in

Section 5.2.4.

5.1.6 Safety Requirements

Because the train algorithm suffers from the unwanted relative problem,

synchronisation between the relabelling (reassociation) process and region

isolation DTDA is required. Because this system uses a wave-like DTDA,

Lowry’s model of train-closure is used to implement the synchronisation and

thereby obtain safety. The drawback of this approach is that synchronisation

covers a greater scope (i.e. more sites are interrupted) than it would if

Norcross’ [82] Doomsday request-for-witness approach were applied. However,

the synchronisation is required only when a train closes due to being isolated at

at least one site, as opposed to when an otherwise-unsafe relabelling occurs; the

ratio of the rates at which these events occur is not known.

The actual performance difference between these two approaches, if any, is

beyond the scope of this thesis.

5.1.7 Completeness Requirements

Because remembered sets are sampled on a discrete-time basis as the source of

relabelling work, it is possible that no particular site will observe the presence of

an inter-train pointer rapidly moving amongst many objects in a cycle. To solve

this problem, an approach similar to the sticky remembered sets of DMOS [49]

is taken: where an isolation detection wave fails, an additional list of work is

118 CHAPTER 5. EXPERIMENTING WITH TRAINS

maintained containing erased inter-train pointers to that train. This is a form of

snapshot at the beginning that operates where the train shows as live yet no work

is visible at the times where the remsets are sampled to determine work.

5.1.8 Support Protocols

Protocols are required to maintain train membership; given that trains have a ring

topology in this collector, the protocols of Lowry are used.

5.1.9 Extensions beyond the Model

The Surf model is a closed-world approach, i.e. it assumes that reachability

is defined only by pointers within the system and that no external items may

influence the reachability of any particular object. In the case of a persistent store,

this assumption is not valid because objects may be copied out into client caches

and modified therein; a persistent collector must remain aware of objects and

pointers in the caches if it is to remain safe and it must be aware of when those

pointers and objects are purged if it is to remain complete. The Design section

below describes the implementation architecture in more detail and provides a

protocol designed to correctly track cache contents.

For efficiency reasons, DPMOS is a compound collector, composed of a

partition collector and the train algorithm. The partition collector exists to rapidly

reclaim acyclic garbage and its operation is co-opted to perform relabelling

between regions. Each object exists within a partition and each partition is

assigned to a region; relabelling of an object in DPMOS therefore requires that

an object move between partitions. The partition collector is a copying collector;

it copies every object reachable from that partition’s remset into some other

partition and reclaims the space previously occupied by the newly evacuated

partition.

Objects not reachable from the remsets associated with that partition are

discarded (not copied), objects reachable only from the same or older train are

copied to a partition in the same train and objects reachable from younger trains

are copied to the youngest train from which they are reachable, thereby satisfying

the relabelling job definition. By binding relabelling to the partition collector,

progress of the train algorithm is dependent on partition collector operation, i.e.

it will make progress only where the partition collector is operating. The order

in which partitions are selected for collection at each site will therefore define the

progress that train algorithm makes and this is investigated in more detail below.

5.2. DESIGN 119

Node Boundaries

Mutators

Stable Storage

Persistent Heap

Object Caches

Virtual
Machines

Figure 9: DPMOS Architecture

5.2 Design

This section describes the design of DPMOS as it relates to this thesis:

instantiation of the abstract model, extending the mapping to account for pointers

held by client caches (i.e. outside the system boundary as defined in the abstract

model) and how the primary collector, trains, is composed with a partition

collector for performance reasons.

5.2.1 System Architecture

The persistent garbage collector is one part of an orthogonally persistent system.

The architecture of this system is broadly illustrated in Figure 9, showing the

multiplicity of both stable storage sites and mutators in the system, all linked

together by the distributed persistent heap.

Each mutator is a thread executing on a modified von Neumann machine

where the storage abstraction is that of an object store rather than unstructured

linear memory. The stable storage layer provides a checkpointing abstraction

over linear memory at each site by applying shadow paging techniques. The

persistent heap layer provides a heap abstraction by unifying all of the individual

stable storage instances into a single distributed store; it is responsible for

ensuring consistency between stable storage sites with respect to checkpoints.

The data distribution model is a “shared-nothing” approach, i.e. objects exist on

a single site and are not replicated within the persistent storage layer; the only

replication within the system occurs at the client-cache level. The shared-nothing

120 CHAPTER 5. EXPERIMENTING WITH TRAINS

approach was chosen because it conforms to the Surf system model and does not

require additional functionality to ensure coherency of updates between replicas.

The distribution of the persistent heap layer requires distribution of the

garbage collector in that layer; the design here follows the assumptions of the

system model described in Section 3.1, namely that objects do not span site

boundaries and do not migrate between sites. The system implements orthogonal

persistence, i.e. persistence-identification is by reachability and any object may

become persistent, regardless of its type. The update model is cooperative with

checkpoints defining consistent states: mutators may create, read and write

objects at any time via their caches but such changes do not become durable until

a checkpoint occurs.

5.2.2 Mutators

DPMOS is programming-language agnostic, though it does enforce a particular

object format with all pointers grouped at the front of the object. It should

be possible to adapt the object format to any programming language by

transforming objects when they are copied to and from the caches or modifying

the compiler.

The implementation was tested using the ProcessBase [75] orthogonally

persistent language; test applications implemented include OO7 [26] and Finite

Element Analysis (FEA). The latter application was chosen because it generates

large mesh-like data structures that are strongly connected and therefore require

completeness of garbage collection is required if they are to be reclaimed.

5.2.3 Caches

Mutators operate on cached copies of objects: before an object may be read

or written, it must be copied to a mutator cache. There may be any number

of mutator caches in the system, they may be located at sites containing

stable storage or not; therefore n persistent storage sites serve objects to m

client/mutator sites. It is perfectly valid to instantiate this system with either

or both of n and m being one though each must be greater than zero.

Cache coherency is the responsibility of the mutators and caching layer: they

must cooperate to ensure data consistency. This simplifies construction of the

persistent store while not constraining the cache-coherency implementation with

requirements from the persistent store.

The assumption behind the use of client caches is that where a client modifies

an object, it is possible that many such modifications will be made and it is

desirable for performance reasons to hide these modifications from the persistent

5.2. DESIGN 121

heap while ensuring that the safety and completeness of garbage collection are

not compromised. It is also possible that newly-created objects may reach end-

of-lifetime, i.e. become unreachable, before their first checkpoint in which case it

is desirable that such objects never reach the persistent storage layer. In addition

to providing higher throughput and lower latency storage for mutators, client

caches also reduce the load on the persistent heap layer, thereby permitting more

computation time, network bandwidth and stable storage throughput to be used

to perform garbage collection.

Guaranteeing correctness of garbage collection in the persistent heap in the

face of objects and pointers being held in caches requires that the persistent

garbage collector be aware of such pointers and objects held by client caches. A

spectrum of approaches exists, varying in the level of information required from

the objects caches:

• Naive: track all mutations.

• Transactional: exact knowledge of liveness.

• GC-based: track presence of pointer and presence of object.

The naive approach is to make the persistent heap aware of all mutations in the

client caches and from this information, determine the reachability of objects

in the client caches. This option is not considered further because the pointer

tracking overheads it implies negate the performance benefits of the object caches;

by making the persistent heap aware of all accesses, the cache does not reduce the

latency of access to or load on the persistent heap.

The transaction approach presented in [4] presumes that modifications

occur inside short-lived transactions and permits the exact determination of

reachability from a transaction. Without ACID transactions [45], this approach

is not applicable to the DPMOS system.

The GC-based approach is to have the caches inform the persistent heap

when an object leaves the heap and when it no longer holds any pointers to a

particular object; i.e. the cache summarises all mutation events and reports when

the liveness of an object as observable from that particular cache changes. This

results in a temporarily conservative estimate of liveness at low cost: it makes use

of garbage collection inside the object caches to determine when an object is no

longer held.

To achieve this summarisation effect, DPMOS object caches use pointer

swizzling [77, 98], i.e. they selectively translate pointers from the persistent

heap format (persistent identifiers, PIDs) to native machine addresses inside the

cache. An additional aim of swizzling is to speed up object accesses: following

122 CHAPTER 5. EXPERIMENTING WITH TRAINS

a machine pointer is faster than searching for the location of an object in some

data structure from its PID. Swizzling pointers to frequently-accessed objects

can therefore be beneficial to mutator performance because it reduces the cost of

pointer dereference operations. Pointer tracking in DPMOS takes advantage of

swizzling by not tracking swizzled pointer copies and erasures: it is necessary

only to know when there are zero swizzled pointers to any given object and

this information is provided by the cache collector. The details of the tracking

algorithm are provided below.

5.2.4 New Cached-Pointer Tracking Algorithm

The DPMOS cached-pointer tracking algorithm tracks two things: presence of

each object in each cache (a boolean) and the number of unswizzled pointers to

each object in each cache (an integer). Where an object is present in a cache, the

exact number of swizzled pointers to that object is immaterial since it may not

be reclaimed by the persistent heap. Since the majority of pointer manipulations

by mutators concern the copying and erasure of swizzled pointers, the majority

of mutation events are of no interest to the persistent heap and therefore incur

no pointer tracking overhead. Once the number of swizzled pointers reaches

zero, the collector in the cache will discover this, purge the object and notify the

persistent heap.

Each object has the following record associated with it (one per cache) where

necessary:

typedef struct {

int count;

bool swizzled;

} cref;

A std::vector<std::map<pid_t, cref> > stores all necessary cache

pointer tracking information at a given persistent heap site. The outer vector

is indexed by the site ID of cache that refers to a given object, the inner map

permits lookup of a cref entry from an object’s PID. This data structure is stored

inside and maintained by the persistent heap; entries are present only where

their contents are non-zero. This data structure is physically separate from the

persistent heap remembered sets which exist to record inter-partition pointers

within the persistent heap. This data structure is volatile: in case of crash or

shutdown, it is discarded because the cache contents are discarded.

Table 13 summarises the events that are of interest to the cached-pointer

tracking algorithm and the operations that are performed for each event.

5.2. DESIGN 123

Event Actions

Read Object is copied to cache, therefore:
swizzled=true for the object in question,
++count for every contained pointer, and
all required actions occur inside persistent heap, no additional
communication required.

Swizzle Pointer in cache is dereferenced and converted to a machine
address, therefore:
will first require a Read event if the target is not already in the
cache,
cache sends a “minus” message to persistent heap, and
persistent heap will --count for that PID.

Deswizzle Pointer in object is converted back to a PID, therefore:
cache sends a “plus” message to persistent heap, and
persistent heap will ++count for that PID.

Expunge Object is removed from the cache, therefore:
Deswizzle (as necessary) then Erase events are performed for
each contained pointer,
“expunged” message is send to persistent heap, and
persistent heap sets swizzled=false for the object
expunged.

Copy PID is copied inside the object cache or transmitted to a
different cache, therefore:
cache sends a “plus” message to persistent heap,
persistent heap will ++count for that PID.

Erase PID is erased (overwritten) inside the object cache,
therefore:
cache sends a “minus” message to persistent heap, and
persistent heap will --count for that PID.

Write An object is written back to the persistent heap, therefore:
no action is required from the cache because the contents of
the cache are unchanged, and
“plus” events for the persistent heap’s internal pointer
tracking algorithm are generated.

Create A new persistent object is created, therefore:
persistent heap allocates a PID with swizzled=true;
count=0;
cache must request the creation of the object, PID is returned
to cache.

Table 13: Pointer Tracking Events

124 CHAPTER 5. EXPERIMENTING WITH TRAINS

As noted in each event, all events except the Read occur inside the object

cache, therefore messages must be sent to the persistent heap to notify it of

changes in the caches. In the case of Read, the persistent heap is directly involved

(it has the data being read), so no such notification is required. In the case of

Write, communication is required to perform the actual write operation (the cache

sends new values to the heap) but because the cache is unchanged, no pointer

tracking communication is required. The receipt of the write request at the heap

will cause pointer modifications inside the heap and therefore persistent pointer

tracking events as per the Surf model.

This algorithm maps to the DTD problem in the same manner as Remembered

Sets (Section 3.3.4) except that here we track only pointers in caches and optimise

the swizzled-pointer case. For the purposes of this mapping, we assume that the

object is at one site, other objects are at other sites and that every cache is at a

different site; the analysis still holds in the cases where they are congruent.

This pointer tracking algorithm is identical to the Task Balancing algorithm

first presented in DMOS except that all tasks due to swizzled pointers at a given

site are collapsed into a single task. Therefore there exists a task for each PID in

a cache and a task for each object in a cache and every swizzled pointer thereto.

Correctness of this pointer tracking algorithm depends on it integrating correctly

with the pointer tracking algorithm used within the persistent store; showing that

this interaction works requires only that a single DTDA Job may exist and contain

multiple kinds of task. One kind of task may witness the birth of a different kind:

after all, a DTDA knows not that it is tracking different kinds of task, all that

matters is that the assumptions of the DTD system model are observed.

This section therefore proves the correctness of this pointer tracking algorithm

by describing the behaviour of pointers and objects in caches in terms of the

DTDA system model. By showing that their behaviour conforms to the DTD

abstraction, we know that a DTDA may track the existence of these pointers and

objects and therefore that the use of Task Balancing in this implementation is safe

and complete.

Three types of task are defined: Tp, Ts and Tc, representing persistent

pointers, cached objects and cached pointers respectively. The table below defines

all the ways in which these tasks may be created and how the Doomsday cover

rule (the requirement that task birth at sites other than the home site is witnessed

by an existing task) is satisfied for every way in which a task may be created.

5.2. DESIGN 125

DTD

Concept

Meaning wrt Remembered Sets & Pointer Tracking

Job Each object has a Job representing its direct reachability from

objects within the persistent heap or any object cache; the

home site of the Job is the location (P) of the object in

question:

Jx |= xP

Task Each pointer in the heap to the object of interest is a task of

that object’s Job, Tp denotes a “persistent pointer” task:

Tpn
P ∈ Jx |= y.x | y ∈ persistent heap

Each PID (unswizzled pointer) in a cache to the object of

interest is a task of the job, Tc denotes a “cached pointer”

task:

Tcn
Q ∈ Jx |= z.x | z ∈ cacheQ

Each copy of the object in a cache and all swizzled pointers to

it is a task of the job, Ts denotes a cached object and all

swizzled pointers thereto:

Tsn
Q ∈ Jx |= copy(x) ∈ cacheQ

Birth Ts The first pointer to an object is created when a cache requests

the creation of the object itself. The object is created at P and,

a pointer to it is created at the same site and sent to the cache,

i.e. the very first task created is a Ts and it is created at the

home site and subsequently migrates to the cache.

birth(Ts)P |= create

The only other means to create a Ts is to read an object into

the cache. In this case, the Ts is created at the home site

(where x is read from) and migrates to the cache:

birth(Ts)P |= Read(x)P

126 CHAPTER 5. EXPERIMENTING WITH TRAINS

DTD

Concept

Meaning wrt Remembered Sets & Pointer Tracking

Birth Tc A Tc for Jx may be created during a read operation on z

where ∃z.x, in which case the birth is witnessed by the Tp

that must exist due to z.x:

birth(Tc)Q |= Read(z)Q | (∃z.x⇒ ∃TpQ)

A Tc for Jx may also be created by pointer copying inside a

cache, in which case the new Tc is clearly witnessed by the

existing Tc at the same cache site:

birth(Tcn)Q |= PID copy | ∃Tcm
Q

Finally, a Tc may be created by deswizzling a reference; the

existence of the swizzled reference implies the existence of a

Ts at that cache:

birth(Tc)Q |= deswizzle | ∃TsQ

Swizzled pointers may be created only where the object has

been read in, i.e. they are part of a Ts and not individually

tracked.

Birth Tp Tp represents a pointer inside the persistent heap; they are

created only when a cache writes an object back to the heap.

This is represented by the Tp being created inside the cache

(witnessed by a Tc) and then migrating to the appropriate

site in the persistent heap:

birth(Tp)Q |= Write(z)Q | (∃z.x⇒ ∃Tc)

Migration Pointers may travel across the network in messages, which is

modelled by the migration of tasks:

send(T n)P |= send(y.x→ Q)k
P

recv(T n)Q |= recv(P → z.x)k
Q

Death Each task ends when the relevant pointer is erased:

death(T n)P |= minus(y.x)k
P

5.2. DESIGN 127

DTD

Concept

Meaning wrt Remembered Sets & Pointer Tracking

Termination The lack of pointers to an object is equivalent to the lack of

Tasks in (termination of) the Job:

¬∃T n ∈ J |= ¬∃y.x

To summarise, this design of DPMOS shows how the presence of formality in

the Surf model serves as a framework to extend that same formality to systems

that do not directly conform to the Surf system model. In other words, the very

formality of Surf makes clear the requirements that must be fulfilled if Surf is

to be extended and its formality maintained; this is in contrast to an informal

or mechanistic definition of garbage collection. DPMOS extends the Surf model

for use in the lower level of a persistent heap by extending the Remembered

Set formality to include the tracking of pointers not only in the persistent heap

but also in object caches. The newly created pointer tracking algorithm is made

efficient by collapsing all swizzled pointers into a single task for each object,

thereby reducing the number of tasks, the rate at which task birth and death

occurs and therefore the load on the pointer tracking algorithm.

5.2.5 Partition Collector

Though the Train Algorithm is complete, its timeliness of reclamation for acyclic

garbage is non-optimal since it may take O(n) steps to remove live objects from

a train containing garbage. On the assumption that applications will generate

(perhaps significant quantities of) acyclic garbage, the store is partitioned into

cars and a partition garbage collector (PGC) implemented.

Partitions each contain a number of objects but do not span region or site

boundaries. Objects are physically stored inside partitions, i.e. partitions are

defined by a contiguous region of stable storage space. The reason for contiguity

is to minimise load-latency from persistent storage by reducing the number of

seeks to one on the assumption that the backing store is disc. Contiguity of

storage improves access performance on disc because seek time is much greater

than that required to read a single block: contiguous reads are much faster than

non-contiguous reads.

The mapping presented in Section 5.1 implies that each object has its own

remembered set, representing all pointers to that object; partitioning the store

reduces this requirement to maintaining remset entries only for inter-partition

pointers. The PGC considers all remset entries for objects in that partition as

128 CHAPTER 5. EXPERIMENTING WITH TRAINS

roots of collection and is therefore incapable of reclaiming inter-partition cycles.

Objects that are trivially unreachable will be reclaimed at the PGC invocation

immediately after they become so; the destruction of pointers they contain may

result in other objects becoming trivially unreachable and therefore reclaimable

by the PGC. Repeated invocation of the PGC will therefore reclaim all acyclic

garbage and all cycles of garbage that do not span multiple partitions.

5.2.6 Progress and Partition Selection

Because objects are stored within partitions and partitions do not span region

boundaries, the relabelling of an object in DPMOS requires that it be physically

moved between partitions. This operation is referred to in the Train Algorithm

literature as reassociation and is bound to execution of the PGC, i.e. an object

may be reassociated only during execution of the PGC in the partition that

the object is to be removed from. A further advantage to this approach is

that reassociation follows the relabelling rules of the mapping, i.e. an object is

relabelled only to a younger region containing a pointer to that object and the

presence of these pointers from younger regions is indicated by the remembered

set. Deciding where to relabel an object requires an analysis of its remset entries

(if any) and the remsets of other objects in that same partition that can reach the

object in question, e.g. if y.x is the only pointer to x, partition(x) = partition(y) ∧

relabel(y → L)�relabel(x→ L); this information is known only during operation

of the PGC because x (not being directly reachable from outside the partition)

does not have its own remset. Performing relabelling during execution of the

PGC means that whole sub-graphs reachable from a particular remset entry

(representing a pointer from a younger region) will be relabelled batch-wise.

Efficiently fulfilling the relabelling rules of the mapping requires that an object

is relabelled to the youngest region from which it is apparently reachable. The

PGC operates as a tracing collector:

• remsets are sorted in order of increasing source-region age,

• tracing proceeds from each remset in order, visiting each object once only:

– for remset entries due to pointers in younger regions, the objects

discovered by the trace are relabelled to the relevant younger region,

– for remset entries due to pointers in the same or older regions, objects

are copied to another partition in the same region,

• all potentially live (not trivially unreachable) objects have now been copied

from the partition,

5.2. DESIGN 129

• pointers in remaining objects are considered erased and remset-update (task

death) messages are sent accordingly, and

• the partition’s space is freed.

By performing relabelling as part of PGC execution, progress of the Train

Algorithm now depends on fairness of the partition selection policy, i.e. that

which decides the order in which partitions are selected to have the PGC

executed thereon. At a minimum, the policy must not exhibit starvation,

i.e. every partition containing relabelling work is eventually selected for

processing. A naive fair policy is to process partitions in order, which results

in poor complexity-to-completion of the collector. Considering that Section 5.1.3

shows that O(object count × train count) relabelling events are required to reach

completeness and that an in-order partition selection policy may discover only a

single item of relabelling work per pass through a train, O(1) to O(train count)

relabellings may be performed per lap (O(object count) PGC invocations) of

the store. The resulting complexity to completeness with a naive in-order

partition selection policy is therefore somewhere between O(object count2) and

O(object count2 × train count) PGC invocations.

Previous research into partition selection [31] has focused on heuristics

aimed at reclaiming acyclic data structures by selecting partitions that contain

objects that are the targets of erased pointers. This approach is not suitable

where cyclic data structures are concerned because such an approach does not

promote progress of the complete garbage collector, i.e. the Train Algorithm, as

demonstrated by Munro et al [80].

5.2.7 Train-Centric Partition Selection

The purpose of this section is to use the model of work and progress provided

by the Surf model to select partitions that maximise work performed by the Train

Algorithm. According to the model, relabelling work is defined by the presence

of a pointer from a younger region to an older region; processing this work results

in progress by relabelling the target into the region containing the source.

Batching objects into partitions and processing partitions in an arbitrary order

introduces the possibility of the Train Algorithm making no progress during

a particular PGC invocation and the partition selection policy should seek to

avoid this situation. A partition selection policy that achieves O(object count ×

train count) complexity that is available from the Train Algorithm is considered

high quality, while a policy that fails to enable progress is considered low

quality. If a policy can ensure that each object is relabelled only once, directly

130 CHAPTER 5. EXPERIMENTING WITH TRAINS

into the train in which it must finally reside, the policy is referred to as oracular

and results in a complexity to completeness of O(object count).

It is possible to implement a high quality train-centric partition selection

policy because information describing available work is already gathered by the

system in the form of remembered sets. Any remset entry indicating the presence

of a pointer from a younger region indicates that there is work available in the

target partition; selecting that partition will ensure that non-zero progress is made

for every PGC invocation.

DPMOS uses the Train-Centric policy, defined below. Variations on this policy

based on constraining the order in which trains are collected are explored and the

drawbacks of each examined using the Surf’s model of progress. The choice is

between train-centric with no major drawbacks, an optimal but unimplementable

policy and two other policies with better complexity to completeness in the short

term but poor long-term performance.

5.2.7.1 Train Centric Policy

The policy implemented by DPMOS is to select the partition that contains the

greatest number of remset entries from younger trains: this younger-remset size

is used as an approximation for the number of objects in a partition that are

reachable from younger trains. When the PGC is to be invoked at a particular

site, the partition chosen is that with the greatest younger-remset size. Making the

pessimistic assumption that a single object will be relabelled per PGC invocation,

this policy results in O(object count × train count) PGC invocations to reclaim all

garbage in a store.

The train-centric policy does not define the order in which partitions are

processed with respect to their train membership, it inspects only the remset

size. Where the inter-partition connectivity is greatest, progress will be made

earliest and the ordering of this progress will define how many times a given

object will be relabelled. Where progress is made earlier in youngest trains,

fewer relabellings are required because objects will be relabelled directly to the

train in which they would finally reside. Conversely where progress is made

earlier in the oldest trains, each object may be relabelled as many times as

there are trains. The exact ordering in which progress is made means that the

throughput achieved by this policy is somewhere between O(object count) and

O(object count × train count) PGC invocations required to reach completeness.

Figure 10 illustrates progress of complexity O(object count) where relabelling

is performed from younger trains first; each row in the diagram represents a train

5.2. DESIGN 131

t=0 t=1 t=2 t=3

Figure 10: Progress by Younger-First

t=0 t=1 t=3t=2

Figure 11: Progress by Older-First

with the younger trains higher in the diagram and each column represents a time-

step. Conversely, Figure 11 illustrates progress of complexity O(object count2)

where relabelling is performed from older trains first.

It seems obvious that progress in the youngest trains first is preferable due to

the reduced complexity but this is a poor approach in the long term, as described

below. While it is true that any policy will eventually collapse the live graph into a

single train, that is only a drawback for a strict youngest-first policy that reclaims

no garbage until the live graph is collapsed. By not constraining operation to

youngest-first, the creation of new trains can occur and results in spreading the

live graph across multiple trains. The train creation rate must be low enough that

starvation of partition selection does not occur in the older regions; clearly there

will be some negative impact on the complexity to completeness compared to the

case where no train creation occurs. This thesis does not investigate train creation

policies in detail.

132 CHAPTER 5. EXPERIMENTING WITH TRAINS

5.2.7.2 Alternative: Youngest-First Train-Centric

It is possible to define a short-term oracular policy, i.e. one which exhibits

oracular performance for the garbage that exists in the store, by always executing

the PGC in the youngest train for which there exists work. This is referred to as

the youngest-first train-centric policy. Because work is always performed in the

youngest trains available, objects will never be relabelled to some intermediate

train, only to be relabelled again later; see Figure 10. The result is that this policy

will first collapse all live objects into the active train and then it will collapse

the dead objects into their respective trains. Because no object is relabelled

more than once, the train count term disappears from the complexity, resulting

in O(object count) and seemingly oracular performance.

The drawback to the youngest-first train-centric policy is that it will reclaim

absolutely no garbage until all live objects have been relabelled into a single active

train. It will therefore harm the long-term scalability and performance of the train

algorithm because a single active train will become global (all sites are members

of it) and contain all live objects. Reclamation of any object that becomes garbage

after entering that global train will require the relabelling, again, of every live

object in the system to a new active train. Operation of this policy requires that

no new trains are created until all garbage is reclaimed, because that would cause

all relabelling to occur in the live graph with no progress in the dead regions. By

requiring that the whole live graph be relabelled before reclaiming garbage, the

timeliness of the collector is degraded to the worst-case as seen from Distributed

Marking operating in phases (Section 4.1).

Youngest-first train-centric therefore has optimal complexity to completeness

in the short term, i.e. for extant garbage, but poor long-term performance because

of its tendency to collapse the live graph into a single train.

5.2.7.3 Alternative: Oldest-First Train-Centric

The oldest-first train-centric approach selects partitions within a train according

to their younger-remset size and processing trains from the oldest towards

the newest. This policy will have the effect of reclaiming trains in order; see

Figure 11 for an example. The oldest-first progress implies that garbage will be

reclaimed before the live object graph is collapsed beyond what is necessary to

separate it from the dead objects, resulting in a complexity to completeness of

O(dead count × train count) however it will not be known that completeness

is reached until the entire live graph is also processed, in O(object count ×

train count) time.

5.2. DESIGN 133

This policy does not suffer train-creation-induced starvation because newly

created trains are the youngest in the system. The drawback is that newly created

trains will contain nothing unless there are live objects in the very oldest train, in

which case they will be moved to the active train. This policy will also therefore

tend to slowly collapse the whole live graph into a single train unless there are a

large number of references in the root object to disparate parts of the graph. The

difference between this policy and youngest-first is that youngest-first collapses

the live graph before reclaiming any garbage while this policy reclaims garbage

and then collapses the live graph. The steady state in each case is to have all live

objects in one or two global trains.

5.2.7.4 Alternative: Youngest-With-Garbage-First Train-Centric

Youngest-with-garbage-first train-centric is a truly oracular policy: it processes

work according to the train-centric policy but only for trains containing garbage.

This policy seems unimplementable because knowledge of which trains contain

garbage is required. If it were implementable, it would first remove live

objects from the youngest train containing garbage and then collapse all garbage

reachable from that train into that train. The youngest-first approach means that

garbage will be collapsed in O(dead count) invocations instead of O(dead count ×

train count). Avoiding processing in the live region means that the live graph is

not collapsed and the scalability of the train algorithm is not adversely impacted.

This policy is therefore optimal in that it requires O(object count) PGC

invocations to reclaim all garbage in the system; the drawback is that it seems

unimplementable. Further research into heuristics for selecting a youngest-with-

garbage train is beyond the scope of this thesis.

5.2.8 Mixed Partition Selection

Applying the train-centric partition selector would negate the benefits of the PGC

in terms of its ability to reclaim acyclic garbage quickly. Therefore DPMOS uses

a mixture of the train-centric policy described above and the acyclic-garbage-

finding policy of Cook, Wolf & Zorn [31]. Each evaluation of the partition-

selection policy evaluates both policies and selects the output of the policy that

predicts it will make the most progress; an alternative is to invoke the policies at

some ratio.

It should be noted that the two policies tend to select disjoint sets of partitions.

Partitions constituting work for the Train Algorithm:

• contain mostly dead objects in a component that is collapsing; its deadness

means that the mutator has no pointers to those objects that it may erase, or

134 CHAPTER 5. EXPERIMENTING WITH TRAINS

• contain mostly live objects to which pointers have not been erased.

This means that such partitions are unlikely to be selected by the acyclic-centric

collector. The disjoint nature of the outputs means that to obtain the benefits

of both policies, both policies must be occasionally consulted; neither will

eventually return the same output as the other.

It should be noted that the younger-remset size is only an estimate of the

relabelling progress available within a partition because it is not known a-priori

how large a component is reachable from each remset entry. Likewise, the size of

an acyclic garbage component reachable from a single erased pointer is unknown,

so the erased-pointer count for a partition is also an estimate of the quantity of

acyclic garbage in that partition. Further implementation work not considered in

detail here is to have the system build a statistical model of the progress attained

due to the invocation of each policy as a function of the estimate produced by

that policy; the usefulness of such statistics in deciding which policy to use at a

particular PGC invocation depends on their being a good correlation between the

predicted and actual progress from each policy.

Knowledge of the ratio of reclaimed garbage to estimated garbage for each

policy and the precision of such estimates from each could provide the means to

dynamically vary the rate at which each policy is consulted and thereby maximise

progress of the system as a whole in reclaiming both acyclic and cyclic garbage.

While runtime analysis of partition selection accuracy is further work, an

offline analysis of progress estimation is presented later in this chapter that

confirms the accuracy of the train-centric partition selection policy, i.e. that the

predictions of available progress correlate well with the progress obtained.

5.3 Experimentation

The DPMOS system has been implemented and tested with the ProcessBase

language. Testing has focused on:

• confirming safe and complete operation and therefore the validity of the

cached-pointer tracking algorithm,

• confirming linear complexity with the new partition selection policy and

comparing timeliness with naively fair partition selection policies,

• confirming the correlation between predicted and obtained progress from

the train-centric partition selection policy,

• investigating the costs of collection with respect to object instantiation

policies, and

5.3. EXPERIMENTATION 135

• investigating scalability with respect to highly cyclic data structures.

Safety and completeness cannot be proven conclusively by empirical testing;

running an arbitrarily large collection of complex tests proves only that the

collector is correct with respect to those data structures. Such testing exists only to

provide a level of confidence in the system with more extensive testing providing

a higher level of confidence that the implementation matches the instantiation

described in this chapter; the tests used in this chapter confirm that the collector

is correct with respect to highly cyclic mesh data structures.

Each of the testing phases is described in detail below and example results

presented for each where applicable. Testing was performed on the South

Australian Partnership for Advanced Computing’s clusters with OO7 tests run

on perseus and the FEA tests run on hydra:

perseus 60 dual Pentium-III 500MHz with 256MB of RAM at each node and

connected by switched fast ethernet.

hydra 128 dual Xeon 2.4GHz with 2GB of RAM at each node and connected by

Myrinet.

The implementation was designed and constructed with the measurement of

collector cost and performance in mind; the design approach is outlined below

then individual tests and their results follow. The tests performed are:

• a comparison of partition selection policies with single-site OO7 and FEA

meshes,

• an investigation of complexity to completeness with FEA meshes

distributed over 4 sites, and

• an investigation of the train-centric policy’s progress prediction accuracy

with distributed OO7 and FEA meshes.

5.3.1 Architecture for Measurement

The implementation of DPMOS uses a layered architecture as shown in

Section 5.2.1, making it a specific instance of a generalised layered architecture

where higher layers make requests of lower layers; the lower layers provide

mechanism that is used and controlled by the higher layers. Each layer provides

a service to the layers above it by abstracting over the layers below and providing

some additional functionality. This arrangement is illustrated in Figure 12;

higher-numbered layers are higher in the system.

136 CHAPTER 5. EXPERIMENTING WITH TRAINS

Layer n

Load(n−1) = Cost(n)

Layer n+1

Layer n−1

Load(n) = Cost(n+1)

Figure 12: Layered Architecture for Measurement

According to this architecture, the communication between layer n and n + 1

is the Load placed on layer n and also the Cost of layer n + 1. In providing an

abstraction, each layer has a cost that is a function of the load placed upon it and

the mechanism by which it operates. The performance of a layer is defined as

that function which transforms the load on a layer into the costs of that layer.

At the lowest levels of the system, the costs are physical, e.g. CPU time,

network traffic, disc space, etc. At higher levels where the layers provide

more abstraction, the costs become appropriately more abstract, e.g. objects

instantiated. To illustrate the architecture by trivial example, consider a sorting

algorithm with known complexity: bubble sort is O(n2) therefore its cost

transformation function is:

CPUtime(item_count) = f (item_count)

f(n) = a× n2

The layered approach to performance analysis is taken in all parts of the DPMOS

implementation: costs are measured at each layer, permitting the determination

of performance of each layer by analysing the relationship between load upon

and cost of that layer. The results presented in this thesis are coarse-grained, i.e.

of the distributed persistent garbage collector as a single layer. For the purpose

measuring garbage collection performance, the load represents the activity of

the mutators and the object graph that results from that activity. The means by

which collector cost is measured varies with the collector component that is being

measured.

The relationship between graph topology and PGC invocation count is a

succinct description of the partition selection policy only because it does not

depend on other mechanisms within the collector such as how metadata is stored

or how pages are cached therefore the relationship between graph size and

topology and PGC invocation count is a good description of partition selection

policy performance. Conversely, if a measure of collector performance in toto

is required, more physical measurements such as page fault count, quantity of

network traffic and CPU or wall-clock time consumed are more appropriate.

5.3. EXPERIMENTATION 137

When comparing such physical measurements of cost with the load upon

the collector (graph topology and mutator activity), the cost/load relationship

describes the performance of the collector as a whole. The same measurements

may also be used to analyse the performance of collector subsystems by using

different concepts of load; for example, the performance of the block-caching

subsystem may be measured as a function of the access request to page fault ratio

as a function of the access patterns requested of it. Likewise, the performance of

the subsystem that maintains metadata may be measured in terms of the block

read/write requests made by that subsystem as a function of the pointer update

rate.

This chapter presents only results that are relevant to the higher-level issues

discussed in the thesis: correctness and a comparison of the complexity of

collection with varying partition selection policies. Following sections describe

the specific experiments performed in terms of the test loads, measurements

made and hypotheses under test in each case.

5.3.2 Data Structure: OO7 Medium

The first test load is OO7 [26], a synthetic data structure intended to emulate an

object-oriented computer aided design database. It is a tree structure with cyclic

components at the leaves of the tree, therefore the ability to reclaim this data

structure indicates that a collector is complete with respect to cyclic garbage.

OO7 is published with three defined sizes: small, medium and large.

small contains a small tree, medium contains a larger tree and large contains

multiple independent trees. The data structure used in this test is the medium

configuration with a tree size of approximately 2000 partitions of 64kB, plus

associated remembered set metadata. The test was performed with all data on

a single site, i.e. without distribution.

5.3.3 Data Structure: FEA Meshes

Finite Element Analysis (FEA) is a class of scientific computation which divides

space into a large number of small elements with finite extent. The spatial

division is used as a set of samples over which a set of differential equations

are solved numerically, for example:

• stress and strain in mechanical structures,

• electromagnetic fields in a variety of different media,

• fluid flow, and

138 CHAPTER 5. EXPERIMENTING WITH TRAINS

• weather simulation.

The division of space as a means to solve differential equations is a very generic

technique that may be used to simulate nearly any physical aspect of a system.

Taking only the mechanical example where forces are simulated in a rigid body,

some example end-user (where an end-user is typically a mechanical engineer)

applications are:

• simulating deformation of a mechanical component under load,

• crack and tear analysis, and

• harmonic and vibration analysis.

The ability to simulate nearly any physical system that may be described by a set

of differential equations makes FEA a very powerful tool for scientific computing.

Its computationally intensive nature makes it desirable that it be implementable

in a distributed system and the local nature of each computational step make it

amenable to implementation in a distributed system. Each simulation step for a

mesh element requires only the state of that element and its neighbours, therefore

the mesh may be partitioned and each section allocated to a separate site in the

distributed system. Communication is required only to exchange information as

it crosses the partitioning of the mesh.

Mesh data structures are by their nature highly cyclic and therefore strongly

connected. Reclaiming a mesh requires a complete garbage collector.

For most finite element analyses, the mesh topology is unchanging: the

simulation merely varies the non-pointer values inside the mesh to indicate the

physical state of each element and the connectivity between elements does not

change. Therefore, a mesh as observed by a garbage collector is a very large

strongly connected component with static topology.

For the purposes of testing the implementation in this chapter, FEA meshes

of dimension two are instantiated, composed of a regular grid of triangles. Each

vertex is an object and each triangle is an object; each vertex contains a linked

list of pointers to the triangles it participates in and each triangle contains three

pointers, each to a vertex. The mesh is instantiated in squares of 101x101 vertices,

resulting in squares of 2 × (101 − 1)2 − 20, 000 triangles. Larger grids of these

squares are created with 6 squares per train; the total number of squares varies

between tests.

Figure 13 contains an example mesh of triangles with a 9x9 grid of vertices

and therefore 2×(9−1)2 = 128 triangles. Figure 14 shows an example grid where

an arrangement of 12 of the squares from Figure 13 have been sewn together

5.3. EXPERIMENTATION 139

Figure 13: Mesh of Triangles

Figure 14: Grid of Meshes

140 CHAPTER 5. EXPERIMENTING WITH TRAINS

into one larger mesh using additional triangles, resulting in one large strongly

connected component containing many cycles.

The experimental testing in this chapter involves instantiating large meshes,

sewing them together, allowing them to become garbage and then measuring

the cost of reclaiming them. What is being measured is therefore the cost of

collapsing a large FEA mesh into a single train.

5.3.4 Experiment: Partition Selection with OO7

OO7-medium is used here to analyse partition selection performance and

compare previously published partition selection policies with the train-centric

policy of Section 5.2.5. The initial state of the store is with three trains: one

containing the root object, one containing all other objects and one completely

empty, i.e. the active train. To reach completeness, the collector needs only

to move the (very few) live objects into the active train and it must not move

any dead objects; analysis of this specific arrangement via the Surf model shows

the best-case complexity to be O(live count) since the dead objects are already

collapsed into a single train.

The experiment was executed on a single site, the reason being that the

previously published partition selection policies are so poor that they do not

reach completeness in a timely fashion with larger or distributed data structures.

Six different partition selection policies were tested; in each case the expected

complexity is calculated on the assumption that the number of partitions in which

relabelling work is available is tiny compared to the total number of partitions.

• Round Robin: partitions are selected in address order; expect

O(live count × partition count),

• FIFO: partitions are considered in their order of creation; expect

O(live count × partition count),

• Reverse FIFO: partitions are considered in the reverse order of their

creation; expect

O(live count × partition count),

• Random: partitions are pseudo-randomly selected; expect

O(live count × partition count),

• Updated Pointer: the partition that is the target of the most pointer deletions

is selected, as per [31]; expect starvation, and

• Train Centric: the new policy of Section 5.2.7; expect

O(live count)

5.3. EXPERIMENTATION 141

Partition Selection Policy PGC Invocations Page Faults

Round Robin 8210 23845
FIFO 8209 22411
Reverse FIFO 16126 980653
Random 14873 901436
Updated Pointer, 10:1 17847 572685
Updated Pointer, 100:1 30906 1077830
Train Centric 20 12539

Table 15: Reclamation Cost to Completeness; Single Site, Single Train OO7

The collector was run to completeness with each of the policies and the cost of

reaching completeness measured in terms of the number of PGC invocations and

64kB-page faults incurred.

Results are summarised in Table 15. Note that UpdatedPointer is not a fair

policy and not guaranteed to make progress, therefore it is mixed with the FIFO

policy at varying ratios to ensure fairness; these ratios are listed in the table of

results.

There are two results of significance from this experiment: that the collector

is safe and complete with respect to OO7 when a non-starving partition selection

policy is applied and that the new partition selection policy is unique amongst the

policies tested in its ability to promote progress of the Train Algorithm. Reaching

completeness shows that the relabelling process is operating correctly: it never

relabels an unreachable object to the active train and it relabels every reachable

object.

Given that the FIFO and Reverse FIFO results made four and eight laps of the

store respectively, this is an illustration of the O(n2) nature of the Train Algorithm

in the face of naive partition selection. Specifically, there is a small chain of live

data which must be traversed in a particular order by the collector for it to be

relabelled; any PGC invocations outside of that order are entirely wasted. When

traversed in one direction (FIFO), four passes of the structure are required to

relabel all live data while in the opposite direction (Reverse FIFO), eight passes

are required. This is a demonstration that the collector makes progress as a wave

over the graph in a specific direction and that a simple cycle has handedness:

the pointers travel in a certain direction around the cycle. The ability to make

progress in only one or two partitions in the heap is shown by all of the naive

fair policies in that they take O(live count × partition count) invocations to reach

completeness.

Random performed poorly as expected due to the large fraction of garbage in

the system and the need to relabel only live objects. However, it still performed

better than Reverse FIFO. The approximately 25x increase in page faults per PGC

142 CHAPTER 5. EXPERIMENTING WITH TRAINS

invocation for Reverse FIFO and Random compared to Round Robin and FIFO is

due to remset cache effectiveness, i.e. the ability of the system to keep relevant

remsets in memory and not thrash them to/from disc. This shows that the remset

caches are more effective with certain access patterns that are determined by the

partition selection policy.

The results for UpdatedPointer show that this policy selects partitions that

are disjoint with those that promote progress of the completeness algorithm:

increasing the ratio at which it is mixed with FIFO reduces the performance

of the collector and without such mixing, the collector is not complete. This

result confirms the analysis of Section 5.2.8, namely that train-centric and acyclic-

garbage-centric policies must be mixed if the benefits of both are to be realised

since their results are disjoint. Work spent reclaiming one type of garbage does

not typically represent progress in reclamation of the other type.

Finally, the new train-centric policy spends time only where there is progress

available, i.e. relabelling live objects from the candidate train; the complexity in

that case is the expected O(live_count).

5.3.5 Experiment: Partition Selection with FEA

This section repeats the experiment above with an FEA mesh uniformly

distributed across four sites. The mesh contains 24x5 squares, each of 101x101

vertices for a total mutator-visible space containing 13.4M objects in 5300 of

64kB cars. The entire data structure is garbage except for a small number

(approximately 5) of objects that are reachable. The garbage structure is spread

across 21 trains and is all reachable from a small garbage structure in the

22nd train, which also contains live objects. The progress required to reach

completeness is to relabel the live objects from train 22 into the active train and

to collapse the 293MB of garbage into train 22.

The collector was attempted to run to completeness but only the train-

centric and Reverse-FIFO policies succeeded in the 50 hours allocated on hydra.

Because the other policies do not ensure relabelling progress for every PGC

invocation, they failed to reach completeness within the allocated time and it

is not known how long they would take to reach completeness. The fact that

they take an unknown time in excess of two days instead of approximately 40

minutes to reach completion with this small data structure indicates that their

performance is so poor as to not be worth considering further.

Table 16 summarises the costs of reclamation in terms of the number of PGC

invocations and the number of 64kB pages read from disc; DNC denotes that

collection did not complete with certain partition selection policies.

5.3. EXPERIMENTATION 143

Partition Selection Policy PGC Invocations Page Faults

Round Robin DNC DNC
FIFO DNC DNC
Reverse FIFO 62924 46821
Random DNC DNC
Updated Pointer, 10:1 DNC DNC
Updated Pointer, 100:1 DNC DNC
Train Centric 9382 21425

Table 16: Reclamation Cost to Completeness; Single Site, 24x5 FEA

The result of this experiment is as expected: the train-centric policy guarantees

progress and therefore reclaims large structures of garbage in a timely fashion,

while the naive policies do not. The lack of progress in most PGC invocations is

confirmed in Section 5.3.7.

5.3.6 Experiment: Complexity to Completeness with FEA

The aim of this experiment is to test the predictions of complexity made earlier

in this chapter with respect to the train-centric partition selection policy, namely

that collapsing a garbage component into a single train for reclamation requires

between O(object count) and O(object count × train count) relabelling events

depending on the order in which relabelling occurs. The test load is a range

of FEA meshes, each with 24 columns of 100x100 squares of triangles and

row counts varying from 10 through 27. Each row of 24 squares contains

approximately 2.7M objects consuming 58MB of space.

The result of this experiment is shown in Figure 15; the complexity

predictions are confirmed insofar as with a constant number of objects per train,

the relationship between total component size and PGC invocation count is

approximately linear. Figure 16 shows that the relationship between component

size and the number of page faults (sum of 64kB page reads and writes) is

not linear, therefore as the load size increases, the cost of each PGC invocation

increases. The domain of each result graph is the number of rows in the mesh

used as a load on the GC, each row containing 24 squares. These results are from

a single invocation of the collector so the variance is unknown.

The non-linear nature of Figure 16 is believed to be because various caches in

the system, e.g. remembered sets and pages, have fixed size across these runs and

therefore the probability of cache hits falls with increasing load sizes. Figure 17

shows the relationship between the load size in mesh rows and the number of

times a remembered set was purged from the cache. The cache is large enough

to hold the remsets for 15 rows of data but once the load grows beyond this size,

thrashing begins. Figure 18 shows the relationship between the page cache hit

144 CHAPTER 5. EXPERIMENTING WITH TRAINS

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 10 15 20 25 30

In
vo

ca
tio

n
C

ou
nt

Mesh Rows

Collector Cost vs FEA Mesh Size

fea4

Figure 15: Complexity to Completion, FEA

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 10 15 20 25 30

P
ag

e
R

ea
ds

/W
rit

es

Mesh Rows

Collector Cost vs FEA Mesh Size

fea4

Figure 16: Cost to Completion, FEA

5.3. EXPERIMENTATION 145

 10000

 100000

 1e+06

 10 15 20 25 30

R
em

se
t C

ac
he

 P
ur

ge
s

Mesh Rows

Collector Cost vs FEA Mesh Size

Figure 17: Remembered Set Cache Performance

ratio and load size. With increasing data size and fixed cache size, the hit ratio

falls as expected: the more pages in the system, the lower the probability of a

given page being in memory. In particular, a downturn in the hit ratio is visible

at 16 rows where the remembered set cache begins to thrash.

It should be noted that Figure 15 represents the abstract cost of the collector

that was predicted by Surf. The physical cost of the collector (Figures 16, 17

and 18) is a function of this abstract cost and the transformation from abstract

cost to physical cost is dependent on the mechanisms implemented within

the collector. Referring back to the abstract concept of a layered architecture

defined in Figure 12 with respect only to the results in this section, the measured

implementation may be considered to consist of the following layers:

1. physical subsystems, e.g. disc and network,

2. stable storage subsystem including page cache,

3. remembered set cache,

4. relabelling mechanism (PGC),

5. essence of collector and partition selection policy, and

6. mutator.

146 CHAPTER 5. EXPERIMENTING WITH TRAINS

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 10 15 20 25 30

P
ag

e
C

ac
he

 H
it

R
at

io

Mesh Rows

Collector Cost vs FEA Mesh Size

Figure 18: Page Cache Performance

The transformation of load at the uppermost layer (mutator) to costs at the lowest

layer (disc IO) occurs as follows:

• The mutator defines the load data structure, which is of a particular size

and topology.

• The essence of the collector (the Train Algorithm) as defined by Surf

interacts with the partition selection policy to define a transformation

between load size/topology and a PGC invocation count.

• The PGC performs relabelling during its execution, transforming its load

into a cost in terms of stable read/writes and remembered set updates.

• The remembered set cache is backed by stable storage, so where the

required remembered sets do not fit in the cache, stable reads and writes

are performed.

• The stable storage layer transforms its load into disc IO as a function of the

page cache size and retention policies.

Therefore it should be clear from these experiments that the abstract behaviour

of a garbage collector as predicted by Surf is an important factor in the

performance of an implementation because it defines the load on the lower layers

5.3. EXPERIMENTATION 147

Progress Correlation: oo7m.uniform.t20.rsyounger

 1

 10

 100

 1000

PSel Score (rsyounger)

 1
 10

 100
 1000

 10000

Progress (reassoc count)

 0

 1000

 2000

 3000

 4000

 5000

 6000

Figure 19: Accuracy of Progress Prediction, OO7

and in particular Surf can be used to analyse the complexity of the collector.

However, the lower layers of mechanism have an important impact on real-world

performance; for example, relatively simple matters such as cache sizing can

make orders of magnitude difference to the observed performance.

5.3.7 Experiment: Progress Estimation

A fundamental assumption in the use of the train-centric partition selection

policy is that the number of inter-region pointers to a partition is a good estimate

of the total number of objects to be relabelled out of that partition were it to

be selected for a PGC invocation. The quality of the partition selection policy

therefore depends on its accuracy in predicting progress; the fourth and final

experiment presented in this thesis is an analysis of the train-centric policy’s

progress prediction accuracy.

The collector was run on OO7 spread across 20 trains and four sites; for each

invocation of the PGC, the system logged both the progress prediction (size of

remset from younger trains) and the actual progress achieved (number of objects

relabelled). The result is presented as a two-dimensional histogram in Figure 19.

The primary feature of this graph is a straight ridge, indicating that there is

usually a good correlation between the predicted and actual progress. The peak

148 CHAPTER 5. EXPERIMENTING WITH TRAINS

in this ridge shows that the most common case is that approximately 800-1000

objects are relabelled per PGC invocation. There is one interesting feature in

the graph, the small ridge across the back edge, i.e. where the prediction is for

very little progress yet significant progress was made; this feature indicates the

presence of a large connected component within a partition with only a single

inter-partition pointer to that component.

Overall, the strong correlation present in this result shows that the train-

centric policy is a good predictor of available progress with the OO7 data

structure and is therefore a high quality partition selection policy.

The same correlation between predicted and actual progress was investigated

with respect to the FEA data structure and the result is shown in Figure 20, which

is also a two-dimensional histogram. As per the result with OO7, the primary

feature of the graph is a straight diagonal ridge that shows the progress achieved

correlates well with the progress predicted.

The large spike in the correlation indicates the common-case performance, i.e.

that for most PGC invocations, approximately 3000 objects were relabelled. 3000

objects is approximately the size of a partition, therefore these results that whole

partitions are being relabelled, an indication that their contents are typically

strongly connected. This behaviour is expected because the load data structure is

a mesh, any contiguous subset of which forms a strongly connected component.

There is a small subsidiary ridge extending back from the spike; this ridge

indicates the presence of partitions containing 3000-object connected components

reachable via a smaller remembered set. This additional ridge is an artefact of the

FEA data structure used and occurs because partitions containing corners of the

mesh have fewer incoming pointers than partitions in the centre of the mesh.

In comparing the peaks of Figures 19 and 20, the greater average-case progress

made in the FEA test indicates a greater degree of intra-partition connectivity

with the FEA mesh than OO7.

This test therefore shows that the train-centric partition selection policy

produces high quality predictions of the progress available in partitions. The

same test is applied to the Reverse-FIFO policy, the only naive policy that reached

completeness with the smallest data FEA data structure tested in Section 5.3.5

and the result is shown in Figure 21. Because reverse-FIFO makes no predictions

regarding progress, the histogram has only a single dimension, that being the

number of objects relabelled in a given invocation, i.e. the progress achieved.

Figure 21 shows that in the common case, no progress is made, hence the poorer

performance than that observed from the train-centric policy.

5.3. EXPERIMENTATION 149

Progress Correlation: fea4-20-srm-rsy

 100

 1000PSel Score (rsy)

 100
 1000

 10000

Progress (reassoc count)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

Figure 20: Accuracy of Progress Prediction, FEA

 10

 100

 1000

 10000

 100000

 0 500 1000 1500 2000 2500 3000

P
G

C
 in

vo
ca

tio
ns

Progress (reassoc count)

Progress Correlation: fea4-5-srm-rfifo

Figure 21: Progress Histogram, Reverse FIFO

150 CHAPTER 5. EXPERIMENTING WITH TRAINS

5.4 Conclusion

This chapter has two purposes, presented in two stages: it shows the utility

of the Surf model in designing and analysing a new garbage collector, and it

uses experimentation on an implementation to verify the accuracy of the analysis

performed in the first stage.

The Surf model is shown to have utility in multiple stages of the design of a

new garbage collector, DPMOS. In this chapter:

• the train algorithm is instantiated from the Surf model, resulting in a formal

description of a correct garbage collector,

• the model is extended to correctly and efficiently track cached pointers that

are held by mutators outside the Surf system model, making the collector

suitable for use in a persistent system, and

• the model is used to analyse the means by which DPMOS makes

progress and thereby design a partition selection policy that provides linear

complexity instead of the quadratic complexity previously seen with naive

partition selection policies.

The above demonstrates how the Surf model aids the design and analysis of new

garbage collectors and also how the formalism of Surf may be extended for use

in systems that do not conform to the Surf system model. Because Surf provides

a formal definition of correctness and a simple but formal description of how

this correctness is achieved (the use of distributed termination detection), it is

possible to prove the correctness of an extension to the model by showing how

the extension satisfies the requirements for correct DTD operation.

Because the analysis of progress presented in this chapter is based on the Surf

model rather than the specifics of this collector, the analysis is portable to other

collectors instantiated from the Surf model.

To verify the validity of the design process and confirm the Surf model’s

predictions, the newly designed collector is implemented and the predictions

tested empirically:

• the implementation appears to be safe and complete, including the cached-

pointer tracking extension to the model,

• the prediction of complexity to completeness with a train-centric partition

selection policy is confirmed, and

• the train-centric partition selection policy’s estimation of progress available

is analysed and found to be accurate.

5.4. CONCLUSION 151

The experimentation therefore validates the analysis performed and predictions

made by the Surf model. The net result is a demonstration that the Surf model

is an aid to the construction and analysis of new garbage collectors and that

analysis derived from the model has been confirmed experimentally via an

implementation of the Train Algorithm.

Chapter 6

The Tram Algorithm

Having presented the Surf abstract model of garbage collection in Chapter 3

and demonstrated its descriptive and analytical power in Chapter 4, this chapter

uses the Surf model to instantiate an entirely new distributed garbage collection

algorithm: the Tram Algorithm1. This chapter exists to demonstrate the utility

of the model in designing entirely new collectors by exploring the design space

provided by the model and as a result of this exploration, an entirely new class of

garbage collection algorithm is discovered.

The new point in the Surf design space occupied by the Tram Algorithm

is relabel-source with many (more than two) regions; this chapter proceeds by

presenting a design for the Tram Algorithm by instantiating the Surf model

given the new design point and then defining behaviour so that the safety and

completeness requirements of the model (see Section 3.5) are satisfied. Having

defined how the collector makes progress and identifies garbage, the Surf model

is used to make predictions as to the likely behaviour of this new collector.

Finally, the Surf model is used to analyse the expected relative performance of

the Tram Algorithm with respect to existing collectors such as Distributed Trains

(Section 4.2) and Back Tracing (Section 4.4).

In exploring the expected behaviour of Trams, it is predicted that the

algorithm is capable of discovering topological information within the live

graph that is an approximation of strongly connected components [92] (SCC);

the analysis shows how this capability is unique to relabel-source, many-region

collectors like the Tram Algorithm. Topology in the form of strongly connected

components is valuable information for the purposes of garbage collection: if

all such components are known as Surf regions then all garbage within the

system may be detected without further relabelling work, resulting in excellent

timeliness. The drawback to discovering SCCs is that the time-complexity of

1The name of this collector is so chosen because it takes features from both Back Tracing
(Section 4.4) and the Train Algorithm (Section 4.2), i.e. this collector is constructed using trains
that go backwards.

154 CHAPTER 6. THE TRAM ALGORITHM

doing so is great and the object graph may concurrently mutate, rendering the

topological information out-of-date.

The implementation of the Tram Algorithm and the verification of the

predictions regarding the discovery of topology made in this chapter are future

work. The purpose of this chapter is not to investigate an implementation but

rather to show how the Surf abstract model may be instantiated to form an

entirely new garbage collection algorithm and how the Surf’s model of progress

and termination may be applied to the analysis of garbage collector behaviour

and performance in the absence of an implementation.

6.1 Design of the Tram Algorithm

The Tram Algorithm is defined by following the instantiation process of

Section 3.5. The process requires that the collector be specified as occupying a

particular point in the Surf model’s design space and that a list of requirements

be fulfilled so that the safety and completeness proof from the model may apply.

The table below therefore lists the properties of the collector in dimensions of the

model’s design space and summarises the correctness requirements that apply

and how they are fulfilled.

Model

Concept

Mapping to Trams

Direction Progress is by relabel-source.

Regions Regions are trams and are identified by integer names

Regions are ordered, preventing cyclic relabelling.

Relabelling

job

Relabelling is from older regions to younger regions.

Any object in an older region that contains a pointer to a

younger region constitutes work for the relabelling job of the

younger region.

Isolation

DTDA

Isolation of regions is detected using Task Balancing [50, 82].

The isolation of every candidate region is represented by a

job.

Every inter-region remset entry constitutes a task of a region

isolation job.

Termination of a job implies that a region is usefully dead.

Remset

DTDA

Task Balancing as a pointer tracking algorithm implements

remembered sets.

6.1. DESIGN OF THE TRAM ALGORITHM 155

Model

Concept

Mapping to Trams

Safety &

Complete-

ness

Require-

ments

The system is subject to the victimised relative problem,

therefore synchronisation between relabelling and the region

isolation DTDA is required.

Relabelling liveness in the face of mutator activity is required

and provided by snapshot at the beginning.

At the beginning of operation, there are two regions

(non-candidate and one candidate) but in the general case

there will be more than two regions.

A suspicion algorithm that provides the Strong Suspicion

Guarantee is to be used.

No new regions are created until there is no relabelling work

for any existing region, therefore region growth is

unbounded and dead regions will become usefully dead.

The details of this mapping are discussed in further detail below. For

each parameter of the algorithm that is defined by the model, predictions as

to the collector’s behaviour are made by applying the general-case analysis of

Section 3.5 to the specific case of this algorithm. Further analysis is then required

in terms of support protocols that are not defined by the Surf model, e.g. a

protocol to decide when a region may be created and how the suspicion algorithm

operates.

6.1.1 Direction of Progress

Because progress is made by relabel-source, i.e. back-tracing, the collector begins

from a hypothesis (suspicion of a particular object) then evaluates the hypothesis

by determining if that object is garbage or not. Given the possibility that the

hypothesis may be wrong, there is no guarantee that the collector will make

progress at any particular time; progress is entirely dependent on the suspicion

algorithm in use. A suspicion algorithm that always produces false hypotheses

will result in no garbage being reclaimed.

Where suspicion produces a correct hypothesis, i.e. the suspected object

is dead, the collector will reclaim a component of garbage in O(dead count)

relabelling steps.

156 CHAPTER 6. THE TRAM ALGORITHM

6.1.2 Definition of Regions

The Tram Algorithm contains many regions, i.e. more than two regions and

each region is referred to as a tram. Since there are more than two regions,

no synchronisation with a region isolation DTDA is required at region creation

because in no case will a non-candidate region become a candidate.

A multiplicity of regions also means that there is no reason for any particular

region to have very large scope, e.g. all live objects. Smaller regions where

their scope is related directly to graph connectivity means that there exists the

opportunity to introduce a degree of fault tolerance into the collector, though

that is not considered here in detail. In other words, a region may be reclaimed

by considering only the contents of that region and its immediately neighbouring

graph nodes; the collector does not require interaction with the entire system to

reclaim a small isolated region; the collector therefore is expected to exhibit some

scalability.

There is a total ordering on regions; each is identified by a unique integer

and the ordering of integers defines the region ordering. Regions are created in

increasing order, starting at one. Older regions have lower numbers, younger

regions have higher numbers.

The root object exists alone in a special infinitely young non-candidate region

for which no relabelling is performed.

6.1.3 Relabelling Jobs

Every region has a relabelling job; every inter-region pointer constitutes a job of

the region that it points to. Therefore, termination of a job for a region that does

not contain the root implies that that region is usefully dead.

Relabelling work is defined to exist for every inter-region pointer from an

older region to a younger region, the processing of this work implies that

the source of the pointer is relabelled into the younger region. The available

relabelling work for a region is therefore a non-strict subset of the set of tasks

for a region and therefore there will exist states wherein the relabelling job for

a region has not terminated yet there is no work available for that job. Once

the system enters such a stable state, the region configuration is stable and will

remain unchanged until the pointer in question is erased or a younger region

subsumes the regions on both sides of the pointer that constitutes a job.

The ability to form stable region configurations derives directly from the way

in which Trams instantiates the Surf model and it is necessary for the collector to

be able to represent object graph topology as described in a later section.

6.1. DESIGN OF THE TRAM ALGORITHM 157

6.1.4 Region Isolation DTDA

There exists a DTDA job for every region; the mapping is such that termination

of the job implies isolation of the corresponding region. Each object in the region

that is the target of an inter-region pointer is a task of the isolation job and

these tasks are themselves jobs of the lower-level DTDA (remembered sets); see

Sections 3.3.4 and 3.3.5 for an explanation of how the two levels of DTDA (object

trivial unreachability and region isolation) interact.

The synchronisation requirement for victimised relative drives the choice

of Task Balancing as the Isolation DTDA; being derived from the Doomsday

protocol [63], the synchronisation scope is less than that required for a wave-

based DTDA.

6.1.5 Remembered Sets

Each object has a DTDA job representing its trivial reachability. Each pointer

to that object is a task of the job; when no such pointers remain then the job

terminates and the object is trivially unreachable. See Section 3.3.4 for a detailed

description of how pointer tracking maps to the DTD model.

6.1.6 Safety Requirements

Because the Tram algorithm contains many candidate regions and performs

relabelling amongst those regions, it is subject to the victimised relative problem;

this occurs because objects may be relabelled out of a candidate region. Safety in

the Tram Algorithm therefore requires synchronisation between the relabelling

processes and region isolation; the approach taken is that of Norcross [82] in

requesting a witness.

Under the Doomsday system model, spontaneous task creation may occur

only at the home site and tasks may be created on other sites only if there is

an existing task to witness the task creation. Therefore, when a remote site (R)

wishes to relabel an object that would imply unsafe task creation, it sends a

request for witness (wreq) to the relevant region’s (M) home site (HM). A witness

task is created at the home site, migrates back to R, witnesses the task creation

due to relabelling then itself dies. This process, illustrated in Figure 22, satisfies

the cover rule stated in the Doomsday system model, i.e. that task creation at a

site other than the home site must be witnessed by an existing task. Each vertical

line in the graph represents the execution process at a single site, circles are events

and dotted lines represent messages.

The situation leading to the events Figure 22 is that there is work for L:

∃y.x ∧ x ∈ L ∧ y ∈M⇒ work(L)

158 CHAPTER 6. THE TRAM ALGORITHM

tim
e

HM R

death(witness)
relabel(y → L)

birth(witness ∈ M)

discover work(L)

deathnotice(witness)

birthnotice(z)

witness

wreq(M)

Figure 22: Witness Request Protocol

tim
e

HM R

decide(M)

Reclaim(M)

discover work(L)

Reclaim(M)

wreq(M)

Figure 23: Witness Request Denied

Processing this work implies relabelling y but if y contains intra-region

pointers then additional tasks must be created for the isolation job in M because

additional objects within M will become the targets of inter-region pointers:

relabel(y → L)R ∧ ∃y.z ∧ z ∈M⇒ birth(T z ∈M)R

If there exist tasks in M at R already, then this task creation is safe. However,

there is no guarantee that such tasks exist and if none do, then a request for

witness is required and the relabelling must be deferred.

The race condition that this synchronisation protocol prevents is the case

where a region is decided (at its home site) to be isolated while some other site

is concurrently relabelling reachable objects into the region. Should the home

site decide that the region is isolated, it will deny the request for witness from

the remote site and the intended relabelling action at the remote site will not

be permitted. The object that would have participated in an unsafe relabelling

is now garbage and will be reclaimed once the remote site is notified that the

region is isolated, thereby obviating the need for the relabelling event. Figure 23

illustrates the case where a request for witness is denied.

Because M has been reclaimed, the work for L that was previously under

6.1. DESIGN OF THE TRAM ALGORITHM 159

consideration no longer exists and the object that would have been relabelled

no longer exists. Though completeness requires that some work due to pointers

that are erased by the mutator is preserved, work due to pointers erased by the

reclamation process is never preserved.

6.1.7 Completeness Requirements

Completeness in the face of mutator activity requires that something similar

to snapshot-at-the-beginning is used; though a less conservative approach is

possible, it is easier to prove correctness with SATB. Therefore, the erasure of

an inter-region pointer does not imply that that pointer no longer represents

relabelling work, a mechanism must be provided so that the work is processed as

if the pointer were not erased. Without SATB or some other means of preserving

relabelling work, it would be possible for the mutator to hide relabelling work

and prevent relabelling progress. Safety is not compromised because the Surf

model proves that mutator activity conforms to the DTD model constraints, i.e.

remembered sets are correct.

Completeness also requires that all dead objects are eventually members of

usefully dead regions; the Surf model breaks this down into two more specific

requirements: that all dead objects are eventually members of dead regions and

that dead regions be permitted to grow into usefully dead regions. The first

requirement is fufilled by a suspicion algorithm that satisfies the strong suspicion

guarantee, i.e. that all objects are eventually suspected. The second requirement

(unbounded growth) implies that no new regions should be created until no

further growth is possible on any existing region; the improper creation of new

regions could stymie the growth of existing dead regions and prevent them

becoming usefully dead. Deciding when a new region may be created requires

global knowledge and the means by which this is efficiently obtained is described

in the following section.

Finally, completeness requires a suspicion algorithm that provides the

suspicion guarantee, i.e. that the collector will eventually suspect every dead

object or some other dead object reachable therefrom.

6.1.8 Suspicion

The Tram Algorithm requires a suspicion algorithm to generate hypotheses, i.e.

starting points of new regions. The suspicion algorithm is not part of the mapping

but it is critical for correctness and performance. The primary requirement is

that the algorithm satisfy the suspicion guarantee (Section 3.4.2.3), i.e. that all

160 CHAPTER 6. THE TRAM ALGORITHM

dead objects will eventually be in a candidate region. Trams provides the strong

suspicion guarantee, i.e. that every object is eventually suspected.

Performance requirements are more difficult to define because work spent

relabelling the live graph is not necessarily wasted: it detects no garbage

immediately, but it may result in the discovery of topology.

An oracular suspicion algorithm for the immediate detection of garbage

would select the most downstream (in terms of pointer direction) object in a

garbage component as soon as it becomes garbage, resulting in a successful trace

and the detection of garbage in O(n) time from the point of suspicion. However,

the Tram Algorithm may discover useful topology in a trace from a live object so

choice of a suspicion algorithm promoting high performance with Trams involves

some tradeoffs between the immediate detection of garbage and the detection of

topology. The outcome of any particular suspicion algorithm will be a mixture of

the three following options:

• performing no relabelling work before a component becomes garbage,

then suspecting it sometime thereafter will result in low computational

overhead,

• performing significant (high overhead) and useful (discovers topology)

relabelling work on the live graph can result in excellent detection

timeliness, and

• performing significant but useless (discovers no topology) relabelling work

on the live graph is a waste of time.

A simplified view of the tradeoff is that more time spent analysing the live graph

should result in an improvement in timeliness: it is a time/space tradeoff where

lower average performance (assuming the garbage collector shares CPU time

with the mutator) buys a reduced garbage load on the system and therefore the

ability to store more live objects. Analysis of the live graph will never result

in lower net time overhead than applying the oracular suspicion algorithm for

immediate reclamation of garbage since the number of relabelling events (objects

traced) will always be greater than if only the dead regions are traced.

Making use of the time-space tradeoff requires that the regions formed

approximate strongly connected components (SCCs); the process by which this

occurs is examined in detail in Section 6.2.

Assuming that we wish to make use of the time/space tradeoff and

implement a suspicion heuristic that will improve detection timeliness, the task

is to design a suspicion ordering that matches that stated in Section 6.2.1, i.e. SCC

A should be suspected after B if B is reachable from A. Clearly however, the

6.1. DESIGN OF THE TRAM ALGORITHM 161

suspicion heuristic does not know the graph topology so it must make guesses at

it using metadata computed during previous traces and perhaps some additional

information. The heuristic presented here uses a distance-from-root heuristic

in conjunction with information from the Tram Algorithm as to how often a

particular object has been relabelled.

Inspection of an ideal suspicion ordering results in the following conclusions

regarding the ordering:

• the suspicion order approximately matches the ordering of objects by their

distance (in pointers) from the root,

• having suspected one object in a strongly connected component, no other

objects in that component are suspected, and

• a directory object (from which multiple SCCs are reachable) changes label

multiple times and should be traced after all the objects reachable from it.

These three observations are combined to form a heuristic to select objects for

suspicion in an ordering that approximates the ideal ordering derived previously.

The suspicion algorithm is expressed formally in Algorithm 1 and additional

functionality required during relabelling to support suspicion is expressed in

Algorithm 2.

The distance estimation may be computed via an occasional forward trace of

the graph; it is likely that in an implementation the distance estimates would be

computed incrementally, piggy-backed on a relabel-target partition collector that

the Tram Algorithm would be implemented as a compound with for performance

reasons in the face of acyclic garbage.

A small example object graph is provided in Figure 24; for one phase of

operation (i.e. the period of time over which the strong suspicion guarantee is

applied), the suspicion order selected by this heuristic is g, b, d, e, h, y, z, r and

the labelling resulting from this execution is shown in the same figure. It should

be noted that the labelling is optimal for this graph though the resulting labelling

is not guaranteed to be optimal, i.e. this is not a new algorithm for determining

strongly connected components.

It appears (though it is unproven and untested) that the suspicion heuristic

presented here matches the optimal ordering derived previously where the object

graph is a tree of SCCs; the more general case of a DAG of SCCs that contains an

SCC reachable from multiple SCCs — a diamond in the graph — can cause both

branches of the diamond to end up in the same region. The heuristic is therefore

not optimal but it may provide a good approximation if the distance heuristic is

accurate.

162 CHAPTER 6. THE TRAM ALGORITHM

Algorithm 1 Suspicion Heuristic

// object ID
typedef int oid;
// per-object metadata
typedef struct {

int relabel_count; // relabellings in this phase
distance_t distance; // distance from root

} metadata_t;
// retrieve object metadata given ID
metadata_t& get(oid);

// all objects in the heap
list<oid> objects;
// objects not yet touched in this phase
priority_queue<distance_t, oid> untouched;
// objects touched twice in this phase
priority_queue<distance_t, oid> directories;

// decide which object to suspect next
oid suspect()
{
// beginning of phase
if(untouched.empty() && directories.empty()){

for(id in objects){
metadata_t& md=get(id);
md.relabel_count=0;
untouched.add(- md.distance, id);

}
}

// suspect furthest untouched
if(!untouched.empty()){

return untouched.first();
}

// none untouched, suspect furthest directory
if(!directories.empty()){

oid id=directories.first();
directories.remove(id);
return id;

}

// graph appears to be empty
throw suspicion_failure;

}

6.1. DESIGN OF THE TRAM ALGORITHM 163

Algorithm 2 Relabelling Work for Suspicion

// action to perform when relabelling an object
// maintains metadata required for suspicion
void on_relabel(oid id)
{

untouched.remove(id);
metadata_t& md=get(id);
if(++md.relabel_count == 2){
directories.add(- md.distance, id);

}
}

3 62

2 2

2

3

8

1

1

4

7

5

b c

x

d

y

e f

g

z

v

h

wa

Figure 24: Labelling from Heuristic

The presented suspicion heuristic represents one extreme of the time/space

tradeoff by spending significant quantities of time — O(n2) — to arrive at

an approximation of the optimal labelling and therefore a high probability of

detecting garbage without further relabelling if the tracing algorithm has had

sufficient time to inspect the live graph. It should be noted that mutator activity

and distance estimation inaccuracy will reduce the accuracy of the labelling

produced by this suspicion heuristic but that such effects are not analysed here.

Frequent mutations to the graph will cause the topology discovered to be out of

date.

6.1.9 Support Protocols

Completeness requires that regions be created only when no further relabelling

work is available. The Surf model in Section 3.5 states that this may be detected

164 CHAPTER 6. THE TRAM ALGORITHM

by a piggy-back on the relabelling termination DTDA. By considering only inter-

region pointers from older regions to be tasks, a new region-creation DTDA job is

defined that is a subset of the relabelling termination job. When this smaller job

terminates, there exists no relabelling work for a region and a new region may be

created.

Because the region-creation DTDA considers only a subset of tasks, it is not

safe with respect to mutator activity, i.e. the mutator could create a pointer which

represents work. In other words, relabelling work may become available for a

region after it has decided that it has no further work. However, this has no effect

on correctness because:

• safety is uncompromised because the relabelling-termination jobs are

correctly mapped as defined by the Surf model,

• completeness is uncompromised because region growth is required only so

that dead regions may become usefully dead, and

• unbounded growth is not required for live regions.

Interaction between this piggy-back DTDA that operates on a subset of tasks and

the mutator can result only in the loss of unbounded growth for live regions.

The Tram Algorithm therefore contains three DTDA mappings: one for

detecting trivial isolation (remembered sets), one for detecting region isolation

via termination of relabelling and one that controls region creation.

Because regions are distributed, Surf states that a mechanism to control

region membership is required. Because region growth is by relabelling therefore

diffusing, membership may be tracked at a region’s home site by inspecting the

state of the relabelling-termination job.

6.1.10 Extensions to the Tram Algorithm

This abstract description of the Tram Algorithm is for the fundamental form,

i.e. an instantiation that is not compounded with any other collector. For

performance reasons, it would be prudent for an implementor of Trams to

construct a compound collector with trams and some means of rapidly detecting

acyclic garbage, e.g. a partition collector. The design of a partitioned Tram

Algorithm is not considered here in detail because it has no relevance to the Surf

model or the ability of the Tram algorithm to detect topology.

6.2. DISCOVERING TOPOLOGY 165

6.2 Discovering Topology

This section uses the Surf model to analyse how the Tram Algorithm makes

progress and therefore how topology may be discovered and represented by

the regions formed by the collector. The aim in discovering topology is to

form regions that are congruent with strongly connected components (SCCs), i.e.

graph components wherein every object in the SCC is reachable from every other

object in the component:

SCC(C) ≡ (x ∈ C ∧ y ∈ C⇒ Reachable(x, y))

The nature of a SCC is that liveness is uniform across the component, i.e. it is

entirely live or dead:

SCC(C)⇒ (x ∈ C ∧ y ∈ C⇒ (Live(x) = Live(y)))

Therefore an SCC becomes garbage atomically and makes a useful smallest

unit in the detection of garbage. When the last pointer to an SCC is erased,

the whole SCC becomes garbage instantaneously. If there were a Surf region

representing an SCC, it would immediately (modulo DTDA latency) detect the

isolation of that SCC. A region smaller than an SCC will detect less garbage than

is possible while a region larger than an SCC may not detect that the SCC has

become garbage because the region may contain other reachable objects. Where

regions match SCCs, collection timeliness will be excellent because no relabelling

work is required between an SCC becoming garbage and its being detected as

such.

Representing SCCs using regions requires a collector where regions are

capable of assuming a stable configuration, i.e. the collector will not merge

regions merely because there is a connection between them. By the definition of

the relabelling jobs in the Tram Algorithm above, the Tram Algorithm is capable

of forming stable region configurations because it will not relabel objects from

younger regions into older regions. The aim of this section is to analyse the way

in which regions grow using the Surf model and control this growth so that the

regions so formed are a good approximation of strongly connected components.

The control of region growth is to be implemented via the suspicion heuristic,

i.e. suspect objects for the creation of new regions are chosen in a carefully

designed order so that the desired region configuration is reached. The nature

of progress in the Tram Algorithm is such that where an object in an SCC is

suspected, the region will grow to encompass the whole SCC. The suspicion

heuristic is therefore designed so that where one SCC B is reachable from A,

an object in A must be suspected later than any object in B.

Following subsections examine the decomposition of the graph into a directed

acyclic graph (DAG) of strongly connected components and show that the Tram

Algorithm is unique in its ability to do this. The next section uses that analysis

166 CHAPTER 6. THE TRAM ALGORITHM

to derive a suspicion heuristic based on an object’s distance from the root and an

estimation of which objects constitute bifurcations in the DAG.

6.2.1 Region Formation

The Surf model of progress is used here to analyse how regions form and find a

stable configuration of regions that correspond to SCCs.

The way in which the completeness requirements of the Surf model are

fulfilled by Trams — unbounded region growth without mutator interference —

ensures that each region will grow to be at least as large as any strongly connected

component it contains, i.e. a region will never contain only a strict subset of an

SCC when relabelling reaches idleness, therefore regions are large enough. What

remains is to determine a means to ensure that regions are small enough, i.e.

contain only a single SCC and nothing more.

To fulfil the second requirement, consider that any directed graph (specifically,

the mutator’s object graph) may be decomposed as a directed acyclic graph

(DAG) of SCCs. Where cycles exist in the graph, each is a single SCC and may be

collapsed into a meta-node; the remaining graph is a DAG of these meta-nodes, or

more precisely, a DAG of SCCs. The term “meta-node” is used here to represent

a graph component; every pointer to an object in the meta-node is a pointer to

the meta-node and likewise every outgoing pointer from objects inside the meta-

node are pointers from the meta-node.

Consider further the model of relabel-source progress when applied to a DAG;

it starts at some point in the graph and proceeds against the grain of pointers,

visiting SCCs from which the start-point is reachable exactly once. The aim here

is to select a suspicion order that applies a different label to each SCC meta-

node and it is possible to do this merely by constraining the order in which

suspicion occurs; this is because only pointers from older regions to younger

regions constitute relabelling work. Because the structure under consideration

is acyclic, it is possible to choose a labelling where no younger region is reachable

from an older region, i.e.:

Reachable(A, B)⇒ age(A) < age(B)

In this situation, there is no relabelling work available so the configuration is

stable; if each SCC in the graph is uniquely labelled, it will remain so.

To arrive at this situation, one can constrain the suspicion algorithm so that it

suspects SCC A after SCC B where B is reachable from A, i.e.

Reachable(B, x) ∧ z ∈ A ∧Reachable(A, B) ∧ (A ∩B ≡ ∅)

⇒ suspect(x) ≺ suspect(z)

The first suspicion hypothesis (of x) will form a region containing both A and

B and the later hypothesis will change B to be in a different, younger region.

6.2. DISCOVERING TOPOLOGY 167

The arrangement will be preserved until the suspicion algorithm later suspects

another object reachable from B or the mutator changes the graph topology.

Suspecting SCCs in this manner will ensure that each receives a unique label.

This therefore shows that constraining the order in which the suspicion

algorithm suspects objects will cause the regions formed by the Tram Algorithm

from a DAG of SCCs to be congruent with the SCCs in the graph, in other

words, analysis via the Surf model of progress proves that the Tram Algorithm’s

definition of relabelling work permits it to discover SCCs in an unchanging graph

if the correct suspicion order is chosen.

6.2.2 Uniqueness

It would appear that the ability of the Tram Algorithm to discover graph topology

while the graph is live is unique. Discovery of topology for the purposes of

garbage collection implies that the collector is aware of the lack of connectivity

between different areas of the graph so can reclaim an area when the last pointer

to it is erased and not require further relabelling progress to discover what is

garbage; if the graph topology is known to the collector, it need perform no

additional work when a region becomes unreachable because it already possesses

all the information required to make the determination of isolation.

Assuming that topology discovery is to be implemented using the region

abstraction of the Surf model, two properties are required that are shared by no

other collector:

• regions of live objects must have the opportunity to be stable in the long

term, and

• regions must be sufficiently fine-grained to contain only the graph area that

becomes garbage in one step.

Using the Surf model, it can be shown that these two properties are shared only

by a collector that takes the relabel-source approach and has more than two

regions, i.e. the Tram Algorithm or variants thereof.

Consider relabel-target and assume that there is an ordering on regions such

that objects may be relabelled only from older regions to younger regions, thereby

preventing livelock. The continual creation of new regions and placing the root

in the youngest (or a virtual infinitely-young) region means that the root will

eventually be in a younger region than all other objects; any pointer from a live

older region to a younger region will soon be in an even younger region as it

is relabelled towards the root. Relabel-target approaches therefore attempt to

collapse all live objects into a single region if the region creation rate is low; if

168 CHAPTER 6. THE TRAM ALGORITHM

region-creation is rapid, then objects will be strung out across a number of regions

according to their distance from the root instead of any useful topology. Relabel-

target is therefore incapable of extracting useful topological information from the

graph because there is no stable configuration of more than one region within the

live portion of the object graph.

Of the relabel-source approaches, the only published algorithms have a single

candidate region only. Should a candidate become a non-candidate by absorbing

the root, the connectivity information that was discovered is discarded so that

tracing may begin again at a new suspect.

An alternate way to express this is that collectors form regions on the basis

of hypotheses. Each new region is formed on the basis of a new hypothesis

of connectivity; each hypothesis is tested and its implications for connectivity

found by diffusing the region across the graph. Relabel-target collectors form

new regions at the root, i.e. each hypothesis the axiom of liveness of the root;

testing the hypothesis of each new region amounts to discovering all live objects

and any object not so discovered must therefore be garbage. Because the same

hypothesis is used for every new region in all published relabel-target collectors,

the regions formed will tend to be congruent, i.e. the collector at equilibrium will

collapse all live objects into a single region and discover no topology.

In contrast, relabel-source collectors are a multiple-hypothesis approach.

Each suspected object represents the hypothesis that that object is garbage; the

hypothesis is tested by diffusing a region across the graph to determine if the

root may reach the object in question. The Tram Algorithm evaluates many

different hypotheses, therefore the equilibrium state of the collector is many

different regions. The use of Surf to derive a multiple-hypothesis relabel-target

collector may result in another collector with the ability to detect topology in the

live graph; such a system is future work and examined briefly in Section 7.2.

Therefore the only mapping into Surf that provides topological information

about the live region is currently the Tram Algorithm.

6.2.3 Complexity of Optimal Labelling

Assuming a perfect suspicion algorithm and no mutator activity, the Tram

Algorithm requires O(n2) relabelling steps (O(n) regions created, each relabelling

O(n) objects) to arrive at a region configuration that corresponds to SCCs,

therefore the excellent timeliness result is available only after significant

computation time has been spent. In contrast, Tarjan’s Algorithm [92] is capable

of detecting SCCs in linear time but only on uniprocessor systems as it requires

global set manipulations during its operation. If further research were to discover

6.3. COMPARISONS WITH OTHER COLLECTORS 169

a means to detect SCCs in a distributed graph in linear time, that would be a

major breakthrough for distributed garbage collection.

6.3 Comparisons with Other Collectors

The Tram Algorithm shares design features with both the Train Algorithm and

Thor’s Back Tracing. It is a multiple-hypothesis (many region) collector like

Trains but it makes progress via relabel-source, like Thor. This section explains

the similarities between the previously published collectors and Trams and then

uses the Surf model to make coarse predictions of their relative performance

based on how each collector instantiates the model.

The performance aspects considered are those defined as desirable properties

of a garbage collector in Section 1.1.2: latency, throughput, overhead and

timeliness. Lastly, because Trams’ ability to detect topology is dependent on

mutator activity, the characteristics of an application suitable for use with Trams

are investigated.

6.3.1 Antecedents

MOS (the train algorithm) makes use of multiple regions, an approach that

improves collector performance:

• the presence of more than two regions means that no synchronisation is

required in the creation of a new region;

• regions need not be global, thereby adding asynchrony and robustness to

the system since the only sites that need participate in the reclamation of

garbage are those that it spans.

Back Tracing is the only collection approach yet published that takes the relabel-

source (Section 3.4.2) approach. Relabel-source is inherently expensive because it

requires the maintenance of metadata describing where each object is reachable

from and for a given suspicion hypothesis there is no guarantee that garbage will

be reclaimed; for these reasons, the relabel source approach seems not to be a

popular implementation choice.

There is, however, a benefit to relabel-source in that it is O(dead count) when

a dead object is correctly suspected: with use of an accurate suspicion algorithm,

the amount of time spent tracing the graph can be much smaller than that of

forward-tracing collectors like distributed marking (Section 4.1) in the face of a

large live region.

170 CHAPTER 6. THE TRAM ALGORITHM

6.3.2 Latency

Latency refers to the pause-times introduced by the collector. Since the collector

is concurrent with both itself and the mutator, the model predicts that it should

introduce no noticeable pause times.

The only interaction required with the mutator is the creation and destruction

of DTDA tasks representing pointers held by the mutator. No synchronisation

is required, merely the sending of a message indicating that a task has been

created (pointer copy) or destroyed (pointer erasure), therefore mutators are

never interrupted by collector activity except indirectly on uniprocessor sites

where true concurrency is not available and CPU-time is shared. All of Trains,

Back Tracing and Trams exhibit this no-interruption property during normal

operation.

There is one contrast in latency with Thor: no synchronisation is necessary

when garbage is discovered because the region isolation DTD is correctly mapped

and aware of pointers held by the mutator as tasks. Thor ignores such pointers

and relies on a disruptive synchronisation step to provide safety when the

back-trace discovers garbage; this synchronisation in Thor is an implementation

peculiarity related to the update model (see Section 4.4.4) and not inherent to the

Back Tracing algorithm.

6.3.3 Throughput

In common with all other relabel-source approaches to garbage collection, the

throughput of this collector is predicted to be very poor since it depends on a

suspicion algorithm to discover dead objects from which usefully dead regions

can be formed. Where the suspicion algorithm is inaccurate, the collector may

make little to no progress, though it turns out that this work may not be entirely

wasted.

When the suspicion algorithm selects a dead object, the throughput is

excellent: the Surf model of work and progress states that it takes O(dead count)

relabelling operations to grow a dead region into a usefully dead region, at which

point it may be reclaimed. This complexity is the same as for Thor-style (two-

region, single-candidate) Back Tracing where the suspicion algorithm forms a

correct hypothesis, i.e. suspects garbage.

The Train Algorithm and other relabel-target approaches can make zero

progress only if policies controlling their function are flawed. For example in the

Train Algorithm where the train-creation policy creates trains at too high a rate,

the Train Algorithm may spend its entire time relabelling live objects to ever-

newer trains and never form a usefully dead region; it should be noted however

6.3. COMPARISONS WITH OTHER COLLECTORS 171

that it is possible to design policies for the Train Algorithm where this does not

occur and for which progress is guaranteed.

Barring further breakthroughs into suspicion algorithms, it is therefore likely

that the relabel-source approach of Trams has fundamentally lower throughput

than the relabel-target approach of Trains because it is more difficult to accurately

suspect garbage than it is to decide which train to evacuate. Where the suspicion

algorithm presented in this chapter is used, throughput will be lower still because

the collector expends time analysing the topology of the live graph.

Thor reduces the cost of wasted relabelling work by preventing relabelling in

the believed-live, according to the distance-suspicion metric, region of the graph.

This reduces the relabelling costs incurred by an inaccurate suspicion algorithm

but it can result in a lower net throughput in the face of large-circumference

garbage cycles because back traces that would otherwise succeed are aborted. In

contrast, the Tram Algorithm will not abort region growth for reaching too close

to the root since the computation of that region may discover structure in the

object graph that will permit the reclamation of garbage with better timeliness.

The effects of the early-abort tradeoff are expected to be data-structure dependent

and perhaps subtle; experimentation in this area would be desirable.

6.3.4 Overhead

The time and space overheads of relabel-source seem unavoidably higher than

those of relabel-target due to the additional requirements for the maintenance

of metadata, particularly if the Tram Algorithm is compounded with a partition

collector (PGC).

Grouping objects into partitions and processing them in batches is a valid

implementation technique for reducing the number of remsets that need be

maintained. In the case of relabel-target collection compounded with a PGC

where the PGC performs relabelling work (a common implementation approach,

see Chapter 5 or any other published instance of the distributed train algorithm

for examples), the remset for a partition is the only information required to

perform relabelling work at a partition.

A relabel-source collector must keep remsets so that the region isolation

DTDA may be implemented but the remset of a partition provides no information

as to what relabelling work is available at that partition. A relabel-source collector

that wishes to retain asynchrony of collection therefore must either:

• track what regions are referred to by inter-partition pointers out of a

particular partition, or

172 CHAPTER 6. THE TRAM ALGORITHM

• decouple relabelling from PGC operation, which requires the determination

of intra-partition connectivity.

Both of these options require the maintenance of more meta-data than relabel-

target approaches to garbage collection. The latter option is taken by Thor,

which uses an variant of Tarjan’s Algorithm [92] to calculate connectivity within

a partition during PGC operation and then store that information for later use by

the relabel-source collector. When the relabel-source collector visits a partition

with up-to-date connectivity information, it uses that information to decide

which objects in the partition to relabel.

Permitting relabelling to operate close to the roots, unlike Thor, removes the

optimisation of only computing intra-partition connectivity for objects far from

the root. Metadata space overhead is therefore higher for Trams than Thor though

computation time for determining intra-partition connectivity is expected to be

substantially similar due to the linear complexity of Tarjan’s Algorithm.

6.3.5 Timeliness

As per Thor’s Back Tracing, timeliness is heavily dependent on the behaviour

of the suspicion algorithm. In the worst case, a component of garbage will be

detected O(dead count) relabelling steps after a member of that component is

suspected and a dead candidate region is created.

The timeliness of single-candidate relabel-source (e.g. Thor) will always

exhibit this linear relationship with garbage component size since there is no

means to gather information on graph structure before a component becomes

garbage: traces that occur in Thor from live objects result in zero progress. In

contrast, the Tram Algorithm has the opportunity to gather information about

the topology of live objects that may be valuable if those objects become garbage.

For any given suspicion algorithm providing the Surf suspicion guarantee,

timeliness in the Tram Algorithm is bounded by the same linear complexity

relationship with garbage component size as single-candidate Back Tracing;

Trams will therefore exhibit the same timeliness as Back Tracing in the worst

case. In the best case, it is predicted here that timeliness of isolation detection

in the Tram Algorithm can be as good as O(1) relabelling steps if sufficient time

is available for the collector to inspect the object graph before parts of it become

garbage.

It should be carefully noted that the stated O(1) complexity refers to the

prediction that no relabelling need be performed for garbage to be detected once

it becomes isolated; the region isolation DTDA must still detect the isolation

before any garbage is reclaimed but this time is independent of the live and

6.3. COMPARISONS WITH OTHER COLLECTORS 173

3 62

2 2

2

3

8

1

1

4

7

5

b c

x

d

y

e f

g

z

v

h

wa

Figure 25: Optimally Labelled Regions

dead component sizes, i.e. it could also be considered O(1). Where garbage is

spread across a number of regions, e.g. one component that contains a pointer

to a second component, only the first component will be detected in O(1) time;

the second component must wait until the first component and all pointers that it

contains are destroyed and notification thereof passed to the second component,

making it isolated. In the worst case, n garbage objects may be spread across n

strongly connected components (e.g. a vine of objects) and these components will

be reclaimed in sequential order.

Consider Figure 25 which is a copy of Figure 24; the erasure of v.z triggers the

follow sequence of activity:

1. Region 7 is detected as isolated.

2. z is reclaimed, resulting in the erasure of z.w, z.x and z.y.

3. Regions 2, 3 and 6 are detected as isolated.

4. a, b, c, w, x, d and y are reclaimed, resulting in the erasure of y.e and y.f .

5. Regions 1 and 4 are detected as isolated.

6. e, f and g are reclaimed.

The complexity of this reclamation wave is therefore O(dead count). Note that

there is no explicit wave algorithm implemented to reclaim objects, merely that

object reclamation makes progress in a wave across dead regions due to normal

operation of the pointer tracking protocol in conjunction with the reclamation of

objects implying that the pointers they contain are erased.

174 CHAPTER 6. THE TRAM ALGORITHM

By analogy, reference counting collectors exhibit the same behaviour with

acyclic garbage: the time to detect trivial isolation of a single object is O(1)

but the reclamation process spreads as a wave across the graph and will take

O(dead count) steps to reclaim a dead component. The Tram Algorithm behaves

similarly to a reference-counting collector in the cascading way that it reclaims

garbage with the exception that the granularity of the cascading process is

strongly connected components rather than single objects.

This analysis of reclamation timeliness/complexity is not specific to the Tram

Algorithm, it is derived directly from the Surf model and this behaviour will

occur in any collector where the regions formed are congruent with strongly

connected components. It is applicable to Trams only because Trams are

predicted to form such regions whereas other collectors are not.

6.3.6 Suitable Application Behaviour

Because the Tram Algorithm has high overheads compared to relabel-target

approaches like the Train Algorithm, it is predicted to be suitable for use only on

applications where it has a high probability of successfully detecting the topology

of the live graph and therefore provides good timeliness.

Suitable applications are those where data structures are instantiated once and

their topology is unchanging in the long term except for the removal of pointers.

The non-pointer values may change with no effect on topology.

Examples of such applications are:

• Ray tracers, which instantiate a complex scene graph then traverse it

repeatedly to build a bitmapped image, and

• Finite Element Analysis, wherein a mesh of objects is instantiated once

and only the values at each node are changed over the course of the

computation.

In the Finite Element example, the only topological change typically seen is

tearing, i.e. materials separating into discontinuous regions due to stress.

Regions never rejoin, therefore there will be no pointer creations that interfere

with the Tram Algorithm’s determination of topology. Both of these examples

are long-running numerically-intensive application classes that give the Tram

Algorithm sufficient time to discover the object graph topology and therefore

provide excellent timeliness of garbage detection.

Applications that rapidly mutate the structure of their object graph, e.g.

compilers, are predicted to be unsuitable for use with the Tram Algorithm.

6.4. CONCLUSIONS 175

6.4 Conclusions

This chapter instantiates the Surf model to generate a new garbage collector, the

Tram Algorithm, that is predicted to have unique properties. This algorithm is

new because it occupies a unique design point within the abstract model and

it is interesting because Surf predicts that it is uniquely capable of discovering

the topology of the live object graph and using that information to improve

timeliness of garbage detection at the cost of processing time before objects

become garbage.

In discovering topology, Trams attempt to form a labelling that is a good

approximation of the optimal labelling wherein every strongly connected

component resides in its own region. Where the labelling is optimal, garbage

can be detected without further relabelling work after it is created; where this

does not occur, the performance of Trams falls back in the worst case to being

the same as that of single-candidate relabel-source collection, i.e. Thor-style Back

Tracing. Careful design of the suspicion heuristic is required to ensure that the

labelling is close to optimal and one such heuristic is described in this chapter.

Significant computation time overhead is involved in arriving at this optimal

labelling while the predicted benefit of better timeliness would reduce the

garbage load on the system; therefore the Tram Algorithm represents a time-

space tradeoff. The Tram Algorithm detects an approximation of distributed

strongly connected components in O(n2) time, compared to the O(n) achieved

by Tarjan’s Algorithm on a non-distributed graph.

In summary, this chapter shows that not only does the Surf model have

descriptive and analytic power with respect to existing collectors, it may be used

to instantiate and analyse in detail entirely new garbage collectors with unique

properties via exploration of the provided design space.

Chapter 7

Conclusion

This chapter looks back on the knowledge gaps that drive the contributions of

this thesis, the contributions themselves, the further work that is suggested and

finally, the outcomes expected (hoped for) as a result of the publication of this

thesis.

7.1 Overview

Without solving the halting problem, the garbage collection problem reduces to

graph analysis: a garbage collector observes connectivity or lack thereof in a

graph and therefore decides which portions are not reachable by the mutator.

While garbage collectors — systems that analyse object graphs for the purpose of

reclaiming unused data — have previously been designed in an ad-hoc fashion

and classified according to their mechanistic details (e.g. copying, tracing,

mark/compact, etc), the underlying process by which garbage collectors make

progress was obfuscated in mark bits, train management protocols and other

implementation details.

Distributed garbage collection in particular is a difficult problem because

there exists a tension between the scalability of a garbage collector, which derives

from its ability to perform work without communication with other sites, and the

completeness of the garbage collector, which requires communication in order

that distributed cycles of garbage be reclaimed. In other words, a complete

distributed collector cannot operate using only local information, it must use

some form of distributed algorithm to discover the extent and reachability

of strongly connected components rather than just the reachability of objects.

This process of discovering distributed strongly connected components has

been described in a number of different ways that are not amenable to formal

comparisons without fitting them into some higher level model of their operation.

178 CHAPTER 7. CONCLUSION

Given that garbage collection in the most abstract sense is merely a process

of applying labels to objects according to connectivity within the graph, it is

beneficial to have an abstract model that specifies exactly what one must do

to label a graph in such a way that garbage is safely and completely detected.

Such a process should capture the essence of a garbage collector, i.e. the means

by which it makes progress and the means by which it determines when the

progress is complete and that garbage has been detected. An abstract model

that captures these two fundamental properties of a garbage collection algorithm

permits comparisons between garbage collection algorithms to be drawn at

the most fundamental and abstract level, without clouding the analysis with

mechanism. To be useful in the comparative analysis and design of distributed

garbage collection algorithms, an abstract model should:

• be expressed in a way that takes into account the asynchronous nature of

distributed computation and communication,

• define a design space in which garbage collectors exist, with each property

(e.g. means of progress) of the collector being a dimension of the design

space,

• lead to proofs of correctness for garbage collectors fitting within the model,

• provide a concrete process for analysing existing collectors in terms of the

model and instantiating the model to create new collectors,

• be capable of defining a broad range of garbage collection algorithms within

the same model of progress, and

• contain sufficient detail that it provides insight into the operation of specific

garbage collectors.

This thesis therefore presents in Chapter 3 the Surf abstract model of garbage

collection that defines a minimal set of components that may be used to construct

a complete garbage collector:

• a definition of the labels that are to be applied to objects,

• a process for changing the labels on objects, and

• a means to detect when the relabelling process has terminated.

By careful construction, the Surf model is defined so that termination of

relabelling corresponds to a lack of pointers between certain regions and

therefore the ability to infer isolation of some regions. By describing garbage

7.1. OVERVIEW 179

collection as a relabelling process and its termination, the Surf model captures

the essence of garbage collection. Instantiating the model in different ways

represents different ways of making progress and different ways of detecting

when that progress has discovered garbage.

Having defined an abstract model of garbage collection that claims to not only

describe a wide range of existing collectors but also provide insight into their

operation, it is necessary to test the model’s analytic process and the insight that it

provides for each collector. Chapter 4 explores a number of existing collectors by

presenting them as instantiations of the model: “mapping” them into the model,

comparing the model’s predictions with the previously observed and published

behaviour of these collectors and finding them to be in agreement. That process

demonstrates that it is possible to use Surf in the analysis of a garbage collection

algorithm that was independently designed and also that Surf’s proofs of safety

and completeness may be applied to existing collectors. If a collector is found not

to fulfil the requirements laid down by Surf for the proofs to hold, the missing

requirement leads a designer towards the modifications necessary to make the

collector correct.

If the Surf model is to be useful to garbage collection algorithm designers

beyond proofs of correctness and an abstract examination of a collector’s

progress, it should provide insight that informs the design of components not

directly defined by the Surf model. For example, though a large amount of

relabelling work may be available at any point in time, an implementation will

typically process this work serially at each computation site and some means to

decide the order in which to process the work is required. Chapter 5 uses the Surf

model of work and progress to determine the presence of work in partitions and

thereby ensure progress of an implementation of the Train Algorithm, reducing

the collector’s complexity to completeness by a factor of O(object count) over

naive fair policies. These predictions are verified experimentally.

The Surf model defines a design space in which collectors are points; not

every point in this design space has yet been occupied by a published collector.

Chapter 6 describes the Tram Algorithm, a garbage collector at a previously

unoccupied design point. The unique nature of the design point chosen results

in previously unseen behaviour from a garbage collector: the predicted ability to

discover strongly connected components in a graph and thereby detect garbage

with O(1) timeliness in certain circumstances.

By investigating the ways in which Surf may be instantiated and the

predictions that it is capable of making, this thesis shows that Surf fulfils all the

desirable properties of an abstract model of distributed garbage collection.

180 CHAPTER 7. CONCLUSION

7.2 Further Work

This research into an abstract description of distributed garbage collection raises

a number of questions, primarily related to the model and its limitations and

secondarily related to experimentation on implementations. Investigation into

Trial Deletion and the Tram Algorithm yield two separate paths of future work

that may be exploited to produce a more powerful abstract model of garbage

collection.

7.2.1 Extensions to the Model

The limitations of Surf are outlined in Section 3.6; those constraints suggest that

it would be valuable to extend the model to describe replication and migration of

objects. The existence of heaps and collectors that possess those features makes it

desirable that the model be capable of describing those features.

A second extension would be to support the concept of multiple phases

of model execution for each phase of garbage collector execution, as seen in

Section 4.6 for Trial Deletion. Currently, Trial Deletion is described as a special

case of Distributed Marking that operates over a restricted suspected region;

it would be desirable to have an abstract model of collection that provides a

formal methodology for combining such phases and extends the proof of safety

and completeness to such combinations in a coherent way. It is speculated that

the execution of each phase amounts to the computation of a region with some

meaning and that a correct collector will operate by determining the intersection,

union or difference of such regions, resulting in a final region that is known to be

Dead.

7.2.2 Tram Algorithm

In designing the Tram Algorithm, it is observed that this collector is to Back

Tracing what the Train Algorithm is to Distributed Marking, i.e. a multi-region

version with an isolation job per region. It may be possible to instantiate an

intermediate relabel-source design in the style of Hughes’ Algorithm with each

Job representing the reachability of a range of regions instead of a single region.

There is also exploration to be done on Trams outside the abstract model, such

as the use of external linear-complexity algorithms to prime the system with an

optimal labelling as well as an implementation.

Likewise, if a linear-complexity algorithm can be used to determine the

strongly connected components in an object store, this is a powerful tool

for garbage collection. If further research leads to an algorithm capable of

7.3. CONCLUSION 181

discovering strongly connected components in a distributed graph in linear time,

that would be a major breakthrough because a garbage collector that knows

where the strongly connected component boundaries are can detect garbage in

constant time.

The Tram Algorithm is the first step towards such algorithms but it has high

computational complexity and overheads.

7.3 Conclusion

The primary contributions of this thesis are:

• an abstract model that aids in the understanding of how distributed garbage

collectors make progress,

• a means of analysing existing garbage collectors,

• a means of designing new garbage collectors,

• a means of proving the safety and completeness of distributed garbage

collectors,

• a verification of the abstract model by comparison with published collectors

and experimentation with an implementation, and

• an entirely new garbage collection algorithm with unique properties.

This thesis is therefore a journey through the requirement for a new abstract

model, the definition of that model and an investigation of the model’s

predictions. The conclusion of that investigation is that the Surf model can

provide specific insight into the operation of a broad range of garbage collection

algorithms, therefore it possesses the desired properties of an abstract model. The

research gap identified in the first two chapters is filled by this new model.

The process of designing the new abstract model and instantiating collection

algorithms from it results in the further insight that strongly connected

components are critically important in the detection of garbage, therefore further

investigation into the efficient discovery of such components may be a fruitful

avenue of further research into garbage collection.

It is hoped that this thesis will change the process by which garbage collectors

are designed. Collectors should no longer be assembled in an ad-hoc manner,

they should be designed with a formal understanding of how they hypothesise

the existence of garbage, how they evaluate and extend those hypotheses via

182 CHAPTER 7. CONCLUSION

the connectivity in the graph and how they verify those hypotheses. The result

should be that garbage collection design is no longer a black art except at the most

mechanistic level but rather a process of following concrete steps and checking

off formal requirements for correctness.

By increasing the level of understanding of each collector, it will hopefully

become easier to apply the lessons learned from one implementation, express

them in terms of the abstract model and then apply those lessons learned in the

design of new collectors.

Bibliography

[1] M. Abadi and L. Cardelli. A Theory of Objects. Springer-Verlag, 1996.

[2] S.E. Abdullahi and G.A. Ringwood. Garbage collecting the Internet: a

survey of distributed garbage collection. ACM Computing Surveys,

Volume 30, Number 3, pages 330–373, September 1998.

[3] S. V. Adve, A. L. Cox, S. Dwarkadas, R. Rajamony and W. Zwaenepoel. A

comparison of entry consistency and lazy release consistency

implementations. In Proc. of the 2nd IEEE Symp. on High-Performance

Computer Architecture (HPCA-2), pages 26–37, February 1996.

[4] L. Amsaleg, M. Franklin and O. Gruber. Efficient incremental garbage

collection for client–server object database systems. In Proceedings of Very

Large Databases (VLDB) 1995, pages 42–53, Zurich, Switzerland, 1995.

[5] G.R. Andrews. Synchronizing resources. ACM Transactions on

Programming Languages and Systems, Volume 3, Number 4, pages 405–430,

October 1981.

[6] K. Arnold and J. Gosling. The Java Programming Language. Addison

Wesley, 1996.

[7] A.K. Arora. A foundation of fault-tolerant computing. Ph.D. thesis,

University of Texas at Austin, Austin, TX, USA, 1992.

[8] M.P Atkinson, P.J. Bailey, K.J. Chisholm, W.P. Cockshott and R. Morrison.

An approach to persistent programming. Computer Journal, Volume 26,

Number 4, pages 360–365, December 1983.

[9] M.P. Atkinson and R. Morrison. Procedures as persistent data objects.

ACM Transactions on Programming Languages and Systems, Volume 7,

Number 4, pages 539–559, October 1985.

[10] M.P. Atkinson and R. Morrison. Orthogonally persistent object systems.

VLDB (Very Large Data Bases) Journal, Volume 4, Number 3, pages 319–401,

1995.

183

184 BIBLIOGRAPHY

[11] L. Augusteijn. Garbage collection in a distributed environment. In

de Bakker et al. [32], pages 75–93.

[12] D. Bacon and V.T. Rajan. Concurrent cycle collection in reference counted

systems. In Proceedings of 15th European Conference on Object-Oriented

Programming, ECOOP 2001, Budapest, June 2001.

[13] D.F. Bacon, P. Cheng and V.T. Rajan. A unified theory of garbage

collection. SIGPLAN Notices, Volume 39, Number 10, pages 50–68, 2004.

[14] H.G. Baker. List processing in real-time on a serial computer.

Communications of the ACM, Volume 21, Number 4, pages 280–94, 1978.

Also AI Laboratory Working Paper 139, 1977.

[15] Y. Bekkers and J. Cohen (editors). Proceedings of International Workshop on

Memory Management, Volume 637 of Lecture Notes on Computer Science

(LNCS), St Malo, France, 16–18 September 1992. Springer-Verlag.

[16] M. Ben-Ari. On-the-fly garbage collection: New algorithms inspired by

program proofs. In M. Nielsen and E.M. Schmidt (editors), Automata,

languages and programming. Ninth colloquium, pages 14–22, Aarhus,

Denmark, July 12–16 1982. Springer-Verlag.

[17] M. Ben-Ari. Algorithms for on-the-fly garbage collection. ACM

Transactions on Programming Languages and Systems, Volume 6, Number 3,

pages 333–344, July 1984.

[18] A. Birrell, D. Evers, G. Nelson, S. Owicki and E. Wobber. Distributed

garbage collection for network objects. Technical Report 116, DEC Systems

Research Center, 130 Lytton Avenue, Palo Alto, CA 94301, December 1993.

[19] A. Birrell, G. Nelson, S. Owicki and E. Wobber. Network objects. Technical

Report 115, DEC Systems Research Center, Palo Alto, CA, February 1994.

[20] S.M. Blackburn, R.L. Hudson, R. Morrison, J.E.B. Moss, D.S. Munro and

J. Zigman. Starting with termination: A methodology for building

distributed garbage collection algorithms. In Proceedings Australasian

Computer Science Conference 2001, Feb 2001.

[21] S.M. Blackburn, R.E. Jones, K.S. McKinley and J.E.B. Moss. Beltway:

Getting around garbage collection gridlock. In Proceedings of SIGPLAN

2002 Conference on Programming Languages Design and Implementation,

Programming Languages Design and Implementation (PLDI), Berlin, June,

2002, Volume 37(5) of ACM SIGPLAN Notices. ACM Press, June 2002.

BIBLIOGRAPHY 185

[22] M. Bowman, Saumya K. Debray and Larry L. Peterson. Reasoning about

naming systems. ACM Trans. Program. Lang. Syst., Volume 15, Number 5,

pages 795–825, 1993.

[23] R.S. Boyer and J.S. Moore. A mechanical proof of the unsolvability of the

halting problem. Journal of the ACM, Volume 31, Number 3, pages 441–458,

1984.

[24] W.F. Brodie-Tyrrell, H. Detmold, K.E. Falkner and D.S. Munro. Garbage

Collection for Storage-Oriented Clusters. In Conferences in Research and

Practice in Information Technology, Volume 26, pages 99–108, Dunedin, New

Zealand, 2004.

[25] L. Cardelli. Typeful programming. In E.J. Neuhold and M. Paul (editors),

Formal Description of Programming Concepts. Springer-Verlag, 1991. Revised

1 January, 1993.

[26] M.J. Carey, D.J. DeWitt and J.F. Naughton. The OO7 benchmark. SIGMOD

Record, Volume 22, Number 2, pages 12–21, 1993.

[27] C.J. Cheney. A nonrecursive list compacting algorithm. Communications of

the ACM, Volume 13, Number 11, pages 677–678, November 1970.

[28] W. Cockshott, M.P. Atkinson, K. Chisholm, P. Bailey and R. Morrison.

Persistent object management system. Software Practice and Experience,

Volume 14, Number 1, pages 49–71, January 1984.

[29] E.F. Codd. A Relational Model of Data for Large Shared Data Banks.

Communications of the ACM, Volume 13, Number 6, June 1970.

[30] G.E. Collins. A method for overlapping and erasure of lists.

Communications of the ACM, Volume 3, Number 12, pages 655–657,

December 1960.

[31] J.E. Cook, A.L. Wolf and B.G. Zorn. Partition selection policies in object

databases garbage collection. In Richard T. Snodgrass and Marianne

Winslett (editors), Proceedings of ACM SIGMOD International Conference on

the Management of Data, Volume 23(2), pages 317–382, Minneapolis, May

1994. ACM Press.

[32] J.W. de Bakker, L. Nijman and P.C. Treleaven (editors). PARLE’87 Parallel

Architectures and Languages Europe, Volume 258/259 of Lecture Notes on

Computer Science (LNCS), Eindhoven, The Netherlands, June 1987.

Springer-Verlag.

186 BIBLIOGRAPHY

[33] M.H. Derbyshire. Mark scan garbage collection on a distributed

architecture. Lisp and Symbolic Computation, Volume 3, Number 2, pages

135–170, April 1990.

[34] E.W. Dijkstra. Shmuel Safra’s version of termination detection. Technical

Report EWD 998, The University of Texas at Austin, 1987.

[35] E.W. Dijkstra, L. Lamport, A.J. Martin, C.S. Scholten and E.F.M. Steffens.

On-the-fly garbage collection: An exercise in cooperation. In Lecture Notes

in Computer Science, No. 46. Springer-Verlag, New York, 1976.

[36] E.W. Dijkstra and C.S. Scholten. Termination detection for diffusing

computations. Information Processing Letters, Volume 11, pages 1–4, August

1980.

[37] A. Einstein. Zur electrodynamik bewegter korper. Annalen der Physik,

Volume 17, 1905.

[38] K.E. Falkner. The Provision of Relocation Transparency Through a Formalised

Naming System in a Distributed Mobile Object System. Ph.D. thesis,

Department of Computer Science, University of Adelaide, 2000. Available

as DHPC Technical Report DHPC-094.

[39] N. Francez. Distributed termination. ACM Transactions on Programming

Languages and Systems, Volume 2, Number 1, pages 42–55, January 1980.

[40] F.C. Gärtner. Fundamentals of fault-tolerant distributed computing in

asynchronous environments. ACM Computing Surveys, Volume 31,

Number 1, pages 1–26, 1999.

[41] J. Gosling, W. Joy and G. Steele. The Java Language Specification. Addison

Wesley, 1996.

[42] D. Gries. An exercise in proving parallel programs correct. Communications

of the ACM, Volume 20, Number 12, pages 921–930, December 1977.

[43] D. Gries. On believing programs to be correct. Communications of the ACM,

Volume 20, Number 1, pages 49–50, January 1977.

[44] W. Gropp, E. Lusk and A. Skjellum. Using MPI: Portable Parallel

Programming with the Message-Passing Interface. MIT Press, Cambridge,

MA, 1994.

[45] T. Haerder and A. Reuter. Principles of transaction-oriented database

recovery. ACM Computing Surveys, Volume 15, Number 4, pages 287–317,

December 1983.

BIBLIOGRAPHY 187

[46] P.B. Hansen. Distributed Processes: A Concurrent Programming Concept.

Communications of the ACM, Volume 21, Number 11, pages 934–941,

November 1978.

[47] C.A.R. Hoare. Communicating Sequential Processes. Communications of the

ACM, Volume 21, Number 8, pages 666–677, August 1978.

[48] P. Hudak and R.M. Keller. Garbage collection and task deletion in

distributed applicative processing systems. In ACM Symposium on LISP

and Functional Programming, pages 168–178, Pittsburgh, PA (USA), August

1982.

[49] R.L. Hudson, R. Morrison, J.E.B. Moss and D.S. Munro. Garbage collecting

the world: One car at a time. In OOPSLA’97 ACM Conference on

Object-Oriented Systems, Languages and Applications — Twelfth Annual

Conference, Volume 32(10) of ACM SIGPLAN Notices, pages 162–175,

Atlanta, GA, October 1997. ACM Press.

[50] R.L. Hudson, R. Morrison, J.E.B. Moss and D.S. Munro. Where have all the

pointers gone. In Proceedings of 21st Australasian Computer Science

Conference, pages 107–119, Perth, 1998.

[51] R.L Hudson and J.E.B. Moss. Incremental collection of mature objects. In

Bekkers and Cohen [15], pages 388–403.

[52] R.J.M. Hughes. A distributed garbage collection algorithm. In Jean-Pierre

Jouannaud (editor), Record of the 1985 Conference on Functional Programming

and Computer Architecture, Volume 201 of Lecture Notes on Computer Science

(LNCS), pages 256–272, Nancy, France, September 1985. Springer-Verlag.

[53] A. Itzkovitz and A. Schuster. Distributed shared memory: Bridging the

granularity gap. In Proceedings of the 1st Workshop on Software Distributed

Shared Memory (WSDSM’99), June 1999.

[54] A. Itzkovitz and A. Schuster. Multiview and millipage: Fine-grain sharing

in page-based dsms. In Proceedings of the 3rd Symposium on Operating

Systems Design and Implementation (OSDI’99), pages 215–228, February

1999.

[55] R.E. Jones. The garbage collection bibliography.

http://www.cs.ukc.ac.uk/people/staff/rej/gcbib/gcbib.html.

[56] R.E. Jones. Garbage Collection: Algorithms for Automatic Dynamic Memory

Management. Wiley, July 1996.

188 BIBLIOGRAPHY

[57] N.C. Juul and E. Jul. Comprehensive and robust garbage collection in a

distributed system. In Proc. Int. Workshop on Memory Management, number

637 in Lecture Notes in Computer Science, pages 103–115, Saint-Malo

(France), September 1992. Springer-Verlag.

[58] P. Keleher, A. L. Cox and W. Zwaenepoel. Lazy consistency for software

distributed shared memory. In International Symposium on Computer

Architecture, pages 13–21, May 1992.

[59] B. Lang, C. Queinnec and J. Piquer. Garbage collecting the world. In ACM

Symposium on Principles of Programming, pages 39–50, Albuquerque, New

Mexico, January 1992.

[60] C.W. Lermen and D. Maurer. A protocol for distributed reference

counting. In Conference Record of the 1986 ACM Symposium on Lisp and

Functional Programming, ACM SIGPLAN Notices, pages 343–350,

Cambridge, MA, August 1986. ACM Press.

[61] H. Lieberman and C.E. Hewitt. A real-time garbage collector based on the

lifetimes of objects. Communications of the ACM, Volume 26(6), pages

419–429, 1983. Also report TM–184, Laboratory for Computer Science,

MIT, Cambridge, MA, July 1980 and AI Lab Memo 569, 1981.

[62] M.C. Little and S.K. Shrivastava. Replicated k-resilient objects in arjuna.

In Workshop on the Management of Replicated Data, pages 53–58, 1990.

[63] M. Livesey, R. Morrison and D.S. Munro. The Doomsday Distributed

Termination Detection Protocol. In Distributed Computing, Volume 19,

pages 419–431. Springer, 2006.

[64] M.C. Lowry. A New Approach to the Train Algorithm for Distributed Garbage

Collection. Ph.D. thesis, University of Adelaide, 2004.

[65] M.C. Lowry and D.S. Munro. Safe and Complete Distributed Garbage

Collection with The Train Algorithm. In Proceedings of International

Conference on Parallel and Distributed Systems, ICPADS’02, pages 651–658,

Taipei, Taiwan, Dec. 2002.

[66] U. Maheshwari. Garbage Collection in a Large, Distributed, Object Store.

Ph.D. thesis, MIT Laboratory for Computer Science, September 1997.

Technical Report MIT/LCS/TR-727.

[67] U. Maheshwari and B. Liskov. Collecting cyclic distributed garbage by

controlled migration. In Proceedings of Principles of Distributed Computing,

BIBLIOGRAPHY 189

PODC 1995, 1995. Later appeared in Distributed Computing, Springer

Verlag, 1996.

[68] U. Maheshwari and B. Liskov. Collecting cyclic distributed garbage by

back tracing. In Proceedings of Principles of Distributed Computing, PODC

1997, pages 239–248, 1997.

[69] U. Maheshwari and B. Liskov. Partitioned garbage collection of a large

object store. In Proceedings of SIGMOD’97, pages 313–323, 1997.

[70] J. Matocha and T. Camp. A taxonomy of distributed termination detection

algorithms. Journal of Systems and Software, Volume 43, Number 3, pages

207–221, November 1998.

[71] F. Mattern. Global quiescence detection based on credit distribution and

recovery. Information Processing Letters, Volume 30, Number 4, pages

195–200, 1989.

[72] J. McCarthy. Recursive functions of symbolic expressions and their

computation by machine. Communications of the ACM, Volume 3, pages

184–195, 1960.

[73] J. Misra and K.M. Chandy. Termination detection of diffusing

computations in communicating sequential processes. ACM Transactions

on Programming Languages and Systems, Volume 4, Number 1, pages 37–43,

January 1982.

[74] L. Moreau, P. Dickman and R.E. Jones. Birrell’s distributed reference

listing revisited. ACM Trans. Program. Lang. Syst., Volume 27, Number 6,

pages 1344–1395, 2005.

[75] R. Morrison, D. Balasubramaniam, M. Greenwood, G.N.C. Kirby,

K. Mayes, D.S. Munro and B.C. Warboys. ProcessBase Standard Library

Reference Manual (Version 1.0.1). Universities of St Andrews and

Manchester, 1999.

[76] R. Morrison, D. Balasubramaniam, R.M. Greenwood, G.N.C. Kirby,

K. Mayes, D. Munro and B.C. Warboys. A compliant persistent

architecture. Software, Practice & Experience, Volume 30, Number 4, pages

363–386, 2000.

[77] J.E.B. Moss. Working with persistent objects: To swizzle or not to swizzle.

IEEE Transactions on Software Engineering, Volume SE-18, Number 8, pages

657–673, August 1992.

190 BIBLIOGRAPHY

[78] J.E.B. Moss, D.S. Munro and R.L. Hudson. PMOS: A complete and

coarse-grained incremental garbage collector for persistent object stores.

In Proceedings of the Seventh International Workshop on Persistent Object

Systems, pages 140–150. Morgan Kaufmann, June 1996.

[79] D.S. Munro. On the Integration of Concurrency, Distribution and Persistence.

Ph.D. thesis, University of St. Andrews, 1993.

[80] D.S. Munro and A.L. Brown. Evaluating partition selection policies using

the PMOS garbage collector. In A. Dearle, G. Kirby and D. Sjoberg

(editors), POS9 Ninth International Workshop on Persistent Object Systems,

pages 104–115, Lillehammer, Norway, September 2000.

[81] D.S. Munro, A.L. Brown, R. Morrison and J.E.B. Moss. Incremental

garbage collection of a persistent object store using PMOS. In R. Morrison,

M. Jordan and M.P. Atkinson (editors), Advances in Persistent Object

Systems, pages 78–91. Morgan Kaufman, 1999.

[82] S. Norcross. Deriving Distributed Garbage Collectors from Distributed

Termination Algorithms. Ph.D. thesis, University of St Andrews, 2003.

[83] G. Parrington, S.K. Shrivastava, S.M. Wheater and M.C. Little. The design

and implementation of Arjuna. Computing Systems, Volume 8, Number 3,

pages 255–308, 1995.

[84] S.P. Rana. A distributed solution to the distributed termination problem.

Information Processing Letters, Volume 17, pages 43–46, July 1983.

[85] H.C.C.D. Rodrigues and R.E. Jones. A cyclic distributed garbage collector

for Network Objects. In Ozalp Babaoglu and Keith Marzullo (editors),

Tenth International Workshop on Distributed Algorithms WDAG’96, Volume

1151 of Lecture Notes on Computer Science (LNCS), Bologna, October 1996.

Springer-Verlag.

[86] A. Schiper and A. Sandoz. Strong stable properties in distributed systems.

Distributed Computing, Volume 8, Number 2, pages 93–103, 1994.

[87] J. Seligmann and S. Grarup. Incremental mature garbage collection using

the train algorithm. In W. Olthoff (editor), Proceedings of European

Conference on Object Oriented Programming, 1995, Volume 952 of Lecture

Notes on Computer Science (LNCS), pages 235–252, Aarhus, Denmark,

August 1995. Springer-Verlag.

BIBLIOGRAPHY 191

[88] S.K. Shrivastava, G.N. Dixon and G.D. Parrington. An overview of

Arjuna: A Programming System for Reliable Distributed Computing.

Technical Report 298, University of Newcastle-upon-Tyne,

Newcastle-upon-Tyne, England, November 1989.

[89] G.L. Steele. Multiprocessing compactifying garbage collection.

Communications of the ACM, Volume 18, Number 9, pages 495–508,

September 1975.

[90] T. Sterling, D. Savarese, D.J. Becker, J.E. Dorband, U.A. Ranawake and C.V.

Packer. BEOWULF: A parallel workstation for scientific computation. In

Proceedings of the 24th International Conference on Parallel Processing, pages

I:11–14, Oconomowoc, WI, 1995.

[91] M. Stumm and S. Zhou. Fault tolerant distributed shared memory

algorithms. In Proceedings of Second Symposium on Parallel and Distributed

Processing, pages 719–724. IEEE, December 1990.

[92] R. Tarjan. Depth-first search and linear graph algorithms. SIAM Journal of

Computing, Volume 1, Number 2, 1972.

[93] G. Tel. Introduction to Distributed Algorithms. Cambridge University Press,

1994.

[94] G. Tel and F. Mattern. The derivation of distributed termination detection

algorithms from garbage collection schemes. ACM Transactions on

Programming Languages and Systems, Volume 15, Number 1, pages 137–149,

January 1993.

[95] G. Tel, R.B. Tan and J. van Leeuwen. The derivation of graph marking

algorithms from distributed termination detection protocols. Science Of

Computer Programming, Volume 10, Number 2, pages 107–137, 1988.

[96] A. M. Turing. On computable numbers, with an application to the

entscheidungsproblem. In Proceedings of the London Mathematical Society,

pages 230–365, 1936-1937.

[97] D.M. Ungar. Generation scavenging: A non-disruptive high performance

storage reclamation algorithm. ACM SIGPLAN Notices, Volume 19,

Number 5, pages 157–167, April 1984. Also published as ACM Software

Engineering Notes 9, 3 (May 1984) — Proceedings of the

ACM/SIGSOFT/SIGPLAN Software Engineering Symposium on

Practical Software Development Environments, 157–167, April 1984.

192 BIBLIOGRAPHY

[98] F. Vaughan and A. Dearle. Supporting large persistent stores using

conventional hardware. In Proc. of the Fifth International Workshop on

Persistent Object Systems Design, Implementation and Use, pages 29–50, San

Miniato Pisa (Italy), September 1992.

[99] P. Watson and I. Watson. An efficient garbage collection scheme for

parallel computer architectures. In de Bakker et al. [32], pages 432–443.

[100] J. White. A high level framework for network-based resource sharing.

IETF Network Working Group Request for Comments: 707, January 1976.

http://www.ietf.org/rfc/rfc707.txt.

[101] P.R. Wilson. Uniprocessor garbage collection techniques. In Bekkers and

Cohen [15].

[102] J.N. Zigman. A General Framework for the Description and Construction of

Hierarchical Garbage Collection Algorithms. Ph.D. thesis, Australian National

University, June 2004.

	Title Page: Surf: an abstract model of distributed garbage collection
	Acknowledgments
	Declaration
	Abstract
	List of Figures
	Contents

	Chapter 1: Introduction
	Chapter 2: Distributed storage management
	2.6 Summary

	Chapter 3: Unifying distributed garbage collection
	3.7 Conclusion

	Chapter 4: Applying the Surf model
	4.7 Conclusion

	Chapter 5: Experimenting with trains
	5.4 Conclusion

	Chapter 6: The Tram algorithm
	6.4 Conclusions

	Chapter 7: Conclusion
	7.3 Conclusion

	Bibliography

