
CHAPTER 1.     

GENERAL INTRODUCTION 

1.1. Introduction of the main concepts and contributions of this 

project

It has been recognised over the past several decades that the world’s natural resources are 

under stress and need to be managed or restored so as to prolong ecosystem sustainability. 

Recognition that natural resource management strategies need to deal with issues from a 

total system perspective has led to the concept of integrated ecosystem management. 

Understanding the links between physical and biological processes in both natural and 

developed ecosystems allows the causes of environmental degradation to be better 

understood, identified and strategically managed. However, limited availability of 

information on the status of natural resources within ecosystems has inhibited the 

implementation of integrated ecosystem management strategies (Syme et al., 1999). 

Ecosystem computer models have become increasingly accepted as useful decision-support 

tools in bridging the gaps in ecological information and expected management outcomes 

(Shenk & Franklin, 2001).

All ecologists would agree that ecological systems are diverse and complex. They are often 

difficult to investigate, especially in a quantitative manner (Kremer & Nixon, 1978). Field 

and laboratory experiments are effective methods used to study ecological systems. 

However, it often becomes complicated, time consuming and expensive to carry out long 

term studies using these techniques (Bergez et al., 2001). A computer model can be a 

substitute for a real system, and can be an alternative method of quantitative analysis 

(Alekseev et al., 1984; Bergez et al., 2001; Costanza & Gottlieb, 1998; Ford, 1999; 

Jayaweera & Asaeda, 1996). Thomann (1998) aptly describes ecological models as the 

“glue” between the perception of the problem, the observational data from the laboratory 

and from the field and the current state of scientific understanding. Accordingly, ecologists 

are fast recognising the importance of computer modelling for understanding and 

investigating the natural environment (Al-Khudhairy et al., 2001; Reynolds & Irish, 1997; 

Shenk & Franklin, 2001). Jorgensen (1995) outlines three main factors that have 

determined the rapid growth of the ecological modelling field: 

1. Access to affordable and increasingly faster computers, 

2. The urgent need for more quantitative management solutions to solve increasing 

problems with environment degradation, 

3. An increasing interest for quantitative approaches in ecology. 

These factors have transformed the way that today’s ecologists pursue their scientific 

research, especially when conventional methods have proven to be problematic. It should 

be stressed that models do not make management and control decisions, but only provide 

information to these processes. That information can be somewhat imperfect, but in 

response to ever-increasing needs for reliable methodologies models have evolved in many 

ways over the past 70 years (Mooij & Boersma, 1996; Steel, 1997; Thomann, 1998). 
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Since the 1970s numerous deterministic models based on differential equations have been 

adopted for the simulation of lake ecosystems, but this particular method of modelling 

ecosystems has proven problematic in some areas. Often such models are:  

1. Highly complex and structurally rigid 

2. Require extensive knowledge about a system, which can be sometimes lacking 

3. Require extensive and high-quality data sets in order to properly calibrate and 

validate the model 

4. Can be difficult to debug and maintain, and  

5. Are not readily shared with other researchers due to incompatibilities with 

modelling tools and programming languages used to create the model. 

Modular and generic models offer a solution to many of these problems. Adopting the 

object-oriented modelling paradigm to create modular models can facilitate the 

understanding, debugging and adaptation of complex models by providing a platform that 

is more flexible, user-friendly and transparent. Using the Java programming language for 

object-oriented implementation of models gives the ability to access models from the 

Internet, which facilitates model and information sharing. Generic models provide an 

alternative to developing ad hoc models for each specific lake site or condition. In addition, 

there is only one model structure to understand and maintain, and the reduction of input 

data also results in less calibration of a model (Hamilton & Schladow, 1997; Jorgensen, 

1988). However, a major limitation with generic models is that in trying to achieve 

generality predictive power is often reduced, as compromises have to be made in order to 

apply the model to different conditions. The lake ecosystem model SALMO (Benndorf, 

1979; Recknagel, 1980; Benndorf and Recknagel, 1982) has been designed as a generic 

model for the simulation of a wide variety of freshwater lake systems. It has been 

successfully applied to many lakes with different trophic states, morphometry and climate 

conditions. However, the model may not perform as well in a predictive capacity compared 

to model applications that have been developed specifically for a particular system.  

One way to improve the generality and predictive capacity of the SALMO model is to 

apply a “model library” composed of alternative process-based functions from which 

different model structures can be tested based on different trophic states, climate 

conditions or lake morphometry. This model library could act as an additional validation 

process, where the original model can be further improved by exploring model behaviour 

through alternative model structures. Swartzman (1979) and Dale and Swartzman (1984) 

introduced the concept of a process-based model library, where alternative functions for 

temperature-limited phytoplankton growth were explored within a simulation framework 

to investigate algal production under thermal loading in Lake Ontario (USA). Generally, 

the inclusion of a model library of process-based functions can provide a knowledge base 

from which hypothesis testing or ecosystem behaviours can be investigated. 

By adopting the object-oriented modelling approach the addition of a simulation library 

“tool box” could be easily integrated within the SALMO model. The original SALMO 

model was programmed using the FORTRAN programming language. This programming 

style tends to cause difficulties in adding or changing model components, debugging 

source code and can be non user-friendly in comparison to object-oriented modelling 

methods. Therefore, this has provoked the need to update and modernise the model by 

taking advantage of object-oriented programming by means of the Java programming 

language. Zhang (2006) has implemented the model into a new version called SALMO-
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OO using object-oriented design and programming. This has greatly improved the models’ 

flexibility and created an adaptable platform for which new components can be added to 

the model in an efficient manner. Following these design formats, the integration of the 

simulation library will enhance the model’s applicability to a variety of systems. Thus, the 

questions and aims of this project are outlined bellow. 

1. Does the application of a phytoplankton growth and grazing simulation 

library improve the applicability and accuracy of SALMO-OO? 

Algae populations have historically been among the most commonly simulated water 

quality variables, and are often the target or focus of many lake management models. 

Therefore, this project proposes to include a variety of alternative process models that 

simulate phytoplankton growth and grazing by zooplankton, as these processes in 

particular can have wide-ranging effects on phytoplankton and zooplankton population 

dynamics, as well as nutrient budgets. Thus, the first project aim is directed towards testing 

the simulation library for a wide variety of lake datasets, using SALMO as the core model. 

This will offer an additional means of validation testing with the aim to improve model 

performance for a wide variety of lake conditions. 

2. Can generic model structures be found using the SALMO-OO simulation 

library for lakes with different trophic states, climate conditions or 

morphometry?

A key characteristic of the SALMO-OO model is its generic nature, which allows the 

simulation of different lake conditions using the same model structure. The simulation 

library needs to be designed to maintain this generic characteristic and integrate with the 

current SALMO-OO structure. The objective is that alternative phytoplankton growth or 

grazing process models (or both) can replace the original SALMO growth or grazing 

process models and then be tested to see which combination of process models can best 

simulate phytoplankton dynamics. Different categories of lakes will be tested using the 

simulation library to see if a common structure can be found for certain lake characteristics

For example, is there a structure within the library that performs the best for deep, 

eutrophic lakes with Mediterranean climate conditions? Also, to what extent can categories 

be found, therefore, are there only generic structures based on trophic state, or can generic 

structures be found for both trophic state and morphometry? If generic model structures 

can be deduced from alternative process models it is anticipated that the SALMO-OO 

model can be applied more readily to lakes with different conditions and with more 

confidence for management scenario analysis. 
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CHAPTER 2.     

LITERATURE REVIEW 

Ecosystem and water quality models have evolved over the years in response to several 

issues (Thomann, 1998): 

1. Questions related to environmental decision making have grown in complexity. 

This has lead to the development of more sophisticate and “smart” ecological 

software, which include intelligent decision support systems (He et al., 1999).

2. The need for a high level of credibility and scientific veracity has become a focus 

of modelling outcomes (Håkanson, 2001). 

3. Modelling in recent years has increased rapidly in dimensionality (spatial and 

temporal models, number of state variables etc.) and degree of complexity 

(incorporation of additional physical, chemical and biological processes). 

4. The technological “boom” of the past few decades, especially with the development 

of faster and more powerful computers at an affordable price, has greatly facilitated 

model development.  

As a result of these forcing issues the current field of ecological modelling covers a wide 

range of model applications, such as population dynamics, oxygen balances in streams and 

lakes, eutrophication and models of toxic substances (Håkanson, 2001; Jorgensen, 1995). 

A brief record is presented within the next section to outline the progress of the ecological 

modelling discipline, with emphasis on deterministic ecosystem and water quality 

modelling. Understanding the history of ecological modelling and drawing upon 

previously gained knowledge and experiences is important. History can teach us to avoid 

previous flaws in model design and implementation, which allows us to create more 

rigorous and efficient models.

2.1. The establishment of simulation models in freshwater 

ecology 

The pioneering and evolution of today’s ecological simulation models have spanned 

several decades. The development of ecological mathematical models began in the early 

1920s, with the Streeter – Phelps model (Streeter & Phelps, 1925) of the oxygen balance in 

a stream and the Lotka – Volterra models (Lotka, 1925) of predator – prey relationships 

(used predominately for phytoplankton – zooplankton relationships in freshwater systems). 

In the 1950s and 1960s further development of dynamic population models took place. 

Since the development of basic computer technology in the early 1960s these models were 

amongst the first to be simulated in the form of more complex population dynamic models 

and some river models. The mass balance and empirical modelling approaches of 

Vollenweider, who modelled the response of lakes to phosphorous enrichment, are notable 

examples from this period (Vollenweider, 1968). 

Substantial advances in the modelling of aquatic systems have occurred since the 1970s, 

with the development of more elaborate model structures (Cerco, 1999; Jorgensen, 1995). 

Modern eutrophication modelling was introduced by Di Toro et al (1971) in the form of 

the Sacramento River model, which moved beyond the then-current concepts of modelling 
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biochemical oxygen demand and dissolved oxygen and recognised phytoplankton as a 

central focus of models of natural waters. This model was also the first realisation of 

ecosystem-scale modelling (Cerco, 1999), where model complexity increased due to the 

increased number of interactive state variables and included non-linear interactions 

between nutrients, phytoplankton and zooplankton (Thomann, 1998). This generation of 

models became more widely used as decision support tools in environmental management, 

with emphasis on point sources of waste in heavily stressed systems (Thomann, 1998).  

The period between the 1980s and mid-1990s can be identified as the time when there was 

a rapid expansion in the size of models through the increase in number of state variables, 

incorporation of hydrodynamic models in multidimensional systems and internalisation of 

sediment processes. The water quality modelling framework became less subjective and 

much larger systems were modelled, such as the Great Lakes and Chesapeake Bay (Park et 

al., 1974; Thomann, 1998). Also, during this period ecological modellers began to realise 

that the limitations in modelling were not due to computational techniques but with the 

data and knowledge about ecosystem processes (Jorgensen, 1994), which then lead to a 

more critical acceptance of models and a more quantitative approach to ecological 

problems (Jorgensen, 1994). Therefore, a greater understanding of model development 

occurred, with the standardisation of key procedures in model design and testing (i.e. 

conceptualisation, selection of parameters, calibration, validation, sensitivity analysis etc. 

(Harris, 1998; Jorgensen, 1986; Jorgensen, 1988; Jorgensen, 1995)). During this period the 

pitfalls of ecological modelling became apparent as well. It became clear that ecological 

models were rigid in comparison with the dynamic and complex characteristic of 

ecosystems. The feedback mechanisms present within ecosystems were not accounted for 

in such models, which rendered them incapable of predicting adaptation and structural 

dynamic changes, resulting in reduced accuracy (Harris, 1998; Jorgensen, 1995).  

From the mid-1980s to today rapid progress has occurred to deal with these problems. 

Topics such as, parameter optimisation, uncertainty analysis, hybridised models, object-

oriented models and individual-based models, have become more prolific within the 

ecological modelling literature in an attempt to create more flexible, realistic models with a 

greater explanatory and predictive power (Barlund & Tattari, 2001; Håkanson, 2001; 

Harris, 1994; Krambeck, 1995; Van Duin et al., 2001; van Tongeren, 1995).  

2.1.1. Deterministic ecological models 

An important factor in ecological modelling is the investigation of the behaviour and 

relationships of ecological entities through time. These models are termed deterministic 

models (Håkanson, 2001; Harris, 1998; Jorgensen & de Bernardi, 1998; van Tongeren, 

1995) and are used to predict the future outcome or understand past events of an 

ecosystem, hence they are dynamic in nature (Barciela et al., 1999; Diehl, 2002). One of 

the most common mathematical methods used to develop deterministic models are 

differential equations (Hamilton & Schladow, 1997; van Tongeren, 1995; Walas, 1991; 

Zonneveld, 1998). In terms of ecological modelling, differential equations describe the 

relationships between pools and fluxes of any type of variable that can change over time or 

space. In ecological systems differential equations are commonly expressed as rates. 

Mathematically speaking, differential equations are relations between several variables and 

their mathematical derivatives (Walas, 1991). For example, a typical phytoplankton 
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biomass differential equation simulating growth and grazing processes may take the form 

of:

Phytoplankton photosynthesis
Phytoplankton

respiration 

Phytoplankton 
grazing 

The change in 

phytoplankton 

(PHT) biomass

over time (dt) 

=

PHTZPHTPHT
dt

dPHT
 Tk   -    Tk   -    TINPUmax gz gzr

In plain language this equation can be read as: 

The change in phytoplankton biomass (PHT) over time (dt) increases with 

phytoplankton photosynthesis (taking into account the growth rate (Umax) and 

limitations due to nutrients (N and P), light (I) and temperature (T)), but will decrease 

with phytoplankton respiration and grazing by zooplankton (based on respiration rates 

(kr), grazing rates (kgz) and temperature limitations). Therefore, for the biomass to 

actually increase over time, phytoplankton respiration and grazing processes must be 

less then the phytoplankton photosynthesis rate. 

There are several different types of differential equations, however two common types are 

described here. The example above is an ordinary differential equation. An ordinary 

differential equation (ODE) involves functions and derivatives of only two variables, one 

independent (time) and one dependent (phytoplankton biomass) (Walas, 1991). Ordinary 

differential equations will be the focus of this study, in terms of phytoplankton dynamics. 

A partial differential equation involves partial derivatives of one or more dependent 

variables with respect to more then one independent variable and functions of some or all 

of the variables (Walas, 1991). Partial derivatives are represented by the rounded form of 

delta  or by subscripts. Many ecological models that consider several factors changing 

over time use partial differential equations. For example, spatial models are based on 

partial derivatives as the ecological relationships rely on the change in time and space. 

2.1.2. Current trends in dynamic freshwater ecosystem and water quality 

modelling

Although models developed for ecosystem analysis and management have evolved into 

sophisticated software applications, a great deal of ecological and mathematical theory 

from twenty or thirty years ago is still scientifically relevant to today’s modern ecological 

models. Early mathematical theory for phytoplankton population dynamics is still used in 

today’s deterministic models for aquatic systems. For example, it is now well known that 

phytoplankton photosynthetic rate is dependent on light intensity: the further down the 

water column the less light is available for photosynthesis (Reynolds, 1993). Therefore, a 

key process in phytoplankton growth models is the mathematical description of the 
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Photosynthesis-Irradiance (PI) curve (Pahl-Wostl & Imboden, 1990; Reynolds & Irish, 

1997; Zonneveld, 1998). One of the most widely used mathematical formulations for the 

PI curve is from Steele (1962) (Equation 1.1), as it is simple, with one parameter to 

determine the general shape of the curve (Engqvist & Sjoberg, 1980).  

Is

I

Is

I
I 1exp)(          (1.1) 

where I = light intensity; Is = saturated light intensity

The Steele (1962) function assumes reduction of photosynthesis at intensities both above 

and below the saturation level (Scavia & Park, 1976). Table 2.1 illustrates the popularity of 

the Steele (1962) function, which is commonly integrated with the Lambert-Beer function 

(Equation 1.2) that describes light attenuation with depth, along with several other 

“classic” light-limiting functions that are still used in today’s aquatic models. Different 

environmental situations may call for the use of different formulae, although some 

alternative equations give similar responses. However, the choice of mathematical equation 

to describe a certain ecological process may simply be a matter of preference for the model 

developer.

I =  * 0I exp ke* z                                           (1.2)

where I0 = surface light intensity; ke = extinction coefficient; z = depth and I = light intensity at depth (z)

The emergence of the Sacramento River model by Di Toro et al (1971), the CLEAN model 

by Park et al (1974) and CLEAN’s progeny CLEANER by Scavia and Park (1976) 

initiated the development of complex ecosystem-scale models. Such models of this era 

modelled the open water environment of lentic systems using differential equations to 

simulate key state variables (such as phytoplankton, zooplankton, and nutrients) that 

change over time. Food web interactions between phytoplankton and zooplankton are 

central to the model’s rationale, and phytoplankton growth is controlled by water 

temperature, irradiance, nutrient concentrations as well as dispersion and advection flows. 

Phytoplankton is often lumped into one state variable to represent the whole population 

and environment inputs are generally included as empirical functions, particularly for 

water temperature and solar radiation. Units for phytoplankton and zooplankton are 

commonly given as biomass units, such as the phytoplankton dry weight per unit volume 

or number of organisms per unit volume (Di Toro et al., 1971; Park et al., 1974; Scavia & 

Park, 1976).

Progress from these “first generation” ecosystem models has included the definition of the 

epilimnion and hypolimnion layers to simulate stratification in lakes, segregation of 

phytoplankton into functional groups or separate species, inclusion of two zooplankton 

groups (herbivores and carnivores) and in some cases fish to expand the food web 

dynamics, and the use of measured input data to drive the model. Current trends in 

deterministic ecosystem modelling have focused on the development of coupled 

hydrodynamic and water quality models and/or spatial models. This approach has evolved 

in order to obtain a more fundamental understanding and representation of the major 

physical, chemical and biological processes that affect the biomass of phytoplankton and 

higher trophic levels in lakes (Cerco, 1999; Hamilton & Schladow, 1997).
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Table 2.1. Commonly used mathematical functions for the description of the 

phytoplankton photosynthetic rate dependence on light intensity. Graphs are shown only to 

give a general idea of the shape of each function, which defines the behaviour of the PI-

curve.   

LIGHT FUNCTIONS 

1. Integrated Beer-Lambert Law and Steele (1962) 

function

zke
Is

I
zke

Is

I

zke
I *exp*exp*exp*exp*

*

178.2
)(

Arhonditsis & Brett (2005) 

Bartell et al (1999) 

Canale et al (1976) 

Canu et al (2004) 

Childers and McKellar, Jr. (1987) 

Collins (1980) 

Di Toro et al (1971) 

Drago et al (2001) 

Hamilton & Schladow (1997) 

Hongping and Jianyi (2002)  

Lehman et al (1974)  

Lima et al (2002) 

Mesple et al (1995) 

Miyanaga (1986) 

Park et al (1974) 

Robson & Hamilton (2004) 

Sagehashi et al (2000) 

Varis (1984) 

Yang et al (2000) 

Yezzi & Uzzo (1979) 

3. Jorgensen (1976) light function 

0 0(I) = ln I  + I  * 
ke* z

KI / e KI / ke* z

Krivtsov et al (1998) 

Chen et al (2002) 

4. Monod-based light function 
I

(I) =  
IKI

               where 0I I  * 
ke * z

e

Recknagel and Benndorf (1982) 

Varis (1993) 

Sherman and Webster (1994) 

5. Peeter and Eilers (1978) light function

1
2

1 * 

(I) = 2 * 1+
+ 2  + 1

x
*

x x
       where 

I
x

Is

Thebault and Salencon (1993) 

Bonnet and Poulin (2002) 

I = Incident light 

Ke and 1 = Extinction coefficient 

z = Depth 

Is = Saturated light intensity 

KI = Half-saturation constant of light 

absorbance by phytoplankton during 

photosynthesis 
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Generally, most coupled hydrodynamic-water quality models are now very similar in 

structure and simulation approach. The hydrodynamic components are commonly one-

dimensional models, with temporal and depth-averaged dynamics (usually using partial 

differential equations). However, two- and three-dimensional models have also been 

developed (Boegman et al., 2001; Muhammetoglu & Soyupak, 2000; Rajar & Cetina, 

1997; Tufford & McKellar, 1999). Two-dimensional spatial models operate within 

longitudinal and vertical boundaries. For example, an application of the two-dimensional 

model CE-QUAL-W2 to Lake Erie (USA), defined the longitudinal axis by the direction of 

hydraulic flow and plankton and nutrient gradients, and the vertical axis defined the 

thermal structure of the lake (Boegman et al., 2001). Three-dimensional models can further 

include a lateral direction boundary, separating the entire lake environment into sections or 

boxes and calculate the hydrodynamic and water quality effects within each box, allowing 

for transport and boundary affects between boxes. This allows the investigation of 

heterogenous environments, especially when the lake is divided into boxes based on a 

specific environmental variable (e.g. salinity is a common choice in spatial estuarine 

models). Common processes simulated within the hydrodynamic components are physical 

structure of the lake (e.g. lake morphology), thermal stratification, advection and diffusion 

and particle transport (Al-Khudhairy et al., 2001; Hamilton & Schladow, 1997; Riley & 

Stefan, 1988). 

The water quality or ecological components are generally structured similarly to the 

hydrodynamic components, in terms of the spatial and temporal boundaries, with a distinct 

definition of thermal stratification layers (i.e. representation of the epilimnion and 

hypolimnion). Additionally, sediments are often added to the water quality model as a third 

layer. The water quality component commonly simulates primary and secondary 

production, nutrient dynamics and oxygen dynamics. Most of the water quality sub models 

of today’s complex spatial hydrodynamics models do not differ so greatly from those 

models of phytoplankton dynamics developed by Di Toro et al. (1971), Park et al. (1974) 

and Scavia and Park (1976). Some good examples of comprehensive and widely used 

coupled hydrodynamic-water quality models are the DYRESM model (Hamilton & 

Schladow, 1997), the DESERT river and EVOLA lake models (Al-Khudhairy et al., 2001), 

the MINLAKE model (Riley & Stefan, 1988) and the Lake Michigan model (Chen et al.,

2002; Ji et al., 2002). 

2.1.3. Problems and limitations of current water quality models 

Even though there have been advancements in computational technology and an increase 

in our current knowledge base there are still some fundamental problems that ecological 

modellers need to deal with. Since models are simplified abstractions of complex 

ecosystems, their construction and performance will always be subject to many sources of 

uncertainty. Understanding these issues can aid in the development of more robust and 

confident models.

2.1.3.1 Data availability and quality 

For many model users models are only useful if they have something to say about the real 

world. Therefore, model developers pay considerable attention to the ability of their 

models to describe the observed or measured data, which is a representation or instance of 
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a real system. Data is what drives a model. Hence, it is desirable to use a good quality, 

comprehensive database when running simulations and testing the models structure. The 

idea of ecological modelling is to simulate the natural environment as closely as possible. 

Therefore, the data that drives the model needs to represent the natural environment as 

closely as possible also. However, it is often difficult to find suitable databases for 

modelling exercises, as data collection is time consuming, expensive and sometimes an 

inaccurate process. The lack of suitable data not only increases the assumptions within the 

model but limits the confidence of the modelling results (van Tongeren, 1995). It is often 

reported in ecological modelling publications that the failure of the model to predict or 

represent the target site can be greatly attributed to the lack of appropriate data, particularly 

for model validation testing (Angelini & Petrere Jr., 2000; Drago et al., 2001; Krivtsov et 

al., 1998; Salençon, 1997). As a consequence, it is becoming more common among 

ecological research groups to conduct data collection projects in conjunction with the 

development of ecosystem models, so that limitations from lack of data is reduced 

(Radford & Blackford, 1996).

2.1.3.2 Complexity

Model complexity refers to the amount of information or number of state variables 

included in the model structure, and is a problem that is continuously associated with 

dynamic modelling. The question of how complex to make a model is of primary concern 

in any modelling study (Costanza & Sklar, 1985). If a model is too complex it can produce 

a high number of errors, reducing predictive accuracy, and it can be expensive to build and 

difficult to run and maintain (Håkanson, 1999; Tsang, 1991). Increased model complexity 

makes it more difficult to understand model behaviour and becomes dependent on 

assumptions, parameter values and environmental forcing functions (Murray & Parslow, 

1999). However, if a model is too simple then important ecological processes may not be 

accounted for, reducing the descriptive and realistic properties of the model. The 

phytoplankton population model developed by Baird and Emsley (1999) is a highly 

complex model, as it has been designed to simulate a variety of phytoplankton species at 

the cell level, with minimum data requirements. The model relies on parameter values that 

are able to be measured under laboratory conditions, rather than field conditions as field-

determined parameters tend to include a higher degree of uncertainty due to the variability 

in the natural environment that they are collected in. Thus, the model does not require 

environmental time series input data and is generally free from calibration. The model also 

provides a way around the problem of uncertainties in arbitrary choice of functional forms 

that tend to reduce the predictive power of many plankton models. Therefore, in some 

cases higher model complexity can be desirable. There are numerous references in the 

scientific literature discussing and debating the problem of model complexity or optimum 

model size (Costanza & Sklar, 1985; Håkanson, 1999; Jorgensen, 1988; Jorgensen, 1995).

Many ecologists assume that complex systems (and questions) can only be addressed by 

complex models (Steel, 1997). The crucial point is that there will never be a model that 

sufficiently represents an ecological system. A model is to be used as a general surrogate 

capable of providing answers to questions about the real system (Saloranta et al., 2003; 

Steel, 1997). There will always be uncertainties associated with our models through the 

data that is currently available, but our data collection techniques and equipment, and our 

knowledge of what is required to develop and test robust models is improving so that many 

of today’s model can still provide useful information and predictions (Håkanson, 1999). 
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2.1.3.3 Duplication of effort: “reinventing” the ecosystem model 

When searching through the scientific literature for deterministic lake models it becomes 

apparent that there are a vast number of models that have been developed, many using the 

same or similar mathematical functions to represent various ecological processes. This is 

especially true for primary production sub models. However, many of these models have 

been developed based on a different logic or rationale and purpose, justifying the need to 

develop new models from scratch – thus tailoring models to suit very specific research 

questions or specific lake conditions. Several researchers in the field of agricultural 

modelling, focusing on crop and plant models, find the same is true for their respective 

fields (Gauthier et al., 1999; Lemmon & Chuk, 1997; Reynolds & Acock, 1997), and much 

debate has been made in respect to these issues. Reynolds and Acock (1997) particularly 

state that many crop and plant models are typically developed by an individual or a small 

group of scientists, documentation is not sufficiently published in order to replicate the 

published model, the model is not readily transportable to other platforms for reuse by 

others, and they are mostly maintained by their developers (if at all). Therefore, such 

models have limited application, rarely outlive their developers and represent considerable 

duplication of effort. 

Lemmon and Chuk (1997) agree that many crop models are so complex that only their 

developers really understand them, particularly for models that have evolved over several 

years with a succession of researchers adding to them. Again, many of the model 

components are not reusable by others because only the developer can understand the 

underlying logic and interrelationships of the model and often the code is difficult to 

understand and adapt by others. Lemmon and Chuk (1997) aptly add that the “model 

retires when the developer retires (or become administrators)”. Thus, there are numerous 

models available that are never used by anyone but the developer, which is unfortunate as 

many of these models are extremely useful and well tested and others would benefit by 

having access to them. 

Gauthier et al (1999) further discuss that most models developed by scientists and graduate 

students have a very short life span, with little commercial or industrial impact due to the 

tools and programming languages that ecological modellers use are relatively primitive 

compared to the state-of-the-art technology employed by engineers and computer 

scientists. As a result, many of the models produced by small research groups and 

individuals do not facilitate reuse or exchange of model components and are inflexible. 

The comments presented by these researchers are very relevant to problems in the 

freshwater modelling field. There is an abundance of lake models that have been published 

for specific applications, using similar mathematical expressions to represent certain 

ecological processes. For example, all lake water quality models simulate primary 

production, specifically phytoplankton – zooplankton – nutrient interactions and there are 

only so many ways that this process can be represented mathematically. It seems that 

modellers chose not to build on the work of others, preferring to build from the ground-up, 

which seems to be primarily because existing models are not designed for incremental 

improvements. Reynolds and Acock (1997) suggest modular and generic models solve 

these problems. 
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Modular model design involves separating the key model components into smaller, 

meaningful sub models, which can be handled independently. Each sub model can then be 

reused or built upon to fit into other models that require commonly used sub models. For 

example, a well developed and tested phytoplankton sub model could be reused or adapted 

for use in lake models, without the need to spend time and effort building model 

components from scratch. However, ecological modellers tend to use different tools and 

programming languages that make developing modular model components difficult. 

Therefore, there is a need for programming approaches that support the evolution of 

models in a clean and non-destructive way, and that facilitates the creation of reusable 

software components that have more expressive power then conventional programming 

languages such as FORTRAN (Gauthier et al., 1999). Object-oriented modelling is a way 

to achieve these goals, and is discussed in detail in section 2.3.

Generic models, in terms of lake simulations, are those that should be generally applicable 

to a range of lake conditions. Essentially, these models apply the same structure and 

constant parameters to simulate different lake conditions, with only environmental data 

necessary to define the system (Acock & Reddy, 1997; Fitz et al., 1996; Reynolds & 

Acock, 1997). The principle appeal of generic models is economy (Reynolds & Acock, 

1997). Economy of effort is achieved when a generic model provides an alternative to 

developing ad hoc models for each specific lake site or condition. In addition, there is only 

one model structure to understand and maintain, and the reduction of input data also results 

in less calibration of a model, which can be a tedious process (Hamilton & Schladow, 

1997; Jorgensen, 1988). Reynolds and Acock (1997) present a detailed description and 

argument for the use of generic design in the development of plant and crop models. 

Specifically, Reynolds and Acock (1997) state: 

1. A generic model should be suitable for application to ecosystems or a target group 

by the use of different model parameters or different modules. 

2. A good generic design must be able to simulate functionally similar, yet different 

systems, by the addition (or subtraction) of modules. 

3. Individual modules should be readily recognised by experts in the field as separate 

processes of the system under study. The purpose of each module should be readily 

apparent. Modules that combine several functions not normally considered together 

may be more difficult to parameterise for a new system. 

The same design principles outlined in their paper can be applied to the development of 

lake models. Indeed, the generic lake ecosystem model SALMO (Benndorf & Recknagel, 

1982; Recknagel & Benndorf, 1982) has incorporated many of these points successfully 

and is the main reason for choosing this particular model as the core model of this study. A 

detailed description of SALMO is given in Chapter 3 section 3.1. Modular generic models 

offer a flexible platform to test alternative hypotheses by replacing modules and can be 

easily updated as our knowledge improves (Reynolds & Acock, 1997).

2.2.  Process-based model libraries for the simulation of 

phytoplankton dynamics 

Deterministic ecosystem model development can be a subjective process that is dependent 

on individual judgements, decisions and experience, making model development “half 

science, half art”, with ample room for differences in opinions (Haag & Kaupenjohann, 
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2001; Zonneveld, 1998). This is to be expected as ecosystems are complex, and some 

processes are not well understood or quantifiable. However, deterministic ecosystem 

models can be robust tools for the examination of model behaviour under several 

alternative hypotheses. Swartzman (1979) proposed the use of simulation model “libraries” 

to explore plankton dynamics under extreme temperature conditions of nuclear power plant 

ponds by the investigation of alternative model structures. Swartzman’s “model library” 

concept is based on the deductive modelling approach. Therefore, exploring alternative 

process-based models (i.e. deterministic models that are constructed using ordinary 

differential equations) that are formulated to represent real plankton processes in nature. 

The deductive modelling approach is considered as being knowledge driven, which can 

give more explanatory power as the models structure is based on the best understanding of 

the inner workings of the simulated ecosystem.  

Dale and Swartzman (1984) adapted the process-based “model library” outlined in 

Swartzman (1979) to investigate the effect of thermal loading on phytoplankton production 

in Lake Ontario. The core model is a simplified ecosystem model of Lake Ontario by 

Thomann et al (1975), describing major state variables such as phytoplankton, 

zooplankton, detritus and nutrients (particularly nitrogen and phosphorous). The model 

library consisted of a number of phytoplankton models drawn from the scientific literature 

with a selection of temperature dependent functions coded into the model library. For 

example, phytoplankton growth is limited by temperature and different hypothesised 

effects of this process can be expressed mathematically in various ways. Temperature 

limited growth can take the shape of a linear, optimal or an exponential function (Figure 

2.1), and can give an entirely different response that will affect the way phytoplankton 

growth is simulated by the model. Thus, alternative model structures tested by this 

approach can give an increased understanding on the underlying principles for which the 

model is based. However, often the predictive capacity of process-based models can be 

compromised due to the uncertainties and assumptions inherent in these types of models 

(as was discussed in section 2.1.3). 
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Figure 2.1. Different mathematical functions for temperature-limited phytoplankton 

growth, such as (a) linear, (b) optimal and (c) exponential functions. Example equations, 

which give the shape of the corresponding graphs, are also given.
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Another way to address predictive power is to utilise the inductive modelling approach. 

Inductive modelling is data driven, where models are induced from measured time-series 

data by bio-inspired computational techniques, such as artificial neural networks and 

evolutionary algorithms. Such methods have a high predictive power but rely heavily on 

the availability of high-quality datasets. A comparable example of the inductive modelling 

approach to exploring alternative phytoplankton models is the LAGRAMGE model family 

(Atanasova et al., 2006; Dzeroski & Todorovski, 2003; Todorovski, 2003), which involves 

heuristically exploring various model structures and parameter values (organised from 

process-based functions or “domain knowledge”) and comparing each with measured data 

to find the best fitting model. The procedure of model induction and simulation with 

Lagramge is presented in Figure 2.2.  

The domain knowledge is described within a “knowledge library”, and the user specifies 

important variables and processes that take place in the observed system (model task 

specification step in the Largramge set up). Thus, Lagramge is more appropriately 

described as a combination of inductive and deductive modelling, which is used to direct 

the process of induction from real data. For each process defined by the user in the task 

specification the algorithm first checks the consistencies of the types of the variables 

involved in the process. Then, the algorithm matches the process from task specification 

against the generic processes in the knowledge library.

Library: Formalized
generic domain 
modeling knowledge

for Lagramge 2.0

LAGRAMGE:

identification of model 
structures and fitting them all

to the given measurements

Best model(s):

structure and
parameters

Measurements
Modelling task
specification

User/expertmodelling 

expert

LAGRAMGE 

SIMULATION

Test (evaluation) 
data set

Simulated (evaluated)

model(s)

Figure 2.2. Largramge automated modelling framework based on the integration of 

domain-specific modelling knowledge in the process of equation discovery (Atanasova et 

al., 2006).
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Once the match is found, a generic process definition is used to obtain a list of all 

alternative mathematical models (in the form of ODEs) for the particular processes. Thus, 

the result of this match is a list of specific mathematical model structures that can be used 

to model the processes specified in the task specification. At the same time Lagramge takes 

all model structures and matches each of them to the calibration data by fitting the values 

of the constant parameters, (Lagramge performs non-linear optimisation) according to the 

measurements. The models are ranked by their error on the training data set. The model 

with the lowest error is considered as the best model for a given conceptual model (task 

specification) and data set. 

In this case, LAGRAMGE was applied to data from Lake Kasumigaura (Japan) by utilising 

the knowledge library of lake process equations to discover predictive ODEs for 

chlorophyll a. LAGRAMGE heuristically searches through the different models offered by 

the library and tests each of them with measured data after fitting constant parameter 

values (Atanasova et al., 2005). Similarly to Swartzman (1979), the process-based 

functions contained within the library are taken from literature models developed for lakes 

and can be assembled to different levels of ecosystem structures, such as the simple 

Vollenweider model or a complex ecosystem model such as SALMO (Recknagel & 

Benndorf, 1982). Further details about LAGRAMGE can be found in Todorovski (2003). 

The LAGRAMGE model found 7 ODEs that best predicted chlorophyll a; one equation for 

each of the years tested. This demonstrates the dynamic and somewhat difficult nature of 

predicting chlorophyll a. An attempt was made to discover a generic chlorophyll a ODE 

for all years, however, the ODE that was found lacked predictive power in simulating 

chlorophyll a, although the model described general trends.  

Both approaches have their advantages and limitations. The deductive, process-based 

methods have the advantage of giving understanding to what processes and feedback 

mechanisms are occurring, and provide a simulation framework where current knowledge 

of ecosystem dynamics can be explored. The inductive modelling approach, particularly 

grammar based models such as evolutionary algorithms, allow the development of 

automated “search engines” in order to discover functions, such as ODEs, or rule-sets to 

predict ecological variables and develop models with a high predictive power. However, 

trying to find generic model structures or rules to describe different lake conditions can 

prove to be extremely difficult without considering the processes occurring within the 

ecosystem. Therefore, the deductive, process-based modelling approach still remains the 

most favourable method to explore ecosystem dynamics and causally understand model 

structures in a generic manner. 

Since Swartzman (1979) first proposed his “model library” concept in the late 1970s, there 

have been few advances in testing alternative model structures within a simulation 

framework to simulate a wide variety of environmental conditions. Much has to do with 

the lack of computational tools that were available at the time. However, the current 

computational methodologies that are available to ecologists are vast, easy to obtain, cheap 

to run and constantly evolving into better products. Object-oriented modelling is a novel 

computational methodology that is becoming increasingly popular with ecologists in 

developing complex simulation models, and is an appropriate modelling method to apply 

to the development of a generic, process-based simulation library for lake ecosystem 

modelling, which is the focus of this study. 
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2.3. Adopting the object-oriented paradigm for ecological 

modelling

There is a need for programming approaches and software design systems that support the 

evolution of ecological software so that models do not become redundant, and thus 

knowledge and effort is not lost (Acock & Reddy, 1997; Gauthier et al., 1999; Sequeira et 

al., 1991). Object-oriented programming and software design techniques offer a new 

approach to model development and propagation. A common misconception among 

researchers is that adopting object-oriented programming and design requires the 

discarding of all previous programs and code. Object-oriented programming is more of an 

evolutionary trend rather than a drastically new and different programming method 

(Sequeira et al., 1997). Nevertheless, ecologists have been reluctant to implement object-

oriented models for a number of reasons: there has been a low level of access to user-

friendly object-oriented software, researchers must learn a new technique and set of tools 

and many new modelling projects often addresses not the building of new models from 

scratch, but rather the improvement of subcomponents of existing models (Gauthier et al.,

1999; Sequeira et al., 1997).

These are acceptable reasons for maintaining the status quo. However, with the increased 

access to Java  technologies (Sun Microsystems, 2005) this has improved the availability 

of true object-oriented software development systems and addresses many of the issues 

that ecological modellers have in implementing object-oriented models. Many pitfalls 

identified by other ecological modellers in adopting object-oriented programming can be 

solved using the Java programming language (Acock & Reddy, 1997; Ferreira, 1995; 

Sequeira et al., 1997). The Java programming language is fast becoming the preferred 

language for the development of object-oriented models due to its rigorous adherence to 

the object-oriented paradigm (Baskent et al., 2001; Ellis et al., 1998; Gauthier et al., 1999; 

Nguyen et al., 2000). Many conventional programming languages can be used to develop 

object-oriented models, however, circumvention of true object-oriented concepts can be 

made, which can produce problems with model logic. Models built with Java technologies 

are portable and can be operated on any platform (e.g. Windows, Mac OS or UNIX) that 

has a Java virtual machine. Java also allows models to be embedded in traditional web 

pages, which can facilitate model sharing and data exchange (Nguyen et al., 2000). An 

additional advantage of Java is that it is freely available at no cost to the modeller, 

whereas, many other modelling software systems need to be purchased and can be quite 

expensive.

Before we ask the question “why adopt the object-oriented paradigm to the development of 

ecological models?” we need to know what the object-oriented paradigm is and how do we 

apply it to the simulation of ecological systems. This next section attempts to explain and 

illustrate the key concepts of the object-oriented paradigm. For more detailed information 

see Booch (1991) and Gilbert and McCarty (1998). 
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2.3.1 Key principles in object-oriented modelling 

Booch (1991) formally defines object-oriented modelling as:  

“A method of implementation in which models are organised as cooperative 

collections of objects, each of which represents an instance of some class, and 

whose classes are all members of a hierarchy of classes united via inheritance 

relationships”.

Therefore, object-oriented modelling can be considered as modular design. Modularity is 

the essence of the object-oriented paradigm, where a complex problem is broken down into 

multiple small and simplified modules (He et al., 1999; Sequeira et al., 1991). For 

example, a complex lake ecosystem model can be modularised by categorising similar 

ecological processes such as dissolved substances, primary production, secondary 

production and physical properties. This develops a hierarchical structure among 

ecological entities, which can be further modularised into categories with a finer level of 

resolution defined by individual classes.

A class is a template for the creation (instantiation) of objects that share a common 

structure and behaviour (Baskent et al., 2001; Booch, 1991; Gilbert & McCarty, 1998; 

Lemmon & Chuk, 1997). A class refers to an abstract concept with no real representation. 

An object is the specific, real instance or representation of the class concept. Therefore, a 

class has to be defined with the properties that describe an entity before an object can be 

created to represent that entity and interact with other objects. This is known as 

abstraction. Abstraction focuses on the external view of an object, separating an object’s 

essential behaviour from its implementation (Sequeira et al., 1991). 

Objects belonging to the same class have a common structure and behaviour. The structure 

or state of an object is specified through the definition of attributes (variables or data), and 

the behaviour is specified through the inclusion of methods (functions) that can manipulate 

the state of an object (Gauthier et al., 1999). Attributes and methods are grouped together 

within each object, which is known as encapsulation or data hiding. Where abstraction 

defines the external view of an object, encapsulation defines the internal structure of an 

object. Encapsulation occurs when the internal state of variables inside an object is not 

accessible outside the object except via messages to its methods. Therefore, internal data 

structures and functions may be modified as required without affecting the performance, 

logic or algorithmic efficiency of the rest of the program (Lemmon & Chuk, 1997; 

Sequeira et al., 1997).

A great advantage of using classes becomes apparent when the concept of inheritance is 

introduced. Inheritance in object-oriented modelling is analogous to the concept of 

taxonomy in biology, where broad categories of organisms with similar attributes are 

further divided into more detailed and specific categories, which inherit attributes from 

higher in the hierarchy. The same hierarchical structure holds for object-oriented classes. 

We can treat different classes of objects as descendents of a common ancestor and need 

only add those particular features that have changed within the context of the model to the 

new descendents (Silvert, 1993). Figure 2.3 demonstrates a simple hierarchy structure for a 

primary production model. The first class in the hierarchy in Figure 2.3 is the StateVar

class, which is known as the super or parent class. The Phytoplankton class is 

associated with the super class through inheritance links. Therefore, all the data and 

methods described by the StateVar class will be accessible to the Phytoplankton

17



class and any classes or objects descending from it. For example, the getData() method 

in the super class is available for use by the Phytoplankton class to access its input 

data such as water temperature or solar radiation. The getData() method is also 

available to the DissolvedMatter class as this class is also a descendent of the 

StateVar super class. Inheritance provides a powerful mechanism for organising and 

structuring simulation models and allows the reuse of a class’s behaviour in the definition 

of new classes (Baskent et al., 2001; Sequeira et al., 1997). 

Class 
DissolvedMatter 

Methods 
Consumption() 
Export() 
Sedimentation()

Variables 
sedRate 
fluxRate 

Object 
blueGreenAlgae

Object 
diatom

Class StateVar 

Methods 
RK4() 
getInitValue()
getData() 

Variables 
InitialValues 
timeStep

Class 
Phytoplankton  

Methods 
Growth() 
Grazing() 
Sedimentation()

Variables 
Umax 
Gmax 
KP 

Object 
greenAlgae

Class Phosphate 

Methods 
Inherited

Variables 
sedP 
fluxP 

Class Nitrate 

Methods 
Inherited

Variables 
SedN 
fluxN

Inheritance and 
polymorphism 

Figure 2.3. An example of the object-oriented paradigm applied to a simple primary 

production model. The DissolvedMatter and the Phytoplankton class are linked 

via inheritance relationships to their super class (StateVar). Classes Phosphate and 

Nitrate show further inheritance links to the DissolvedMatter class. Methods 

described by the DissolvedMatter class are available to the Phosphate and 

Nitrate classes. The instantiation of objects is shown by the Phytoplankton class, 

which creates objects for three functional groups of phytoplankton (diatom,

blueGreenAlgae and greenAlgae). These objects encapsulate the data described 

by the Phytoplankton class.
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Polymorphism is a type of inheritance concept. Polymorphism refers to the ability to call 

the same method name in different derived classes (Gauthier et al., 1999). Therefore, the 

same message is sent, but a different response is invoked in different objects. For example, 

Figure 2.3 illustrates the structure and behaviour of two classes: DissolvedMatter and 

Phytoplankton. Both classes have a method called sedimentation(), which 

defines a different mathematical function for loss due to sedimentation for each class. 

When the blueGreenAlgae object calls the sedimentation() method a message 

will be sent to the sedimentation() method contained in the Phytoplankton

class. Conversely, when the phosphate object needs to calculate its sedimentation rate it 

will invoke the sedimentation() method from the DissolvedMatter class. 

Polymorphism reduces the need to write code repeatedly and allows the reuse of 

programming components, which saves time and effort (Bian, 2003). 

2.3.2 Advantages of adopting the object-oriented approach to ecological 

modelling

The limitations of procedural modelling

In the past, ecological models have largely been developed using procedural programming 

approaches. The primary mechanism in procedural languages (e.g. C, FORTRAN, Pascal, 

Ada) is the procedure, sometimes called a subroutine, where program execution is regarded 

as a partially ordered sequence of procedure calls manipulating data structures (Gilbert & 

McCarty, 1998; Jansson & Moon, 2001; Muetzelfeldt & Massheder, 2003; Sequeira et al.,

1991). Procedures are based on structured, top-down design, which receive and process 

data and return results. Because of this, the shape of a system developed using procedural 

design almost always takes the form of a tree, with centralised control invested in the top 

or main module (Gilbert & McCarty, 1998; Jansson & Moon, 2001; Muetzelfeldt & 

Massheder, 2003), which can become complicated and difficult to keep track of how 

functions relate (Baskent et al., 2001; Sequeira et al., 1991).

A simple example of procedural programming would be to look at the functions needed to 

pass a saltshaker across a dinner table. In real life, a person who asks for the saltshaker to 

be passed to them from across the dinner table would simply ask for the saltshaker, and 

receive it from the other person. However, to implement such an action using procedural 

programming the person requiring the saltshaker would have to say “Please remove your 

right hand from your wine glass, move it to the left until it contacts the saltshaker, grasp it, 

lift it from the table, move it in a natural arc in my direction, stop when it contacts my 

hand, wait until my hand has closed around it, and then release it”. The need to recognise 

each step to implement a specific action is the basic configuration of procedural modelling.  

The procedural approach separates data and procedures that manipulate data. Therefore, 

one procedure can manipulate more than one data structure and one data structure can be 

manipulated by more than one procedure (Figure 2.4). Data structures that are of central 

importance to the overall program can be used by many procedures, causing 

interdependence, which is not a natural way to model real world problems (Baskent et al.,

2001). The use of procedural programming is very detailed, which can potentially cause 

many problems when developing complex models, which are often difficult to understand, 

build, refine and debug when conventional programming methods are used (Acock & 
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Reddy, 1997; Baskent et al., 2001; Williams, 1995). Booch (1991) states that 60% of 

model development costs lie in maintenance of models developed using conventional 

methods. Therefore, there is a need for modelling approaches that support the evolution of 

computer applications that facilitate and encourage the creation of reusable model 

components that have more flexibility and more expressive power. The object-oriented 

paradigm offers new insights for both the programming and conceptualisation of complex 

simulation models, and resolves many of the problems associated with procedural 

languages.

Object-oriented modelling 

The flexibility associated with modularity, abstraction and encapsulation provides many 

advantages when developing ecological models. A model that has been created using 

procedural programming would normally be rigid, with a subjective categorisation of state 

variables and processes, which is designed by the modeller. One modeller’s idea of 

categorising a system may differ from another. Thus, processes from one model must 

usually be reprogrammed from the original mathematical equations before being tested in 

another model (Acock & Reddy, 1997). Using object-oriented design the modularisation 

and abstraction of state variables and process effectively de-clutters the structure of the 

model. The concept of an object remains the same throughout the development process and 

is therefore, standardised (Dawson & Swatman, 1999; Sequeira et al., 1997). Thus, a class 

or object needs to be defined only once during model development. Not only is the model 

easier to navigate around and learn, it reduces the propagation and time needed to fix errors 

and facilitates the understanding of model logic (Acock & Reddy, 1997; Dawson & 

Swatman, 1999; Lemmon & Chuk, 1997).  

Figure 2.4. A key difference between object-oriented programming and the conventional 

programming approach is through encapsulation (Khebbal & Shamhong, 1995). 

The ability to encapsulate an object’s data and methods is a key concept that distinguishes 

object-oriented programming from conventional programming approaches (Figure 2.4). An 

advantage of encapsulation is the creation of independent objects, which can be inserted in 

different programs with little or no modification (Ferreira, 1995; Reynolds & Acock, 

1997). If an object must be adapted, rather then altering the code a descendant can be 

created. Debugging is then limited to any new methods, since the base-type will already 

have been tested (Ferreira, 1995). Encapsulation gives the modeller better control over data 
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and creates more independence within the models’ structure, creating an easier way to 

introduce new knowledge into the model without affecting the existing structure (He et al.,

1999; Lemmon & Chuk, 1997). This leads to maximum reuse of code and thus reduces the 

complexity of the model and facilitates the development of new model components. 

Object-oriented modelling can be an exceptional tool for building hybridised model 

systems (Khebbal & Shamhong, 1995). The use of objects as a representation scheme is 

particularly suitable for hybrid models because objects can represent different information 

processing techniques, which communicate via a well-defined message protocol. Message 

passing provides the basis of the most flexible form of dynamic linking in an object-

oriented hybrid system (Khebbal & Shamhong, 1995). At the lowest level, a message is 

simply data passed from one object to the next. Combined with queues and the ability to 

send messages asynchronously, each object in a hybrid application could process a stream 

of data independently of other objects (Khebbal & Shamhong, 1995). Object-oriented 

programming can be used to integrate machine learning techniques, such as neural 

networks (Meyer, 1990; Whigham & Recknagel, 2001) and genetic and evolutionary 

algorithms (Bobbin & Recknagel, 2001; Whigham & Recknagel, 2001) to process-based 

models. The integration of individual-based models and Geographic Information System 

(GIS) applications and databases via an object-oriented framework is widely used (Chau & 

Chen, 2001; Chau et al., 2002). Some key ecological examples are the ECLIPSS software 

environment for the investigation of ozone effects on forest ecosystems (Woodbury et al.,

2002); TIGMON model for the investigation of tiger/human interactions in forest systems 

(Ahearn et al., 2001); the WILDSPACE decision support system for wildlife population 

and habitat investigations (Wong et al., 2003); PRYSM (Power and Reservoir System 

Model) and the conceptual GIS data model developed by Mckinney and Cai (2002) for 

water resource management. 

One of the key advantages of object-oriented modelling is its ability to represent the 

natural environmental or real world more closely. Martin and Odell (1992) state that 

models built with object-oriented programming reflect reality more naturally then models 

built using conventional programming languages. Sequeira et al (1991) and Bian (2003) 

both state that a key strength in the object-oriented paradigm is that the real world is 

represented in a manner that closely corresponds to the reasoning patterns that a human 

normally uses to solve a problem. Many ecological modellers have stated that the object-

oriented paradigm is well suited to simulating ecological systems because the paradigm 

provides a greater conceptual approximation between natural ecosystem and interacting 

objects, compared to procedural methods (Baskent et al., 2001; Ferreira, 1995; Mooij & 

Boersma, 1996; Sequeira et al., 1997; Silvert, 1993). The object-oriented concept of 

inheritance is particularly attractive to ecological modellers, as the concept closely 

resembles many ecological principles. Class hierarchy is similar to taxonomy in biology. 

The concept of association (encapsulation and message passing) is close to the principles 

of social relationships between organisms and the concept of aggregation is similar to the 

principles of ecological assemblies (Bian, 2003). 

Object-oriented programming and design is not a simple concept and it is not easily 

mastered. It is a completely different way of thinking about software design and the 

transition from conventional modelling approaches to object-oriented modelling is 

daunting, especially for ecologists who are new to the ecological modelling field. 

However, when the benefits of adopting the object-oriented approach outweighs the 
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difficulties associated with conventional techniques, which is often the case for large, 

complex ecosystem models, the object-oriented modelling approach is best.

2.3.3 Application of object-oriented modelling to ecology 

The concept of object-oriented programming and modelling has been utilised by computer 

science and business industries for many years, particularly for developing operating 

systems, graphical interfaces, computer aided design and optimisation software and 

database management (Dawson & Swatman, 1999; Maryanski et al., 1986; Sequeira et al.,

1991). During the 1990s the use of the object-oriented paradigm began to emerge in 

ecological model design and implementation, with a dominance in the fields of agro-

ecosystems (Acock & Reddy, 1997; Gauthier et al., 1999; Sequeira et al., 1997; Sequeira

et al., 1991) and landscape ecology (Ahearn et al., 2001; Baskent et al., 2001; He et al.,

1999; Woodbury et al., 2002). A number of ecological models have been published that 

have chosen to adopt object-oriented design concepts to building vastly complex 

ecological models, particularly for the development of management tools. Such models not 

only have an extensive ecological component, but also include modules that interface with 

a user-friendly Graphical User Interface (GUI) (He et al., 1999), modules that interface 

with database management systems (Woodbury et al., 2002), link to expert systems for 

decision-support (Wong et al., 2003) and even allow other components such as eco-

economic evaluators (Bergez et al., 2001) and risk assessments (Sydelko et al., 2001). 

Many others have adopted the object-oriented approach for the development of hybridised 

models, particularly for individual-based and landscape modelling linked to GIS (Ahearn

et al., 2001; Bian, 2000; He et al., 1999; Herve et al., 2002; Jansson & Moon, 2001; Lorek 

& Sonnenschein, 1998; McKinney & Cai, 2002; Mooij & Boersma, 1996; Wong et al.,
2003). The object-oriented approach represents individuals more efficiently because they 

are represented as independent objects that behave similarly to real ecological entities. 

LANDIS, a forest landscape model that simulates interactions of large landscape processes 

and forest successional dynamics using satellite data (He et al., 1999), is a comprehensive 

example of an object-oriented spatial landscape model. Other examples of hybridised 

object-oriented and individual-based models include the forest management decision 

support system developed by Baskent et al. (2001); SHALOM landscape model (Ziv, 

1998), which is able to simulate various landscape scales, such as species, patch, 

populations and communities; the hierarchical patch dynamics model, developed by 

(Poole, 2002), simulates the influence of landscape processes on the structure and function 

of lotic ecosystems; and ECLIPSS (Woodbury et al., 2002), a library of reusable and 

interchangeable terrestrial ecological sub-models.  

In the field of agro-ecosystems, the object-oriented approach has been widely adopted for 

the development of management models and simulation frameworks. The Generic Plant 

Simulation Framework (GPSF), developed by Gauthier et al, 1999, is a generic object-

oriented framework used to construct and implement crop growth and development 

models. At present the model framework is designed for continuously growing greenhouse 

crops, such as tomatoes, cucumbers and melons, but can be adapted for any crop species. 

The model has been redesigned from the TOMGRO model, which was originally 

programmed in Fortran procedural code, which is notoriously rigid. Adopting object-

oriented modelling and design has improved the flexibility of the framework as new sub-

models can be built without compromising the integrity of the existing models and can 
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coexist within the same software environment. Then GPM system (Generic Plant 

Modelling), developed by Sequeira et al., 1997, is another generic modelling platform for 

various crop plant species. The GPSF and GPM systems are very similar in concept and 

design. For example, both models separate plant parts and processes into two distinct 

hierarchies; one class to define plant physiology and another to define plant processes. 

Each of the two classes is also categorised similarly.  The GPM system is a good example 

of building object-oriented models by aggregating sub-models and under some 

circumstances the interchanging of two sub-models. The revised GPSF showed that the 

implementation of a new program can take a fraction of the time to design compared to 

then the first model using conventional methods and much of the existing code can be 

reused.

The application of object-oriented modelling to aquatic ecosystems has taken on many 

different forms. Many of these deal with hybridised model frameworks, either linking GIS 

with dynamic management models (Freda & Jamieson, 1996; McKinney & Cai, 2002; 

Reitsma et al., 1994; Tisdale, 1996) or integrating artificial intelligent expert systems with 

numerical models for assistance in selecting and manipulating water quality models (Chau 

& Chen, 2001; Chau et al., 2002). Several individual-based models for the simulation of 

spatial aquatic environments or mobile aquatic organisms have been developed with 

object-oriented technologies. These individual-based models are particularly interesting to 

the development of freshwater ecosystem scale models. Mooji and Boersma (1996) discuss 

the generic model OSIRIS (object-oriented simulation framework for individual-based 

simulations), with an example given for the simulation of zooplankton Daphnia population 

dynamics. Bian (2000) combines an object-oriented GIS framework with an individual-

based model to represent fish as objects and their habitat and environment as GIS raster 

cells and spatial data. Bain’s model is a particularly comprehensive example of how all 

three modelling methods (object-orientation, GIS and individual-based models) can be 

integrated into a single simulation environment, which demonstrates the benefits of 

adopting object-oriented design and technologies for the development of complex, multi-

optional models. 

Object-oriented modelling has been applied to a small number of dynamic, process-based 

models for estuarine systems, (Coffaro & Sfriso, 1997; d'Oultremont & Gutierrez, 2002a, 

2002b; Williams, 1995), however, there are currently no published examples of 

applications applying the object-oriented modelling approach to freshwater-specific 

ecosystem models. In spite of this, there are many processes in marine systems, which are 

comparable to freshwater environments, such as primary productivity and nutrient cycling.

The analysis of existing object-oriented models for estuarine systems can present a starting 

point for the implementation of freshwater models into an object-oriented design. These 

models are similar in structure and simulation technique due to the use of differential 

equations for representing the dynamics of key aquatic processes.  For example, the 

ECOWIN model (Ferreira, 1995) and a model created by Coffaro & Sfriso (1997) of the 

macroalgae Ulva rigida in the Lagoon of Venice, Italy have both developed a similar 

hierarchical structure. Both models start their hierarchical tree with a super class that 

defines a general description of a differential equation, the integration method, initial 

values and other general information that all descending classes will use. Further 

abstraction takes place by defining general ecological processes. This is where subtle 

differences between model structures occur, mainly due to the differences in the purpose 

for model development and use. The ECOWIN model has been developed as a general 
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aquatic ecosystem model with the ability to perform scenario analysis for management of 

pollution and urbanisation. Therefore, several key classes are needed to describe the 

ecosystem, with the definition of more detailed classes further down the hierarchical tree 

(Figure 2.5). The Ulva rigida model defines fewer classes, as the purpose of the model is 

to understand the growth dynamics of the macroalgae and to evaluate the relative 

importance of factors controlling their growth (Figure 2.5). The difference between the 

development objectives of the ECOWIN and the Ulva rigida models has essentially 

determined the level of abstraction and inheritance that takes place. 

The main appeal of object-oriented modelling for many ecologists is the modularisation of 

a complex problem into a manageable and logical structure that is easier to translate into a 

simulation model. Inheritance concepts reduce the need to re-write code repeatedly and are 

well suited to modelling the hierarchical nature of ecological systems. Encapsulation and 

abstraction allows a model to be more representative of the real world, increases model 

flexibility and improves model extendibility. Adopting the object-oriented approach can 

save development and programming time, due to the modularisation and abstraction of 

classes that can be interchanged within the same simulation environment. This will also 

facilitate model sharing within the ecological modelling community, which is an issue that 

greatly interests ecologists who are now more then ever involved in multidisciplinary 

modelling projects (Radford & Blackford, 1996). 
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CHAPTER 3. 

MATERIALS AND METHODS 

3.1. SALMO: Dynamic Water Quality Model for Freshwater 

Lakes

The lake ecosystem model SALMO (Simulation by means of an Analytical Lake MOdel) 

was developed by Benndorf (1979) and Recknagel (1979) for scientific and practical water 

management applications, prompted by the increase in eutrophication problems in 

European lakes and reservoirs. Over the past two decades the model has been expanded, 

and has been successfully applied to many widely differing lake conditions, overseas and 

in Australia.  

3.1.1 Description of SALMO 

SALMO has been developed as a two-layer model that simulates the epilimnion and 

hypolimnion of stratified water bodies. The model assumes that the concentrations of 

matter or biomass are homogenously distributed within the water column or layer. The 

state variables currently simulated by SALMO-OO include orthophosphate, dissolved 

inorganic nitrogen, phytoplankton, zooplankton, detritus, and dissolved oxygen (Figure 

3.1). Phytoplankton is further divided into three state variables for the simulation of three 

functional groups: blue-green algae (e.g. Oscillatoria redekei), diatoms (e.g. Asterionella 

formosa) and green algae (e.g. Scenedesmus quadricauda). The zooplankton state variable 

represents herbivorous zooplankton only (e.g. Daphnia galeata). Fish and predatory 

zooplankton are considered indirectly by incorporating their influence on the zooplankton 

mortality rate. Each of the state variables is described by an ordinary differential equation, 

which is solved by the fourth order Runge-Kutta method. The model uses daily time steps. 

SALMO has been designed as a generic model thus, the majority of the model structure 

has been generalised as much as possible. Through rigorous and multiple sensitivity 

analyses using data from a range of conditions, all parameters values can be kept constant 

for all simulations (Recknagel, 1984). The model includes several driving variables, which 

require time-series data to define important environmental conditions. These include: 

Incident solar radiation (J cm
-2

 d
-1

)

Water temperature of mixed and stratified layers  ( C)

External concentration of nutrients entering the system (g Nm
-3

, mg P m
-3

),

Water inflow and outflow from mixed and stratified layers (m
3

d
-1

),

Mean and maximum water depth (m) 

Water body volume (m
3
)

Important processes for dissolved nutrients simulated by the model include nutrient 

(phosphate and nitrate) import, export, consumption by phytoplankton, remineralisation 

and exchange between the epilimnion and hypolimnion. Co-precipitation can also be 

simulated by SALMO. In addition, rates for nitrification and denitrification are included. 
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Phytoplankton processes of growth, sedimentation, zooplankton grazing, import and 

export, and exchange between stratified layers is included. The rate variables considered 

for zooplankton are growth, mortality, import, export and migration. The oxygen budget is 

simulated by SALMO and important processes include import and export of oxygen, 

exchange of oxygen between the epilimnion and hypolimnion, production by 

phytoplankton and consumption by zooplankton (Figure 3.1).  

O2 PRODUCTION

O2 EXPORT

P REMINERALISATION

N REMINERALISATION

DIP
PHYTOPLANKTON

(3 FG)

ZOOPLANKTON

P IMPORT

P EXPORT

P CONSUMPTION

P SEDIMENT RELEASE

P SEDIMENTATION

DIN

N IMPORT

N EXPORT

N CONSUMPTION

N SEDIMENT RELEASE

N DENITRIFICATION

GROWTH

SEDIMENTATION

GRAZING

EXPORT

IMPORT

GROWTH

MORTALITY

MIGRATION

EXPORT

OXYGEN

O2 IMPORT

O2 CONSUMPTION

DETRITUS

PRODUCTION

GRAZING EXPORT

IMPORT

SEDIMENTATION

Figure 3.1. Model structure diagram of SALMO-OO illustrating all the state variables and 

key processes simulated by the model. 

There are a number of problems with the original SALMO model that are currently being 

addressed. Firstly, the SALMO model is structurally complex due to the number of state 

variables, processes functions and parameters, which is typical of large ODE-based 

ecosystem models. This complexity often affects model transparency, implementation and 

maintenance. Secondly, SALMO was originally programmed using the FORTRAN 

programming language. This has resulted in a rigid and non user-friendly structure that 

presents problems in further developments to the model. Zhang (2006) has addressed these 

two problems by applying object-oriented programming and design using the JAVA 

programming language. As a result SALMO has been rebuilt into a portable, user-friendly 

and easily adapted software package, called SALMO-OO, which can be used and shared 

through the Internet. Adopting the object-oriented approach to improve the SALMO 

model has provided advanced functionality for further programming and has allowed the 

implementation of a framework that allows greater flexibility, particularly for maintenance 

and extension of the model structure. For greater detail on the object-oriented design and 

re-development of SALMO see Zhang (2006). 
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A third issue of improvement to the SALMO model is the simulation of phytoplankton 

functional groups. The original SALMO model could only simulate two algal functional 

groups for any given simulation run, although the model does contain ODEs and 

parameter values for three functional groups. During the redevelopment of SALMO into 

an object-oriented version, the model was restructured to simulate a greater number of 

algal functional groups. At present, three algal groups can be simultaneously predicted by 

the new SALMO-OO model: diatoms, green and blue-green algae. A fourth group can be 

included also, with extensions for other groups of algae easily made (Zhang, 2006). This 

has allowed the model to better describe algal seasonality and succession, and gives a 

more accurate prediction of the trophic state of a given lake or reservoir. Thus, with the 

new SALMO-OO model, experiments relating to the creation and testing of the simulation 

library are now easier to achieve within the object-oriented framework.

3.1.2 Phytoplankton growth process as simulated by SALMO-OO 

The original SALMO model simulates two phytoplankton functional groups for a given 

simulation run, but includes parameter values for three functional groups: diatoms, green 

algae and blue-green algae. Each functional group is described by an ordinary differential 

equation of the same structure (equation 1.1), defined by different parameter values (Table 

3.1). The sub-script i refers to each functional group for phytoplankton (X). The sub-

scripts T, E, and H refer to the total mixed layer (T), epilimnion (E) and hypolimnion (H). 

There are three differential equations for phytoplankton dynamics for each seasonal state 

(i.e. mixed conditions, epilimnion and hypolimnion). A key difference between mixed and 

epilimnion conditions is the AFLUXiE term, which calculates exchange of phytoplankton 

biomass between epilimnion and hypolimnion layers (equations 1.2 and 1.3). 

Phytoplankton production in the hypolimnion is distinguished by the use of input data 

from the hypolimnion, rather then from the mixed or epilimnion layers. Growth is 

calculated rather than kept constant or given a value of zero, as is the case for some other 

primary production models (equation 1.3). Phytoplankton settling is calculated as the 

settling velocity divided by the mixing depth multiplied by the phytoplankton biomass. 

Values for the settling velocity are unique to each phytoplankton functional group (for BG 

= 0.005; G = 0.1; D = 0.1). The settling velocity can be a sensitive parameter in the 

calibration of the phytoplankton biomass ODE, but during the experiments with 

alternative growth and grazing models these values remained the same for each model 

tested, as the aim is to keep as many phytoplankton variables constant as possible. 

Parameter definitions and units are given in Appendix A and a complete documentation of 

the SALMO equations is currently in press.

Phytoplankton biomass ordinary differential equation where i = 1,2,3 functional groups

     

(1.3)iT
i i i i  iT T T T

dA
   AGRO  - AEXP  - ASED  - AGRA AIN

dt
T

Where  AGROiT,E,H = Phytoplankton growth process rate in the total mixed layer; epilimnion; hypolimnion 

  AEXPiT,E,H = Phytoplankton export rate in the total mixed layer; epilimnion; hypolimnion 

ASEDiT,E,H = Phytoplankton sedimentation rate in the total mixed layer; epilimnion; hypolimnion 

AGRAiT,E,H = Phytoplankton grazing by zooplankton rate in the total mixed layer; epilimnion;  

   hypolimnion 

AINiT,E,H = Phytoplankton import rate in the total mixed layer; epilimnion; hypolimnion 

AFLUXiT,E,H = Exchange of phytoplankton biomass between the epilimnion and hypolimnion 
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Phytoplankton biomass dynamics in the epilimnion 

iE
i i i i  iE E E E E

dA
   AGRO  - AEXP  - ASED  - AGRA AIN AFLUX

dt
iE (1.4)

Phytoplankton biomass dynamics in the hypolimnion 

iH
i i iH H H

dA
   AGRO  - AEXP  - ASED  - AGRA

dt
i  H

i

(1.5)

Phytoplankton growth as simulated by SALMO-OO is determined by the difference 

between photosynthesis and respiration rates: 

, , , , , , , ,AGRO = PHO -RA *Ai i i iT E H T E H T E H T E H                            (1.6) 

Where  PHOiT,E,H = Phytoplankton photosynthesis rate 

RAiT,E,H = Phytoplankton respiration rate 

Photosynthesis is calculated as the product of modifications to growth caused by light, 

temperature, and nutrients (phosphorus and nitrogen): 

PHO =PHOL *PHOT *PHOP *PHONi i i i             (1.7) 

Where PHOLi = Light limiting growth function 

PHOTi = Growth modified by temperature function 

PHOPi = Growth limited by dissolved inorganic phosphorus  

PHONi = Growth limited by dissolved inorganic nitrogen 

The function used to calculate the limitation of light on growth follows Michaelis-Menten 

kinetics (equation 1.6) and is attenuated with depth according to Lambert-Beer’s Law 

(equation 1.7):

IREDZ
PHOL

+IREDZ
i

iKI
                        (1.8)        

IREDZ  I * exp (-  * )EPS zmix             (1.9)          

Where IREDZ = Incident light attenuation with depth (zmix) 

 KIi = Half-saturation constant for absorption of light (J cm-2 d-1)

 I = Incident light (J cm-2 d-1)

 EPS = Total extinction coefficient 
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The dependence of growth on temperature is included as an optimum function, where 

growth increases linearly until an optimum temp is reached and then plateaus to a more 

constant rate: 

-
PHOT  = 

* T + 

i i
i

i i

PHOMAX  PHOMIN

TOPTA  PHOMIN
                         (1.10)     

Where PHOMAXi = Maximum photosynthesis rate (d-1)

 PHOMINi = Minimum photosynthesis rate (d-1)

 TOPTAi = Optimum temperature for phytoplankton growth (°C) 

 T = Water temperature (°C) 

Nutrient limitation is calculated based on Michaelis-Menten kinetics, with a threshold 

function that determines the limiting nutrient based on the N: P ratio (equation 1.9, 1.10 

and 1.11): 

PHOP  ;  N/P 0.0072
PHONP

PHON   ; N/P 0.0072

i
i

i
         (1.11)                      

PHOP   P/A / /KAP P/KAP /A P/Ai i i i iKP KP i

i

              (1.12) 

PHON   N/A / /KAN N/KAN /A N/Ai i i i iKN KN        (1.13) 

Where  PHONPi = Function that determines which nutrient is limiting phytoplankton growth 

 KPi = Half-saturation constant for P uptake by algae (mg m-3)

KAP = Half-saturation constant of the inverse relationship between rate of photosynthesis and  

  phytoplankton biomass at P limitation of phytoplankton growth (g m-3)

 KNi = Half-saturation constant for N uptake by algae (mg m-3)

 KAN = Half-saturation constant of the inverse relationship between rate of photosynthesis and  

  phytoplankton biomass at N limitation of phytoplankton growth (g m-3)

Respiration is also temperature dependent: 

   RAi = (RATOPTi - RATMINi) / TOPTAi * T + RATMINi + 0.3 * PHOi    (1.14)      

Where  RATOPTi = Phytoplankton respiration rate at optimum temperature (d-1)

 RATMINi = Phytoplankton respiration rate at 0 C (d-1)
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3.1.3 Phytoplankton grazing by zooplankton process as 

simulated by SALMO-OO 

The grazing process affecting phytoplankton biomass is represented similarly for each 

phytoplankton functional group, but parameterised with values relevant to each functional 

group. Table 3.1 gives the parameter values for the SALMO-OO grazing process 

equations and the definitions and units can be found in Appendix A. 

The overall grazing process is calculated based on the sum of all food types that are grazed 

depending on zooplankton food preferences multiplied by a temperature dependent 

grazing function (GT) and zooplankton biomass (Z).

4

1

4

1

4

1

, ,

/ /A *PFA

* */ A *PFA

/ / /A *PFA

i

i

i

i i

i i iT E H

i i

Z

AGRA GT ZKAG KZ

KZ KAG KZ Z

i

                   (1.15)       

                      
Where  GT = Temperature term for ingestion rate ( C)

 PFAi = Preference factor for the ingestion of each food source 

 KAG = Half-saturation constant for the ingestion of food by zooplankton (g m-3)

 KZ = Half-saturation constant of the inverse relationship between ingestion rate of each food  

  source and zooplankton biomass (g m-3)

Selectivity of available food by zooplankton is represented by a preference factor (PFAi)

that describes the different preferences that zooplankton have for different algal functional 

groups (i = 1,2,3) and detritus (i = 4). KZ represents the half-saturation value of the inverse 

relationship between the zooplankton ingestion rate and zooplankton biomass: 

0.41

1.5

5.76*A                     ;   A  8.6

  0.4*A      ;  A  8.6

i
i

i i

KZ
KZMIN

        (1.16) 

        
Where  KZMIN = Theoretical minimum value of KZ (g m-3)

Grazing is also temperature dependent between minimum and maximum critical 

temperature ranges: 

*  exp * ln
T

GT GMAX GMIN R abs GMIN
TOPTZ

           (1.17) 

Where GMAX = Maximum ingestion rate by zooplankton (g d-1)

 GMIN = Minimum value of specific ingestion rate (g d-1)

 R = Dependence of ingestion rate on water temperature  

 TOPTZ = Optimal temperature for zooplankton feeding activity ( C)
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3.2. Data Requirements and Study Sites 

3.2.1 Data requirements for the SALMO-OO simulation library 

The SALMO-OO model makes use of measured time series data of physical and chemical 

factors relevant to lake dynamics, rather than using simulated environmental data as 

occurs in many other ecosystem models. The input data are in the form of daily values 

from 0 to 360 days. All data sets used in this project were interpolated into daily values 

using a linear interpolation method in MS Excel. The input data required by SALMO-OO 

are:

Volume of the mixed layer, epilimnion and hypolimnion (m
3
)

Real mixing depth (m) 

Mean depth of mixed layer and of the hypolimnion (m) 

Water inflow  (m
3
 d

-1
)

Water outflow (m
3
 d

-1
)

Strong rain events factor (highest ratio between water flow of two consecutive 

days) (-) 

Incident solar radiation (photosynthetic active radiation) (J cm
-2

 d
-1

)

Water temperature in the mixed layer and the hypolimnion ( C)

Dissolved inorganic phosphorus concentration in the inflowing water (mg P m
-3

)

Dissolved inorganic nitrogen concentration in the inflowing water (g N m
-3

)

Particulate organic matter concentration in the inflowing water (g m
-3

)

The SALMO-OO model has 128 parameters that are kept constant for all simulations. 

Parameter values from SALMO-OO, such as the half-saturation constant for PO4-P uptake 

(KP) or optimum temperature for growth (TOPTA), were used where possible for the 

alternative process models in the simulation library (Table 3.1). However, in some cases it 

was necessary to include several new parameters to be used specifically for the simulation 

library (Table 3.2), and a literature search for parameter values was undertaken in order to 

establish parameter ranges. The optimum respiration rate (RO) and maximum grazing rate 

(Gmax) for the simulation library were given different names from those used by 

SALMO-OO (RO = RATOPT and Gmax = GMAX), as these two parameters are kept 

constant in SALMO-OO but are calibrated within the simulation library. All new 

parameters relevant to the simulation library were kept constant for all simulations 

(Appendix B). 

The SALMO-OO output simulations for each data set were compared to daily measured 

data for phytoplankton biomass, phosphate concentration and where possible zooplankton 

biomass. No data were available for phytoplankton functional group dynamics, the 

exception being Lake Weida, however, we can determine the extent with which SALMO-

OO can simulate algae functional groups based on phytoplankton succession theory for 

different trophic conditions as proposed by Reynolds (1993) and outlined in the SALMO-

OO selection criteria discussed in section 3.6.3. 

The data sets used to test and validate the SALMO-OO simulation library are categorised 

below according to trophic state, as a key study objective is to develop the SALMO-OO 

simulation library as a model that can simulate a wide variety of trophic conditions using a 
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generic structure. During the initial development stages the SALMO-OO model was tested 

predominately with data from Bautzen and Saidenbach Reservoirs, Germany. These data 

sets were used to develop and validated the original SALMO model and have good quality 

measured data for phytoplankton and zooplankton biomass and phosphate concentrations 

with which to test the new SALMO-OO version. The use of these data sets also allows us 

to compare the new SALMO-OO model to the simulations of the original SALMO model 

and determine how effective improvements to the new model are. 

Table 3.1. List of parameter values, definitions and units specific to the SALMO-OO 

phytoplankton growth and grazing process models. 
Parameter Definition and Units Value

BG = blue-green algae, G = green algae, D = diatoms. BG G D

KIi
Half-saturation constant for absorption of light 
(J cm

-2
 d

-1
)

28 29 29

KNi
Half-saturation constant for N uptake by algae  
(g m

-3
)

0.0123 0.0095 0.0123 

KPi
Half-saturation constant for P uptake by algae  
(mg m

-3
)

1.7 9.5 1.7

PHOMAXi Maximum photosynthesis rate (d
-1

) 2.37 3.3 2.37

PHOMINi Photosynthesis rate at 0 C (d
-1

) 0.0 0.35 0.17

RATOPTi Phytoplankton respiration rate at optimum temperature (d
-1

) 0.057 0.06 0.06

TOPTAi Optimum temperature for phytoplankton growth ( C) 25 25 20

PAFi Preference factor for the ingestion of each food source 0.3 1.0 1.0

GMAX Max value of specific ingestion rate G (g d
-1

) 1.3

GMIN Min value of specific ingestion rate G (g d
-1

) 0.26

KZMIN Theoretical minimum value of KZ (g m
-3

) 4

R Dependence of ingestion rate on water temperature  2.0

TOPTZ Optimal temperature for zooplankton feeding activity ( C) 20

Table 3.2. List of parameter definitions, units and values used in the SALMO-OO 

simulation library, in addition to the overall SALMO-OO model.  
Parameter Definition and Units Reference Value 

BG = blue-green algae, G = green algae, D = diatoms. BG G D

IS Saturated light intensity (J cm
2
 d

-1
) Miyanaga (1986) 1800 1800 1800

RO Constant phytoplankton respiration rate (d
-1

) Calibrated 

TMAXA Maximum temperature for growth ( C) Scavia & Park (1976) 35 35 45

TMINA  Minimum temperature for growth ( C) Scavia & Park (1976) 0 0 0

Kw Extinction coefficient of water (m
-1

)
Krivtsov et al (1998); 
Jorgensen (1988)  

0.2 0.2 0.2

Kc
Extinction coefficient due to phytoplankton 
biomass (m

-2
)

Krivtsov et al (1998); 
Jorgensen (1988) 

0.1 0.1 0.1

Gmax Maximum grazing rate by zooplankton (d
-1

) Calibrated 

FMIN
Min concentration of phytoplankton available 
as food  (g m

-3
)

Hongping & Jianyi 
(2002) 

0.05 0.05 0.05

TMAXZ  
Minimum temperature for zooplankton 

grazing ( C)
Scavia & Park (1976) 35 35 35

TMINZ 
Maximum temperature for zooplankton 

grazing ( C)
Scavia & Park (1976) 0 0 0

Q10 Temperature coefficient Scavia & Park (1976) 1.9 1.9 1.9
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3.2.2 Study Sites 

3.2.2.1 Bautzen Reservoir, Germany

Bautzen Reservoir is situated approximately 70 km north east of Dresden, Germany. The 

reservoir is relatively shallow (Table 3.3) and is classified as hypertrophic. The catchment 

area surrounding Bautzen Reservoir is densely populated with intense cultivation and 

industry (Deppe & Benndorf, 2002). Due to its high trophic state biomanipulation 

management strategies have been in place since the late 1970s to improve water quality 

(Dorner et al., 2001). Phosphorus  levels are very high (mean summer TP = 140 g L
-1

 in 

1997) and blue-green algae are the dominant phytoplankton functional group (Dorner et 

al., 2003). Measured data for phytoplankton biomass, zooplankton biomass and phosphate 

concentration from 1978 (Recknagel & Benndorf, 1982) were available to test the 

SALMO-OO simulation library (figure 3.2). 
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Figure 3.2. Bautzen rRservoir linearly interpolated measured data for  phosphate 

concentration,  phytoplankton and  zooplankton biomasses. X-axis is in Julian days 

(measured data according to (Recknagel & Benndorf, 1982)).

3.2.2.2 Lake Arendsee, Germany

Lake Arendsee is located in northern Germany and is influenced predominantly by 

agricultural areas. The Lake is deep (Table 3.3) and is currently classified as highly 

eutrophic (Neumann et al., 2002), with the dominance of blue-green algae. During the 

period that the data was collected (1975) restoration programs were introduced, such as a 

sewage treatment plant, which was built in 1973 and in 1976 a deepwater drainage system 

was constructed (Neumann et al., 2002). In 1995, the mean phosphorus concentrations in 

the lake were estimated to be approximately 190 g/l. Phosphorus is remobilised under 

anoxic conditions from the lake sediments during summer and winter stratification. During 

the mixing period, nutrients are redispersed in the water body, becoming a source for new 

algal blooms (Neumann et al., 2002). Measured data for phytoplankton biomass and 

phosphate concentration from 1975 (Klapper, pers. com.) were available to test the 

SALMO-OO simulation library (figure 3.3). 
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NOTE:  This figure is included on page 35 in the print copy of the thesis 
held in the University of Adelaide Library. 
 

 
 
 
 
 

Figure 3.3. Lake Arendsee linearly interpolated measured data for - phosphate 

concentration and - phytoplankton biomass. X-axis is in Julian days (measured data 

from Klapper (1975), pers. com.) 

 
3.2.2.3 Lake Roodeplaat, South Africa 
 
Lake Roodeplaat is located 20 km north east of Pretoria, South Africa and has 

exhibited eutrophication problems since the 1980s. The lake is eutrophic to 

hypertrophic (Table 3.3), with annual TP concentration constantly above 130 µg L-1 

and chlorophyll a values above 30 µg L-1 (DWAF/IWQG, 2000). The Lake and 

surrounding area (668 km2) is largely used for recreation, thus the need for improved 

water quality conditions, and for agriculture. Measured data for phytoplankton 

biomass and phosphate concentration from 2003 (Van Ginkel, et al., 2006) were 

available to test the SALMO-OO simulation library (figure 3.4). 
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NOTE:  This figure is included on page35 in the print copy of the thesis 
held in the University of Adelaide Library. 

  

 
re 3.4. Lake Roodeplaat linearly interpolated measured data for - phosphate 

entration; - phytoplankton biomass; - blue-green algae; - green algae and - 
ms. X-axis is in Julian days (measured data from Van Ginkel, et al., 2006). 

2.4 Lake Hartbeespoort, South Africa 

 Hartbeespoort is located 35 km west of Pretoria, South Africa and it is a warm, 

omictic lake. Since the early 1980s the lake has had extensive eutrophication 

lems with chlorophyll a values generally ranging between 4 and 920 mg m-3 

maruga & Robarts, 1997). Thus, lake Hartbeespoort is categorised as a 

rtrophic lake (Table 3.3). The area is predominantly used as a source of irrigation 

is a popular 



tourist resort area. High nutrient loads enter the system from catchment runoff (mean 

annual runoff = 1630m3; mean annual rainfall = 700mm) influenced by heavy urban 

and industrial areas (Cawood & Friend, 2005; Cochrane et al., 1987). Cyanobacteria 

are the dominant phytoplankton species throughout the year, comprising 

approximately 90% of the total algae abundances (Cochrane et al., 1987). Measured 

data for phytoplankton biomass and phosphate concentration is available from 2003 

(Van Ginkel, et al., 2006) (figure 3.5). 

 
 
NOTE:  This figure is included on page 36 in the print copy of the thesis 
held in the University of Adelaide Library. 
 

 
 
 
 
 

 

Figure 3.5. Lake Hartbeespoort linearly interpolated measured data for - phosphate 

concentration; - phytoplankton biomass; - blue-green algae; - green algae and - 
diatoms. X-axis is in Julian days (measured data from Van Ginkel, et al., 2006). 

 
3.2.2.5 Lake Klipvoor, South Africa 
 
Lake Klipvoor is located north east of Lakes Roodeplaat and Hartbeesport, near the 

large town of Bela-Bela in the eastern provinces of South Africa. Lake Klipvoor is 

heavily degraded with poor water quality due to high levels of urbanisation and 

industrial discharges. The land surrounding the Klipvoor Dam and lake is used mostly 

for agriculture with some densely settled areas. Formations of algal scums are 

common during summer, with a dominance of blue-green algae species (Microcystis 

and Anabeana). Measured data for phytoplankton biomass and phosphate 

concentration is available from 2003, as well as biomass measured data for blue-green 

algae, green algae and diatoms (Van Ginkel, et al., 2006) (figure 3.6). 
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re 3.6. Lake Klipvoor linearly interpolated measured data for - phosphate 

entration; - phytoplankton biomass; - blue-green algae; - green algae and - 
ms. X-axis is in Julian days (measured data from Van Ginkel, et al., 2006). 

le 3.3).  
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Table 3.3. Key morphological data and trophic status of the data sets used to develop and 

validate the SALMO-OO simulation library. 
Mean
depth
(m) 

Max
depth
(m) 

Surface
area
(km

2
)

Water 
residence 
time (d) 

Trophic state References 

Bautzen 
Reservoir 
Germany 

7.4 13 5.3 193
Hypertrophic Deppe & Benndorf 

(2002) 

Lake Arendsee 
Germany 

29 49 5.2 183
Hypertrophic Neumann et al 

(2002) 

Lake
Roodeplaat  
South Africa 

10.6 40 3.97
No data 
available

Hypertrophic DWAF/IWQG (2000) 

Lake
Hartbeespoort 
South Africa

9.6 32.5 20
No data 
available

Hypertrophic Cochrane et al
(1987) 

Lake Klipvoor 
South Africa 5.78 20.9 7.58 131.4

Hypertrophic Van Ginkel pers. 
com.;

Saidenbach 
Reservoir 
Germany

15.3 45 1.46
No data 
available

Mesotrophic Schulze et al (2004); 
Kahl & Radke (2005) 

Lake Weida 
Germany 

10 20 0.93 106
Mesotrophic Schmidt et al (2002) 

Lake Stechlin 
Germany

23.3 69.5 4.23
No data 
available

Oligotrophic Schulz et al (2004) 

Lake Soyang 
South Korea 

42 110 45 255
Mesotrophic - 
Oligotrophic 

Kim et al (2000) 

3.2.2.6 Saidenbach Reservoir, Germany 

Saidenbach reservoir is situated in Saxony, Germany and is predominantly used as a 

drinking water reservoir. The reservoir has been classified as mesotrophic (Table 3.3) with 

soluble reactive phosphate concentrations of between 10 to 15 g L
-1

 (Kahl & Radke, 

2005). Green algae and large diatoms dominate the phytoplankton community. Measured 

data for phytoplankton biomass, zooplankton biomass and phosphate concentration from 

1975 were available (from Benndorf and Recknagel, 1982) to test the SALMO-OO 

simulation library (Figure 3.7). 
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Figure 3.7. Saidenbach reservoir linearly interpolated measured data for  phosphate 

concentration,  phytoplankton and  zooplankton biomasses. X-axis is in Julian days 

(measured data from Benndorf and Recknagel, 1982).
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3.2.2.9 Lake Soyang, South Korea 

Lake Soyang is the deepest and largest reservoir in South Korea (Kim et al., 2000) and is 

located on the North Han River. Lake Soyang has been classified as mesotrophic to 

oligotrophic (Table 3.3). Most nutrient loading is from non-point sources and aquaculture. 

The catchment experiences summer monsoons with an annual rainfall of 1200 mm per 

year (Kim et al., 2000). Measured data for phytoplankton biomass and phosphate 

concentration is available from 1998 (Kim et al., 2000) (Figure 3.10). The data was 

obtained as daily time series. 
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Figure 3.10. Lake Soyang linearly interpolated measured data for  phosphate 

concentration and  phytoplankton biomass. X-axis is in Julian days (measured data from 

Kim et al., 2000). 

3.2.3 A Comparison of Trophic States

There are several different trophic state indices that are available for classification of lakes 

and reservoirs. Many have been based on European lakes, but are equally applicable to 

other lentic water bodies in other parts of the world. Tables 3.4, 3.5, 3.6 illustrate the 

different parameters used to classify trophic conditions by different authors. Table 3.7 

gives a trophic State Index (TSI) developed by Carlson (1977) which involves a simple 

regression function to calculate trophic state based on total phosphorus  (TP), chlorophyll-

a and secchi disk measurements:  

TSI TP = 14.42* ln Mean 4.15TP

TSI Chl-  = 9.81* ln Mean Chl-a a

                     (1.18)

                  (1.19) 30.6

TSI Secchi = 60 - 14.41* ln Mean Secchi        (1.20) 

Each of the different approaches demonstrates that different parameters can be used to 

assess trophic conditions. With the datasets that are available for this study only 

orthophosphate and chlorophyll-a data can be used to classify the trophic state of each 

site, but these parameters are probably the most important to give a fair estimate of trophic 

conditions.

10

P
h

o
sp

h
at

e 
(m

g
/L

) 

12

0 60 120 180 240 300 360
0

0.5

1

1.5

2

2.5

0 60 120 180 240 300 360

B
io

m
as

s 
(c

m
3
/m

3
)

39



 
 

 
 
NOTE:  Tables 3.4 – 3.7 are included on page 40 in the print copy of the 
thesis held in the University of Adelaide Library. 
 

 
 
 
 
 

 
 
Table 3.8 lists the mean orthophosphate, mean chlorophyll-a and maximum 

chlorophyll-a and the Carlson’s chlorophyll-a TSI for each of the study sites. 

Comparisons of the different indices for each site show that generally the trophic state 

is easily assessed based on these few variables, with minimal discrepancies as to what 

trophic category each site should be allocated. Bautzen reservoir and Lake Arendsee 

are both categorised as eutrophic by all indices. Similarly Saidenbach reservoir and 

Lake Weida are unanimously categorised as mesotrophic, Lakes Stechlin and Soyang 

as oligotrophic, and Lake Klipvoor as hypertrophic. For Lakes Roodeplaat and 

Hartbeeespoort some discrepancies 
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were observed between classifying these sites as either eutrophic or hypertrophic. Trophic 

state indices from Ryding and Rast (1989) and Carlson (1977) both classify Lake 

Roodeplaat as eutrophic whereas Vollenweider and Kerekes (1982) and Forsberg and 

Ryding (1980) classify the site as hypertrophic. Only Ryding and Rast (1989) categorise 

Lake Hartbeespoort as eutrophic/polytrophic, whereas the other indices categorise this site 

as hypertrophic. However, according to the literature on these two South African sites, 

both lakes are considered as hypertrophic, with severe eutrophication problems. 

Table 3.8. Trophic state classification of the study sites used to test the SALMO-OO 

simulation library according to four different indices. E = eutrophic; H = hypertrophic; P = 

polytrophic; M = mesotrophic; O = oligotrophic. 
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Mean
Ortho-
phosphate 
(mg/L)

0.1 0.2 0.16 0.05 0.003 0.015 0.001 0.003 0.76

Mean
Chl-a

( g/L)

25.6 16.8 36.2 53.2 3.18 4.76 1.09 1.82 144.6

Max
Chl-a

( g/L)

75 39.7 96.3 277.7 14.57 17.5 3.8 5.3 515.8

TSI
(Chl-a)

62.4 58.3 65.8 69.6 41.9 45.9 31.4 36.5 79.4

Trophic
State

1
E E - P E - P E - P M M O O H

Trophic
State

2
E E H H M M O O H

Trophic
State

3
E E E - H H M M O O H

Trophic
State

4 E E E H M M O O H

1 (Ryding and Rast, 1989)    
2 (Vollenweider and Kerekes, 1982) 
3 Forsberg and Ryding (1980) 
4 Carlson (1977) 
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3.3.  Selection criteria for literature model evaluation 

The development of the SALMO-OO simulation library required an extensive search of 

the scientific literature for models describing phytoplankton dynamics in aquatic 

environments. Figure 3.11 illustrates the procedure designed to select appropriate 

phytoplankton population models. Several criteria had to be met in order to finalise which 

models would be analysed for inclusion into the SALMO-OO simulation library. The 

initial focus was on phytoplankton models that were of the form of ordinary differential 

equations (ODEs), as these are compatible with the model structure from SALMO. It was 

important that those models considered showed that their particular model structure could 

simulate phytoplankton seasonal dynamics reasonably well. Papers that provided 

sufficient documentation to reproduce phytoplankton dynamics in simulation software 

were selected for initial experimentation.  

M odel rationale com parisons

• S tandardise notation

• Identify m a jor sub processes

Test behaviour of various sub m odels and processes

• “Testing fram eworks” using STELLA to analyse 

function behaviour

D ISC AR D 

M O DEL

O rdinary 

d ifferentia l 

equation?

Does the m odel 

represent phytoplankton 

seasonal dynam ics and 

predict reasonably well?

Is the m odel 

suffic iently 

docum ented?

Com patib le w ith 

SALM O -O O  

rationale ?

YES

N O

Search scientif ic  literature for 

phytoplankton m odels

YES

N O

YES

N O

YES

N O

Accept M odel for 

In tegration and analysis 

in  S ALM O -O O

Figure 3.11. Flow chart illustrating criteria for the selection of literature models to be 

included in the SALMO-OO simulation library. 
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This eliminated many specific models from being considered, however the overlap 

between model structures and formulisations ensured that many approaches were well 

represented. Compatibility with the SALMO model rationale was also a very important 

consideration, such as: 

1. The ability of a model to simulate phytoplankton functional groups,  

2. Phytoplankton units as biomass rather then chlorophyll a or carbon units,

3. Phytoplankton production limited by light intensity, nutrient concentrations and 

water temperature,  

4. Biomass impacted by grazing from zooplankton, and  

5. Equations for various processes were developed based upon algae population 

dynamics theory, rather then through computational methods such as regression 

analysis. 

Once the literature models were subjected to these criteria and accepted, further analysis 

of the model structure could proceed.  

3.4. Initial “Testing Frameworks” for model analysis  

In order to review and test many alternative models, a simple “testing framework” was 

established using the visual simulation software STELLA v 6.0.1. STELLA enables the 

development, testing and running of models based on differential equations in a manner 

that is quick and easy. The testing framework included the development of a series of 

ordinary differential equations representing phytoplankton biomass, with growth 

(photosynthesis minus respiration) and grazing considered as processes influencing 

phytoplankton production (equation 1.19). Each alternative growth model was tested for 

three phytoplankton functional groups: blue-green algae, green algae and diatoms, and 

differentiated by using different parameter values for each functional group. 

Standardisation of model notation and conversion of various parameters was conducted 

where necessary. 

 Algae
  Growth - Grazing

dt

dt
(1.21)

The time step for model simulations was daily and the simulations were run for 360 days 

using linearly interpolated time-series data as inputs for water temperature and light 

intensity. 

3.4.1 Phytoplankton growth process models  

Each literature model that satisfied the criteria outlined in section 3.3 was analysed within 

this “testing framework”. Thus, several ODEs were programmed in STELLA to represent 

each different growth process for four different literature models (equation 1.20). 

The testing framework included several ordinary differential equations based on the 

different representations of growth processes models and the same formulation for grazing 

by zooplankton.
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 AlgaeBiomass
  (Photosynthesis - Respiration) * AlgaeBiomass - Grazing

dt

dt
    (1.22) 

   

A simple equation for grazing was included using measured data for zooplankton biomass 

and a constant value for the maximum grazing rate (Gmax): 

Grazing = Gmax * AlgaeBiomass * ZooplBiomass                                         (1.23)   

Therefore, the only processes that would be different between each model tested would be 

phytoplankton growth, enabling the behaviour of each growth process to be compared to 

each other, the SALMO growth process and the measured data for phytoplankton biomass.  

Whilst reviewing many different phytoplankton models, it became apparent that the 

representation of nutrient limitations was mostly considered by the classic Michaelis-

Menten function: 

4

 4

PO
ƒ(P) = 

+ POKP
                      (1.24)

where PO4 is the concentration of dissolved inorganic phosphorus  and KP is the half-

saturation constant for the uptake of PO4 by algae. Therefore, the Michaelis-Menten 

function was adopted for all models tested to represent nutrient limitations. For the initial 

simulation library experiments only dissolved inorganic phosphorus  was considered and 

measured data was used, rather than simulated phosphorus . Figure 3.12 illustrated the 

testing framework for the simulation library. 

The data used to test each alternative growth process function was from Bautzen and 

Saidenbach Reservoir, Germany (see section 3.2 for description of data sets). 

3.4.2 Phytoplankton grazing process models

A second “testing framework” was developed to examine phytoplankton predation by 

zooplankton process models.  A somewhat more complex version of the growth models 

testing framework was developed, where zooplankton and dissolved inorganic phosphorus  

were considered as state variables and simulated by the framework. Three functional 

groups of algae were also included as in the growth model experiments. Each grazing 

model was tested within this framework, with the output being the phytoplankton biomass, 

zooplankton biomass (cm
3
/m

3
) and phosphate concentration (mg/m

3
). This was compared 

to the phytoplankton and zooplankton biomasses produced by the SALMO grazing 

function and phytoplankton and zooplankton measured data (Figure 3.13). Each grazing 

and zooplankton growth model was tested with the same databases used for the 

phytoplankton growth experiments. Driving variables included water temperature, solar 

radiation, water depth, phosphate loadings, and water inflow and outflow. 
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Figure 3.12. Testing framework structure using STELLA software for alternative 

phytoplankton growth models. 
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3.5. Description of alternative process models for 

phytoplankton growth and grazing dynamics 

As a result of the “testing framework” experiment three alternative models for 

phytoplankton growth and grazing were selected for inclusion into the SALMO-OO 

simulation library: 

1. Hongping and Jianyi (2002) 

2. Arhonditsis & Brett (2005) 

3. CLEANER (Park et al, 1974; Scavia and Park, 1976) 

Hongping and Jianyi (2002) developed a lake ecosystem model for West Lake, China to 

investigate eutrophication and perform scenario analysis of various management 

strategies, such as biomanipulation. The model was designed specifically for West Lake, 

which is a small, sallow lake with eutrophic conditions. The model simulates four 

phytoplankton functional groups (blue-green algae, green algae, diatoms and cryptophyta) 

using the same ordinary different equations, but defined for each group by specific 

parameter values. Only phosphate conditions have been modelled, as this is the limiting 

nutrient. The model does not simulate stratification, as West Lake is shallow and assumed 

to be well mixed.  

Arhonditsis and Brett (2005) developed a more complex eutrophication model for the 

simulation of Lake Washington, USA. The model is similar to SALMO-OO but includes 

state variables for organic carbon and silica and a hydrodynamic model. The model 

simulates three groups of phytoplankton (blue-green algae, green algae and diatoms) and 

two groups of zooplankton (copepods and cladocerans). Many of the environmental 

forcing functions, such as water temperature and solar radiation are simulated rather than 

measured time-series data.

The CLEANER model was first published in 1976 by Scavia and Park and was based on 

an early model version called CELAN (Park et al., 1974), with additions of nitrogen and 

phosphorus  cycling, oxygen reformulation of the decomposition sub models and 

refinement of various process terms to make CLEANER. The CLEAN and CLEANER 

models was designed for lake ecosystem modelling particularly for the Great Lakes of 

North America, and was influenced by the work of Riley (Riley, 1965; Riley et al., 1949) 

and Steele (Steele, 1958, 1962). CLEANER includes sub models for phytoplankton, 

zooplankton (herbivorous and carnivorous), nutrients (PO4-P and NO3-N), decomposers, 

macrophytes, suspended organic matter, fish, benthic insects and sediments. CLEANER 

simulates two groups of algae, based on size – nano-phytoplankton (extremely small) and 

net-phytoplankton (larger species). Appendix A gives the parameter definitions and units 

of each of the alternative growth and grazing models. Parameter values can be found in 

Table 3.1 and 3.2. 
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3.5.1 Phytoplankton growth process models 

Phytoplankton growth is calculated for each alternative growth model as the difference 

between photosynthesis and respiration per unit of biomass (equation 1.23). In all cases, 

photosynthesis is limited by nutrients, light and temperature using the multiplicative 

function (equation 1.24), although Arhonditsis and Brett (2005) include the Liebig’s Law 

of the Minimum function to decide which nutrient is the limiting factor (equation 1.25). 

AGRO = PHO -RAT,E,H T,E,Hi i iT,E,H                        (1.25)                          

Where  AGROiT,E,H = Phytoplankton growth process rate in the total mixed layer; epilimnion; hypolimnion 

  PHOiT,E,H = Phytoplankton photosynthesis rate 

RAiT,E,H = Phytoplankton respiration rate 

Hongping and Jianyi (2002) photosynthesis function: 

PHO *PHOL *PHOT *POHP *PHONi i i iT,E,Hi PHOMAX i                       (1.26) 

Where  PHOMAXi = Maximum photosynthesis rate (d-1)

 PHOLi = Light limiting growth function 

PHOTi = Growth modified by temperature function 

PHOPi = Growth limited by dissolved inorganic phosphorus  

PHONi = Growth limited by dissolved inorganic nitrogen 

Arhonditsis and Brett (2005) photosynthesis function: 

,PHO = *PHOL *PHOT *min POHP PHONi i i iT,E,Hi PHOMAX i

i

                               (1.27)

The CLEANER photosynthesis function uses a slightly different construct to calculate 

limiting factors. Combined limitations of light and nutrients are represented as a 

normalised factor that is mathematically analogous to the inverse of the total effect of 

electrical resistors in parallel:  

PHO = *Ut*PHOTiT,E,Hi PHOMAX                                                     (1.28) 

1

( )

n

ii

N
Ut

U

     Therefore,

3

1 1

PHOLi PHOPi PHONi

                (1.29)             

he developers of the original CLEAN model were not satisfied that the typical 

1

Ut

                   

T

formalisation of photosynthesis used in ecosystem models was appropriate to represent 

what was observed in nature. Therefore, they developed a new function, where n is the 

number of limiting functions and is used to normalise the total limitation term. If no 

48



nutrient is limiting, Ut shows no limitation. If any one function is absolutely limiting, the 

function is totally limiting. 

Each growth model simulates underwater light conditions using an integrated Steele and 

ongping and Jianyi (2002) light limitation function: 

Beer’s Law function, to account for light intensities above and below the saturation level 

and integrated over depth. However, Arhonditsis and Brett (2005) and CLEANER models 

include the photoperiod in these functions, which defines a 12 hour light – dark cycle: 

H

I * 1 - exp EPS I * 1 - exp EPS

EPS EPS
PHOL  * exp 1- = 

-  * zmix -  * zmix

-  * zmix -  * zmix
i

IS IS
             (1.30)  

here  EPS = Total extinction coefficient 

 d-1)

rhonditsis and Brett (2005) and CLEANER light limitation function: 

W

 Zmix = mixing depth (m) 
2 IS = Saturated light intensity (J cm

A

I
*2.718* I

PHOL * exp exp*
EPS* *

exp EPS*

FP
i IS FP

zmix IS FP
zmix

         (1.31)

here  FP = Photoperiod = 12 – 4 * Cos(2 *  * t/360) where t = time 

he light extinction coefficient parameter (EPS), common to each growth model, is 

                    (1.32)

emperature is calculated as an optimum function by all growth models, where growth 

ongping and Jianyi (2002) temperature limitation function: 

W

T

calculated based on the sum of the background extinction coefficient of water (kw) and of 

organic matter (kc), such as detritus and phytoplankton cells: 

3

1

Ai
i

*EPS  = kw + kc

T

increases until an optimum temperature is reached (TOPTAi) and then gradually declines 

until a critical temperature range is reached: 

H

T T
POHT  = *exp 1-i

i iTOPTA TOPTA
                           (1.33) 
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Arhonditsis and Brett (2005) temperature limitation function, which is based on that 

described by Lehman et al (1975): 

2

2

T - 
PHOT   exp -2.3*   ; for  

T - 
PHOT  exp -2.3*     ; for  

T

T

i

i i

TOPTAi
i

TMAXA TOPTAi

TOPTAi
i

TMAXA TMINA

TOPTAi

TOPTAi

                           (1.34) 

here  TMAXAi = Maximum temperature for growth ( C)

LEANER temperature limitation function is a slightly modified function from one 

                   (1.35)  

W

 TMINAi = Minimum temperature for growth ( C)

 T = Water temperature ( C) 

C

developed to represent the temperature dependencies of respiration and feeding rates of 

poikilotherms:  

T 2PHOT  = T1 exp T 2* 1 T1i

T
T1 i

ii

TMAXA

TMAXA -TOPTA
             (1.36)     

2
2 40T3 * 1 1

T3
T2

400
                   (1.37)       

         (1.38) 

rowth is limited by external nutrients according to the classic Michaelis-Menten 

103 ln * iiQ TMAXA -TOPTAT

G

function. Both phosphate (P) and nitrate (N) limitations have been included: 

PHOP i
i

P

KP P
                                 (1.39)

PHON i
i

N

KN N
            (1.40) 

Where  KPi = Half-saturation constant for P uptake by algae (mg m-3)

 all cases, phytoplankton respiration is dependent on water temperature and a maximum 

respiration rate. The Hongping and Jianyi (2002) and Arhonditsis and Brett (2005) 

phytoplankton respiration function describes an exponential rate. 

 KNi = Half-saturation constant for N uptake by algae (g m-3)

 P = Dissolved inorganic phosphorus  (mg m-3)

 N = Dissolved inorganic nitrogen (g m-3)

In
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Hongping and Jianyi (2002): 

RA exp 0.038 Ti i= RO * *      T,E,H                      (1.41) 

Where  RAiT,E,H = Phytoplankton respiration process rate (d-1)

 ROi = Constant phytoplankton respi ion te (d-1)

i                            (1.42)

                   
LEANER phytoplankton respiration rate: 

                                                             (1.43) 

.5.2 Phytoplankton grazing process models 

ooplankton grazing of phytoplankton is formulated similarly for each of the alternative 

cribed by a modified Michaelis-

enten function. Feeding ceases when food concentrations fall below a critical threshold, 

rat  ra

Arhonditsis and Brett (2005): 

RA *exp 0.07*(T )i iRO TOPTA, ,T E H

     
C

, ,T E HR iA * *i i iRO TOPTA PHOMAX

3

Z

grazing models. Generally, zooplankton grazing is des

M

thus grazing rates are greatly reduced for food levels below a certain concentration. Also, 

a size selective grazing coefficient is included that assigns weights to the different food 

types. Therefore, the preference factor coefficient (PAFi) allows zooplankton to select 

different types of food over others, depending on the zooplankton preference for certain 

algal functional groups. Both the Arhonditsis and Brett (2005) and CLEANER grazing 

models include a temperature limitation term (GT) that regulates on phytoplankton 

grazing. These terms are the same as for the growth limiting temperature functions 

(equations 1.32 – 1.36), but the TOPTAi parameter (Optimum temperature for 

phytoplankton growth) is replaced with the TOPTZ parameter (Optimal temperature for 

zooplankton feeding activity). Also, the TMINAi (minimum temperature for algae growth) 

and TMAXAi (maximum temperature for algae growth) values are replaced with TMINZ 

(minimum temperature for zooplankton grazing) and TMAXZ (maximum temperature for 

zooplankton grazing) values. 

Hongping and Jianyi (2002) phytoplankton grazing process model: 

1  A
**

 A * PFA

 * GMAX GRA i

ii

PFAi

FMIN

i
4

1  

4

1  

4

,,

 A * PFA A * PFA
i

ii

i

i

ii

HET

FMINKAG

           (1.44)

Where  GMAX = Maximum ingestion rate by zooplankton (g d-1)

 PFAi = Preference factor for the ingestion of each food source 

FMIN = Minimum concentration of phytoplankton available as food (g m-3)

y zooplankton (g m-3)

olimnion (cm-3 m-3)

A

KAG = Half-saturation constant for the ingestion of food b

 Ai = Phytoplankton biomass in mixed layer, epilimnion and hyp
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Arhonditsis and Brett (2005) phytoplankton grazing process model, with temperature 

regulation as given in equation 1.44:  

, , 4

1

GMAX * PFG  * i A
AGRA  = * PHOT      

PFG  * A

iT E H

i

i
i

KAG i i
4

1

A*PFA

A*PFA
PFG

i

ii

ii
i         (1.45) 

2

2

T - 
  exp -2.3*   ; for  

T - 
 exp -2.3*     ; for  

T

T

i

i i

TOPTZi
GT

TMAXZ TOPTZi

TOPTZi
GT

TMAXZ TMINZ

TOPTZi

TOPTZi

                           (1.46) 

Where  PFGi = Auxiliary variable for phytoplankton preference factor for grazing;  

 TOPTZ = Optimal temperature for  zooplankton feeding activity ( C);

 MAXZ = Maximum temperature for Zooplankton grazing ( C);  

erature regulation (GT) as 

iven by equations 1.46 - 1.49: 

T

 TMINZ = Minimum temperature for Zooplankton grazing ( C)

CLEANER phytoplankton grazing process model, with temp

g

GT

KAG

i

i

ii

ii

HET *

 A * PFA

A * PFA
 * GMAX  AGRA

4

1  

,,                                   (1.47) 

                                 (1.48)  T 2
 = T1 exp T 2* 1 T1GT

T
T1

i

ii

TMAXZ

TM
             (1.49)   

AXZ - TOPTZ

2
2 40T3 * 1 1

T3
T2

400
                   (1.50)       

  10T 3 ln * iiQ TMAXZ -T P ZO T        (1.51) 
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3.6. Design and implementation of the SALMO-OO 

  simulation library

3.6.1. Design of simulation library structure using the object-oriented 

 paradigm

The simulation library was designed based on the existing object-oriented SALMO-

OO model structure for the phytoplankton biomass state variable.  The object-oriented 

programming language Java was used to create a new class which can be accessed by

the SALMO-OO model, but is still independent from the overall main model

structure.

AlgaeLibrary.class contains methods and fields for each new phytoplankton growth

and grazing model, thereby, reducing the need to change code within the original 

model and not compromise its structural integrity (figure 3.14). Each alternative

growth or grazing model can be inserted into SALMO-OO and replace the original

growth or grazing functions. 

NOTE:  This figure is included on page 53 of the print copy of the 

thesis held in the University of Adelaide Library.

Figure 3.14. UML (Unified Modelling Language) class diagram for the model 

components of SALMO-OO and the simulation library (AlgaeLibrary) (Zhang, 2006). 

Through inheritance mechanisms the AlgaeLibrary.class is derived from the

Phytoplankton.class, thereby gaining access to all functions (methods) and parameters

that are defined by the parent class (Phytoplankton.class). The Phytoplankton.class is 

derived from the Salmo.class (a super class), which defines many of the common 

parameters and control methods necessary to run the SALMO-OO model. Therefore, 

any common parameters that are defined within the Salmo.class or the

Phytoplankton.class can be used directly in defining the 
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alternative growth or grazing models. For example, the parameter that defines the optimal 

temperature for phytoplankton growth (TOPTAi) is a constant parameter defined in the 

Salmo.class, and is used to calculate the temperature limited growth function for 

phytoplankton (PHOTi) in the Phytoplankton.class. This TOPTAi parameter is 

also required to define the alternative growth models in the AlgaeLibrary.class,

and can be freely accessed due to the AlgaeLibrary.class inheriting attributes from 

the Phytoplankton.class. Whereas, if it was necessary to access a parameter from 

another class that is not within the inheritance structure then an object would need to be 

created to access that parameter to overcome any restrictions (e.g. Math.exp() – Math

is an object instantiated from the Math.class and the exp() method is used to 

calculate the exponential function. This class is not linked to SALMO-OO through 

inheritance mechanisms). Thus, through these mechanisms the whole model structure is 

protected from undesirable access of parameter values or functions. Any constant 

parameters, such as the Q10 coefficient for temperature limited growth or saturated light 

intensity (Is), that are specifically used by the models contained in the 

AlgaeLibrary.class are stored in the Salmo.class along with all other common 

constant parameters that are needed by other components of the model. 

Each alternative growth model has the same basic code structure. All are public methods 

with inputs for the biomass of each algae functional group (Ai), phosphate (P), nitrate (N) 

nd an index parameter, which allows access to the measured input data such as water 

nitrate (N), time (t), and 

(Appendix C). This method is also found within the 

a

temperature and solar radiation. A loop function allows the calculation of growth for each 

phytoplankton functional group. Within this loop growth-limiting functions for 

temperature, nutrients and underwater light are calculated as well as respiration and 

photosynthesis. The output for each growth method is the variable AGRO, which 

represents the specific growth rate for each phytoplankton functional group (figure 3.15). 

The grazing models are structured very similarly as for the growth models, with a loop to 

calculate grazing for each phytoplankton functional group, as well as links to the measured 

input data such as temperature and to zooplankton biomass. The output for each grazing 

method is the variable AGRA, which is the grazing rate for each phytoplankton functional 

group (figure 3.16). Each alternative growth or grazing method has a different name such 

as growthAB(), which describes the growth model from Arhonditsis and Brett (2005) or 

grazCLEANER(), which refers the CLEANER grazing model. 

Within the AlgaeLibrary.class there is a method called growth(), which 

requires links to the phytoplankton biomass (Ai), phosphate (P), 

nderwater light u

Phytoplankton.class under the same name. Overloading methods is a form of 

polymorphism, a concept in object-oriented modelling where the same method can have 

several different meanings or tasks, depending on which object utilises them. Within the 

AlgaeLibrary.class the growth() method contains a switch function that 

allows the selection of alternative growth models when selected by a user. Therefore, if a 

user selected to use the growth model from CLEANER then the 

AlgaeLibrary.class would return the AGRO parameter, that calculates the specific 

growth rate for phytoplankton, based on the function defined by the growthCLEANER()

method. 
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public double[] growthHJ(double[] A, double P, double N, int index) 
   { 

double[] AGRO = new double[XLENGTH];// temporary variable
     

double[] PHOT = new double[XLENGTH];
double[] PHOP = new double[XLENGTH];
double[] PHON = new double[XLENGTH];

+ A[2] ); 

umber of algae 
< XLENGTH; i++)

ex]/TOPTA[i]);

         // Light limitation function
[index]))/(EPS*ZMIX[index])

 1 - L / Is[i] );  

* A[i]; 

  }// end growth method HJ

the Java code for the growth method from Hongping and 

th limiting functions, photosynthesis and respiration 

e for other growth models. 

double[] PHOL = new double[XLENGTH];
      

double[] SUMI = new double[XLENGTH];
      

double[] RA = new double[XLENGTH];
        

double L = 0; 
double EPS = Kw[0] + Kc[0] * ( A[0] + A[1] 

fo
// Loop to calculate growth for x n
r( int i=0; i

      { 
// Temperature limitation function 

PHOT[i] = T[index]/TOPTA[i]* Math.exp(1 - T[ind

// Nutrient limitation function 
           PHOP[i] = P / ( KP[i] + P ); 

PHON[i] = N / ( KN[i] + N ); 

L=I[index]*(1Math.exp((1)*EPS*ZMIX
;

           IOM[i] = L / Is[i] * Math.exp(

            // Calculate respiration 
RA[i] = RO[i] * Math.exp( Tcoef * T[index] ); 

           PHO[i] = PHOMAX[i]* PHOL[i]* PHOT[i] * PHOP[i] * PHON[i];

           AGRO[i] = (PHO[i] - RA[i])

 }// end loop for groups

return AGRO;

Figure 3.15. An example of 

Jianyi (2002). Replacement of grow

lculations can be made to customisca
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 public double[] grazHJ(double[] A, double Z, int index) 
   { 

double[] AGRA = new double[XLENGTH];
    

ade to customise for other grazing models. 

nce the alternative growth and grazing process model structures were encoded into the 

 was tested, 

re used for 

sting because they were used to test the original SALMO model, are of high quality and 

double F = 0; 
// Loop to calculate grazing for x number of algae 

for( int i=0; i< XLENGTH; i++)
      { 

 F = + PAF[i] * A[i]; 

M[3] = GMAX * (F - FMIN) / ( KAG + F - FMIN ) * PFD * A[3] / F; 

le of the Java code for the grazing method from Hongping and 

002). Replacement of phytoplankton grazing and detritus grazing functions can be 

 F 
     } 
      
     F = F + PFD * A[3];// detritus
      

//

 GSU
 Detritus import 

      
for( int i=0; i<XLENGTH; i++)

      { 
        GSUM[i] = GMAX * (F - FMIN)/(KAG + F - FMIN) * PAF[i] * A[i] /F;
             

AGRA[i] = Z * GSUM[i]; 

      } 
      

retu  AGRA; rn
    } 

3.16. An exampFigure

anyi (2Ji

m

3.6.2.  Implementation of the SALMO-OO simulation library

O

AlgaeLibrary.class the overall performance of the SALMO-OO model

first using data from Bautzen and Saidenbach reservoirs. These data sets we

te

include zooplankton biomass data, which can be difficult to obtain. A graphical user 

interface (GUI) was developed to facilitate the testing of each combination of alternative 

growth and grazing models for a variety of lake conditions. Parameter values that needed 

to be calibrated were included in the GUI as well as all of SALMO-OO’s constant 

parameters. Drop down menus for selecting data sets, alternative growth and grazing 

functions, year and scenario analyses were included in the GUI (figure 3.17). The 

simulation results of state variable outputs are viewed directly within the SALMO-OO 

application (figure 3.18), including the measured data in order to compare observed and 

predicted outputs. 
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Figure 3.17. Graphical user interface (GUI) for the SALMO-OO simulation library.  

Figure 3.18. Visual output of simulation results within the SALMO-OO application of 

ach state variable and the measured data. e
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3.6.3. Selection criteria and assessment of the SALMO-OO simulation 

SALMO th the aim of using alternative growth and/or grazing 

odels to O model results. A set of procedures and selection 

library performance 

Nine lakes and reservoirs with different environment conditions were analysed using the

-OO simulation library, wi

 improve the SALMO-Om

criteria was created to assess alternative model structures (figure 3.19). These assessment 

procedures and criteria were applied to each of the data sets tested, and are as follows: 

1. Simulation runs were performed for each substitution of an alternative growth 

process model (i.e. one simulation run per each type of growth model), and 

similarly for each grazing process model. Manual (i.e. trial-and-error method) 

parameter calibration was performed for each model run until a common 

parameter set was obtained for the sensitive parameters RO (phytoplankton 

respiration rate) and Gmax (maximum zooplankton grazing rate).  

2. Quantitative analysis of simulation results for phytoplankton, zooplankton (where 

data was available) and phosphate state variables. 

Linear regression (r
2
 values) comparing measured and simulated outputs 

for each state variable (performed in MS Excel) 

Calculation of root-mean square error (RMSE) as an alternative measure 

of model fit 

2 2 2
1 1 2 2 .... na c a c a nc

   c = simulated data or model output 

  n = number of data point that are compared 

3. ased odel run was ranked according 

o phy plank odels.  

4. odels compared to using the 

RMSE
n

 (1.52) 

 where  a = measured or observed data 

n the qB o uantitative results each alternative m

t to ton predictions in order of best performing m

Those m  that produced improved statistical results 

original SALMO-OO growth and/or grazing equations were selected for further 

analysis.  

5. Qualitative analysis of simulation results for phytoplankton, zooplankton (where 

data was available) and phosphate state variables. 

Determination of how well the model predicted the timing, magnitude and 

duration of major phytoplankton, zooplankton and phosphate peaks. 

6. Seasonality of phytoplankton functional groups needed to be realistic of the 

troph c i state of the site modelled. This was performed using the Ryding and Rast 

(1989) trophic state criteria, based predominantly on orthophosphate concentration 

(Table 3.4). Figure 3.19 illustrates the phosphate thresholds determining the 

trophic state of a given site. According to a lake’s trophic state certain 

phytoplankton dynamics are typically observed. For example, for sites exhibiting 

low phosphate concentrations (0 – 5 g L
-1

) oligotrophic conditions are expected, 

where green algae and diatoms are expected to be dominant with very little 

observed blue-green algae (Reynolds, 1993). Therefore, the model combinations 

analysed needed to give realistic phytoplankton functional group simulations 

according to the trophic state of the lake before they were accepted for further 

analysis. The calibration parameter set obtained from step 1 was used during the 
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th and grazing models. 

bility of a particular growth and grazing model combination to simulate 

e

odel.

simulation of the combined phytoplankton growth and grazing model 

experiments. 

7. Thus, the growth or grazing models that performed quantitatively and qualitatively 

better then the original SALMO-OO model were selected to test combination of 

different grow

8. Once simulation runs of different growth and grazing model combinations were 

performed then the same procedures for assessing the results (steps 2 – 6) were 

followed. 

9. The final model combination was chosen based on a compromise between the best 

quantitative results and the best visual model fit of the measured data. In most 

cases the a

phytoplankton functional group dynamics or give a closer fit to the measured data 

were the ones selected as the final results. Usually, these models performed highly 

in regards to the statistical analysis, but they were not always the ones that 

produced the best results for r
2
 and RMSE.

Figure 3.19. Selection criteria and assessment procedures for analyses of alternativ

growth and/or grazing model structures to improve the validation of the SALMO-OO 

m
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