
CHAPTER 5.     

DISCUSSION AND CONCLUSIONS 

5.1. The SALMO-OO simulation library as a tool for 

ecosystem analysis and management  

The SALMO-OO model is a generic model and has been designed to simulate a wide 

variety of lake conditions. Generic models often pose the problem of generality versus 

accuracy, where generic models tend to forfeit a degree of accuracy in order to simulate 

realistic, general conditions (Levins, 1966). The SALMO-OO model in its original form 

simulates a variety of lake conditions very well, whilst still maintaining an acceptable 

level of accuracy. By applying a library of process models, at this stage for phytoplankton 

growth and grazing processes, it is anticipated that the scope of the model can be 

broadened and the accuracy of simulating key state variables, such as phosphate 

concentration, phytoplankton biomass and algal functional group dynamics, can be 

improved. The simulation library introduces an additional validation measure in order to 

improve the simulation of specific lake ecosystem by the use of expert knowledge. To 

further improve the accuracy of any deterministic model built on expert knowledge 

additional computational technologies, such as evolutionary algorithms or parameter 

optimisation techniques, can be included in the development of hybrid decision support 

systems, which have become popular with environmental scientists and managers. 

5.1.1  Outcomes of the experiments using the phytoplankton growth 

and grazing simulation library for lakes with different 

environmental conditions 

The SALMO-OO simulation library has been developed with a selection of phytoplankton 

growth and grazing process models that have been taken from literature models developed 

for specific lake systems. Three phytoplankton growth and three grazing process models 

are included within the simulation library. In order to improve the simulations of key state 

variables for various lakes it was necessary to compare the simulation of different 

combinations of growth and grazing process functions with those process functions from 

the original SALMO-OO model. The experimental procedure for analysing all relevant 

combinations can be a tedious and time-consuming process for a non-expert, such as an 

environmental manager. An ideal simulation model is one that is simple to use, is 

informative and can give worthwhile predictions (Steel, 1997). Therefore, in order to 

develop a simple decision support system for the SALMO-OO model, categories based on 

trophic state and mixing conditions were created and suitable model structures were found 

from the simulation library to improve the simulation of lakes within each category. At 

least two lakes were tested for each category. The model structures for each category are 

based on the realistic simulation of phosphate concentration, zooplankton and 

phytoplankton biomass and algal functional group dynamics. The categories were selected 

as an improvement to the original SALMO-OO modelling results. In all cases 

improvements to the simulation of phytoplankton biomass and algal functional group 

dynamics in particular were achieved by replacing the original SALMO-OO growth and 
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grazing process models with those from the simulation library. Table 5.1 summarises the 

findings presented in section 4.2 for each lake category.  

Table 5.1. Summary of generic model structures found by the SALMO-OO simulation 

library for different categories of lakes and reservoirs based on trophic state and mixing 

conditions. AB – Arhonditsis and Brett (2005); HJ - Hongping and Jianyi (2002); CL - 

CLEANER Model  -  (Park et al., 1974; Scavia & Park, 1976). 

Trophic State 
Mixing

Conditions 
Best combination from 
SALMO-OO simulation library 

Validation data sets 

Dimictic Growth CL and Grazing HJ 

Bautzen reservoir, 
Germany 
Lake Arendsee, 
Germany 

Eutrophic and 
Hypertrophic 

Warm 
Monomictic 

Growth AB and Grazing AB 

Lake Hartbeespoort, 
South Africa  
Lake Roodeplaat,  
South Africa 
Lake Klipvoor,
South Africa 

Mesotrophic Dimictic 

Saidenbach reservoir, 
Germany 

Growth CL and Grazing AB 
Weida reservoir, 
Germany 

Lake Stechlin, Germany 
Oligotrophic Dimictic Growth CL and Grazing CL Lake Soyang, South 

Korea

It is apparent that the growth model from CLEANER contributes most frequently to the 

improved results for each state variable analysed. The CLEANER growth model has a 

unique formulation for the calculation of photosynthesis, which may contribute to the 

success of this growth function. Phytoplankton photosynthesis (PHOi) is described by a 

maximum photosynthesis rate (PHOMAXi), modified by suboptimal conditions (Ut) and a 

temperature limitation function. The subscript i denotes the different phytoplankton 

functional groups (i =1 diatoms; i = 2 green algae; i =3 blue green algae). The combined 

limitations of light and nutrients are represented as a normalised factor (Ut) that is 

mathematically analogous to the inverse of the total effect of electrical resistors in parallel 

(Park et al., 1974; Scavia & Park, 1976).

PHO = PHOMAX *Ut*PHOTi i i                                                    (1.1) 
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The mean resistance construct was developed specifically for CLEANER, where n is the 

number of limiting functions and is used to normalise the total limitation term (Ut). (U)i

are the normalised individual limitation functions. The CLEANER model developers state 

that if no nutrient is limiting, the function is totally limiting (Park et al., 1974; Scavia & 

Park, 1976). Their reason for preferring this new construct is intuitive. The authors believe 
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it is reasonable to assume that adaptation and species replacement in a natural assemblage 

will moderate the limiting effect of any particular nutrient or combination of nutrients. 

Therefore, this construct may better represent the actual limitation process at the 

ecosystem level. The CLEANER model developers examined various formulations for the 

limitations of light and nutrients on photosynthesis, including the commonly used 

multiplicative and minimum constructs. The developers found in addition to the mean 

resistance construct the minimum function produced excellent results, however, 

experiments with the multiplicative function, seemed to limit photosynthesis more 

severely than is actually observed in nature (Park et al., 1974; Scavia & Park, 1976). 

Three types of photosynthesis formulations are accounted for within the phytoplankton 

simulation library: 

1. The multiplicative function  

2. The minimum function, otherwise commonly known as Liebig’s Law of the 

Minimum construct, and 

3. The mean resistance construct developed for CLEANER. 

The multiplicative function is simply the maximum photosynthesis rate multiplied by sub-

optimal conditions, which generally includes limitations due to light intensity, water 

temperature and different nutrient concentrations (equation 1.3). This construct is the most 

commonly used to calculate the photosynthesis rate of phytoplankton (Table 5.2). Both 

SALMO-OO and the growth model from Hongping and Jianyi (2002) use the 

multiplicative function to calculate photosynthesis. 

PHO *PHOL *PHOT *POHP *PHONi i i iT,E,Hi PHOMAX i                    (1.3) 

The minimum function, based on Liebig’s Law of the Minimum, is used to a lesser degree 

then the multiplicative function, but is still a popular method of calculating the 

photosynthesis rate for phytoplankton. Liebig’s Law of the Minimum states that the yield 

of any organism is determined by the abundance of a substance that in relation to the 

needs of the organism is least abundant in the environment (Jorgensen, 1994). In many 

cases the minimum function is used to determine the limiting nutrient only rather then the 

single limiting resource, but in some cases light intensity is also included as shown in 

Table 5.2. The temperature limitation function is often excluded from the minimum 

construct, as temperature will influence the growth rate even if light or nutrients are 

limiting (Zonneveld, 1998). The growth model from Arhonditsis and Brett (2005) only 

uses the minimum function to determine which nutrient is the most limiting (equation 1.4). 

However, within their lake model silicon and carbon are also considered as nutrients 

affecting phytoplankton metabolism and are thus included in the minimum function, 

whereas within the SALMO-OO simulation library only phosphate and nitrogen state 

variables are considered. 

,PHO = *PHOL *PHOT *min PHOP PHONi i i iT,E,Hi PHOMAX i                          (1.4)
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Table 5.2. List of various modellers/author’s that have elected to use either the 

multiplicative or minimum function for the calculation of gross phytoplankton 

photosynthesis rate. 

Multiplicative function for gross 
photosynthesis

Liebig’s Law of the Minimum function for 
gross photosynthesis

PHO *PHOL *PHOT *POHP *PHONi i i i
T,E,H

i PHOMAX i i, , PHO = *min PHOL POHP PHON *PHOTi i i i
T,E,H

i PHOMAX

Arhonditsis & Brett, (2005) Canu et al. (2004) 

Bonnet & Poulin (2002) Chen et al. (2002) 

Canale et al. (1976) Drago et al. (2001) 

Childers & McKellar Jr. (1987) Hamilton & Schladow (1997) 

Hongping & Jianyi (2002) Menshutkin et al. (1998) 

Imboden & Gächter (1978) Robson & Hamilton (2004) 

Jayaweera & Asaeda (1996) Rukhovets et al. (2003) 

Kmet & Straskraba (1989) Sagehashi et al. (2000) 

Krivtsov et al. (1998) Scavia (1980) 

Lima et al. (2002) 

Mesple et al. (1995) 

Norberg & DeAngelis (1997) 

Parker (1968) 

Benndorf (1979) 

Recknagel (1980) 

Thebault & Salencon (1993) 

Varis (1993) 

Varis (1984) 

Yang et al. (2000) 

The multiplicative and minimum functions are two vary common equation types to 

calculate phytoplankton photosynthesis rates, however, the CLEANER mean resistance 

equation for photosynthesis rate was found to give the most improvement to the 

simulation of phytoplankton biomass, when linked to any of the three grazing models 

included in the simulation library, which incidentally is formulated in a similar manner. 

Only the simulation of the South African lakes, which are all considered as hypertrophic 

and warm monomictic, improved by the addition of the growth and grazing models from 

Arhonditsis and Brett (2005), rather than the CLEANER growth model. Interestingly, out 

of all the published lake and water quality models that I searched the CLEANER mean 

resistance construct has never be used outside of the CLEANER family of models. 

The three literature models included in the SALMO-OO simulation library offer a variety 

of mathematical formulations for the calculation of phytoplankton photosynthesis, 

respiration and grazing by zooplankton. Each model is based on strong and rigorous 

scientific principles that have been in use for many years in many different lake models 

(Eppley, 1972; Jorgensen, 1994; Reynolds, 1993; Riley & Stefan, 1988; Steel, 1997; 

Steele, 1962; Straskraba & Gnauck, 1985; Zonneveld, 1998). Each process model has 

been extensively validated, and shown to perform realistically and accurately within the 

models from which they have been taken. Therefore, we can be confident that the 

assumptions, theory and outputs of these process models can be relied upon to perform as 

they were designed.
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There are many different modelling techniques and paradigms available to conceptualise 

and problem solve for a natural system, and as a result there are a variety of model 

structures to choose from to simulate different lake conditions. However, the difficulty in 

dealing with higher-level problems is the complexity involved in such models, which are 

difficult to define through a single, consistent system of paradigms (Villa, 2001). Many 

researchers acknowledge that more than one modelling paradigm or technique is often 

needed to capture the minimal description of a complex system, to address the complexity 

and multidisciplinary nature of environmental problems and to recognise the cross-scale 

effects with different phenomena operating at different scales (Dale & Swartzman, 1984; 

Riley & Stefan, 1988; Steel, 1997; Swartzman, 1979; Villa, 2001; Zonneveld, 1998). 

Thus, integrating a greater choice of modelling options, whether they are in the form of 

hybridised technologies or alternative model structures, into a single framework can assist 

in the development of more informative, “smarter” models and make the computerised 

decision-making process easier. There are many modelling studies that have been 

published where an individual or a group of researchers either review different 

mathematical formulations of certain processes, such as the mathematical modelling of the 

photosynthesis-irradiance curve, or present the results of a model development project 

where several alternative structures have been tested and critiqued to find the optimum 

model structure to represent the system or problem under study (Canale et al., 1976; Dale 

& Swartzman, 1984; Park et al., 1974; Riley & Stefan, 1988; Scavia & Park, 1976; 

Sequeira et al., 1991; Swartzman, 1979; Todorovski, 2003; Zonneveld, 1998). The 

simulation library offers a single platform to explore model structure and behaviour for 

both cases, and uniquely, for a wide variety of different lake conditions. 

5.1.2. The SALMO-OO simulation library as a validation tool 

During the developmental stage of any computer model, the validation process is crucial 

in perfecting the accuracy of the models’ outputs, both quantitatively and qualitatively. 

The phytoplankton simulation library has been designed as a validation tool to improve 

the prediction of different lake conditions by the SALMO-OO model. By replacing the 

original SALMO phytoplankton growth and grazing process functions with those in the 

simulation library a better approximation of a particular lake’s dynamics can be achieved. 

However, the selection of the best model structure for each lake dataset is a subjective 

process that relies upon expert knowledge of lake ecosystem interactions. This presents 

possible problems in “differences of opinion” in which model structure is actually the best 

available for each lake category. A procedure of analysis was developed to minimise these 

decision discrepancies by relying on several criteria for the selection of the best model 

structure. These criteria are summarised in Figure 5.1 (a more detailed explanation can be 

found in section 3.6.3): 

A major emphasis of the selection criteria is the importance on qualitative analysis of the 

simulation results. To make an informed decision as to the best results for a given lake it 

was necessary to graphically view observed and simulated outputs to determine whether or 

not the results adhered to the current expert knowledge of lake ecosystem dynamics and if 

the model was able to describe significant lake conditions (i.e. major algal blooms or high 

nutrient concentrations). Quantitative analysis of the model outputs with the measured 

data from each lake did not always give very informative answers to how well the model 
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was performing and how adequately the model described lake dynamics. The quantitative 

methods used to analyse model performance were linear regression (r
2
) and root mean 

square error (RMSE). Originally, only r
2
 was calculated to assess model performance, as 

this “goodness-of-fit” statistic is commonly used as a model performance yardstick in the 

ecological modelling field. However, in many cases such unrealistic discrepancies 

between the r
2
 and the qualitative results occurred that I included the RMSE statistic as an 

additional statistical means of testing model performance.  

Calculate the r2 and 

RMSE value for X, Z, P

Rank r2 and RMSE 

values for phytoplankton 

biomass from highest to 

lowest

Visual Analysis

• Acceptable visual results

• Correct algal functional 

group seasonality

• Good quantitative 

values?

Determine algae functional 

group dynamics according to 

trophic state of site 

DO NOT 

ACCEPT 

PROCESS 

MODEL 

RESULT

YES

NO

PO
4
-P = 

5 – 15 g/L

PO
4
-P =  

0 – 5 g/L 

YES

NO

YES

YES

NO

Oligotrophic

Mesotrophic

Eutrophic/ 

Hypereutrophic

TROPHIC STATE CRITERIA FAVOURING ALGAE FUNCTIONAL GROUPS 

PO
4
-P =

15 –150+ g/L

Quantitative Analysis

NO

DO NOT ACCEPT 

PROCESS MODEL 

RESULT

NO

YES

Accept 

process 

model results 

?

Run simulations of combined growth and grazing process 

models

Improved validation of the SALMO-OO model 

by introducing new process models for 

phytoplankton growth and grazing

Run simulations for alternative 

growth and grazing process 

functions for X, Z, P

Compared timing and 

magnitude of X, Z, P dynamics 

against measured data

Select models that performed better then SALMO-OO based 

on same criteria as for separate growth and grazing process 

models

Figure 5.1. Selection criteria and assessment procedures for analyses of alternative growth 

and/or grazing model structures to improve the validation of the SALMO-OO model. 

For example, the phytoplankton simulation results for Bautzen Reservoir given by the 

combination of the growth model from CLEANER and the grazing model from Hongping 

& Jianyi (2002) produced an r
2
 value of 0.15; a significant improvement compared to the 

phytoplankton results produced by the original SALMO-OO growth and grazing functions 

(r
2
 = 0.0013). However, statistically an r

2
 value of 0.15 is a very poor result and indicates 

that the model has only a 15% chance of successfully explaining the variance between 

observed and simulated values of phytoplankton biomass in Lake Bautzen, although, when 

the results are analysed qualitatively the model does describe phytoplankton dynamics 

very well, particularly compared to the original SALMO-OO results (Figure 5.2). The 

improvement in the timing of the phytoplankton spring peak predictions is more accurate 

compared to SALMO-OO and the phytoplankton functional groups are realistic and 
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consistent with what is expected to occur in a eutrophic lake such as Bautzen Reservoir, 

with a clear distinction in species succession during summer. Thus, for a deterministic 

model this result for phytoplankton biomass is considered to be an excellent achievement.  

In addition, it was found that the RMSE statistic gives a better quantitative assessment, 

particularly when comparing the results of different model combination. The RMSE for 

phytoplankton predictions for Bautzen Reservoir is 8.89, which is an improvement upon 

the phytoplankton RMSE given by the original SALMO-OO growth and grazing functions 

(RMSE = 10.32). Therefore, it is clear that the combination of the CLEANER growth 

model and the grazing model from Hongping & Jianyi (2002) reduces the deviance 

between observed and simulated outputs. Regardless of the statistical results, the visual 

assessment of simulated outputs against measured data gives the most information about 

how well the model is performing, in what areas does the model perform poorly and the 

degree of improvement between the original SALMO-OO model and the results given by 

the inclusion of alternative growth and grazing process models. The use of r2
 and RMSE 

assessments alone cannot perform these functions. 
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RMSE = 51.42     
                  r

2
= 0.17

RMSE = 8.77
r
2
= 0.62
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r
2
= 0.15

RMSE = 45.29   
                     r

2
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r
2
= 0.0013

RMSE = 4.72
r
2
= 0.65

RMSE = 3.93 
r
2
= 0.00005

RMSE = 1.11 
r
2
= 0.78

RMSE = 4.3 
r
2
= 0.04

RMSE = 0.61 
r
2
= 0.46

RMSE = 0.89            r
2
= 0.03

Growth CL & 

Grazing CL
SALMO-OO 

Stechlin

Figure 5.2. SALMO-OO simulation library results for Bautzen Reservoir and Lake 

Stechlin. Comparisons are made with the simulations from the SALMO-OO model 

without any changes to the growth or grazing process equations. X-axis is in days. 

Blue-green Algae; Green Algae; Diatoms;  Measured data with standard deviation 

bars of 15%. HJ - Hongping and Jianyi (2002); CL - CLEANER Model  - (Park et al.,

1974; Scavia & Park, 1976). 
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Conversely, r
2
 values can give misleading results to suggest that a models prediction are 

highly accurate, however, when compared qualitatively the results are quite poor. The 

zooplankton simulation results for Lake Stechlin, given by the substitution of the growth 

and grazing models from CLEANER, give an r
2
 of 0.78, which is an excellent result for a 

deterministic model (Figure 5.2). However, visually the model simulation shows an over 

prediction in zooplankton biomass by several-fold. The SALMO-OO results for 

zooplankton biomass also produce a relatively high r
2
 value of 0.46, however, the model 

also grossly over predicts zooplankton biomass. Another misleading issue is that the r
2

value produced by the CLEANER growth and grazing model combination is significantly 

better then the r
2
 value produced by the original SALMO-OO growth and grazing 

functions, yet the simulation results show that the alternative model structure produces a 

larger degree of over prediction. In this case, the use of the RMSE statistic gives a clearer 

analysis of model performance. The RMSE for zooplankton biomass predictions given by 

SALMO-OO (RMSE = 0.61) is considerably lower then the RMSE produced by the 

CLEANER growth and grazing model combination (RMSE = 1.11). This trend is reflected 

in the visual results, as the zooplankton biomass predictions by SALMO-OO are much 

closer to the measured data than the simulation given by the alternative model structure 

(Figure 5.2). 

The validation of complex process based models is an important activity to test the models 

accuracy and to determine areas of improvement. Rykiel (1996) gives a concise definition 

of model validation as a demonstration that a model within its domain of applicability 

possesses a satisfactory range of accuracy consistent with the intended application of the 
model. This definition indicates that the model is acceptable for use, not that it embodies 

any absolute truth, or even that it is the best model available. Validation is often thought of 

as simply a comparison of simulated data with data obtained by observation and 

measurement of the real system. However, such a test cannot demonstrate the logical 

validity of the model’s scientific content (Rykiel, 1996). Nevertheless, the r2
 and RMSE 

are two popular measures to determine model accuracy, in regards to how well the 

simulated outputs fit the measured data from the real system. The calculation of both r
2

and the RMSE statistic involves analysing the error associated with the predicted and 

measured data. Therefore, error estimates allow inferences to be made about the reliability 

of comparisons between observed and predicted data sets (Huffman, 1997). However, not 

all sources of error can be identified or accounted for, and will always influence the results 

of any model away from the true observations that are given by the environment that is 

being simulated.  

Most ecological models are strongly non-linear, and parameter values and environmental 

data are subject to considerable uncertainty (Huffman, 1997; Murray & Parslow, 1999). 

There are several sources of error that can give misleading results about the relationships 

between the model outputs and the system being simulated by the model. These include 

estimation error for initial conditions, parameter values and input data, which will cause 

errors to propagate through the model of the system. Similarly, sampling errors occur from 

collecting field data and those errors associated with laboratory experiments, which will 

affect the accuracy of parameter values and validation data sets. The occurrence of 

estimation and sampling errors indicates that the time series sampled for comparison to 

model outputs is only one possible realisation of the output from the real system (Jansen, 

1998; Loehle, 1997). Therefore, parameter and time-series data uncertainties are difficult 
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to eliminate as the error is caused by the natural variation between the system modelled 

and by the estimation error (Jansen, 1998).  

The lack of suitable data not only increases the assumptions within the model but limits 

the confidence of the modelling results (van Tongeren, 1995). It is often reported in 

ecological modelling publications that the failure of the model to predict or represent the 

target site can be greatly attributed to the lack of appropriate data, particularly for model 

validation testing (Angelini & Petrere Jr., 2000; Drago et al., 2001; Krivtsov et al., 1998; 

Salençon, 1997). The data sets used to calibrate and validate the SAMO-OO simulation 

library were mostly collected as part of monitoring programs to assess the changing 

conditions of the lake’s ecosystem. For example, the data collected for the assessment of 

the South African lakes was conducted by professionals experienced with water quality 

data collection techniques, and we are confident that the quality of this data is the best that 

can be currently achieved (Van Ginkel, pers. com. 2006). However, Lake Stechlin data 

was also collected by experienced data collectors, but less data was collected. Therefore, 

with less data values for a given year to compare to the daily time series outputs given by 

SALMO-OO, a less confident assessment of the models ability to predict the dynamics of 

Lake Stechlin occurs. These types of data limitation can cause discrepancies with the 

statistical comparisons, and requires extensive pre-processing and interpolation to enable 

the data to be used in modelling experiments. These limitations and uncertainties are often 

undesirable, but unavoidable. 

Resolution or structural errors can occur when significant factors are not included in the 

model due to cost, size or knowledge restrictions (Huffman, 1997; Jansen, 1998; Loehle, 

1997). The effect of structural errors cannot be suitably quantified as the “structurally 

correct” model is unknown which is often the case with natural systems (Barlund & 

Tattari, 2001; Jansen, 1998). Some error or bias can occur when data is manipulated for 

the preparation of different analytical methods, for example, interpolation of missing data 

points or transformations of data to a more flexible format for statistical analysis. For 

more detailed discussion on uncertainty analysis see Bacsi & Zemankovics (1995); 

Barlund & Tattari (2001); Cale et al. (1983); Gardener et al. (1982); Haag & 

Kaupenjohann (2001); Hakanson (1999); Jansen (1998); Jorgensen (1994); Marsili-Libelli 

(1992); Oreskes et al. (1994); Parysow & Gertner (1999); Parysow et al. (2000); van 

Tongeren (1995); Wallach & Genard (1998).  

There are several methods that may be usefully applied to determine uncertainties and to 

partition errors in a model. These include sensitivity analysis, uncertainty analysis and 

structural analysis (Elliott et al., 2000; Mayer & Butler, 1993; Power, 1993). Sensitivity 

analysis determines the effects of varying parameter values on model outputs and 

determines how robust the model’s structure is (Wallach & Genard, 1998). Those 

parameters that cause significant changes in the model’s behaviour should be estimated 

with the greatest accuracy. Uncertainty analysis is similar to sensitivity analysis, but takes 

into account specifically the uncertainty in input and parameter values on the model 

outputs. Therefore, assuming that the distribution of the inputs and the parameters are 

known, we can sample from those distributions and generate resulting output variable 

distributions (Wallach & Genard, 1998). This is often achieved using the Monte Carlo 

method, which randomly or systematically scans the range of possible parameter values to 

identify those parameter sets giving an unacceptable simulation result (Barlund & Tattari, 

2001).
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The SALMO model has been extensively analysed for sources of uncertainty and the 

errors occurring in the model have been minimised as much as possible as can be achieved 

for a generic, deterministic model (Benndorf & Recknagel, 1982; Recknagel & Benndorf, 

1982). Scenario analysis, sensitivity analysis and parameter optimisation were used to 

objectively validate the original SALMO model when it was first developed (Recknagel, 

1984; Recknagel, 1989; Recknagel & Benndorf, 1982). The SALMO model was validated 

against four lakes with varying trophic states, from oligotrophic to hypertrophic. Three of 

the lakes used to test the original model, the reservoirs Bautzen and Saidenbach and Lake 

Stechlin, were also used to validate the SALMO-OO simulation library. Various scenario 

analyses, such as biomanipulation and reduction in phosphate loads, were performed to 

determine the realism and descriptive accuracy of the model. The scenario analyses were 

able to determine that the SALMO model responded “correctly”, therefore, in accordance 

with what was expected to occur as a result of each scenario analysis for four lakes with 

different trophic states (Recknagel, 1989). 

Nevertheless, there are still sources of error that have had an impact on the development 

and parameterisation of the SALMO-OO simulation library, and the generation of results 

for each lake. It is likely that a high degree of error and bias is present in the model, which 

would cause greater deviances from the goodness-of-fit line, influencing the r2
 values in 

particular. Even in attempting to limit bias by analysing r
2
 for particular seasons 

corresponding to algal growth, the r
2
 values were not significantly improved. Wallach and 

Genard (1998) acknowledge that there is little that can be done about the uncertainties 

within model parameters that are notorious in increasing model variance and 

consequently, affecting the predictive outcome. Deterministic models are conceptualised 

based on current scientific knowledge about a system and constructed using mathematical 

functions to describe certain physical, chemical and biological processes. As many of the 

processes are not completely understood there will always be a certain amount of error and 

deviation between the mathematical expressions based on our knowledge and what is 

actually causing certain ecological processes to occur. Therefore, it is difficult to expect a 

high degree of goodness-of-fit from a deterministic model, compared to other 

computational modelling techniques such as regression modelling and evolutionary 

algorithms that develop functions to describe observed data based on patterns in that 

dataset. 

Another method of determining model uncertainty is structural analysis, which is applied 

to evaluate the importance of various factors by comparing multiple independent models 

with different formulations (Loehle, 1997). The simulation library provides a similar 

functionality as the structural analysis concept to the SALMO-OO model. Phytoplankton 

dynamics are very sensitive to subtle factors that are often not included (or inadequately 

presented) in a model (Loehle, 1997), usually due to lack of knowledge about certain 

processes or difficulties in parameterisation. Therefore, to provide additional, flexible 

functionality to an ecosystem model, in the form of alternative formulations of process 

that have been traditionally associated with sources of uncertainty and error, gives the user 

a greater control over the ability of the model to predict phytoplankton dynamics 

accurately with different lake conditions. Ellner et al. (2002) present arguments along 

similar lines in that the selection of process equations can have a confounding effect upon 

the goodness-of-fit statistics. For example, Model 1 may fit better then Model 2 because 

Model 1 makes the right mechanistic assumptions about a processes and Model 2 does 
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not. But it is also possible that Model 2 simply suffers from a poor choice of functional 

form for a process rate that is not part of Model 1 (type-II instead of type-III functional 

response etc.). Thus, the choices that a modeller makes on the type of mathematical 

functions to describe a natural process will cause different responses in the overall model 

compared to the observed data, and these discrepancies will be reflected in the statistical 

outputs. These comments from Ellner et al. (2002) also support the concept of the 

SALMO-OO simulation library as a means of additional validation support. 

For example, a significant inaccuracy, which occurred with all three German lakes tested 

by the original SALMO model, was the delay in the prediction of the phytoplankton 

spring peak. The model was able to simulate the magnitude of the spring peak very well 

for all lakes, but failed to simulate the appropriate timing and produced peaks that were 

later compared to the peaks exhibited by the measured data for phytoplankton biomass. 

These inaccuracies were further explored with the polar coordinate method of sensitivity 

analysis. The sensitivity analysis showed that the phytoplankton state variable was 

especially sensitive to the constant parameters for the minimum and maximum 

photosynthesis rate, respiration rate and the half saturation constant for the uptake of light, 

particularly during spring. This problem with the original SALMO model has been a cause 

for further improvements. Applying the phytoplankton simulation library has shown that 

the timing of the phytoplankton spring peak has improved by using an alternative growth 

function. Figure 5.2 illustrates the improvements made by the simulation library in the 

timing of the spring phytoplankton peak for Bautzen Reservoir and Lake Stechlin.

Many ecosystem models within the literature, are validated based on visual, graphical 

representations between predicted and measured output data and are accepted as 

successful validations based on visual assessment alone (Collins, 1980; Farnsworth-Lee & 

Baker, 2000; Recknagel, 1989). However, many other models, particularly regression 

models, are tested statistically without relying heavily upon visual assessments of model 

outputs (Asaeda & Van Bon, 1997; Elliott et al., 2000; Mayer & Butler, 1993; Mitsch & 

Reeder, 1991). Nevertheless, it is also acknowledged in the literature that models should 

be validated both visually and quantitatively (Elliott et al., 2000; Power, 1993; van 

Tongeren, 1995). Elliott et al (2000) conclude that the use of statistical analysis is equally 

important in validation assessments as qualitative analysis of the results. However, they 

believe that this may be misleading in terms of descriptive ecosystem models. They 

acknowledge that ecosystem models often produce outputs that are slightly out of 

temporal step with the measured data and that such models would probably be rejected if 

validation statistics alone were considered (Bacsi & Zemankovics, 1995). However, when 

they tested several ecosystem models they found, for example, that one validated model 

produced a good fit through validation statistics, yet failed to predict a spring algal bloom, 

which was quite significant to the effective management of the system.  

One of the main disadvantages of linear regression for model validations is the sensitivity 

to outliers, which are points that occur far from the fitted line and so produce a large 

residual (i.e. observed y – predicted i). Outliers may represent erroneous data, or may 

indicate a poorly fitting regression line. If a point lies far from the other data in the 

horizontal direction, it is known as an influential observation. The reason for this 

distinction is that these points may have a significant impact on the slope of the regression 

line. Therefore, one or two outliers can sometimes seriously skew the results of a least 

squares regression analysis. The removal of outliers from the data set under analysis can at 
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times dramatically affect the outcomes of the least squares regression analysis. It is not 

uncommon to remove certain outliers if there is reason to believe that other variables not 

in the model explain why the outliers are unusual. Alternatively, outliers may suggest that 

additional explanatory variables need to be brought into the model to explain the 

occurrence of the outliers if they are important. Apart from removing outliers from the 

data set, they may be statistically transformed which tends to "pull in" the outliers closer 

to the other data points near the regression line. Such methods include the square root, 

logarithmic, and inverse (y = 1/x) transforms. However, Krambeck (1995) states that 

transforming non-linear ecological processes or data to fit linear regression models is a 

misleading procedure that, however is commonly used by many ecological modellers. By 

turning a non-linear function into a linear one may give mathematically identical results, 

but mean nothing in a biological sense. The reason is that ecological data inevitably 

contains errors and these are transformed too, sometimes creating unexpected results. This 

problem with linear regression and outliers seems to be a major cause of statistical 

weakness produced by the SALMO-OO simulation library. 

Loehle (1997) also agrees that we cannot solely rely on statistical assessments alone for 

model validation. He states that using goodness-of-fit measures, such as r2
, to compare 

model outputs with observed data tends to be problematic for process-based model. This 

approach can lead to an untruthful indication of inadequate model performance or may 

lead to calibration of a model against a misleading dataset. However, many ecological 

modellers seem to rely heavily on a single statistical test to summarise goodness-of-fit and 

to determine the “correctness” of the model. Thorough testing of a model requires the 

application of a suite of techniques. No single technique provides adequate information 

(Loehle, 1997). Loehle (1997) proposes a hypothesis-testing framework for model 

performance evaluations rather than relying on goodness-of-fit statistical methods. 

Therefore, the focus is on whether the model differs from reality, not how tightly it fits the 

data in a regression sense. Precision is properly measured as the width of the bounds on 

the expected behaviour of the real system. Therefore, when the model is tested for realism, 

it would be unfair to fault the model for not fitting the expected trend line precisely (as 

measured by goodness-of-fit statistics) because real data have considerable spread or 

variations. Rather, we want to know if the model gives results that fall within the bounds 

we expect for a real ecosystem. Thus, if the model does fall within these bounds then we 

cannot reasonably say that the model differs in behaviour from that exhibited by the real 

system. 

Statistical validation is often defined as an objective process, however, whether an 

ecologist trusts the models capabilities of simulating a system is mainly a complex, 

subjective decision (Botterweg, 1995; Goodrich, 1992). Levins (1966) discusses three 

basic requirements of a model: generality, realism and precision. Ideally, all three 

requirements should be optimised or satisfied when developing realistic, robust models. 

However, this is a difficult processes and usually one requirement is sacrificed to satisfy 

the remaining requirements. Thus, it becomes a question of which requirement is the most 

important, and which requirement should be sacrificed in order to develop a valid model 

suitable for problem solving. Levins (1966) goes on to discuss that dynamic, time series, 

ecosystem type models usually sacrifice precision in order to achieve realism and 

generality, these requirements being the most important to achieve. This view suggests 

that qualitative results are more informative then quantitative results of a model’s outputs. 

According to Levins (1966), it is more important that the SALMO-OO simulation library 
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results show clear behavioural differences between lake categories and actually be 

representative of each lake, than precisely predicting each measured value in the data set.  

It is necessary to remember what is in fact important to the modeller and the questions 

asked from the model. Ecologists may not be concerned with the model being able to 

simulate all the data to the same level of precision and may wish to focus on the patterns 

observed (Elliott et al., 2000). For example, if eutrophication control is the objective, it is 

more important to succeed in predicting major algal bloom events rather then predicting 

base line algal biomass levels (Harris, 1998). A study conducted by Ellison and Bedford 

(1995) on the simulation of wetland vascular plant communities, discusses how they 

developed a vascular plant simulation model, using visual and statistical validation 

techniques. They concluded that statistically many of the state variables did not predict the 

measured data well (r
2
< 0.5) and normally the model would have been rejected. However, 

visually the results were representative of the system and predicted corresponding trends 

present in the measured data. Therefore, they accepted the model’s structure and 

functionality based on these qualitative assessments rather than statistical analysis, as the 

model’s results satisfied the purpose of developing the model for wetland restoration.  

The results obtained from the study by Ellison and Bedford (1995) present a similar 

scenario to the results obtained by SALMO-OO. Ellison and Bedford’s study indicates 

that the purpose of developing an ecosystem model is an important consideration that 

should be incorporated into the validation process (Botterweg, 1995; Goodrich, 1992). The 

purpose of the SALMO-OO simulation library is to provide additional functionality to 

improve the models flexibility and performance to lakes with different trophic states and 

mixing regimes. Therefore, the SALMO-OO simulation library has to be representative of 

each lake system defined by the categories. The fact that the statistical analyses 

demonstrate that the SALMO-OO simulation library gave, in some cases, quantitatively 

poor results does not diminish the model’s abilities to represent different lake 

environments. The visual validation results still adequately suggest that the SALMO-OO 

simulation library satisfies the requirements of generality and realism, however, at the 

expense of precision. This is consistent with the model requirements outlined by Levins 

(1966) when developing deterministic ecosystem models where generality and realism are 

the main focus and precision is sacrificed. Levins (1966) further agrees that focussing on 

generality and realism is more important then being precise when developing dynamic, 

time series models.  Goodrich (1992) also agrees that when statistics are invalid then 

whether the model fulfils the purpose becomes the critical, deciding issue in acceptance of 

the model as a management tool. 

The debate on the use of qualitative versus quantitative validation techniques for testing 

the predictive success of a model is complex and unresolved in the ecological modelling 

field. Certain academics strongly favour the use of statistics in testing a model’s 

performance as it is useful to support subjective assessments and gives confidence in the 

predictive abilities of the model (Bacsi & Zemankovics, 1995; Mayer & Butler, 1993; 

Power, 1993). However, statistical assessments such as regression analysis and the RMSE 

statistic are important to consider, but qualitative decisions are unavoidable when 

assessing the descriptive nature of dynamic ecosystem models (Harris, 1998; Radford & 

Blackford, 1996). In fact, Botterweg (1995) suggests that complex deterministic models 

that simulate several linked processes cannot be validated, but more and more evidence 

can be collected that supports the status of the model as being correct. 
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5.2. Generic models for the simulation of lake ecosystems  

Generic models tend to be those that are designed to simulate more than one type of 

functionally equivalent system or organism by using the same model structure, but 

different parameter and input values to define the details of a particular system or 

organism (Meyer, 1990). Reynolds and Acock (1997) believe a broader definition for 

ecological modellers is necessary and in addition to Meyer’s (1990) definition propose 

several design criteria for generic model development: 

1. Transferability: A good generic design should be suitable for application to 

ecosystems or a target group by the use of different model parameters or different 

modules.

2. Additivity: A good generic design must be able to simulate functionally similar, yet 

different systems, by the addition (or subtraction) of modules. 

3. Separability: Individual modules should be readily recognised by experts in the 

field as separate processes of the system under study. The purpose of each module 

should be readily apparent. Modules that combine several functions not normally 

considered together may be more difficult to parameterise for a new system. 

The SALMO lake ecosystem model was designed to be generic for a range of different 

lake conditions (e.g. different trophic state, morphometry or climate conditions). The 

model structure (i.e. the mathematical functions) and constant parameter values are kept 

unchanged for each simulation, and it is the measured environmental input data that 

distinguishes between each lake. With the implementation of the object-oriented version 

of SALMO (SALMO-OO) the modularisation of the model’s structure has been achieved 

in a transparent manner. This has allowed each state variable to be defined as a module, 

where all relevant functions and specific parameter values are defined. In regards to point 

3 of Reynolds and Acock’s (1997) generic model design criteria, any expert in the 

freshwater modelling field should be able to recognise and understand the mechanisms of 

each state variable module simulated by SALMO-OO. 

The advantage of generic model design is “economy of effort and understanding” 

(Reynolds & Acock, 1997). Generic models provide an alternative to the development of 

ad hoc models for each specific ecosystem or organism under study, therefore, reducing 

the need to build and test new models from scratch. As a consequence generic models are 

appealing to ecological modellers as only one model structure is developed and 

familiarised with (Grimm et al., 2004; Reynolds & Acock, 1997), thus, less time is spent 

at the conceptualisation and building stage of model development. Many researchers who 

have adopted a generic modelling approach find that generic design offers a flexible 

platform for alternative hypothesis testing (Bussenschutt & Pahl-Wostl, 2000; Pahl-Wostl 

& Imboden, 1990; Reynolds & Acock, 1997; Zonneveld, 1998). This has been a key 

advantage in the development of the SALMO-OO simulation library, which explores 

alternative hypotheses through the use of different phytoplankton process functions that 

have different premises. SALMO-OO is the core generic model, and the modularisation of 

the models structure by means of object-oriented design has allowed the inclusion of 

alternative model structures to be carried out in an efficient manner by minimising the 

amount of code to be written and tested. For example, the phytoplankton growth functions 

are designed with a generic skeleton structure, so that each growth method returns the 

same output variable that is then used to calculate the total phytoplankton biomass (see 

Appendix C which gives all the source code for the simulation library).  
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Common parameter values and names to both the alternative process models and those 

from SALMO-OO were used where possible, in keeping with the overall generic design. 

Therefore, less calibration of parameter values was necessary, which many ecological 

modellers will agree is a time consuming and error-prone process (Ford, 1999; Hamilton 

& Schladow, 1997). Eleven new parameters where included in the SALMO-OO 

simulation library, in addition to those parameters already accounted for in the original 

SALMO-OO growth and grazing functions. In keeping with the overall generic design 

objectives, nine of these simulation library specific parameters were kept constant for the 

simulation of alternative phytoplankton growth and grazing functions. The one 

compromise that was necessary in order to use the alternative growth and grazing models 

to improve model performance was to calibrate the phytoplankton optimal respiration rate 

(RO) and the zooplankton maximum grazing rate (Gmax), as these parameter values 

proved to be highly sensitive. As a result, the user must manually calibrate both of these 

parameters in order to fine-tune the simulation library to achieve the most accurate results 

possible. This is undesirable and contradictory to the points made above, as the main 

objective of the SALMO-OO model is to have all the parameter values kept constant. 

However, if the RO and Gmax parameters were kept constant the simulation library would 

not significantly improve the models performance from that produced by SALMO-OO’s 

original phytoplankton functions. Therefore, this is an area that needs to be improved and 

tested more thoroughly, and will be discussed further in the conclusion.  

Even though generic models are an efficient and economical means of exploring 

ecosystem behaviour and for testing hypotheses, there are some disadvantages and 

limitations in adopting a generic modelling approach. Generally, with site-specific models 

the calibration of parameter values fine-tunes the model to better fit the field 

measurements of the system that is being simulated. The validation data set is often an 

independent data set from a similar system. With generic models the initial calibration of 

parameter values is a more complex exercise, as the parameter values need to be within a 

range that is suitable for the simulation of a variety of systems. The SALMO-OO model 

has constant parameter values that are not changed for the simulation of each different 

lake, nevertheless the model has the ability to realistically simulate lakes with different 

trophic states, morphometry and mixing conditions. Therefore, there is no additional 

calibration and validation needed when the model simulates a new lake dataset. 

Unfortunately, as a result of the generality of parameter values in generic models there is a 

higher degree of bias and uncertainties inherent in the model structure, which causes the 

accuracy of the results to be diminished.  

As was discussed in the previous section, Levins (1966) states there are three basic 

requirements of a model: generality, realism and precision. It is difficult to achieve each 

requirement in a single model, and often one requirement is sacrificed to satisfy the 

remaining requirements. Therefore, it is a question of which requirement is the most 

important, and which should be compromised in order to develop a valid model suitable 

for problem solving. This really becomes an issue of model purpose and the questions 

being investigated by the model. In the case of the SALMO-OO model, precision has been 

compromised in order to achieve realism and generality, as is the case for most generic 

models. Generic models also tend to compromise more on detailed descriptions so that 

general applicability is achieved (Grimm et al., 2004). For deterministic ecosystem models 

it is the desirability to understand and investigate ecosystem dynamics and behaviour that 

causes such models to be developed, rather than to achieve very high accuracy.  
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For example, Parrott and Kok (2001) developed an investigative generic model to explore 

the fundamental properties of complex ecosystem networks. The objective of the model 

was realism rather than accuracy, in order to create a model for the investigation of plant 

growth and development that was sufficiently generic to be applicable to a wide variety of 

plants (i.e. herbs, bushes and trees). As a result, the model may not necessarily provide an 

accurate representation of any particular plant species. When used to simulate the 

behaviour of a large number of plants belonging to different species, however, it does 

provide reasonable predictions of total biomass accumulation in an ecosystem, in addition 

to depicting the major influences of plants on the soil and atmosphere environments. The 

model has been intentionally developed in this manner to facilitate investigative 

engineering research, and as such the objective has not been to accurately describe or 

predict the actual dynamics of any existing system. Thus, the authors found that it was 

more important to test each of the fundamental relationships programmed in the model, 

and that the overall system dynamics exhibited expected results as according to ecosystem 

theory and observed behaviour. Therefore, these factors hold true for many models that are 

being used for investigating ecosystem dynamics, and by improving the model in these 

areas then we can be reasonable confident in the usefulness of the model as a decision-

support tool (Bussenschutt & Pahl-Wostl, 2000).  

Another point that is emphasised by Parrott and Kok (2001) is that such descriptive 

models that provide understanding rather than accuracy are used as decision support tools 

rather than decision-making tools (Bussenschutt & Pahl-Wostl, 2000; Grimm et al., 2004). 

Due to the restriction in the accuracy of such models they are difficult and unreliable in 

giving precise estimates of key state variables. To be a decision-making tool, SALMO-OO 

would have to deliver absolute, reliable predictions of the key variables that are of interest 

in water quality management, which is very difficult given the uncertainties in model 

parameters and structure. Therefore SALMO-OO is instead a tool for decision support for 

lake and reservoir management. Thus, the ultimate goal of the SALMO-OO simulation 

library is to support the ranking of management scenarios and to base decisions on 

understanding, not on mere numbers. For example, the SALMO-OO simulation library 

offers a variety of different scenario analysis options to explore ecosystem management 

and behaviour. A case study for the three South African lakes that were validated in this 

study has been investigated using the SALMO-OO scenario analysis for phosphate 

reduction and biomanipulation of zooplankton population dynamics (Recknagel et al.,

2006). The application of the 90% reduction in phosphate loads scenario analysis for Lake 

Hartbeespoort demonstrates a shift in algal species abundances from a hypertrophic state 

to a mesotrophic state with the dominance of green algae instead of toxic blue-green algae. 

Similar results were achieved for Lakes Roodeplaat and Klipvoor, although these lakes 

would remain eutrophic due to the extreme algal blooms occurring in summer. However, 

the biomanipulation scenario analysis demonstrated that control of blue-green algal 

blooms was more difficult to achieve when combined with P-load reduction, as this 

management option reinstated blue-green algal dominance in summer by targeting mainly 

green algae as a result of stronger grazing by zooplankton. The outcomes of the South 

African lakes scenario analysis can assist decision makers in tailoring the specific 

management option to apply to the real systems and to rule out which management option 

would be less successful, thus supporting which decision should be made. 
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5.2.1. The benefits of the object-oriented paradigm for generic model 

development and implementation 

Generic models are designed to encompass as many specific situations as possible. The 

task of the user is to parameterise the generic model and to tailor it to some degree by 

choosing from alternative modules (Grimm et al., 2004). The SALMO-OO simulation 

library has been redeveloped from the original FORTRAN program version into an object-

oriented software package, with a graphical user interface that is much more user-friendly 

and informative. The SALMO-OO simulation library has been designed to act as a 

decision support tool for lake and reservoir management. Thus, the library can be used to 

improve model validation as best as possible from a knowledge-based approach by 

selecting alternative mathematical functions. Scenario analysis can then be performed to 

determine the effect of particular management strategies or environmental degradation on 

the lake being investigated. The SALMO-OO model is tailored by the inclusion of site-

specific measured data for driving variables such as water temperature, solar radiation and 

water inflow and outflow. 

The benefit of the object-oriented paradigm in ecological modelling has been extensively 

discussed in the Literature Review chapter. The main advantages of the object-oriented 

paradigm for ecological modelling are the logical modularisation of model components, 

which provides a more flexible platform for model development, and the suitability of the 

paradigm to simulate the behaviour of natural entities more realistically due to the use of 

objects. The object-oriented paradigm is naturally suited as a mode of developing generic 

models. Reynolds and Acock (1997) present the concepts of modularity and “genericness” 

as methods of good model design. Adopting the object-oriented paradigm for model 

development facilitates the modular design component, as the concept of classes and 

inheritance mechanisms naturally categorises ecological processes or state variables into 

logical, hierarchical modules. For example, all phytoplankton process functions, specific 

parameter values and information are encoded into a single class that is only accessed by 

other objects through special message protocols. This effectively de-clutters the model 

structure as the objects and processes need only be defined once in the program. Not only 

is the model easier to navigate around and learn, it reduces the propagation and time 

needed to fix errors and facilitates the understanding of model logic (Acock & Reddy, 

1997; Dawson & Swatman, 1999; Lemmon & Chuk, 1997).  

The generic design component allows several types of model formulations with different 

output variables or assumptions to be investigated within a single model structure, and can 

often be applied to a variety of conditions that in a traditional setting would require a 

different model for each case study. The object-oriented paradigm facilitates the 

development of generic models as the alternative processes functions or modules can be 

easily added to the models structure, particularly due to the object-oriented concept of 

inheritance. Therefore, classes (or modules) within a model can be arranged in a 

hierarchical structure, which inherit properties (such as parameter values or process 

functions) from the proceeding classes. Thus, only those particular features that have 

changed within the context of the model need to be added to the new descendent classes 

(Silvert, 1993). For example, the AlgaeLibrary class, which encodes all relevant 

information about the phytoplankton simulation library, is a descendent of the 

Phytoplankton class, which descends from the Salmo super class. The 

AlgaeLibrary class has access to all functions and parameter values that are defined 
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by the Salmo and Phytoplankton classes. Thus, when defining alternative process 

functions for phytoplankton only new equations and parameter values need to be defined, 

rather then having to repeat code that has already been written for previous classes. 

Inheritance provides a powerful mechanism for organising and structuring simulation 

models and allows the reuse of a class’s behaviour in the definition of new classes 

(Baskent et al., 2001; Sequeira et al., 1997).

Applying the object-oriented paradigm to a lake ecosystem model was no easy task, 

considering a new program language had to be learnt and also initially dealing with the 

abstract concepts of the object-oriented paradigm took some time and effort. Often the 

luxury of learning new programming languages and design techniques is not readily 

available to many ecological modellers, which is possibly why the object-oriented 

modelling approach and the use of the Java program language is still not wide spread, 

even though the advantages of such an approach are beneficial. Once the hierarchical 

structure for the SALMO-OO model was completed, designing the simulation library was 

very straightforward. The methods for the alternative phytoplankton process models were 

designed based on the original phytoplankton process functions. Common parameter 

values that are accessed by various objects were encoded into one super class, therefore, 

this made these parameters easy to find and update. When it was necessary to include 

additional process functions to the SALMO-OO simulation library, the object-oriented 

structure of the model facilitated this activity.  

However, the object-oriented paradigm can only benefit model development to a certain 

extent. Thus, good model design begins with the conceptualisation of the model domain 

and assumptions, how the model will mathematically represent key processes, and what 

level of spatial and temporal detail is necessary to give meaningful results. These 

considerations are greatly dependent on the questions being asked of the model, and such 

questions will also determine the modelling approach to a certain degree. The main area of 

use for the SALMO-OO simulation library is as a decision support tool for determining 

management outcomes in freshwater lakes and reservoirs. SALMO-OO is a descriptive, 

investigative model that gives the user understanding in the behaviours of lake 

ecosystems. By providing the simulation library as an additional validation toolbox this 

has improved the overall model performance to give more accurate and realistic results for 

phytoplankton dynamics. 
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5.3. Conclusions  

To draw the final conclusions from this study let us revisit the aims outlined in the 

Introduction chapter: 

1. Does the application of a phytoplankton growth and grazing simulation 

library improve the applicability and accuracy of SALMO-OO? 

As a generic model SALMO-OO, in its original format, simulates a wide variety of lake 

conditions and scenarios. With the application of the simulation library of phytoplankton 

growth and grazing process models, the accuracy of the model to predict key state 

variables has been improved, not only in the quantitative results, but also in the prediction 

of key events, such as algal blooms that are important to environmental managers to 

forecast. Each phytoplankton process model included in the simulation library is based on 

strong and rigorous scientific principles that have been in use for many years in many 

different lake models. As a result, each process model has been extensively validated, and 

shown to perform realistically and accurately within the models from which they have 

been taken. The main goal of improving the SALMO-OO validation results was based on 

achieving a more general, realistic and accurate simulation of phytoplankton functional 

group dynamics. The original SALMO model only simulated two phytoplankton 

functional groups for a given simulation. The SALMO-OO simulation library is able to 

simulate three phytoplankton functional groups realistically for different trophic states. 

Although many of the lake data sets that were tested did not have measured data for 

phytoplankton functional groups the few lake data sets that we did have data for indicated 

that the model performed well in the simulation of functional group dynamics and 

succession through the seasons. 

Although process based ecosystem models have been criticised in the past as being useless 

in giving confident predictions for management scenarios, they benefit the decision-

making process by providing a platform where ecosystem structure and behaviour can be 

explored. Process-based models can also give us an understanding in the gaps that exist in 

our knowledge of a system. By increasing our knowledge base and our abilities to measure 

ecological data more accurately these advances will be reflected in the deterministic 

models that are developed as decision support tools. The SALMO-OO simulation library 

offers a greater choice of modelling options by providing alternative process model 

structures in a single user friendly framework.  

2. Can generic model structures be found using the SALMO-OO simulation 

library for lakes with different trophic states, climate conditions or 

morphometry?

Generic model structures were found for nine lakes based on four categories of trophic 

state and mixing conditions. Each model structure that was found to best simulate a 

particular category was not necessarily the best performing structure for an individual lake 

dataset, but performed best overall for all lakes in each category. The reason for 

distinguishing lake categories was to improve the models generality and realism, and to 
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simplify the use of the model for environmental management scenarios. Determining a 

particular model structure from the possible combinations of phytoplankton growth and 

grazing models was a rigorous and time consuming process. Therefore, by suggesting a 

particular structure for a type of lake in a simplified category the user would only need to 

fine-tune the model by calibration of the phytoplankton respiration rate and the maximum 

grazing rate.

The manual calibration of the phytoplankton respiration rate (RO) and the maximum 

zooplankton grazing rate (Gmax) is a step in the modelling process that needs to be 

eliminated. The main concept of SALMO-OO is to be used as a generic model where 

constant parameter values are kept unchanged for each simulation of each different lake, 

distinguished only by the environmental input data. However, a drawback of generic 

models is the sacrifice of precision in order to achieve realism and generality. Therefore, 

to improve the precision of the SALMO-OO model through the simulation library some 

calibration was deemed necessary. However, further research in this area is currently 

taking place, where evolutionary algorithms are being used to replace sensitive constant 

parameters, such as the maximum photosynthesis rate, the maximum zooplankton grazing 

rate and the plankton respiration rate, by either automation of optimising parameter values 

or by replacing the constant parameters with functions evolved from the input data (Cao et 

al., in press). Preliminary results are very encouraging and have increased the models 

accuracy to levels acceptable for SALMO-OO to be used as a decision making tool. The 

parameter optimisation and function evolution modelling steps will be offered as a further 

validation step in the user interface within the SALMO-OO simulation library software 

package. Also, the model would be more realistic if the values for RO and Gmax were 

different for each plankton functional group, as these values in nature would be different 

for each phytoplankton species. This generalisation was performed in order to achieve 

some simplicity in the development and testing of the model library. Automation of the 

calibration process for these variables would solve this problem. Nevertheless, the 

inclusion of hybrid evolutionary algorithms to find functions based on some 

environmental variable would reduce the need to calibrate these parameters and functions 

could be discovered based on each plankton functional group, rather than using a common 

variable for all phytoplankton species. 

The SALMO-OO simulation library provides additional functionality in the form of 

alternative model structures to improve the models flexibility and performance to lakes 

with different trophic states and mixing regimes. The simulation library is currently being 

expanded to include alternative process for zooplankton growth and mortality and a 

sediment library. The object-oriented paradigm for model design and implementation will 

allow these additions to SALMO-OO to be completed in a straightforward flexible 

manner. Other state variables that are being considered for inclusion into SALMO-OO are 

ODEs for silica, dissolved inorganic carbon and additional phytoplankton and zooplankton 

functional groups. The adoption of the object-oriented paradigm and the construction of 

the simulation library as a decision support tool will provide a modelling environmental 

which is user friendly, transparent and adaptable to a wide variety of lake system. 
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