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Abstract

Hidden Markov models (HMMs) can allow for varying wet and dry cycles in the climate without the need to simulate supplementary climate
variables. The fitting of a parametric HMM relies upon assumptions for the state conditional distributions. It is shown that inappropriate

assumptions about state conditional distributions can lead to biased estimates of state transition probabilities. An alternative non-parametric

model with a hidden state structure that overcomes this problem is described. It is shown that a two-state non-parametric model produces
accurate estimates of both transition probabilities and the state conditional distributions. The non-parametric model can be used directly or as
a technique for identifying appropriate state conditional distributions to apply when fitting a parametric HMM. The non-parametric model is
fitted to data from ten rainfall stations and four streamflow gauging stations at varying distances inland from the Pacific coast of Australia.
Evidence for hydrological persistence, though not mathematical persistence, was identified in both rainfall and streamflow records, with the

latter showing hidden states with longer sojourn times. Persistence appears to increase with distance from the coast.
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Introduction

Hidden Markov models (HMMs) have become popular tools
for modelling dependent random variables in such diverse
areas as speech processing (Juang and Rabiner, 1991), DNA
recognition (Churchill, 1989) and rainfall occurrence
(Zucchini and Guttorp, 1991). HMMs are based on a doubly
stochastic process (Rabiner, 1989), in which an underlying
stochastic process that develops as a Markov chain produces
an unobservable (‘hidden’) state that can be inferred only
through another set of stochastic processes. HMMs can be
used to characterise observable signals as parametric random
processes, the parameters of which can be determined in a
precise manner (Rabiner, 1989).

Numerous authors have applied HMMs to stochastic
hydrology, particularly in applications associated with
climate variability. Zucchini and Guttorp (1991) applied a
hidden Markov model to describe patterns of precipitation
in space and time. In the construction of this model, the
authors introduced unobserved climate states, which had
different rainfall distributions associated with them. The
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transitions between these climate states were assumed to
follow a Markov chain, with stationary transition
probabilities.

Hughes and Guttorp (1994) described a nonhomogeneous
hidden Markov model (NHMM) to relate broad scale
atmospheric circulation patterns to local rainfall. The authors
hypothesised unobserved, discrete-valued weather states,
which classified atmospheric patterns into classes that are
associated with particular precipitation patterns. In this
model, transition probabilities between the hidden weather
states depend on observable atmospheric data.

Thyer and Kuczera (2000) and Thyer (2000) use the
concept of hidden climate states to provide a technique for
the long-term simulation of hydroclimatic inputs for water
resource planning, without the need to simulate
supplementary climatic variables. The independent climate
states, Wet (W) and Dry (D), which are assumed to have
distinct rainfall distributions, are used in an attempt to
explain varying wet and dry cycles in the Australian climate.
At any given time, the distribution of observed random
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variables in a HMM depends on the unobserved Markov
chain, which governs the state of the process only through
its value at that time (Ephraim and Merhav, 2002). These
conditional distributions usually belong to a single
parametric family (Robert et al., 2000). When fitting these
models to a random sample of data, it is unlikely that the
parametric conditional state distribution of the population
is known, and requires estimation. In their application of a
two-state HMM to simulate annual rainfall recorded at three
Australian coastal cities, Thyer and Kuczera (2000) assumed
that rainfall in both climates was consistent with random
draws from Gaussian distributions. At sites in which annual
rainfall is skewed, it is unlikely that this model assumption
will still be suitable.

In this paper, an innovative non-parametric HMM
(NPHMM) is described which avoids assumptions about
the distribution of the observed process in each state.
Therefore, the estimation of transition parameters is not
compromised by a conflicting requirement that the observed
marginal distribution be a mixture of unrealistic conditional
state distributions.

Parametric two-state HMM

BACKGROUND TO MODEL

HMMs can be described by a pair of discrete-time stochastic
processes {(Xt YA )} . In this model, suppose that x is a finite-
state Markov chain, described at any time as being in one
of a set of k distinct states, {sl,sz,_,.,sk}. The set of one
step transition probabilities, P = {pij , which characterise
changes in state is defined as

pij:P(Xt:Sj‘XH:Si)lﬁi,jSk (D
where

20 =1 foralli ©)

]

The unobserved process x, is referred to as being in state
J (1£ j < k) at time ¢ by the notation qj . Given Sﬂ ,¥,1s the
observation at time #, with a probability distribution that
depends only on the underlying state, formally defined by
the following assumption:

P(y,|X..Yi) = Py,[x) 3)

where Y, , is the sequence of observations from time 1 to
time 71, {1yl, Yo yeens yl_l} , and similarly for X . The observed
process may be either discrete valued or continuous and is
described as conditionally independent random variables.

The distribution of y, without any conditioning state is the
marginal distribution. It is estimated by the distribution of
all the observations, without regard to their order of
occurrence.

This paper will focus on two-state HMMs. The states are
referred to as Wet (W) and Dry (D), reflecting the hypothesis
of distinct, but not directly observable, climate states that
influence rainfall.

HMM DEGENERATING TO A MIXTURE
DISTRIBTUION

A mixture of two normal distributions can often closely
approximate a skewed marginal distribution. A HMM
includes a mixture as the special case of state transitions
that are independent of the current state. That is

Pow = Rw and Rip =Py 4)

where B, is the transition probability from a Dry to a Wet
state, and so on. This condition is equivalent to

Pow + R =1 5)
The proof that Eqn. (4) implies Eqn. (5) follows:

Let Py, and P, be the proportion of time that the HMM
spends in Dry and Wet states respectively.
Then

P

dry

+P =1 (6)

The stationary probability vector for a two-state HMM
satisfies

Pw PR
P b P el B )
DW DD
and so
P
P — DW
" 14 Py — Ry ®)

If Py, = Ry » then

P = Pow = Bwy ©)]
Similarly
Pdry =Rw = Fop (10)

and hence P, + R, =1.
Conversely, if Eqn. (5) holds, the transition matrix must

653



Martin F Lambert, Julian PWhiting and Andrew V. Metcalfe

have the form
{p (1- p)} .
p (@-p) (h

R = Poo =P

where p= iy

If state transitions are independent of the current state,
the construct of climate states is redundant and the model
can be thought of as merely a mixture. If there is a tendency
for the model to persist in either state, the sum of R,; and
P,w will be less than 1, whereas a sum greater than 1 would
correspond to a tendency to fluctuate between states.

A Bayesian credibility interval for the sum of R, and
P, can be used as an indicator of persistence. If the upper
limit of the 90% credibility interval is less than 1, evidence
of hydrological persistence can be claimed. However, if the
interval includes 1 there is no convincing evidence to dismiss
the possibility that the HMM is merely a mixture.

INAPPROPRIATE GAUSSIAN ASSUMPTION BIASES
TRANSITION PROBABILITIES

A mixture of two Gaussian distributions can approximate a
skewed marginal distribution, even if it has arisen as a
mixture of two skewed conditional state distributions.
However, the mixing proportions are likely to be different.
A biased estimate of mixing proportions will lead to biased
estimates of transition probabilities through Eqn. (8). This
could result in missing statistically significant evidence for
the existence of climate states, or possible incorrect claims
for such evidence. The advantage of the non-parametric
approach to be proposed later is that this possible source of
bias is avoided. Another approach would be to adopt a more
general family of distributions. However, the NP approach
is still useful as it can be used to identify suitable probability
distributions.

PARAMETER ESTIMATION

In the fitting of the HMM, it is necessary to estimate the
unknown model parameters, denoted by the vector 6, from
the observed time series. In the parametric case, & consists
of the parameters of the assumed probability distribution
and transition probabilities. In the non-parametric case, &
includes a single transition probability and related
parameters. Parameter estimates are described by the
posterior distribution of 6, conditional on the entire set of
observations Y, denoted by p(H‘Yn), which can be
represented through Bayes’ Theorem as:

MMPﬂﬁ@@ (12)

p(v,)
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n) is the marginal probability
p(Y,) :Y[ p(Y,[0)p(6)d6 , p(&)is the prior distribution of &
and P is known as the likelihood distribution. The
likelihood is central to the implementation of both the HMM
and the NPHMM and can be expressed as:

p(v,10)= p(y,0) T P(v.|¥es,0) (13)
t=2

where Y,_; represents all the observations up to time (¢1).
Chib (1995) outlines an iterative procedure to evaluate the
term p(yt‘YH,H) for a two-state HMM, which exploits the
Markovian state dependence and proceeds in the following
three steps. In these steps, S' is representative of the

condition X, =S'.

p(si]Y,...6)= ) pls

In this relationship, p(Y

s 1.0)p(s! V. 1.0)

(14a)
(yt‘Yt 1’0 ( ‘31 H)pS‘Yt 1’0) (14b)
pls]Y,,6)- p(yt\si,e)p(s‘ ¥,.,,6) (14¢)

In this procedure, the probability density p(yt‘st" 19) is the
likelihood of obserying y, given the climate at time 7 is in
the j” state, and p( ‘S[ 1 )denotes stationary transition
probabilities. The iteration of these three steps over all
observations evaluates the likelihood of the observed time
series.

In the HMM, it is not possible to derive analytically an
expression for the posterior distribution p(@‘Yrj. When it
is not possible to evaluate explicitly the posterior
distribution, numerical integration or analytical
approximation techniques are often required (Brooks, 1998).
The Monte Carlo Markov Chain (MCMC) method provides
an alternative, through the construction of aperiodic and
irreducible Markov chains, which have stationary
distributions that approximate the posterior distribution of
interest. By running such chains for long enough, simulated
variables can be treated as samples from the posterior
distribution, and can be used for summarising important
features of the posterior (Brooks, 1998). The Metropolis
algorithm (Metropolis et al., 1953; see also Kuczera and
Parent, 1998) is perhaps the broadest implementation of
these methods and is used in this paper to derive the posterior
distributions of unknown model parameters.

Non-parametric two-state HMM

BACKGROUND TO MODEL

A non-parametric (NP) HMM has been developed as an
alternative to the parametric two-state HMM described in
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the previous section. This model has been termed ‘non-
parametric’, as no assumptions concerning the underlying
state distributions are made. The procedure used to fit this
model to a known data series is summarised here:

Let {yl, Vo seens yn} represent the observed data in time
order, with y being the datum at time ¢, where 1 <7 < n.
Now let {y} be the data sorted into ascending ordermA
transform into the [0,1] interval is defined by Y, — P
where m is the rank of y_ when the observations are sorte(}.
Define U,:niﬂ then {ul,uz,...,un} is the time series
transformed into the [0,1] interval. The hidden model states
will be identified within this transformed time series. As
the sorting procedure employed to generate the transformed
time series can be undertaken on both discrete and
continuous variables, the non-parametric HMM can be
fitted, without modification, to time series of either type.

By using the same model states that were used in the two-
state parametric HMM, it is assumed that a value U_ has
arisen from either a Wet state (W) or a Dry state (D) and
that the higher values of u, are more likely to be from the
former. Therefore, for a given value of U,, 1 <7 < n, the
probability of that value having arisen from a Wet state is
complementary to the probability of that value having arisen
from a Dry state, i.e.

PWlu, )+ P(Dlu ) =1 (15)

Transitions between the two states are defined in the same
way as for the parametric HMM. The states of the
transformed series can be represented geometrically by the
partition of a unit square that has u, on the horizontal axis
and P(s(j\ut,é?) on the vertical axis (where J=W,D),
giving a height of unity. The parameter vector & has been
included as a conditional vector of unknown quantities,
which includes the HMM transition probabilities and a
relationship governing the partition between the two states.
This partition divides the square in such a way that the
probabilities of U, having been generated from either state
are defined. Figure 1 illustrates the square structure of the
NPHMM, with a partition curve separating the Wet and Dry
states.

PARTITIONING THE SQUARE

The partition of the square on which the NPHMM is based
can take a variety of shapes dependent upon the underlying
state distributions. At one extreme, if the distributions are
well separated, the partition will be a vertical line with areas
either side corresponding to the proportion of the total from
each distribution. To illustrate this, data from a simulation
of 10 000 draws from Wet state N(2000,2002) and Dry

1
Dry state (D)
P(W | uy)
Wet state (W)
0 1

Ui

Fig. 1. An example of the separation of the NPHMM unit square
into Wet and Dry states

state N(1000,2002) were put in ascending order. The
complimentary histograms in Fig. 2a show the proportion
of data from the Dry and Wet distributions for U, bin widths
of 0.01.

At the other extreme of conditional distributions, the
partition will be horizontal, with the areas either side of the
partition corresponding to the proportions of the data from
either distribution. As an illustration, data from a simulation
of 10 000 draws from a Wet state and a Dry state that were
both N(ZOOO,ZOOZ) were put in ascending order. Figure
2b shows complimentary histograms with the proportion of
data from both distributions for U, bin widths of 0.01.

To illustrate a partition that is between the horizontal and
the vertical, data from a simulation of 10 000 draws from
Wet state N(2000,200?) and Dry state N (1500,2007)
were put in ascending order. Complimentary histograms in
Fig. 2c¢ show the proportion of data from Wet and Dry
distributions for U, bin widths of 0.01.

APPROXIMATING THE NON-PARAMETRIC
DIVISION

The division between the Wet and Dry histograms in Figs.
2a-c can be characterised by a continuous curve. However,
rather than specify any functional form, a continuous
division is effected by a discrete number of contiguous line
segments. The approximation of a curve of partition by three
segments, constrained at points (0,0) and (1,1), will be
determined by the coordinates of two points P, and P, as
shown in Fig. 3. In the application of this model, a maximum
likelihood procedure can determine the location of these
two points, under the constraint that the coordinates of P,
are greater than P . In this way, a Wet state is identified as
lying below these segments.
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D
L%
{51

P(W | uy) D ate Wie

Dry state
P(W | uy)
0
1
p(W | uy) D ate Wet state
0 0 u 1

Fig. 2. The estimated separation of NPHMM unit squares for
samples from three simulated Markov chains with Wet and Dry
distributions that are (a) well separated, (b) identical, (c)
overlapping

It is possible to generalise the NPHMM to include more
than two states. In the model illustrated here, two
independent states are defined by one partition. If this
framework is extended to allow for three model states, two
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1
Dry state (D) 2(az,b,)
p(W | uy
Pi(as,b1)
Wet state (W)
0 1

Ut

Fig. 3. A two-point division of a two-state NPHMM unit square

1
State 1 P2
P(W | u) State 2
0 1

Ut

Fig. 4. A four-point division of a three-state NPHMM unit square

partitions need to be identified, as shown in Fig. 4. By
approximating both partitions with three contiguous line
segments, the locations of four points need to be identified.
It is a straightforward procedure to extend the model further
to allow for more than three states.

An alternative two-state model structure is to approximate
the partition curve by a greater number of line segments.
For example, ten contiguous lines will be separated by nine
points, which can be equally spaced along the horizontal
axis. A maximum likelihood procedure can determine the
vertical coordinates of these nine points, under the constraint
that the height of each point above the horizontal axis is not
less than the height of the preceding point. This possible
‘nine-point’ model is shown in Fig. 5. As in Fig. 3, the ten
line segments in this model are constrained at points (0,0)
and (1,1).
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I !
Dry state{(D)
pwiw| |
v Wet state (W)
0 1

Ut

Fig. 5. A nine-point division of a two-state NPHMM unit square

In the ‘two-point’ model and the ‘nine-point’ model, the
segment of a vertical line through the point U, , between the
horizontal axis and the partition curve is P({N\ut ,19). The
length of this line above the partition is therefore
1- P(\N‘utﬁ), or P(D\utﬂ). The parameter vector &
includes the locations of the points that define the partition
curve. In this paper however, the ‘two-point’ NPHMM will
be used exclusively.

NON-PARAMETRIC LIKELIHOOD FUNCTION

In the Chib (1995) likelihood function (Eqn. 14a-c), the
probability density function (pdf) for the observation in a
given state is represented by p(yt‘g‘ ,0), where j=W,D
in this case. This probability can be related to the pdf of the
NPHMM via the uniform transformation. The non-
parametric HMM pdf in state j can be represented as
p(ut‘sj ,95. Now, from Bayes’ theorem, this probability is
expressed as:
i) P(SJ‘UNG)X p(ut‘G)
plu s’ 0)= j
P(s'l0)

Here, F’(Stj \ut ,9) is the probability of u being in state j at
time ¢, which is the height of the partition at that point, as
defined earlier. Also, p ut‘H) is the marginal pdf of the value
u,, which will be equal to unity since the transformed series
is mapped to a uniform distribution. Furthermore, P(S[j ‘9)
is the marginal probability of each state (the steady-state
probabilities P and P, ) given the shape of the partition
curve. These marginal probabilities are equal to the
proportions of the area of the uniform distribution described
as Wet or Dry by the partition and are related to the transition
probabilities by the relationships

P

_ DW
=W
Pow + R

(16)

(17a)

and

P, = Fuo
dry — PDW + PWD (17b)
As a result, when fitting the two-state NPHMM to a data
set, only one of the transition probabilities needs to be
estimated, the other being related through the location of
the partition curve. Consequently, the partition can be scaled
through Bayes’ theorem to form a pdf for use in the
likelihood function iterations (Eqns. 14a-c). Thus the NP
likelihood function can be calculated and, given a suitable
prior distribution, MCMC procedures can be utilised as with
the parametric HMM to estimate the posterior distribution
of unknown parameters, p(@‘U n). In this paper, uniform
prior distributions over a [0,1] interval for both P, and
P, .., and for the coordinates of the partition within the unit

DWW ?
square, have been assumed.

IDENTIFICATION AND ESTIMATION OF STATE
DISTRIBUTTONS

Following the identification of the location of the partition,
a Monte Carlo sampling procedure is used to produce
estimates of the conditional state distributions:

i. A uniform random number is generated, relating to a
value U, and its corresponding position on the
horizontal axis the non-parametric HMM square.

ii. A corresponding value (y,) from the original time
series is interpolated from the transformed value U, .

iii. A second uniform random number (p,) is generated
and yields a distance along the orthogonal line through
u_ on the square.

iv. If p, lies above the partition, then the value of y_ will
be assigned to the Dry state distribution, and vice versa
for the Wet state.

Estimates of the two underlying state distributions can
then be obtained by repeating this sampling procedure
multiple times (100 000 repetitions in the results shown in
this paper). These distributions are guided only by the
location of the partition line, which is identified through a
maximum likelihood procedure. In this way, no assumptions
about the underlying state distributions in the two climate
states have been made.

Application of the NPHMM to
simulated data

The NPHMM is fitted to time series that are simulated from
various distributions for a length of 1000. This length is
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chosen as many continuous monthly rainfall series have
observations of between 80 and 100 years, with the former
equating to approximately 1000 values. It is useful to be
familiar with the ability of the model to identify known
model parameters from simulated time series before
interpreting results from fitting the model to observed data.

MARKOV CHAIN SIMULATED FROM TWO
GAUSSIAN DISTRIBUTIONS

A two-state Markov chain of length 1000 was simulated
with transition probabilities P, = 0.25 and P, = 0.15.
Random samples in a Wet state were simulated from
N (1500,200?%), with a Dry state being sampled from
N (1000,200%). Following the fitting of the two-point
NPHMM to this Markov chain, estimates of the Wet and
Dry distributions were obtained with means 1482.7 and
1002.8 and standard deviations 205.6 and 210.1 respectively.
These estimated state distributions are compared to the
original simulated distributions in Fig. 6, and show a
satisfactory reproduction of the original data. From fitting
the NPHMM, the posterior distributions of the two transition
probabilities, P, and P, , have means 0.237 and 0.126.
From these distributions, 90% credibility intervals are
[0.189,0.283] and [0.098, 0.157] respectively, both of which
include the values used in the simulation. For comparison,
the Gaussian HMM was fitted and the corresponding
credibility intervals for P, and P, are[0.195,0.291] and
[0.105, 0.163]. These intervals are unbiased and slightly

2500 I I — —— -
Simulated Wet state
Simulated Dry state
----- Estimated Wet state (NP model)
2000 H ====~= Estimated Dry state (NP model)
1500 | R B
1000 i /I
.
500 [ g e 1o
0 | | | A I I SO O S B | | |

5 10 2030 50 7080 9095 99 99.999.98.999
Percent

Fig. 6. Simulated state conditional Gaussian distributions of a
variable (solid line) compared with the estimated distributions
(dotted lines) from the NPHMM
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narrower, as expected when assumptions of parametric
models are valid.

MARKOV CHAIN SIMULATED FROM TWO
LOGNORMAL DISTRIBUTIONS

For this simulation, a two-state Markov chain was simulated
with transition probabilities P, =0.30 and P,,, =0.10 fora
length 1000. Random samples for a Wet state were first
drawn from N (7_5,0,252) with random draws in a Dry state
from N (6.8,0.222), with exponentials of these samples then
taken.

Following the fitting of the two-point NPHMM to this
Markov chain, estimates of the two underlying state
distributions are obtained. Taking logarithms of these
estimates produces Wet and Dry distributions that have
means 7.498 and 6.812 and standard deviations 0.242 and
0.226 respectively. These parameter estimates are close to
the known values, and the estimated distributions are
compared to the original simulated distributions in Fig. 7.
From fitting the NPHMM, the posterior distributions of the
two transition probabilities, P, and P, have means 0.306
and 0.107 respectively. From these distributions, 90%
credibility intervals are [0.244, 0.371] and [0.088, 0.128],
both of which include the values used in the simulation.
For comparison, the Gaussian HMM was fitted and the
corresponding credibility intervals for P, and P, are
[0.291, 0.408] and [0.115, 0.163] respectively. These
intervals are biased, as expected when the assumptions of

104 T T I I I I I I
Simulated Wet state
Simulated Dry state
----- Estimated Wet state (NP model)
----- Estimated Dry state (NP model)
—_— el i
I
1000 f ———————————————
P9 HE N N I

.001.01 1 1 5 10 2030 50 7080 9095 99 99.999.98.999

Percent

Fig. 7. Simulated state conditional lognormal distributions of a
variable (solid line) compared with the estimated distributions
(dotted lines) from the NPHMM
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parametric models are infringed, and the latter excludes the
value of 0.10 used in the original simulation.

MARKOV CHAIN SIMULATED FROM ONE GAUSSIAN
AND ONE LOGNORMAL DISTRIBUTION

In this example, a two-state Markov chain of length 1000
was constructed with transition probabilities P, = 0.25
and P, =0.15. Random samples in a Dry state were drawn
from N(lOOO,ZOOz) with Wet state samples being the
exponentials of random draws from N (7.4,0.32 .

After fitting the two-point NPHMM to this Markov chain,
an estimated Dry state was distributed with a mean 1020.7
and standard deviation 202.5, whereas the logarithms of the

3000 I i I —— I
Simulated Dry state Do

----- Estimated Dry state (NP model) 3

2500

2000

1500

1000

500

5 10 2030 50 7080 9095 99 99.999.98.999
Percent

10* I — ———— -

——— Simulated Wet state
----- Estimated Wet state (NP model)

1000

PO EN N S N T O S B
.001.01 .1 1 5102030 50 7080 9095 99 99.999.99.999
Percent

Fig. 8. Simulated Dry state conditional Gaussian distribution (a),
and simulated Wet state conditional lognormal distribution (b), of a
variable (solid line) compared with the estimated distributions
(dotted lines) from the NPHMM

estimated Wet state were distributed with a mean 7.394 and
standard deviation 0.290, corresponding to a sample mean
of 1696.7 and sample standard deviation of 501.9. The
estimated state distributions are compared to the simulated
distributions in Figs. 8a and 8b. From these figures, it is
apparent that both estimates closely approximate the original
simulated distributions, yet depart from the probability plots
of the original simulations most distinctly in their tails. The
estimated Wet state has an approximate lognormal
distribution, however there is a slight tendency for the Dry
distribution to be heavier in the upper tail than the simulated
Gaussian distribution.

The posterior distributions for the estimates of P, and
P, had 90% credibility intervals of [0.186, 0.294] and
[0.104, 0.163] respectively, both of which include the values
used in the simulation. The Gaussian HMM was also fitted
to this series, and the corresponding credibility intervals
for P, and P, are [0.219, 0.299] and [0.200, 0.282]
respectively. The second interval is quite misleading due to
the conflicting requirement to approximate the marginal
distribution by a mixture of normal distributions.

MARKOV CHAIN SIMULATED FROM TWO POISSON
DISTRIBUTIONS

In this fourth example, a discrete-valued Markov chain of
length 1000 was simulated with P, =0.25and P, ,=0.15,
with random samples for a Wet state being simulated from
a Poisson distribution with a mean 15, and the Dry state
simulated from a Poisson distribution with mean of 8. A
histogram showing the marginal distribution of the simulated
Markov chain is shown in Fig. 9. After fitting the two-point

120 B O B B O B A A

100 - ,

Frequency
D
o
|

©

20 - i

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Number of events

Fig. 9. Marginal distribution of the Markov chain with two state
conditional Poisson distributions
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NPHMM, Wet and Dry state distributions are estimated with
respective means 15.324 and 8.219 and variances 13.525
and 9.033. The estimates of the variance are consistent with
a Poisson distribution for which the mean equals the
variance. The posterior distributions of the transition
probabilities P, and P, have means 0.228 and 0.128
respectively. The 90% credibility intervals for these
transition probabilities are [0.177,0.281] and [0.096, 0.164],
both of which include the values used in simulation. For
comparison, a HMM with Poisson distributions describing
each state was fitted, and the corresponding credibility
intervals for P, and P, are [0.191, 0.289] and [0.111,
0.172]. These intervals also include the values used in
simulation, and are somewhat narrower, again expected due
to the assumptions of the parametric model being valid. In
most instances however, realistic models for the underlying
distributions will not be known.

Sensitivity of the NPHMM to length
of input data

In the previous section, the NPHMM was fitted to Markov
chains that were simulated over a length of 1000. However,
if the NPHMM was employed to identify climate states
within time series of annual rainfall, there will often be
between 50 and 100 data points from which to observe
hidden state transitions. By simulating two-state Markov
chains over lengths of 50, 100, 500, 1000 and 10 000, the
influence of input length on parameter estimates is
investigated. Markov chains are simulated with transition
probabilities P, = 0.25 and P, = 0.15, with random
samples for the Wet state drawn from N(2000,3002) and
the Dry state from N(1500,3002). These parameters were

1.6

chosen to produce two distributions that overlap to a greater
extent than the two Gaussian distributions used for earlier
numerical simulation.

The distribution of the estimates of P, + P, over the
range of simulation lengths can be used as a measure of the
efficiency of the NPHMM. The NPHMM is fitted to a single
Markov chain of each length, and Fig. 10 shows the mean
and 90% credibility interval for each posterior distribution,
which can be compared with the true value of 0.4 for P, +
P, . With the time series of length 50, the 90% credibility
interval for P, + P, is[0.276, 1.412]. This was followed
up by 100 simulations of samples of length 50 and
construction of the 90% credibility intervals. Ninety percent
of these intervals included the true value of 0.4 but the
remaining 10% all had a lower limit above 0.4, suggesting
that the intervals are biased towards 1. This is reinforced by
the result that 80% of these intervals included 1. It follows
that, with small samples, the NP method is unlikely to
distinguish a mixture from transitions between states with
probabilities used in this example. This result has major
implications for the use of this model to identify correct
state distributions within time series of similar length to
annual rainfall data. However, Fig. 10 suggests that the
model can dramatically improve its estimates of transition
probabilities when the length of input data is increased to
100.

To investigate further the parameter estimates made by
the NPHMM, 100 Markov chains were simulated for each
length analysed in Fig. 10, together with lengths of 40, 30,
20 and 10, with the two-point NPHMM fitted to each.
Figures 11a and 11b show the variation in the estimates for
the mean and standard deviation of the Wet state respectively
after fitting the two-point NPHMM to Markov chains of
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Fig. 10. Mean and 90% credibility intervals for the posterior distribution for (P, +P, ) from fitting the

NPHMM to Markov chains of various lengths
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Fig. 11. Mean (a), and standard deviation (b), of the Wet state distribution from fitting the NPHMM to Markov chains of various lengths. The
means of 100 simulations are shown as diamonds, and limits within which 90% of estimates lie are shown by squares. The true value is 2000 for

(a) and 300 for (b), both shown as solid lines

various lengths. The solid lines indicate the average values
for the Wet state mean and Wet state standard deviation
respectively, from multiple simulations, with 90% of
simulations lying within the dotted lines. Figure 1la
illustrates that on average, estimates of the Wet state mean
are close to the true value over all lengths; the uncertainty
around these estimates increases dramatically for shorter
input sequence lengths. From Figure 11b, it appears that
the Wet state standard deviation tends to be underestimated
for shorter sample lengths. This bias decreases as the sample
size increases as does the variability of the estimator. Similar
results were obtained for the Dry state.

Figure 12 shows the variation in the mean of the posterior
distributions for estimates of P, + P, from these 100
simulations at each model length. The solid line again
indicates the average values, with 90% of the posterior
means lying within the dotted lines. Although the means of
the estimates of P, + P, are close to the true value (0.40)
at lengths of 500 and above, the estimates show considerable
variability and a bias towards 1 for shorter sequence lengths.

An explanation for this bias is that the uniform U [0,1] priors
for P, and P, imply a triangular distribution for their
sum with a maximum value at unity.

The implication of this result is that, when applied to short
annual rainfall series, a two-state NPHMM may struggle to
provide accurate estimates of transition probabilities, thus
impeding its use for simulation. At a length of 1000,
approximately the length of monthly rainfall time series,
the credibility intervals around transition probability
estimates decrease dramatically, and at lengths of 10 000,
the two-point NPHMM can identify both probabilities
precisely.

Application of the NPHMM to
observed data

The NPHMM is now applied to observed time series. In
such series, the NPHMM is able to provide estimates for
the unknown conditional state distributions and related
transition probabilities. The distribution of the sum of
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transition probabilities is used as a test of the hypothesis
that the fit of the HMM to rainfall and streamflow data is
indicative of the influence of distinct climate states.

RAINFALL TIME SERIES

The NPHMM is fitted to the deseasonalised monthly rainfall
records for ten cities in New South Wales, Australia, in order
to estimate transitions between hidden states. The rainfall
recorded at five cities (Port Macquarie, Newcastle, Sydney,
Wollongong, and Batemans Bay) located on the coast of
New South Wales, and at five sites located inland from each
of these cities (Gunnedah, Dubbo, Orange, West Wyalong
and Wagga Wagga) are analysed. The locations of these cities
are shown in Fig. 13 with some statistics of the observed
monthly rainfall series for each site presented in Table 1.

The sporadic tablelands and mountains that line the east
coast of Australia known as the Great Dividing Range are
shaded in Fig. 13. As the country’s sole highland region,
the Range has a strong influence upon local weather patterns,
such that the regions to the west and in Australia’s interior
have a considerably lower rainfall regime than coastal sites.
The statistics of rainfall shown in Table 1 support this point,
with the five coastal sites showing higher mean monthly
totals than the corresponding inland sites. This analysis can
therefore assist in establishing whether coastal
meteorological conditions influence estimates for HMM
transition probabilities.

The Baum-Welch forward and backward recursion (as
discussed by Bengio, 1999) can be included in the likelihood
function of the NPHMM to obtain the hidden state
probability time series. This time series is the posterior

Fig.
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Table 1. Statistics of the observed monthly rainfall series

Bureau of Length Mean Standard Skew 1st Quartile  3rd Quartile

Meteorology (months) (mm) Deviation (mm) (mm)

rain gauge number (mm)
Port Macquarie 60026 1572 126.92 107.99 1.92 49.23 177.35
Newcastle 61055 1608 94.70 78.22 1.88 40.80 125.18
Sydney 66062 1692 102.12 93.39 1.92 37.03 137.17
Wollongong 68069 888 94.87 99.17 2.46 30.60 126.35
Batemans Bay 69001 1200 84.29 90.31 2.74 25.13 110.80
Gunnedah 55023 1308 50.93 43.85 1.70 18.30 71.33
Dubbo 65012 1499 49.16 42.38 1.68 17.80 68.60
Orange 63066 1020 73.43 53.02 1.14 34.00 103.35
West Wyalong 50044 1104 39.26 33.91 1.72 15.00 55.05
Wagga Wagga 72151 1260 46.32 35.22 1.25 19.60 64.30

probability that each observation is derived from a particular
state, which is defined for a Wet state as D(S = W‘Yn) where
n is the total number of observations. Values of plS = W‘Yn
closer to 0.5 indicate that the observation at time 7 is equally
likely to be in either state, thus realising a weaker state signal.
Thyer and Kuczera (2000) developed a state signal index
(SSI) to measure how well the Wet and Dry state probability
series are identified after fitting a two-state HMM. The SSI
averages the p(st = W|Yn3 values over the entire series,
being calculated as follows:

=z

(s =Wy, )-04

n

N

SSIRNE

(18)

If a higher number of data has values of p(g :W\Yn) closer
to 0 or 1 then S8 — 0.5. Therefore, higher SSI values

indicate a better-defined state series. As a result, the SSI
can be used as a tool to compare the state identification
resulting from fitting the NPHMM to various time series.
The time series of observed monthly rainfalls are
deseasonalised prior to analysis, such that each month has a
mean of 0 and a standard deviation of 1. The two-point
NPHMM was then fitted to each deseasonalised monthly
rainfall series. Table 2 shows the mean and standard
deviation of the posterior distributions for the two transition
probabilities and for the sum of the two probabilities gained
from fitting the NPHMM. From Table 2, it is apparent that
the identification of hidden states is consistent in each of
these monthly rainfall series, as 90% credibility intervals
around the posterior means of the sum of the transition
probabilities do not include 1 for any of the sites. In addition,
the mean of the posterior distribution for the estimate of

Table 2. Mean and standard deviation of posterior distributions for transition probability estimates and SSI

values from fitting NPHMM to deseasonalised (by monthly standardisation) rainfall series

P

WD

P

bw

(P WD + PI)W)

SSI

Port Macquarie
Newcastle
Sydney
Wollongong
Batemans Bay

Gunnedah
Dubbo

Orange

West Wyalong
Wagga Wagga

0.256 (0.056)
0.262 (0.066)
0.302 (0.060)
0.260 (0.062)
0.294 (0.079)

0.301 (0.094)
0.221 (0.066)
0.251 (0.075)
0.204 (0.093)
0.175 (0.063)

0.315 (0.076)
0.371 (0.142)
0.421 (0.071)
0.376 (0.080)
0.286 (0.099)

0.238 (0.081)
0.178 (0.083)
0.229 (0.058)
0.243 (0.083)
0.184 (0.069)

0.571 (0.081)
0.633 (0.149)
0.723 (0.075)
0.637 (0.088)
0.580 (0.131)

0.539 (0.128)
0.399 (0.119)
0.480 (0.103)
0.447 (0.123)
0.359 (0.102)

0.3377
0.3686
0.3543
0.3581
0.2604

0.3197
0.2994
0.3574
0.2674
0.2852
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P, + P, ateach of the inland sites is lower than the mean
of the corresponding coastal site. This suggests that a two-
state persistence effect may be more prominent in the rainfall
observations of inland regions.

Table 2 also includes values of the SSI obtained from
fitting the NPHMM to each of the deseasonalised monthly
rainfall time series. The site producing the highest SSI value
(0.3686) from the ten series analysed was Newcastle, with
values ranging down to 0.2604 at Batemans Bay. The SSI
value at three of the coastal sites is greater than the value of
each corresponding inland site. Indeed, for the five pairs of
sites analysed, the mean SSI values were higher for the
coastal sites (0.336 to 0.305). However, there is no
substantial evidence for any difference in the SSI between
coastal and inland sites in the underlying population, the
apparent difference being easily attributed to chance.

When interpreting the results from fitting the NPHMM
to observed time series, it is important to also analyse the
separation of the state distributions. If the NPHMM
identifies precise values for transition probabilities, yet
estimates the Wet and Dry states to have similar distributions,
less physical significance can be gained from these results
than if these distributions are more distinct. Table 3 shows
some statistics of the estimated state distributions after fitting
the NPHMM to the deseasonalised monthly rainfall series
of four selected sites. It is apparent that for three of these
sites, the first quartile of the Wet state lies above the third
quartile of the Dry state, indicating that the two states are
well separated. Although this separation is not achieved in
the Gunnedah rainfall series, the distributions are still far

enough apart to justify the choice of a two-state model.
The suitability of the NPHMM to simulate observed
rainfall time series is shown in results from fitting the model
to the deseasonalised Sydney monthly rainfall. For this
example, the deseasonalised rainfall series is scaled such
that each calendar month has a mean and standard deviation
equal to that of the observed January record, a procedure
that generates a time series of positive values. Figure 14

1000 : ; e s s e e B
Deseasonalised monthly rainfall :

----- Estimated Wet state

----- Estimated Dry state

100

10 [t it

T Y O

.001 01 1 1 510 2030 5 7080 90 95 99 99.9  99.9999.999

Percent

Fig. 14. Lognormal probability plot showing the marginal
distribution of the scaled deseasonalised (by monthly
standardisation) rainfall series from Sydney (solid line) together
with the estimated state conditional distributions in the Wet and Dry
states (dotted lines)

Table 3. Statistics of the estimated state distributions from fitting NPHMM to deseasonalised (by monthly standardisation) monthly

rainfall data at selected sites

Mean of Standard Deviation Skew of 1st Quartile 3rd Quartile
estimated of estimated estimated
distributions distributions distributions
SYDNEY
Wet state 0.5634 1.0260 1.5059 -0.1989 1.0479
Dry state -0.5863 0.4850 2.1078 -0.8923 -0.4281
ORANGE
Wet state 0.6809 0.9839 0.7243 -0.0651 1.1760
Dry state -0.5509 0.5492 0.7646 -0.9604 -0.1991
PORT MACQUARIE
Wet state 0.3007 1.0129 1.8101 -0.3980 0.7467
Dry state -0.6884 0.4252 1.6875 -0.9739 -0.5065
GUNNEDAH
Wet state 0.6923 1.1012 0.9210 -0.1049 1.2645
Dry state -0.2747 0.7858 1.1396 -0.8729 0.1619
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shows this scaled deseasonalised record on a lognormal
probability plot, together with the estimated Wet and Dry
distributions from fitting the two-point NPHMM. This figure
suggests that the approximate lognormal distribution of the
monthly record is replicated in the two state distributions.
Subsequently, a parametric two-state HMM was fitted to
the data, with each state being sampled from lognormal
distributions. This resulted in the posterior distributions for
P, and P having mean values of 0.333 and 0.387 with
standard deviations 0.083 and 0.086 respectively. These
estimates are in close agreement with those from the two-
point NPHMM. This demonstrates that the NPHMM may
be used to identify suitable parametric models for the
simulation of conditional state distributions if that is desired.

STREAMFLOW TIME SERIES

The two-point NPHMM was also applied to streamflow time
series, from the River Nile and three Australian rivers: River
Murray, River Darling and Cooper Creek (see Table 4). The
former series comprises the yearly minimal water levels in
the Nile for the years 622—1281, measured at Roda Gauge
near Cairo, as provided by Tousson (1925). Historically,
this time series has been of specific interest, as it was
amongst various geophysical time series whose analysis led
to the discovery of the Hurst effect of long memory (Hurst,
1951).

Cooper Creek (length 1523 km) has a high hydrological
variability, as shown by the high positive skewness in Table
4, and is part of the Lake Eyre Basin which covers
1.14 million km? of eastern inland Australia (Puckridge et
al., 2000). Mean daily flows are recorded at Cullyamurra
gauging station, South Australia, over the period October
1973 to September 2002. Monthly totals used in this analysis
are first standardised to make flows in each calendar month
have a zero mean and standard deviation of unity.

The Murray-Darling Basin (MDB) drains 1.073 million
km? (14%) of Australia, and includes the longest rivers,
namely the Darling, rising in sub-tropical Queensland, and
the Murray, rising in south-eastern New South Wales. Some
80-90% of the basin is arid or semi-arid, and most of the

Table 4. Statistics of the selected streamflow time series

runoff is generated from rainfall and snowmelt in eastern
catchments. Total runoff is merely 4% of annual rainfall.
Estimates of natural flows in the Murray and the Darling
were obtained from the Murray-Darling Basin
Commission’s (MDBC) Monthly Simulation Model (MSM).
Flows in the MDB are calculated by the addition of
observable flow and diversions and losses associated with
upstream storages. Estimates of natural flows are then
obtained by setting diversions from the system and the
storages to zero. Total flows are estimated at Lock 10,
immediately downstream of the junction between the
Darling and Murray at Wentworth, New South Wales, and
Darling flows are estimated at Burtundy, on the lower
Darling. Murray flows above Lock 10 were estimated by
subtracting Darling flow from total Murray-Darling flow at
Wentworth. Time series of such reconstituted natural
monthly flows in both the Murray and the Darling for
January 1892 to December 1999 were analysed.

The seasonal components in the time series of monthly
flows for the Murray, Darling and Cooper were removed in
a similar process as used in the analysis of monthly rainfall
series. However, these deseasonalised series were then
scaled so that each calendar month had a mean and standard
deviation equal to the observed data in a nominated month
that produced a time series of positive values.

The two-point NPHMM was fitted to the four time series
and the mean and standard deviation of the posterior
estimates for the two transition probabilities are displayed
in Table 5. This table indicates that the NPHMM can identify
two distinct transition probabilities with reasonable precision
in each series. Furthermore, the values of the transition
probabilities are low, suggesting that the two-state HMM is
able to provide a good representation of the variability in
each of these time series by estimating long sojourn times
in each climate state. Table 5 also includes values for the
SSI obtained from fitting the NPHMM to each of the
streamflow time series. The SSI values for the streamflow
records are all close to 0.5, which suggests that the HMM is
able to identify strong Wet and Dry distributions in each
time series. These SSI values are significantly higher than
values from the deseasonalised rainfall records analysed. If

Length Mean Standard Skew 1st Quartile  3rd Quartile
Deviation
Nile minimum annual level 663 years 1148.1 88.7 0.244 1094.0 1205.0
Murray natural monthly flows 1296 months  1082.6 GL ~ 1105.5 GL 2.245 332.9 GL 1384.4 GL
Darling natural monthly flows 1296 months  166.8 GL 208.6 GL 2.273 20.4 GL 243.8 GL
Cooper observed monthly flows 348 months 136.4 GL 669.3 GL 9.589 0.006 GL 36.172 GL

665



Martin F Lambert, Julian PWhiting and Andrew V. Metcalfe

Table 5. Mean and standard deviation of posterior distributions for estimates of transition probabilities,
and SSI values, from fitting NPHMM to streamflow data

P

WD

P

DW

(Pyp +P

ow)

SSI

Nile

Murray
Darling
Cooper

0.121 (0.028)
0.085 (0.010)
0.117 (0.012)
0.241 (0.039)

0.067 (0.018)
0.092 (0.010)
0.109 (0.010)
0.114 (0.020)

0.188 (0.042)
0.177 (0.018)
0.226 (0.021)
0.355 (0.054)

0.4431
0.4688
0.4620
0.4876

the concept of climate states is accepted, their influence can
be identified better in streamflow data than in rainfall.

Table 6 shows some statistics of the estimated Wet and
Dry state distributions gained from fitting the NPHMM to
each ofthe streamflow time series. For each series, the means
of the two state distributions are well separated, and with
the first quartile of each Wet state being greater than the
third quartile of the corresponding Dry state, the NPHMM
can identify distinct state distributions in each time series.
With low transition probabilities, high SSI values and state
distributions that are well separated, the two-state structure
of the HMM appears to be justified.

Discussion

The method introduced to fit a non-parametric (NP) HMM
to hydrological data is an approach to directly identify modes
of variation consistent with climatic influence. The
assumption of a ‘hidden’ climatic indicator oscillating

between only two states is a simplification of large-scale
atmospheric circulation, yet is consistent with previous
research (e.g .Thyer and Kuczera, 2000; Katz and Zheng,
1999). Thyer and Kuczera (2000) argued that realisations
of Gaussian HMMs can be distinguished from AR(1)
models, with the former being more realistic for simulating
Australian hydrological data. However, HMMs with
unrealistic conditional distributions will produce biased
estimates for transition probabilities and therefore will not
provide realistic simulations.

Hydrological data such as monthly rainfall time series are
often skewed, and therefore any methods employed to
simulate such series must have the ability to replicate this
feature. Unrealistic assumptions about the form of state
conditional distributions, such as fitting Gaussian HMMs
when the distributions are non-Gaussian, will force biased
transition probabilities due to the conflicting requirement
to model the skewed marginal distribution. The use of the
NPHMM, which makes no assumptions about climatic state

Table 6. Statistics of the estimated state distributions from fitting NPHMM to the observed Nile record and to the scaled deseasonalised
(by monthly standardisation) streamflow records from the Murray, Darling and Cooper

Mean Standard Skew 1st Quartile 3rd Quartile
Deviation

NILE
Estimated Wet state 1190.2 71.1 0.529 1142 1241
Estimated Dry state 1070.7 58.8 0.253 1034 1103
MURRAY
Standardised to February record  384.89 GL 234.66 GL 2.048 230.27 GL 470.65 GL
Estimated Wet state 535.37 GL 233.68 GL 2.042 377.60 GL 622.90 GL
Estimated Dry state 224.05 GL 58.81 GL -0.334 187.20 GL 262.21 GL
DARLING
Standardised to March record 15.714 GL 15.951 GL 2.099 4911 GL 21.982 GL
Estimated Wet state 26.465 GL 16.383 GL 1.821 14.912 GL 34.986 GL
Estimated Dry state 5.147 GL 2.775 GL 0.676 3.236 GL 6.563 GL
COOPER
Standardised to April record 197.8 GL 397.5 GL 3.774 45.2 GL 122.4 GL
Estimated Wet state 449.08 GL 579.59 GL 1.926 117.24 GL 420.24 GL
Estimated Dry state 60.60 GL 31.00 GL 0.326 29.51 GL 89.04 GL
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distributions, will have a clear advantage in the identification
of these distributions and also for the simulation of
hydrological data. The possible loss of efficiency in using a
non-parametric framework can be compensated for if the
model is first used to identify suitable parametric families
from which conditional state distributions can be simulated.
The NPHMM was shown to recover model parameters
successfully from time series generated from both
continuous and discrete parametric families.

In the hydrological literature, persistence is generally
defined as run times on either side of the long-term mean
longer than would be expected for an independent process.
This does not correspond to the asymptotic definition of a
persistent stochastic process given by Beran (1994), for
example, that the sum of autocovariances over all lags tends
to infinity. The HMM is not persistent in this latter sense
(Whiting et al., 2003a). When the NPHMM was fitted to
various rainfall and streamflow time series, the latter
displayed longer sojourn times in the two states.

A limitation of the NPHMM is that the inverse of the
mapping from the data to plotting positions, which is used
in simulation, will be constrained to be within the range of
the original data. This is unsatisfactory if the simulation is
required to provide realistic extreme values. In these cases,
the NPHMM can be used to identify realistic parametric
forms for the state conditional distributions and a suitable
parametric HMM can then be fitted.

Conclusions

A non-parametric hidden Markov model (NPHMM) that
does not make assumptions about the form of conditional
state distributions has been shown to be competitive with
parametric HMMs for identifying model parameters in
several numerical simulations. Parametric HMMs that make
inappropriate assumptions about the form of underlying state
distributions have been shown to suffer from their
requirement to produce a mixture of distributions to match
the marginal distribution. This can bias the estimation of
transition probabilities, whereas the NPHMM avoids this
potential source of estimation error. The non-parametric
approach identifies statistically significant evidence for
hydrological persistence in both monthly rainfall and
streamflow records, providing a sufficient length of data is
available for analysis.
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