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6 Charmonium spectral functions in two-flavour QCD
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We compute charmonium spectral functions in 2-flavour QCD using the maximum
entropy method and anisotropic lattices. We find that the S-waves (J/ψ and ηc) survive
up to temperatures close to 2Tc, while the P-waves (χc0 and χc1) melt away below 1.3Tc.

1. INTRODUCTION

The fate of charmonium at high temperature has generated much interest the past
20 years [ 1]. Contrary to the original prediction that J/ψ production would be highly
suppressed immediately above the phase transition, recent theoretical and experimental
results indicate a more complicated picture, where the 1S states may survive up to high
temperatures (possibly even with enhanced yields), while other states disappear earlier.

The properties of hadrons at high temperature are encoded in the spectral function ρΓ,
which can be related to euclidean-time correlation functions GΓ as follows,

GΓ(τ, ~p) =

∫
∞

0

dω

2π
ρΓ(ω, ~p)

cosh[ω(τ − 1/2T )]

sinh(ω/2T )
(1)

where the subscript Γ correspond to the different quantum numbers. Determining the
continuous function ρ(ω) from G(τ), τ = 1 . . . Lτ , is an ill-posed problem, but it is possible
to infer the most likely ρ(ω) using the maximum entropy method (MEM) [ 2]. This has
been used to study spectral functions in the quenched approximation [ 3, 4, 5], but
substantial uncertainties still remain.

In order to resolve some of these uncertainties, lattice simulations with dynamical
fermions (2 or 2+1 light flavours) would be highly desirable. However, in order to deter-
mine spectral functions using MEM, at least O(10) independent lattice points are needed
in the imaginary time direction. At T ∼ 2Tc, this implies a temporal lattice spacing
at . 0.025fm. If the spatial lattice spacing as were to be the same, such a simulation
would be far too expensive to carry out with current computing resources.

In order to make the simulation feasible, anisotropic lattices, with at ≪ as, are therefore
required. However, dynamical anisotropic lattice simulations introduce additional com-
plications not present in isotropic or quenched anisotropic simulations. The anisotropic
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formulation introduces two additional parameters (the bare quark and gluon anisotropies),
which must be tuned so that the physical anisotropies are the same for gauge and fermion
fields. In the presence of dynamical fermions, this requires a simultaneous two-dimensional
tuning, which has been described and carried out in Ref. [ 6].

We have previously presented preliminary results [ 7, 8], indicating that S-wave states
survive well into the plasma phase. These simulations were carried out before the tuning
was completed, and therefore had systematic uncertainties at the 20% level. Here we
present results from a simulation where the anisotropies have been tuned to within 3%,
and study P-waves in addition to S-waves.

2. RESULTS

We use the TSI gauge action [ 9] and a coarse Wilson, fine Hamber–Wu fermion action
[ 10] with stout-link smearing [ 11] as described in [ 6]. The spatial lattice spacing is
as ≈ 0.18fm and the anisotropy ξ = 6, while mπ/mρ = 0.54; our simulation parameters
correspond to run 6 in [ 6]. For the charm quarks we have used bare masses atm = 0.08
and 0.092. The critical temperature was determined from studying the variation of the
Polyakov loop as a function of Nτ on 123 × Nτ lattices, giving N c

τ = 1/aTc ≈ 34. 500
configurations were generated on 83 × 32, 83 × 24 and 83 × 16 lattices, corresponding to
T/Tc ≈ 1.05, 1.4 and 2.1 respectively. Charmonium correlators were computed using all-
to-all propagators [ 12] and analysed with Bryan’s MEM algorithm [ 13] using the free
continuum spectral function ω2 as default model.

Figure 1 show spectral functions for the pseudoscalar and vector channels, correspond-
ing to the S-wave states ηc and J/ψ respectively. At the two lower temperatures (Nτ = 32)
and Nτ = 24) we see two peaks; however, the second (higher) peak is a lattice artefact
which can be observed as a cusp in the free lattice spectral function [ 7]. The lower peak
position corresponds to the S-wave ground state masses at zero temperature, indicating
that these states survive more or less unchanged at least up to 1.4Tc. At T ∼ 2.1Tc the
picture is less clear: for the lighter mass (m = 0.08) the peak has disappeared in both
channels; while for the heavier mass (m = 0.092) there is still a peak in the vector channel,
but not in the pseudoscalar. To what extent these effects are genuine, i.e. whether they
show a real mass dependence and the survival of the vector meson to higher temperatures
than the pseudoscalar, cannot be ascertained at present.

In fig. 2 we show spectral functions for the scalar and axial-vector channels, correspond-
ing to the P-wave states χc0 and χc1 respectively. In the axial-vector channel there is a
peak at atω ≈ 0.45 for the lowest temperature, consistent with the presence of a modified
χc1 at 1.05Tc. There is no discernible corresponding peak in the scalar channel. At the
higher temperatures the peak has disappeared, indicating that these states have melted
below 1.4Tc. The peak in the scalar spectral function at atω ≈ 0.25 at Nτ = 24 is not
clearly understood at present and requires further investigation.

3. DISCUSSION

The main conclusion that can be drawn from this study is that the S-wave states J/ψ
and ηc survive virtually unchanged in the medium above Tc, before melting at T . 2Tc.
The P-wave states, on the other hand, disappear shortly above the phase transition.
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Figure 1. Spectral functions for the S-wave charmonium states ηc (top) and J/ψ (bottom),
for atm0 = 0.080 (left) and 0.092 (right).

Our results thus lend support to the qualitative picture that has emerged from quenched
calculations. In order to make these results quantitative, a number of outstanding issues
needs to be addressed:

• The 83 lattice corresponds to a physical volume of (1.4fm)3, and finite volume ef-
fects are expected to be substantial, especially for the P-waves. We are currently
repeating the calculation on 123 lattices.

• A more detailed temperature scan will be necessary to determine the melting points
of the different states. This is currently underway. A zero-temperature run is also
in progress to provide a baseline for comparison.

• The present analysis has been carried out using only the free continuum spectral
function as default model. In order to assess systematic uncertainties arising from
the MEM, different default models will need to be employed. In particular, the free
lattice spectral function [ 7] will provide a useful comparison.

In the final instance, simulations on finer lattices will be necessary to resolve the remain-
ing uncertainties. This will however require a new nonperturbative tuning exercise, and
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Figure 2. Spectral functions for the P-wave charmonium states χc0 and χc1, for atm0 =
0.080 (left) and 0.092 (right). Thick lines correspond to χc0, thin lines to χc1.

remains a longer-term prospect.
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