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Abstract

Horn loaded loudspeakers increase the efficiency and ddhéepatial distribution of the

sound radiated from the horn mouth. They are often used apaoents in cinema sound
systems where the sound can be broadcast evenly onto thenaadit all frequencies,
improving the listening experience. The sound distributior beamwidth, is related to
the shape of the horn and is not predicted adequately byirexishalytical horn models.

The aim of the work described in this thesis is to develop &otkto optimise the shape
of the horn to give a specified beamwidth, which is ideallygérency independent, thus

giving a high quality listening experience.

This thesis begins with a thorough review of the literatwlevant to modelling and op-
timising horn loaded loudspeakers. It gives an introdurcteohorn loaded loudspeakers,
and describes traditional modelling approaches and tingitations. The applications of
alternative modelling techniques to horn loaded loudspesakvhich have been found in

the literature, are critiqued as are horn optimisationnegies.

To examine the validity of the plane wave radiation assuompthade by a number of
horn models, experiments were undertaken to measure thmel $@id at the mouth of
two small horns. These horns are representative of the se@sign required for cin-
ema loudspeaker systems, but are axisymmetric. The sodddmees measured by an
automated microphone traverse with almost 3500 measutenrete across the face of

each horn, providing a high spatial resolution.



The results of the measurements showed that at low fregqeeetice sound fields from
both the conical and exponential horns were similar andabavte a certain frequency the
sound field became more complex. An analysis of the datag@smodal decomposition
with cylindrical duct modes of the same diameter as the motithe horns, revealed that
almost all of the energy in the system existed in modes withiroumferential variation,

and that above a certain limiting frequency, plane wavesaxkdo exist at the mouth
of each horn. This work showed that any numerical model gzl must be capable
of efficiently modelling variations in the sound field acrase mouth of the horn, and
that models based on plane wave approximations should nagdaefor modelling these

experimental horns, at least above a certain critical fegu.

Numerical models able to accurately and quickly calcullagefar field pressure from ar-
bitrary shapes are also investigated. Calculations of gzerwvidth from the analytical
solutions for a 45 vibrating spherical cap, mounted on the surface of a uniesptwere

compared with those obtained from an implementation of thectiBoundary Element
Method (BEM) and a source superposition technique. Thesiigation found excellent
agreement between these results for mesh densities of @eldermper wavelength, the
generally recommended minimum mesh density for BEM sinmuiat The source super-
position technique was significantly faster than the diBieM for comparable accuracy

in the far field.

There was also excellent agreement between analyticallatitms and all of the numeri-
cal methods for a mesh density of 3 elements per wavelengib.i§ a significant finding
as it allows a reduction in mesh density, and hence matrix aim solution time, for a
given accuracy of far field solution. Alternatively, higHezquencies can be reached for
a given mesh density. It was also found that the source sagitign technique produced
matrices that are highly diagonally dominant, and wellesdiito fast iterative solution

techniques.

The validation of the numerical methods for modelling tharbevidth of horn loaded
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loudspeakers was undertaken by comparing the source sigit@p technique to experi-
ment, as well as with an alternative numerical method, trecttBEM. It was shown that
such models are capable of modelling the sound field gerntbgt@ horn loaded loud-
speaker from a specification of the horn geometry. This aoyunf the model is adequate
for design purposes within the given frequency range. Badtdirect BEM and the source
superposition technique are capable of modelling the éxgertal beamwidth; however,
the source superposition technique is considerably fasighence more suitable for use

in optimisation techniques.

During the literature review, a type of sonar transduceledahd Constant Beamwidth
Transducer (CBT) was found that was able to produce an egsdlgified frequency in-
dependent beamwidth. These are desirable charactefstittse design of a horn. The
concept used in the development of these transducers, dfispe&elocity profile over the

surface of a sphere, is explored in this thesis in relatidmtm design.

A semi-analytical technique, using solutions to the Helltzhequation in spherical co-
ordinates and numerical integration of Legendre functiovess developed to efficiently
calculate the beamwidth for an arbitrary velocity profilepthe surface of a sphere. It
was used to calculate the beamwidth for four different vgjaarofiles: a spherical cap
mounted on the surface of a sphere; a CBT profile; and two dmtaded CBT velocity
profiles. The results showed that the smooth tailed CBT wgiqrofiles produce the
smoothest beamwidth, possibly at the expense of low freqyuparformance. It was also
found that the performance of each velocity profile is cdesiswith CBT theory, with the
best performing profile having the highest rate of energygéc the spherical Legendre

modes.

CBT theory also suggests that the performance of the CBEdrasers is unaffected by
the removal of the inactive part of the sphere, i.e. that@aet which the velocity profile
is zero. This was confirmed numerically by simulations ughng source superposition

technique.
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The numerical model developed to investigate the CBT wad testest robust optimisa-
tion techniques suitable for optimising horn loaded lowdd@rs. Two different objective
functions were considered, one that uses least squares/éotlde velocity profile to a
minimum, and the other that uses a constrained optimisafiarsmoothness parameter.
It was found that constrained optimisation was able to ripdisid an optimal solution
in an acceptable number of objective function evaluatidkssthe cost of evaluating the
objective function for horn loaded loudspeakers is high, gbtential of surrogate mod-
elling techniques, designed to reduce the overall numbeahjettive function evaluations,
was investigated. Optimal solutions were found for twoetiint parameterisations of the
velocity profile. One parameterisation was similar to thesth tailed CBT velocity pro-
files and the other, which allowed a more variable velocitfite, was defined by Bézier

curves.

The idea of CBT theory, that is, defining an optimal velocitpffle over a spherical
cap, was applied to the optimisation of horn loaded loudsgrsa A number of different
horn geometry parameterisations were developed, withithedfproducing an optimal
velocity profile over the mouth of the horn. The robust opsation techniques devel-
oped previously were applied, and an optimal horn geometiyutated. It was found
that a very simple geometry parameterisation could prochease constant beamwidth
performance while keeping the desired design (or nomired)rbwidth, and that a more
complicated parameterisation (using splines) could nepkbe nominal beamwidth but
provided superior constant beamwidth performance. A safi@ptimisations using the
spline parameterisation were undertaken to map the depapeswith the result being a
design chart for constant beamwidth horns. The desire@pednce characteristics of a
constant beamwidth horn such as length, mouth to throateathominal beamwidth can

be specified, and the horn performance and specificationy ezexd from a chart.

The overall aim of this thesis was to develop fast and rediagtimisation techniques

for horn loaded loudspeakers to achieve a robust horn desejhod for cinema loud-



speakers. This thesis achieved this aim for axisymmettic geometries by: developing
fast and well validated numerical methods for calculatimg beamwidth of horn loaded
loudspeakers; by examining how optimal beamwidth cons@dhieved in CBTs, and
how this can be achieved in horn loaded loudspeakers; bylajgag robust objective
functions and optimisation techniques capable of finding@irmal beamwidth from a

parameterised geometry; and by developing a design charbfstant beamwidth horns.
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