CRANIOFACIAL GROWTH CHANGES IN MALAYSIAN MALAY CHILDREN AND YOUNG ADULTS: A CROSS-SECTIONAL 3-DIMENSIONAL CT STUDY

Asilah Yusof BDS, Grad Dip Clin Dent

A thesis submitted for the degree of Doctor of Philosophy

Dental School, University of Adelaide

March, 2007

DECLARATION

I declare that this thesis contains no material which has been accepted for the award of any

other degree or diploma in any other University and that, to the best of my knowledge and

belief, the thesis contains no material previously published or written by another person,

except where due reference is made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being

available for loan and photocopying.

Asilah Yusof

ii

ACKNOWLEDGEMENTS

I would like to express my sincere thanks and appreciation for the encouragement, support and advice of my supervisors, Professor Grant Townsend, Dr. David Netherway, Dr. Amanda Abbott and Associate Professor Ibrahim Lutfi Shuaib. They have provided me with utmost support through tremendous toleration and enthusiastic assistance with their knowledge in this project. Their encouragement has been invaluable and I am grateful for having these fantastic persons as my supervisors.

I would like to acknowledge the support that I received from the staff of the Australian Craniofacial Unit; the School of Dentistry, University of Adelaide; the Dental School Universiti Sains Malaysia; and the Radiology Department Hospital Universiti Sains Malaysia.

I would especially dedicate my appreciation to Professor Abdul Rani Samsuddin who has provided his tremendous commitment to the project and has given inspiration for me to carry on. His enthusiasm and focus intensified my interest in this field and his wisdom and encouragement guided me into and through my studies.

The author would like to thank Professor David David, Dr. Peter Anderson, Dr. Peter Telfer, Dr. Toby Hughes and Associate Professor Hj. Ab. Rashid Hj. Ismail for their support towards this study. Thank you also to Dr. Zainul Ahmad Rajion for providing the cleft sample. My special thanks to Mrs. Louise Netherway and Mrs. Nooraina Idris for their kind support and clerical assistance.

I wish to acknowledge with special gratitude the support given to me throughout the work by the members of my family, particularly my husband, Mr. Mohd. Zuraidi Abdul Majid, who has been my prominent supporter throughout the thesis and I would like to express my utmost gratitude to him for his continual love, encouragement, tolerance and assistance in so many

ways. I would like to dedicate this work to my two daughters, Nur Nadia Nabila and Nur Qistina Balqis, who have been my inspiration and have provided me with the determination to go on. I would also like to thank my parents, Haji Yusof Daud and Hajjah Khadijah Abdullah; and my brother and sisters, Azlan, Aswani and Siti Habsah, for their love and assistance with family matters throughout this study.

Finally, I would like to express my thanks to Universiti Sains Malaysia for the award of an overseas post-graduate scholarship, the Australian Dental Research Fund, the Australian Craniofacial Foundation, the Australian Federation of University Women – South Australia Inc. Trust Fund for Winifred E. Preedy Postgraduate Bursary Award 2003 and the University of Adelaide.

SUMMARY

This thesis presents a three-dimensional computed tomography (3D-CT) analysis of craniofacial morphology and growth changes in Malaysian Malay subjects. A large number of CT scans (n=205) from birth to adulthood were gathered for this purpose. CT scans were obtained using a GE Lightspeed Plus Scanner. Craniofacial morphology has been analysed based on cephalometric landmarks located in three-dimensions, using specially-designed computer software.

The main aims were to produce new 3D normative reference data for selected craniofacial variables in Malaysian Malays and to study growth changes in different craniofacial regions.

The specific areas of investigation included:

- Construction of craniofacial growth references (in tabular and graphical formats) for Malaysian Malays;
- 2. Quantitative analysis of growth changes in the craniofacial complex using linear and angular measurements derived from landmark data;
- Comparison of craniofacial measurements between males and females to determine the extent of sexual dimorphism;
- 4. Quantitative analysis of the nature and extent of directional asymmetry of selected craniofacial regions;
- 5. Comparisons of selected variables with published data from other ethnic groups.

Craniofacial morphology and growth changes were analysed using 3D osseous landmarks. A computer program, PERSONA, was used to locate and analyse the three-dimensional cephalometric landmarks. The accuracy of landmark location was assessed using double determinations. Selected measurements were derived from the landmark data to describe the morphology of different craniofacial regions, e.g. facial skeleton, cranial base and cranial vault.

Normative reference data for a large number of variables covering the skull, cranial base and face at selected age categories for males and females were constructed. These data were presented in tables and scatter plots of variables against age. From the normative data collected, patterns of growth changes of different craniofacial regions in three-dimensions were also investigated.

Generally, each craniofacial region showed a unique growth pattern as observed from differential growth patterns. All measurements showed size increase from infancy to adulthood. Periods of increased size differences were also noted for most variables in all regions that corresponded to the timing of mid- and adolescent growth spurts.

These extensive normative reference data, specific for age categories and sexes, provide normal references against which the craniofacial morphology of individuals with craniofacial abnormalities can be compared. Clinical applications of this quantitative approach to the craniofacial skeleton should facilitate the management of craniofacial abnormalities.

Following the construction of normative data and description of growth changes for different craniofacial regions, intra-populational differences were studied. This included analysis of sexual dimorphism of the craniofacial structures and an investigation of asymmetry between paired left and right measurements.

Sexual dimorphism was observed for linear variables in this study. Differences in size between males and females were not very obvious during infancy as only a few variables showed significant differences. The number of variables that showed sexual dimorphism in size increased from infancy to adulthood. Sexual dimorphism in the craniofacial region was most evident during adulthood with 46% of variables displaying significant differences between the sexes. During infancy, only 3% of the variables showed significant size differences between the sexes, increasing to 7% during childhood. Magnitudes of sexual dimorphism were calculated to highlight the pattern of dimorphism in different craniofacial regions and across different ages.

A small degree of directional asymmetry was noted in all of the craniofacial regions investigated. Asymmetry analysis revealed that the cranial base, face and mandible tended to be larger on the right side than the left. Other regions exhibited asymmetry but without any clear trend in direction. Asymmetry percentages were also calculated to enable the patterns and magnitudes of asymmetry in different craniofacial regions to be compared. Generally, the amount of asymmetry exhibited in the craniofacial structures for Malaysian Malays was small.

Having established that differences existed within the Malay sample, craniofacial data for Malays were compared with published data for two Caucasian populations. This analysis revealed that differences exist in craniofacial morphology between different ethnic groups. Some of the differences can be discerned from childhood but many variables only display differences during adulthood. Craniofacial structures tended to be smaller in Malays than in Caucasians.

The intent of this investigation has been to provide clinicians with normative values of measurements that will be useful in diagnosis, treatment planning and post-operative care of patients with craniofacial abnormalities. Important treatment goals include producing a

balanced cranial and facial form to approximate that of unaffected people and also improving the quality of life of patients. Therefore, it is important for clinicians to be able to recognise the nature and extent of normal variation in craniofacial structures and also appreciate the growth changes that may occur over time, before investigating these changes in patients with craniofacial abnormalities. Comparisons of measurements of affected patients with well-characterised referent data can facilitate diagnosis and overall patient management. Moreover, quantification based on three-dimensional data provides new insights into craniofacial growth changes and morphology compared with conventional 2D approaches.

TABLE OF CONTENTS

DECLARA	TION		i
ACKNOW	LEDG	EMENTS	ii
SUMMAR	Y		V
CHAPTER	1 .	AN INTRODUCTION TO THE STUDY OF	HUMAN
		CRANIOFACIAL GROWTH AND MORPHOLOGY	
1.1	Backg	ground to the Present Investigation	1
1.2	Metho	ods of Investigating the Craniofacial Morphology	
	1.2.1	Craniometry	
	1.2.2	Soft Tissue Anthropometry	4
	1.2.3	Cephalometric Radiography	
	1.2.4	Computerised Tomography	
1.3		Malaysian Malays	
1.4	Overv	view of Normal Embryonic Craniofacial Development	
	1.4.1	Development of the Face	
	1.4.2	Development of the Skull and Cranial Base	11
1.5	Overv	view of Normal Postnatal Craniofacial Growth	12
	1.5.1	Postnatal Growth of the Facial Skeleton	12
	1.5.2	Postnatal Growth of the Skull and Cranial Base	
1.6	Aims	of this Study	14
1.7	Signif	ficance of this Study	15
1.8	Struc	ture of the Thesis	16
CHAPTER	2	GENERAL MATERIALS AND METHODS	17
2.1		luction	
2.2		ing Stage	
2.3		o University Sains Malaysia, Kota Bharu	
2.4	-	Collection	
2.5		rials	

	2.5.1	Sampling	Method	21
	2.5.1	Subjects		21
2.6	Method	ds		23
	2.6.1	Equipmen	t, the CT Scanner	23
	2.6.2	Accuracy	of Computerised Tomography Data	24
	2.6.3	Computed	Tomography Protocols	25
		2.6.3.1	Head alignment and Immobilisation	25
		2.6.3.2	Scanning procedure	26
	2.6.4	CT Data T	Fransfer	26
	2.6.5	3D-CT Re	econstruction	28
	2.6.6	Persona 3	D Medical Imaging and Analysis Software	31
	2.6.7	Landmark	Determination	32
	2.6.8	Definition	of Anatomical Units	35
	2.6.9	Measurem	nents	36
		2.6.9.1	Methods of Measurement of Distances and Angles	36
		2.6.9.2	Measurement of Distances, Dimensions and Angles	37
2.7	Overvi	ew of Statist	ical Analysis of Measurement Techniques	56
2.8	Errors	of Measuren	nent and Analysis	57
	2.8.1	Types of I	Errors	57
	2.8.2	Detecting	Systematic Errors	58
	2.8.3	Calculatin	g Random Errors	58
	2.8.4	Error Ana	lysis for this Study	59
		2.8.4.1	Landmark relocation error	61
		2.8.4.2	Errors of variables	63
2.9	Conclu	sions		66
СНАРТЕ	D 2 N	IEW 2D N	NORMATIVE REFERENCES FOR CRANIOFA	CIAI
CHALLE			OGY IN MALAYSIAN MALAYS	
3.1			JGT IN WALATSIAN WALATS	
3.2			lards	
3.3			tudies	
3.3	3.3.1		tional Studies	
	3.3.1		nal Studies	
	3.3.2	_	ngitudinal Studies	
3.4			Methods	
J. T	Standa	taisauon or 1	11041040	13

3.5	Concept	ts of Human Growth	74
3.6	Material	ls and Methods	76
	3.6.1	Data Collection	76
	3.6.2	CT Protocol	76
	3.6.3	Craniofacial Variables	76
	3.6.4	Statistical Analysis	77
	3.6.5	Curve Fitting	77
	3.6.6	Errors of the Method	78
	3.6.7	Data Cleaning Process	78
3.7	Results.		79
3.8	Discussi	ion	212
	3.8.1	Clinical Implications	216
3.9	Conclus	sion	218
~~.	- 4		
CHAPTE		TRA-POPULATION COMPARISONS OF CRANIC	
		ORPHOLOGY IN MALAYSIAN MALAYS BASED	
		OMPUTED TOMOGRAPHY	
4.1		ction	219
Section			• 4
4.2.1		Dimorphism of Craniofacial Structures	
4.2.2		ls and Methods	
	4.2.2.1	Data Collection	
	4.2.2.2	CT Protocol	
	4.2.2.3	Craniofacial Variables	
	4.2.2.4	Statistical Analysis	
	4.2.2.5	Errors of the Method and Data Cleaning	
4.2.3			
4.2.4		ion	
4.2.5		sion	265
Section			
4.3.1		and Extent of Craniofacial Asymmetry	
4.3.2	Material	ls and Methods	
	4.3.2.1	Data Collection	273
	4.3.2.2	CT Protocol	
	4.3.2.3	Craniofacial Variables	273

4.3.2.4 4.3.2.5 4.3.3 Results 275 4.3.4 4.3.5 INTER-POPULATION COMPARISONS OF **CHAPTER 5 CRANIOFACIAL** MORPHOLOGY IN MALAYSIAN MALAYS BASED ON 3D COMPUTED TOMOGRAPHY293 5.1 5.2 5.3 5.4 5.4.1 5.4.2 CT Protocol 300 5.4.3 5.4.4 Magnification Corrections302 5.4.5 Statistical Analysis......303 5.4.6 5.5 Results 304 5.6 Discussion 314 5.7 **CHAPTER 6** GENERAL DISCUSSION AND CONCLUSION319 6.1 6.2 3D-CT Analysis of Craniofacial Morphology of Malaysian Malays322 6.2.1 New Normative Reference Data for Malaysian Malays......322 6.2.2 Growth Changes of Different Craniofacial Regions......324 Sexual Dimorphism of Craniofacial Structures......328 6.2.3 6.2.4 6.2.5 Differences in Craniofacial Morphology between Different Populations... 6.2.6 Application of Craniofacial Data......336 6.2.7 6.3

6.4	Futu	re Studies	341
6.5	Gen	eral Conclusion	342
REFEREN	CES		344
APPENDIX	ζI	ETHICAL APPROVAL	355
APPENDIX	X II	OSSEOUS LANDMARK DEFINITIONS (BY REGION)	357
APPENDIX	X III	ABSTRACT FOR PRELIMINARY MANDIBULAR MORPHOME ANALYSIS PRESENTED AT THE ANNUAL CONFERENCE INTERNATIONAL ASSOCIATION FOR DENTAL RESEARCH	E OF
APPENDIX	ζV	ACADEMIC ACTIVITIES	367

LIST OF FIGURES

CHAPTER 1	AN INTRODUCTION TO THE STUDY OF HUMAN CRANIOFACIAL
	GROWTH AND MORPHOLOGY1
Figure 1.1	Three-dimensional reconstruction of the craniofacial skeleton (b) from axial
	CT slices (a).
Figure 1.2	Frontal and lateral views of a Malay male in his early twenties
Figure 1.3	Some important steps in the formation of the face (After William Patten, from
	Morris, "Human Anatomy," McGraw-Hill Book Company, New York in
	Lecture notes, Development of the Head and Neck, Department of Anatomy
	and Structural Biology, University of Otago, 1993)9
Figure 1.4	Drawings of the ossification centres for most bones of the head and face
	(Lecture notes, Development of the Head and Neck, Department of Anatomy
	and Structural Biology, University of Otago, 1993)10
Figure 1.5	The main developmental divisions of the head and face (Lecture notes,
	Development of the Head and Neck, Department of Anatomy and Structural
	Biology, University of Otago, 1993)11
Figure 1.6	Growth of the facial skeleton in downwards and forwards direction in relation
	to the cranium as shown by arrows (Enlow, 1990)13
CHAPTER 2	GENERAL MATERIALS AND METHODS17
Figure 2.1	The patient is positioned according to specified protocols prior to scanning
	with laser beam guidance for standardisation and a head strap is put in place to
	prevent movement during scanning25
Figure 2.2	The radiographer played a major role in obtaining the CT scans, image
	processing and data storage. An additional remote Advantage computer
	workstation proved to be very useful for copying data to CDROM27

Figure 2.3	A 'clipping' procedure was applied to remove objects such as the head holder
	face mask or intubation tube that may obscure viewing of reconstructed
	images. (a) Before and (b) after removal of the face mask (arrow) in this
	subject using the 'clipping' procedure
Figure 2.4	The clipped CT data in slice format were rendered to produce 3D images. The
	usual 3D images rendered are those outlined. X axis chop was usually
	performed at the stage of landmark determination. The other file directories
	contained instructions for rendering if required
Figure 2.5	Example of a computer screen containing all the windows needed for landmark
	identification
Figure 2.6	The outline of a bone could be viewed and superimposed on the bone by
	selecting the appropriate command in the program. In this example, the outline
	for the mandible has been selected. Wire-frames provided an aid to
	visualisation of separate anatomical regions and formed a part of the procedure
	for checking errors in placement of the landmarks
Figure 2.7	3D-CT of the skull in frontal and posterior views showing measurements for
	cranial vault width39
Figure 2.8	3D-CT of the skull in lateral and mid-sagittal views showing measurements for
	cranial vault height
Figure 2.9	3D-CT of the skull in lateral view showing measurements for cranial vaule
	length41
Figure 2.10	3D-CT of the cranial base from superior and inferior views showing
	measurements for cranial base width
Figure 2.11	3D-CT of the cranial base from superior and mid-sagittal views showing
	measurements for cranial base length43
Figure 2.12	3D-CT of the orbit showing measurements for orbital width44
Figure 2.13	3D-CT of the orbit showing measurements for orbital height and length45

Figure 2.14	3D-CT of the nasal bone showing measurements for nasal width and length46
Figure 2.15	3D-CT of the nasal bone showing measurements for nasal height47
Figure 2.16	3D-CT of the maxilla showing measurements for maxillary width48
Figure 2.17	3D-CT of the maxilla showing measurements for maxillary height and length.4
Figure 2.18	3D-CT of the zygoma showing measurements for zygomatic width, height and
	length50
Figure 2.19	3D-CT of the mandible showing measurements for mandibular width, height
	and length51
Figure 2.20	3D-CT of the skull showing measurements for inter-regional regions52
Figure 2.21	3D-CT images (a) to (j) showing angular measurements
CHAPTER 3	NEW 3D NORMATIVE REFERENCES FOR CRANIOFACIAL
	MORPHOLOGY IN MALAYSIAN MALAYS69
Figure 3.1	Graphs of maximum cranial width (cindx.l-cindx.r) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)91
Figure 3.2	Graphs of interasterion width (as.l-as.r) versus age for males and females from
	birth to adulthood (above) and from birth to age five years (below)92
Figure 3.3	Graphs of interporion width (po.l-po.r) versus age for males and females from
	birth to adulthood (above) and from birth to age five years (below)93
Figure 3.4	Graphs of cranial height (ba-br) versus age for males and females from birth to
	adulthood (above) and from birth to age five years (below)94
Figure 3.5	Graphs of left lateral cranial vault height (br-po.l) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)

Figure 3.6	Graphs of right lateral cranial vault height (br-po.r) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)96
Figure 3.7	Graphs of anterior cranial vault height (n-br) versus age for males and females
	from birth to adulthood (above) and from birth to age five years (below)97
Figure 3.8	Graphs of posterior cranial vault height (l-br) versus age for males and females
	from birth to adulthood (above) and from birth to age five years (below)98
Figure 3.9	Graphs of lambdoid height (l-o) versus age for males and females from birth to
	adulthood (above) and from birth to age five years (below)99
Figure 3.10	Graphs of maximum cranial length (cindxa-cindxp) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.11	Graphs of left lateral cranial vault length (spc.l-as.l) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.12	Graphs of right lateral cranial vault length (spc.r-as.r) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.13	Graphs of anterior cranial base width (spa.l-spa.r) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.14	Graphs of anterior clinoid width (ac.l-ac.r) versus age for males and females
	from birth to adulthood (above) and from birth to age five years (below)104
Figure 3.15	Graphs of superior spheno-occipital synchondrosis width (petsa.l-petsa.r)
	versus age for males and females from birth to adulthood (above) and from
	birth to age five years (below).

Figure 3.16	Graphs of inferior spheno-occipital synchondrosis width (pts.l-pts.r) versus
	age for males and females from birth to adulthood (above) and from birth to
	age five years (below)106
Figure 3.17	Graphs of posterior cranial fossa width (petp.l-petp.r) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.18	Graphs of external cranial base width (ss.l-ss.r) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.19	Graphs of foramen magnum width (fmlhg.l-fmlhg.r) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.20	Graphs of left anterior cranial fossa length (sor.l-spa.l) versus age for males
	and females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.21	Graphs of right anterior cranial fossa length (sor.r-spa.r) versus age for males
	and females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.22	Graphs of left lateral middle cranial fossa length (spa.l-petp.l) versus age for
	males and females from birth to adulthood (above) and from birth to age five
	years (below)
Figure 3.23	Graphs of right lateral middle cranial fossa length (spa.r-petp.r) versus age for
	males and females from birth to adulthood (above) and from birth to age five
	years (below)
Figure 3.24	Graphs of left petrous ridge length (petsa.l-petp.l) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)

Figure 3.25	Graphs of right petrous ridge length (petsa.r-petp.r) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.26	Graphs of left spheno-occipital synchondrosis length (pts.l-petsa.l) versus age
	for males and females from birth to adulthood (above) and from birth to age
	five years (below)
Figure 3.27	Graphs of right spheno-occipital synchondrosis length (pts.r-petsa.r) versus
	age for males and females from birth to adulthood (above) and from birth to
	age five years (below)117
Figure 3.28	Graphs of foramen magnum length (ba-o) versus age for males and females
	from birth to adulthood (above) and from birth to age five years (below)118
Figure 3.29	Graphs of posterior inferior cranial base length (ba-h) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.30	Graphs of cranial base length (ba-n) versus age for males and females from
	birth to adulthood (above) and from birth to age five years (below)120
Figure 3.31	Graphs of posterior cranial base length (ba-s) versus age for males and females
	from birth to adulthood (above) and from birth to age five years (below)121
Figure 3.32	Graphs of anterior cranial base length (s-n) versus age for males and females
	from birth to adulthood (above) and from birth to age five years (below)122
Figure 3.33	Graphs of anterior superior orbital width (sor.l-sor.r) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.34	Graphs of interorbital width (morfl.l-morfl.r) versus age for males and females
	from birth to adulthood (above) and from birth to age five years (below)124

Figure 3.35	Graphs of maximum orbital width (lor.l-lor.r) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.36	Graphs of anterior inferior orbital width (or.l-or.r) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.37	Graphs of posterior orbital width (ofa.l-ofa.r) versus age for males and females
	from birth to adulthood (above) and from birth to age five years (below)127
Figure 3.38	Graphs of left orbital distance (lor.l-morfl.l) versus age for males and females
	from birth to adulthood (above) and from birth to age five years (below)128
Figure 3.39	Graphs of right orbital distance (lor.r-morfl.r) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.40	Graphs of left orbital height (sor.l-or.l) versus age for males and females from
	birth to adulthood (above) and from birth to age five years (below)130
Figure 3.41	Graphs of right orbital height (sor.r-or.r) versus age for males and females
	from birth to adulthood (above) and from birth to age five years (below)131
Figure 3.42	Graphs of left superior orbital length (ofa.l-sor.l) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.43	Graphs of right superior orbital length (ofa.r-sor.r) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.44	Graphs of left inferior orbital length (ofa.l-or.l) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)

Figure 3.45	Graphs of right inferior orbital length (ofa.r-or.r) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.46	Graphs of left medial orbital length (ofa.l-morfl.l) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.47	Graphs of right medial orbital length (of a.r-morfl.r) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.48	Graphs of left lateral orbital length (ofa.l-slor.l) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.49	Graphs of right lateral orbital length (ofa.r-slor.r) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.50	Graphs of superior nasal width (snm.l-snm.r) versus age for males and females
	from birth to adulthood (above) and from birth to age five years (below)140
Figure 3.51	Graphs of inferior nasal width (inm.l-inm.r) versus age for males and females
	from birth to adulthood (above) and from birth to age five years (below)141
Figure 3.52	Graphs of nasal aperture width (al.l-al.r) versus age for males and females
	from birth to adulthood (above) and from birth to age five years (below)142
Figure 3.53	Graphs of left nasal height (n-al.l) versus age for males and females from birth
	to adulthood (above) and from birth to age five years (below)143
Figure 3.54	Graphs of right nasal height (n-al.r) versus age for males and females from
	birth to adulthood (above) and from birth to age five years (below)144
Figure 3.55	Graphs of nasal aperture height (na-ans) versus age for males and females
	from birth to adulthood (above) and from birth to age five years (below)145

Figure 3.56	Graphs of posterior nasal height (pns-h) versus age for males and females from
	birth to adulthood (above) and from birth to age five years (below)146
Figure 3.57	Graphs of left naso-maxillary suture length (inm.l-snm.l) versus age for males
	and females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.58	Graphs of right naso-maxillary suture length (inm.r-snm.r) versus age for
	males and females from birth to adulthood (above) and from birth to age five
	years (below)
Figure 3.59	Graphs of nasal bone length (na-n) versus age for males and females from
	birth to adulthood (above) and from birth to age five years (below)149
Figure 3.60	Graphs of vomerine length (h-ans) versus age for males and females from birth
	to adulthood (above) and from birth to age five years (below)
Figure 3.61	Graphs of maximum maxillary width (zmi.l-zmi.r) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.62	Graphs of posterior superior maxillary width (ms.l-ms.r) versus age for males
	and females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.63	Graphs of posterior inferior maxillary width (mxt.l-mxt.r) versus age for males
	and females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.64	Graphs of posterior palatal width (gpf.l-gpf.r) versus age for males and females
	from birth to adulthood (above) and from birth to age five years (below)154
Figure 3.65	Graphs of anterior upper face height (n-ans) versus age for males and females
	from birth to adulthood (above) and from birth to age five years (below)155

Figure 3.66	Graphs of anterior maxillary alveolar height (ans-pr) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.67	Graphs of left posterior maxillary height (mxt.l-ms.l) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.68	Graphs of right posterior maxillary height (mxt.r-ms.r) versus age for males
	and females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.69	Graphs of left anterior zygo-maxillary suture length (or.l-zmi.l) versus age for
	males and females from birth to adulthood (above) and from birth to age five
	years (below)
Figure 3.70	Graphs of right anterior zygo-maxillary suture length (or.r-zmi.r) versus age
	for males and females from birth to adulthood (above) and from birth to age
	five years (below)
Figure 3.71	Graphs of left inferior maxillary length (mxt.l-pr) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.72	Graphs of right inferior maxillary length (mxt.r-pr) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.73	Graphs of palatal length (pns-ans) versus age for males and females from birth
	to adulthood (above) and from birth to age five years (below)163
Figure 3.74	Graphs of superior interzygomatic width (zt.l-zt.r) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)

Figure 3.75	Graphs of inferior interzygomatic width (zti.l-zti.r) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.76	Graphs of left zygomatic height (slor.l-zmi.l) versus age for males and females
	from birth to adulthood (above) and from birth to age five years (below)166
Figure 3.77	Graphs of right zygomatic height (slor.r-zmi.r) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.78	Graphs of left zygomatic length (zti.l-or.l) versus age for males and females
	from birth to adulthood (above) and from birth to age five years (below)168
Figure 3.79	Graphs of right zygomatic length (zti.r-or.r) versus age for males and females
	from birth to adulthood (above) and from birth to age five years (below)169
Figure 3.80	Graphs of left zygomatic arch length (zt.l-au.l) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.81	Graphs of right zygomatic arch length (zt.r-au.r) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.82	Graphs of intergonial width (go.l-go.r) versus age for males and females from
	birth to adulthood (above) and from birth to age five years (below)172
Figure 3.83	Graphs of intercondylar width (cd.l-cd.r) versus age for males and females
	from birth to adulthood (above) and from birth to age five years (below)173
Figure 3.84	Graphs of left superior ramus distance (cd.l-ct.l) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)

Figure 3.85	Graphs of right superior ramus distance (cd.r-ct.r) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.86	Graphs of anterior mandibular alveolar height (gn-id) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.87	Graphs of left ramus height (cd.l-go.l) versus age for males and females from
	birth to adulthood (above) and from birth to age five years (below)177
Figure 3.88	Graphs of right ramus height (cd.r-go.r) versus age for males and females from
	birth to adulthood (above) and from birth to age five years (below)178
Figure 3.89	Graphs of left mandibular body length (go.l-gn) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.90	Graphs of right mandibular body length (go.r-gn) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.91	Graphs of left total mandibular length (gn-cd.l) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.92	Graphs of right total mandibular length (gn-cd.r) versus age for males and
	females from birth to adulthood (above) and from birth to age five years
	(below)
Figure 3.93	Graphs of inter-regional s-pns length for males and females from birth to
	adulthood (above) and from birth to age five years (below)
Figure 3.94	Graphs of inter-regional s-ans length for males and females from birth to
	adulthood (above) and from birth to age five years (below)

Figure 3.95	Graphs of inter-regional ba-pns length for males and females from birth to
	adulthood (above) and from birth to age five years (below)
Figure 3.96	Graphs of inter-regional ba-ans length for males and females from birth to
	adulthood (above) and from birth to age five years (below)
Figure 3.97	Graphs of left total face length (au.l-ans) versus age for males and females
	from birth to adulthood (above) and from birth to age five years (below)187
Figure 3.98	Graphs of right total face length (au.r-ans) versus age for males and females
	from birth to adulthood (above) and from birth to age five years (below)188
Figure 3.99	Graph of cranial base angle (ba-s-n) versus age for males and females
	combined from birth to adulthood
Figure 3.100	Graph of nasal angle (s-n-na) versus age for males and females combined from
	birth to adulthood. 190
Figure 3.101	Graph of interorbital angle (morfl.l-n-morfl.r) versus age for males and
	females combined from birth to adulthood191
Figure 3.102	Graph of left zygoma projection angle (petsa.l-au.l-zt.l) versus age for males
	and females combined from birth to adulthood192
Figure 3.103	Graph of right zygoma projection angle (petsa.r-au.r-zt.r) versus age for males
	and females combined from birth to adulthood
Figure 3.104	Graph of left gonial angle (cd.l-go.l-gn) versus age for males and females
	combined from birth to adulthood
Figure 3.105	Graph of right gonial angle (cd.r-go.r-gn) versus age for males and females
	combined from birth to adulthood
Figure 3.106	Graph of anterior mandibular angle (go.l-gn-go.r) versus age for males and
	females combined from birth to adulthood
Figure 3.107	Graph for petrous posterius anterior angle (petp.l-es-petp.r) versus age for
	males and females combined from birth to adulthood197

Figure 3.108	Graph of angle s-n/ac.l-spa.l versus age for males and females combined from
	birth to adulthood
Figure 3.109	Graph of angle s-n/ac.r-spa.r versus age for males and females combined from
	birth to adulthood
Figure 3.110	Graph of cranial base/palatal plane angle (s-n/ans-pns) versus age for males
	and females combined from birth to adulthood
Figure 3.111	Graph of palatal plane/face height angle (n-ans/ans-pns) versus age for males
	and females combined from birth to adulthood
Figure 3.112	Graph of cephalic index (cindx.l-cindx.r: cindxa-cindxp) versus age for males
	and females combined from birth to adulthood
Figure 3.113	Graph of left orbital index (sor.l-or.l: lor.l.morfl.l) versus age for males and
	females combined from birth to adulthood
Figure 3.114	Graph of right orbital index (sor.r-or.r: lor.r-morfl.r) versus age for males and
	females combined from birth to adulthood
CHADTED 4	INTRA-POPULATION COMPARISONS OF CRANIOFACIAL
CHAPTER 4	
	MORPHOLOGY IN MALAYSIAN MALAYS BASED ON 3D
	COMPUTED TOMOGRAPHY219
Section A	Sexual Dimorphism of Craniofacial Structures
Figure 4.2.1	3D-CT reconstruction of the craniofacial complex showing skeletal appearance
	of a male and a female in 0 to 1 year age category234
Figure 4.2.2	3D-CT reconstruction of the craniofacial complex showing skeletal appearance
	of a male and a female in 5 to 10 years age category
Figure 4.2.3	3D-CT reconstruction of the craniofacial complex showing skeletal appearance
	of a male and a female in 18 years and above age category235
Figure 4.2.4	3D-CT reconstruction of the cranial base of a male and a female in 5 to 10
	years age category

Figure 4.2.5	3D-CT reconstruction of the cranial base of a male and a female in 18 years
	and above age category
Figure 4.2.6	Variables that showed sexual differences during infancy are overlaid on the
	3D-CT reconstructions
Figure 4.2.7	Variables that showed sexual differences during childhood are overlaid on the
	3D-CT reconstructions
Figure 4.2.8	Variables that showed sexual differences during adulthood are overlaid on the
	3D-CT reconstructions
Section B	Nature and Extent of Craniofacial Asymmetry
Figure 4.3.1	3D-CT reconstructions with those dimensions that showed significant
	directional asymmetry indicated. Those where the right side was larger than
	the left are indicated on the subject's right and those where the left side was
	larger than the right are indicated on the subject's left
Figure 4.3.2	Scatter plot for asymmetry index values of anterior cranial fossa length versus
	age
Figure 4.3.3	Scatter plot for asymmetry index values of mandibular body length versus
	age
Figure 4.3.4	Scatter plot for asymmetry index values of posterior lesser wing of sphenoid
	length versus age
Figure 4.3.5	Scatter plot for asymmetry index values of zygomatic height versus age285
CHAPTER 5	INTER-POPULATION COMPARISONS OF CRANIOFACIAL
	MORPHOLOGY BASED ON 3D COMPUTED TOMOGRAPHY293
Figure 5.1	Craniofacial variables for inter-population comparisons are overlaid on 3D-CT
	reconstructions of the skull. Linear variables are displayed in (a) and (b) and
	angular variables are displayed in (c) and (d)302

Figure 5.2	Palatal length (pns-ans) from Malay, Michigan and Bolton-Brush studies
	plotted on the same graph for males and females
Figure 5.3	Upper face height (n-ans) from Malay, Michigan and Bolton-Brush studies
	plotted on the same graph for males and females308
Figure 5.4	Maxillary alveolar height (ans-pr) from Malay and Michigan studies plotted
	on the same graph for males and females
Figure 5.5	Anterior cranial base length (s-n) from Malay, Michigan and Bolton-Brush
	studies plotted on the same graph for males and females309
Figure 5.6	Posterior cranial base length (ba-s) from Malay, Michigan and Bolton-Brush
	studies plotted on the same graph for males and females310
Figure 5.7	Cranial base length (ba-n) from Malay and Michigan studies plotted on the
	same graph for males and females
Figure 5.8	Foramen magnum length (ba-o) from Malay and Michigan studies plotted on
	the same graph for males and females
Figure 5.9	Inter-regional length (s-pns) from Malay and Michigan studies plotted on the
	same graph for males and females
Figure 5.10	Inter-regional length (s-ans) from Malay and Michigan studies plotted on the
	same graph for males and females
Figure 5.11	Inter-regional length (ba-pns) from Malay and Michigan studies plotted on the
	same graph for males and females
Figure 5.12	Inter-regional length (ba-ans) from Malay and Michigan studies plotted on the
	same graph for males and females
Figure 5.13	Angle ba-s-n from Malay and Michigan studies plotted on one graph with
	measurements for males and females combined
Figure 5.14	Angle s-n/ans-pns from Malay and Michigan studies plotted on one graph with
	measurements for males and females combined

LIST OF TABLES

GENERAL MATERIALS AND METHODS17
Distribution of subjects and their medical conditions displayed according to
craniofacial regions
Number of subjects in different age intervals and average ages (±SD) within
each category24
Landmark relocation error61
Magnitudes of errors of variables
NEW 3D NORMATIVE REFERENCES FOR CRANIOFACIAL
MORPHOLOGY IN MALAYSIAN MALAYS69
Means (M), standard deviations (SD), minimum and maximum values (in mm)
for maximum cranial width (<i>cindx.l-cindx.r</i>) at different age intervals91
Means (M), standard deviations (SD), minimum and maximum values (in mm)
for maximum cranial width (as.l-as.r) at different age intervals92
Means (M), standard deviations (SD), minimum and maximum values (in mm)
for interporion width (po.l-po.r) at different age intervals
Means (M), standard deviations (SD), minimum and maximum values (in mm)
for cranial height (ba-br) at different age intervals
Means (M), standard deviations (SD), minimum and maximum values (in mm)
for left lateral cranial vault height (<i>br-po.l</i>) at different age intervals95
Means (M), standard deviations (SD), minimum and maximum values (in mm)
for right lateral cranial vault height (<i>br-po.r</i>) at different age intervals96
Means (M), standard deviations (SD), minimum and maximum values (in mm)
for anterior cranial vault height $(n-br)$ at different age intervals97

Table 3.8	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for posterior cranial vault height (<i>l-br</i>) at different age intervals98
Table 3.9	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for lambdoid height (<i>l-o</i>) at different age intervals99
Table 3.10	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for maximum cranial length (cindxa-cindxp) at different age intervals100
Table 3.11	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for left lateral cranial vault length (spc.l-as.l) at different age intervals101
Table 3.12	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for right lateral cranial vault length (spc.r-as.r) at different age intervals102
Table 3.13	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for anterior cranial base width (spa.l-spa.r) at different age intervals103
Table 3.14	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for anterior clinoid width (ac.l-ac.r) at different age intervals104
Table 3.15	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for superior spheno-occipital synchondrosis width (petsa.l-petsa.r) at different
	age intervals
Table 3.16	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for inferior spheno-occipital synchondrosis width (pts.l-pts.r) at different age
	intervals106
Table 3.17	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for posterior cranial fossa width (petp.l-petp.r) at different age intervals107
Table 3.18	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for external cranial base width (ss.l-ss.r) at different age intervals108
Table 3.19	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for foramen magnum width (fmlhg.l-fmlhg.r) at different age intervals109

Table 3.20	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for left anterior cranial fossa length (sor.l-spa.l) at different age intervals110
Table 3.21	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for right anterior cranial fossa length (sor.r-spa.r) at different age intervals. 111
Table 3.22	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for left lateral middle cranial fossa length (spa.l-petp.l) at different age
	intervals112
Table 3.23	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for right lateral middle cranial fossa length (spa.r-petp.r) at different age
	intervals113
Table 3.24	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for left petrous ridge length (petsa.l-petp.l) at different age intervals114
Table 3.25	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for right petrous ridge length (petsa.r-petp.r) at different age intervals115
Table 3.26	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for left spheno-occipital synchondrosis length (pts.l-petsa.l) at different age
	intervals
Table 3.27	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for right spheno-occipital synchondrosis length (pts.r-petsa.r) at different age
	intervals117
Table 3.28	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for foramen magnum length (ba-o) at different age intervals118
Table 3.29	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for posterior inferior cranial base length (ba-h) at different age intervals119
Table 3.30	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for cranial base length (<i>ba-n</i>) at different age intervals

Table 3.31	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for posterior cranial base length (ba-s) at different age intervals121
Table 3.32	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for anterior cranial base length (s-n) at different age intervals122
Table 3.33	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for anterior superior orbital width (sor.l-sor.r) at different age intervals123
Table 3.34	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for interorbital width (<i>morfl.l-morfl.r</i>) at different age intervals124
Table 3.35	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for maximum orbital width (<i>lor.l-lor.r</i>) at different age intervals125
Table 3.36	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for anterior inferior orbital width (or.l-or.r) at different age intervals126
Table 3.37	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for posterior orbital width (ofa.l-ofa.r) at different age intervals
Table 3.38	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for left orbital distance (lor.l-morfl.l) at different age intervals
Table 3.39	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for right orbital distance (<i>lor.r-morfl.r</i>) at different age intervals129
Table 3.40	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for left orbital height (sor.l-or.l) at different age intervals130
Table 3.41	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for right orbital height (sor.r-or.r) at different age intervals131
Table 3.42	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for left superior orbital length (ofa.l-sor.l) at different age intervals132
Table 3.43	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for right superior orbital length (ofa.r-sor.r) at different age intervals133

Table 3.44	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for left inferior orbital length (ofa.l-or.l) at different age intervals134
Table 3.45	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for right inferior orbital length (ofa.r-or.r) at different age intervals135
Table 3.46	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for left medial orbital length (ofa.l-morfl.l) at different age intervals136
Table 3.47	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for right medial orbital length (ofa.r-morfl.r) at different age intervals137
Table 3.48	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for left lateral orbital length (ofa.l-slor.l) at different age intervals138
Table 3.49	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for right lateral orbital length (ofa.r-slor.r) at different age intervals139
Table 3.50	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for superior nasal width (snm.l-snm.r) at different age intervals140
Table 3.51	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for inferior nasal width (inm.l-inm.r) at different age intervals141
Table 3.52	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for nasal aperture width (al.l-al.r) at different age intervals142
Table 3.53	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for left nasal height (<i>n-al.l</i>) at different age intervals143
Table 3.54	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for right nasal height (<i>n-al.r</i>) at different age intervals
Table 3.55	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for nasal aperture height (na-ans) at different age intervals145
Table 3.56	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for posterior nasal height (pns-h) at different age intervals146

Table 3.57	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for left naso-maxillary suture length (inm.l-snm.l) at different age intervals. 147
Table 3.58	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for right naso-maxillary suture length (inm.r-snm.r) at different age intervals.148
Table 3.59	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for nasal bone length (na-n) at different age intervals
Table 3.60	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for vomerine length (h-ans) at different age intervals150
Table 3.61	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for maximum maxillary width (zmi.l-zmi.r) at different age intervals151
Table 3.62	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for posterior superior maxillary width (ms.l-ms.r) at different age intervals152
Table 3.63	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for posterior inferior maxillary width (mxt.l-mxt.r) at different age intervals.153
Table 3.64	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for posterior palatal width (gpf.l-gpf.r) at different age intervals154
Table 3.65	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for anterior upper face height (<i>n-ans</i>) at different age intervals155
Table 3.66	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for anterior maxillary alveolar height (ans-pr) at different age intervals156
Table 3.67	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for left posterior maxillary height (mxt.l-ms.l) at different age intervals157
Table 3.68	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for right posterior maxillary height (mxt.r-ms.r) at different age intervals158
Table 3.69	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for left anterior zygo-maxillary suture length (or.l-zmi.l) at different age
	intervals

Table 3.70	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for right anterior zygo-maxillary suture length (or.r-zmi.r) at different age
	intervals
Table 3.71	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for left inferior maxillary length (mxt.l-pr) at different age intervals161
Table 3.72	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for right inferior maxillary length (mxt.r-pr) at different age intervals162
Table 3.73	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for palatal length (pns-ans) at different age intervals163
Table 3.74	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for superior interzygomatic width (zt.l-zt.r) at different age intervals164
Table 3.75	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for inferior interzygomatic width (zti.l-zti.r) at different age intervals165
Table 3.76	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for left zygomatic height (slor.l-zmi.l) at different age intervals166
Table 3.77	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for right zygomatic height (slor.r-zmi.r) at different age intervals167
Table 3.78	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for left zygomatic length (zti.l-or.l) at different age intervals
Table 3.79	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for right zygomatic length (zti.r-or.r) at different age intervals169
Table 3.80	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for left zygomatic arch length (zt.l-au.l) at different age intervals170
Table 3.81	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for right zygomatic arch length (zt.r-au.r) at different age intervals171
Table 3.82	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for intergonial width (go.l-go.r) at different age intervals

Table 3.83	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for intercondylar width (cd.l-cd.r) at different age intervals173
Table 3.84	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for left superior ramus distance (cd.l-ct.l) at different age intervals174
Table 3.85	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for right superior ramus distance (cd.r-ct.r) at different age intervals175
Table 3.86	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for anterior mandibular alveolar height (gn-id) at different age intervals176
Table 3.87	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for left ramus height (cd.l-go.l) at different age intervals
Table 3.88	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for right ramus height (cd.r-go.r) at different age intervals178
Table 3.89	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for left mandibular body length (go.l-gn) at different age intervals179
Table 3.90	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for right mandibular body length (go.r-gn) at different age intervals180
Table 3.91	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for left total mandibular length (gn-cd.l) at different age intervals181
Table 3.92	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for right total mandibular length (gn-cd.r) at different age intervals182
Table 3.93	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for inter-regional <i>s-pns</i> length at different age intervals183
Table 3.94	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for inter-regional <i>s-ans</i> length at different age intervals184
Table 3.95	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for inter-regional <i>ba-pns</i> length at different age intervals185

Table 3.96	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for inter-regional ba-ans length at different age intervals
Table 3.97	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for left total face length (au.l-ans) at different age intervals187
Table 3.98	Means (M), standard deviations (SD), minimum and maximum values (in mm)
	for right total face length (au.r-ans) at different age intervals
Table 3.99	Means (M), standard deviations (SD), minimum and maximum values (in
	degree) for cranial base angle (ba-s-n) at different age intervals
Table 3.100	Means (M), standard deviations (SD), minimum and maximum values (in
	degree) for nasal angle (s-n-na) at different age intervals190
Table 3.101	Means (M), standard deviations (SD), minimum and maximum values (in
	degree) for interorbital angle (morfl.l-n-morfl.r) at different age intervals191
Table 3.102	Means (M), standard deviations (SD), minimum and maximum values (in
	degree) for left zygoma projection angle (petsa.l-au.l-zt.l) at different age
	intervals192
Table 3.103	Means (M), standard deviations (SD), minimum and maximum values (in
	degree) for right zygoma projection angle (petsa.r-au.r-zt.r) at different age
	intervals193
Table 3.104	Means (M), standard deviations (SD), minimum and maximum values (in
	degree) for left gonial angle (cd.l-go.l-gn) at different age intervals194
Table 3.105	Means (M), standard deviations (SD), minimum and maximum values (in
	degree) for right gonial angle (cd.r-go.r-gn) at different age intervals195
Table 3.106	Means (M), standard deviations (SD), minimum and maximum values (in
	degree) for anterior mandibular angle (go.l-gn-go.r) at different age
	intervals196

Table 3.107	Means (M), standard deviations (SD), minimum and maximum values (in
	degree) for petrous posterius anterior angle (petp.l-es-petp.r) at different age
	intervals
Table 3.108	Means (M), standard deviations (SD), minimum and maximum values (in
	degree) for angle <i>s-n/ac.l-spa.l</i> at different age intervals
Table 3.109	Means (M), standard deviations (SD), minimum and maximum values (in
	degree) for angle s - n / ac . r - spa . r at different age intervals
Table 3.110	Means (M), standard deviations (SD), minimum and maximum values (in
	degree) for cranial base/palatal plane angle (s-n/ans-pns) at different age
	intervals
Table 3.111	Means (M), standard deviations (SD), minimum and maximum values (in
	degree) for palatal plane/face height angle (n-ans/ans-pns) at different age
	intervals
Table 3.112	Means (M), standard deviations (SD), minimum and maximum values for
	cephalic index (cindx.l-cindx.r: cindxa-cindxp) at different age intervals202
Table 3.113	Means (M), standard deviations (SD), minimum and maximum values for left
	orbital index (sor.l-or.l: lor.l.morfl.l) at different age intervals203
Table 3.114	Means (M), standard deviations (SD), minimum and maximum values for right
	orbital index (sor.r-or.r: lor.r-morfl.r) at different age intervals204
Table 3.115	Differences in measurements for cranial vault variables in males and females
	between 0-1 years and adulthood, and between 3-5 years and adulthood, as
	well as percentages of the differences
Table 3.116	Differences in measurements for cranial base variables in males and females
	between 0-1 years and adulthood, and between 3-5 years and adulthood, as
	well as percentages of the differences

Table 3.117	Differences in measurements for orbital variables in males and females
	between 0-1 years and adulthood, and between 3-5 years and adulthood, as
	well as percentages of the differences
Table 3.118	Differences in measurements for nasal variables in males and females between
	0-1 years and adulthood, and between 3-5 years and adulthood, as well as
	percentages of the differences
Table 3.119	Differences in measurements for maxillary variables in males and females
	between 0-1 years and adulthood, and between 3-5 years and adulthood, as
	well as percentages of the differences
Table 3.120	Differences in measurements for zygomatic variables in males and females
	between 0-1 years and adulthood, and between 3-5 years and adulthood, as
	well as percentages of the differences
Table 3.121	Differences in measurements for mandibular variables in males and females
	between 0-1 years and adulthood, and between 3-5 years and adulthood, as
	well as percentages of the differences
Table 3.122	Differences in measurements for inter-regional variables in males and females
	between 0-1 years and adulthood, and between 3-5 years and adulthood, as
	well as percentages of the differences
CHAPTER 4	INTRA-POPULATION COMPARISONS OF CRANIOFACIAL
	MORPHOLOGY IN MALAYSIAN MALAYS BASED ON 3D
	COMPUTED TOMOGRAPHY219
Section A	Sexual Dimorphism of Craniofacial Structures219
Table 4.2.1	Adjusted mean and adjusted SE for cranial vault variables for males and
	females at age interval 0 to 1 year. Probability of age $(p \text{ age})$ and sex $(p \text{ sex})$
	differences and R^2 and adjusted R^2 are also presented

Table 4.2.2	Adjusted mean and adjusted SE for cranial base variables for males and
	females at age interval 0 to 1 year. Probability of age (p age) and sex (p sex)
	differences and R ² and adjusted R ² are also presented
Table 4.2.3	Adjusted mean and adjusted SE for orbital variables for males and females at
	age interval 0 to 1 year. Probability of age (p age) and sex (p sex) differences
	and R ² and adjusted R ² are also presented
Table 4.2.4	Adjusted mean and adjusted SE for nasal variables for males and females at
	age interval 0 to 1 year. Probability of age (p age) and sex (p sex) differences
	and R ² and adjusted R ² are also presented
Table 4.2.5	Adjusted mean and adjusted SE for maxillary variables for males and females
	at age interval 0 to 1 year. Probability of age (p age) and sex (p sex)
	differences and R ² and adjusted R ² are also presented
Table 4.2.6	Adjusted mean and adjusted SE for zygomatic variables for males and females
	at age interval 0 to 1 year. Probability of age (p age) and sex (p sex)
	differences and R ² and adjusted R ² are also presented
Table 4.2.7	Adjusted mean and adjusted SE for mandibular variables for males and
	females at age interval 0 to 1 year. Probability of age $(p \text{ age})$ and sex $(p \text{ sex})$
	differences and R ² and adjusted R ² are also presented
Table 4.2.8	Adjusted mean and adjusted SE for inter-regional variables for males and
	females at age interval 0 to 1 year. Probability of age (p age) and sex (p sex)
	differences and R ² and adjusted R ² are also presented
Table 4.2.9	Adjusted mean and adjusted SE for angular and index variables for males and
	females at age interval 0 to 1 year. Probability of age (p age) and sex (p sex)
	differences and R ² and adjusted R ² are also presented
Table 4.2.10	Adjusted mean and adjusted SE for cranial vault variables for males and
	females at age interval 5 to 10 years. Probability of age (p age) and sex (p sex)
	differences and R ² and adjusted R ² are also presented

Table 4.2.11	Adjusted mean and adjusted SE for cranial base variables for males	and
	females at age interval 5 to 10 years. Probability of age (p age) and sex (p s	sex)
	differences and R ² and adjusted R ² are also presented.	.243
Table 4.2.12	Adjusted mean and adjusted SE for orbital variables for males and female	es at
	age interval 5 to 10 years. Probability of age $(p \text{ age})$ and sex $(p \text{ sex})$	sex)
	differences and R ² and adjusted R ² are also presented	.244
Table 4.2.13	Adjusted mean and adjusted SE for nasal variables for males and female	s at
	age interval 5 to 10 years. Probability of age $(p \text{ age})$ and sex $(p \text{ sex})$	sex)
	differences and R ² and adjusted R ² are also presented	.244
Table 4.2.14	Adjusted mean and adjusted SE for maxillary variables for males and fem	ales
	at age interval 5 to 10 years. Probability of age (p age) and sex (p s	sex)
	differences and R ² and adjusted R ² are also presented.	.245
Table 4.2.15	Adjusted mean and adjusted SE for zygomatic variables for males and fem	ales
	at age interval 5 to 10 years. Probability of age (p age) and sex (p s	sex)
	differences and R ² and adjusted R ² are also presented.	.245
Table 4.2.16	Adjusted mean and adjusted SE for mandibular variables for males	and
	females at age interval 5 to 10 years. Probability of age (p age) and sex (p s	sex)
	differences and R ² and adjusted R ² are also presented	.246
Table 4.2.17	Adjusted mean and adjusted SE for inter-regional variables for males	and
	females at age interval 5 to 10 years. Probability of age (p age) and sex (p s	sex)
	differences and R ² and adjusted R ² are also presented.	.246
Table 4.2.18	Adjusted mean and adjusted SE for angular and index variables for males	and
	females at age interval 5 to 10 years. Probability of age (p age) and sex (p s	sex)
	differences and R ² and adjusted R ² are also presented	.247
Table 4.2.19	Adjusted mean and adjusted SE for cranial vault variables for males	and
	females at age interval 18 years and above. Probability of age (p age) and	sex
	(n sex) differences and \mathbb{R}^2 and adjusted \mathbb{R}^2 are also presented	247

Table 4.2.20	Adjusted mean and adjusted SE for cranial base variables for males and
	females at age interval 18 years and above. Probability of age (p age) and sex
	(p sex) differences and R^2 and adjusted R^2 are also presented248
Table 4.2.21	Adjusted mean and adjusted SE for orbital variables for males and females at
	age interval 18 years and above. Probability of age (p age) and sex (p sex)
	differences and R ² and adjusted R ² are also presented
Table 4.2.22	Adjusted mean and adjusted SE for nasal variables for males and females at
	age interval 18 years and above. Probability of age $(p \text{ age})$ and sex $(p \text{ sex})$
	differences and R ² and adjusted R ² are also presented
Table 4.2.23	Adjusted mean and adjusted SE for maxillary variables for males and females
	at age interval 18 years and above. Probability of age (p age) and sex (p sex)
	differences and R ² and adjusted R ² are also presented
Table 4.2.24	Adjusted mean and adjusted SE for zygomatic variables for males and females
	at age interval 18 years and above. Probability of age (p age) and sex (p sex)
	differences and R ² and adjusted R ² are also presented
Table 4.2.25	Adjusted mean and adjusted SE for mandibular variables for males and
	females at age interval 18 years and above. Probability of age (p age) and sex
	(p sex) differences and R^2 and adjusted R^2 are also presented
Table 4.2.26	Adjusted mean and adjusted SE for inter-regional variables for males and
	females at age interval 18 years and above. Probability of age (p age) and sex
	(p sex) differences and R^2 and adjusted R^2 are also presented
Table 4.2.27	Adjusted mean and adjusted SE for angular and index variables for males and
	females at age interval 18 years and above. Probability of age (p age) and sex
	(p sex) differences and R^2 and adjusted R^2 are also presented252
Table 4.2.28	The magnitudes of differences between males and females for cranial vault
	variables at different age categories are presented as percentage of
	dimorphism

Table 4.2.29	The magnitudes of differences between males and females for cranial base
	variables at different age categories are presented as percentage of
	dimorphism
Table 4.2.30	The magnitudes of differences between males and females for orbital variables
	at different age categories are presented as percentage of dimorphism254
Table 4.2.31	The magnitudes of differences between males and females for nasal variables
	at different age categories are presented as percentage of dimorphism254
Table 4.2.32	The magnitudes of differences between males and females for maxillary
	variables at different age categories are presented as percentage of
	dimorphism
Table 4.2.33	The magnitudes of differences between males and females for zygomatic
	variables at different age categories are presented as percentage of
	dimorphism
Table 4.2.34	The magnitudes of differences between males and females for mandibular
	variables at different age categories are presented as percentage of
	dimorphism
Table 4.2.35	The magnitudes of differences between males and females for inter-regional
	variables at different age categories are presented as percentage of
	dimorphism
Table 4.2.36	The magnitudes of differences between males and females for angular and
	index variables at different age categories are presented as percentage of
	dimorphism
Section B	Nature and Extent of Craniofacial Asymmetry267
Table 4.3.1	Mean, median, standard deviation (SD), standard error (SE), minimum,
	maximum and p values for raw asymmetry are displayed for cranial vault
	variables

Table 4.3.2	Mean, median, standard deviation (SD), standard error (SE), minimum,
	maximum and p values for raw asymmetry are displayed for cranial base
	variables
Table 4.3.3	Mean, median, standard deviation (SD), standard error (SE), minimum,
	maximum and p values for raw asymmetry are displayed for orbital
	variables
Table 4.3.4	Mean, median, standard deviation (SD), standard error (SE), minimum,
	maximum and p values for raw asymmetry are displayed for maxillary and
	nasal variables
Table 4.3.5	Mean, median, standard deviation (SD), standard error (SE), minimum,
	maximum and p values for raw asymmetry are displayed for zygomatic and
	face variables
Table 4.3.6	Mean, median, standard deviation (SD), standard error (SE), minimum,
	maximum and p values for raw asymmetry are displayed for mandibular
	variables
Table 4.3.7	Mean, median, standard deviation (SD), standard error (SE), minimum,
	maximum and p values for asymmetry index are displayed for cranial vault
	variables
Table 4.3.8	Mean, median, standard deviation (SD), standard error (SE), minimum,
	maximum and p values for asymmetry index are displayed for cranial base
	variables
Table 4.3.9	Mean, median, standard deviation (SD), standard error (SE), minimum,
	maximum and p values for asymmetry index are displayed for orbital
	variables
Table 4.3.10	Mean, median, standard deviation (SD), standard error (SE), minimum,
	maximum and p values for asymmetry index are displayed for maxillary and
	nasal variables

Table 4.3.11	Mean, median, standard deviation (SD), standard error (SE), minimum,
	maximum and p values for asymmetry index are displayed for zygomatic and
	face variables
Table 4.3.12	Mean, median, standard deviation (SD), standard error (SE), minimum,
	maximum and p values for asymmetry index are displayed for mandibular
	variables
CHAPTER 5	INTER-POPULATION COMPARISONS OF CRANIOFACIAL
	MORPHOLOGY BASED ON 3D COMPUTED TOMOGRAPHY293
Table 5.1	Comparison of selected linear and angular variables between Michigan and
	Malay studies for males and females at age 6 years
Table 5.2	Comparison of selected linear and angular variables between Michigan and
	Malay studies for males and females at age 16 years
Table 5.3	Comparison of selected linear variables between Bolton-Brush and Malay
	studies for males and females at age 1 year
Table 5.4	Comparison of selected linear variables between Bolton-Brush and Malay
	studies for males and females at age 6 year
Table 5.5	Comparison of selected linear variables between Bolton-Brush and Malay
	studies for males and females at age 18 year