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Abstract

In an increasingly digital world, the need for high speed and high fidelity analog-

to-digital (A/D) converters is paramount. Performance improvements in electronic

A/Ds have not kept pace with demand, hence the need to consider alternative tech-

nologies. One such technology is photonics, as it takes advantage of optical sampling,

high speed optical switches and low cross-talk interconnects. Optical sampling de-

rives its advantage from the application of ultra low timing jitter (<100fs) mode

locked lasers utilised to provide high speed clock pulses.

In this thesis the feasibility and simulated performance of three dif-

ferent types of photonic oversampled A/D converters was investigated.

The first, and simplest design is that of oversampled pulse-code-modulation (PCM),

where a 2-level photonic comparator is used to sample the analog input at a fre-

quency much greater than the Nyquist frequency. Subsequent low pass filtering

produces a digital representation of the input. The other two architectures that

were investigated are the first-order sigma-delta and error diffusion, which add one

level of error correction to the PCM technique. These two architectures require the

functional elements of a subtractor, comparator and delay. The photonic compara-

tor and subtractor functionality was provided by Self-Electro-Optic Effect devices

(SEED) based upon multiple quantum well (MQW) p-i-n devices.

To facilitate calculation of the performance of the different architectures and aid

in device design, a simulation of SEED operation based upon experimental data

was developed. The simulation’s accuracy was demonstrated by agreement with the

results from experimental S-SEED switching and optical subtraction. To empha-

size the utility of the model, the simulation was subsequently used to demonstrate

tristability of an S-SEED and critical slowing down in a bistable S-SEED. These

effects were experimentally verified.

To provide enhanced comparator contrast ratio and subtractor dynamic range,

resonantly enhanced microcavity multiple quantum well (MQW) p-i-n devices were

designed and grown by MOCVD. The operation of the subtractor and comparator

was experimentally demonstrated and utilising temperature tuning, optimised per-
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formance was achieved with devices from the same wafer. Furthermore, the inclusion

of gain was shown to improve the subtractor performance to that demanded by the

sigma-delta.

The constraints on each architecture imposed by the unipolar nature of the light

intensity were derived and the sigma delta architecture was shown to be superior to

the error diffusion for a photonic implementation. Using the numerical simulation

based upon experimentally derived data, the entire sigma delta architecture was

simulated to calculate the expected performance. The signal-to-quantisation-noise

ratio (SQNR) was calculated as a function input amplitude and a peak SQNR of

54dB was obtained for an oversampling ratio of 100.
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List of Symbols

Throughout this thesis, several symbols will be used repeatedly to represent

specific quantities or parameters, the following is a list of these symbols and short

descriptions for the readers convenience. This list is not exhaustive but every effort

has been made to maintain conformity of symbols used here. Wherever possible

standard symbols and notation have been used which appear in most texts.

A/D ... Analog to Digital Converter

AlAs ... Aluminium Arsenide

AlGaAs ... Aluminium Gallium Arsenide

AR ... Anti-Reflection

a, Lw ... Width of quantum well

a0 ... Bohr radius

α ... Absorption coefficient

C ... Capacitance

CR ... Contrast ratio

c ... Speed of light in vacuum

∆ ... Hysteresis width

Eg ... Bandgap in eV

Ec ... Minimum conduction band energy

Ev ... Maximum valence band energy

Eb ... Exciton binding energy

e ... Charge of an electron

ei ... Error in comparison operation

0 ... Permittivity of free space

r ... Relative permittivity

fB, f0 ... Input bandwidth

fd ... Dither frequency

fs ... Sampling frequency

GaAs ... Gallium Arsenide
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GSPS ... Giga Samples per Second

G ... Gain

GPIB ... General Purpose Interface Bus

~ ... Planck’s constant

η ... Quantum efficiency

I ... Current

ϕ ... Phase

ϕn ... Wavefunction of quantum well

k ... Extinction coefficient

l ... Geometric pathlength in a laser crystal

λ ... Wavelength

m∗ ... Effective mass

MSPS ... Mega Samples per Second

MOCVD ... Metal-Organo Chemical Vapour Deposition

MBE ... Molecular Beam Epitaxy

MQW ... Multiple Quantum Well

n ... Refractive index

N ... Number of quantum wells

n3D ... Density of states in for a particle in 3 dimensions

n2D ... Density of states in for a particle in 2 dimensions

NID ... Non intentionally doped

ND ... Neutral Density
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OSR ... Oversampling ratio

P ... Power

PθL ... Lower bound of hysteresis

PθH ... Upper bound of hysteresis

Pθ ... Midpoint of hysteresis width

PCM ... Pulse Code Modulation

qi ... Output signal of A/D comparator

QL ... Low output of comparator

QH ... High output of comparator

QCSE ... Quantum Confined Stark Effect

R ... Reflectivity

REAM ... Reflection Electro-Absorption Modulator

S ... Responsivity

SFDR ... Spur Free Dynamic Range

SEED ... Self-Electro-Optic Effect Device

S − SEED ... Symmetric Self-Electro-Optic Effect Device

SQNR ... Signal to Quantisation Noise Ratio

t ... Transmission

ui ... Input signal to A/D comparator

V0 ... Applied SEED voltage

x ... Input signal to A/D
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