THE UNIVERSITY OF ADELAIDE

DEPARTMENT OF MECHANICAL ENGINEERING

ESTABLISHING VERY LOW SPEED, DISTURBANCE-FREE FLOW FOR ANEMOMETRY IN TURBULENT BOUNDARY LAYERS

presented by

Peter Vernon Lanspeary, B.E.(Hons)

for the Degree of Doctor of Philosophy

December 1997

Contents

St	ımma	ry			XXV
A	cknowledgments xx				
St	ateme	ent of or	riginality	x	xviii
Pe	ermiss	ion to c	сору	X	xviii
I	Wir	nd-tunr	nel flow at very low speeds		1
1	Intr	oductio	n		3
	1.1	Backg	round: the nature of boundary-layer turbulence		5
	1.2	The st	ructure of turbulent boundary layers		8
		1.2.1	Near-wall "bursting"		10
		1.2.2	Counter-rotating streamwise vortex hypothesis		12
		1.2.3	Horseshoe vortex models		13
		1.2.4	Numerical simulations		15
		1.2.5	Flow-structure components of near-wall turbulence		19
	1.3	Flow s	speeds required for study of small-scale turbulence		25
	1.4	Notati	on		25

i

27

2 Wind tunnel and instrumentation

2.1	Bound	ary-layer wind tunnel	7
2.2	Hot-w	ire anemometry technique	8
	2.2.1	Boundary-layer hot-wire probe	8
	2.2.2	Constant temperature anemometer bridge	4
	2.2.3	Anemometer frequency response	4
	2.2.4	Stability; use of offset voltage and balance inductance	5
	2.2.5	The effects of filament length 3	6
	2.2.6	Hot-wire calibration	7
		2.2.6.1 Measurement of dynamic pressure in the wind-tunnel test section 3	8
		2.2.6.2 Vortex-shedding anemometer	9
		2.2.6.3 Use of wall-proximity effect to extend the calibration range 4	.2
		2.2.6.4 Calibration formulae	.3
		2.2.6.5 Conversion of unsteady hot-wire signals into velocity 4	4
	2.2.7	Probe-traverse mechanism	.6
2.3	Data a	cquisition system	.6
2.4	Data p	rocessing	.8
2.5	Notati	on	.8
Initi	al exam	ination of the boundary layer 5	1
3.1	Requir	red characteristics of the test-section boundary layer	1
3.2	Prelim	inary examination of the test-section flow	2
	3.2.1	Boundary-layer trip	2
	3.2.2	Static pressure distribution	3
		3.2.2.1 A criterion for negligible pressure gradient	3
		3.2.2.2 Measurements of streamwise pressure distribution	4

3

		3.2.3	Secondary flow	55
		3.2.4	Free-stream turbulence level	58
	3.3	Measu	rements of boundary-layer characteristics	59
		3.3.1	Experimental technique	59
		3.3.2	Momentum thickness	59
		3.3.3	Local friction coefficient	61
		3.3.4	Mean velocity distributions in the test-section boundary layer	62
		3.3.5	R.m.s. velocity distributions in the test-section boundary layer	65
		3.3.6	Distribution of skewness and flatness in the test-section boundary layer	65
		3.3.7	Interpretation of boundary-layer measurements	68
	3.4	Conclu	sion	69
	3.5	Notatio	011	69
4	Cla	ssical fl	ow separation in the wind-tunnel contraction	71
4	Cla 4.1	ssical fl The un	ow separation in the wind-tunnel contraction	71 71
4	Cla 4.1 4.2	ssical flo The un Eviden	by separation in the wind-tunnel contraction Insteady boundary layer in the test section	71 71 73
4	Clar 4.1 4.2 4.3	ssical flo The un Eviden Numer	ow separation in the wind-tunnel contraction asteady boundary layer in the test section ace of flow separation in the contraction ace of flow separation in the contraction ace of flow separation in the contraction	71 71 73 75
4	Clar 4.1 4.2 4.3	ssical flo The un Eviden Numer 4.3.1	ow separation in the wind-tunnel contraction asteady boundary layer in the test section ace of flow separation in the contraction bical modelling of potential flow Background	71 71 73 75 75
4	Clar 4.1 4.2 4.3	ssical flo The un Eviden Numer 4.3.1 4.3.2	ow separation in the wind-tunnel contraction asteady boundary layer in the test section acc of flow separation in the contraction bical modelling of potential flow Background Boundary conditions	71 71 73 75 75 77
4	Clar 4.1 4.2 4.3	ssical flo The un Eviden Numer 4.3.1 4.3.2 4.3.3	ow separation in the wind-tunnel contraction asteady boundary layer in the test section ace of flow separation in the contraction acial modelling of potential flow Background Boundary conditions Contraction profile of the numerical model	71 71 73 75 75 77 77
4	Clar 4.1 4.2 4.3	ssical flo The un Eviden Numer 4.3.1 4.3.2 4.3.3 Proced	ow separation in the wind-tunnel contraction asteady boundary layer in the test section ace of flow separation in the contraction ace of flow separation in the contraction bical modelling of potential flow Background Boundary conditions Contraction profile of the numerical model ure for finite element analysis	71 71 73 75 75 77 77 78
4	Clar 4.1 4.2 4.3	ssical fle The un Eviden Numer 4.3.1 4.3.2 4.3.3 Proced 4.4.1	ow separation in the wind-tunnel contraction isteady boundary layer in the test section ice of flow separation in the contraction ical modelling of potential flow Background Boundary conditions Contraction profile of the numerical model ure for finite element analysis Model generation: preprocessing	71 71 73 75 75 77 77 78 78
4	Clar 4.1 4.2 4.3	ssical flo The un Eviden Numer 4.3.1 4.3.2 4.3.3 Proced 4.4.1 4.4.2	ow separation in the wind-tunnel contraction asteady boundary layer in the test section ace of flow separation in the contraction ical modelling of potential flow Background Boundary conditions Contraction profile of the numerical model ure for finite element analysis Model generation: preprocessing Extracting the velocity data: post-processing	 71 71 73 75 75 75 77 77 78 78 80
4	Clar 4.1 4.2 4.3	ssical fle The un Eviden Numer 4.3.1 4.3.2 4.3.3 Proced 4.4.1 4.4.2 4.4.3	ow separation in the wind-tunnel contraction isteady boundary layer in the test section isteady boundary layer in the test section ice of flow separation in the contraction ical modelling of potential flow Background Boundary conditions Contraction profile of the numerical model ure for finite element analysis Model generation: preprocessing Extracting the velocity data: post-processing Boundary-layer separation – the Thwaites analysis	 71 71 73 75 75 77 77 78 78 80 80

	4.5.1	Non-uniformity of flow at inlet and outlet	82
	4.5.2	Static pressure distribution on the wall	85
	4.5.3	Development and separation of the boundary layer	85
4.6	Conver	gence of the finite element method	87
4.7	Octago	nal cross-section geometry	91
	4.7.1	Static pressure distribution at the wall	91
	4.7.2	Thwaites analysis	93
4.8	Octago	nal-to-square cross-section geometry	94
	4.8.1	The finite element model	94
	4.8.2	Static pressure distribution on the wall	95
	4.8.3	Thwaites analysis	98
	4.8.4	Selection of the taper formula	98
4.9	Modifi	cation of the contraction profile	98
	4.9.1	Static pressure distribution on the wall	01
	4.9.2	Thwaites analysis	02
4.10	Comm	ents on flow in contractions	.03
4.11	Summa	ary and interpretation of finite element modelling	03
4.12	Experin	mental verification of simulation results	05
	4.12.1	Construction of contraction modifications	05
	4.12.2	Boundary-layer measurements in the modified contraction	05
	4.12.3	Boundary layer at the contraction exit	07
4.13	Remov	al of the contraction-exit boundary layer	11
	4.13.1	Design and construction of the suction manifold	11
	4.13.2	Calibration of the suction manifold	12
	4.13.3	Transition and the boundary layer trip	13

CONTENTS

	4.14	Summ	ary	
	4.15	Notatio	on	
5	Buoy	yant coi	nvection in	n the wind tunnel 117
	5.1	Introdu	uction	
	5.2	Experi	mental inv	estigation of test-section secondary flow
		5.2.1	Experime	ental arrangement
		5.2.2	Natural e	xcitation of secondary flows
	5.3	Excitat	tion of buo	yant convection
		5.3.1	The effec	t of a carbon dioxide jet
		5.3.2	The effec	t of temperature non-uniformity
	5.4	Simple	e theory for	weak buoyancy-driven swirl
		5.4.1	One dime	ensional model
		5.4.2	Forced-v	ortex model of buoyant convection
			5.4.2.1	Torque due to a linear temperature distribution
			5.4.2.2	Angular momentum of forced-vortex rotation
			5.4.2.3	Stream rotation due to buoyancy
			5.4.2.4	Solution for small rotation angle in a cylindrical duct
			5.4.2.5	Solution for large rotation angle in a cylindrical duct
			5.4.2.6	Solution in a convergent or divergent duct without buoyant convection 138
			5.4.2.7	Numerical solution for wind-tunnel flow
			5.4.2.8	Effect of boundary-layer friction
	5.5	Suppre	ession of b	aoyant convection
		5.5.1	Effective	ness of mixing by the centrifugal blower
		5.5.2	Design of	f the wide-angle inlet diffuser

		5.5.3	Evaluation of buoyant secondary flow suppression	147
		5.5.4	Residual disturbances	147
	5.6	Summ	ary	147
	5.7	Notatio	on	149
6	Thr	ee-dime	ensional separation in the contraction	153
	6.1	Introdu	uction	153
	6.2	Experi	mental investigation of flow in the test section	154
		6.2.1	Initial observations of streamer deflection	154
		6.2.2	Detection of flow disturbance by pulsed smoke cloud	154
	6.3	Three-	dimensional separation in the contraction	158
		6.3.1	Inadequacy of Görtler instability as a separation mechanism	158
		6.3.2	Direct observation of separation in the contraction	161
		6.3.3	A conceptual model of three-dimensional separation in the contraction	163
			6.3.3.1 The effect of initial flow nonuniformity	163
			6.3.3.2 The effect of adverse streamwise pressure gradients	165
			6.3.3.3 The effect of lateral pressure gradients ¹	167
			6.3.3.4 The effect of tapering diagonal surfaces	168
			6.3.3.5 Summary	168
		6.3.4	Topology of the three-dimensional separation	169
	6.4	Suppre	ession of three-dimensional separation	173
		6.4.1	On the fluid mechanics associated with using screens to suppress separation	173
		6.4.2	Description of screens in the contraction	174
		6.4.3	Flow visualisation with screens in the contraction	175
		6.4.4	Observed effects of negatively buoyant smoke at extremely low speed	178

		6.4.5	Variability of turbulent boundary-layer characteristics in the test section 1	.79
	6.5	Summa	ary	81
	6.6	Notatic	on	82
7	The	test-sec	tion boundary layer 1	185
	7.1	Introdu	action	85
	7.2	Bounda	ary-layer trip	.87
		7.2.1	Design of the trip	87
		7.2.2	Experimental technique	88
		7.2.3	Selection of operating speeds for the boundary-layer trips	89
	7.3	Stream	wise pressure gradient in the test section	.94
	7.4	Velocit	y fluctuations in the free stream	.96
	7.5	Bounda	ary-layer characteristics	.97
		7.5.1	Experimental technique	97
		7.5.2	Calculation of momentum balance	.97
		7.5.3	Boundary-layer thickness	201
		7.5.4	Wall shear stress	202
		7.5.5	Wake region of the boundary layer	204
		7.5.6	Shape factor	207
		7.5.7	Outer region scaling of turbulence statistics	209
		7.5.8	Wall-region scaling of the mean velocity distribution	214
		7.5.9	Wall-region similarity of turbulence statistics	216
		7.5.10	An interpretation of some features of skewness and flatness distributions 2	220
			7.5.10.1 Wake region of the boundary layer	220
			7.5.10.2 Positive skewness near the outer edge of the boundary layer 2	20
				.20

		7.5.10.3 Maxima in the viscous sublayer
		7.5.10.4 Zero-skewness between $y^+ = 100$ and the wake region
	7.6	Summary and conclusions
		7.6.1 Introduction: test-section flow environment
		7.6.2 Momentum balance of the test-section boundary layer
		7.6.3 Characteristics of the test-section mid-plane boundary layer
		7.6.4 Outer and inner region scaling
		7.6.5 Evaluation of the test-section boundary layer
	7.7	Notation
II	Wa	ll-proximity effect 229
8	Intro	duction 231
	8.1	Aerodynamic perturbation
		8.1.1 The effect of probe geometry
		8.1.2 The effect of shear
	8.2	Thermal effects
	8.3	Summary
	8.4	Notation
0	Ana	730
,	Alla	237
	9.1	Heat flows
	9.2	Dimensional analysis
	9.3	Order analysis
		9.3.1 Probe geometry
		9.3.2 Properties of the wall material

		9.3.3	Time scales	245
		9.3.4	Viscous dissipation	246
		9.3.5	Prandtl number	247
		9.3.6	Operating conditions	248
	9.4	Simple	heat-transfer model	248
	9.5	Modifi	ed heat-transfer model	255
		9.5.1	Matching the model with the data	255
		9.5.2	Heat-transfer mechanism at low Reynolds number	256
		9.5.3	Behaviour of the modified heat-transfer model	257
	9.6	Summa	ary and conclusions	258
	9.7	Notatio	on	261
10	Corr	roction	of avaorimental data	265
10	COIL		n experimental data	205
10	10.1	Correc	tion methods	265
10	10.1	Correction of Correct 10.1.1	tion methods	265 265
10	10.1	Correc	tion methods	265 265 266
10	10.1	Correc	tion methods 2 Velocity-error method 2 10.1.1.1 Formulating the correction function 2 10.1.1.2 The data correction process 2	265 265 266 268
10	10.1	Correc 10.1.1	tion methods	265 265 266 268 269
10	10.1	Correc 10.1.1 10.1.2	tion methods	265 265 265 266 266 268 269 272
10	10.1	Correc 10.1.1 10.1.2 10.1.3	tion methods	265 265 265 266 268 269 272 272
10	10.1	Correc 10.1.1 10.1.2 10.1.3	ion methods 2 Velocity-error method 2 10.1.1.1 Formulating the correction function 2 10.1.1.2 The data correction process 2 10.1.1.3 Adjusting $f(y+)$ for formulation-from-turbulence error 2 Simple heat-transfer method 2 10.1.3.1 Correction formula 2	265 265 266 266 268 269 272 274 274
10	10.1	Correc 10.1.1 10.1.2 10.1.3	ion methods 2 Velocity-error method 2 10.1.1.1 Formulating the correction function 2 10.1.1.2 The data correction process 2 10.1.1.3 Adjusting $f(y+)$ for formulation-from-turbulence error 2 Simple heat-transfer method 2 10.1.3.1 Correction formula 2 10.1.3.2 Correction procedure 2	265 265 265 266 268 269 272 274 274 274
10	10.1	Correc 10.1.1 10.1.2 10.1.3	tion methods	265 265 265 266 268 268 269 272 274 274 275 275
10	10.1	Correc 10.1.1 10.1.2 10.1.3 Experin	ion methods ion methods	265 265 266 268 269 272 274 274 274 275 275 276

10.4 Summary and conclusions	 35
10.5 Notation	 86

III Conclusions

289

11	Research findings291					
	11.1	Introduction	291			
	11.2	Quasi two-dimensional separation	292			
	11.3	Buoyant flow rotation	294			
	11.4	Three-dimensional separation	295			
	11.5	The test-section boundary layer	297			
		11.5.1 Transition and streamwise pressure distribution	297			
		11.5.2 Characteristics of the mid-plane boundary layers in a duct	298			
		11.5.3 Turbulence behaviour in the mid-plane boundary layer	301			
		11.5.4 Constraints on satisfactory performance of the wind tunnel	301			
	11.6	Wall-proximity effect in hot-wire anemometry	302			
	11.7	Notation	303			
Re	feren	ces	307			
AF	PEN	DICES				
A	Dissi	pation scales near the wall	323			
	A.1	Notation	326			
B	Flow	rate control	329			
С	Exha	aust diffuser and silencer	333			
D	Mult	ti-directional traverse mechanism	335			

CONTENTS

E	Data	acquisition system	339
	E.1	Analogue to digital converters	339
	E.2	Traverse control	342
	E.3	Control programs for the microprocessors	342
	E.4	Communications with the data acquisition hardware	343
	E.5	Data acquisition program for the personal computer	343
	E.6	Data-file structure	344
	E.7	Instrumentation amplifier	344
F	Intro	oduction to analysis software	345
	F.1	Initial manipulation and inspection of data files	345
	F.2	Interpretation of calibration data	346
	F.3	Processing boundary-layer data	346
	F.4	Graphical presentation of results	346
G	Octa	gonal-to-square transition in a contraction	349
H	Mon	nentum integral equation for a duct	353
	H.1	Arbitrary duct cross-section	353
	H.2	Rectangular duct cross-section	356
	Н.3	Notation	356
I	Turł	pulence statistics of the test-section boundary layer	359

CONTENTS

List of Figures

1.1	The canonical flat plate boundary layer and coordinate directions	7
1.2	Mean velocity profile of a typical two dimensional turbulent boundary layer	8
1.3	Alignment of a typical hairpin vortex in the turbulent boundary layer	10
1.4	Fluid ejections from a low speed streak	11
1.5	Counter-rotating streamwise vortices and ejection mechanism	13
1.6	Behaviour of hairpin vortices in the turbulent boundary layer	14
1.7	Typical vortex structures of the turbulent boundary layer	18
1.8	Normal and lateral shear due to streamwise vortices in a laminar boundary layer	21
1.9	Necklace vortices at a cylinder-wall junction in a laminar boundary layer	22
1.10	Locations where a hairpin vortex can induce eruptive separation from low-speed streaks.	23
1.11	Mechanism for near-wall generation of hairpin vortices	24
2.1	The boundary-layer wind tunnel	29
2.2	Test section of boundary-layer wind tunnel – cross-section view	30
2.3	The boundary-layer hot-wire probe	33
2.4	Constant temperature anemometer bridge – schematic circuit diagram	34
2.5	Variation in square wave response of a tungsten hot wire	35
2.6	Use of a vortex shedding anemometer for hot-wire calibration	39

2.7	A hot-wire calibration determined from vortex-shedding anemometry and indirect pitot- tube anemometry	40
2.8	A hot-wire calibration determined from the frequency of vortex shedding and from wall-proximity effect	43
2.9	Effect of linearisation technique upon measurement of turbulence statistics in the vis- cous sublayer	45
2.10	Probe-traverse mechanism	47
3.1	Boundary-layer trips in the test-section extension	52
3.2	Static pressure distribution along the test section	54
3.3	Pressure gradient growth parameter α as a function of flow speed	55
3.4	Secondary flow in a straight square cross-section duct	56
3.5	Momentum thickness of the test-section mid-plane boundary layer	60
3.6	Local friction coefficient along the test-wall centreline	61
3.7	Mean velocity distribution in the test-section boundary layer	63
3.8	R.m.s. velocity distribution in the test-section boundary layer	64
3.9	Skewness distribution in the test-section boundary layer	66
3.10	Flatness distribution in the test-section boundary layer	67
3.11	Boundary-layer shape factor $H = \delta^* / \theta$	68
4.1	Velocity distribution in the unsteady turbulent boundary layer at test-section Port 1 $$	72
4.2	Signal from a hot-wire in the laminar boundary layer	73
4.3	Distribution of mean and r.m.s. fluctuation of the signal from a hot-wire in the laminar boundary layer	74
4.4	Distribution of the mean and the r.m.s. fluctuation of the output from a hot-wire placed	
	in the contraction boundary layer	75
4.5	Approximate size and location of the separation region in the wind-tunnel contraction .	76
4.6	Comparison of Cheers' formula and the actual contraction profile	78

4.7	Use of cross-section symmetry to reduce mesh size	79
4.8	Cross-flow for the octagonal-to-square cross-section geometry	81
4.9	Finite element model for the contraction with a square cross-section geometry	82
4.10	Nonuniformity of air velocity at the contraction inlet and outlet	83
4.11	Static pressure coefficient near the wall of the square contraction	84
4.12	Development of the laminar boundary layer in the square contraction	86
4.13	Finite element model for a two-dimensional contraction	88
4.14	Static pressure coefficient near the wall of the two-dimensional contraction	89
4.15	Thwaites parameter m in the two-dimensional contraction	90
4.16	Convergence test : Maximum wall-pressure coefficient C_{pi} and Thwaites parameter m .	90
4.17	Finite element model for the contraction with an octagonal cross-section geometry .	91
4.18	Static pressure coefficient near the wall of the octagonal contraction	92
4.19	Thwaites parameter m for the octagonal contraction $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	93
4.20	Finite element mesh for an octagonal-to-square contraction	94
4.21	Conversion from square to octagonal cross-section.	95
4.22	Wall static pressure coefficient near the start of the octagonal-to-square contraction.	96
4.23	Wall static pressure coefficient near the outlet of the octagonal-to-square contraction .	97
4.24	Thwaites parameter m for the octagonal-to-square contraction	99
4.25	Comparison of the original and modified contraction profiles	100
4.26	Wall static pressure coefficient for the modified contraction profile	101
4.27	Thwaites parameter m for the modified contraction profile	102
4.28	Probe locations used in the search for separated flow	105
4.29	Measurements in the near-inlet boundary layer of the modified contraction	106
4.30	Signal from a hot-wire in the outlet boundary layer of the modified contraction	107
4.31	Arrangement for flow visualisation of the boundary layer emerging from the contraction	108

4.32	Structure of the laminar boundary layer emerging from contraction
4.33	Suction manifold
4.34	Initial installation for calibration of the suction manifold
4.35	Hot-wire signal fluctuation downstream of the suction manifold
5.1	Mean velocity distribution in the test-section boundary layer. $U_0 = 2.0 \text{ m/s} \dots 118$
5.2	Mean velocity distribution in the test-section boundary layer. $U_0 = 8.7 \text{ m/s} \dots 119$
5.3	Repeated measurements of mean and fluctuating velocity at $x = 2.52$ m $\dots 120$
5.4	Local friction coefficient for the data of Figures 5.1 and 5.2
5.5	General arrangement for visualisation of the test-section flow
5.6	Streamer pattern due to natural excitation of a single streamwise vortex
5.7	Time histories of naturally excited streamer deflection
5.8	Effect of opening and closing the laboratory door
5.9	Naturally excited streamer deflection patterns over a range of flow speeds
5.10	Effect on the flow of a CO_2 -borne smoke jet
5.11	Effect of nonuniform air temperature at the wind-tunnel inlet
5.12	Secondary flow-rotation angle in the test section as a function of temperature rise pro- duced by a fan-heater
5.13	Estimate of a typical temperature distribution over the wind-tunnel inlet
5.14	Coordinate system for the duct cross-section
5.15	Temperature distribution for forced-vortex rotation
5.16	Control volume enclosing a duct cross-section
5.17	Numerical solution for buoyancy-induced swirl in the wind tunnel
5.18	Temperature distributions at inlet and outlet of the centrifugal blower
5.19	Wide-angle inlet diffuser — assembled and installed
5.20	Streamer deflections produced by strong non-buoyant secondary flows

6.1	Effect of the suction manifold and changing flow speed on streamer deflection 1	55
6.2	Smoke flow through the inlet section	56
6.3	Observations of combined streamer deflection and smoke pattern at the trailing surface of a smoke cloud	57
6.4	Variation in the behaviour and scale of counter-rotating streamwise vortices with de- creasing flow speed	59
6.5	Flow-visualisation arrangement for observation of three-dimensional separation in the contraction	60
6.6	Development of low-speed streaks on the floor of the settling chamber and contraction without lifting from the surface	61
6.7	Coalescence of low speed streaks on the floor of the settling chamber and contraction	63
6.8	Conceptual model for three-dimensional boundary-layer separation	64
6.9	The mechanisms of near-wall lateral flow	66
6.10	Cross-section topology for three-dimensional boundary-layer separation	69
6.11	Bifurcations near the streamwise separation vortices	71
6.12	2 Vortex-skeleton models for the initial stage of three-dimensional separation 1	72
6.13	Schematic cross-section of a low-speed streak	74
6.14	Final configuration for the inlet section of the wind tunnel	75
6.15	5 Streamwise vortex patterns with three screens in the contraction	76
6.16	5 Suppression of three-dimensional separation with five screens in the contraction 1	77
6.17	Unsteady separation induced by a layer of smoke from a horizontal rake at the wind- tunnel inlet	78
6.18	Boundary-layer velocity distributions measured after installation of the mixing fan, inlet diffuser and screens in the wind-tunnel contraction	80
7.1	Addition of skirts to the wind-tunnel test section	86
7.2	Replaceable boundary-layer trip	87

7.3	Local skin-friction coefficient for laminar-to-turbulent boundary-layer transition	190
7.4	Transitional boundary-layer regime and selected operating speed for each trip diameter.	191
7.5	Velocity statistics for laminar-to-turbulent boundary-layer transition	192
7.6	Statistics of velocity distributions for premature transition with a 3.17 mm trip	193
7.7	Static wall pressure distribution along the length of the test section	195
7.8	Distribution of free stream air speed along the length of the test section	196
7.9	Momentum balance for test-section turbulent boundary layers	200
7.10	Thickness of the turbulent boundary layer developed in the test section	201
7.11	Local skin-friction coefficient of the test section boundary layer	203
7.12	Wake strength of the test section boundary layer	204
7.13	The spanwise widths of the wake region and wall region of the boundary layer	205
7.14	The effect of wake-region constriction on the mean velocity distribution, $U(y)$	206
7.15	The effect of duct radius and transition on wake-strength excess	207
7.16	Shape factor for the test-section boundary layer	208
7.17	Selection of thickness parameter for scaling flatness in the outer region of the boundary	210
	layer	210
7.18	Outer region scaling of the mean velocity distribution	211
7.19	Outer region scaling of boundary-layer turbulence statistics for $U_0 = 1.8 \text{ m/s} \dots$	212
7.20	Outer region scaling of boundary-layer turbulence statistics $U_0 = 1.16 \text{ m/s} \dots \dots$	213
7.21	Wall-region scaling of the mean velocity distribution	215
7.22	Additive coefficient C for the Spalding-Coles model of the mean-velocity distribution .	216
7.23	Wall-region scaling of boundary-layer turbulence statistics for $U_0 = 1.8 \text{ m/s} \dots$	217
7.24	Wall-region scaling of boundary-layer turbulence statistics for $U_0 = 1.8 \text{ m/s} \dots$	218
7.25	Summary of mid-plane boundary-layer behaviour	225
8.1	Components of a typical single-hot-wire probe	232

LIST OF FIGURES

8.2	Velocity-time record from a "ladder" hot-wire array	235
9.1	Comparison of uncorrected mean velocity measurements in the sublayer for various wall materials	244
9.2	Nusselt number of heat transfer to the wall – inferred from Krishnamoorthy's (1985) data on the effect of (a) overheat ratio and (b) filament diameter	250
9.3	Comparison of the simple heat-transfer model with the data of Krishnamoorthy et al. (1985)	251
9.4	Comparison between the data of Zemskaya et al. (1979) and the simple heat-transfer model	253
9.5	Prediction of the effect of changing the hot-wire material from 90%Pt-10%Rh alloy to Platinum and Tungsten	254
9.6	Function $f(y^+)$ and measured velocity for a modified heat-transfer model	259
9.7	Variation of the hot-wire calibration coefficient, B , with l/d ratio	260
10.1	Measurement error calculated from experimental data	267
10.2	Flow-chart of iteration procedure for the velocity error model	268
10.3	Look-up table for correcting wall-proximity error	269
10.4	Comparison of the uncorrected and corrected velocity signals	270
10.5	Comparison of the unadjusted and adjusted correction functions with the mean differ- ence between corrected and uncorrected signals	271
10.6	Flow-charts of iteration procedures for heat-transfer models	274
10.7	Hot-wire probe	276
10.8	Mean of corrected and uncorrected streamwise velocity in the viscous sublayer 2	278
10.9	R.m.s. fluctuating streamwise velocity in the viscous sublayer	279
10.10) The mechanism of correction with the simple heat-flow model	280
10.11	Skewness of streamwise velocity in the viscous sublayer	281
10.12	2 Flatness of streamwise velocity in the viscous sublayer	282

10.13	3 Relative turbulence intensity of streamwise velocity in the viscous sublayer
11.1	Design features of a wind-tunnel inlet for very low flow speed
11.2	The mechanisms of three-dimensional separation
11.3	Schematic diagram of flow in the test section of the wind tunnel
A.1	Predicted and measured turbulence-energy production near the wall
A.2	Turbulence kinetic energy budget in the near-wall region (from Krishnamoorthy and
	Antonia, 1988)
A.3	Estimates of Kolmogorov scales in the near-wall region
B.1	Variable-throat-area sonic choke with large sliding centrebody
C.1	Exhaust diffuser and silencer for the boundary layer wind tunnel
D.1	Multi-directional probe traverse mechanism
D.2	Exploded schematic diagram of the horizontal translation and plug rotation mecha-
	nisms of the multi-directional probe traverse
D.3	The tower mechanism of the multi-directional probe traverse
E.1	Major elements of the data acquisition system
E.2	SBC100M - single board microcomputer real-time system controller
G.1	Symbols used for defining the taper rules
G.2	Effect of different taper rules on the shape of the octagonal to square contraction 351
H.1	Control volume in a duct of arbitrary cross-section
H.2	Cross-section of a rectangular duct
I.1	Outer region scaling of boundary-layer turbulence statistics for $U_0 = 1.43$ m/s
I.2	Outer region scaling of boundary-layer turbulence statistics for $U_0 = 2.9$ m/s

I.3	Outer region scaling of boundary-layer turbulence statistics for $U_0 = 3.9 \text{ m/s} \dots 362$
I.4	Wall-region scaling of boundary-layer turbulence statistics for $U_0 = 1.43$ m/s \ldots 362
I.5	Wall-region scaling of boundary-layer turbulence statistics for $U_0 = 2.9 \text{ m/s} \dots 364$
I.6	Wall-region scaling of boundary-layer turbulence statistics for $U_0 = 3.9 \text{ m/s} \dots 363$

List of Tables

2.1	Principal Dimensions of Boundary Layer Wind Tunnel	31
2.2	Principal Dimensions of Boundary Layer Wind Tunnel (continued)	32
5.1	Accuracy of the solution for small rotation angles: $\tan \alpha = 0.25Ri$	138
6.1	Effect of inlet-flow mixing on the variability of turbulent boundary-layer characteristics	181
7.1	Dimensions of boundary-layer trips	188
9.1	Properties of selected fluids and wall-materials at 20° C	243
10.1	Properties of the turbulent boundary layer	277
E.1	Main routines in the data acquisition program	343
F.1	C source-code files for graphics device drivers	347
F.2	Fortran library source-code files	347

Summary

This document addresses problems encountered when establishing the very low air-flow speeds required for experimental investigations of the mechanisms of low-Reynolds-number boundary-layer turbulence. Small-scale motions in the near-wall region are important features of turbulent boundarylayer dynamics, and, if these features are to be resolved by measurements in air with conventionallysized hot-wire probes, a well-behaved canonical turbulent boundary layer must be developed at free stream flow speeds no higher than 4 m/s. However, at such low speeds, the turbulent boundary layers developed on the walls of a wind tunnel are very susceptible to perturbation by non-turbulent timedependent flow structures which originate upstream from the test section in the laminar flow at the inlet and in the contraction.

Four different non-turbulent flow structures have been identified. The first is a result of quasi-twodimensional separation of the laminar boundary-layer from the surfaces of the wind-tunnel contraction. Potential flow simulations show that susceptibility to this form of separation is reduced by increasing the degree of axisymmetry in the cross-section geometry and by decreasing the streamwise curvature of the concave surfaces. The second source of time-dependence in the laminar boundary-layer flow is an array of weak streamwise vortices produced by Görtler instability. The Görtler vortices can be removed by boundary-layer suction at the contraction exit. The third form of flow perturbation, revealed by visualisation experiments with streamers, is a weak large-scale forced-vortex swirl produced by random spatial fluctuations of temperature at the wind-tunnel inlet. This can be prevented by thorough mixing of the inlet flow; for example, a centrifugal blower installed at the inlet reduces the amplitude of temperature nonuniformity by a factor of about forty and so prevents buoyancy-driven swirl. When subjected to weak pressure gradients near the start of a wind-tunnel contraction, Görtler vortices in laminar wall layers can develop into three-dimensional separations with strong counter-rotating trailing vortices. These trailing vortices are the fourth source of unsteady flow in the test-section. They can be suppressed by a series of appropriately located screens which remove the low-speed-streak precursors of the three-dimensional separations. Elimination of the above four contaminating secondary flows permits the development of a steady uniform downstream flow and well-behaved turbulent wall layers.

Measurements of velocity in the turbulent boundary layer of the test-section have been obtained by hot-wire anemometry. When a hot-wire probe is located within the viscous sublayer, heat transfer from the hot-wire filament to the wall produces significant errors in the measurements of both the mean and the fluctuating velocity components. This error is known as wall-proximity effect and two successful methods are developed for removing it from the hot-wire signal. The first method is based on the observation that, if all experimental parameters except flow speed and distance from the wall are fixed, the velocity error may be expressed nondimensionally as a function of only one parameter, in the form $\Delta U^+ = f(y^+)$. The second method, which also accommodates the effect of changing the hot-wire overheat ratio, is based on a dimensional analysi of heat transfer to the wall.

Velocity measurements in the turbulent boundary layer at the mid-plane of a nearly square test-section duct have established that, when the boundary-layer thickness is less than one quarter of the duct height, mean-velocity characteristics are indistinguishable from those of a two-dimensional flat-plate boundary layer. In thicker mid-plane boundary layers, the mean-velocity characteristics are affected by stress-induced secondary flow and by lateral constriction of the boundary-layer wake region. A significant difference between flat-plate and duct boundary layers is also observed in momentum-balance calculations. The momentum-integral equation for a duct requires definitions of momentum and displacement thickness which are different from those given for flat-plate boundary layers. Momentum-thickness growth rates predicted by the momentum-integral equation for a duct agree closely with measurements of the newly defined duct momentum thickness. Such agreement cannot be obtained in terms of stan-dard flat-plate momentum thickness.

In duct boundary layers with Reynolds numbers (Re_{θ_2}) between 400 and 2600, similarity in the wakeregion distributions of streamwise turbulence statistics has been obtained by normalising distance from the wall with the flat-plate momentum thickness, θ_2 . This result indicates that, in contrast with the mean velocity characteristics, the structure of mid-plane turbulence does not depend on the proportion of duct cross-section occupied by boundary layers and is essentially the same as in a flat-plate boundary layer. For Reynolds numbers less than 400, both wall-region and wake-region similarity fail because nearwall turbulence events interact strongly with the free stream flow and because large scale turbulence motions are directly influenced by the wall. In these conditions, which exist in both duct and flatplate turbulent boundary layers, there is no distinct near-wall or wake region, and the behaviour of turbulence throughout the boundary layer depends on both wall variables and on outer region variables simultaneously.

Acknowledgments

This project would never have been completed without the assistance of many other people. My most sincere thanks must go to Dr. M. K. Bull for acting as my supervisor and for obtaining financial support from the Australian Research Council. His friendly advice has always been useful and has contributed significantly to the quality of my work. Discussions with Professor R.E. Luxton have been most interesting and are much appreciated. I also thank Drs. G. J. Nathan and R. M. Kelso for instruction on flow topology, for their friendship and for helping me whenever I asked. Drs. C. H. Hansen and J. M. Pickles have provided welcome assistance in negotiating the bureaucratic maze.

The research findings of this project have arisen almost entirely from experimental work and so, in the manufacture and maintenance of equipment, the willing assistance of technicians and tradesmen has been particularly valuable. Most technical staff in the Department of Mechanical Engineering have contributed in some way to my work and to my education. Rod Curtin, Eric Browne, Alan Mittler and Jonathan May have provided vital support for the computer hardware and systems software. Initial low-level graphics software for the Visual 500 display terminal came from Rod. The data acquisition hardware was designed and built by Rod Curtin, Alan Mittler and Silvio DeIeso. Alan and Silvio also designed and assembled much of the analogue instrumentation. George Osborne made the all-important anemometer probes and most of the associated fittings. The workshop staff: Ron Jager, Craig Price, Malcolm Bethune, Dudley Morrison, Doug Smith, Bill Doble and Werner Eidam have manufactured or modified numerous wind-tunnel components for me. Their support and practical advice are highly appreciated. I have particular gratitude for Herwig Bode who, in providing access to innumerable items of equipment and in many other ways, has given absolutely first-class service.

Statement of originality

This work contains no material which has been accepted for the award of any other degree or diploma in any university or institution and, to the best of my knowledge and belief, contains no material previously published or written by another person except where due reference has been made in the text.

Peter Vernon Lanspeary

Permission to copy

I consent that this copy of my thesis be made available for loan and photocopying when it is deposited in a library of the University. Photocopies of some diagrams may be of inferior quality if the photocopy machine cannot faithfully reproduce the shades of grey in monochrome images.

Peter Vernon Lanspeary