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Abstract 

Parthenocarpy, or seedless fruit development, has an agronomic importance in 

many horticultural crops. In most fruit, fertilization or seed set usually determines whether 

fruit growth is sustained. Naturally occurring parthenocarpy results from a genetic lesion 

that permits fruit to develop in the absence of fertilization and seed development. 

Parthenocarpy can also be induced artificially with cytokinin, gibberellin or auxin plant 

growth regulators applied to anthesis pistils. This thesis describes genetic research using 

Arabidopsis as a model plant to identify integral mechanisms that control parthenocarpy 

and the initiation of fruit development. 

The growth and structure of the Arabidopsis pistil was determined post-

fertilization. Experiments were designed to understand how plant growth regulators induce 

Arabidopsis silique (fruit) development in emasculated anthesis stage pistils. Exogenous 

gibberellin (GA3) induced growth and cellular differentiation most comparable to 

pollinated pistils. Dependencies on gibberellins during silique development were examined 

in mutants defective for gibberellin biosynthesis (ga1, ga4-1, ga5-1) or perception (spy-4, 

gai-1). Although exogenous GAs are effective at inducing parthenocarpy, mutant studies 

concluded that GAs are not the sole cue for fruit development in Arabidopsis. Mutants 

blocked in GA perception could develop siliques in response to pollination, auxin, 

cytokinin but not to exogenously applied gibberellins. Silique structure in pollinated gai-1 

and ga5-1 provided strong evidence for a model supporting evidence of an auxin-like 

signal regulating structural development and that GAs limit anticlinal cellular division. A 

specialized function for GAI and related GRAS family members in controlling cellular 

division during fruit development was uncovered. 
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A mutant that forms parthenocarpic siliques without fertilization (fwf), was also 

characterized. The presence of surrounding floral whorls reduced the extent of 

parthenocarpic silique formation in fwf. Silique growth in the fwf background was 

examined when hormone perception, ovule and carpel identity functions were removed 

genetically. This established that FWF functions independent of GAI-mediated GA 

perception. Carpel identity conferred by FUL was critical for parthenocarpic silique 

elongation and ovule development beyond integument initiation, nucellar specification and 

subsequent morphogenesis, was essential for parthenocarpic silique development in fwf. 

Silique elongation occurs over a four-day period post-pollination or post-anthesis. This 

coincides with a similar time period in which fwf ovules remained receptive to fertilization. 

These observations are congruent with the hypothesis that FWF potentially represses a 

signal transduction process initiated within the ovule that mediates subsequent transition 

from carpel to silique development. Further analysis revealed that aberrant testa shape 

(ats) a mutant defective in integument formation enhanced parthenocarpic development in 

fwf, indicating that an ovule located repressor other than fwf can function to affect silique 

formation. 

Other studies have shown that ethylene can modulate auxin-dependent growth in 

both aerial and root tissues by altering both polar and lateral auxin transport. The 

contribution of ethylene perception to signal transduction between ovule and carpel was 

also genetically assessed. Constitutive ethylene responses, conferred by ctr1-1, enhanced 

cellular expansion in fwf and also the autonomous silique development in fis-2, which 

develops autonomous endosperm. ats ctr1-1 and ino ctr1-1 double mutants were also 

found to be parthenocarpic. This indicates that ethylene perception and integumentary 

structure play an important role in autonomous silique development, conceivably by 
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changing the polar and lateral movement of an auxin-like signal within the integumentary 

tissues of the ovule. 

fwf and ats were fine mapped on chromosome 5 of Arabidopsis. Candidate genes 

were identified corresponding to both mutations but only the identity of FWF was 

established. Auxin Response Factor 8 (ARF8) was cloned and sequenced from the fwf 

mutant background. The gene encodes a protein with a amino-terminal DNA binding 

domain and a carboxy-terminal protein binding domain which homo- and hetero- 

dimerizes with other ARF or Aux / IAA class proteins. ARF8 sequence from fwf mutants 

encoded a mutation in the translation start site. Complementation of fwf plants by the 

transformation of wild type copies of ARF8 into fwf plants was hampered by reduced 

transformation efficiency. However wild type L.er and No.O plants transformed with 

mutant copies of ARF8 were obtained in higher frequency, and these formed 

parthenocarpic siliques when primary transformants were emasculated. This indicated that 

an interfering protein is produced from the mutated ARF8 gene that has altered regulatory 

activity. Sequence analysis indicated this and found that interference resulted from 

functional activity of the Q-rich and carboxy-terminal domains of the ARF8 protein. This 

inference is consistent with other published molecular data, which has demonstrated that 

the carboxy-terminal domain, together with the Q-rich region of selected ARF members, 

can activate auxin-responses. Thus the FWF / ARF8 protein may have a dual role, 

repressing carpel growth development through the DNA binding domain and then ensuring 

activation of silique development through the carboxy-terminal domain. 

The combined molecular and genetic data has been used to construct models 

concerning the genetic control of silique development. The first model considers the role of 

plant hormones and how signals from floral whorls surrounding the carpel and from within 

the ovule control silique growth. A model is also presented for the control of adaxial 
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growth and development of the outer integument by the INNER NO OUTER gene. Finally 

the role of FWF and SPY in controlling floral tissue identity and boundary tissue 

specification is considered in a third model. Modification of the FWF / ARF8 gene could 

be used as a tool to improve fruit set and retention in horticultural crops, in addition to 

creating seedless parthenocarpic fruit. 
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