
Appendix A

Phase control module fault list

This Appendix documents the faults found in the phase control modules of the MF

Doppler radar system during the maintenance period. Faults are grouped according

to the source of the faults and individual entries are arranged as fault, effect and

action/remedy/solution. All references to component numbers are in accordance with

the MF radar system technical documentation.

• IC faults

– Faulty comparator (IC406A), produced abnormal step waveform, replaced.

– Low signal from eXclusive OR (XOR) (IC206B), produced no output at pin 5 of

programmable delay (IC203), added 470 Ω resistor in parallel with 270 Ω (R201).

– Short between pin 3 (60◦ ref) & supply voltage of multiplexer (IC201), loaded

signal along the incoming control lines, replaced.

– Short on pin 4 of programmable delay (IC203), produced undesired output, re-

placed.

• Individual Component

– Failed resistor (R401), produced phase change between current sample from filter

and XOR comparator (IC401A), replaced.

– Failed Zener diode (D408) fitted, also lower breakdown voltage fitted (3.9 V)

than specified (5.6 V), produced very high signal on pin 1 of XOR (IC401A),

411



412 APPENDIX A. PHASE CONTROL MODULE FAULT LIST

replaced.

– Capacitor missing (C415) on multiple modules, unknown effect, added.

– Failed 150 µH choke (L401 &/or L402) on multiple modules, significant circuit

effect or no significant circuit effect, replaced or omitted.

– Failed diode(s) (D401→D406) on multiple boards, balance of diode set is affected

and produces a distorted step waveform or one that does not conform to nominal

behaviour, replaced to re-balance diode set.

• Modifications

– 10 kΩ resistor in parallel to 10 kΩ resistor (R406) on multiple boards, appears to

improve function of fully-functioning boards, no action taken (modification used

to standardise other modules).

– 6.8 kΩ resistor added in parallel to 10 kΩ resistor (R406), produced non-standard

behaviour, replaced with a 10 kΩ resistor.

– 68 Ω resistor added in parallel to 10 kΩ resistor (R406), produced non-standard

behaviour, replaced with 10 kΩ resistor.

– Poor capacitor type used (C405), ceramic type used, this will vary its impedance

among others problems, replaced with greencap capacitor type.

• Manufacturer faults

– Hole through PCB not drilled properly resulting in XOR (IC401) failing, appears

to have never been functional, produced undesired behaviour, hole corrected and

XOR replaced.

– 0.1 µF capacitor installed instead of the specified 0.01 µF (C406), produced

limited dynamic range of step waveform, replaced with correct value.

– Three boards had incorrect capacitor values, this affected the step waveform,

replaced.

• General
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– Found ∼+12 V supply to each PC module in place of the specified nominal +15 V

supply. The 3 V power loss is occurring within the PC module motherboard, no

source found, recommemded for future work.

• Unresolved

– PCmodule 10 of Tx-3 exhibits abnormal behaviour yet successfully calibrates and

operates, no negative effect noted, recommended for possible future investigation.
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Appendix B

Filter/TR switch module test

The repaired Filter/TR switch modules exhibited a consistent phase behaviour when

positioned in their channel slots without their I/O ports loaded. A functioning Fil-

ter/TR switch maintained the complex impedance ranges detailed in Table B.1. To ac-

curately measure the Filter/TR switch I/O impedance under load requires two diodes

(D1 and D2) to be shorted on the actual Filter/TR switch board. To obviate the need

for this the unloaded general values are detailed here. See Woithe & Grant [1999] for

further details.

Filter/TR switch port Impedance Phase
[Ω] [◦]

Tx to ANT 35 → 45 -70 → -86

To 2 MHz Rx 60 → 80 -80

Table B.1: Expected impedance characteristics of the unloaded Filter/TR switch module
as measured in their channel positions.
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Appendix C

Clipper daughterboard

Figure C.1: PCB layout of clipper daughterboard (upper diagram) and with overlay (lower
diagram) [Woithe, 2000b].
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Appendix D

Aeraxial coaxial cable risetime

As mentioned previously, the system risetime can determine the practical discrimina-

tion limit of the TDR system. A significant component of the system risetime in this

case is the risetime of the coaxial cable under test due to its significant length at 1.98

MHz, with risetime being proportional to the cable length. The risetime characteris-

tics of the Aeraxial type cable were not known due to the lack of detailed information

on this type of coaxial cable. A brief investigation into the risetime characteristics of

different lengths of Aeraxial cable was undertaken for use in future calculations and is

detailed here.

Using a modified configuration of equipment system II described in section 3.2.2

the risetimes of four different lengths of Aeraxial cable were tested ranging from 50

to 536 m. The shortest length of Aeraxial was a surplus off cut of the type used

throughout the array and the remaining lengths were buried examples of CBA systems

that were being assessed for faults at the time of the risetime investigation1. Each of

the buried coaxial cable examples had a short inserted at the end of the Aeraxial

length at the base of the antenna pole (as shown in Figure 3.13 on page 118). The

risetime of the other components were taken into consideration when calculating the

Aeraxial cable risetime.

An important consideration during these tests was the width of the pulse used in

1Each of these cables was found to be free of faults and minor discontinuities.
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the TDR system. Short pulse widths applied to long (>1 λ) cable lengths did not

produce consistent results because the short pulse width did not allow the amplitude

of the return pulse to reach its maximum height. Only by increasing the pulse width of

the interrogating pulse allowed the return pulse to approach its maximum amplitude

on the longer lengths of cable. All return pulses were visually checked for abnormal

amplitude behaviour in order to maintain consistent results. Also, to limit the effects

of pulses not being able to attain maximum amplitude, the 0 to 50% risetime was

measured rather than the 10 to 90% risetime [Strickland et al., 1970]. For these reasons

different pulse lengths were used to determine the risetimes of the four different cable

lengths. The result of this investigation is shown in the Figure D.1.

The theoretical risetime of coaxial cables can be calculated if the attenuation is

known. The coaxial cable risetime (To) (in seconds) for a wavefront to attain 50%

amplitude is given by Botos [1968]:

To =
4.56× 10−7α2

f l
2

f
(D.1)

where αf = attenuation of cable at frequency, in dB/100 feet

l = length of cable, in feet

f = frequency, in Hertz

The attenuation of the cable runs has been examined previously by Rossiter [1970]

and Vandepeer [1993]. Rossiter found 6 dB attenuation on a 4.5 λ section (assumed

to be measured at 1.98 MHz), while Vandepeer noted an attenuation for sections 0.5

- 4.5 λ of 0.49 to 4.45 dB at 1.98 MHz. Vandepeer’s results were taken before the

replacement of the 10 m pole section of Aeraxial with RG-11/U type [Vandepeer ,

2001, private communication] and are values derived from a small sample of the total

array. Due to the cable age and buried environment these values are best viewed

as lower limits to the actual attenuation delivered by the cables at present. These

attenuation values were used to calculate the Aeraxial cable risetime (solid line) in

Figure D.1. Over the upgrade period initiated in 1992 the 10 m end section of the

cable run was replaced with Belden 8213 RG-11/U solid-cored coaxial cable. This cable
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type was chosen due to its similarity to the original Aeraxial cable and because of this

its relevant specifications are included here for comparison. Its theoretical risetime

(dotted line), shown in Figure D.1, is calculated from its published attenuation value

at 1.0 MHz [Belden, 1993]. The lower risetime exhibited by the RG-11/U may be partly

attributed to its different physical makeup and hence differing electrical characteristics.

Also, nominal published cable values may not be an accurate representation of actual

examples installed. It should also be noted that the loss characteristics of coaxial

cable are significantly dependent on the dielectric material between the conductors.

The dielectric may be contaminated by exposure to moisture and chemicals when

the outer insulating jacket, in its function as providing environmental protection, is

impaired in some way [Straw , 1994]. This is only exacerbated by age and the RG-11/U

is much younger than the Aeraxial cable. Also, attenuation increases with frequency

and the risetime of the Aeraxial was calculated at 1.98 MHz as compared to the RG-

11/U at 1.0 MHz.

Comparing the theoretical and experimental results in Figure D.1, the close agree-

ment of antenna cable 6E10 (3000 ns pulse) and the significant variation of the other

longer length cables determined with shorter pulse widths may indicate that these ex-

perimental two-way risetime values are still affected by the pulse width not attaining

maximum height in the cable. This would explain the variation of the shorter pulse

width determined risetimes. Another factor of less significance would the influence of

the age on the cables. A further ten years of exposure to the environmental elements

may have had some effect on the cables attenuation characteristics, considering Straw

[1994] suggests that cable loss of outdoor or buried coaxial cable should be checked

every two years for signs of deterioration. It should also be noted that increased cable

temperature causes an increase in risetime and a decrease in amplitude [Times Mi-

crowave Systems , 2002]. This may have had some minor influence over the day time

obtained risetime measurements of the buried cable.

It is assumed that an inappropriate interrogating pulse length was used for the

cable AX4. A more complete picture could be obtained varying pulse width on this
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Figure D.1: Coaxial cable risetime. The graph compares experimental two-way Aeraxial
cable risetimes with theoretical risetimes. The theoretical risetime of Aeraxial coaxial cable
(solid line) is calculated using attenuation values from Vandepeer [1993] at a frequency
of 1.98 MHz. Similarly, theoretical risetime values for an Aeraxial equivalent cable, Belden
8213 (RG-11/U) (dotted line), at 1.0 MHz are shown. Experimental risetimes of selected
cable lengths are shown (crosses), as are the pulse widths in nanoseconds used to determine
them. While the experimentally derived values may come from a distribution that is in
coarse general agreement with the theoretical values there are obvious discrepancies. It is
interesting to note that the cable with closest agreement (6E10) used the highest pulse
width (3000 ns) to determine the risetime. This factor may be the main source of the
disagreement. In this comparison it is assumed that two-way risetime is equivalent to a
contiguous theoretical length of coaxial cable.

length of cable. Another factor influencing these results may be the small sample

size used to determine the attenuation values. An alternate approach would utilise

attenuation measurements from all CBA systems with like nominal wavelength cable

values being averaged for a representative risetime value.

Due to the small number of experimentally derived risetime values for the Aeraxial

cable it is difficult to attempt a fit to this data. Such a process would ultimately

allow an estimation of actual current risetime for any length of Aeraxial cable to be

obtained. This would be useful in order to accurately estimate the system risetime of

any TDR system employed for fault identification. However, a suitable approximation
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to any Aeraxial cable risetime could be interpolated from the Aeraxial theoretical

curve (solid line) and this technique was employed in later estimation of TDR total

system risetimes.

It is surmised that the experimental results have also been affected by the coaxial

cable’s known distorting action on pulsed signals. Matick [1969] describes this pulse

distortion as arising when various frequency components travel at different speeds

due to dispersion and/or suffer different amounts of attenuation due to frequency-

dependent losses2. In fact later studies of the risetime of increasing lengths of coaxial

cable [Strickland et al., 1970] indicate that the risetime behaviour of a specific cable

type (i.e. RG213/U) differs from the commonly used guideline of doubling cable length

translating to four times cable response. It was found that 3.3 times cable response is

perhaps a better description with this ratio varying for lengths below 76 to 91 m (250

to 300 ft). This highlights the cable specific nature of cable risetime measurements

and perhaps confirms that Equation D.1 is best viewed as an approximation to actual

cable behaviour.

Further work to confirm and expand upon the risetimes found here could be aided

by a dedicated study and improved equipment configuration. This would involve a

second high bandwidth DSO placed at the short near the base of the antenna pole.

Thus the one-way risetime of the Aeraxial cable could be obtained. Because the pulse

is travelling a shorter distance, excessively long pulse widths would not be needed as

in the normal TDR system for two-way measurement. Also, further measurements

of cable attenuation could be made using the DSO if impedance matching is perfect.

This could be done on all cable runs so as to build up a more complete picture of

Aeraxial attenuation across the entire array and determine if the ageing of the cables

is significantly degrading cable performance via increasing attenuation.

2It may be possible to reduce these effects by using a suitable, frequency dependent correcting
network [Grivet , 1970].
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Appendix E

The accumulation of water in

Aeraxial coaxial cable due to

condensation

In order to establish if condensation in a fully functioning coaxial cable is alone re-

sponsible for the water amount found during water expulsion using compressed air

techniques, it is necessary to calculate the volume of water expected in such a case. A

method for this calculation is detailed by Hughes [1997] for a large diameter multi-core

cable containing multiple paired conductors. This argument has been adapted here

for the Aeraxial coaxial cable case.

It is assumed that the Aeraxial coaxial cable had a relative humidity of ∼50%

at manufacture or preceding its burial. This cable type was then placed into the

underground environment containing varying amounts of moisture and an often higher

relative humidity. At a constant temperature there will therefore be a relative humidity

difference from the outside to inside of the cable that will drive water vapour through

the sheath into the cable [Hughes , 1997]1. After a time period (i.e. a year at most)

the relative humidity of the inside of the cable will have risen to 100%. Subsequently,

1Vapour penetration into coaxial cable is mentioned in Chapter 3 and extensively in Times Mi-

crowave Systems [2002] and Hughes [1997].
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when the temperature drops water will condense out into the cable.

Hughes assume that the water vapour acts as an ideal gas and follows Dalton’s

Law of partial pressures and behaves independently of other gases.

We will assume that there are two nominal temperature differences influencing

any condensation, one representing local winter conditions and the other summer

conditions.

Temperature Winter Summer
[◦C] [◦C]

Minimum 0 (273◦K) 15 (288◦K)
Maximum 15 (288◦K) 30 (303◦K)

Table E.1: Seasonal temperature differences.

The Relative Humidity (RH) is given as [Giancoli , 1988],

Relaive Humdity =
partial pressure of H2O

saturated vapour pressure of H2O
× 100 (E.1)

The partial pressure of H2O (PH2O) at 100% RH can be obtained from Equation E.1

as saturated vapour pressure is temperature dependent and is tabulated in Giancoli

[1988, Table 19-1]. Table E.2 summarises these results.

T T PH2O

[◦C] [◦K] [N/m2]

0 273 611
15 288 1710
30 303 4240

Table E.2: Partial pressure of H2O (PH2O) due to 100% Relative Humidity at a specific
temperature (T).

If we look at a 1000 m section of cable and assume that the diameter of the free

space of the air dielectric is 4 mm, the associated Volume (V ) is 0.013 m3/km.

The ideal gas equation can then be re-arranged to give the number of mols of H2O

(n),

n =
PH2OV

RT
(E.2)



427

where, V = Volume (m3), T is the Temperature (◦K) and R is the Universal Gas

constant, 8.314 J/mol·K. the molecular weight of water is 18 so the number of mols

can be converted to grams per km.

T n n
[◦C] [mol] [grams/km of H2O]

0 0.0035 0.0629
15 0.0093 0.1671
30 0.0219 0.3938

Table E.3: Moles (n) of H2O according to temperature.

Assuming that all water condenses into the air-cored portion of the cable (instead

of coating the total surface area of the cable components such as the outer shield etc.)

then the mass of water condensing out and thus measured when forced out by air will

be the difference of these values. So 0.10 grams/km of H2O are condensed for a winter

day and 0.23 grams/km of H20 for a summer day. This translates approximately to the

very small volumes of (winter) 0.10×10−6 m3/km and (summer) 0.23 ×10−6 m3/km.

If the conditions necessary for this condensation occur daily then a steady accu-

mulation of water in the cable will result neglecting any other direct moisture entry

paths. If we assume that the conditions necessary for the winter cycle occur for half a

year and the summer for the other half an estimate of the annual water accumulation

can be obtained. This is approximately 6×10−4m3/km/year.

If the last upgrade in 1992/94 effectively forced all water from the cables then

over the five years to the present survey approximately 3 cubic millimetres of water

is expected to be forced out during the current water eradication process due only to

the condensation behaviour of the cables at the Buckland Park site. In fact the cables

showing a very low water level (see Figure 3.23) often had an estimated water volume

not much larger than this forced out.



428 APPENDIX E. WATER IN COAXIAL CABLES



Appendix F

Automated array monitoring

system

An Automated Array Monitoring System (AAMS) would interface with the function-

ing radar system at the antenna patchboards. Here, feeds from each CBA sub-system

would be tapped allowing for either normal radar operation or array assessment to

be initiated. Essentially, all necessary TDR and VIM diagnostic techniques, such as

those described in Chapter 3, could be accomplished using various hardware compo-

nents such as PCI cards contained within a PC in conjunction with software algorithms

interpreting the data collected. Using the rejection criteria detailed in previous sec-

tions, including such parameters as complex impedance and theoretical cable length,

a status of each CBA could be calculated and evaluated against current standards.

Additionally, software algorithms may also identify common faults from their charac-

teristic signatures (e.g. Figures 3.5 to 3.12 on page 113 and others contained in the MF

CBAD) and then approximate the distance to the fault. This complete system is then

networked with the existing radar controller for synchronising purposes and with the

Automatic Weather Station (AMS) for recording of the local weather conditions which

have some influence over the electrical behaviour of the array. The existing microwave

link from the Buckland Park research facility to the University of Adelaide campus

would allow the control and display of data from the AAMS to be incorporated into
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the existing radar configuration and display software. Note that some degree of au-

tomation can be achieved with the current equipment test system, however this falls

short in terms of capabilities and versatility of a purpose designed system.

Because TDR is essentially RADAR operation in a medium, a more elegant solution

to automating TDR/VIM array measurements is to use the existing atmospheric radar

system, momentarily reconfigured to transmit and receive into the CBA sub-system.

This would occur before an acquisition block, using TDR system frequencies and pulse

lengths. This eliminates a doubling up on equipment to sample the atmosphere and

CBA sub-system individually and integrates TDR/VIM function into the atmospheric

radar system enhancing its self-diagnostic capabilities and providing a near completely

self-sufficient radar system. This type of system would be applicable to other radars

situated at remote locations. A more ambitious arrangement of monitoring CBA sub-

system behaviour during data collection could utilise the broadcast of a second carrier

frequency separated from the atmospheric carrier frequency and modulated by a short

pulse [Davidson, 1978]. This second frequency would be chosen such that most signal

is reflected at the balun/antenna. The received signal could be analysed in a similar

fashion to all other TDR signals. The dramatic increase in complexity required of

both the transmitter and receiver system preclude this arrangement from being im-

plemented with any current generation radar system, however the progression towards

multi-frequency, wideband radar systems indicate that CBA sub-system monitoring

simultaneously with data collection is not far away.

Either method allows for data from the within the antenna array to be monitored

together with atmospheric radar data in near real-time. A primary difficulty in imple-

menting such a system into the current radar is that the current patchboards access

three CBA sub-systems for each transmitter channel in the standard configuration.

This prevents each individual CBA sub-system being probed for its characteristics,

however this could be overcome with a different patchboard arrangement such as one

that could switch in individual CBA sub-systems under radar control. This arrange-

ment would also enhance the radar’s versatility in terms of atmospheric observations.
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Power combining system summary

sheet
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USE

The 1.98 MHz combining system allows summation of the 2.5 kW Power Amplifier (PA) modules of the 25 kW 1.98 MHz MF

transmitter. The output can be directed to a 1

4
λ helical whip antenna or any other system via the output transformer as required.

EQUIPMENT

The combining system consists of:

• Standard:

- (3×) 2:1 combiner.

- (1×) 3:1 combiner.

- (1×) 90◦ phase delay.

- (1×) 1:1.64 transformer (tap adjustable).

- (32×) 50 cm RG-58 patch cables.

- (1×) ∼50 m 1

2
λ UR67 transformer to antenna cable.

• Optional:

- 1

4
λ helical whip antenna and base.

- antenna mount.

SPECIFICATION

Device Name Impedance Power Rating
I/O
[Ω] [kW]

2:1 combiner 25 10
3:1 combiner 25 15
1:1.64 transformer 25/41 15
90◦ phase delay 25 15
1

4
λ helical whip 50/41a 7.5 @ 1% duty cycle

a
Nominal/With Mount.

CONNECTION

A basic connection configuration is shown in Figure below.

whip
helical

module switch
T/R

transformer

2:1 combiner

PA

PA T/R
switchmodule

output

25 Ω
input

25 Ω
input

25 Ω
25 Ω

41 Ω

1:1.64
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Power combining system

component list
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Component Value Type Tolerance Note

2:1 Combiner

R1-R6 75 Ω Wirewound 5% 6 W
C1 330 pF Silvered Mica 1% 500 V d.c. working
C2 390 pF “ “ “
C3 1.5 nF “ “ “
C4 330 pF “ “ “
C5 330 pF “ “ “
C6 1.5 nF “ “ “
C7 390 pF “ “ “
C8 330 pF “ “ “
C9 3.6 nF “ “ “

C10-C12 390 pF “ “ “
L1 2.35 µH T-184-2 (toroid) - 9 1

2
turns

L2 2.35 µH T-157-2 (toroid) - 12 1
2
turns

CBL1-CBL4 50 Ω RG-58C - 17.5 cm length
CBL5,CBL6 50 Ω RG-58C - 19.5 cm length
A1-A6 50 Ω BNC panel mount

3:1 Combiner

R7-R15 75 Ω Wirewound 5% 6 W
C13-C18 3.6 nF Silvered Mica 1% 500 V d.c. working
C19,C20 10 nF “ “ “
C21,C22 390 nF Silvered Mica 2% 500 V d.c. working
L3 3.5 µH T-200A-2 (toroid) - 11 1

2
turns

L4 3.5 µH “ - “
L5 3.5 µH “ - “

CBL7-CBL12 50 Ω RG-58C input cable - 17.5 cm length
CBL13,CBL14 50 Ω RG-58C output cable - 19.5 cm length
A7-A14 50 Ω BNC panel mount

1:1.64 Transformer

C23 1.8 nF Silvered Mica 1% 500 V d.c. working
C24 5.6 nF “ 2% “
L6 223 µH (1.1 kΩ) 28-053-31 (toroid) - 19 1

2
turns

A15-A17 50 Ω BNC panel mount

Phase Delay

C25-C30 820 pF Silvered Mica 2% 500 V d.c. working
C26-C29 1.5 nF “ 1% “
L7 na (25 Ω) na - 19 1

2
turns

CBL15,CBL16 50 Ω RG-58 input cable - 30 cm length
CBL17,CBL18 50 Ω RG-58 output cable - 30 cm length
A19-A22 50 Ω BNC panel mount

Table H.1: Combining system component list.
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Radio frequency band designations

Band Frequency Wavelength
Designation Range

ELF < 3 kHz > 100 km
VLF 3 to 30 kHz 10 to 100 km
LF 30 to 300 kHz 1 to 10 km
MF 300 to 3000 kHz 100 to 1000 m
HF 3 to 30 MHz 10 to 100 m
VHF 30 to 300 MHz 1 to 10 m
UHF 300 to 3000 MHz 10 to 100 cm
SHF 3 to 30 GHz 1 to 10 cm
EHF 30 to 300 GHz 1 to 10 mm

Table I.1: Band designations for the radio region of the EM spectrum.
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Appendix J

Atmospheric radar configurations

for meteor detection

Various transmitting and receiving hardware configurations of atmospheric type radars

have been effectively employed for meteor detection and analysis at frequencies below

10 MHz. For meteor wind measurements, the system at Saskatoon described by Meek

& Manson [1990] used a transmitting array of folded half wave dipoles at 2.219 MHz

producing a beam half power at 22◦ off-zenith. Peak pulse power of the order of 50 kW

was transmitted in 20 µs pulses at a PRF of 60 Hz. For reception, an interferometer

of four tuned loops arranged as an equilateral triangle plus a centre loop spaced at

one half wavelength was used.

Earlier meteor studies employing the Buckland Park MF array, with transmitter

hardware pre-dating that described in section 2.2.2, offer an alternate configuration.

Olsson-Steel & Elford [1987] transmitted circularly polarised radiation vertically with

a relatively wide beam to enable sufficient power at larger off-zenith angles. A 25 kW

transmitter was used producing a 30 µs pulse at a PRF of 20 Hz. A more complex

receiving system was used comprising five channels, one amplitude and four phase. To

determine the presence of an echo (via the amplitude channel) two rows of collinear

dipoles with a 180◦ phase shift between them produced an antenna pattern with max-

imum at 55◦ off-zenith and a null in the vertical to minimise ionospheric reflections.
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The first two phase channels were used to determine the zenith angle of the meteor

from comparison of signals from two rows of nine collinear antennas. The final two

phase channels used the input from two single dipoles as a phase check. Similar mul-

tiple collinear antennas for reception had been used in earlier meteor studies from the

BP site (e.g. Brown [1976]); this arrangement initially was employed to obtain a rea-

sonable signal-to-noise ratio as compared to a single dipole [Brown, 1972]. Studies at

6 MHz using the BP array for reception and a different transmitting system have also

taken place [Elford & Olsson-Steel , 1988]. Here, linear polarised radiation was directed

vertically with a half power maximum at 40◦ off-zenith. A 10 kW peak power, 20 µs

Gaussian pulse at a PRF of 20 Hz was used. Reception on the BP array at 6 MHz

was via a vertically directed beam with grating lobes at 33.2◦ and 50.7◦.

More recent meteor observations at the BP site have utilised sixty east-west aligned

antennas for transmission to form a 10◦ pencil beam at an off-zenith angle of 25◦ in

four consecutive azimuths (0◦,90◦,180◦ and 270◦) switched every two minutes [Tsutsumi

et al., 1999]. Five dipoles of opposite polarisation to those used for transmission were

arranged as an interferometer for reception.



Appendix K

Techniques to validate meteor echo

height

1. Decay times. The decay time of an underdense meteor echo will decrease

with increasing height. General decay time trends can be determined for height

consistency or direct comparisons with theoretical models.

2. Height range. Shower echoes should be confined to a particular height range

based on their mean speeds. Weiss [1955] has also used a range envelope tech-

nique to determine the reliability of the radiant determination.

3. Winds. Wind fields derived from meteor echoes, together with fields derived

by other means such as FCA for example, may be examined for consistency. It

is expected complementary wind fields contiguous or overlapping in height will

exhibit compatible characteristics. Common atmospheric phenomena, such as

the propagation of gravity waves, may also be observed through the adjacent

wind fields. It should be noted however that this analysis is complicated by

the fact that wind fields can change dramatically at around 100 km altitude,

although this feature in itself can be exploited for a “gross” checking of heights.

4. Ionospheric layer position. The approximate position of local ionospheric

layers (i.e. D, E, F-region) could be used as a frame of reference from which to
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confirm meteor echo heights. The use of an ionosonde in real time will aid in

accurately identifying the range and extent of layers from which to calibrate the

meteor echo height, while ionospheric prediction services or models may provide

a rough approximation of the local ionospheric environment. Data relating to

each layer’s capability in reflecting or retarding signals of specific frequency is

particularly sought.

5. Ray modelling. Theoretical modelling of the transmitted radiation via ray-

tracing techniques within a model ionosphere (such as the International Refer-

ence Ionosphere (IRI)) could be undertaken.

6. Data self-consistency or logic validation. Maximum use of the existing

radar data could be initiated via examining the;

(a) Power return. Typically the strength of a meteor echo at a distant range

will be significantly less than that of an echo detected at close range. The

calculated echo height and knowledge of radar beam geometry can then be

examined for consistency with this information.

(b) Height distribution. The general form and location of the meteor height

distribution can be approximated by theory. Deviations from this may

indicate ranging problems.

7. Magnetic field effects. At altitudes above 95 km the magnetic field increas-

ingly affects the character of the radar meteor echo (see section 5.2.2). This can

be modelled and compared with acquired echoes in order to confirm echo height.

8. Range bracketing at higher frequency. To overcome phase inaccuracies of

previous configurations of the BP 2 MHz radar system, Olsson-Steel & Elford

[1987] suggest operating the radar at 6 MHz to obtain grating lobes of 1.5◦ width.

If suitable range brackets were searched for meteors, heights could be determined

using range data only.



Appendix L

Abbreviations

Abbreviation Definition

A$ Australian dollar
ANT Antenna
AoA Angle-of-Arrival
ch Channel
deg degree
EW East-West
hr hour
I In-phase
I/O Input/Output
min minute
N North
NS North-South
Pk-to-Pk Peak-to-Peak
Q Quadrature
radarcfg Radar configuration software
REF Reference
Rx Receiver
S South
T/R or TR Transmit/Receive
Tx Transmitter

Acronym Definition

AAI Aerospace Airglow Imager
AC Alternating Current
ADC Analog-to-Digital Converter
ADS Analysis and Display Suite
AGC Automatic Gain Control
AMOR Advanced Meteor Orbit Radar
AMS American Meteor Society
ALTAIR ARPA Long-range Tracking And Instrumentation Radar
AWS Automatic Weather Station
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Acronym Definition

BL Boundary Layer
BNC Bayonet Nut Connector or British Naval Connector or Bayonet Neil-Concelman
BP Buckland Park
BW Bandwidth
CBA Cable-Balun-Antenna
CCDS Charge-Coupled Device Spectrometer
CD-R Compact Disc-Recordable
CDROM Compact Disc Read Only Memory
CEM Computational Electromagnetics
CRO Cathode Ray Oscilloscope
CST (Australian) Central Standard Time
CW Continuous Wave
DAE Differential Absorption Electron (concentration)/Experiment
DBS Doppler Beam Swinging
DC Direct Current
DMS Dutch Meteor Society
DoD Department of Defence
DSO Digital Storage Oscilloscope
DSpO Digital Sampling Oscilloscope
DSTO Defence Science and Technology Organisation
DTB Down-the-Beam
DUT Device Under Test
ED Experimental Dry
EHF Extremely High Frequency
ELF Extremely Low Frequency
EM Electromagnetic
EN East North
EPROM Erasable Programmable Read-Only Memory
EUV Extreme Ultraviolet
EW Experimental Wet
FCA Full Correlation Analysis
FDR Frequency Domain Reflectometry
FD-TD Finite Difference Time-Domain
FEP Fluorinated Ethylene Propylene
FIFO First In, First Out
FMCW Frequency Modulated Continuous Wave
GCM General Circulation Model or Global Circulation Model
GPS Global Positioning System
GUI Graphical User Interface
HF High Frequency
IAU International Astronomical Union
IBM International Business Machines
IC Integrated Circuit
IF Intermediate Frequency
IMO International Meteor Organisation
IRI International Reference Ionosphere
ISA Industry Standard Architecture
ISEP International Standard Equipment Package
ISR Incoherent Scatter Radar
LAN Local Area Network
LF Low Frequency
LLLTV Low-Light-Level Television
LO Local Oscillator
LT Local Time
MAS Meteor Analysis Suite
MDR Meteor Detection Radar
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Acronym Definition

MEDAC Meteor Echo Detection And Collection
MF Medium Frequency
MF CBAD Medium Frequency Cable-Balun-Antenna Database
MoM Method of Moments
MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
MS Microsoft
MS-DOS Microsoft Disk Operating System
MST Mesosphere-Stratosphere-Troposphere
MU Middle and Upper atmosphere (radar)
na not applicable
NEC-2 Numerical Electromagnetics Code, Version 2
NMS Nippon Meteor Society
O Ordinary
O Oxygen
OH Hydroxyl group or molecule
OR OR (logic gate)
OTH Over-The-Horizon(-radar)
PA Power Amplifier
PC Personal Computer
PC Phase Control
PCB Printed Circuit Board
PEP Peak-Envelope-Power
PRF Pulse Repetition Frequency
PVC Polyvinyl Chloride
RA Right Ascension
RADAR RAdio Detection And Ranging
RAM Random Access Memory
RASS Radio Acoustic Sounding System
RDAS Radar Data Acquisition System
RF Radio Frequency
RMS Root Mean Square
SA Spaced Antenna
SAPR Spaced Antenna Partial Reflection
SHF Super High Frequency
SKiYMET all SKY interferometric METeor radar
SNR Signal-to-Noise Ratio
SuperDARN Super Dual Auroral Radar Network
SWR Standing-wave Ratio
ST Stratosphere-Troposphere
TDI Time Domain Interferometry
TDR Time Domain Reflectometry
TDT Time Domain Transmission
TEM Transverse Electric Magnetic
TE Transverse Electric
TFP Three Field Photometer
TN True North
UHF Ultra High Frequency
UT Universal Time
UV Ultra-Violet
VHF Very High Frequency
VIM Vector Impedance Meter
VLF Very Low Frequency
VSWR Voltage Standing-Wave Ratio
wrt with respect to
X Extra-Ordinary
XOR eXclusive OR (logic gate)
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Appendix M

Symbols

Symbol Definition

a Measure of column radius

A Phase temperature coefficient

A Effective antenna area

Ae Cross sectional area

AL Inductance Index

A(t) Amplitude

BW Bandwidth

Bmax Maximum flux density

C Capacitance

CD Core dimensional factor

CL Cable Length

CLA Cable Length of Aeraxial cable section

CL3.63 Cable Length of feeder cable section

CLRG−11/U Cable Length of upright cable section

CLProbe Cable Length of probe section

c Speed of light

d Distance between antenna elements

d Inner conductor’s outer diameter

dX Time difference

dY Voltage difference

D Outer conductor’s inner diameter

D Distance to discontinuity
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Symbol Definition

Da Ambipolar diffusion coefficient

D1 Distance to discontinuity 1

D1 Distance to discontinuity 2

D12 Distance between discontinuity 1 and 2

e Partial pressure of water vapour

ED Experimental Dry coaxial cable length

EW Experimental Wet coaxial cable length

Epk Applied RMS volts

f Frequency

fcrit Critical frequency

fLO Local oscillator frequency

fS Signal frequency

fscope bandwidth The bandwidth of an oscilloscope

F Frequency

h Altitude

I Luminous energy

l Length of cable

l1 Direction cosine of reflection point in celestial frame

lA Direction cosine of reflection point in observer’s frame

L Direction cosine of radiant in celestial frame

L Inductance

m Mass

m1 Direction cosine of reflection point in celestial frame

mA Direction cosine of reflection point in observer’s frame

M Direction cosine of radiant in celestial frame

n Integer

n Number of mols of water

n Refractive Index

n1 Direction cosine of reflection point in celestial frame

nA Direction cosine of reflection point in observer’s frame

N Direction cosine of radiant in celestial frame

N Number of components

N Number of input ports

N Number of meteors
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Symbol Definition

N Number of samples

N Number of turns

Ne Critical plasma density

Ne Number density of electrons

Nmax Peak electron density of the layer

P Atmospheric pressure

PD Path Difference

PAP Power aperture product

PH2O Partial pressure of water

Ppk Transmitted peak power

Pt Transmitted power

P1R Received power from 1st hop

P2R Received power from 2nd hop

q Line density

qmax Maximum line density

re Classical electron radius

r0 Trail initial radius

R Balancing Resistance

R Discrimination of TDR system

R Reflection coefficient

R Resolving power

R Universal Gas Constant

RA Right Ascension

RH Relative Humidity

R1 Resistance in series with ZO

R2 Shunt resistance

s Distance along trail

S Meteor event ratio

S(t) Signal from IF amplifier

t Time

t Elapsed time between initial and reflected pulse

ti Component risetime

tpw Pulse Width

tr System risetime
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Symbol Definition

tsystem I Total risetime of equipment system I

tsystem II Total risetime of equipment system II

ttotal Total time difference

t1 Time period between initial and return pulse to discontinuity 1

T Period

T Theoretical coaxial cable length

T Temperature

T Absolute temperature

To Coaxial cable risetime

v Velocity of radio wave in air

v Speed of meteoroid in m s−1

V Speed of meteoroid in km s−1

V F Velocity Factor

Vpk Peak voltage

V FA Velocity Factor of Aeraxial cable section

V F3.63 Velocity Factor of feeder cable section

V FRG−11/U Velocity Factor of upright cable section

V FProbe Velocity Factor of probe cable section

z Scatterer height

Z Complex impedance

Zin Input Impedance

ZL Load Impedance

Zo Line Impedance

ZO Characteristic Impedance

XC Capacitive reactance

XL Inductive reactance

α Right ascension

α Electron line density

αA Direction cosine angle in observer’s frame

αf Attenuation of cable at frequency, in dB/100 feet

β Ionising probability

βA Direction cosine angle in observer’s frame

γA Direction cosine angle in observer’s frame

∆ Cable length difference
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Symbol Definition

∆CLA Error in Aeraxial. m cable length

∆CL3.63 Error in 3.63 m cable feeder length

∆CLRG−11/U Error in 3.63 m cable feeder length

∆CLProbe Error in 3.63 m cable feeder length

∆(ED-T) Experimental Dry cable length - Theoretical cable length

∆(ED-T) Experimental Wet cable length - Theoretical cable length

∆H Error in hour angle

∆T Change in temperature

∆V F Error in velocity factor

∆V FA Error in Aeraxial velocity factor

∆V F3.63 Error in feeder cable velocity factor

∆V FRG−11/U Error in RG-11/U cable velocity factor

∆V FProbe Error in Probe cable velocity factor

∆z Change in range gate

∆n Change in refractive index

∆t Pulse two-way time

∆ttotal Error in total time difference

∆δ Error in declination

∆φ Phase difference

∆ξ Error in interferometer baseline angle

δ Declination

δt Time difference

ε Relative dielectric constant (i.e. ε=1.0 (air), ε ∼80 (water) )

τ Luminous efficiency

θA Zenith angle of reflection point wrt radar site

κ Calibration constant

λ Wavelength (free space length)

λ Wavelength (electrical)

λ Latitude

µ Permeability

µ Average mass of an ablated meteoroid atom

ξ ∆(EW-T) - ∆(ED-T)

ξ Interferometer baseline angle

φ or φ(t) Phase
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Symbol Definition

φA Azimuth angle of reflection point wrt radar site

ψ Electrical length

ω Angular frequency (2πf)

ω0 IF carrier frequency
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Öpik, E. J. (1958), Physics of meteor flight in the atmosphere, Interscience Publishers,
Inc., New York.

Ostroff, E. D., Borkowski, M., Thomas, H. & Curtis, J. (1985), Solid-State Radar
Transmitters, Artec House, Inc., Norwood, MA, U.S.A.

Parkinson, M., Whitehead, D. & Wilson, J. (1993), ‘Crossed horizontal dipoles config-
ured as top-loaded vertical dipoles transmitting high-frequency radiation in the
ground plane’, Review of Scientific Instruments 64(2), 585–586.

Pellinen-Wannberg, A. & Wannberg, G. (1994), ‘Meteor observations with the
European incoherent scatter UHF radar’, Journal of Geophysical Research
99(11), 11,379–11,390.

Pellinen-Wannberg, A., Westman, A., Wannberg, G. & Kaila, K. (1998), ‘Meteor
fluxes and visual magnitudes from EISCAT radar event rates: a comparison with
cross-section based magnitude estimates and optical data’, Annales Geophysicae
116, 1475–1485.

Phillips, A. (1989), Dynamics of the Antarctic Mesosphere and Lower Thermosphere,
PhD thesis, Mawson Institute for Antarctic Research, Adelaide, Australia.

Pickering, W. M. & Windle, D. W. (1970), ‘The diffusion of meteor trains’, Planetary
and Space Science 18, 1153.

Poole, L. M. G. (1988), ‘The Grahamstown all-sky meteor radar’, Journal of Atmo-
spheric and Terrestrial Physics 50(6), 585–590.

Poole, L. M. G. & Roux, D. G. (1989), ‘Meteor radiant mapping with an all-sky radar’,
Monthly Notices of the Royal Astronomical Society 236, 645–652.

Porter, J. G. (1943), Monthly Notices of the Royal Astronomical Society 103, 134.



478 REFERENCES

Porubcan, V. (1973), ‘The telescopic radiant areas of the Perseids and the Orionids’,
Bulletin of the Astronomical Institutes of Czechoslovakia 24(1), 1–8.

Poulter, E. M. & Baggaley, W. J. (1977), ‘Radiowave scattering from meteoric ioniza-
tion’, Journal of Atmospheric and Terrestrial Physics 39, 757–768.

Poulter, E. M. & Baggaley, W. J. (1978), ‘The applications of radio-wave scattering
theory to radio-meteor observations’, Planetary and Space Science 26(10), 969–
977.

Pressman, R. S. (1997), Software Engineering: A practitioner’s approach, 4 edn,
McGraw-Hill, New York, U.S.A.

Reddi, C. R., Sarma, T. V. C. & Rao, P. B. (2002), ‘Spatial domain interferometric
VHF radar observations of spread meteor echoes’, Journal of Atmospheric and
Terrestrial Physics 64, 339–347.

Reid, I. M. (1984), Radar Studies of Atmospheric Gravity Waves, PhD thesis, Depart-
ment of Physics, The University of Adelaide, Adelaide, Australia.

Reid, I. M. (1990), ‘Radar Observations of stratified layers in the mesosphere and
lower thermosphere (50-100 km)’, Advances in Space Research 10(10), 7–19.

Reid, I. M., Vandepeer, B. G. W., Dillon, S. C. & Fuller, B. M. (1995), ‘The new
Adelaide medium frequency Doppler radar’, Radio Science 30(4), 1177–1189.

Reintjes, J. F. & Coate, G. T. (1952), Principles of Radar, third edn, McGraw-Hill
Book Company, New York, U.S.A.

Richmond, A. D. (1987), The Ionosphere, in S.-I. Akasofu & Y. Kamide, eds, ‘The
Solar Wind and the Earth’, D. Reidel Publishing Company, Dordrecht, pp. 125–
140.

Rishbeth, H. (1988), ‘Basic physics of the ionosphere: a tutorial review’, Journal of
the Institution of Electronic and Radio Engineers 58(6), S207–S223.

Rishbeth, H. & Garriott, O. K. (1969), Introduction to ionospheric physics, Academic
Press, New York, U.S.A.

Robertson, D. S., Liddy, D. T. & Elford, W. G. (1953), ‘Measurements of winds in the
upper atmosphere by means of drifting meteor trains’, Journal of Atmospheric
and Terrestrial Physics 4, 255–270.

Robinson, I. & Dyson, P. L. (1975), ‘Effects of ionospheric irregularities on radio
waves–I. Phase path changes’, Journal of Atmospheric and Terrestrial Physics
37, 1459–1467.

Roble, R. G. (1987), The Earth’s Thermosphere, in S.-I. Akasofu & Y. Kamide, eds,
‘The Solar Wind and the Earth’, D. Reidel Publishing Company, Dordrecht,
pp. 245–264.



REFERENCES 479

Robson, R. E. (2001), ‘Dispersion of meteor trails in the geomagnetic field’, Physical
Review E 63, 026404–1–026404–5.

Roper, R. G. (1984), ‘MWR - Meteor Wind Radars’, Handbook for the Middle Atmo-
sphere Program 13, 124–134.

Rossiter, D. E. (1970), Studies of the Lower Ionosphere using a large antenna array,
PhD thesis, Physics Department, The University of Adelaide, Adelaide, Australia.
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