Meson properties from Lattice QCD

John N. Hedditch

Supervisors: D. B. Leinweber and A. G. Williams

Centre for the Subatomic Structure of Matter University of Adelaide Adelaide 2006 This thesis is dedicated to Kati - you are proof the universe is a wonderful place.

Abstract

Quantum Chromo-Dynamics (QCD) is the part of the Standard Model which describes the interaction of the strong nuclear force with matter. QCD is asymptotically free, so at high energies perturbation expansions in the coupling can be used to calculate expectation values. Away from this limit, however, perturbation expansions in the coupling do not converge.

Lattice QCD (LQCD) is a non-perturbative approach to calculations in QCD. LQCD first performs a Wick rotation $t \rightarrow -it_E$, and then discretises spacetime into a regular lattice with some lattice spacing a. QCD is then expressed in terms of parallel transport operators of the gauge field between grid points, and fermion fields which are defined at the grid points. Operators are evaluated in terms of these quantities, and the lattice spacing is then taken to zero to recover continuum values.

We perform computer simulations of Lattice QCD in order to extract a variety of meson observables. In particular, we perform a comprehensive survey of the light and strange meson octets, obtain for the first time exotic meson results consistent with experiment, calculate the charge form-factor of the light and strange pseudoscalar mesons, and determine (for the first time in Lattice QCD) all three form-factors of the vector meson.

Statement of Originality

This work contains no material which has been accepted for the award of any other degree or diploma in any university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis, when deposited in the University Library, being available for loan and photocopying, and further consent to it's reproduction as a musical or theatrical work.

John N. Hedditch

Acknowledgements

- Thank you first of all to Derek Leinweber and Tony Williams, my supervisors, for their tremendous patience, wisdom, and calm, all of which are attributes I would dearly love to posess myself.
- Big Ups to Ben Lasscock for his organisational genius and committment to being a team-player(TM).
- My Hat Off and great thanks to Sara Boffa and Sharon Johnson who have saved me from ruin many a time.
- Three Cheers to James Zanotti, Ross Young, Waseem Kamleh, Alex Kalloniatis, Tony Thomas, Marco Ghiotti and Marco Bartolozzi, Mariusz Hoppe, and all those others who have made working at the CSSM one of the most enjoyable times of my life.
- Thank you to Ramona Adorjan and Grant Ward for computing support, and sense of humour under pressure.
- The Australian Partnership for Advanced Computing, the South Australian Partnership for Advanced Computing, and the National Facility for Lattice Gauge Theory provided the computational muscle for this project, which would have been quite impossible otherwise.
- Finally, a big thankyou to all of my family, and Kati's family, for their support in this endeavour. It's been a wild ride.

Contents

	Abs	tract										v
	Stat	ement o	of Originality									vii
	Ack	nowledg	gements									viii
1	Intr	oductio	n Clubic									1
	1.1	Quanti		•	•••	•	•	•	•	•••	•	1
2	Latt	ice QCl	D									4
	2.1	Introdu	uction									4
	2.2	Discre	te symmetries									5
		2.2.1	Symmetries of Correlation functions									5
		2.2.2	Generalisation									7
		2.2.3	Proofs	•	•••	•	•	•	•		•	8
3	Mes	ons froi	n LQCD									9
	3.1	Introdu	uction			•		•				9
	3.2	Meson	n correlation functions at the hadronic level			•						9
		3.2.1	Lorentz Scalar fields	•				•				9
		3.2.2	Lorentz Vector fields	•		•	•	•				10
	3.3	Analy	sis	•				•				11
	3.4	Meson	n correlation functions at quark level	•		•	•	•				13
		3.4.1	Mesonic operators from the naive quark model	•				•				13
	3.5	Hybrid	l Mesons	•				•				14
		3.5.1	Introduction	•				•				14
		3.5.2	Method	•		•		•			•	15
		3.5.3	Results	•		•	•	•				17
		3.5.4	Summary	•		•	•	•			•	25
	3.6	Exotic	Mesons	•		•		•			•	30
		3.6.1	Introduction	•		•	•	•	•		•	30
		3.6.2	Physical Predictions	•		•	•	•	•			32
		3.6.3	Summary	•		•		•			•	36

4	Source dependence of Hybrid and Exotic signal	41
	4.1 Introduction	41
	4.2 Method	43
	4.3 Results	43
	4.3.1 Hybrid Pion	43
	4.3.2 Exotic	53
	4.4 Discussion and Summary	58
5	Meson form factors	59
	5.1 Introduction	59
	5.2 Three-point function with current insertion	59
	5.2.1 π -meson case	61
	5.2.2 Spin-1 case	61
	5.2.3 Extracting static quantities	64
	5.3 Method	66
	5.4 Results	67
	5.5 Conclusions	88
6	Conclusions	89
A	Data pertaining to the calculation of meson effective masses	94
В	Obtaining the form of $\langle r^2 angle$	104
С	Source dependence results for the SU(3) $\beta = 4.60, 20^3 \times 40$ lattice	105
D	Quark-level calculations	110
	D.1 Two-point function	110
	D.2 Electromagnetic current insertion	111
Ε	REDUCE script for calculating ratios of three to two-point functions	112
F	Data pertaining to the calculation of meson form-factors	114
G	Papers by the author	121

List of Figures

1.1	Quark-flow diagrams for three-point and two-point meson vertices	1
1.2	The scalar meson octet and singlet $\eta'.$ Image courtesy of WikiImages	2
3.1 3.2	Author's sketch of a quark-model meson vs a hybrid meson Effective mass for standard pseudovector interpolating field, for equal (left) and unequal (right) quark-masses. Results are shown for all eight masses	14 17
3.3	Effective mass for axial-vector pion interpolating field, for equal (left) and unequal (right) quark-masses. Results are shown for all eight masses.	17
3.4	Effective mass for the hybrid pion interpolating field $i\bar{q}^a\gamma_j B_j^{ab}q^b$, for equal (left) and unequal (right) quark-masses. Results are shown for all eight masses.	18
3.5	Effective mass for the hybrid pion interpolating field $i\bar{q}^a\gamma_j\gamma_4B_j^{ab}q^b$, for equal (left) and unequal (right) quark-masses. Results are shown for all eight masses	18
3.6	Ground (triangles) and excited state (circles) masses for the pion, ex- tracted using a 3×3 variational process using the first three pion interpo- lating fields. Signal is only obtained for the heaviest 3 quark masses.	18
3.7	The a_0 scalar meson correlation function vs. time	20
3.8	ρ -meson effective mass derived from standard $\bar{q}\gamma_j q$ interpolator. Results are shown for both equal (left) and unequal (right) quark-antiquark	
3.9	masses. Results for every second quark mass are depicted. \dots \dots ρ -meson (left) and K^* (right) effective mass plots derived from interpola-	22
3.10	Vector meson effective mass from hybrid interpolator $\bar{q}^a E_j^{ab} q^b$. Every second quark mass is depicted, and results are depicted for both ρ (left)	22
3.11	and K^* (right) mesons	22
	second quark mass is depicted, and results are depicted for both ρ (left) and K^* (right) mesons.	23
3.12	Vector meson effective mass from hybrid interpolator $i\bar{q}^a\gamma_4\gamma_5 B_j^{ab}q^b$. Every second quark mass is depicted, and results are depicted for both ρ (left) and K^* (right) mesons	72
		23

3.13	Effective mass plots for a_1 axial-vector meson interpolator. Results are shown for light (left) and strange-light (right) quark-masses	24
3.14	b_1 axial-vector meson effective mass. Results are shown for both light	
	(left) and strange-light (right) quark masses.	24
3.15	Summary of results for pion interpolating fields. m_{π}^2 , derived from the	
	standard pion interpolator, provides a measure of the input quark mass.	25
3.16	Summary of results for K interpolating fields. m_{π}^2 , derived from the stan-	
	dard pion interpolator, provides a measure of the input quark mass.	26
3.17	Summary of results for ρ -meson interpolating fields. m_{π}^2 , derived from	
	the standard pion interpolator, provides a measure of the input quark mass.	27
3.18	Summary of results for K^* -meson interpolating fields. m_{π}^2 , derived from	
	the standard pion interpolator, provides a measure of the input quark mass.	28
3.19	Summary of results for pseudovector-meson interpolating fields. m_{π}^2 , de-	
	rived from the standard pion interpolator, provides a measure of the input	
	quark mass.	29
3.20	Exotic meson propagator for interpolator χ_2 . Results are shown for ev-	
	ery 2nd quark mass in the simulation. Lower lines correspond to heavier	
	quark masses. For all but the heaviest mass, the signal is lost after t=12.	
	Pion masses corresponding to each quark mass may be found at the be-	
0.01	ginning of appendix A	31
3.21	Exotic meson propagator for interpolator χ_3 . Results are shown for every	
	2nd quark mass in the simulation. Lower lines correspond to heavier	22
2 22	Quark masses	32
3.22	Effective mass for interpolator χ_2 . Plot symbols are as for the correspond-	21
3 73	As for Fig. 3.22 but for interpolator χ_{2} . Signal is lost after $t = 11$	34
3.25	As for Fig. 5.22, but for interpolator χ_3 . Signal is lost after $i = 11$ Effective mass for the interpolator χ_3 with a strange quark	36
3.24	As for Fig. 3.24 but for interpolator χ_2 with a strange quark	30
3.25	A survey of results in this field. The MIL C results are taken from [10] and	57
5.20	show their Q^4 $1^{-+} \rightarrow 1^{-+}$ results, fitted from $t = 3$ to $t = 11$. Open and	
	closed symbols denote dynamical and quenched simulations respectively.	38
3.27	The 1^{-+} exotic meson mass obtained from fits of the effective mass of the	
	hybrid interpolator χ_2 from $t = 10 \rightarrow 12$ (full triangles) are compared	
	with the $a_1\eta'$ two-particle state (open triangles). The extrapolation curves	
	include a quadratic fit to all eight quark masses (dashed line) and a linear	
	fit through the four lightest quark masses (solid line). The full square is	
	result of linear extrapolation to the physical pion mass, while the open	
	square (offset for clarity) indicates the $\pi_1(1600)$ experimental candidate	39
3.28	Extrapolation of the associated strangeness $\pm 1 J^P = 1^-$ state obtained	
	from χ_2 . Symbols are as in Fig. 3.27	40
<u>4</u> 1	Fermion-source smearing-dependence of conventional pion signal	<u>1</u> 3
4.2	Gauge-field smearing-dependence of v_4 hybrid pion signal. Here n_1 —	тJ
	0, i.e a point source is used for the quark fields. $\dots \dots \dots$	44

4.3	Hybrid π - meson (χ_3) effective masses from the $16^3 \times 32$ lattice with	
	$n_{\rm src}=0.$ Results for the heaviest four quark masses are depicted	45
4.4	Hybrid π - meson (χ_3) effective masses from the $16^3 \times 32$ lattice with	
	$n_{\rm src} = 16$. Results for the heaviest four quark masses are depicted	46
4.5	Hybrid π - meson (χ_3) effective masses from the $16^3 \times 32$ lattice with	
	$n_{\rm src} = 48$. Results for the heaviest four quark masses are depicted	47
4.6	Hybrid π - meson (χ_3) effective masses from the $16^3 \times 32$ lattice with	
	$n_{\rm src} = 144$. Results for the heaviest four quark masses are depicted	48
4.7	Hybrid π - meson (χ_4) effective masses from the $16^3 \times 32$ lattice with	
	$n_{\rm src} = 0$. Results for the heaviest four quark masses are depicted	49
4.8	Hybrid π - meson (χ_4) effective masses from the $16^3 \times 32$ lattice with	
	$n_{\rm src} = 16$. Results for the heaviest four quark masses are depicted	50
4.9	Hybrid π - meson (χ_4) effective masses from the $16^3 \times 32$ lattice with	
	$n_{\rm src} = 48$. Results for the heaviest four quark masses are depicted	51
4.10	Hybrid π - meson (χ_4) effective masses from the $16^3 \times 32$ lattice with	
	$n_{\rm src} = 144$. Results for the heaviest four quark masses are depicted	52
4.11	Exotic meson effective masses from the $16^3 \times 32$ lattice with $n_{\rm src} = 0$.	
	Results for the heaviest four quark masses are depicted	54
4.12	Exotic meson effective masses from the $16^3 \times 32$ lattice with $n_{\rm src} = 16$.	
	Results for the heaviest four quark masses are depicted	55
4.13	Exotic meson effective masses from the $16^3 \times 32$ lattice with $n_{\rm src} = 48$.	
	Results for the heaviest four quark masses are depicted	56
4.14	Exotic meson effective masses from the $16^3 \times 32$ lattice with $n_{\rm src} = 144$.	
	Results for the heaviest four quark masses are depicted	57
51	Quark flow diagrams relevant to K^+ meson electromagnetic form factors	60
5.1	The up quark contribution to pion charge form factor. The data corre	00
5.2	spond to $m_{\star} \sim 830 \mathrm{MeV}$ (top left) 770 MeV (top right) 700 MeV (sec	
	spond to $m_{\pi} \simeq 850$ MeV (top field), 770 MeV (top fight), 700 MeV (second row right) 530 MeV (third row left)	
	460 MoV (third row right) 367 MoV (bottom row left) and 200 MoV	
	(bottom row right) For the five lightest quark masses, the splitting be-	
	tween the values for i and $i + 1$ is shown. The data are illustrated only	
	to the point at which the error bars diverge	68
53	As in Fig. 5.2 but for the up-quark contribution to kaon charge form factor	69
5.4	As in Fig. 5.2 but for the strange-quark contribution to kaon charge form	07
5.1	factor	70
55	As in Fig. 5.2 but for the up-quark contribution to a charge form factor	71
5.6	As in Fig. 5.2 but for the up-quark contribution to K^* charge form factor	72
57	As in Fig. 5.2 but for the strange-quark contribution to K^* charge form	, 2
5.1	factor.	73
5.8	As in Fig. 5.2 but for the up-quark contribution to ρ magnetic form factor	, 5
2.0	We note that for the fifth and sixth quark mass good $\sqrt{2}/d$ of is achieved	
	for fits including points to $t = 25$, and central value of the fit is not affected	
	significantly. We prefer to focus on regions of good signal.	74

5.9	As in Fig. 5.2 but for the up-quark contribution to K^* magnetic form fac-	
	tor. As for the up contributions, we can achieve a good χ^2 even fitting	
	out to $t = 25$ for the fifth, sixth and sevenin quark masses without signifi-	
	cantry affecting the central values, but prefer to focus on regions of strong	75
5 10	Signal	13
5.10	As in Fig. 5.2 but for the strange-quark contribution to K ⁻ magnetic form	76
511	Tactor.	/0 77
5.11	As in Fig. 5.2 but for the up-quark contribution to ρ Quadrupole form factor.	//
5.12	As in Fig. 5.2 but for the up-quark contribution to A Quadrupole form	70
5 12	Iactor	/8
5.13	As in Fig. 5.2 but for the strange-quark contribution to K ⁺ Quadrupole	70
514	Iorm factor.	/9
5.14	Mean squared charge radius for each quark sector for pseudoscalar (left)	
	and vector (right) cases. u_{π} and u_{ρ} symbols are centred on the relevant	00
C 1 C	value of m_{π}^2 , other symbols are offset for clarity.	80
5.15	Strange and non-strange meson mean squared charge radii for charged	
	pseudoscalar (left) and vector (right) cases. Symbols are offset as in	00
5 1 C	$\operatorname{ng.} 5.14 \dots \dots$	80
5.16	Strange meson mean squared charge radii for neutral pseudoscalar (left)	01
F 17	and vector (right) cases.	81
5.17	Ratio of mean squared charge radius for a light quark in the environment	
	of light and heavy quarks. Pseudoscalar (left) and vector (right) results	0.1
5 10	are shown for comparison.	81
5.18	Mean squared charge radii for positively charged baryons.	82
5.19	Per quark-sector (left) and corresponding charged vector meson (right)	00
5.00	magnetic moments.	83
5.20	Charged vector meson magnetic moments.	83
5.21	g factor for ρ meson.	84
5.22	Neutral K^* -meson magnetic moment.	84
5.23	Environment-dependence for light-quark contribution to vector meson	~ ~
1	magnetic moment.	85
5.24	Per quark-sector quadrupole form-factors.	85
5.25	Vector meson quadrupole form factors for ρ^+ and K^{*+} .	86
5.26	Environment-dependence for light-quark contribution to vector meson	
	quadrupole form-factor.	87
5.27	Quadrupole form-factor for neutral K^* meson	87

List of Tables

3.1 3.2 3.3	J^{PC} quantum numbers and their associated meson interpolating fields κ values, and corresponding pion masses (and uncertainties) in GeV Pion ground-state mass fits from a 3×3 correlation matrix analysis. t_{start} and t_{end} denote the limits of the fit-window. Ma is the mass, in lattice units. σ is the uncertainty. $\chi^2/\text{d.o.f}$ is the χ^2 per degree of freedom of the	15 16
	fit. i_{κ} labels the κ value as per Table 3.2.	21
3.4	Pion excited-state mass fit. Column labels are as for Table 3.3.	21
3.5	a_0 scalar meson mass vs decay channel mass	21
3.0 3.7	Strangeness $\pm 1.1^{-1}$ Meson mass m (GeV) vs square of pion mass m_{π} (GeV).	33
5.7	Strangeness ± 1 1 We solid mass m (GeV) vs square of profilmass m_{π} (GeV).	55
4.1	Effect of gauge-field smearing on χ_4 hybrid pion mass determination, $t =$	
		44
4.2	Effect of gauge-field smearing on 1^{-+} Exotic meson mass determination,	50
12	t = [5, 7]	53
4.3	Effect of gauge-field smearing on 1 $+$ Exotic meson mass determination, $t = \begin{bmatrix} 6 & 8 \end{bmatrix}$	53
	$\iota = [0,0] \cdot \ldots \cdot $	55
4 1		
A.I	κ values, and corresponding pion masses (and uncertainties) in GeV	94
A.1 A.2	κ values, and corresponding pion masses (and uncertainties) in GeV a_0 scalar meson mass fits. Column headings are in order, the <i>kappa</i> num-	94
A.1 A.2	κ values, and corresponding pion masses (and uncertainties) in GeV a_0 scalar meson mass fits. Column headings are in order, the <i>kappa</i> number, the lower and upper bounds of the fit window, the mass, error and χ^2	94
A.1 A.2	κ values, and corresponding pion masses (and uncertainties) in GeV a_0 scalar meson mass fits. Column headings are in order, the <i>kappa</i> number, the lower and upper bounds of the fit window, the mass, error and χ^2 from our analysis	94 95
A.1 A.2 A.3	κ values, and corresponding pion masses (and uncertainties) in GeV a_0 scalar meson mass fits. Column headings are in order, the <i>kappa</i> number, the lower and upper bounds of the fit window, the mass, error and χ^2 from our analysis	94 95 95
A.1 A.2 A.3 A.4	κ values, and corresponding pion masses (and uncertainties) in GeV a_0 scalar meson mass fits. Column headings are in order, the <i>kappa</i> number, the lower and upper bounds of the fit window, the mass, error and χ^2 from our analysis	94 95 95 95
A.1 A.2 A.3 A.4 A.5 A 6	κ values, and corresponding pion masses (and uncertainties) in GeV a_0 scalar meson mass fits. Column headings are in order, the <i>kappa</i> number, the lower and upper bounds of the fit window, the mass, error and χ^2 from our analysis	94 95 95 95 96
A.1 A.2 A.3 A.4 A.5 A.6 A 7	κ values, and corresponding pion masses (and uncertainties) in GeV a_0 scalar meson mass fits. Column headings are in order, the <i>kappa</i> number, the lower and upper bounds of the fit window, the mass, error and χ^2 from our analysis	94 95 95 95 96 96
A.1 A.2 A.3 A.4 A.5 A.6 A.7 A 8	κ values, and corresponding pion masses (and uncertainties) in GeV a_0 scalar meson mass fits. Column headings are in order, the <i>kappa</i> number, the lower and upper bounds of the fit window, the mass, error and χ^2 from our analysis	94 95 95 96 96 96 97
A.1 A.2 A.3 A.4 A.5 A.6 A.7 A.8 A.9	κ values, and corresponding pion masses (and uncertainties) in GeV a_0 scalar meson mass fits. Column headings are in order, the <i>kappa</i> number, the lower and upper bounds of the fit window, the mass, error and χ^2 from our analysis	 94 95 95 96 96 96 97 97
A.1 A.2 A.3 A.4 A.5 A.6 A.7 A.8 A.9 A.10		 94 95 95 96 96 96 97 97 98
A.1 A.2 A.3 A.4 A.5 A.6 A.7 A.8 A.9 A.10 A.11		 94 95 95 96 96 96 97 98 98
A.1 A.2 A.3 A.4 A.5 A.6 A.7 A.8 A.9 A.10 A.11 A.12		 94 95 95 96 96 96 97 97 98 98
A.1 A.2 A.3 A.4 A.5 A.6 A.7 A.8 A.9 A.10 A.11 A.12		 94 95 95 96 96 97 98 98 98
A.1 A.2 A.3 A.4 A.5 A.6 A.7 A.8 A.9 A.10 A.11 A.12 A.13		 94 95 95 96 96 96 97 98 98 98 99

A.15	As in Table A.2 but for conventional K^* -meson interpolating field $\bar{q}\gamma_j\gamma_4 q$.	99
A.16	As in Table A.2 but for Hybrid ρ -meson interpolator $\bar{q}E_jq$. Error bars are	
	larger than signal for lightest quark mass, so this line is omitted	100
A.17	As in Table A.2 but for Hybrid K^* -meson interpolator $\bar{q}E_jq$. Error bars	
	are larger than signal for 3 lightest quark masses	100
A.18	As in Table A.2 but for Hybrid ρ -meson interpolator $i\bar{q}^a\gamma_5 B_j^{ab}q^b$	100
A.19	As in Table A.2 but for Hybrid K^* -meson interpolator $i\bar{q}^a\gamma_5 B_j^{ab}q^b$	101
A.20	As in Table A.2 but for Hybrid ρ -meson interpolator $i\bar{q}^a\gamma_4\gamma_5 B_j^{ab}q^b$	101
A.21	As in Table A.2 but for Hybrid K-meson interpolator $i\bar{q}^a\gamma_4\gamma_5 \dot{B}_j^{ab}q^b$	101
A.22	As in Table A.2 but for pseudovector interpolating field $\bar{q}\gamma_5\gamma_4\gamma_j q$ with	102
1 22	Ag in Table A 2 but for neoudovector interpolating field \overline{z}_{2} and \overline{z}_{3} with	102
A.23	As in Table A.2 but for pseudovector interpotating field $q^{\gamma}\gamma^{5}\gamma^{4}\gamma_{j}q$ with unequal quark-antiquark masses.	102
A.24	As in Table A.2 but for axial-vector interpolating field $\bar{q}\gamma_5\gamma_i q$ for equal	
	quark-antiquark masses. No appropriate fit window exists for the two	
	lightest quark-masses	103
A.25	As in Table A.2 but for axial-vector interpolating field $\bar{q}\gamma_5\gamma_i q$ for unequal	
	quark-antiquark masses. No appropriate fit window exists for the two	
	lightest quark-masses	103
C 1	Exotic meson Effective masses from the $20^3 \times 40$ lattice for χ_2 with $n_{\rm eff}$	
C.1	25 Results for the heaviest four quark masses are depicted	106
C^{2}	Exotic meson Effective masses from the $20^3 \times 40$ lattice for y_2 with n_1 –	100
C.2	25 Results for the heaviest four quark masses are denicted	107
C 3	Exotic meson Effective masses from the $20^3 \times 40$ lattice for y_2 with n_1 –	107
0.5	35 Results for the heaviest four quark masses are denicted	108
C 4	Exotic meson Effective masses from the $20^3 \times 40$ lattice for v_0 with n_{-}	100
0.1	35 Results for the heaviest four quark masses are depicted	109
	os. Results for the neutrest four quark masses are depreted	107
F.1	Rho meson mass data	114
F.2	Pion mass data	115
F.3	Strange quark contribution to <i>K</i> -meson form-factor	115
F.4	Strange quark contribution to K^* -meson charge form-factor	115
F.5	Up quark contribution to <i>K</i> -meson form-factor	116
F.6	Up quark contribution to K^* -meson charge form-factor	116
F.7	Up quark contribution to π -meson charge form-factor	116
F.8	Up quark contribution to ρ -meson Charge form-factor	117
F.9	Strange quark contribution to K^* magnetic form-factor	117
F.10	Up quark contribution to K^* magnetic form-factor	117
F.11	Up quark contribution to ρ magnetic form-factor	118
F.12	Strange quark contribution to K^* quadrupole form-factor	118
F.13	Up quark contribution to K^* quadrupole form-factor	118
F.14	Up quark contribution to ρ quadrupole form-factor	119
F15	Q^2 values for pion (lattice units)	119

F.16	Q^2 values for K (lattice units)	•			•	•	•		•	•	•	•	•				119
F.17	Q^2 values for ρ (lattice units) $\ .$					•	•		•	•	•	•	•		•		120
F.18	Q^2 values for K^* (lattice units)	•			•	•	•	•	•	•	•	•	•	•	•	•	120