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Abstract

Quantum Chromo-Dynamics (QCD) is the part of the Standard Model which describes
the interaction of the strong nuclear force with matter. QCDis asymptotically free, so at
high energies perturbation expansions in the coupling can be used to calculate expectation
values. Away from this limit, however, perturbation expansions in the coupling do not
converge.

Lattice QCD (LQCD) is a non-perturbative approach to calculations in QCD. LQCD
first performs a Wick rotationt → −itE , and then discretises spacetime into a regular
lattice with some lattice spacinga. QCD is then expressed in terms of parallel transport
operators of the gauge field between grid points, and fermionfields which are defined
at the grid points. Operators are evaluated in terms of thesequantities, and the lattice
spacing is then taken to zero to recover continuum values.

We perform computer simulations of Lattice QCD in order to extract a variety of
meson observables. In particular, we perform a comprehensive survey of the light and
strange meson octets, obtain for the first time exotic meson results consistent with exper-
iment, calculate the charge form-factor of the light and strange pseudoscalar mesons, and
determine (for the first time in Lattice QCD) all three form-factors of the vector meson.
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1
Introduction

“Research ! A mere excuse for idleness; it has never
achieved, and will never achieve any results of the
slightest value.”

Benjamin Jowett (1817-93), British theologian.

In this thesis we determine how to explore various meson properties using Lattice
techniques. We do so by evaluating the following quark-flow diagrams:

(~0, 0) (~x, t)

γα

( ~x1, t1) (~0, 0) (~x, t)

Fig. 1.1: Quark-flow diagrams for three-point and two-pointmeson vertices.

The fact that the evaluation of these diagrams is sufficient to constitute the basis of
a thesis is testament to the complexity of Quantum Chromodynamics. We shall now
describe exactly why this is so.

1.1 Quantum Chromodynamics
Quantum Chromodynamics is a tremendously succesful theoryof the strong interac-
tion. Mathematically, it is a non-Abelian Gauge Field Theory. It’s origins are, however,
strongly empirical - they lie in an attempt to explain hundreds of apparently ‘fundamental’
particles discovered in the 1950s in accelerator experiments.

Sorting the spin-0 mesons, for example, by Charge and Strangeness (indicated by an
abnormally long lifetime as strong decays preserve flavour and thus strange particles took
longer to decay) yields the structure depicted in Figure 1.2.

This structure ( an octet and a singlet ) can be obtained from atriplet and anti-triplet
obect as follows:3 ⊗ 3̄ = 8 ⊕ 1.

It was a natural step to consider each of the elements of such atriplet to be a ‘flavour’
of new fundamental particle which Gell-Mann labelled ‘quarks’. The scalar and vector
nonets, as well as the baryon octet are very simply explainedin terms of three quarks,

1



1.1. Quantum Chromodynamics

Fig. 1.2: The scalar meson octet and singletη′. Image courtesy of WikiImages
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1.1. Quantum Chromodynamics

called ‘up’, ‘down’, and ‘strange’, each with spin1/2 and charges+2e
3
,− e

3
, and− e

3

respectively withe the magnitude of the electron’s charge. A meson is formed through a
quark and an antiquark, a baryon through three quarks.

However, the∆++, which has a spin of3/2 and a charge of twice that of the proton
would then require three ‘up’-quarks with their spins aligned. There are not enough quan-
tum numbers available to make such a thing totally antisymmetric (required for fermions).
So a new quantum number had to be created, which Gell-Mann called ‘colour’.

The need to introduce colour gave the theory it’s most important characteristics. First,
this new quantum number was not observed directly, so the theory was required to be
invariant under an arbitrary, local, relabelling of colours. This requirement embeds in the
theory some sort of mechanism to keep the colours together insinglet states (confine-
ment), the precise physical mechanism (as opposed to the mathematical requirement) for
which is still a great puzzle. The locality of the requirement required the introduction of
a gauge field. The relevant gauge group turned out to beSU(Nc). Experiments were able
to determine thatNc should be 3 to a fairly high degree of certainty.

SU(3) is a non-abelian group, which makes the theory intrinsically complex, but the
major complications of the resultant theory,QCD, are that the theory admits coupling be-
tween the gauge bosons with the same strength as between the quarks and gauge bosons
(‘gluons’), and that the coupling strength is not small, except at very high energies. Per-
turbation expansions in the coupling thus do not work in mostregimes.

These serve to renderQCD analytically intractable except at regimes in which the
coupling becomes small (the regime of ‘asymptotic freedom’).

In this thesis, we investigate the masses, characteristic sizes, and electromagnetic
form-factors of mesons via numerical simulations. We also probe for some of the more
exotic offspring of QCD. The method chosen is that of LatticeQuantum Chromodynam-
ics.
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2

Lattice QCD

2.1 Introduction
First, let us step away from Quantum Field Theory altogetherand consider a classical
Lagrangian field theory. In this case, we start out with a Lagrangian, which describes
in some sense the deviation of the system from an energy balance - if the Lagrangian
at some point in configuration space is zero, then the four-momentum of the system is
shared equally between all degrees of freedom - in this case the various fields and their
interactions.

Integrating over the four-volume in which this system exists, and imposing appro-
priate boundary conditions gives us the Action associated with the system, and we then
obtain the equations of motion for the fields - the Euler-Lagrange equations, through the
assumption that the trajectory taken by the system in field-configuration-space will be an
extremum of this action. This assumption gives us a series ofequations (1 per field), the
solutions to which define the evolution of our system.

For a theory ofN fieldsφ1, φ2, . . . , φN , we could express this as

Z =
∏

i

(∫
Dφi

)
δ(δS[φ1, . . . , φN ]) ,

where the firstδ denotes the Dirac delta-function andδS denotes the variation ofS. Thus
if we were to consider some quantityQ[φ1, . . . , φN ], we could express the classical value
of this functional as

〈Q〉 =

∏
i

(∫
Dφi

)
δ(δS[φ1, . . . , φN ])Q[φ1, . . . , φN ]

∏
i

(∫
Dφi

)
δ(δS[φ1, . . . , φN ])

In fact, in the classical case the denominator is identically unity by the properties of
delta functions, but we introduce it for the sake of clarity in what follows. From this
point of view, the transition from classical field theory to Quantum field theory is one
simple step - replacing the Dirac delta-function from the equation withe−iS/~. The major
contribution to the integral will still come from the point of minimum action, since away
from this point the exponential will be fluctuating rapidly,and contributions from these
trajectories should thus cancel each other.

Our quantum-field-theoretical expectation value is then simply

〈Q〉 =

∏
i

(∫
Dφi

)
e−iS[φ1,...,φN ]/~Q[φ1, . . . , φN ]

∏
i

(∫
Dφi

)
e−iS[φ1,...,φN ]/~

The Lattice was introduced by Kenneth Wilson as a method for studying Quark Con-
finement [47]. QCD is reformulated on a discrete Euclidean lattice whilst retaining local
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2.2. Discrete symmetries

gauge invariance, and physical quantities are derived fromthe limits of this theory as the
lattice spacing goes to zero (continuum limit), and the number of lattice sites goes to in-
finity (infinite volume limit).

The key step is a change of variables from the gauge fieldAµ(x) to parallel transport
operators (links)Uµ(x) = eigP

R a
0

Aµ(x+yµ̂)dy, whereP is an operator which path-orders
the terms in the exponential. A closed product of such links is a gauge-invariant object,
and we can in fact express any gauge functional in terms of products of these links.

We can rewrite, for example, a correlation function in this lattice formalism as:

Cij = 〈Ω|T (ΘiΘj)|Ω〉 = lim
a→0

∫
DUDΨ̄DΨe−S[U,Ψ̄,Ψ]ΘiΘj∫

DUDΨ̄DΨe−S[U,Ψ̄,Ψ]
(2.1)

Let us now writeS[U, ψ̄, ψ] = SG[U ] + Ψ̄M [U ]Ψ. We can then carry out the integra-
tion overΨ̄ andΨ to give

Cij =

∫
DUe−SG[U ]det(M [U ]) ∩ij [U ]∫

DUe−SG[U ] det(M [U ])
(2.2)

where∩ij is the sum of all full contractions ofΘi,Θj .

In general, we cannot carry out the integration explicitly,so we instead make use
of an importance sampling process to yield a finite ensemble of N gauge-fieldsU with
P (Uk) = det(M [Uk])e

−SG[Uk]. We now write

Cij ≃
1

N

N∑

k=1

∩ij [Uk] (2.3)

2.2 Discrete symmetries

2.2.1 Symmetries of Correlation functions
In this section, we show that for the case of QCD, baryonic correlation functions are gen-
erally real. We also see how it is possible to enforce this reality in correlation functions,
which proves a useful method for reducing statistical errors in lattice calculations of these
quantities. This technology was pioneered by Draperet al. [19] during the 1980s.

For the following discussion, we need to introduce one important theorem:

Pauli’s Theorem: If [γµ, γν ]+ = 2gµνI = [γ̃µ, γ̃ν ]+ then∃ an invertible matrix S such
thatγ̃µ = SγµS

−1, µ = 0, ..., 3

Therefore we can define an invertible matrix S such thatSγµS
−1 = γ∗µ. Pauli’s theo-

rem holds under a Wick rotation, i.e the replacement ofgµν with δµν , so we can make an

5



2.2. Discrete symmetries

analogous construction in Euclidean space.

Assertion1: If γµ = γµ
†, µ = 0, 1, 2, 3, thenS = Cγ5.

We are now ready to proceed:

Correlation function :
The correlation function in a QCD-like theory is defined as follows:

Cij = 〈Ω|T (ΘiΘj)|Ω〉 =

∫
DUDΨ̄DΨe−S[U,Ψ̄,Ψ]ΘiΘj∫

DUDΨ̄DΨe−S[U,Ψ̄,Ψ]
(2.4)

Supposewe can writeS[U, ψ̄, ψ] = SG[U ] + Ψ̄M [U ]Ψ. We can then carry out the
integration over̄Ψ andΨ to give

Cij =

∫
DUe−SG[U ] det(M [U ]) ∩ij [U ]∫

DUe−SG[U ] det(M [U ])
(2.5)

where∩ij is the sum of all full contractions ofΘi,Θj .

SinceUµ(x) = exp
{
iga
∫ a

0
Aµ(x+ x′µ̂)dx′

}
, U → U∗ is equivalent toA→ −A∗.

eg.Fµν [U
∗] = −(Fµν [U ])∗.

SupposeM [U ] = M [U∗].

Assertion2: For a Clover-like action we haveM [U ]=M [U∗]

Thus det(M [U∗]) = det(SM [U∗]S−1) = det(M [U ]∗) = det(M [U ])∗. Then if
SG[U ] = SG[U∗], we can write

Cij =
1

2

(∫ DUe−SG[U ] det(M [U ]) {∩ij [U ] + ∩ij [U
∗]}∫

DUe−SG[U ] det(M [U ])

)
(2.6)

If we make the following approximation (finite ensemble approximation):

∫
DUe−SG[U ] ∩ij [U ] ≃ 1

N

N∑

k=1

∩ij [Uk] (2.7)

where theUk are a finite ensemble wherein the probability of finding a configurationUn

is e−SG[Un], then we can replace the above with

Cij ≃
1

2N

(
N∑

k=1

∩ij [Uk] + ∩ij [U
∗
k ]

)

(2.8)

1proof on page 8
2proof on page 8
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DefineGij = trsp{CijΓ} with Γ a γ-matrix product, wheretrsp denotes the spinor
trace.
If trsp {∩ij[U

∗]} = trsp {∩ij [U ]∗}, thenGij ∈ R

Note that this is satisfied ifS(∩ij [U
∗])S−1 = (∩ij [U ])∗

Assertion3: For a theory of the form described above,Gij ∈ R, subject to the condi-
tion that for all vector-field operatorsO[U ] in ∩ij ,O[U∗] = O∗[U ].

2.2.2 Generalisation
Let us restrict ourselves to consideration of (possibly momentum-dependent) gauge-functionals
G(~p)[U ] which are eigenstates of charge conjugation,C and parityP .

That is to say,

G(~p)[U ] = sPG(−~p)[U ]

G(~p)[U ] = sCG
⋆(~p)[U⋆]

Then one can make the replacementG(~p)[U ] → 1
2
(G(~p)[U ] ± sCsPG

∗(−~p)[U∗]) to
obtain an improved estimator which is unbiased with respectto parity and charge conju-
gation. In all of our lattice codes we implement just such a step.

3proof on page 8
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2.2.3 Proofs

If γµ = γµ
†, µ = 0, 1, 2, 3, then S = Cγ5.

Recall the commutator algebra forγ5: {γ5, γµ} = 0, γ5
2 = 1

Thusγ5γµγ5 = −γµ

Also recall the action of the charge conjugation operator upon the gamma matrices:
CγµC

−1 = −γµ
T

ThereforeSγµS
−1 = γµ

T = (γµ
†)T = γµ

∗ whereS = Cγ5

For Clover-like Action, M [U ] = M [U ∗].

M [U ] =
∑

µ,ν

(real.γµ + real.Uµ.γµ + iσµνF
µν [U ])

Then

SM [U∗]S−1 =

(
∑

µ,ν

(
real.γ∗µ + real.U∗

µ.γ
∗
µ − iσ∗

µν(F
µν [U ])∗

)
)

= M [U ]∗

S(∩ij[U
∗])S−1 = (∩ij[U ])∗ for given theory.

The terms denoted collectively by∩ij will most generally be of the following types:

• Gamma matrices - and we have shown thatSγµS
−1 = γ∗µ.

• Propagators: These will be of the formM−1[U ], and since inversion and complex
conjugation are orthogonal operations,SM [U∗]−1S−1 = (M [U ]−1)∗ by the prop-
erties ofM .

• Vector-field operatorsO[U ]: These will not posess Dirac indices, so we will require
thatO[U∗] = (O[U ])∗.

For exampleiFµν [U
∗] = −i(−F ∗

µν [U ]) = iFµν [U ].

• Products of the above types of terms: These we can split up by insertingSS−1

between terms, so they add nothing to the discussion.

Thus ifO[U∗] = (O[U ])∗, then we have shown thatS(∩ij [U
∗])S−1 = (∩ij [U ])∗.
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3

Mesons from LQCD

3.1 Introduction
As low-lying states in the QCD spectrum, mesons (via the variational structure of the
action) play a crucial role in mediating the exchange force between particles such as the
proton or neutron. Indeed, various successful models or effective field theories have been
constructed by simply considering theπ andK (χPT ), and sometimes theρ (e.g Vector
Meson Dominance).

3.2 Meson correlation functions at the hadronic
level

3.2.1 Lorentz Scalar fields
ConsiderGij(~p, t) =

∫
d3x e−i~p.~x 〈0|χi(~x, t)χ̄j(0)|0〉, with subscriptsi and j there to

remind us we could have different operators involved in creation and annhilation.
Suppose that̄χi|0〉 andχ̄j |0〉 both have overlap with N different states. Label these

states by|n, ~p〉 wheren ∈ {1, .., N}.
We shall take the normalisation of these states to be such that

N∑

n=1

∫
d3p′

(2π)3
|n, ~p′〉〈n, ~p′| = 1 .

Then

Gij(~p, t) =

N∑

n=1

∫
d3p′

(2π)3

∫
d3x e−i~p.~x

〈
0|χi(~x, t)|n, ~p′〉〈n, ~p′|χ̄j(0)|0

〉
.

Next, we invoke translation invariance to write:

χ(~x, t) = eiĤte−i ~̂P.~xχ(0)ei ~̂P.~xe−iĤt

We can thus rewriteG(~p, t) as follows:

Gij(~p, t) =
N∑

n=1

∫
d3p′

(2π)3

∫
d3x e−i~p.~x

〈
0|eiĤte−i ~̂P.~xχi(0)ei ~̂P.~xe−iĤt|n, ~p′〉〈n, ~p′|χ̄j(0)|0

〉

Now, 〈0|eiĤte−i ~̂P.~x = 〈0|, andei ~̂P.~xe−iĤt|n, ~p′〉 = ei~p′.~xe−iEnt|n, ~p′〉, thus:
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3.2. Meson correlation functions at the hadronic level

Gij(~p, t) =

N∑

n=1

∫
d3p′

(2π)3

∫
d3x e−i~p.~xei~p′.~xe−iEnt

〈
0|χi(0)|n, ~p′〉〈n, ~p′|χ̄j(0)|0

〉

Thus, finally:

Gij(~p, t) =
N∑

n=1

e−iEnt
〈
0|χi(0)|n, ~p′〉〈n, ~p′|χ̄j(0)|0

〉
(3.1)

If we continue this expression to Euclidean space-time(t→ −itE), we get the equivalent
expression:

Gij(~p, t) =
N∑

n=1

e−EntE
〈
0|χi(0)|n, ~p′〉〈n, ~p′|χ̄j(0)|0

〉
(3.2)

If we haveN distinct creation operatorsχi andN distinct annhilation operatorsχj ,
then we can construct theN×N matrix G, whose components are given above. Note that
G is not generally a symmetric matrix.

3.2.2 Lorentz Vector fields
Consider the momentum-space meson two-point function fort > 0,

Gij
µν(t, ~p) =

∫
d3x e−i~p·~x〈Ω|χi

µ(t, ~x)χj
ν

†
(0,~0)|Ω〉 (3.3)

wherei, j label the different interpolating fields andµ, ν label the Lorentz indices. At the
hadronic level,

Gij
µν(t, ~p) =

∫
d3x e−i~p·~x

∫
d3p′

(2π)3

∑

n,s

〈Ω|χi
µ(t, ~x)|n, ~p ′, s〉〈n, ~p ′, s|χj

ν
†
(0,~0)|Ω〉

where the|n, ~p ′, s〉 are a complete set of hadronic states, of energyn, momentum~p ′, and
spins, ∫

d3p′

(2π)3

∑

n,s

|n, ~p ′, s〉〈n, ~p ′, s| = I . (3.4)

We shall denote the vacuum couplings as follows:

〈Ω|χi
µ |n, ~p ′, s〉 = λi

n ǫµ(p ′, s)

〈n, ~p ′, s|χj
ν

† |Ω〉 = λj⋆

n ǫ
⋆
ν(p

′, s)

where the on-shell four-vectorp ′ = (En, ~p
′) is introduced, withEn =

√
~p2 +m2

n.
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We can translate the sink operator fromx to 0 to write this as

∫
d3x

∫
d3p′

(2π)3

∑

n,s

e−i~p·~x〈Ω|χi
µ(0) ei ~̂P ·~x−Ĥt |n, ~p ′, s〉

× 〈n, ~p ′, s|χj
ν
†
(0) |Ω〉

=
∑

n,s

e−Ent〈Ω|χi
µ|n, ~p, s〉〈n, ~p, s|χj

µ
†|Ω〉

=
∑

n,s

e−Entλi
nǫµ(p, s)λj⋆

nǫ
⋆
ν(p, s) . (3.5)

In general the number of states,N , in this tower of excited states may be very large,
but we will only ever need to consider a finite set of the lowestenergy states here, as higher
states will be exponentially suppressed as we evolve to large Euclidean time. Finally, the
transversality condition:

∑

s

ǫµ(p, s) ǫ⋆ν(p, s) = −
(
gµν −

pµpν

m2

)
(3.6)

implies that for~p = 0, we have

Gij
00(t,~0) = 0

Gij
kl(t,~0) =

∑

n

δkl λ
i
n λ

j⋆

n e
−mnt . (3.7)

SinceGij
11, G

ij
22,andGij

33 are all estimates for the same quantity we add them together
to reduce variance, forming the sum

Gij = Gij
11 +Gij

22 +Gij
33 .

Evolving to large Euclidean time suppresses higher mass states exponentially with
respect to the lowest-lying, leading to the following definition of the effective mass

M ij
eff(t) = ln

(
Gij(t,~0)

Gij(t+ 1,~0)

)

(3.8)

The presence of a plateau inMeff as a function of time, then, signals that only the
ground state signal remains.

3.3 Analysis
We can extract the masses and coupling strengths inG through the so-called “variational”
approach. It is discussed briefly by McNeileet al. [40], but we will examine it here in
some greater depth.
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3.3. Analysis

We seek to diagonalise our matrix of correlation functions in terms of mass eigenstates
of the hamiltonian. This corresponds to maximisingviGij(t)uj for constantviGij(t −
a)uj, wherea is some integer, i.e finding all of the solutions ofviGij(t)uj = λviGij(t −
a)uj for someλ.

The presence of bothu andv terms in these expressions is to allow for the fact that
we may not in general have a symmetric matrixG - we may wish to treat source and sink
operators differently (say, through a different smearing prescription).

We can cancel thevi terms on both sides, and premultiply byG−1(t − a) to get the
eigenvalue equation:

G−1(t− a)G(t) ~uα = (λα)a ~uα (3.9)

To see how these eigenvalues are related to masses, it is instructive to consider the
same procedure from a slightly different angle:

Let φα = uα
kχk , s.t.φα|n〉 = zα

1 δnα|n〉
Let φ̄α = v∗αk χk , s.t. 〈n|φ̄α = z∗α2 δnα〈n| ,

whereχk is thek’th interpolator. Then, expanding in an orthonormal basis,we have that
∫
d3xe−i~p.~x〈φα(~x, t)φ̄β(0)〉

∣∣∣
~p=0

= zα
1 z

∗α
2 δαβe−mαt

i.e., v∗αi Gij(t)u
β
j =

∑

γ

v∗αi Zγ
ije

−mγ tuβ
j = zα

1 z
∗α
2 δαβe−mαt (3.10)

i.e., zα
1 z

∗α
2 = v∗αi Zα

iju
α
j

If v∗αi uα
j 6= 0, we can divide through by this term to recover the correspondingZα

ij.
Premultiplying Eq. (3.10) byuα

i gives:

uα
i v

∗α
i Gij(t)u

β
j = zα

1 z
∗α
2 e−mαtuβ

i = e−amαuα
i v

∗α
i Gij(t− a)uβ

j

Provided thatuα
i v

∗α
i 6= 0 (satisfied automatically for symmetricG), we can divide

both sides of this equation by this term, to give us our final result:

Gij(t)u
β
j = e−amαGij(t− a)uβ

j (3.11)

We recognise this as Eq. (3.9), making the identification that λα = e−mα . Note that
we can also construct an equivalent left-eigenvalue equation and thus recover thev terms.
Also note that theu, (and hencev) vectors are still real since both the matrixG and the
eigenvaluesλα are real.

In practice we calculate our correlation functions on the lattice in a discrete approxi-
mation to our path integral, a finite sum over some carefully chosen gauge fields. Further,
we do not calculate these quantities in a continuum. Therefore we can expect error in
our quantities. Last, it may be that the correlation functions are too computationally ex-
pensive for us to construct anN×N matrix whereN is the number of states in the system.
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3.4. Meson correlation functions at quark level

Let us now consider the case where there areN states in the system, and we have only
M distinct creation andM distinct annhilation operators, withM < N .

In this case we can write our correlation matrix as follows:

Gij(~p, t) =

N∑

n=1

∑

s

e−EntE 〈0|χi(0)|n, p′, s〉〈n, p′, s|χ̄j
′(0)|0〉

=
M∑

n=1

∑

s

e−EntE 〈0|χi(0)|n, p′, s〉〈n, p′, s|χ̄j
′(0)|0〉

+

N∑

k=M

∑

s

e−EktE 〈0|χi(0)|k, p′, s〉〈k, p′, s|χ̄j
′(0)|0〉

We shall now write this symbolically asG = G̃+E. G̃ is anM ×M matrix withM
exponential terms with real coefficients, and in the case of asymmetricG, these will be
all positive, so if we could somehow remove the higher order exponential terms that we
have collected intoE we would be in the same position we were in earlier, save that we
are fitting withM masses vs.N .

This brings us to the crux of the problem - “How can we get rid ofthese higher
terms?”. Since these terms will have larger negative coefficents oftE in the exponentials,
we expect that if we diagonaliseG and examine the logarithms of the eigenvalues that
these will become independent oftE at sufficiently largetE, indicating that the contribu-
tions of these higher correlation functions at largetE we find that the statistical error in
our measurements become large. At smalltE, where our statistical errors are small (and
where our correlations are large), we will generally have a strong contribution from these
higher states. Thus we are in need of a solution.

The simplest approach is to increaseM - thus providing us with a better approxima-
tion to the full spectrum of masses. To think of it another waywe are introducing an extra
degree of freedom for our rotation to single-mass states, thus allowing more flexibility
(and hence noise-resistance). In principle, the computational effort goes asM2, so simul-
taneous extraction of 3 states is 9 times as expensive as the extraction of the ground state.
In practice, however, we rarely have a large number of independent operators, and imple-
mentations of this procedure grow in sensitivity to error with rank, so we rarely employ
M > 3.

3.4 Meson correlation functions at quark level

3.4.1 Mesonic operators from the naive quark model
The naive quark model approximates the mesons of gauge field theory as a bound state
of a quark and an antiquark, where the quantum numbers of thisbound state are then
determined by the relative angular momentum of the quark-antiquark pair. In a spinor
representation, this corresponds to mixing different elements of the quark and antiquark
spinors together via Dirac gamma-matrices.
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Fig. 3.1: Author’s sketch of a quark-model meson vs a hybrid meson

Recall that under a Lorentz transform, we have that:

ψ̄Oψ → ψ̄Λ−1
1
2

OΛ 1
2
ψ

If Oµ is a Lorentz vector, then we can write this as

ψ̄Λ−1
1
2

OνΛ 1
2
ψ = Λν

µψ̄Oνψ

SO(3) rotations form a proper subgroup of the Lorentz transformations, and thus we
can obtain the angular momentum from lorentz transformation properties of the field. A
Lorentz scalar object must correspond toJ = 0, and similarly a vector must correspond
to J = 1.

3.5 Hybrid Mesons

3.5.1 Introduction
A hybrid meson is a boson formed by coupling quark-antiquarkpairs with the gauge field
in order to produce a colour singlet.

We consider the local interpolating fields summarized in Table 3.1. Gauge-invariant
Gaussian smearing [24, 52] is applied at the fermion source (t = 8), and local sinks are
used to maintain strong signal in the two-point correlationfunctions. Chromo-electric
and -magnetic fields are created from 3-D APE-smeared links [1, 22] at both the source
and sink using the highly-improvedO(a4)-improved lattice field strength tensor [11] de-
scribed in greater detail below.

Some comments can already be made, however. In the non-relativistic limit, the lower
components of the spinor become small relative to the upper components, and vice versa
for the antispinor. So we expect strong signal from operators which are skew-diagonal
and thus couple the large components of the spinor with the large components of the
antispinor. Additionally, our hybrid operators will be expected to have larger statistical
fluctuations since we are including more information about our finite ensemble of gauge
fields. Thus we do not expect good signal for our0−− meson interpolator, nor for the
0+− interpolatoriq̄aγ5γjB

ab
j q

b. For the remaining0+− operator, we note with Bernardet.
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3.5. Hybrid Mesons

Table 3.1:JPC quantum numbers and their associated meson interpolating fields.

0++ 0+− 0−+ 0−−

q̄aqa iq̄aγ5γjB
ab
j q

b q̄aγ5q
a q̄aγ5γjE

ab
j q

b

q̄aγjE
ab
j q

b q̄aγ4q
a q̄aγ5γ4q

a

iq̄aγjγ4γ5B
ab
j q

b iq̄aγjB
ab
j q

b

q̄aγjγ4E
ab
j q

b iq̄aγ4γjB
ab
j q

b

1++ 1+− 1−+ 1−−

q̄aγ5γjq
a q̄aγ5γ4γjq

a q̄aγ4E
ab
j q

b iq̄aγ5B
ab
j q

b

iq̄aγ4B
ab
j q

b q̄aγ5γ4E
ab
j q

b iǫjklq̄
aγkB

ab
l q

b q̄aγ4γjq
a

ǫjklq̄
aγkE

ab
l q

b q̄aγ5E
ab
j q

b iǫjklq̄
aγ4γkB

ab
l q

b q̄aEab
j q

b

ǫjklq̄
aγkγ4E

ab
l q

b iq̄aBab
j q

b ǫjklq̄
aγ5γ4γkE

ab
l q

b q̄aγjq
a

iq̄aγ4γ5B
ab
j q

b

al [10] that the interpolating field̄qγ4q corresponds to the operator for Baryon number
and is thus expected to be zero.

3.5.2 Method

Fat-Link Irrelevant Fermion Action

Propagators are generated using the fat-link irrelevant clover (FLIC) fermion action [54]
where the irrelevant Wilson and clover terms of the fermion action are constructed using
fat links, while the relevant operators use the untouched (thin) gauge links. Fat links
are created via APE smearing [1, 22]. In the FLIC action, thisreduces the problem of
exceptional configurations encountered with clover actions [12], and minimizes the effect
of renormalization on the action improvement terms [31]. Access to the light quark mass
regime is enabled by the improved chiral properties of the lattice fermion action [12].
By smearing only the irrelevant, higher dimensional terms in the action, and leaving the
relevant dimension-four operators untouched, short distance quark and gluon interactions
are retained. Details of this approach may be found in reference [54]. FLIC fermions
provide a new form of nonperturbativeO(a) improvement [12,31] where near-continuum
results are obtained at finite lattice spacing.

Gauge Action

We use quenched-QCD gauge fields created by the CSSM Lattice Collaboration with
theO(a2) mean-field improved Lüscher-Weisz plaquette plus rectangle gauge action [38]
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3.5. Hybrid Mesons

iκ κ mπ

1 0.12780 0.8356(14)
2 0.12830 0.7744(15)
3 0.12885 0.7012(15)
4 0.12940 0.6201(15)
5 0.12990 0.5354(16)
6 0.13025 0.4660(20)
7 0.13060 0.3732(79)
8 0.13080 0.3076(63)

Table 3.2:κ values, and corresponding pion masses (and uncertainties)in GeV.

using the plaquette measure for the mean link. The gauge-field parameters are defined by

SG =
5β

3

∑

x µ ν
ν>µ

1

3
Re Tr (1 − Pµν(x))

− β

12 u2
0

∑

x µ ν
ν>µ

1

3
Re Tr (2 − Rµν(x)) ,

wherePµν andRµν are defined in the usual manner and the link productRµν contains the
sum of the rectangular1 × 2 and2 × 1 Wilson loops.

The CSSM configurations are generated using the Cabibbo-Marinari pseudo-heat-bath
algorithm [16] using a parallel algorithm with appropriatelink partitioning [13]. To im-
prove the ergodicity of the Markov chain process, the three diagonal SU(2) subgroups of
SU(3) are looped over twice [14] and a parity transformation[35] is applied randomly to
each gauge field configuration saved during the Markov chain process.

Simulation Parameters

The calculations of meson masses are performed on203 × 40 lattices atβ = 4.53, which
provides a lattice spacing ofa = 0.128(2) fm set by the Sommer parameterr0 = 0.49 fm.

A fixed boundary condition in the time direction is used for the fermions by setting
Ut(~x,Nt) = 0 ∀ ~x in the hopping terms of the fermion action, with periodic boundary
conditions imposed in the spatial directions.

Eight quark masses are considered in the calculations and the strange quark mass is
taken to be the third heaviest quark mass. This provides a pseudoscalar mass of 701
MeV which compares well with the experimental value of(2M2

K −M2
π)1/2 = 693 MeV

motivated by leading order chiral perturbation theory.κ values and the corresponding
pion masses are given in Table 3.2.
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3.5. Hybrid Mesons

Fig. 3.2: Effective mass for standard pseudovector interpolating field, for equal (left) and
unequal (right) quark-masses. Results are shown for all eight masses.

Fig. 3.3: Effective mass for axial-vector pion interpolating field, for equal (left) and un-
equal (right) quark-masses. Results are shown for all eightmasses.

3.5.3 Results

π (pseudoscalar meson, JPC = 0−+)

The pseudoscalar channel gives an extremely strong signal –so strong that all four of our
operators yield convincing plateaus. We can make use of thisfeature to extract excited
state masses. The same is true for theK-mesons. In all results that follow, ‘unequal’
quark-antiquark masses means that we hold the quark mass fixed at our third heaviest
quark mass (corresponding to the strange quark mass).

Figure 3.2 shows effective mass plots using the standardq̄γ5q pseudovector interpo-
lating field. The statistical errors are very small, allowing us to determine masses with an
uncertainty of less than 3%.

In Figure 3.3, we show the same plot for the alternative pion interpolator: q̄γ5γ4q,
corresponding to thet-component of the four-vector operatorq̄γ5γµq. A significant dif-
ference in excited-state information relative to the standard operator is seen close to the
source, making the combination of this operator and the standard one an excellent choice
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3.5. Hybrid Mesons

Fig. 3.4: Effective mass for the hybrid pion interpolating field iq̄aγjB
ab
j q

b, for equal (left)
and unequal (right) quark-masses. Results are shown for alleight masses.

Fig. 3.5: Effective mass for the hybrid pion interpolating field iq̄aγjγ4B
ab
j q

b, for equal
(left) and unequal (right) quark-masses. Results are shownfor all eight masses.

for obtaining the first excited-state.
Figure 3.4 illustrates the behaviour of a hybrid pion derived from contracting a vector

meson with the magnetic field. The signal exhibits significantly more jitter than the two
conventional operators, but it is clear that the same groundstate is being accessed.

In the non-relativistic limit, the two upper (lower) components of particle (antipar-
ticle) spinors become large relative to the lower (upper) components. Both hybrid pion
operators couple large-large and small-small components in this limit, but by introducing
a relative minus sign via introduction ofγ4, as is done in Figure 3.5 significantly reduces
both statistical fluctuations and curvature near the source, as we are excluding the first
excited state by taking an axial-vector spinor structure.

The sources considered here are, as stated earlier, smearedsources corresponding to
48 sweeps of Gauge-invariant Gaussian smearing, with a smearing parameterαsrc = 0.7.
The procedure is defined precisely in the next chapter.

Using the interpolating fieldsχ1 = q̄γ5q, χ2 = q̄γ5γ4q, andχ3 = iq̄aγjB
ab
j q

b, we can
construct a matrix of correlation functions. From this, by the variational process described
above, we can obtain more than just the ground state. Figure 3.6 shows the first excited-
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3.5. Hybrid Mesons

Fig. 3.6: Ground (triangles) and excited state (circles) masses for the pion, extracted using
a 3 × 3 variational process using the first three pion interpolating fields. Signal is only
obtained for the heaviest 3 quark masses.

state mass extracted using this process. Unfortunately, the sensitivity of the variational
procedure to statistical noise precludes us from performing a fit below the SU(3) flavour
limit. The data from which this graph was generated can be found in tables 3.3 and 3.4.
For this calculation, the matrix diagonalisation was performed att = 9.

a0 (scalar meson, JPC = 0++)

The scalar channel is problematic, with a large decay width and considerable overlap
with many other resonances and nonq̄q objects such as glueballs. For an excellent dis-
cussion of the problem, see the section entitled ‘Note on scalar mesons’ in the PDG data
book [21]. In our lattice simulations we admit the decaya0 → πη′ [8] (in full QCD,
this would bea0 → πη, but in SU(2)-flavour theη andη′ are the same particle). In the
quenched approximation theη′ is degenerate with the pion, so we will expect our cal-
culations of effective mass to break down when thea0 becomes heavier than twice the
pion mass on the same lattice. We can observe just this occuring in Figure 3.7 where the
correlation function becomes negative for intermediate times at the four lightest quark
masses. Table 3.5 shows fitted effective mass of thea0 vs theη′π decay channel mass for
the heaviest three quarks. We see that by the time we reach theSU(3) flavour limit thea0
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3.5. Hybrid Mesons

Fig. 3.7: Thea0 scalar meson correlation function vs. time.
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3.5. Hybrid Mesons

Table 3.3: Pion ground-state mass fits from a3 × 3 correlation matrix analysis.tstart
and tend denote the limits of the fit-window.Ma is the mass, in lattice units.σ is the
uncertainty.χ2/d.o.f is theχ2 per degree of freedom of the fit.iκ labels theκ value as
per Table 3.2.

iκ tstart tend Ma σ χ2/d.o.f
1 10 14 0.5458 0.0018 0.129
2 10 14 0.5063 0.0019 0.281
3 10 14 0.4592 0.0020 0.492

Table 3.4: Pion excited-state mass fit. Column labels are as for Table 3.3.

iκ tstart tend Ma σ χ2/d.o.f
1 10 12 1.2551 0.1112 0.885
2 10 12 1.2216 0.1168 0.913
3 10 12 1.1821 0.1253 0.898

is already unbound on our lattice.

ρ (vector meson, JPC = 1−−)

In the case of theρ meson, we are able to extract information from 5 independentoper-
ators. The effective mass plots can be found in Figures 3.8 through 3.12. Theρ cannot
decay toππ as there is no way to produce a neutral flavour non-singlet from the vacuum
in Quenched QCD [6]. The decayρ → πη′ is forbidden by G-parity, but even if it were
not so forbidden, theη′ is degenerate in mass with theπ in quenched QCD, and theρ

mass is well below the energy of this state, which would be2
√
mπ + 2π

aL
, corresponding

to approximately1.1 GeV at our lightest quark mass.
It is instructive to contrast the results in Figures 3.8 and 3.9. As for the case of theπ-

meson interpolating fields, we see that by changing the relative sign between large-large
and small-small terms in the spinor sum we can effect a significant reduction in excited
state contamination.

Table 3.5:a0 scalar meson mass vs decay channel mass.

2mπ(GeV ) ma0(GeV )
1.668(3) 1.453(12)
1.545(3) 1.430(15)
1.399(3) 1.416(20)
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3.5. Hybrid Mesons

Fig. 3.8: ρ-meson effective mass derived from standardq̄γjq interpolator. Results are
shown for both equal (left) and unequal (right) quark-antiquark masses. Results for every
second quark mass are depicted.

Fig. 3.9: ρ-meson (left) andK∗ (right) effective mass plots derived from interpolator
q̄γjγ4q. Every second quark mass is depicted.

Fig. 3.10: Vector meson effective mass from hybrid interpolator q̄aEab
j q

b. Every second
quark mass is depicted, and results are depicted for bothρ (left) andK∗ (right) mesons.
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3.5. Hybrid Mesons

Fig. 3.11: Vector meson effective mass from hybrid interpolator iq̄aγ5B
ab
j q

b. Every sec-
ond quark mass is depicted, and results are depicted for bothρ (left) andK∗ (right)
mesons.

Fig. 3.12: Vector meson effective mass from hybrid interpolator iq̄aγ4γ5B
ab
j q

b. Every
second quark mass is depicted, and results are depicted for both ρ (left) andK∗ (right)
mesons.
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3.5. Hybrid Mesons

Fig. 3.13: Effective mass plots fora1 axial-vector meson interpolator. Results are shown
for light (left) and strange-light (right) quark-masses.

Fig. 3.14: b1 axial-vector meson effective mass. Results are shown for both light (left)
and strange-light (right) quark masses.

There are three available hybrid vector-meson interpolating fields. The strongest sig-
nal is obtained from the interpolatoriq̄aγ4γ5B

ab
j q

b. The results are compatible with the
conventional operators, albeit with larger statistical uncertainties. It is clear that stronger
signal is observed in those operators which couple the (non-relativistically) large-large
components compared to those which couple the large to the small.

TheK⋆ mesons extracted using these operators display qualitatively similar behaviour,
although statistical fluctuations are reduced due to the presence of the strange quark,
whose larger mass makes it less sensitive to it’s gluonic environment.

axial-vector (JP = 1+)

Strong signal in thea1 axial-vector channel is obtained via the use of interpolating field
q̄γ5γiq. The resulting effective mass plots for both equal and unequal quark masses are
shown in Figure 3.13. This signal shows strange behaviour atlarger Euclidean times, but
the correlation function does not become negative as in the scalar case.

For theb1, only the non-hybrid operator provides a good signal, despite the fact that it
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3.5. Hybrid Mesons

Fig. 3.15: Summary of results for pion interpolating fields.m2
π, derived from the standard

pion interpolator, provides a measure of the input quark mass.

couples large to small components. The interpolating field is:

χb1 = q̄γ5γ4γjq .

The effective mass is shown in Figure 3.14. TheK1 meson signal derived from this is
also shown.

3.5.4 Summary
Now we move on to placing these results in context. Figure 3.15 shows results for all four
of our π-meson interpolating fields. These demonstrate excellent agreement, indicating
that our hybrid operators share the same ground state as the conventional interpolating
fields. For an estimate of the systematic effects on these results due to quenching see [23].
For reference, the physical pion mass is also provided. Figure 3.16 is the corresponding
plot for theK-meson results.

For theρ (Figure 3.17), andK∗ the same broad pattern applies. The results for each
of our interpolating fields are consistent with each other. For theχ3 ( q̄aEab

j q
b ) noise

dominates over signal for the lightest quark mass, so this point is omitted. Recall that
χ3 couples large-small components, so we might expect it to behave thus. The situa-
tion is even more dramatic in the case of theK∗, where we have a signal only for the
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Fig. 3.16: Summary of results for K interpolating fields.m2
π, derived from the standard

pion interpolator, provides a measure of the input quark mass.
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3.5. Hybrid Mesons

Fig. 3.17: Summary of results forρ-meson interpolating fields.m2
π, derived from the

standard pion interpolator, provides a measure of the inputquark mass.

four heaviest quark masses. Further discussion of the statistical errors associated with
the hybrid operators can be found in the next chapter, where we demonstrate that the
source-smearing prescription used for this study (48 sweeps of Gauge-invariant Gaussian
smearing withα = 6 is somewhat less than ideal.

It is instructive to compare thea1 and b1 mesons as in Figure 3.19, which lie at
1230(40) and1230(3) MeV respectively according to the Particle Data Group [21].The
masses of the two particles are indistinguishable in our simulation, but sit somewhat above
the experimental results. Little literature exists on the topic of thea1 in lattice simulations,
but a previous simulation [48] did not see this behaviour, returning ana1 mass in agree-
ment with the experimental value. It is, however, somewhat difficult to compare directly
with this simulation as they have used a very different scheme to set the scale.

Curiously, it is theb1 interpolator which shows the largest statistical errors, where the
experimental situation has the largest uncertainties associated with thea1.

This concludes our survey of local hybrid meson interpolating fields. The primary
lesson has been the importance of constructing interpolating fields which have the large-
large components coupled together. We now move on to the1−+ exotic meson.
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Fig. 3.18: Summary of results forK∗-meson interpolating fields.m2
π, derived from the

standard pion interpolator, provides a measure of the inputquark mass.
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Fig. 3.19: Summary of results for pseudovector-meson interpolating fields.m2
π, derived

from the standard pion interpolator, provides a measure of the input quark mass.
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3.6. Exotic Mesons

3.6 Exotic Mesons

3.6.1 Introduction
A A qq̄ system is an eigenstate of parity withP = (−1)L+1. Charge conjugation applied
to a neutral system providesC = (−1)L+S. ForJ = 1, for example we can either have
L = 1, S = 0, providing(P,C) = (+−), or L = 0, S = 1, providing(P,C) = (−−).
We cannot form, for example the stateJPC = 1−+. Such states as these are called
‘exotic’.

The characterisation of these so-called ‘exotic’ mesons isattracting considerable at-
tention from the experimental community [2,17,37,43,46] as a vehicle for the elucidation
of the relatively unexplored role of gluons in QCD. The E852 collaboration has published
experimental results indicating an isovector1−+ mass in the range1.2−1.6 GeV [17,37],
and another1−+ exotic state having a mass around 2 GeV [37]. Recently, Dzierbaet. al
have published a paper showing the absence of a signal for theπ1(1600) in theπ−π−π+

andπ−π0π0 systems [20].
Early work in the field of light-quark lattice exotics has been performed by other

groups . In [29], the UKQCD Collaboration made use of gauge-invariant non-local oper-
ators to exploreP andD-wave mesons, as well as exotics. They used a tadpole-improved
clover action, with 375 configurations for a163 × 48 lattice and reported a1−+ exotic
mass of1.9(4) GeV.

In 1997, the MILC Collaboration published [10], in which they used local operators
formed by combining the gluon field strength tensor and standard quark bilinears, the
same approach we have taken in this paper. They also used highly anisotropic lattices
to allow many time slices to be used to determine the mass of the exotic, and used large
203×48 and323×64 lattices with multiple fermion sources per lattice. The Wilson action
was used throughout. They reported a possible1−+ value of1.97(9) GeV, but emphasised
that extrapolation to the continuum was troublesome due to large errors.

The UKQCD collaboration then released [30], which updated their earlier work by
using dynamical fermions. The new mass estimate for the1−+ exotic was reported as
1.9(2) GeV.

Further work using the Clover action, but this time with Local interpolators was per-
formed by Meiet al. [41]. Very heavy quark masses were used to get good control of
statistical errors. Their extrapolation to the continuum predicted a mass of2.01(7) GeV.

In 2002 the MILC Collaboration published new work [9] where they used dynamical
improved Kogut-Susskind fermions on the same lattices as earlier, and compared these
with both quenched and Wilson results. They quote two sets ofresults for the1−+ mass
corresponding to different choices of scale:1.85(7) and2.03(7) GeV.

Michael [42] provides a good summary of work to 2003, concluding that the light-
quark exotic is predicted by lattice studies to have a mass of1.9(2) GeV.

The hybrid exotic interpolating fields considered in this study are the following:

χ2 = iǫjklq̄
aγkB

ab
l q

b

χ3 = iǫjklq̄
aγ4γkB

ab
l q

b. (3.12)
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Fig. 3.20: Exotic meson propagator for interpolatorχ2. Results are shown for every 2nd
quark mass in the simulation. Lower lines correspond to heavier quark masses. For all but
the heaviest mass, the signal is lost after t=12. Pion massescorresponding to each quark
mass may be found at the beginning of appendix A

Figures 3.20 and 3.21 show the natural log of the correlationfunctions calculated
with interpolatorsχ2 andχ3 from Eq. (3.12) respectively. The curves become linear
after two time slices from the source, corresponding to approximately0.256 fm. This is
consistent with Ref. [10], where a similar effect is seen after approximately 3 to 4 time
slices, corresponding to0.21 to 0.28 fm following the source.

Figures 3.22 and 3.23 show the effective mass for the two different interpolators. For
clarity, we have plotted the results for every second quark mass used in our simulation.
The plateaus demonstrate that we do indeed see an exotic signal in quenched lattice QCD.
This is significant, as we expect the two interpolating fieldsto possess considerably differ-
ent excited-state contributions, based on experience withpseudoscalar interpolators [25].

For example, the approach to the pion mass plateau is from above (below) for the
pseudo-scalar (axial-vector) interpolating field as illustrated in Fig. 3.2 (Fig. 3.3) earlier
in this chapter. This exhibits the very different overlap ofthe interpolators with excited
states. As in the1−+ interpolators, the role ofγ4 in the pion interpolators is to change the
sign with which the large-large and small-small spinor components are combined.

We also present results for the strangeness±1 analogue of the1−+ in Figs. 3.24 and
3.25.

Table 3.6 summarizes our results for the mass of the1−+ meson, with the squared
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Fig. 3.21: Exotic meson propagator for interpolatorχ3. Results are shown for every 2nd
quark mass in the simulation. Lower lines correspond to heavier quark masses.

pion-mass provided as a measure of the input quark mass. The agreement observed in the
results obtained from the two different1−+ hybrid interpolators provides evidence that a
genuine ground-state signal for the exotic has been observed.

Table 3.7 summarizes our results for the mass of the strangeness± 1, JP = 1− meson.
Finally, in Fig. 3.26 we summarize a collection of results for the mass of1−+ obtained

in lattice QCD simulations thus far. The current results presented herein are compared
with results from the MILC [9,10] and SESAM [30] collaborations, both of which provide
a consistent scale viar0.

Our results compare favorably with earlier work at large quark masses. Agreement
within one sigma is observed for all the quenched simulationresults illustrated by filled
symbols. It is interesting that the dynamical Wilson fermion results of the SESAM col-
laboration [30] tend to sit somewhat higher as this is a well known effect in baryon spec-
troscopy [50,51,53,54].

3.6.2 Physical Predictions
In comparing the results of quenched QCD simulations with experiment, the most com-
mon practice is to simply extrapolate the results linearly in mq or m2

π to the physical
values. However, such an approach provides no opportunity to account for the incorrect
chiral nonanalytic behavior of quenched QCD [32,33,49,50].
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Table 3.6:1−+ Exotic Meson massm (GeV) vs square of pion massm2
π (GeV2).

m2
π χ2 fit 10-11 χ2 fit 10-12 χ3 fit 10-11

m χ2/dof m χ2/dof m χ2/dof
0.693(3) 2.15(12) 0.69 2.16(11) 0.44 2.20(15) 0.45
0.595(4) 2.11(12) 0.77 2.12(11) 0.51 2.18(16) 0.46
0.488(3) 2.07(12) 0.85 2.08(12) 0.59 2.15(17) 0.41
0.381(3) 2.01(12) 0.91 2.03(12) 0.65 2.14(19) 0.29
0.284(3) 1.97(13) 0.78 1.98(13) 0.55 2.27(29) 0.00012
0.215(3) 1.92(14) 0.78 1.92(14) 0.40 2.25(31) 0.02
0.145(3) 1.85(17) 0.57 1.84(17) 1.76 2.26(37) 0.02
0.102(4) 1.80(23) 0.13 1.75(23) 3.04 2.46(58) 0.03

Table 3.7: Strangeness±1 1− Meson massm (GeV) vs square of pion massm2
π(GeV2).

m2
π χ2 fit 10-11 χ2 fit 10-12 χ3 fit 10-11

m χ2/dof m χ2/dof m χ2/dof
0.693(3) 2.11(12) 0.76 2.12(11) 0.51 2.17(16) 0.44
0.595(4) 2.09(12) 0.81 2.10(12) 0.55 2.16(16) 0.44
0.488(3) 2.07(12) 0.85 2.08(12) 0.59 2.15(17) 0.41
0.381(3) 2.04(12) 0.88 2.05(12) 0.63 2.15(18) 0.36
0.284(3) 2.01(13) 0.85 2.02(12) 0.63 2.25(20) 0.22
0.215(3) 1.99(13) 0.87 2.00(12) 0.64 2.11(20) 0.29
0.145(3) 1.97(13) 0.73 1.97(13) 0.54 2.12(22) 0.11
0.102(4) 1.96(14) 0.56 1.96(14) 0.39 2.09(24) 0.01

Unfortunately, little is known about the chiral nonanalytic behavior of the1−+ me-
son. Ref. [45] provides a full QCD exploration of the chiral curvature to be expected
from transitions to nearby virtual states and channels which are open at physical quark
masses. While virtual channels act to push the lower-lying single-particle1−+ state down
in mass, it is possible to have sufficient strength lying below the1−+ in the decay chan-
nels such that the1−+ mass is increased [4,34]. Depending on the parameters considered
in Ref. [45] governing the couplings of the various channels, corrections due to chiral
curvature are estimated at the order of+20 to−40 MeV.

Generally speaking, chiral curvature is suppressed in the quenched approximation.
For mesons, most of the physically relevant diagrams involve a sea-quark loop and are
therefore absent [4, 44]. However, the light quenchedη′ meson can provide new non-
analytic behavior, with the lowest order contributions coming as a negative-metric con-
tribution through the double-hairpin diagrams. Not only dothese contributions alter the
1−+ mass through self-energy contributions, but at sufficiently light quarks masses, open
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3.6. Exotic Mesons

Fig. 3.22: Effective mass for interpolatorχ2. Plot symbols are as for the corresponding
propagator plot.

decay channels can dominate the two-point correlator and render its sign negative.
For the quenched1−+ meson, thea1η

′ channel can be open. Using the pion mass as
the η′ mass a direct calculation of the mass of ana1η

′ two-particle state indicates that
the 1−+ hybrid lies lower than the two-particle state for heavy input quark mass. This
indicates that the hybrid interpolator is effective at isolating a single-particle bound state
as opposed to the two-particle state at heavy quark masses. This is particularly true for
the case here, where long Euclidean time evolution is difficult.

As the light quark mass regime is approached, the trend of theone and two-particle
states illustrated in Fig. 3.27, suggests that they either merge or cross at our second lightest
quark mass, such that the exotic1−+ may be a resonance at our lightest quark mass and
at the physical quark masses. We note that the exotic1−+ mass displays the common
resonance behavior of becoming bound at quark masses somewhat larger than the physical
quark masses. This must happen at sufficiently heavy quark masses by quark counting
rules, i.e2q → 4q for the1−+ to a1η

′ transition.
One might have some concerns abouta1η

′ contaminations in the two-point correlation
function affecting the extraction of the1−+ meson mass. However we can already make
some comments.

Under the assumption that the coupling to the quencheda1η
′ channel comes with

a negative metric, as suggested by chiral perturbation theory arguments, and from the
observation that our correlation functions are positive, then it would appear that our in-
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3.6. Exotic Mesons

Fig. 3.23: As for Fig. 3.22, but for interpolatorχ3. Signal is lost aftert = 11.

terpolators couple weakly to the decay channel. Furthermore, at heavy quark masses the
correlation function is dominated by the1−+ bound state already at early Euclidean times
suggesting that coupling to the decay channel is weak.

Thus we conclude that the hybrid interpolating fields used toexplore the1−+ quantum
numbers are well-suited to isolating the single-particle1−+ exotic meson.

Moreover, since the mass of thea1η
′ channel is similar or greater than the single-

particle1−+ state, one can conclude that the double-hairpina1η
′ contribution to the self

energy of the single-particle1−+ exotic meson is repulsive in quenched QCD. Since the
curvature observed in Fig. 3.26 reflects attractive interactions, we can also conclude that
quenched chiral artifacts are unlikely to be large.

Hence we proceed with simple linear and quadratic extrapolations in quark mass to
the physical pion mass, with the caution that chiral nonanalytic behavior could provide
corrections to our simple extrapolations the order of 50 MeVin the1−+ mass [45].

Figures 3.27 and 3.28 illustrate the extrapolation of the1−+ exotic and its associated
strangeness±1 1− state to the limit of physical quark mass. We perform the linear fit
using the four lightest quark masses and fit the quadratic form to all 8 masses. A third-
order single-elimination jackknife error analysis yieldsmasses of1.74(24) and1.74(25)
GeV for the linear and quadratic fits, respectively. These results agree within one standard
deviation with the experimentalπ1(1600) result of1.596+25

−14 GeV, and exclude the mass
of theπ1(1400) candidate.
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3.6. Exotic Mesons

Fig. 3.24: Effective mass for the interpolatorχ2 with a strange quark.

The associated parameters of the fits are as follows. The linear form

m1−+ = a0 + a2m
2
π ,

yields best fit parameters of

a0 = 1.73 ± 0.15 GeV ,

a2 = 0.85 ± 0.35 GeV−1 .

The quadratic fit, with formula

m1−+ = a0 + a2m
2
π + a4m

4
π ,

returns parameters

a0 = +1.74 ± 0.15 GeV,

a2 = +0.91 ± 0.39 GeV−1,

a4 = −0.46 ± 0.35 GeV−3 .

3.6.3 Summary
We have found a compelling signal for theJPC = 1−+ exotic meson , from which we can
extrapolate a physical mass of1.74(24) GeV. Thus for the first time in lattice studies, we
find a1−+ mass in agreement with theπ1(1600) candidate.
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3.6. Exotic Mesons

Fig. 3.25: As for Fig. 3.24, but for interpolatorχ3.

Theχ2 interpolating field appears to be extremely useful for avoiding contamination
from thea1η

′ channel, and thus is an excellent choice for this kind of study.
We have also presented the first results for a strangeness±1 partner of the exotic1−+

meson lying at1.92(15) GeV.
Looking forward, it will be important to quantify the effects of the quenched approx-

imation. We plan to revisit these calculations at some future point using full dynamical
FLIC fermions [27, 28]. Of particular interest will be the extent to which the curvature
observed in approaching the chiral regime is preserved in full QCD.

At some point, a detailed finite volume analysis should be performed in order to fur-
ther explore the role of the two-body decay channel.
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3.6. Exotic Mesons

Fig. 3.26: A survey of results in this field. The MILC results are taken from [10] and
show theirQ4, 1−+ → 1−+ results, fitted fromt = 3 to t = 11. Open and closed symbols
denote dynamical and quenched simulations respectively.
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3.6. Exotic Mesons

Fig. 3.27: The1−+ exotic meson mass obtained from fits of the effective mass of the
hybrid interpolatorχ2 from t = 10 → 12 (full triangles) are compared with thea1η

′ two-
particle state (open triangles). The extrapolation curvesinclude a quadratic fit to all eight
quark masses (dashed line) and a linear fit through the four lightest quark masses (solid
line). The full square is result of linear extrapolation to the physical pion mass, while the
open square (offset for clarity) indicates theπ1(1600) experimental candidate.
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3.6. Exotic Mesons

Fig. 3.28: Extrapolation of the associated strangeness±1 JP = 1− state obtained from
χ2. Symbols are as in Fig. 3.27.
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4

Source dependence of Hybrid and
Exotic signal

4.1 Introduction
In our simulations of conventional mesons we have several parameters which can be ad-
justed to optimise the overlap of the interpolators with particular mass eigenstates. These
include

• αsrc, αsink: The smearing parameters for Gauge-invariant Gaussian smearing at
Source and Sink

• nsrc, nsink: The number of sweeps of Gauge-invariant Gaussian Smearingat Source
and Sink

.
By Gauge-invariant Gaussian smearing, we refer to the following procedure [24]: We

start with a point source,ψ0(~x0, t0), at space-time location(~x0, t0) and proceed via the
iterative scheme,

ψi(x, t) =
∑

x′

F (x, x′)ψi−1(x
′, t) , (4.1)

where

F (x, x′) = (1 − α)δx,x′ +
α

6

3∑

µ=1

[
Uµ(x) δx′,x+bµ

+U †
µ(x− µ̂) δx′,x−bµ

]
. (4.2)

Repeating the procedureN times gives the resulting fermion field

ψN (x, t) =
∑

x′

FN(x, x′)ψ0(x
′, t) . (4.3)

It has been shown that for reasonable values ofN andα it is the productNα that is
the significant parameter [14], so we shall holdα fixed at0.7.

The inclusion of gauge functionals in our interpolators expands the parameter space
with another three degrees of freedom:

• αG: The gauge-field APE-smearing parameter

• nG: The number of sweeps of APE-smearing performed on the linksused in the
gauge-functional

• Qpaths: The number of link paths used to construct the gauge-functionals.
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4.1. Introduction

The APE-smearing procedure [1, 22] replaces a link,Uµ(x), with a sum of(1 − αG)
times the link andαG times its staples

Uµ(x) → U ′
µ(x) = (1 − αG)Uµ(x) (4.4)

+
αG

6

4∑

ν=1
ν 6=µ

[
Uν(x)Uµ(x+ νa)U †

ν (x+ µa)

+U †
ν(x− νa)Uµ(x− νa)Uν(x− νa+ µa)

]
,

followed by projection back to SU(3). We select the unitary matrixUFL
µ which maximises

Re tr(UFL
µ U

′†
µ )

by iterating over the three diagonal SU(2) subgroups of SU(3). This procedure of smear-
ing followed immediately by projection is repeatednG times.

In order to obtain the chromo-electric and chromo-magneticfields with which we
build the hybrid operators, we make use of a modified version of APE smearing, in which
the smeared links do not involve averages which include links in the temporal direction.
In this way we preserve the notion of a Euclidean ‘time’ and avoid overlap of the creation
and annihilation operators.

Each iteration of our modified APE-smearing algorithm proceeds as

Ui(x) → (1 − α)Ui(x)

+
α

4

3∑

j=1

(1 − δij)Uj(x)Ui(x+ ĵ)U †
j (x+ î)

+
α

4

3∑

j=1

(1 − δij)U
†
j (x− ĵ)Ui(x− ĵ)Uj(x− ĵ + î) ,

U4(x) → (1 − α)U4(x)

+
α

6

3∑

j=1

Uj(x)U4(x+ ĵ)U †
j (x+ 4̂)

+
α

6

3∑

j=1

U †
j (x− ĵ)U4(x− ĵ)Uj(x− ĵ + 4̂) .

As above, it is the productnGαG which is of physical significance [14], so we shall
holdαG fixed at0.7 and simply varynG.

In summary, we are left with three independent parameters toexplore:nsrc, nG, and
Qpaths. Here we perform a systematic exploration of this rather large parameter space in
order to determine the optimal prescription for both a hybrid with q̄q quantum numbers
and also for ourχ2 exotic meson interpolator.
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4.2. Method

4.2 Method
We calculate two-point correlation functions for ourχ2 (iǫjklq̄

aγkB
ab
l q

b) exotic interpolat-
ing field and also for theχ3 (iq̄aγjB

ab
j q

b) andχ4 (iq̄aγ4γjB
ab
j q

b) hybrid pion interpolating
fields. We use a lattice of dimensions163 × 32 at β = 1.100 using a doubly-blocked
Wilson-2 (DBW2) action, with a lattice spacing of0.1273 fm.

On this lattice we are able to vary not only thenG andQpaths, but alsonsrc. In particu-
lar we choosensrc = {0, 16, 48, 144},nG = {4, 6, 10, 20}, and a 1- or 3-loop construction
of Fµν [11]. Seven values for the hopping parameterκ are used, corresponding to pion
masses between300 − 800 MeV.

We have also performed a similar calculation on the larger203 × 40 lattice used in the
previous section. These results can be found in appendix C.

4.3 Results

4.3.1 Hybrid Pion
We consider the two hybridJPC = 0−+ interpolators of Table 3.1, and refer to them as
χ3 andχ4. Comparing Figures (4.3) through (4.6), it is immediately apparent that the
strongest signal is obtained fornsrc = 0, i.e for a point source. This is in strong contrast
to the picture observed for a conventional pion interpolator, as in the following figure:

0 sweeps 16 sweeps 48 sweeps 144 sweeps

Fig. 4.1: Fermion-source smearing-dependence of conventional pion signal

This sensitive dependence onnsrc is also observed forχ4, suggesting that the ground
state of these Fock-space components is one where the quarksare quite close together.

Considering the left-hand columns of Figures (4.3) and (4.7), we see that the hybrid
pion interpolators exhibit increasing jitter with an increasing amount of APE-smearing of
the gauge fields used to constructFµν . Figure 4.2 summarizes the pattern forχ4.

A more quantitative approach is taken in Table 4.1 which shows how varying the
parameters affects our ability to extract a ground-state mass. The windowt = [8, 13] is
chosen as it gives an acceptableχ2 value for thenG = 4 case. The heaviest input quark
mass is chosen so as to give the strongest signal, and thus easiest comparison. In summary,
the hybrid pion interpolators are best calculated withnsrc = 0, nG < 6, andQpaths = 1.
To put it plainly, the quarks are close together, and the source is fairly localised.
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4.3. Results

4 sweeps 6 sweeps 10 sweeps 20 sweeps

Fig. 4.2: Gauge-field smearing-dependence ofχ4 hybrid pion signal. Herensrc = 0, i.e a
point source is used for the quark fields.

Table 4.1: Effect of gauge-field smearing onχ4 hybrid pion mass determination,t =
[8, 13]

Qpaths = 1 Qpaths = 3
nsrc nG Ma σ χ2/d.o.f Ma σ χ2/d.o.f
0 4 0.5505 0.0061 1.034 0.5506 0.0061 0.811

6 0.5511 0.0063 1.711 0.5513 0.0063 1.598
10 0.5524 0.0069 2.573 0.5526 0.0067 2.376
20 0.5498 0.0090 4.464 0.5501 0.0089 4.370

16 4 0.5523 0.0221 0.598 0.5548 0.0237 0.523
6 0.5513 0.0198 0.605 0.5503 0.0203 0.480
10 0.5555 0.0198 0.971 0.5563 0.0200 0.925
20 0.5488 0.0235 1.254 0.5471 0.0237 1.064

48 4 0.5248 0.0841 0.258 0.5427 0.0988 0.199
6 0.5183 0.0660 0.422 0.5242 0.0682 0.365
10 0.5337 0.0489 0.873 0.5358 0.0502 0.750
20 0.5473 0.0537 1.724 0.5472 0.0539 1.703

144 4 0.4989 0.1395 0.345 0.5540 0.1878 0.179
6 0.5108 0.1003 0.627 0.5269 0.1105 0.469
10 0.4891 0.0900 0.977 0.4988 0.0808 0.928
20 0.4783 0.1287 1.103 0.4888 0.1148 1.051
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4.3. Results

nG Qpaths = 1 Qpaths = 3

4

8

10

20

Fig. 4.3: Hybridπ- meson (χ3) effective masses from the163 × 32 lattice withnsrc = 0.
Results for the heaviest four quark masses are depicted.
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4.3. Results

nG Qpaths = 1 Qpaths = 3

4

8

10

20

Fig. 4.4: Hybridπ- meson (χ3) effective masses from the163 × 32 lattice withnsrc = 16.
Results for the heaviest four quark masses are depicted.
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4.3. Results

nG Qpaths = 1 Qpaths = 3
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Fig. 4.5: Hybridπ- meson (χ3) effective masses from the163 × 32 lattice withnsrc = 48.
Results for the heaviest four quark masses are depicted.
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4.3. Results

nG Qpaths = 1 Qpaths = 3
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Fig. 4.6: Hybridπ- meson (χ3) effective masses from the163×32 lattice withnsrc = 144.
Results for the heaviest four quark masses are depicted.
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4.3. Results

nG Qpaths = 1 Qpaths = 3
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Fig. 4.7: Hybridπ- meson (χ4) effective masses from the163 × 32 lattice withnsrc = 0.
Results for the heaviest four quark masses are depicted.
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4.3. Results

nG Qpaths = 1 Qpaths = 3
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Fig. 4.8: Hybridπ- meson (χ4) effective masses from the163 × 32 lattice withnsrc = 16.
Results for the heaviest four quark masses are depicted.
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4.3. Results

nG Qpaths = 1 Qpaths = 3
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Fig. 4.9: Hybridπ- meson (χ4) effective masses from the163 × 32 lattice withnsrc = 48.
Results for the heaviest four quark masses are depicted.
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4.3. Results

nG Qpaths = 1 Qpaths = 3
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Fig. 4.10: Hybridπ- meson (χ4) effective masses from the163×32 lattice withnsrc = 144.
Results for the heaviest four quark masses are depicted.
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4.3. Results

4.3.2 Exotic
For the exotic interpolator, the situation is different. Greatest control of statistical error
occurs wherensrc = 0, but in contrast to the hybrid pion case, the signal is maximised for
nG = 20. In addition, whilst settingnsrc = 16 effects a large increase in error bars, the
central values in this case exhibit a plateau fromt = 5, i.e immediately after the source.
The net result is, however, an increase in uncertainty of thefit. Increasingnsrc beyond
16 results in the effective mass ceasing to be positive definiteclose the source indicating
that we are possibly accessing the two-particlea1η

′ decay channel instead of the desired
exotic state.Qpaths = 1 gives approximately10% smaller errors thanQpaths = 3 for a fit
betweent = 6 andt = 8 atnsrc = 0 andnG = 20.

Table 4.2: Effect of gauge-field smearing on1−+ Exotic meson mass determination,t =
[5, 7]

Qpaths = 1 Qpaths = 3
nsrc nG Ma σ χ2/d.o.f Ma σ χ2/d.o.f
0 4 2.5986 0.0827 10.758 2.6471 0.0900 9.489

6 2.4935 0.0783 16.246 2.5249 0.0824 15.255
10 2.3777 0.0741 22.181 2.3913 0.0756 21.838
20 2.2859 0.0813 20.403 2.2860 0.0810 20.394

16 4 1.7909 0.2414 0.552 1.8277 0.2708 0.347
6 1.7806 0.2179 0.621 1.8615 0.2681 0.407
10 1.7874 0.1976 0.360 1.8058 0.2136 0.413
20 1.7208 0.1796 0.058 1.7492 0.1937 0.092

Table 4.3: Effect of gauge-field smearing on1−+ Exotic meson mass determination,t =
[6, 8]

Qpaths = 1 Qpaths = 3
nsrc nG Ma σ χ2/d.o.f Ma σ χ2/d.o.f
16 4 2.1086 0.1156 0.708 2.1458 0.1285 0.523

6 2.0101 0.0965 0.971 2.0298 0.1025 0.892
10 1.9145 0.0858 0.675 1.9321 0.0875 0.741
20 1.8422 0.0878 0.461 1.8441 0.0878 0.445

In summary, the ideal prescription for the exotic interpolating field isnsrc ∈ (0, 16),
nG ≃ 20, Qpaths = 1. As in the hybrid pion case the quarks remain close together,but
this time they are surrounded by a large cloud of gluons.
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4.3. Results

nG Qpaths = 1 Qpaths = 3
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Fig. 4.11: Exotic meson effective masses from the163 × 32 lattice withnsrc = 0. Results
for the heaviest four quark masses are depicted.
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nG Qpaths = 1 Qpaths = 3
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Fig. 4.12: Exotic meson effective masses from the163×32 lattice withnsrc = 16. Results
for the heaviest four quark masses are depicted.
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nG Qpaths = 1 Qpaths = 3
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Fig. 4.13: Exotic meson effective masses from the163×32 lattice withnsrc = 48. Results
for the heaviest four quark masses are depicted.
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nG Qpaths = 1 Qpaths = 3
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Fig. 4.14: Exotic meson effective masses from the163 × 32 lattice with nsrc = 144.
Results for the heaviest four quark masses are depicted.
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4.4. Discussion and Summary

4.4 Discussion and Summary
Our hybrid and exotic interpolators show a signficant dependence on the spatial extent of
the operators from which they are constructed. For the exotic meson in particular, good
signal requires

• Considerable smearing of the gauge-fields inFµν ( nG ≃ 10 − 20 )

• Very little smearing of the fermion source (nsrc < 16 )

.
Taken together, these suggest a picture of hybrid mesons which have a quark-antiquark

pair very close together with a gluon cloud surrounding themfor some distance. This is
different from the usual picture of a quark-antiquark pair joined by a flux tube.

For APE-smearing,N smearing sweeps with smearing fractionα applied to the gauge-
fields corresponds to notionally replacing point sources with distributed objects of charac-
teristic size a√

3

√
Nα [14]. Thus, 10 sweeps of APE-smearing withα = 0.7 corresponds

on our lattice, which has lattice spacing ofa = 0.128 fm, to an average spatial extent for
the hybrid’s gluon structure of approximately0.2 fm, vs approximately0.3 for the1−+.
Neither the hybrid pion nor the1−+ benefited from a highly-improved version ofFµν , so
future calculations may use the far simpler single-loop variant.

In order to gain a deeper appreciation of this behaviour it would be instructive to
perform calculations with greater statistics, examing at ahigher resolution the region of
nsrc = [0, 16]. A calculation of the electromagnetic form-factors of these hybrid particles
would also be of assistance.
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5

Meson form factors

5.1 Introduction

Masses are the simplest meson observables we can extract from the lattice, but we can
in principle obtain many observables. Of particular interest are the form-factors, as these
encode information about the charge radii, magnetic and quadrupole moments,i.e. they
tell us about the shape of the hadrons, and give us valuable insight into the behaviour of
the quarks inside.

In 1980, Arnoldet al. published a paper showing the general form forC- andT -
invariant form-factors for a spin-1 object [7]. Calculations from QCD sum-rules followed,
a notable papers being that of Ioffe and Smilga [26]. A light-cone calculation was later
performed by Brodsky and Hiller [15].

Here we present the first lattice calculation of theρ-meson quadrupole form-factor.
Charge and magnetic form-factors are also calculated. Fromthese we can extract the
relevant static quantities of mean square charge-radius and magnetic moment.

We also analyse the dependence of light-quark contributions to these form-factors
on their environment and contrast these with a new calculation of the corresponding
pseudoscalar-sector result.

We begin by introducing some formalism, and proceed to outline the process for ex-
tracting these quantities for theπ-meson and then the general case for a spin-1 meson.

5.2 Three-point function with current insertion

Consider the following three-point function:

G α
µ ν(t2, t1, ~p

′, ~p) =
∑

~x2, ~x1

e−i~p′.( ~x2− ~x1)e−i~p. ~x1〈Ω|χµ(x2)J
α(x1)χ

†
ν(0)|Ω〉 . (5.1)

The quark-flow diagrams relevant to this calculation are shown in figure 5.2 for the
case of aK+. The relevant quark-level calculation is performed in appendix D. For
our purposes, it is sufficient to observe that we may make use of the charge symmetry
properties of the quarks to rewrite the second of these diagrams as the charge-conjugate
of thes-quark contribution to aK− meson and we may thus concern ourselves only with
the case of the current striking a forward-going quark.
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5.2. Three-point function with current insertion

u

s̄

+

u

s̄

Fig. 5.1: Quark-flow diagrams relevant toK+ meson electromagnetic form-factors.

Inserting two sets of complete states, we can rewrite Eq. (5.1) as

G α
µ ν(t2, t1, ~p

′, ~p)

=
∑

~x2, ~x1

∑

pi,pf

∑

s,s′

e−i~p′.( ~x2− ~x1)e−i~p. ~x1〈Ω|χµ(x2)|pf , s
′〉〈pf , s

′|Jα(x1)|pi, s〉〈pi, s|χ†
ν(0)|Ω〉

=
∑

~x2 ~x1

∑

j,k

∑

~pi, ~pf

∑

s,s′

e−i~p′. ~x2ei~p′. ~x1e−i~p. ~x1ei ~pf . ~x2e
−iE

(k)
~pf

t2
e−i ~pf . ~x1e

iE
(k)
~pf

t1
ei~pi. ~x1e

−iE
(j)
~pi

t1

× 〈Ω|χµ|pf , s
′〉〈pf , s

′|Jα|pi, s〉〈pi, s|χ†
ν |Ω〉

=
∑

~x1

∑

j,k

∑

~pi

∑

s,s′

e−i(~p−~pi). ~x1e
−iE

(k)

~p′
t2e

iE
(k)

~p′
t1e

−iE
(j)
~pi

t1

× 〈Ω|χµ|p′, s′〉〈p′, s′|Jα|pi, s〉〈pi, s|χ†
ν|Ω〉

=
∑

i,j

∑

s,s′

e
−iE

(k)

~p′
t2e

iE
(k)

~p′
t1e−iE

(j)
~p

t1 〈Ω|χµ|p′, s′〉〈p′, s′|Jα|p, s〉〈p, s|χ†
ν|Ω〉 (5.2)

We then perform an analytic continuation to Euclidean spacetime via the replacement
t→ −it. For larget1 and larget2 − t1 the ground state signal dominates.

The time dependence of Eq. (5.2) can be removed by taking ratios with the two-point
function defined in Eq. (3.7). By careful choice of the form wecan also remove any
constants of normalisation. Thus we form the ratio

Rµαν(p
′, p) =

√√√√
〈
Gµαν(~p′, ~p, t, t1)

〉 〈
Gναµ(~p, ~p′, t, t1)

〉

<Gµµ(~p′, t)><Gνν(~p, t)>
(5.3)

=
∑

s,s′

√
〈Ω|χµ|p′, s′〉〈p′, s′|Jα|p, s〉〈p, s|χ†

ν|Ω〉〈Ω|χν |p, s〉〈p, s|Jα|p′, s′〉〈p′, s′|χ†
µ|Ω〉

〈Ω|χµ|p′, s′〉〈p′, s′|χ†
µ|Ω〉〈Ω|χν |p, s〉〈p, s|χ†

ν|Ω〉
,

which has no remaining time-dependence. This method is a variant of that used by
Draperet al. [19], differing in the choice of momenta used in the numerator.
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5.2. Three-point function with current insertion

5.2.1 π-meson case
For a pion, the vertex is extraordinarily simple. As the spinis zero,s ands′ play a trivial
role. Including the state normalization factors of1/

√
2E~p

〈p′|Jα|p〉 =
1

2
√
EpEp′

[pα + p′α]F1(Q
2) = 〈p|Jα|p′〉 . (5.4)

Defining

〈Ω|χ(0)|p〉 =
1√
2E

λ(p) ,

〈Ω|χ(0)|p′〉〈p′|Jα|p〉〈p|χ†(0)|Ω〉 = λ(p′)λ̃(p)
1

4EpEp′
[pα + p′α]F1(Q

2) . (5.5)

Using the same parameterisation, the expressions in the denominator evaluate to

〈Ω|χµ(0)|p′, s′〉〈p′, s′|χ†
µ(0)|Ω〉〈Ω|χν(0)|p, s〉〈p, s|χ†

ν(0)|Ω〉

=
1

4EpEp′
λ(p′)λ̃(p′)λ(p)λ̃(p) . (5.6)

Thus we have no remaining couplingsλ in the ratio, and we can rewrite 5.4 as

√√√√( 1
4EpEp′

[pα + p′α]F1(Q2))
2

1
4EpEp′

(5.7)

This reduces to simply

Rαµν(p
′, p) → Rα(p′, p) =

1

2
√
EpEp′

[pα + p′
α
]F1(Q

2) , (5.8)

such that the large Euclidean time limits of the ratioRα is a direct measure ofF1(Q
2) up

to kinematical factors.
Inverting to giveF1, orGC to use the notation we will adopt for the vector case gives:

F1(Q
2) = GC(Q2) =

2
√
EpE ′

p

pα + p′α
Rα(p, p′) (5.9)

5.2.2 Spin-1 case
Following [15], we may write the vector current matrix element as

〈p′s′|Jµ|ps〉 =
1

2
√
EpEp′

ǫ′⋆α (p′, s′)ǫβ(p, s)Jαµβ(p′, p)
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5.2. Three-point function with current insertion

where

Jαµβ(p′, p) = −
{
G1(Q

2) gαβ [pµ + p′µ] +G2(Q
2)[gµβqα − gµαqβ] −G3(Q

2) qβqα p
µ + p′µ

2m2

}

(5.10)
defines the covariant vertex functionsG1,2,3.

As in Chapter 3, we denote the vacuum couplings as follows:

〈Ω|χi
µ |n, ~p ′, s〉 = λi

n ǫµ(p ′, s)

〈n, ~p ′, s|χj
ν
† |Ω〉 = λj⋆

n ǫ
⋆
ν(p

′, s)

where the on-shell four-vectorp ′ = (En, ~p
′) is introduced, withEn =

√
~p2 +m2

n.
The Sachs form-factors are related to the covariant vertex functions as follows [15]:

GQ(Q2) = G1(Q
2) −G2(Q

2) + (1 + η)G3(Q
2) (5.11)

GM(Q2) = G2(Q
2) (5.12)

GC(Q2) = G1(Q
2) +

2

3
ηGQ(Q2) , (5.13)

whereη = Q2/4m2 andQ2 = −q2 = ~q2 − q2
0.

The expression forJαµβ(p′, p) may be written directly in terms of the Sachs form-
factors:

Jαµβ(p′, p) =

−
{

GM(Q2)
(
[gµβqα − gµαqβ] − gαβ pµ + p′µ

2(1 + η)m2

)

+GC(Q2)[pµ + p′µ]
(
gαβ − qαqβ

2(1 + η)m2

)

−GQ(Q2)[pµ + p′
µ
]
(2η

3
gαβ + (2η + 3)

qαqβ

6(η + 1)m2

) }
(5.14)

The quantity of interest is
∑

s,s′

〈Ω|χµ|p′ s′〉〈p′ s′|Jα|p s〉〈p s|χ†
ν|Ω〉

= − 1

4EpEp′
λ(p′)λ̃⋆(p)(gµα −

p′µp
′
α

m2
) Jαµβ(gβµ − pβpµ

m2
) , (5.15)

where we have made use of the transversality condition,

∑

s

ǫµ(p, s) ǫ⋆ν(p, s) = −
(
gµν −

pµpν

m2

)
,

to evaluate the sum over spin states.
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5.2. Three-point function with current insertion

As can be seen, the vacuum couplings cancel in the ratio of Eq.(5.4) to provide

Rµαν(p
′, p) =

1

2
√
EpEp′

×
√√√√(gµρ − p′µp′ρ

m2 )Jρασ(p′, p)(gσν − pσpν

m2 )(gνγ − pνpγ

m2 )Jγαδ(p, p′)(gδµ − p′δp′µ
m2 )

(gµµ − p′µp′µ
m2 )(gνν − pνpν

m2 )

From Eq. (5.10) we have the following symmetry

Jαµβ(p′, p) = Jβµα(p, p′)

and we may thus take the square root, yielding

Rµαν(p
′, p) =

1

2
√
EpEp′

(gµρ − p′µp′ρ
m2 )Jρασ(p′, p)(gσν − pσpν

m2 )
√

(gµµ − p′µp′µ
m2 )(gνν − pνpν

m2 )
(5.16)

In our calculations, we have chosenp′ = k = (E, px, 0, 0) andp = l = (m, 0, 0, 0). In
this case, the following identity holds

(
gαβ − lαlβ

m2

)
= δαβ (δβ0 − 1) , (5.17)

and we can simplify Eq. (5.16) to

Rµαν(k, l) =
1

2
√
Em

(
gµρ −

kµkρ

m2

)
Jραν(k, l)

√
(δν0 − 1)

(gµµ − kµkµ

m2 )
. (5.18)

Henceforth, when we refer toR we shall meanR(k, l). A straightforward calculation (see
appendix E for a REDUCE script that implements this) yields the following:

R101 =
G3(Q

2) (E +m)p2
x − 2G2(Q

2)mp2
x + 2G1(Q

2)Em(E +m)

4m2
√
Em

R133 = R331 =
px

2
√
Em

G2(Q
2)

R202 = R303 =
(E +m)

2
√
Em

G1(Q
2) .

In terms of the Sachs form-factors,

R101 =
p2

x

3m
√
Em

GQ(Q2) +
E +m

2
√
Em

GC(Q2)

R202 = R303 = − p2
x

6m
√
Em

GQ(Q2) +
E +m

2
√
Em

GC(Q2)

R133 = R331 =
px

2
√
Em

GM(Q2) .
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5.2. Three-point function with current insertion

Rearranging, we see that the linear combinations isolatingthe form-factors are the
following:

GC(Q2) =
2

3

√
Em

E +m
(R101 +R202 +R303) (5.19)

GM(Q2) =

√
Em

px

(R133 +R331) (5.20)

GQ(Q2) =
m
√
Em

p2
x

(2R101 − R202 − R303) (5.21)

5.2.3 Extracting static quantities
At Q2 = 0, the Sachs form factors are proportional to various static quantities of interest.
Specifically:

eGC(0) = e,

eGM(0) = 2mµ1,

eGQ(0) = m2Q1, (5.22)

wherem is the mass of the spin-1 system,µ1 is the magnetic moment,Q1 is the quadrupole
moment, ande is the charge of the system.

Our calculations will be performed at a single, finiteQ2. At Q2 = 0, qx = qy = qz =
0, and therefore in the laboratory frame considered here,px = py = pz = 0. The presence
of px in the denominator of expressions forGM andGQ in Eq. (5.19) prevents us, in
this case, from extracting information about the magnetic and quadrupole form-factors.
Moreover, our use of a conserved vector current guarantees thatGC(Q2 = 0) = 1, and
this fact has been used to test our implementation of the above formalism.

It remains to show how we can extrapolate to zero momentum transfer. We do so as
follows.

Charge form-factor and 〈r2〉
The mean squared charge radius is given by〈r2〉 =

∫
dr r2ρ(r), wherer is the distance

from the centre of mass of the system. We can obtain〈r2〉 from the charge form-factor
through the following relation1:

〈r2〉 = −6
∂

∂Q2
G(Q2)

∣∣∣
Q2=0

. (5.23)

We extrapolate toQ2 = 0 through a 1-parameter phenomenological form forGC . A
convenient form is the monopole:

GC(Q2) =

(
1

Q2

Λ2 + 1

)

. (5.24)

1This is derived explicitly in Appendix B
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5.2. Three-point function with current insertion

Inserting this form into Eq. (5.23) gives

〈r2〉 =
6

Λ2
. (5.25)

Rearranging Eq. (5.24) to giveΛ2 yields

Λ2 =
Q2

( 1
GC(Q2)

− 1)
(5.26)

Substituting this back in to the previous expression for〈r2〉 gives

〈r2〉 =
6

Q2

(
1

GC(Q2)
− 1

)
(5.27)

Choosing a dipole form instead of the above yields a result which is smaller by ap-
proximately 7%, which is comparable to the statistical error in this calculation.

Magnetic moment

From studies of nucleon moments, it is observed that the scaling ofGM andGC in Q2 is
very similar whenQ2 is small [36].i.e. if

GM(Q2) = F (Q2)GM(0)

for some functionF then
GC(Q2) ≃ F (Q2)GC(0) .

Rearranging gives
GM(0)

GC(0)
≃ GM(Q2)

GC(Q2)
. (5.28)

We shall simply assume that this scaling will also hold for a meson. Since for aρ+

meson,GC(0) = 1, this is simply

GM(0) ≃ GM(Q2)

GC(Q2)
. (5.29)

Quadrupole form-factor

The Quadrupole tensor is defined as

Qij =

∫
d3rρ(~r)(3rirj − δijr

2) . (5.30)

Then

Q11 =

∫
d3rρ(~r)(3r2

1 − r2) =

∫
d3rρ(~r)(2r2

1 − r2
2 − r2

3) (5.31)
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5.3. Method

which is exactly the form of ourGQ - recall:

GQ(Q2) =
m
√
Em

p2
x

(
2R̃101 − R̃202 − R̃303

)

We can clearly see that a negative value ofGQ corresponds to an oblate deformation -
a shape which is larger in the directions perpendicular to the spin than parallel to it.

More rigorously, write

Jαµβ(p, p′) = −GM(Q2)F αµβ
M (p, p′) +GC(Q2)F αµβ

C (p, p′) +GQ(Q2)F αµβ
Q (p, p′)

then by comparison with Eq. (5.14) we have:

F αµβ
Q (p, p′) =

2η

3
[pµ + p′

µ
](−FC(p, p′) +

4η + 3

4η(η + 1)m2
qαqβ) .

Recalling thatp′ = k = (E, px, 0, 0) andp = l = (m, 0, 0, 0), we haveq = (E −
m, px, 0, 0), and so

F αµβ
Q (p, p′) =

2η

3
[pµ + p′

µ
](−FC(p, p′) + (

2E +m

mp2
x

)qαqβ) .

For spatialα andβ, this is

F αµβ
Q (p, p′) =

2η

3
[pµ + p′

µ
]

(
−FC(p, p′) + (1 +

2E

m
)δα1δβ1

)
.

which we recognise as a difference of terms involving the charge form-factor in all di-
rections and the chosen1 direction. Comparing with Eq. (5.30), we see that this in turn
corresponds to a quadrupole moment about the1 axis.

Whilst a similar scaling to that used in the case of the magnetic form-factor could be
used to relate our quadrupole form-factor to the moment, we believe that the form-factor
at our small finiteQ2 ( ≃ 0.22GeV) will be of greater phenomenological interest.

5.3 Method
Two- and three-point correlation functions of the kind described above were calculated
on a lattice of dimensions203 × 40, with lattice parameterβ = 4.53, corresponding to
a lattice spacing of0.128(2) fm. For full details of this lattice, the reader may refer to
Chapter 3 of this text.

Three point propagators, detailed in appendix D, encoding aquark interacting with
a photon at some intermediate time between creation and annhilation, were created us-
ing the sequential source technique (SST) [19]. An improvedlattice definition of the
conserved vector current [39] was employed, with the current insertion occuring at time
t = 14. The strange quark mass is chosen to be the third heaviest quark mass. This pro-
vides a pseudoscalar mass of 697 MeV which compares well withthe experimental value
of (2M2

K −M2
π)1/2 = 693 MeV motivated by leading order chiral perturbation theory.
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5.4. Results

An ensemble of 379 configurations was used, with error analysis of the correlation
function ratios performed via a second-order, single-elimination jack-knife. We then per-
formed a series of fits through the ratios after the current insertion att = 14. Through
examining theχ2 value as determined through the covariance matrix we are able to estab-
lish a valid window through which we may fit in order to extractour observables. In all
cases, we required a value ofχ2 no larger than 1.4. The data from which these graphs are
derived is presented in tabular form in appendix F. Values quoted on a per quark-sector
basis correspond exclusively to values for single quarks ofunit charge.

5.4 Results
The following plots show the time-evolution behaviour of the correlation function ratios
we use to measure form-factors. Vertical bars depict the limits of the fit windows we have
used in this analysis. Care has been taken to choose consistent windows across the quark-
sectors in order to eliminate systematic errors in comparisons we will later undertake to
determine mass and environment sensitivities.

We perform direct fits to the correlators for the 3 heaviest quark masses, and fit the
splittings between adjacent quark masses (i.e. Gi − Gi+1) for the five lightest quark
masses. By fitting the splittings significant cancellation of excited state contributions is
observed. Indeed, theχ2/d.o.f analysis encourages fits at earlier time slices and confirms
that systematic errors are within the statistical errors.

Figures 5.2, 5.3, and 5.4 show the Charge form-factor ratio for the light quark in a
pion, the light-quark in a Kaon, and the strange quark in a Kaon respectively. Statistical
fluctuations are very small, allowing as many as twelve timeslices to be used in constrain-
ing our fit.

Figures 5.5, 5.6, and 5.7 show the Charge form-factor ratio for the light quark in a
ρ-meson, the light-quark in aK∗, and the strange quark in aK∗ respectively. Statistical
fluctuations are larger than for the pseudoscalar case, but we have no particular difficulty
establishing a consistent and valid fit regime across all three quark-sectors.

In figures 5.8, 5.9, and 5.10 we show the Magnetic form-factorfor the light quark in
aρ-meson, the light-quark in aK∗, and the strange quark in aK∗ respectively. This data
is considerably noisier than forGC , and exhibits a rapid die-off of signal with time as we
go to lighter quark-masses. Care must be taken when attempting to fit a constant to this
data, but we are nevertheless able to obtain a consistent fit regime across all quark-sectors
with a goodχ2 value.

Figures 5.11, 5.12, and 5.13 we show the Quadrupole form-factor for the light quark
in a ρ-meson, the light-quark in aK∗, and the strange quark in aK∗ respectively. The
signal is noisier again than for the magnetic case, but we areable to fit self-consistently
to the data across all quark-sectors.
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5.4. Results

Fig. 5.2: The up-quark contribution to pion charge form factor. The data correspond to
mπ ≃ 830 MeV (top left), 770 MeV (top right), 700 MeV (second row left),616 MeV
(second row right),530 MeV (third row left), 460 MeV (third row right),367 MeV (bot-
tom row left), and290 MeV (bottom row right). For the five lightest quark masses, the
splitting between the values foriκ andiκ +1 is shown. The data are illustrated only to the
point at which the error bars diverge.
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5.4. Results

Fig. 5.3: As in Fig. 5.2 but for the up-quark contribution to kaon charge form factor.
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5.4. Results

Fig. 5.4: As in Fig. 5.2 but for the strange-quark contribution to kaon charge form factor.
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5.4. Results

Fig. 5.5: As in Fig. 5.2 but for the up-quark contribution toρ charge form factor.
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5.4. Results

Fig. 5.6: As in Fig. 5.2 but for the up-quark contribution toK∗ charge form factor.
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5.4. Results

Fig. 5.7: As in Fig. 5.2 but for the strange-quark contribution toK∗ charge form factor.

73



5.4. Results

Fig. 5.8: As in Fig. 5.2 but for the up-quark contribution toρ magnetic form factor. We
note that for the fifth and sixth quark mass, goodχ2/d.o.f is achieved for fits including
points tot = 25, and central value of the fit is not afected significantly. We prefer to focus
on regions of good signal.
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5.4. Results

Fig. 5.9: As in Fig. 5.2 but for the up-quark contribution toK∗ magnetic form factor.
As for the up contributions, we can achieve a goodχ2 even fitting out tot = 25 for the
fifth, sixth and seventh quark masses without significantly affecting the central values, but
prefer to focus on regions of strong signal.
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5.4. Results

Fig. 5.10: As in Fig. 5.2 but for the strange-quark contribution to K∗ magnetic form
factor.
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5.4. Results

Fig. 5.11: As in Fig. 5.2 but for the up-quark contribution toρ Quadrupole form factor.

77



5.4. Results

Fig. 5.12: As in Fig. 5.2 but for the up-quark contribution toK∗ Quadrupole form factor.
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5.4. Results

Fig. 5.13: As in Fig. 5.2 but for the strange-quark contribution toK∗ Quadrupole form
factor.
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5.4. Results

Fig. 5.14: Mean squared charge radius for each quark sector for pseudoscalar (left) and
vector (right) cases.uπ anduρ symbols are centred on the relevant value ofm2

π, other
symbols are offset for clarity.

Figure 5.14 shows the contributions to〈r2〉 from each of the quark sectors examined
in this study. It is clear that theρ-meson has a much larger RMS charge radius than
does theπ. This behaviour is consistent with quark-model physics, where we would
expect a hyperfine term proportional to~σ1· ~σ2

m1m2
. Such a term would be attractive for aπ and

repulsive for aρ. Nevertheless, it is fascinating that the heavier particleis exhibiting the
larger characteristic size, despite a smaller Compton wavelength. As we might expect,
the〈r2〉 values are smaller for the case of an up quark in the presence of a strange quark
as the denominator of the hyperfine term is the product of the quark masses.

Fig. 5.15: Strange and non-strange meson mean squared charge radii for charged pseu-
doscalar (left) and vector (right) cases. Symbols are offset as in fig. 5.14

The strange neutral pseudoscalar and vector meson mean squared charge radii are
shown in Figure 5.16. For the neutral strange mesons, we see anegative value for〈r2〉,
indicating that the negatively chargedd-quark is lying further from the centre of mass
on average than thēs. We should expect just such a behaviour for two reasons, both
stemming from the fact that thēs quark is considerably heavier than thed: the centre of
mass must lie closer to thēs, and thed-quark will also have a larger Compton wavelength.

80



5.4. Results

Fig. 5.16: Strange meson mean squared charge radii for neutral pseudoscalar (left) and
vector (right) cases.

Fig. 5.17: Ratio of mean squared charge radius for a light quark in the environment of light
and heavy quarks. Pseudoscalar (left) and vector (right) results are shown for comparison.

In Figure 5.17, we contrast the environment-dependence of the up-quark contributions
to the pseudoscalar and vector mesons. The difference is striking: for the pseudoscalar
case it could be argued that we see no environment-dependence at all, whereas in the
vector case we see that the presence of a strange quark acts toheavily suppress the light
charge distribution. This is the effect one predicts from a quark model, where hyperfine
repulsion is reduced in the environment of ans-quark.

Figure 5.18 places our new results in some context. A previous study [18] has sug-
gested that theπ+, ρ+ and proton should have a very similar RMS charge radius at larger
quark masses. In contrast to this, we find a significant splitting, most clearly present at
heavier quark masses. It is possible that the agreement obtained in the previous study
reflects finite-volume effects attendant with their combination of a small spatial volume.

Regarding the magnetic moment, we present Figures 5.19 and 5.20. At the SU(3)
flavour limit, where we take the light quark flavours to have the same mass as the strange
quark, quark model arguments suggest the magnetic moment for aρ+ should be -3 times
the strange magnetic moment of theΛ (assuming no environmental dependence). The
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5.4. Results

Fig. 5.18: Mean squared charge radii for positively chargedbaryons.

PDG [21] gives this figure as−0.613µN , so we would naively expect a value of1.84µN .
The agreement displayed by the results is surprisingly good.

Figure 5.21 shows theρ-meson g-factorg, essentially theρ-meson magnetic moment
in natural magnetons. Andersonet al [5] have argued that this quantity should be approx-
imately 2 at large quark masses, which we do indeed observe. At light quark masses,
however, we do see some evidence of chiral curvature, which would indicate that perhaps
the linear chiral extrapolations of that paper should be treated with caution.

As thed-quark becomes lighter than thēs in our calculations we see the magnetic
moment exhibiting a very linear negative slope. The magnitude of the magnetic moment
is quite small, but clearly differentiable from zero everywhere except at the SU(3) flavour
limit where symmetry forces it to be exactly zero.

The magnetic moment of the vector meson, like the RMS charge radius, shows con-
siderable environment dependence. The larger contribution of an up quark in aρ relative
to aK∗ is consistent with what we have already observed with the RMScharge radius, as
follows: since〈r2〉 is larger for the up quark in aρ meson than for the up quark in aK∗,
the effective mass is reciprocally smaller for the up quark in aρ. This smaller effective
mass gives rise in turn to a larger magnetic moment. Figure 5.23 shows this pattern.

The Quadrupole form-factor, shown in Figure 5.24 on a per quark-sector basis and in
Figure 5.25 for theρ+ andK∗+ mesons, is observed to be categorically negative. The
statistical fluctuations attendant to our finite ensemble hide any information that might
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5.4. Results

Fig. 5.19: Per quark-sector (left) and corresponding charged vector meson (right) mag-
netic moments.

Fig. 5.20: Charged vector meson magnetic moments.
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5.4. Results

Fig. 5.21:g factor forρ meson.

Fig. 5.22: NeutralK∗-meson magnetic moment.
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5.4. Results

Fig. 5.23: Environment-dependence for light-quark contribution to vector meson mag-
netic moment.

Fig. 5.24: Per quark-sector quadrupole form-factors.
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5.4. Results

Fig. 5.25: Vector meson quadrupole form factors forρ+ andK∗+.

exist about a systematic dependence on quark mass, but the central values show no par-
ticular pattern as we vary this. A negative quadrupole moment corresponds to an oblate
shape - one which is compressed along the spin axis. This coincides with the calcula-
tion of Alexandrouet al. [3] who observed a negative quadrupole moment for spin±1
ρ-meson states in a density-density analysis. A simple quarkmodel would predict a value
of zero for this quantity, requiring an admixture ofs- andd-wave-functions in order to
admit such asymmetry. Importantly, the quadrupole form-factor is shown to be negative
at heavy quark masses, indicating that the simplest of quarkmodels is insufficient even in
this regime.

Environmental sensitivity for the quadrupole form-factor(5.26) is masked to some
degree by the amount of statistical uncertainty present in our results. Nevertheless, the
central values show a downward trend at light quark masses. The mass-dependence plot
shows that most of the contribution of theK∗ deformation is due to the up quark.

At light quark masses we see a small positive quadrupole moment for theK∗0 meson,
but with little statistical significance. It would be very interesting to re-examine this with
better statistics in order to more precisely determine the expected value at the very lightest
quark masses.
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5.4. Results

Fig. 5.26: Environment-dependence for light-quark contribution to vector meson
quadrupole form-factor.

Fig. 5.27: Quadrupole form-factor for neutralK∗ meson.
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5.5. Conclusions

5.5 Conclusions
We have obtained the electric, magnetic, and quadrupole form-factors (and associated
static quantities). Of particular interest is a firm prediction of a negative Quadrupole
moment. The ratio of quadrupole moment to mean square chargeradius is approximately
1 : 30, so the deformation is small but not negligible. A larger ensemble of configurations
would enable better control of statistical uncertainties and potentially enable some work in
extrapolating these quantities, but this is beyond the scope of this thesis. Further work will
encompass examining the form-factors of thea1 meson, and theρ→ πγ electromagnetic
decay, as well as a repeat of this work using dynamical (Full QCD) propagators.
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6

Conclusions

We have completed a comprehensive analysis of mesons from Lattice QCD in the quenched
approximation. Some striking results include:

• a first-ever first-principles calculation of all three of thevector meson form-factors,
including the environment and mass-sensitivity of the quark contributions to each
form-factor

• a high precision calculation of the pseudoscalar meson form-factor

• a potential reconciliation of the lattice and experimentalresults for the mass of the
1−+ exotic meson

• a determination that the optimal smearing prescription forlocal hybrid interpolating
fields is different from what one might natively expect from aflux-tube picture

• a calculation of meson excited states

• a comprehensive survey of conventional and hybrid meson operators

• a determination that theρ-meson is oblate, and not spherically symmetric as a naive
quark model would predict. Importantly, this holds even at heavy quark masses.

It is hoped that the results of this work will be of assistanceto physicists in constrain-
ing model parameters, especially as experimental values for theρ-meson are difficult to
come by due to the short lifetime of the particle. In particular, the result for the quadrupole
may help constrain the amount ofD-wave admixture in quark-model wave functions of
the ρ, and the source-dependence results may result in more success obtaining precise
calculations of the properties of the exotic mesons.

Scope for future work lies in addressing the two main limitations of this work, both
imposed by the current state-of-the-art in computational power. These are the quenched
approximation, whereby sea-quark loops are omitted, whichbecomes increasingly impor-
tant at light quark-masses, and the finite size of our ensemble. By addressing the former
we would greatly simplify the physical interpretation of our results, and by increasing our
ensemble we would gain better control of statistical errors. In particular, a four-fold in-
crease in statistics would afford us much greater insight into the environment dependence
of the light-quark contributions to the vector meson electromagnetic form-factors.
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A

Data pertaining to the calculation of
meson effective masses

These results were generated on a lattice of spacing0.128 fm. The conversion factor from
dimensionless masses to GeV is thus0.1973GeVfm/0.128fm = 1.5414GeV. We shall
use the symbols to refer to our ‘strange’ (heavy) quark. The relationship betweenκ
values and pion masses is given in Table A.1.

Table A.1:κ values, and corresponding pion masses (and uncertainties)in GeV.

iκ κ mπ

1 0.12780 0.8356(14)
2 0.12830 0.7744(15)
3 0.12885 0.7012(15)
4 0.12940 0.6201(15)
5 0.12990 0.5354(16)
6 0.13025 0.4660(20)
7 0.13060 0.3732(79)
8 0.13080 0.3076(63)
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Table A.2:a0 scalar meson mass fits. Column headings are in order, thekappa number,
the lower and upper bounds of the fit window, the mass, error and χ2 from our analysis.

iκ tstart tend Ma σ χ2/d.o.f
1 9 11 0.942468 0.008561 0.569828
2 9 11 0.927582 0.010346 0.550105
3 9 11 0.918652 0.013697 0.624862
4 9 11 0.928701 0.020547 0.989549

Table A.3: As in Table A.2, but for theK⋆
0 .

iκ tstart tend Ma σ χ2/d.o.f
1 9 11 0.928457 0.010659 0.580351
2 9 11 0.922306 0.011843 0.579739
3 9 11 0.918652 0.013697 0.624862
4 9 11 0.921341 0.016632 0.785677

Table A.4: As in Table A.2 but for conventionalπ meson operator̄qγ5q.

iκ tstart tend Ma σ χ2/d.o.f
1 16 26 0.542076 0.000933 1.050107
2 16 26 0.502415 0.000966 1.066433
3 16 26 0.454885 0.000991 0.850827
4 16 26 0.402287 0.001030 0.735460
5 16 26 0.347436 0.001105 0.781297
6 16 26 0.302289 0.001287 0.943519
7 16 26 0.242118 0.005106 0.963553
8 16 26 0.199537 0.004086 0.974327
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Table A.5: As in Table A.2 but for conventionalK meson operator̄sγ5q.

iκ tstart tend Ma σ χ2/d.o.f
1 16 26 0.500447 0.000975 1.073315
2 16 26 0.479317 0.000983 0.990409
3 16 26 0.454885 0.000991 0.850827
4 16 26 0.429533 0.001014 0.810890
5 16 26 0.405371 0.001059 0.837823
6 16 26 0.387684 0.001123 0.923336
7 16 26 0.368507 0.001670 0.888473
8 16 26 0.358399 0.001425 1.156427

Table A.6: As in Table A.2 but for axial-vector pion interpolatorq̄γ5γ4q.

iκ tstart tend Ma σ χ2/d.o.f
1 11 20 0.540293 0.001238 0.598628
2 11 20 0.500503 0.001278 0.521659
3 11 20 0.453187 0.001334 0.471202
4 11 20 0.400662 0.001405 0.468622
5 11 20 0.345862 0.001506 0.525954
6 11 20 0.300941 0.001632 0.542129
7 11 20 0.247653 0.002655 0.754260
8 11 20 0.207590 0.004310 0.978518

Table A.7: As in Table A.2 but for axial-vectorK interpolator̄sγ5γ4q

iκ tstart tend Ma σ χ2/d.o.f
1 11 20 0.498332 0.001292 0.522991
2 11 20 0.477352 0.001308 0.492776
3 11 20 0.453187 0.001334 0.471202
4 11 20 0.427686 0.001372 0.464957
5 11 20 0.403065 0.001430 0.474499
6 11 20 0.384818 0.001499 0.451416
7 11 20 0.365499 0.001662 0.418255
8 11 20 0.354341 0.001804 0.328788
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Table A.8: As in Table A.2 but for hybrid pion interpolating field iq̄aγjB
ab
j q

b.

iκ tstart tend Ma σ χ2/d.o.f
1 14 20 0.540098 0.007257 0.977018
2 14 20 0.499982 0.007463 0.920785
3 14 20 0.452610 0.007801 0.852279
4 14 20 0.400714 0.008351 0.809458
5 14 20 0.346413 0.009261 0.842781
6 14 20 0.301686 0.010280 1.010559
7 14 20 0.248318 0.011460 1.252199
8 14 20 0.194288 0.020123 0.667699

Table A.9: As in Table A.2 but for hybridK interpolating fieldis̄aγjB
ab
j q

b.

iκ tstart tend Ma σ χ2/d.o.f
1 14 20 0.497599 0.007541 0.923259
2 14 20 0.476691 0.007634 0.888033
3 14 20 0.452610 0.007801 0.852279
4 14 20 0.427266 0.008067 0.828729
5 14 20 0.402446 0.008470 0.833725
6 14 20 0.383880 0.008929 0.904069
7 14 20 0.363574 0.009673 1.061964
8 14 20 0.352858 0.010477 1.067675
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Table A.10: As in Table A.2 but for hybrid pion interpolatingfield iq̄aγjγ4B
ab
j q

b.

iκ tstart tend Ma σ χ2/d.o.f
1 12 26 0.545971 0.002851 0.832075
2 12 26 0.506394 0.002804 0.742263
3 12 26 0.458760 0.002777 0.656149
4 12 26 0.405994 0.002895 0.598155
5 12 26 0.350475 0.003298 0.533417
6 12 26 0.304385 0.003804 0.606792
7 12 26 0.249358 0.004178 1.360696
8 12 26 0.208625 0.006253 1.052875

Table A.11: As in Table A.2 but for hybridK interpolating fieldis̄aγjγ4B
ab
j q

b.

iκ tstart tend Ma σ χ2/d.o.f
1 12 30 0.507508 0.002329 1.103564
2 12 30 0.486136 0.002295 1.053223
3 12 30 0.461294 0.002267 0.984236
4 12 30 0.435686 0.002312 0.937038
5 12 30 0.411526 0.002464 0.941930
6 12 30 0.393909 0.002702 0.972512
7 12 30 0.375299 0.003155 0.957629
8 12 30 0.364972 0.003837 0.946693

Table A.12: As in Table A.2 but for conventionalρ-meson interpolating field̄qγjq for
equal (left) and unequal (right) input quark masses.

iκ tstart tend Ma σ χ2/d.o.f
1 16 22 0.727977 0.003081 1.430645
2 16 22 0.703885 0.003569 1.443563
3 16 22 0.677396 0.004380 1.419843
4 16 22 0.651460 0.005776 1.376014
5 16 22 0.628950 0.008230 1.270934
6 16 22 0.613760 0.011680 1.056854
7 16 22 0.600671 0.019740 0.371343
8 16 22 0.610257 0.033558 0.314031
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Table A.13: As in Table A.2 but for conventionalK∗-meson interpolating field̄sγjq.

iκ tstart tend Ma σ χ2/d.o.f
1 16 21 0.702220 0.003712 1.226565
2 16 21 0.690099 0.004005 1.165699
3 16 21 0.676832 0.004436 1.087662
4 16 21 0.663954 0.005059 1.028479
5 16 21 0.652908 0.005924 0.993326
6 16 21 0.645702 0.006864 0.995203
7 16 21 0.638674 0.008543 0.980531
8 16 21 0.639873 0.010192 0.541121

Table A.14: As in Table A.2 but for conventionalρ-meson interpolating field̄qγjγ4q.

iκ tstart tend Ma σ χ2/d.o.f
1 14 19 0.730291 0.003023 1.277665
2 14 19 0.706060 0.003362 1.222823
3 14 19 0.679365 0.003920 1.144671
4 14 19 0.652795 0.004849 1.027337
5 14 19 0.629165 0.006514 0.842173
6 14 19 0.611177 0.008703 0.750687
7 14 19 0.591406 0.013972 1.174988
8 14 19 0.571187 0.025088 0.980223

Table A.15: As in Table A.2 but for conventionalK∗-meson interpolating field̄qγjγ4q.

iκ tstart tend Ma σ χ2/d.o.f
1 14 19 0.705001 0.003419 1.212617
2 14 19 0.692769 0.003622 1.186451
3 14 19 0.679365 0.003920 1.144671
4 14 19 0.666161 0.004340 1.093618
5 14 19 0.654555 0.004935 1.025103
6 14 19 0.646385 0.005571 0.977872
7 14 19 0.638678 0.006803 0.940564
8 14 19 0.636179 0.008225 0.602243
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Table A.16: As in Table A.2 but for Hybridρ-meson interpolator̄qEjq. Error bars are
larger than signal for lightest quark mass, so this line is omitted

iκ tstart tend Ma σ χ2/d.o.f
1 12 19 0.742066 0.031162 1.236414
2 12 19 0.728289 0.038336 1.217807
3 12 19 0.721750 0.051659 1.125934
4 12 19 0.727662 0.076253 0.949960
5 12 19 0.716127 0.117422 0.887201
6 12 19 0.739333 0.182135 0.179079
7 12 19 0.563291 0.256713 1.428986

Table A.17: As in Table A.2 but for HybridK∗-meson interpolator̄qEjq. Error bars are
larger than signal for 3 lightest quark masses.

iκ tstart tend Ma σ χ2/d.o.f
1 15 19 0.664570 0.079990 0.951697
2 15 19 0.650558 0.096416 0.952065
3 15 19 0.632943 0.126131 0.902783
4 15 19 0.606679 0.184527 0.773465
5 15 19 0.540478 0.326554 0.553247

Table A.18: As in Table A.2 but for Hybridρ-meson interpolatoriq̄aγ5B
ab
j q

b.

iκ tstart tend Ma σ χ2/d.o.f
1 12 22 0.755673 0.019271 1.379385
2 12 22 0.728676 0.021446 1.381606
3 12 22 0.698463 0.024823 1.310405
4 12 22 0.667503 0.030086 1.159886
5 12 20 0.638159 0.037711 1.267486
6 12 22 0.620516 0.049515 1.293002
7 12 22 0.599346 0.092423 1.242542
8 12 22 0.482873 0.166664 1.150640
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Table A.19: As in Table A.2 but for HybridK∗-meson interpolatoriq̄aγ5B
ab
j q

b.

iκ tstart tend Ma σ χ2/d.o.f
1 12 16 0.727823 0.026971 1.856496
2 12 16 0.714623 0.027849 1.823662
3 12 16 0.700190 0.029151 1.767746
4 12 16 0.685916 0.031003 1.695327
5 12 16 0.673457 0.033508 1.583995
6 12 16 0.667761 0.036388 1.480800
7 12 16 0.666913 0.041800 1.304392
8 12 16 0.670980 0.048906 1.033869

Table A.20: As in Table A.2 but for Hybridρ-meson interpolatoriq̄aγ4γ5B
ab
j q

b.

iκ tstart tend Ma σ χ2/d.o.f
1 12 19 0.748734 0.018952 1.161976
2 12 19 0.725957 0.021154 1.054827
3 12 19 0.702988 0.024949 0.868723
4 12 19 0.683667 0.031311 0.650179
5 12 19 0.670175 0.040881 0.477861
6 12 19 0.665139 0.051335 0.381633
7 12 19 0.663100 0.067830 0.322528
8 12 19 0.645117 0.092296 0.616030

Table A.21: As in Table A.2 but for HybridK-meson interpolatoriq̄aγ4γ5B
ab
j q

b.

iκ tstart tend Ma σ χ2/d.o.f
1 12 22 0.728549 0.020418 0.762931
2 12 22 0.717493 0.021863 0.709354
3 12 22 0.705967 0.023989 0.637575
4 12 22 0.695830 0.026968 0.567746
5 12 22 0.688051 0.030813 0.514944
6 12 22 0.684327 0.034726 0.487495
7 12 22 0.680818 0.039806 0.551833
8 12 22 0.678415 0.044186 0.566844
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Table A.22: As in Table A.2 but for pseudovector interpolating field q̄γ5γ4γjq with equal
quark-antiquark masses.

iκ tstart tend Ma σ χ2/d.o.f
1 11 16 1.032468 0.008605 0.655486
2 11 16 1.012554 0.009433 0.636995
3 11 16 0.991178 0.010702 0.668774
4 11 16 0.970774 0.012717 0.756178
5 11 16 0.954319 0.016296 0.860163
6 11 16 0.943740 0.021157 1.035939
7 11 16 0.944531 0.036163 1.114880
8 11 16 0.964143 0.067878 0.832436

Table A.23: As in Table A.2 but for pseudovector interpolating field q̄γ5γ4γjq with un-
equal quark-antiquark masses.

iκ tstart tend Ma σ χ2/d.o.f
1 11 17 1.012299 0.009573 0.761536
2 11 17 1.002074 0.010059 0.760418
3 11 17 0.991242 0.010736 0.771770
4 11 17 0.981190 0.011679 0.799178
5 11 17 0.973582 0.013056 0.842819
6 11 17 0.969448 0.014549 0.908081
7 11 17 0.970464 0.018018 0.951555
8 11 17 0.979468 0.023043 0.983875
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Table A.24: As in Table A.2 but for axial-vector interpolating fieldq̄γ5γiq for equal quark-
antiquark masses. No appropriate fit window exists for the two lightest quark-masses.

iκ tstart tend Ma σ χ2/d.o.f
1 11 15 1.024361 0.007554 1.324197
2 11 15 1.005865 0.008140 1.322558
3 11 15 0.986890 0.009012 1.376443
4 11 15 0.970093 0.010275 1.431509
5 11 15 0.957989 0.012059 1.447858
6 11 15 0.953572 0.014024 1.486133

Table A.25: As in Table A.2 but for axial-vector interpolating field q̄γ5γiq for unequal
quark-antiquark masses. No appropriate fit window exists for the two lightest quark-
masses.

iκ tstart tend Ma σ χ2/d.o.f
1 11 15 1.005589 0.008229 1.337163
2 11 15 0.996364 0.008559 1.347139
3 11 15 0.986890 0.009012 1.376443
4 11 15 0.978504 0.009616 1.405811
5 11 15 0.972625 0.010402 1.413036
6 11 15 0.971012 0.011214 1.426639
7 11 15 0.974346 0.012624 1.393397
8 11 15 0.983868 0.014333 1.351058
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B

Obtaining the form of 〈r2〉

ConsiderGC(~q), the Breit-frame fourier transform of the spatial charge density

GC(~q) =

∫
dx3 ei~q.~xρ(~x) , (B.1)

− ∂

∂qi

∂

∂qi
GC((~q) =

∫
dx3 xixie

i~q.~xρ(~x) ,

− ∂

∂qi

∂

∂qi
GC((~q)

∣∣∣
~q=~0

=

∫
dx3 xixie

i~q.~xρ(~x)
∣∣∣
~q=~0

. = 〈r2〉

We can rewrite the LHS via the chain rule as

− ∂

∂qi

∂Q2

∂qi

∂

∂Q2
GC(Q2)

∣∣∣
Q2=0

, (B.2)

where
Q2 = −~q2 = qiqi − q0q0 = qiqi

in the Breit frame.
Recall that

∂Q2

∂qi
= 2qi . (B.3)

Thus we may write

〈r2〉 = − ∂

∂qi
2qi

∂

∂Q2
G(Q2)

∣∣∣
Q2=0

. (B.4)

∂
∂qi
qi = 3 in 3-dimensions, so this is simply

〈r2〉 = −6
∂

∂Q2
G(Q2)

∣∣
Q2=0

(B.5)
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C

Source dependence results for the
SU(3) β = 4.60, 20

3 × 40 lattice
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nG Qpaths = 1 Qpaths = 3

4

8

10

Table C.1: Exotic meson Effective masses from the203×40 lattice forχ2 with nsrc = 35.
Results for the heaviest four quark masses are depicted.

106



nG Qpaths = 1 Qpaths = 3

20

30

Table C.2: Exotic meson Effective masses from the203×40 lattice forχ2 with nsrc = 35.
Results for the heaviest four quark masses are depicted.
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nG Qpaths = 1 Qpaths = 3

4

8

10

Table C.3: Exotic meson Effective masses from the203×40 lattice forχ3 with nsrc = 35.
Results for the heaviest four quark masses are depicted.
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nG Qpaths = 1 Qpaths = 3

20

30

Table C.4: Exotic meson Effective masses from the203×40 lattice forχ3 with nsrc = 35.
Results for the heaviest four quark masses are depicted.
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D

Quark-level calculations

D.1 Two-point function
Consider the following two-point function for somex with x0 > 0.

χ(x; [U ])χ̃†(0; [U ]) (D.1)

whereχ = q̄a
2H

abqb
1 and χ̃†

ν = q̄b′

1 γ4H̃†b
′a′

γ4q
a′

2 . Here theH and H̃ are a product of
gamma matrices and gauge functionals, the tilde indicates that these may be different at
source and sink. We shall restrict ourselves here to the caseq1 6= q2, as this is the only
case that can be handled efficiently using lattice techniques. To minimise the necessity of
indices, let us chooseq1, q2 = u, d.

Inserting these operators, we rewrite the two-point function as

d̄a(x)Habub(x)ūb′(0)γ4H̃†b
′a′

γ4d
a′

(0) (D.2)

With the spinor indices written out explicitly this is

d̄a
α(x)Hab

αβ u
b
β(x) ūb′

β′(0) (γ4H̃†b
′a′

γ4)β′α′ d
a′

α′(0) (D.3)

One proceeds by contracting out quark pairs to construct propagators:

qa
α(x)q̄b

β(0) = Sab
αβ(x, 0)

q̄a
α(x)qb

β(0) = −Sba
βα(0, x) . (D.4)

We denoteS(x, 0) the fermion propagator from0 to x.
Eq. (D.3) corresponds to

−(Sd)
a′a
α′α(0, x)Hab

αβ (Su)
bb′

ββ′(x, 0) (γ4H̃†b
′a′

γ4)β′α′ . (D.5)

For Wilson-like fermions, the following property holds:

(γ5)αα′ S
ab
α′β′(0, x; [U ]) (γ5)β′β = Sba

βα

⋆
(x, 0; [U ]) (D.6)

enabling us to write the above in terms of forward-going quark propagators as

−(γ5)αγ(Sd)
aa′

γδ

⋆
(x, 0, [U ]) (γ5)δα′ H

ab
αβ (Su)

bb′

ββ′(x, 0, [U ]) (γ4H̃†b′a′

γ4)β′α′ . (D.7)

Finally, we make use of the symmetry ofγ5 under transposition to rewrite this as

−(γ5)γα(Sd)
aa′

γδ

⋆
(x, 0, [U ]) (γ5)α′δ H

ab
αβ (Su)

bb′

ββ′(x, 0, [U ]) (γ4H̃†b
′a′

γ4)β′α′ (D.8)

= −trsp{γ5H
ab (Su)

bb′(x, 0, [U ])γ4H̃†b
′a′

γ4γ5(Sd)
aa′†

(x, 0, [U ])} (D.9)

In the case of theπ-meson, whereH = γ5, this is simplytrsp{(Su)
aa′

(Sd)
aa′ †}.

110



D.2. Electromagnetic current insertion

D.2 Electromagnetic current insertion
Consider the following three-point function:

Gµ(x2, x1, 0) = χ(x2)j
µ(x1)χ

†(0) (D.10)

Let us take the case whereχ = q̄a
2Γq

a
1 . Thenχ† = q̄a

1γ4Γ
†γ4q

a
2 . The electromagnetic

current can be written asjµ =
∑

f Qf q̄fγ
αqf , whereQf is the electric charge of the

particular flavour involved. As above, let us takeq1, q2 asu, d to economise on indices.
Inner products, and thus bra-ket expressions are linear, sowe can take this sum out to

writeGµ(x2, x1, 0) as

qud̄
a
α(x2)Γαβu

a
β(x2) ū

b
γ(x1)γ

µ
γδu

b
δ(x1) ū

c
ρ(0)

(
γ4Γ

†γ4

)
ρσ
dc

σ(0)

+ qdd̄
a
α(x2)Γαβu

a
β(x2) d̄

b
γ(x1)γ

µ
γδd

b
δ(x1) ū

c
ρ(0)

(
γ4Γ

†γ4

)
ρσ
dc

σ(0) .

Contracting the fermion operators to form quark propagators yields

quS
⋆ca
σα(0, x2)Γαβ(S3)

ac
βρ(x2, x1, 0;µ)

(
γ4Γ

†γ4

)
ρσ

+ qdΓαβ(S̃3)
⋆ac
βρ (x2, x1, 0;µ)ua

β(x2) ū
c
ρ(0)

(
γ4Γ

†γ4

)
ρσ
, (D.11)

where we introduce the “ forwards 3-point propagator”:

(S3)
ab
αβ(x2, x1, 0;µ) = qa

α(x2) q̄
c
σ(x1)γ

µ
σρq

c
ρ(x1) q̄

b
β(0) (D.12)

= Sac
ασ(x2, x1)γ

µ
σρS

cb
ρβ(x1, 0) − Sab

αβ(x2, 0)γµ
σρS

⋆cc
ρσ(x1, x1)

and the “backwards 3-point propagator”:

(S̃3)
⋆ab

αβ(x2, x1, 0;µ) = q̄a
α(x2) q̄

c
σ(x1)γ

µ
σρq

c
ρ(x1) q

b
β(0) (D.13)

= S⋆ca
ρα(x1, x2)γ

µ
σρS

⋆bc
βσ(0, x1) + S⋆cc

ρσ(x1, x1)γ
µ
σρS

⋆ba
βα(0, x2)

The second terms in the forwards and backwards 3-point propagators represent dis-
connected loop contributions, and in the spirit of the quenched approximation we simply
drop them. The final feature of our calculation is that we use an improved conserved
vector current derived from the fermion action, rather thanthe local formulation above.
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E

REDUCE script for calculating ratios of
three to two-point functions

% To run type: in "Spin1FormFactors.red";
% To quit: bye;
%
ON DIV;
%
% A few definitions
%
INDEX AL,B,RHO,LAM,SIG;
VECTOR PRho,PpRho,MU,NU,PFinal,PInitial,TAU;
VECTOR pplus,pzero,pminus;
NOSPUR L; % Use LTR for traces.
MASS PRho=mRho, PpRho=mRho;
MSHELL PRho,PpRho;
VECTOR Dir0,DirI,DirJ,DirK;
%
ORDER G1,G2,G3;
%
FOR ALL L,AL,B LET SIGMA(L,AL,B) = (I/2) * (G(L,AL,B)-G(L,B,AL));
%
FOR ALL AL,B,P,M LET SPINSUM(AL,B,P,M) =

- ( (AL.B) - (P.AL) * (P.B)/(Mˆ2) );
%
% Note q = p’-p matches PRD 46 2141 (1992)
%
FOR ALL RHO,MU,SIG,P,PP,M LET HINT(RHO,MU,SIG,P,PP,M) = - (

G1 * (RHO.SIG) * (P.MU+PP.MU)
+G2 * ( (PP.RHO-P.RHO) * (MU.SIG) - (PP.SIG-P.SIG) * (MU.RHO) )
-G3 * ( (PP.RHO-P.RHO) * (PP.SIG-P.SIG) * (P.MU+PP.MU) )/(2 * Mˆ2) );

%
% Define vector p_0
LET pzero.Dir0 = mRho;
LET pzero.DirI = px_i;
LET pzero.DirJ = py_i;
LET pzero.DirK = pz_i;
LET pzero.pzero = mRho * mRho;
LET abs(mRho) = mRho;
normRho := 1/(4 * eRho* mRho);

% Define vector p_+
LET pplus.Dir0 = eRho;
LET pplus.DirI = px + px_i;
LET pplus.DirJ = py_i;
LET pplus.DirK = pz_i;
LET pplus.pplus = mRho * mRho;

% Define vector p_-
LET pminus.Dir0 = eRho;
LET pminus.DirI = px_i -px;
LET pminus.DirJ = py_i;
LET pminus.DirK = pz_i;
LET pminus.pminus = mRho * mRho;

LET pplus.pzero = mRho * eRho;
LET pminus.pzero = mRho * eRho;

LET PRho.PpRho = mRho * eRho;
LET Dir0.Dir0 = 1;
LET Dir0.DirI = 0;
LET Dir0.DirJ = 0;
LET Dir0.DirK = 0;
LET DirI.DirJ = 0;
LET DirI.DirK = 0;
LET DirJ.DirK = 0;
LET DirI.DirI =-1;
LET DirJ.DirJ =-1;
LET DirK.DirK =-1;

LET px_i = 0;
LET py_i = 0;
LET pz_i = 0;

LET eRho = SQRT(pxˆ2 + mRhoˆ2);
%
%
ResEle := SPINSUM(MU,RHO,PFinal,mRho) * HINT(RHO,TAU,SIG,PInitial,PFinal,mRho) *

SPINSUM(SIG,NU,PInitial,mRho) * normRho;
Forwards := SUB(PInitial=pzero,PFinal=pplus,ResEle);
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Backwards := SUB(PInitial=pplus,PFinal=pzero,ResEle);
Denom := SPINSUM(MU,MU,pplus,mRho) * SPINSUM(NU,NU,pzero,mRho) * normRho;
%
% Separation of components.
%
ResEle001 := SUB(MU=Dir0,NU=DirI,TAU=Dir0,Forwards) * SUB(MU=DirI,NU=Dir0,TAU=Dir0,Backwards) / SUB(MU=Dir0 ,NU=DirI,Denom);
ResEle101 := SUB(MU=DirI,NU=DirI,TAU=Dir0,Forwards) * SUB(MU=DirI,NU=DirI,TAU=Dir0,Backwards) / SUB(MU=DirI ,NU=DirI,Denom);
ResEle101Forwards := SUB(MU=DirI,NU=DirI,TAU=Dir0,For wards);
ResEle202 := SUB(MU=DirJ,NU=DirJ,TAU=Dir0,Forwards) * SUB(MU=DirJ,NU=DirJ,TAU=Dir0,Backwards) / SUB(MU=DirJ ,NU=DirJ,Denom);
ResEle203 := SUB(MU=DirJ,NU=DirK,TAU=Dir0,Forwards) * SUB(MU=DirK,NU=DirJ,TAU=Dir0,Backwards) / SUB(MU=DirJ ,NU=DirK,Denom);
ResEle303 := SUB(MU=DirK,NU=DirK,TAU=Dir0,Forwards) * SUB(MU=DirK,NU=DirK,TAU=Dir0,Backwards) / SUB(MU=DirK ,NU=DirK,Denom);
ResEle302 := SUB(MU=DirK,NU=DirJ,TAU=Dir0,Forwards) * SUB(MU=DirJ,NU=DirK,TAU=Dir0,Backwards) / SUB(MU=DirK ,NU=DirJ,Denom);

ResEle133 := SUB(MU=DirI,NU=DirK,TAU=DirK,Forwards) * SUB(MU=DirK,NU=DirI,TAU=DirK,Backwards) / SUB(MU=DirI ,NU=DirK,Denom);
ResEle132 := SUB(MU=DirI,NU=DirJ,TAU=DirK,Forwards) * SUB(MU=DirJ,NU=DirI,TAU=DirK,Backwards) / SUB(MU=DirI ,NU=DirJ,Denom);
ResEle331 := SUB(MU=DirK,NU=DirI,TAU=DirK,Forwards) * SUB(MU=DirI,NU=DirK,TAU=DirK,Backwards) / SUB(MU=DirK ,NU=DirI,Denom);

%
ON FACTOR;
%
OUT "Spin1Product.res";
ResEle001;
ResEle101;
ResEle101Forwards;
ResEle202;
ResEle203;
ResEle303;
ResEle302;
ResEle133;
ResEle132;
ResEle331;
ResEle101 + ResEle101 - ResEle202 - ResEle303;
SHUT "Spin1Product.res";
OUT T;
%
END;
%
% BYE;

113



F

Data pertaining to the calculation of
meson form-factors

Table F.1: Rho meson mass data

iκ tstart tend Ma σ χ2/d.o.f
1 17 30 0.7312 0.0030 1.230
2 17 30 0.7067 0.0036 1.209
3 17 30 0.6797 0.0046 1.131
4 13 21 0.6537 0.0049 0.936
5 13 21 0.6309 0.0056 0.737
6 13 21 0.6160 0.0064 0.610
7 11 20 0.6039 0.0071 0.122
8 11 20 0.5982 0.0080 0.634
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Table F.2: Pion mass data

iκ tstart tend Ma σ χ2/d.o.f
1 16 24 0.5411 0.0010 1.272
2 16 24 0.5013 0.0011 1.124
3 16 24 0.4539 0.0011 0.906
4 16 24 0.4014 0.0012 0.749
5 16 24 0.3471 0.0015 0.802
6 16 24 0.3020 0.0019 0.938
7 16 24 0.2412 0.0042 0.659
8 16 24 0.1968 0.0052 1.044

Table F.3: Strange quark contribution toK-meson form-factor.

iκ tstart tend GC σ χ2/d.o.f
1 20 30 0.8178 0.0041 0.405
2 20 30 0.8196 0.0045 0.363
3 20 30 0.8215 0.0051 0.329
4 18 30 0.8233 0.0055 0.621
5 18 30 0.8249 0.0061 0.510
6 18 30 0.8256 0.0068 0.576
7 18 24 0.8260 0.0077 0.971
8 16 24 0.8279 0.0078 0.742

Table F.4: Strange quark contribution toK∗-meson charge form-factor.

iκ tstart tend GC σ χ2/d.o.f
1 20 30 0.7713 0.0070 0.845
2 20 29 0.7706 0.0077 0.853
3 20 28 0.7689 0.0087 0.918
4 20 28 0.7657 0.0103 1.014
5 20 27 0.7602 0.0124 0.972
6 18 27 0.7564 0.0134 1.183
7 18 25 0.7491 0.0148 0.751
8 17 25 0.7454 0.0154 0.626
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Table F.5: Up quark contribution toK-meson form-factor.

iκ tstart tend GC σ χ2/d.o.f
1 20 30 0.8346 0.0042 0.619
2 20 30 0.8302 0.0045 0.346
3 20 30 0.8215 0.0051 0.329
4 18 30 0.8126 0.0055 0.415
5 18 30 0.8041 0.0062 0.398
6 18 30 0.7976 0.0068 0.361
7 18 24 0.7920 0.0077 0.750
8 16 24 0.7910 0.0081 0.935

Table F.6: Up quark contribution toK∗-meson charge form-factor.

iκ tstart tend GC σ χ2/d.o.f
1 20 30 0.7939 0.0067 0.897
2 20 29 0.7828 0.0075 0.886
3 20 28 0.7689 0.0087 0.918
4 20 28 0.7538 0.0106 1.016
5 20 27 0.7384 0.0133 1.021
6 18 27 0.7271 0.0147 1.206
7 18 24 0.7160 0.0172 0.806
8 17 24 0.7074 0.0192 0.695

Table F.7: Up quark contribution toπ-meson charge form-factor.

iκ tstart tend GC σ χ2/d.o.f
1 20 30 0.8327 0.0035 0.649
2 20 30 0.8284 0.0041 0.387
3 20 30 0.8215 0.0051 0.329
4 18 30 0.8149 0.0061 0.464
5 18 30 0.8100 0.0083 0.616
6 18 30 0.8091 0.0120 0.825
7 18 21 0.8123 0.0219 0.013
8 16 21 0.8332 0.0301 0.646
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Table F.8: Up quark contribution toρ-meson Charge form-factor.

iκ tstart tend GC σ χ2/d.o.f
1 20 30 0.7954 0.0054 1.021
2 20 29 0.7841 0.0066 0.940
3 20 28 0.7689 0.0087 0.918
4 20 25 0.7501 0.0122 1.102
5 20 24 0.7267 0.0179 1.116
6 18 23 0.7079 0.0218 1.491
7 18 21 0.6830 0.0316 0.406
8 17 20 0.6602 0.0398 0.914

Table F.9: Strange quark contribution toK∗ magnetic form-factor.

iκ tstart tend GM σ χ2/d.o.f
1 18 24 1.4064 0.0213 0.864
2 18 24 1.4125 0.0228 0.777
3 18 24 1.4182 0.0252 0.664
4 16 20 1.4276 0.0265 0.580
5 16 20 1.4352 0.0282 0.517
6 16 20 1.4378 0.0299 1.161
7 15 20 1.4403 0.0314 1.216
8 15 20 1.4409 0.0332 0.196

Table F.10: Up quark contribution toK∗ magnetic form-factor.

iκ tstart tend GM σ χ2/d.o.f
1 18 24 1.3733 0.0187 0.776
2 18 24 1.3953 0.0213 0.712
3 18 24 1.4182 0.0252 0.664
4 16 20 1.4453 0.0277 0.639
5 16 20 1.4687 0.0314 0.636
6 16 20 1.4850 0.0356 0.920
7 15 19 1.5006 0.0405 0.454
8 15 19 1.5127 0.0460 0.359
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Table F.11: Up quark contribution toρ magnetic form-factor.

iκ tstart tend GM σ χ2/d.o.f
1 18 24 1.3599 0.0160 1.113
2 18 24 1.3889 0.0194 0.845
3 18 24 1.4182 0.0252 0.664
4 16 20 1.4547 0.0293 0.716
5 16 20 1.4838 0.0365 0.874
6 16 20 1.4961 0.0467 1.114
7 15 19 1.5002 0.0601 1.007
8 15 17 1.4828 0.0812 0.329

Table F.12: Strange quark contribution toK∗ quadrupole form-factor.

iκ tstart tend GQ σ χ2/d.o.f
1 16 20 -0.2936 0.0280 0.268
2 16 20 -0.2937 0.0299 0.293
3 16 20 -0.2932 0.0327 0.339
4 16 21 -0.2921 0.0371 0.478
5 15 20 -0.2912 0.0411 0.524
6 15 19 -0.2875 0.0456 0.138
7 15 19 -0.2815 0.0527 0.323
8 15 19 -0.2798 0.0603 0.439

Table F.13: Up quark contribution toK∗ quadrupole form-factor.

iκ tstart tend GQ σ χ2/d.o.f
1 16 20 -0.2857 0.0264 0.455
2 16 20 -0.2886 0.0288 0.376
3 16 20 -0.2932 0.0327 0.339
4 16 21 -0.3014 0.0389 1.227
5 15 20 -0.3073 0.0447 1.174
6 15 22 -0.3170 0.0520 1.255
7 15 19 -0.3339 0.0646 1.032
8 15 19 -0.3417 0.0791 1.024
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Table F.14: Up quark contribution toρ quadrupole form-factor.

iκ tstart tend GQ σ χ2/d.o.f
1 16 20 -0.2852 0.0224 0.537
2 16 20 -0.2887 0.0263 0.367
3 16 20 -0.2932 0.0327 0.339
4 16 21 -0.2992 0.0438 0.788
5 15 20 -0.3026 0.0560 0.623
6 15 19 -0.2962 0.0744 0.451
7 15 19 -0.3091 0.1116 0.525
8 15 18 -0.3039 0.1652 0.626

Table F.15:Q2 values for pion (lattice units)

iκ Q2 σ
1 0.091542 0.000023
2 0.090542 0.000029
3 0.089069 0.000038
4 0.086962 0.000054
5 0.084038 0.000094
6 0.080797 0.000159
7 0.074714 0.000505
8 0.068450 0.000838

Table F.16:Q2 values forK (lattice units)

iκ Q2 σ
1 0.090486 0.000030
2 0.089868 0.000033
3 0.089069 0.000038
4 0.088124 0.000045
5 0.087097 0.000055
6 0.086234 0.000065
7 0.085220 0.000108
8 0.084666 0.000092
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Table F.17:Q2 values forρ (lattice units)

iκ Q2 σ
1 0.094518 0.000032
2 0.094250 0.000041
3 0.093923 0.000058
4 0.093574 0.000070
5 0.093236 0.000086
6 0.092998 0.000106
7 0.092793 0.000123
8 0.092694 0.000143

Table F.18:Q2 values forK∗ (lattice units)

iκ Q2 σ
1 0.094238 0.000042
2 0.094091 0.000049
3 0.093923 0.000058
4 0.093753 0.000064
5 0.093600 0.000070
6 0.093497 0.000075
7 0.093409 0.000080
8 0.093364 0.000084
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