The mobilisation of soil phosphorus in surface runoff from intensively managed pastures in south-east Australia

Thesis submitted to the University of Adelaide in fulfilment of the requirements for the degree of Doctor of Philosophy

Warwick John Dougherty

Department of Soil and Land Systems School of Earth and Environmental Sciences University of Adelaide

October 2006

Table of Contents

LIST OF FI	GURES	.VI
LIST OF TA	ABLES	III
ACKNOWI	EDGEMENTS	. IX
ABBREVIA	TIONS	XI
ABSTDACT	۲ ۲	VII
DECLARA	TION	<u>KIV</u>
CHAPTER	1 INTRODUCTION AND SYNOPSIS	15
1.1 Рно	OSPHORUS, AGRICULTURE AND THE WATER QUALITY PROBLEM	15
1.2 TH	E EXPERIMENTS	17
1.3 CO	NCLUSIONS	22
CHAPTER INTENSIVI REVIEW	2 PHOSPHORUS TRANSFER IN SURFACE RUNOFF FROM E PASTURE SYSTEMS AT VARIOUS SCALES: A LITERATURE	23
2.1 Int	RODUCTION	23
2.2 Co	NCEPTUAL MODEL OF P TRANSFER	25
2.2.1	Phosphorus sources	26
2.3 PHO	DSPHORUS MOBILISATION	28
2.3.1	Physical processes of mobilisation	30 31
2.3.2	Incidental mobilisation	<i>31</i> 35
2.3.5 2.4 PT	RANSPORT – PATHWAYS AND PROCESSES	36
2.4.1	Hillslope hydrology	36
2.4.2	Major pathways of P transfer	39
2.4.3	Variable source area (VSA)	40
2.5 SCA	ALE AND LANDSCAPE EFFECTS ON P MOBILISATION AND TRANSPORT	42
2.5.1	The effects of scale on processes determining P mobilisation	43
2.3.2	The effect of landscape on processes determining P mobilisation	45
2.5.5	Overland flow hydrological theory	40 46
2.5.5	Effect of time of contact and water: soil ratio	40
2.6 RA	INFALL SIMULATION	50
2.6.1	Rainfall/runoff intensity	51
2.6.2	Plot size (length)	51
2.6.3	Modelling the effect of rainfall simulation parameters	52
2.7 Co	NCLUSIONS	53
CHAPTER	3 GENERAL MATERIALS AND METHODS	55
3.1 Int	RODUCTION	55
3.2 Th	E STUDY SITES	55
3.2.1	Flaxley	55
3.2.2	Camden	57
3.3 AN	ALY IICAL QUALITY ASSUKANCE NEALT SIMULATION	0U 60
3.5 WA	TER SAMPLE HANDLING AND ANALYSIS	62
3.5.1	Sample handling and filtration	62

3.5	5.2 Runoff sample analysis	63
3.6	SOIL SAMPLING, HANDLING AND ANALYSIS	65
3.6	5.1 Sampling collection and preparation	65
3.6	5.2 Soil sample analysis	66
3.7	ANCILLARY MEASUREMENTS	68
CHAPT	TER 4 PROCESSES OF P MOBILISATION AND CONCENTRATIONS	IN
RUNOI	FF – EFFECT OF PLOT SCALE AND RAINFALL INTENSITY	70
41	Introduction	70
$\frac{1}{4}$	MATERIALS AND METHODS	70
ч.2 Д 2	1 I ocation and site management	72
4.2 1 2	 2 Runoff plots and rainfall simulations 	73
4.2 1 2	 Structure of rainfall simulation experiments 	77
4.2 1 2	Silucture of raingut simulation experiments	78
4.2	2.4 Sou sampling and unalysis	70 78
4.2 1 2	2.5 Kunojj sumple unu ysis	70
4.2	RESULTS AND DISCUSSION	70
+.J	Conoral soil characteristics	7) 70
4.5	2 Plot hydrology and runoff	
4.3	2.2 Flot hydrology and runoff.	00
4.3	Conclusions and managements	02
4.4	CONCLUSIONS AND IMPLICATIONS	
CHAPT	FER 5 THE EFFECT OF RAINFALL INTENSITY ON THE PROCESSE	S
OF P M	IOBILISATION AND THE RESULTANT CONCENTRATION OF P IN	
RUNOI	FF	88
5.1	INTRODUCTION	
5.2	MATERIALS AND METHODS - RAINFALL INTENSITY EFFECTS ON P FORM AND	
	CONCENTRATION	90
.5.2	2.1 Soil sampling and analysis	91
5.2	2.2 Runoff sampling and analysis	91
5.2	2.3 Statistical analysis	91
5.3	RESULTS AND DISCUSSION - RAINFALL INTENSITY EFFECTS ON P FORM AND	
0.10	CONCENTRATION	92
53	Figure 2 Fig	92
5.3	Is P mobilisation source or rate limited?	95
54	MATERIALS AND METHODS - MODELLING HYDROLOGICAL EFFECTS ON RUNOFE P	
5.1	CONCENTRATIONS	98
54	1 Rackground theory	100
5.1 5.4	 Measurement and/or derivation of hydrological parameters for rainfall 	.100
5.4	simulations	103
5 4	3 Derivation of P release kinetic parameters	103
5.4 5.4	4 Statistical analysis	104
55	RESULTS AND DISCUSSION - MODELLING HYDROLOGICAL EFFECTS ON RUNOFE P	.100
5.5	CONCENTRATIONS	106
55	Prediction of the relationship between rainfall simulation and hillslope ru	noff
5.5	P concentrations - Camden	100
55	5.2 Sensitivity analysis and limitations of this modelling approach	111
5.5	CONCLUSIONS	112
3.0		
CHAPT	TER 6 THE EFFECT OF SOIL P STATUS ON RUNOFF P	
CONCI	ENTRATIONS	
6.1	INTRODUCTION	.115
6.2	MATERIALS AND METHODS	

621	Soil P manning	117
622	Rainfall simulation	118
6.2.3	Ancillary measurements	119
6.2.4	Comparison of Flaxley soil and runoff data with other data	119
6.2.5	Statistical analysis	120
6.3 RESI	II TS	121
6.3.1	Flaxlev site characteristics	121
6.3.2	Rainfall simulation characteristics	122
6.3.3	Relationship between soil P measures	124
6.3.4	Soil P-runoff P relationships	126
6.3.5	Comparison of Australian and North American soil P - runoff P relations	hips
64 CON	CUISIONS	<i>130</i> 133
CHADTED 7	STRATIFICATION FORMS AND MOBILITY OF DHOSDHODI	135
IN THE TOP	SOILS OF CHROMOSOLS USED FOR DAIRYING	135
7.1 Intr	ODUCTION	135
7.2 Met	HODS	137
7.2.1	Soil sampling	137
7.2.2	Soil preparation and analysis	138
7.2.3	Calculation of the effective depth of interaction (EDI)	138
7.2.4	Runoff generation and collection	139
7.2.5	Runoff analysis	140
7.2.6	Ultrafiltration of runoff samples	140
7.2.7	Statistical analysis	142
7.3 Resu	JLTS	143
7.3.1	General soil properties	143
7.3.2	Soil P forms	146
7.3.3	P stratification	147
7.3.4	Labile soil P forms	150
7.3.5	Effective depth of interaction	151
7.3.6	The physical and chemical distribution of P in runoff: the effect of soil P status	151
737	Situits	151 153
7.3.7	CUSIONS	155
	$\mathbf{F} \mathbf{V} \mathbf{A} \mathbf{M} \mathbf{N} \mathbf{A} \mathbf{T} \mathbf{I} \mathbf{O} \mathbf{N} \mathbf{O} \mathbf{F} \mathbf{S} \mathbf{O} \mathbf{I} \mathbf{I} \mathbf{D} \mathbf{F} \mathbf{O} \mathbf{D} \mathbf{M} \mathbf{S} \mathbf{U} \mathbf{S} \mathbf{I} \mathbf{N} \mathbf{O} \mathbf{S} \mathbf{O} \mathbf{I} \mathbf{D} \mathbf{S} \mathbf{T} \mathbf{A} \mathbf{T} \mathbf{F} \mathbf{S}^{1} \mathbf{D}$	150
NMR	EXAMINATION OF SOIL I FORMS USING SOLID-STATE T	159
8.1 INT	RODUCTION	159
8.2 MA	ΓERIALS AND METHODS	161
8.2.1	Site description and soil sampling	161
8.2.2	Soil analysis	161
8.2.3	NMR Spectroscopy	162
8.3 RES	ULTS AND DISCUSSION	165
8.3.1	Wet chemical P analyses	165
8.3.2	Comparison of ³¹ P CP and DP NMR spectra for soil M-H	166
8.3.3	Spin counting	170
8.3.4	The effect of paramagnetic iron on NMR observability	177
8.4 CON	ICLUSIONS	181
CHAPTER 9	EVALUATION OF DE-STRATIFICATION TO REDUCE RUNO	FF P
CUNCENTR	ATIONS	182
9.1 INTR	ODUCTION	182

9.2 MATERIAL AND METHODS	184
9.2.1 Laboratory incubation	184
9.2.2 De-stratification in runoff trays	
9.3 RESULTS AND DISCUSSION	
9.3.1 Laboratory incubation	
9.3.2 De-stratification in runoff trays	
9.3.3 Possible limitations on the benefits of de-stratification	
9.4 Conclusions	190
CHAPTER 10 CONCLUSIONS AND INDUSTRY IMPLICATIONS	191
10.1 SUMMARY OF FINDINGS	191
10.2 FUTURE RESEARCH	193
CHAPTER 11 REFERENCES	196

List of Figures

FIGURE 2-1. CONCEPTUAL MODEL OF PHOSPHORUS (P) TRANSFER.	26
FIGURE 2-2. THE PHOSPHORUS (P) CYCLE IN THE SOIL-PLANT CONTINUUM	27
FIGURE 2-3. SCHEMATIC REPRESENTATION OF THE SOIL/PLANT SYSTEM.	29
FIGURE 2-4. BASIC COMPONENTS OF HILLSLOPE HYDROLOGY	37
FIGURE 2-5. COMMON ZONES OF MOISTURE ACCUMULATION IN THE LANDSCAPE	39
FIGURE 2-6. SCHEMATIC DIAGRAM OF CHANGING SATURATION ZONES DURING A RAINFALL EVENT	39
FIGURE 2-7. RELATIONSHIP BETWEEN AMOUNT OF PHOSPHORUS DESORBED AND TIME AND PHOSPHORUS	
AMENDMENT LEVELS AND SOLUTION TO SOIL RATIO (W)	49
FIGURE 3-1. LOCATION OF THE TWO STUDY SITES IN RELATION TO DAIRYING REGIONS OF AUSTRALIA	56
FIGURE 3-2. AVERAGE MONTHLY RAINFALL AND TEMPERATURE AT FLAXLEY.	57
FIGURE 3-3. MONTHLY AVERAGE RAINFALL AND TEMPERATURE FOR CAMDEN	59
FIGURE 3-4. RAINFALL SIMULATOR (FLAXLEY, SA) DURING CALIBRATION PHASE.	61
FIGURE 3-5. CALIBRATION CURVES FOR THE ROTATING DISC RAINFALL SIMULATOR	62
FIGURE 3-6. APPARATUS FOR EXTRACTING SOIL WATER FROM MOIST SOIL SAMPLES.	67
FIGURE 3-7. CALIBRATION DATA FOR THETA PROBE	69
FIGURE 4-1. KUNOFF PLOTS AT CAMDEN SHOWING THE RUNOFF COLLECTION DRAIN, AND THE LOCATION OF THE	IE 74
FLOW MEASUREMENT AND SAMPLING EQUIPMENT.	/4
FIGURE 4-2. COMPARISON OF DRP AND TP CONCENTRATIONS IN RUNOFF (FROM LARGE PLOTS) BETWEEN	76
ARTIFICIAL AND NATURAL RUNOFF EVENTS (TIME 1 – LEFT; TIME 2 – RIGHT)	ייי רר
FIGURE 4-5. SWINGING BOOM KAINFALL SIMULATOK USED AT CAMDEN	//
TIGURE 4-4, PLOT AKKANGEMENT AT CAMDEN SHOWING THE KAINFALL SIMULATION PLOTS (SIT) NESTED WITH THE LADCED (LL) DLOTS (NOT TO SCALE)	-11N 79
THE LARGER (LL) PLOTS (NOT TO SCALE)	76
AND F. NOTE DIECEDENT V SCALES DETWEEN SHAND I L METHODS	'1 - Q 1
AND L2. NOTE DIFFERENT 1-SCALES BETWEEN SITAND LL METHODS FIGURE 4-6 RELATIONSHID RETWEEN CACLARD (0-0.01 M) AND DRP IN DUNGEE AT F. AND F. ($\delta = 1$ addeed of	01)T
I OURE 4-0. RELATIONSHIE DET WEEN CACE -1 (0-0.01 M) AND DRI IN KONOFT AT E AND E 2. ($v =$ EAROE-1 EC	/1,
FIGURE 4-7 RELATIONSHIP RETWEEN ADJUSTED (PARTIAL RESIDIALS) DISSOLVED REACTIVE PHOSPHORUS	05
CONCENTRATIONS IN RUNDEE AND A) SOIL CACL -P (0-0.01 M) B) SIMULATION METHOD (L.L LARGE	
PLOTS - LOW INTENSITY: SH - SMALL SCALE - HIGH INTENSITY). AND C) EVENT (E_1 AND E_2)	84
FIGURE 4-8. CONCENTRATION OF DRP DURING RUNOFF EVENTS E1 AND E2 FOR BOTH LL AND SH METHODS	87
FIGURE 5-1. EFFECT OF RAINFALL INTENSITY ON MEAN DRP CONCENTRATION IN RUNOFF	93
FIGURE 5-2. RUNOFF RATES (AVERAGE OF FOUR REPLICATES) FOR EACH OF THE RAINFALL INTENSITIES AS A	
FUNCTION OF TIME AND APPLIED RAINFALL	95
FIGURE 5-3. THE RELATIONSHIP BETWEEN RAINFALL INTENSITY AND AVERAGE RESIDENCE TIME ($T_{AV} - \blacklozenge$) and	
AVERAGE DEPTH (D_{AV} - \Diamond) OF RUNOFF ON 1 M ² PLOTS	95
FIGURE 5-4. CHANGE IN DRP DURING AN EVENT	97
FIGURE 5-5. CHANGES IN RUNOFF RATES (\circ) and relative P concentration (\bullet) in runoff (C_T/C_0 =	
CONCENTRATION AT TIME 'T' RELATIVE TO THAT AT TIME = 0) AFTER THE COMMENCEMENT OF RUNOFF F	FOR
RAINFALL INTENSITIES OF 20MM/HR (LEFT) AND 150 MM/HR (RIGHT)	98
FIGURE 5-6. THE EFFECT OF TIME AND SUSPENDED SEDIMENT (SS) CONCENTRATION ON THE CONCENTRATION (OF
DRP IN SOLUTION	.100
FIGURE 5-7. SHALLOW RUNOFF FLOWING OVER THE SOIL SURFACE DURING RAINFALL SIMULATION ILLUSTRATI	NG
THE STABILITY OF THE SOIL SURFACE AND THE PROTECTION FROM RAINDROP IMPACT AFFORDED BY THE	
PASTURE BIOMASS	.100
FIGURE 5-8. CROSS SECTION OF INTACT CORE ARRANGEMENT FOR DETERMINING A AND B PARAMETERS FOR US	E IN
EQ. [6]	.105
FIGURE 5-9. RELATIONSHIP BETWEEN ACTUAL (• & SOLID LINE) AND PREDICTED (• & DASHED LINE) AVERAGE	Ξ
RUNOFF DRP CONCENTRATION RELATIVE (AT VARIOUS INTENSITIES) TO THAT AT AN INTENSITY OF 20	
MM/HR (I.E. DRP ₁ :DRP ₂₀) AS, A) A FUNCTION OF RAINFALL INTENSITY, AND B) AS A FUNCTION OF RUNOF	F
	.108
FIGURE 5-10. KELATIONSHIP BETWEEN ACTUAL (• & SOLID LINE) AND PREDICTED (• & DASHED LINE)	1.05
CUNCENTRATION OF DKP (UNDER CONSTANT HYDROLOGICAL CONDITIONS DURING THE LAST 5 MINUTES	5 OF
RUNOFF) RELATIVE TO THAT AT AN INTENSITY OF 20 MM/HR (I.E. $DKP_1:DKP_{20}$) AS, A) A FUNCTION OF	100
KAINFALL IN TENSITY, AND B) AS A FUNCTION OF KUNOFF KATE	.109 7N
FIGURE 5-11, COMPARISON OF THE MEASURED AND PREDICTED RATIOS OF RUNOFF DKP BETWEEN THE CAMDE	±N 110
LARGE FLOT-LOW INTENSITY (LL) AND SMALL FLOT-HIGH INTENSITY (SII) KAINFALL SIMULATIONS Figure 5-12. Senigitivity analysis of several key compinations of papameters in the model	111
FIGURE 5-12. SENSITIVITI ANALISIS OF SEVERAL RET COMBINATIONS OF PARAMETERS IN THE MODEL Figure 6-1. Of sen D (0, 0, 1, m) mad de Et avt ev fast	121
FIGURE 0-1. OLGEN F (0-0.01 M) MAP OF FLAALEY EAGI	.121

FIGURE 6-2. THE RELATIONSHIP BETWEEN THE VARIOUS MEASURES OF SOIL P (0-0.01 M) FOR THE RAINFALL
SIMULATION SOILS
FIGURE 0-5. RELATIONSHIPS BETWEEN OLSEN P (0-0.01 M) AND RUNOFF TP AND DRP FOR THE FLAXLEY FIELD
KAINFALL SIMULATIONS
FIGURE 0-4. RELATIONSHIP BETWEEN CACL ₂ -F (0-0.01 M) AND KUNOFF TF AND DAT FOR THE FLAXLEY FIELD
$\mathbf{KAINFALL SIMULATIONS}$
FIGURE 0-5. KELATIONSHIP BETWEEN SWP (0-0.01 M) AND RUNOFF TP AND DKP FOR THE FLAXLEY FIELD
RAINFALL SIMULATIONS
FIGURE 0-0. KELATIONSHIP BETWEEN BRAY P (0-0.01 M) AND RUNOFF DRP FOR THE FLAXLEY SITE AND SEVERAL
OTHER AUSTRALIAN STUDIES
FIGURE 6-7. RELATIONSHIP BETWEEN DEGREE OF P SORPTION SATURATION (ADJUSTED TO 0-0.01 M) AND RUNOFF
DRP FOR THE FLAXLEY SITE AND SEVERAL OTHER AUSTRALIAN STUDIES
FIGURE /-1. THE RELATIONSHIP BETWEEN TOTAL P AND OLSEN (LEFT) AND CACL ₂ -KP (RIGHT) IN THE 0-0.01M
INCREMENT OF THE FLAXLEY (♥) AND CAMDEN (♥) SOILS
FIGURE 7-2. P SORPTION ISOTHERMS FOR SELECTED FLAXLEY (LEFT) AND CAMDEN (RIGHT) SOILS (0-0.01 M)14.
FIGURE 7-3. THE RELATIONSHIP BETWEEN OLSEN P AND EPC IN THE 0-0.01 M INCREMENT OF THE FLAXLEY (*)
AND CAMDEN (\forall) SOILS
FIGURE 7-4. KELATIONSHIP BETWEEN SOIL P STATUS (OLSEN P) AND ORGANIC CARBON FOR THE FLAXLEY (*) ANI
CAMDEN (\forall) SOILS. [4]
FIGURE 7-5. RELATIONSHIP BETWEEN CONCENTRATIONS OF TOTAL SOIL P AND ORGANIC ($P_0 - \Phi$) AND INORGANIC
$(P_1 - 0)$ FORMS OF P IN THE TOP 0.01M OF SOIL (LEFT), AND PROPORTIONS OF ORGANIC AND INORGANIC P IN
THE TOP U.UI M OF THE SOIL EXPRESSED AS PERCENTAGES OF TOTAL SOIL P (RIGHT)
FIGURE 7-6. EXAMPLES OF DEPTH DISTRIBUTION OF CACL ₂ -P FOR FLAXLEY (LEFT) AND CAMDEN (RIGHT) SOILS
FIGURE /-/. RELATIONSHIP BETWEEN SOIL FERTILITY (EXPRESSED AS OLSEN P; 0-0.10 M) AND DEGREE OF P
STRATIFICATION FOR THE FLAXLEY (◊) AND CAMDEN (♦) SOILS (EXPRESSED AS RATIO OF CACL ₂ -P MASS IN
THE 0-0.01 M INCREMENT TO THAT IN THE 0-0.10 M INCREMENT, I.E. $CACL_2$ -P ₁ : $CACL_2$ -P ₁)
FIGURE 7-8. RELATIONSHIP BETWEEN OLSEN P ₁ AND THE PROPORTION OF CACL ₂ EXTRACTABLE P PRESENT AS
CACL ₂ -UP (UN-REACTIVE P) OF THE U-U.01 M INCREMENTS OF THE FLAXLEY (\Diamond) AND CAMDEN (\blacklozenge) SOILS.
ال المحمد المحمد
FIGURE 7-9. RELATIONSHIP BETWEEN OLSEN P (0-0.01 M) AND P CONCENTRATIONS AND FORM (DUP% OF 1DP)
IN RUNOFF FROM FLAXLEY (LEFT) AND CAMDEN (RIGHT). DISSOLVED REACTIVE P (MG/L DRP - ▲) AND
DISSOLVED UN-REACTIVE PHOSPHORUS (% DUP - ●)
FIGURE /-10. PHOSPHORUS CONCENTRATIONS AND FORMS IN VARIOUS SIZE FRACTIONS OF THE FLAXLEY RUNOFF
SAMPLES
FIGURE 7-11. PHOSPHORUS CONCENTRATIONS AND FORMS IN VARIOUS SIZE FRACTIONS OF THE CAMDEN RUNOFF
SAMPLES
FIGURE 7-12. PROPORTION OF ANALYTES IN VARIOUS SIZE RANGES (AVERAGE OF 5 SAMPLES AT EACH SITE) IN
RUNOFF SAMPLES FROM FLAXLEY AND CAMDEN
FIGURE 8-1. EFFECT OF RECYCLE DELAY ON "P DP NMR SIGNAL INTENSITY FOR SOIL L-H, THE ASHED RESIDUE
OF SOIL M-H, THE NAOH-ED I A EXTRACT OF SOIL M-H AND THE HF-TREATED RESIDUE OF SOIL M-H 16
FIGURE 8-2. "P CP AND DP NMR SPECTRA OF SOIL M-H, AND H ₂ SO ₄ TREATED, ASHED AND HF TREATED
RESIDUES OF SOIL M-H. SPINNING SIDE-BANDS ARE MARKED WITH AN ASTERISK (*)
FIGURE 8-3. "P CP AND DP NMR SPECTRA OF SOILS FROM LOWER ELEVATIONS OF THE EXPERIMENTAL SITE, M-L
M-M AND M-H. THE VERTICAL SCALES HAVE BEEN ADJUSTED TO ALLOW DIRECT COMPARISON BETWEEN
CORRESPONDING CP AND DP SPECTRA FOR EACH SOIL (SEE TEXT). SPINNING SIDE BANDS ARE MARKED WITH
AN ASTERISK (*)
FIGURE 8-4. ³¹ P CP AND DP NMR SPECTRA OF SOILS FROM INTERMEDIATE ELEVATIONS OF THE EXPERIMENTAL
SITE, M-L, M-M AND M-H
FIGURE 8-5. ³¹ P CP AND DP NMR SPECTRA OF SOILS FROM THE UPPER ELEVATIONS OF THE EXPERIMENTAL SITE,
U-M AND U-H
FIGURE 8-6. ³¹ P CP AND DP NMR SPECTRA OF RESIDUE AND EXTRACT (UN-AMENDED AND NEUTRALISED)
FRACTIONS FROM NAOH-EDTA EXTRACTION OF SOIL M-H
FIGURE 9-1. SPATIAL CONTRIBUTION TO MODELLED P LOAD EXPORTED IN RUNOFF FROM FLAXLEY EAST (DAVIES
<i>ET AL</i> . 2005B)
FIGURE 9-2. EFFECT OF DE-STRATIFICATION ON SOIL PROPERTIES FROM LABORATORY INCUBATION EXPERIMENTS
FIGURE 9-3. THE DEGREE OF STRATIFICATION (CACL ₂ -P ₁ :CACL ₂ -P ₁₀) OF STRATIFIED (\bullet) AND DE-STRATIFIED (\circ)
SOILS AS A FUNCTION OF SOIL P STATUS
FIGURE 9-4. THE RELATIONSHIP BETWEEN SOIL P (OLSEN P_{10}) and runoff TP (LEFT) and DRP (RIGHT) for
STRATIFIED (\bullet) AND DE-STRATIFIED (\circ) SOILS.
FIGURE 9-5. THE RELATIONSHIP BETWEEN P ACCUMULATION AND THE CHANGE IN SOIL P

List of Tables

TABLE 2-1. HYDROLOGICAL PROCESSES AND APPROXIMATE TIMEFRAMES FOR THEIR OCCURRENCE	38
TABLE 2-2. PHOSPHORUS TRANSFER FROM INTENSIVE PASTURE SYSTEMS BY SURFACE AND SUB-SURFACE	
PATHWAYS.	40
TABLE 3-1. MORPHOLOGICAL DESCRIPTION OF TYPICAL SOIL PROFILE IN THE MID-SLOPE POSITION AT FLAXLEY	.58
TABLE 3-2. MORPHOLOGICAL DESCRIPTION OF TYPICAL SOIL PROFILE FROM CAMDEN	59
TABLE 4-1. KEY CHEMICAL CHARACTERISTICS OF THE RUNOFF PLOT SOIL	79
TABLE 4-2. MAJOR CHARACTERISTICS OF RIVER WATER USED IN RAINFALL SIMULATIONS	80
TABLE 4-3. HYDROLOGICAL CHARACTERISTICS OF THE SH AND LL METHODS FOR RUNOFF EVENTS E_1 and E_2	80
TABLE 4-4. MODEL PARAMETER ESTIMATES (Eq. 4-3) FOR RUNOFF P CHARACTERISTICS	83
TABLE 5-1. RUNOFF CHEMICAL CHARACTERISTICS FOR VARIOUS RAINFALL INTENSITIES	92
TABLE 5-2. SUMMARY OF KEY HYDROLOGICAL CHARACTERISTICS AT DIFFERENT RAINFALL INTENSITIES	94
TABLE 5-3. MEANS OF LOADS OF RUNOFF P FORMS AS A FUNCTION OF RAINFALL INTENSITY	96
TABLE 6-1. SUMMARY OF THE HYDROLOGICAL CHARACTERISTICS OF THE RAINFALL SIMULATIONS	122
TABLE 6-2. SUMMARY OF SOIL CHARACTERISTICS (0-0.01 M) AT SITES USED FOR THE RAINFALL SIMULATIONS.	123
TABLE 6-3. SUMMARY OF RUNOFF CHEMICAL CHARACTERISTICS.	124
TABLE 6-4. COMPARISON OF LABILE SOIL P (MEASURED AS CACL ₂ -P) AT OLSEN P CONTENTS OF 20, 60 AND 100	0
MG/KG FOR THE FLAXLEY SOILS WITH THAT OF OTHER SOILS REPORTED IN THE LITERATURE	127
TABLE 7-1. Key properties of the 0-0.01 m soil increments	144
TABLE 7-2. SLOPE AND SIGNIFICANCE OF RELATIONSHIP BETWEEN OLSEN P ₁₀ AND CACL ₂ -P FOR EACH OF THE	
DEPTH INCREMENTS SAMPLED	148
TABLE 7-3. PHOSPHORUS AND CARBON CONTENTS OF SAMPLES SUBJECT TO ULTRAFILTRATION.	153
TABLE 8-1. SUMMARY OF KEY SOIL SAMPLE PROPERTIES	165
TABLE 8-2. SUMMARY OF SOIL P FRACTIONS	166
TABLE 8-3. ³¹ P NMR OBSERVABILITY IN WHOLE AND TREATED SOIL FRACTIONS MEASURED BY SPIN-COUNTING	ŀ.
	172

Acknowledgements

Firstly I would like to thank my supervisors, Drs David Chittleborough, Jim Cox and David Nash for their guidance and encouragement. Our numerous discussions of the science of P mobilisation and transport and the merits of various approaches to the investigations were greatly appreciated. I am a much better scientist for your contributions.

To all the people that assisted in the laboratory and field I thank you for your advice, assistance and good company. To Colin Rivers (laboratory manager extraordinaire, without whom our laboratories would not function), thanks for your constant good humour and for advice with methods. To Dr Ron Smernik (Dr Chemistry) – thank you very much with your help with the NMR and discussions about soil chemistry – some of your passion for chemistry may well have rubbed off on me! Thanks go to Mark Gepps and Bob Ingram of SARDI who shared many miserable and cold winter days in the field carrying out rainfall simulations. They both provided invaluable assistance and more importantly great company (who knows how much coffee and fruit cake we consumed on those days!). Thank you very much to Nigel Fleming of SARDI for your support and helpful suggestions throughout my PhD. The contribution to spatial mapping by Phil Davies (CSIRO Land and Water) is gratefully acknowledged.

Thanks goes to Dairy Australia and the NSW Department of Primary Industries who provided financial support for my PhD and a conference/study trip to the USA and UK. In particular my thanks go to Dr Tom Davison and Dr Ken Peverill of Dairy Australia who supported my research. I hope my research has made some small contribution to the Australian Dairy Industry and its hard working farmers.

To my fellow students, thanks for the great times! I will take away with me many fond memories of my time spent with you all. To my fellow members of the 'Prescott Group' - I'm sure our tongue in cheek lunchtime discussions broadened our vision of the world – I know they shocked other peoples! Special thanks in particular go to Thérèse and Ryan for your friendship, wonderful company and the many discussions we had about science - but more importantly all the other important world issues that we mulled over!

ix

Thanks you to my parents, who have always believed in me. When they read my PhD research proposal they looked a little bewildered but figured I must have been up to something useful – I swear I have! To 'Granny Jones' who once described me as 'a most unlikely academic type' and chuckled at the prospect of me undertaking a PhD, I took all that as a compliment and know that you meant it to be so. Don't worry Granny, I don't think I will ever be a 'Nutty Professor'.

My greatest thanks though are reserved for my wife Edda. Thank you so very much for your support. You never questioned my need to 'just duck in' to the lab on our way somewhere, or just 'pop out' to Flaxley – always 'just for an hour or two' - when I could have been spending time with you. You encouraged my enthusiasm for my research and never stopped supporting me through the last 3 years. To Edda and our little boy Caleb, you are my inspiration.

I dedicate this thesis to the memory of my late Grandfathers, Raymond 'The Chief' Jones and Sir Ivan 'Gramps' Dougherty who both believed in environmental stewardship long before it became fashionable. For you both, I hope my research can make some small contribution to a better environment.

Abbreviations

CaCl ₂ -P	_	molybdate reactive P in 10 mM calcium chloride soil extracts
CaCl ₂ -TP	_	total P in 10 mM calcium chloride soil extracts
CaCl ₂ -UP	_	un-reactive P in 10 mM calcium chloride soil extracts
DOC	_	dissolved organic carbon
DRP	_	dissolved (<0.45 µm) molybdate reactive P
DUP	_	dissolved (<0.45 µm) un-reactive P (TDP minus DRP)
EC	_	electrical conductivity
EPC	_	equilibrium P concentration
EDI	_	effective depth of interaction
ICPAES	_	inductively coupled plasma emission spectroscopy
LLD	_	lower limit of detection
LSD	_	least significant difference
NMR	_	nuclear magnetic resonance
OC	_	organic carbon
Р	_	phosphorus
P _i	_	soil inorganic P
Po	_	soil organic P
SE	_	standard error
TDP	_	total dissolved (<0.45 µm) P
TP	_	total soil P
*	_	P < 0.05 (in statistical analysis and interpretation)
**	_	<i>P</i> <0.01 (in statistical analysis and interpretation)
***	_	P < 0.001 (in statistical analysis and interpretation)

Abstract

The application of substantial quantities of phosphorus (P) has been required to increase productivity on many Australian soils. Unfortunately, these applications have often resulted in increased concentrations of P in surface runoff that contributes to excessive algal growth in surface waters and consequently a decline in their quality. The concentrations of P in runoff from intensively managed pastures are often high (1-5 mg/L) and typically at least an order of magnitude higher than water quality targets. Although a substantial amount of research has been devoted to the problem of P accumulation and mobilisation in arable systems (in which P is typically mobilised by the action of raindrop impact and subsequently transported in particulate form), there has been substantially less research in intensively managed pasture systems. Consequently, there is a paucity of knowledge concerning the fundamental processes and factors responsible for P in runoff from these systems and a dearth of truly effective remedial strategies.

In this thesis, the accumulation of P in soil under intensively managed pastures used for dairying and the processes responsible for its mobilisation in surface runoff were investigated. This research was undertaken at two research sites in South-east Australia, i.e. Camden in New South Wales and Flaxley in South Australia.

A number of factors relating to scale and hydrology may influence the processes of P mobilisation and its concentration in runoff. A comparison was made of the forms and concentrations of P in runoff between a typical rainfall simulation methodology and large runoff plots. The effect of rainfall intensity on the forms and concentrations of P was also investigated. The concentrations of P in runoff from small-scale, high-intensity rainfall simulations were on average 33% lower than those from large plots (approximating hillslopes) although the processes of mobilisation (as evidenced by runoff P forms) were similar. Increasing rainfall intensity resulted in decreasing P concentrations, but similar forms of P. It was hypothesised that changes in hydrological characteristics (residence time and depth of runoff) were responsible for the differences in the P concentrations. A model of P mobilisation (incorporating hydrological and P-release characteristics) was developed and shown to successfully predict runoff P concentrations under a range of rainfall intensities. These findings and the subsequent model were used in the successful modelling of landscapescale nutrient exports based on rainfall simulation data as part of a separate, but complementary project.

There is anecdotal evidence to suggest that Australian soils are relatively 'leaky' in terms of P in runoff compared to soils overseas. Consequently, comparisons of the labile soil P characteristics and soil P-runoff P relationships were made between Australian soils and soils of similar fertility from the USA, UK and New Zealand (using both experimental data and data sourced from the literature). It was concluded that Australian soils leak more P than soils of similar fertility in the USA, UK and New Zealand, although it was beyond the scope of the thesis to make more detailed comparisons between Australian and overseas soils.

The accumulation and mobilisation of P in two soils used for intensive pasture production in Australia were investigated. In intensive pasture systems P accumulated in the shallowest zones of the soil and principally as inorganic P. The concentrations of labile P were 3-5 times higher in the top 0.01 m than in the top 0.1 m. Using a simple model, it was estimated that only the top several mm of soil influence runoff P concentrations. The dominant form of P in runoff was shown to be orthophosphate although in low to moderate fertility soils, dissolved organic P can constitute a substantial proportion of the P in runoff. These results confirm the need to reduce the pool of P available for mobilisation in the immediate topsoil in order to reduce runoff P concentrations.

Because P is stratified, it was hypothesised that one method to reduce the pool of P available for mobilisation is to de-stratify the soil (i.e. mix the topsoil). The effect of this technique on runoff P concentrations was investigated in laboratory and rainfall simulation experiments. These experiments revealed that reductions in runoff P concentrations between 45 and 70% can be achieved by de-stratification of soils under permanent pastures. It was hypothesised that the benefits of de-stratification could be maximised using a combination of information relating to catchment hydrology and the spatial distribution of soil P and that this would result in large reductions in P exports with a relatively small degree of inconvenience to land managers. Given the limited opportunities identified in previous research to reduce P exports in runoff, the strategic utilisation of de-stratification is a potentially important option in water quality management for the dairy industry and warrants further investigation.

Declaration

This work contains no material which has been accepted for the award of any other degree or diploma in a university or other tertiary institution and, to the best of my knowledge and belief, contains no material previously published or written by another person, except where due reference has been made in the text.

I give consent to this copy of my thesis being made available in the University Library.

Components of the research described in this thesis have been published (as listed below). The author acknowledges that copyright of published material contained within this thesis resides with the copyright holders of those works.

Warwick J Dougherty

Publications arising from this thesis

- **Dougherty WJ**, Fleming NK, Cox JW, Chittleborough DJ (2004) Phosphorus transfer in surface runoff from intensive pasture systems at various scales: A review. *Journal of Environmental Quality* **33**, 1973-1988.
- **Dougherty WJ**, Smernik RJ, Chittleborough DJ (2005) Application of spin counting to the solid-state P-31 NMR analysis of pasture soils with varying phosphorus content. *Soil Science Society of America Journal* **69**, 2058-2070.
- Dougherty WJ, Nash DM, Chittleborough DJ, Cox JW, Fleming NK (2006) Stratification, forms and mobility of phosphorus in the topsoil of a Chromosol used for dairying. *Australian Journal of Soil Research* 44, 277-284.