
Chapter 1

Introduction

The present work concerns direct numerical simulations of time-varying, three-

dimensional, turbulent flow over a long circular cylinder. The statistics and struc-

tural characteristics of the flow field are examined for flows in which the free-stream

is aligned, or nearly aligned, with the cylinder axis.

A prime example of this type of flow occurs on towed sonar arrays, which belong

to the family of devices known as sound navigation and ranging systems, or sonar.

Towed sonar arrays are commonly used for maritime surveillance and geophysical

exploration. A typical towed sonar array is a long circular cylinder that is designed

to be towed underwater behind a ship or submarine. The cylinder houses a linear

array of acoustic pressure sensors whose outputs can be processed to estimate the

location of remote acoustic sources. The cylinder is usually designed to have an

overall density similar to that of the surrounding water, so that buoyancy forces on

the cylinder are typically small in relation to the towing force. This ensures that the

flow of water over the cylinder is aligned, or nearly aligned, with the cylinder axis.

The length of a towed sonar array is typically thousands of times greater than the

cylinder diameter, so that a thick, turbulent boundary layer evolves on the cylinder

surface. In the design of a towed sonar array, it is important to consider the pressure

fluctuations generated on the cylinder surface by the turbulent flow, to ensure that

the sonar is capable of detecting weak acoustic signals. It is also important to endow

the towed sonar array with sufficient tensile strength to withstand the skin friction

exerted on the cylinder wall by the flow.

Axial and near-axial flow over cylinders can be considered special cases of flow

over surfaces with convex, transverse curvature. Flows of this kind, such as those

on aircraft fuselages and ship hulls, occur frequently in engineering practice. The

properties of axial and near-axial flow over cylinders are therefore relevant to a wide

variety of engineering applications.
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1.1 Axisymmetric Flow Regimes

Compared with the boundary layers developed on flat plates or in cross-flow over

cylinders, boundary layers developed in axial flow over cylinders have received rela-

tively little attention in the research literature. A recent review of work concerning

cylinders in axial flow is given by Piquet and Patel [1999].

The available data for cylinders are typically analysed using planar boundary

layers as a point of reference. For boundary layers on plane surfaces, two length-

scales are commonly used to describe the flow. The first of these is the boundary

layer thickness δ, measured from the wall to the location where the mean-flow

velocity is equal to 99% of the free-stream velocity. The second length-scale is the

viscous length ν/uτ , where ν is the kinematic viscosity of the fluid, uτ =
√

τw/ρ is

the friction velocity, τw is the wall-shear-stress, and ρ is the fluid density. The ratio

of these two length-scales gives the Reynolds number δ+ = δ/(ν/uτ ). In the absence

of a streamwise pressure-gradient, any two planar boundary layers in incompressible

Newtonian fluid have dynamic similitude if they share a given value of δ+.

For the boundary layer on a cylinder in axial flow, the mean-flow and turbulence

statistics are independent of azimuthal position around the cylinder, so that the

boundary layer is described as axisymmetric. In such a flow, the cylinder radius a

constitutes a third length-scale in addition to δ and ν/uτ . These length-scales may

be combined to give the three non-dimensional parameters δ/a, a+ = a/(ν/uτ ) and

δ+ = δ/(ν/uτ ). Based on these parameters, research has led to the identification

of three flow regimes. They are described by Piquet and Patel [1999] and, with

limiting values as suggested by Afzal and Narasimha [1985], are as follows:

(i) Small δ/a (� 1), large a+ (� 250). The flow is little affected by transverse

curvature, and is effectively planar flow.

(ii) Large δ/a (� 1), small a+ (� 250). Strong effects of transverse curvature are

observed throughout the boundary layer, on both the inner and outer regions

of the layer. Some of the available data for this regime are for rather low

values of δ+ (= a+δ/a), where the effects of curvature are combined with the

transitional effects associated with low Reynolds numbers.

(iii) Large δ/a (� 1), large a+ (� 250). This regime is most relevant to applica-

tions such as towed sonar arrays. In flows of this kind, the effects of transverse

curvature are mainly evident in the outer flow, which is similar to an axisym-

metric wake.
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The rather limited data for the third regime have recently been extended by the

measurements of wall-shear-stress and momentum thickness reported by Cipolla

and Keith [2003a,b] (a+ � 300, δ/a � 300). The measurements by Berera [2004]

(a+ ≈ 170, δ/a < 12) supplement the available data near the boundary between the

second and third flow regimes.

Researchers in fluid dynamics are frequently interested in the development of

scaling relations that allow the results of flow measurements to be extrapolated

to other situations. However, despite decades of research on the subject, there

is still uncertainty over many of the fundamental scaling relations for turbulent,

axisymmetric boundary layers. For example, competing scaling relations for the

mean-velocity profile near the cylinder wall have been proposed by Rao [1967],

Afzal and Narasimha [1976], Denli and Landweber [1979] and Lueptow, Leehey,

and Stellinger [1985], amongst others.

The development of scaling relations for axisymmetric boundary layers is com-

plicated by the lack of available data for independent, systematic variations of δ/a,

a+ and, at low Reynolds numbers, δ+. A further obstacle to the establishment of

scaling relations is the need to consider measurements from numerous experimental

facilities, which has the potential to introduce a wide variety of systematic errors into

the available data. Still more difficulties are caused by the need to obtain reliable

values of the wall-shear-stress τw and the boundary layer thickness δ, which feature

in many of the proposed scaling relations but are frequently difficult to measure

accurately.

1.2 Numerical Simulation

The performance of modern supercomputers is such that investigation of turbulence

is possible, at low to moderate Reynolds numbers, by a process known as direct nu-

merical simulation or DNS. The process obtains the time-varying, three-dimensional

flow fields by numerical solution of the Navier-Stokes equations with resolution suffi-

cient to capture all essential scales of turbulence. DNS offers several advantages over

experiments. Once a simulation procedure has been validated, the systematic vari-

ation of parameters is, in principle, straight-forward. Accurate values of the friction

velocity and other scaling parameters may be computed directly from the simulated

flow fields. The ability of DNS to resolve both temporal and spatial details of a flow

is currently unmatched by experimental techniques. The main disadvantages of

DNS are the technical challenges involved in the development of a high-performance

simulation program and the vast computational resources required to execute the
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program. Present-day computers limit DNS to Reynolds numbers that are some-

what less than those commonly found in engineering applications, although many

experimental facilities have similar limitations.

The available DNS results for turbulent, axisymmetric boundary layers cover a

quite limited range of parameters. Neves [1992], Neves, Moin, and Moser [1994]

and Neves and Moin [1994] present results for a+ = 22 and 43 with nominal values,

respectively, of δ/a = 11 and 5 and δ+ = 239 and 214. More recently, a brief

summary of axisymmetric flow calculations is given by Tutty, Parsons, and Price

[2004], however turbulence statistics and the ranges of a+, δ/a and δ+ are not

included.

The present investigation extends the available DNS data for axisymmetric

boundary layers to wider ranges of δ/a, a+ and δ+ than have previously been re-

ported. The parameter ranges explored in the simulations are δ/a = 0.15–27.5,

a+ = 21–1100 and δ+ = 160–800. These ranges correspond to only the first and

second flow regimes listed previously in section 1.1. Nevertheless, the systematic

variation of parameters allows trends and scaling relations to be identified that are

likely to persist into the third flow regime.

The simulation procedure used for the present investigation is similar to the

pseudo-spectral method employed by Neves [1992], but here rather different bound-

ary conditions are imposed at the outer radial limit of the cylindrical computational

domain. According to Neves [1992, p. 12], the outer boundary conditions used in

his simulations restrict the radial motion of fluid and thereby exclude the possibil-

ity of large-scale cross-flow events of the kind observed experimentally by Lueptow

and Haritonidis [1987]. Earlier measurements of velocity fluctuations reported by

Luxton, Bull, and Rajagopalan [1984] suggest that the turbulence generation mech-

anisms in thick, axisymmetric boundary layers are enhanced, compared with planar

flow, by the motion of large-scale turbulence structures across the cylinder. To

ensure that the present simulations capture possible large-scale cross-flow motions,

the outer boundary conditions are imposed on the vorticity field rather than the

velocity field. While the vorticity field is confined to the computational domain, the

velocity field converges smoothly to the free-stream velocity at large distances from

the cylinder.

1.3 Near-Axial Flow

A few researchers have directed their interest to near-axial flow, where the cylinder

axis is inclined slightly, generally by only a few degrees, relative to the free-stream
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velocity vector. Following early work by Willmarth, Sharma, and Inglis [1977],

turbulence on cylinders in near-axial flow appears to have attracted little attention

until the more recent contributions of Bull and Dekkers [1993b,c], Bücker and

Lueptow [1998], Heenan and Morrison [2002a,b], Snarski [2004] and Berera [2004].

Perhaps the most striking effect of yaw is the substantial asymmetry of the mean

velocity field that occurs even at very small yaw angles. Significant deviations

from axisymmetry are also observed in the statistics of velocity and wall-pressure

fluctuations. Investigations by Bull and Dekkers [1993a] reveal that for a sufficiently

large yaw angle or small Reynolds number, attached turbulent boundary layer flow

gives way to a form of vortex-shedding.

As part of the present work, simulations of near-axial flow over cylinders are

considered. No previous flow simulations of this kind appear to have been reported

in the literature. The simulation procedure and boundary conditions used for near-

axial flow are the same as those used for axial flow, which is simply the special

case of a yaw angle equal to zero. Results are examined for turbulent flows with

Reynolds numbers Rea, based on cylinder radius and free-stream velocity, of 311

and 674 and yaw angles of 0.25 and 0.5 degrees. In addition, attention is given to

vortex-shedding flow with Rea = 311 and a yaw angle of 3 degrees. Although the

range of flow parameters considered is rather limited, the present results are mainly

intended to verify that the computational procedure is suitable for use in a more

comprehensive investigation of near-axial flow.

1.4 Scope of the Present Work

The present thesis is mainly concerned with simulations of turbulent boundary layers

on cylinders in axial flow. A detailed description of the simulation procedure is given

in chapter 2. The computational issues associated with simulations of axisymmetric

boundary layers are discussed in chapter 3. Velocity and pressure statistics arising

from the simulations are presented in chapters 4 and 5. Particular attention is given

to the assessment of similarity scaling relations for the mean velocity profile, veloc-

ity fluctuation statistics and temporal wall-pressure spectra. Structural features of

axisymmetric turbulence are examined in chapter 6 by inspection of instantaneous

flow fields, correlation functions and conditionally-averaged flow structures. Discus-

sion of near-axial flow is deferred until chapter 7, where the effects of yaw on flow

statistics and instantaneous structures are explored. Finally, the main findings of

the investigation are discussed in chapter 8.
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Chapter 2

Simulation Methodology

The primary aim of the present study is to obtain a valid quantitative description of

the turbulent boundary layer generated by the flow of an incompressible fluid over

a long circular cylinder whose axis is aligned with the free-stream. A secondary aim

is to investigate the effects on the flow caused by small angles of yaw between the

cylinder and the free-stream.

A pseudo-spectral method is adopted to produce a direct numerical simulation

(DNS) of the flow in a cylindrical domain fixed to the cylinder. The flow fields

are determined by solution of the Navier-Stokes equation expressed in the form of

the vorticity transport equation. The usual condition of no-slip is imposed at the

cylinder surface. At the outer radial limit of the domain, boundary conditions are

imposed on the vorticity field so that there is potential flow outside the domain.

The velocity field is required to be continuous throughout space and to converge to

the free-stream at an infinite distance from the cylinder.

2.1 Computational Model

The geometry considered by the present study suggests the use of a cylindrical

coordinate system fixed to the solid cylinder, where the radial, circumferential and

axial directions are denoted respectively by r, θ and z.

To ensure that the flow can be given a numerical representation of a practical

size, the flow is assumed to be periodic in the z-direction. An equivalent simpli-

fication has been used successfully in past simulations of planar boundary layers

[see, for example, Kim, Moin, and Moser, 1987] and other turbulent flows. However,

streamwise boundary layer growth and its effects on turbulence development cannot

be captured with periodic boundary conditions, unless additional techniques are em-

ployed. For example, Spalart [1988] makes allowance for development of the mean
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flow by use of a coordinate transformation to map diverging streamlines to a periodic

domain. Lund, Wu, and Squires [1998] use a simulation procedure with turbulent

inlet conditions generated by a modified form of Spalart’s method and with convec-

tive outflow conditions imposed at the downstream boundary. The complexity of

these methods is not considered to be justified for the current study, because the

calculations are restricted to flows for which the mean-flow and turbulence statistics

change slowly with increasing axial displacement. The assumption of periodicity

does, however, imply that it is not possible to define an absolute axial position for

the calculations, although an effective position can be determined by comparison of

calculated results with experimental data.

While axial boundary layer development cannot be represented by the periodic

boundary conditions, viscous and turbulence shear-stresses promote growth of the

boundary layer as time advances. The temporal growth continues until it is even-

tually limited by the radial extent of the computational domain. After a sufficient

time has elapsed, the turbulent flow reaches a statistically-steady state that is de-

pendent on the shape of the boundary and the imposed boundary conditions. The

accumulation of time-averaged flow statistics is most convenient once the statis-

tically-steady state has been achieved. For free-stream flow that is aligned with

the cylinder axis, the mean-flow and turbulence statistics are axisymmetric, so a

cylindrical computational domain can be expected to produce meaningful data for

the statistically-steady state. In contrast, slightly yawed free-stream flow has been

observed experimentally to produce large deviations from axisymmetry in the bound-

ary layer [see, for example, Willmarth et al., 1977, Bücker and Lueptow, 1998]. The

optimal shape of the computational domain for yawed flow cannot be determined in

advance, so collection of flow data at a statistically-steady state may not be practi-

cal. An alternative approach, described in detail in chapter 7, involves the collection

of data from a yawed flow before it reaches statistical steadiness but after a suitable

development time.

The computational model adopted for the current study is shown schematically

in figure 2.1. The computational domain extends from the surface of the cylinder,

whose radius is a, to a finite outer radius b. The flow is inherently periodic in the az-

imuthal direction, and periodic boundary conditions are imposed on a finite domain

length Lz in the axial direction. Flow variables are represented by Fourier series in

the azimuthal and axial directions and by Chebyshev series mapped non-uniformly
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Figure 2.1: Schematic diagram of the computational model.

to the radial direction. At the cylinder surface, no-slip boundary conditions are

imposed on the total (fluctuating) velocity field, so that

U [a] = 0. (2.1)

The computational model is thus similar in some respects to that used by Neves

[1992]. The major difference is the choice of boundary conditions at radius b. Neves

imposes conditions on velocity so that the shear-stress is zero at the outer edge of

the domain:

Ur[b] = 0,
∂

∂r

(
Uθ

r

)
[b] = 0,

∂Uz

∂r
[b] = 0. (2.2)

The boundary condition on the radial velocity component cannot be expected to

provide an accurate representation of any large-scale ejection and cross-flow events,

such as those observed experimentally by Luxton et al. [1984] and Lueptow and

Haritonidis [1987]. In order to make possible the inclusion of such large-scale
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motions, the velocity boundary conditions for the current study are imposed at

infinity:

U [∞] = V∞, (2.3)

where V∞ is the free-stream velocity. The boundary condition at radius b is imposed

on vorticity such that

Ωr[b] = 0, Ωθ[b] ≈ 0, Ωz[b] ≈ 0, (2.4)

where the azimuthal and axial components are determined so that the magnitude

of the resultant vorticity vector Ω[b] is minimised. Vorticity becomes the primary

simulation variable, and it is defined on the domain a ≤ r ≤ b, denoted by R1.

The velocity field is defined both within R1 and in the external region r > b,

denoted by R2. The velocity is calculated from the vorticity field subject to the

boundary conditions and the requirement that flow be continuous throughout space

and across the interface at radius b. The velocity field in R2, which is a potential

flow by definition, can be expressed in analytical form with variable coefficients.

The invariant parts of the analytical expression may be pre-calculated, and the

coefficients are determined at each simulation time-step.

Corral and Jiménez [1995] describe a computational model, for planar flow, that

is similar in concept to the model adopted in the present work. The two approaches

differ mainly in the Chebyshev expansions used for the wall-normal direction. In

the current model, the Chebyshev grid points accumulate near the inner and outer

boundaries of the computational domain. Despite the use of a non-uniform mapping

function, the grid resolution near the outer boundary is generally found to be

excessive, so that computational effort and storage requirements are greater than

is strictly necessary. Corral and Jiménez use Chebyshev series with either even or

odd polynomials, so that grid resolution is at a minimum near the outer boundary.

Such a grid is ideal for variables that decay rapidly away from the wall. However,

for a turbulent flow in a statistically-steady state, turbulent eddies approach the

outer boundary frequently, producing significant gradients of vorticity and velocity

where the grid can resolve them least accurately. On the other hand, the domain

truncation caused by the outer boundary is also a source of error, so greater grid

accuracy near the boundary may not provide any real benefit. A comparison of the

results obtained with the two models for the same flow could well be the basis for

future calculations.
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2.2 Governing Equations

2.2.1 Definition of Vorticity

The vorticity Ω of a fluid is defined as

Ω = ∇× U , (2.5)

where U is the fluid velocity. The instantaneous angular velocity at a point in the

fluid is equal to half the vorticity.

The cylindrical components of vorticity are [see, for example, Batchelor, 1967]

Ωr =
1

r

∂Uz

∂θ
− ∂Uθ

∂z

Ωθ =
∂Ur

∂z
− ∂Uz

∂r

Ωz =
1

r

(
∂
(
rUθ

)
∂r

− ∂Ur

∂θ

)
.

(2.6)

2.2.2 Divergence Specifications

Vorticity is defined to be the curl of velocity (equation 2.5). The divergence of a

curl is zero by vector identity, therefore the vorticity field is divergence-free:

∇ · Ω = 0. (2.7)

A notional line that is everywhere tangential to the local vorticity vector (a vortex

line) cannot begin or end at a point in space but must instead form a closed loop.

The no-slip condition implies that a vortex line cannot intersect a solid surface. For

the current study, the fluid outside radius b is assumed to be irrotational, and since

vortex lines cannot terminate at b, the radial component of vorticity must be zero

at b.

The continuity equation for an incompressible fluid is

∇ · U = 0, (2.8)

which states that the velocity field is divergence-free. A notional line that is ev-

erywhere tangential to the local velocity vector (a streamline) cannot begin or end

at a point in space by a similar consideration to that used for a vortex line. The

streamline cannot intersect a solid surface for the simple reason that no flow through

the surface is possible.
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Equation 2.8 is expressed in cylindrical coordinates as

1

r

∂
(
rUr

)
∂r

+
1

r

∂Uθ

∂θ
+

∂Uz

∂z
= 0. (2.9)

Equation 2.7 may be written in a similar form.

2.2.3 Vorticity Transport Equation

The incompressible Navier-Stokes equation is

∂U

∂t
+ U · ∇U = −∇P

ρ
+ ν∇2

U , (2.10)

where t is time, P is pressure, ρ is density, and ν is the kinematic viscosity. In

cylindrical coordinates, the components of the equation are [Batchelor, 1967]

∂Ur

∂t
+

(
Ur

∂Ur

∂r
+

Uθ

r

∂Ur

∂θ
+ Uz

∂Ur

∂z
− U2

θ

r

)
=

− 1

ρ

∂P

∂r
+ ν

(
∇2Ur − Ur

r2
− 2

r2

∂Uθ

∂θ

)
, (2.11a)

∂Uθ

∂t
+

(
Ur

∂Uθ

∂r
+

Uθ

r

∂Uθ

∂θ
+ Uz

∂Uθ

∂z
+

UrUθ

r

)
=

− 1

ρr

∂P

∂θ
+ ν

(
∇2Uθ − Uθ

r2
+

2

r2

∂Ur

∂θ

)
, (2.11b)

∂Uz

∂t
+

(
Ur

∂Uz

∂r
+

Uθ

r

∂Uz

∂θ
+ Uz

∂Uz

∂z

)
= −1

ρ

∂P

∂z
+ ν∇2Uz, (2.11c)

where ∇2 is the Laplacian operator:

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
+

∂2

∂z2
. (2.12)

Equation 2.10 may be rewritten as

∂U

∂t
− U × Ω = −∇PT

ρ
+ ν∇2

U (2.13)

by use of the vector identity

U · ∇U =
1

2
∇(‖U‖2

)− U × Ω (2.14)
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and the definition of total pressure

PT = P +
1

2
ρ‖U‖2. (2.15)

The curl of equation 2.13 is

∂Ω

∂t
= ∇× (

U × Ω
)

+ ν∇2Ω, (2.16)

because the curl of the conservative field ∇PT is identically zero. Equation 2.16 is

known as the vorticity transport equation.

This equation (cast in matrix form) is the equation to be solved for the time-

varying, three-dimensional vorticity field Ω by the simulation procedure.

Use of the vector identity

∇× (
U × Ω

)
= U

(∇ · Ω)− Ω
(∇ · U)− (

U · ∇)
Ω +

(
Ω · ∇)

U (2.17)

together with ∇ · Ω = 0 (equation 2.7) and ∇ · U = 0 (equation 2.8) allows the

vorticity transport equation to be written in the alternative form

∂Ω

∂t
= −(U · ∇)

Ω +
(
Ω · ∇)

U + ν∇2Ω. (2.18)

The equation is a statement that the time rate of change of vorticity includes

contributions from convection, stretching and diffusion of vorticity.

The equations solved as part of the flow simulation are expressed in dimensionless

form. For example, normalisation of equation 2.16 with respect to the free-stream

velocity magnitude V∞ and the cylinder radius a yields

∂Ω̆

∂t̆
= ∇̆ × (

Ŭ × Ω̆
)

+
1

Rea

∇̆2Ω̆, (2.19)

where

Ω̆ =
aΩ

V∞

, t̆ =
tV∞

a
, ∇̆ = a∇, Ŭ =

U

V∞

, andRea =
aV∞

ν
. (2.20)

However, for clarity, all variables and equations used in this thesis are dimensional

unless explicitly defined otherwise.
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2.2.4 Potential Flow

Outside the cylindrical computational domain, that is for radial positions r > b,

the vorticity is required to be zero. The corresponding velocity field is therefore a

potential flow.

A velocity field V is a potential flow if it satisfies the equation

V = ∇Φ, (2.21)

where the potential Φ is a solution of the Laplace equation

∇2Φ = 0. (2.22)

In cylindrical coordinates, equation 2.21 becomes

Vr =
∂Φ

∂r
, Vθ =

1

r

∂Φ

∂θ
, Vz =

∂Φ

∂z
, (2.23)

and equation 2.22 is expressed as

∂2Φ

∂r2
+

1

r

∂Φ

∂r
+

1

r2

∂2Φ

∂θ2
+

∂2Φ

∂z2
= 0. (2.24)

Details of the procedure used to solve the governing equations will now be

considered.

2.3 Spectral Formulation

2.3.1 Fourier Series

The use of Fourier series to represent flow variables allows the three-dimensional

governing equations to be reduced to a set of one-dimensional equations. These

equations are solved for the Fourier coefficients of the flow variables. The bulk of the

calculations involved in the solution procedure can be performed independently for

each Fourier mode-number. Work may therefore be distributed between processors

on a parallel computer without the need for excessive communication between

processors.

The truncated Fourier series expansion for velocity is

U [r, θ, z, t] ≈
Nθ/2−1∑

m=−Nθ/2

Nz/2−1∑
k=−Nz/2

Ûm,k[r, t] exp[ikθrθ] exp[ikzz], (2.25)
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where the complex Fourier coefficients Û are functions of radius and time. The

constant i is the unit imaginary number
√−1. The azimuthal wave-number is

kθ = m
2π

2πr
=

m

r
, (2.26)

where m is the azimuthal Fourier mode-number. The axial wave-number over the

assumed periodic length Lz is

kz = k
2π

Lz

, (2.27)

where k is the axial Fourier mode-number. Similar expansions are used for other

flow fields such as the vorticity and pressure fields.

Consider an equispaced azimuthal-axial grid consisting of the points (θj, zl) given

by

θj = j2π/Nθ, j = −Nθ/2, . . . , Nθ/2 − 1,

zl = lLz/Nz, l = −Nz/2, . . . , Nz/2 − 1,
(2.28)

where Nθ and Nz denote the total number of grid points in each direction. At these

grid points, Fourier coefficients can be calculated so that equation 2.25 is satisfied

exactly, because the equation takes the form of a two-dimensional inverse discrete

Fourier transform:

U [r, θj, zl, t] =

Nθ/2−1∑
m=−Nθ/2

Nz/2−1∑
k=−Nz/2

Ûm,k[r, t] exp[i2πjm/Nθ] exp[i2πlk/Nz]. (2.29)

The corresponding Fourier coefficients are given by

Ûm,k[r, t] =

Nθ/2−1∑
j=−Nθ/2

Nz/2−1∑
l=−Nz/2

U [r, θj, zl, t] exp[−i2πjm/Nθ] exp[−i2πlk/Nz]. (2.30)

Efficient transformation between Fourier coefficients and values on the spatial grid

of equation 2.28 is made possible by the family of algorithms known as the Fast

Fourier Transform (FFT).

For a real-valued field F , it can be shown, using the symmetry properties of

Fourier series, that

F̂m,k = F̂ ∗
−m,−k, (2.31)

where ∗ denotes the complex conjugate. It follows that

F̂−m,k = F̂ ∗
m,−k. (2.32)
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The implication is that half of the Fourier modes are redundant, since it is a trivial

task to obtain the modes corresponding to k < 0, for example, from the modes

having k ≥ 0. Computational effort and storage requirements may be reduced

significantly by exploitation of this property.

2.3.2 Chebyshev Series

The Fourier coefficients of flow variables, as defined in the previous section, are

continuous functions of radial position. A finite, but approximate, representation of

the radial variation is provided by use of Chebyshev series.

The Chebyshev series expansion for velocity is

Ûm,k

[
r[ξ], t

] ≈ N−1∑
n=0

Ũn,m,k[t]Tn[ξ], (2.33)

where Ũn,m,k are the Chebyshev-Fourier coefficients, Tn is the Chebyshev polynomial

of degree n, and N is the number of terms in the series. The Chebyshev polynomials

are defined on the domain −1 ≤ ξ ≤ 1.

The transformation used to map the Chebyshev abscissa ξ to the radial interval

a ≤ r ≤ b is that used by Neves [1992]:

r[ξ] =

⎧⎨
⎩a + 1

2
(b − a)(η − 1)(1 + ξ)/(η − ξ) 1 < η < ∞

1
2
(b − a)ξ + 1

2
(b + a) η = ∞.

(2.34)

The mapping is uniform when η = ∞. As the parameter η decreases from infinity

towards unity, grid resolution near the cylinder surface increases at the expense of

resolution near the outer computational boundary.

The Chebyshev polynomial of degree n is defined by the formula

Tn[ξ] = cos[nζ], (2.35)

where ξ and ζ are related by

ξ = cos[ζ], ζ ∈ [0, π]. (2.36)
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Despite the appearance of trigonometric expressions in the definition, Tn can be

expressed as a regular polynomial in ξ by use of the recurrence relation

T0[ξ] = 1

T1[ξ] = ξ

Tn[ξ] = 2ξTn−1[ξ] − Tn−2[ξ], n ≥ 2.

(2.37)

Chebyshev polynomials form a complete set, meaning that any smooth function

can be represented to arbitrary accuracy by a Chebyshev series approximation

simply by including a large enough number of terms. In addition, Chebyshev

polynomials are orthogonal with respect to the weighting function (1 − ξ2)−1/2:

∫ 1

−1

Tn[ξ]Tm[ξ]√
1 − ξ2

dξ =

∫ π

0

cos[nζ] cos[mζ] dζ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 n �= m

π/2 n = m �= 0

π n = m = 0.

(2.38)

The Galerkin method, introduced later in section 2.7.1, depends on these properties.

Consider the approximation of a function f by the Chebyshev series

f [ξ] ≈
N−1∑
n=0

f̃nTn[ξ]. (2.39)

The approximation can be made exact at the points

ξj = cos

[
π
(
j + 1

2

)
N

]
, j = 0, 1, . . . , (N − 1), (2.40)

which are the N zeros of TN . The corresponding coefficients f̃ , obtained with the

aid of the discrete identity

N−1∑
j=0

Tn[ξj]Tm[ξj] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 n �= m

N/2 n = m �= 0

N n = m = 0,

(2.41)

are given by

f̃n =
cn

N

N−1∑
j=0

f [ξj]Tn[ξj], where cn =

⎧⎨
⎩1 n = 0

2 n > 0.
(2.42)
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The coefficients f̃ can also be expressed in the form

f̃n =
cn

N

N−1∑
j=0

f [ξj] cos

[
nπ

(
j + 1

2

)
N

]
. (2.43)

If evaluation of f is restricted to the points ξj of equation 2.40, the Chebyshev series

can be written in the form

f [ξj] =
N−1∑
n=0

f̃n cos

[
nπ

(
j + 1

2

)
N

]
. (2.44)

Both of the above formulae are variations of the discrete Fourier cosine transform,

which may be calculated efficiently by use of the FFT.

The fact that it is possible to transform rapidly from functional values to Cheby-

shev coefficients and vice-versa at the points given by equation 2.40 suggests that

these points should be used as grid points. Chebyshev series may be evaluated at

other points either by direct evaluation, or somewhat more efficiently by use of the

Clenshaw recurrence relation [see, for example, Press et al., 2001, §5.8]:

dN+1 = dN = 0,

dn = 2ξdn+1 − dn+2 + f̃n, n = (N − 1), . . . , 2, 1,

f [ξ] = ξd1 − d2 + f̃0.

(2.45)

2.4 Time Advancement

2.4.1 Uncoupling the Viscous Operators

The evolution of the vorticity field Ω is governed by the vorticity transport equation

(2.16). The cylindrical components of the vorticity transport equation are

∂Ωr

∂t
= Xr + ν

(
∇2Ωr − Ωr

r2
− 2

r2

∂Ωθ

∂θ

)
, (2.46a)

∂Ωθ

∂t
= Xθ + ν

(
∇2Ωθ − Ωθ

r2
+

2

r2

∂Ωr

∂θ

)
, (2.46b)

∂Ωz

∂t
= Xz + ν∇2Ωz, (2.46c)

where the Laplacian operator ∇2 is defined by equation 2.12 and where the Xr,θ,z

denote the cylindrical components of the non-linear term

X = ∇× (
U × Ω

)
. (2.47)
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The time-stepping scheme described in the next section (2.4.2) requires that

the three components of the viscous term can be treated separately. However, in

cylindrical coordinates, the radial and azimuthal components of the viscous term are

coupled (see the terms inside brackets in equations 2.46a and 2.46b). The scheme

used to decouple the components of the viscous term is described here and is based

on the scheme developed by Neves [1992, §2.2].

Fourier series similar to equation 2.25 may be written for the vorticity field and

other flow fields. The use of Fourier series allows the vorticity transport equation

to be expressed as a set of equations, where each equation involves the Fourier

coefficients for a single mode-number as functions of radial position. The Fourier

coefficients are marked here with a “hat” symbol (̂ ), for example Ω̂.

The three components of vorticity are related by equation 2.7, which is expressed

for cylindrical coordinates and Fourier coefficients as

1

r

∂
(
rΩ̂r

)
∂r

+
im

r
Ω̂θ + ikzΩ̂z = 0. (2.48)

In principle, given any two of the vorticity components, the third can be calculated.

Rather than choosing a single component as the dependent variable, which would

be problematic when either m = 0 or kz = 0, the azimuthal and axial components

of vorticity are combined in the quantity

Ω̂p = ikzΩ̂θ − imΩ̂z. (2.49)

Given the two components Ω̂p and Ω̂r, the azimuthal and axial vorticity components

which satisfy equation 2.48 are

Ω̂θ =
i

m2 + rk2
z

[
m

(
Ω̂r + r

∂Ω̂r

∂r

)
− kzrΩ̂p

]
,

Ω̂z =
i

m2 + rk2
z

[
kz

(
Ω̂r + r

∂Ω̂r

∂r

)
+ mΩ̂p

]
.

(2.50)

The uncoupling of the viscous terms is achieved by recasting the vorticity trans-

port equation (2.46) in the form

∂Ω̂r

∂t
= ν∇̂2Ω̂r + Ĥr

∂Ω̂p

∂t
= ν∇̂2Ω̂p + Ĥp,

(2.51)
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where the Laplacian operator is defined by

∇̂2 =
1

r

∂

∂r

(
r

∂

∂r

)
− m2

r2
− k2

z , (2.52)

which excludes the coupled terms. The coupled viscous and inviscid terms are

packaged in the expressions

Ĥr = ν

(
− 1

r2
Ω̂r − i2m

r2
Ω̂θ

)
+ X̂r

Ĥp = ikzν

(
i2m

r2
Ω̂r − 1

r2
Ω̂θ

)
+ ikzX̂θ − imX̂z.

(2.53)

The procedure used to solve equation 2.51 is described in the following sections.

2.4.2 Time-Stepping Scheme

To determine the evolution of the flow field, the vorticity transport equation is

integrated forward in time. Recall from section 2.1 that region R1 (a ≤ r ≤ b)

contains all of the vorticity in the flow. Consequently, the evolution of vorticity

need not be considered on region R2 (r > b).

High-order time accuracy can be achieved with minimal overhead by use of a

multi-step method. Karniadakis, Israeli, and Orszag [1991] demonstrate that stiffly-

stable schemes offer superior accuracy and stability compared with other multi-step

methods when applied to the Navier-Stokes equations. The Laplacian term is treated

implicitly (in terms of future values) for stability, while the coupled terms are treated

explicitly (without future values) for computational efficiency. The stiffly-stable

scheme for equation 2.51 is

1

∆t

(
γ0Ω̂l+1 −

J−1∑
j=0

αjΩ̂l−j

)
= ν∇̂2Ω̂l+1 +

J−1∑
j=0

βjĤl−j, (2.54)

where ∆t is the time-step size and l is the current time-step number. J is the number

of time-steps of flow history that are taken into account by the scheme; accuracy

is generally improved by increasing J . The coefficients αj, βj and γ0 are shown for

schemes up to third order in table 2.1, which is reproduced from the cited work.

The stiffly stable scheme may be rearranged into the form of a Helmholtz equation,

∆t ν∇̂2Ω̂l+1 − γ0Ω̂l+1 = −
J−1∑
j=0

αjΩ̂l−j − ∆t

J−1∑
j=0

βjĤl−j, (2.55)
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Coefficient 1st Order 2nd Order 3rd Order

γ0 1 3/2 11/6
α0 1 2 3
α1 0 -1/2 -3/2
α2 0 0 1/3
β0 1 2 3
β1 0 -1 -3
β2 0 0 1

Table 2.1: Coefficients for stiffly-stable integration schemes up to third order.

which is solved for Ω̂ at the next time-step (l + 1).

Validation tests of the present simulation procedure reported by Woods and Bull

[2003] suggest that the time-stepping scheme is unstable for a stiffly-stable method

of third order. However, the apparent instability was subsequently found to be

the result of a programming error. In fact, a third-order scheme is used for the

simulations reported in the present work.

To avoid the high computational cost of repeated inversion of the Galerkin

matrices corresponding to equation 2.55 (see section 2.7.1), a fixed time-step size is

used so that the LU factorisations may be pre-calculated and stored. The maximum

time-step size is set so that the Courant-Friedrich-Lewy (CFL) number everywhere

satisfies

CFL = π∆t

( |Ur|
∆r

+
|Uθ|
r∆θ

+
|Uz|
∆z

)
≤ 0.6, (2.56)

where ∆r, ∆θ and ∆z denote the local distance, in each direction, between the mesh

points used for the spatial representation of vorticity (as discussed in section 2.3).

The maximum CFL number of 0.6 is chosen for consistency with Neves [1992]. It

has been found in the present study that a time-step size corresponding to a CFL

number greater than unity generally leads to instability.

2.4.3 Evaluation of Non-Linear Term

The Fourier representation for flow variables allows the majority of calculations

discussed above to be performed independently for each Fourier mode-number.

The exception is calculation of the non-linear term, specifically the cross-product

Π = U × Ω, which is most efficiently performed in the space domain [see Canuto

et al., 1988, §3.2]. The Fourier (or Chebyshev-Fourier) series for the velocity and
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vorticity fields are evaluated on a spatial grid, where the cross-product is expressed

in cylindrical components as

Πr = UθΩz − UzΩθ

Πθ = UzΩr − UrΩz

Πz = UrΩθ − UθΩr.

(2.57)

The grid values of Π are then transformed to Fourier (or Chebyshev-Fourier) coef-

ficients for solution of equation 2.55.

The number of Chebyshev-Fourier coefficients required to represent Π without

truncation is greater than the number used for either U or Ω. The above procedure

may generate so-called aliasing errors in Π, where the lower-order coefficients differ

from their proper values. Aliasing errors may be reduced or eliminated from Π by

use of a finer spatial mesh, and therefore additional Chebyshev-Fourier coefficients,

for the calculation of Π. Any additional higher-order coefficients used for de-aliasing

of Π may be discarded, because they are of little use in further calculations.

The non-linear term of the vorticity transport equation is the curl of Π, which

is expressed in cylindrical components and Fourier coefficients as

X̂r =
im

r
Π̂z − ikzΠ̂θ

X̂θ = ikzΠ̂r − ∂Π̂z

∂r

X̂z =
1

r

∂
(
rΠ̂θ

)
∂r

− im

r
Π̂r.

(2.58)

2.4.4 Vorticity Boundary Conditions

To solve equation 2.55, specification of the vorticity boundary conditions is required.

The radial component of vorticity is obtained with the fixed boundary conditions

Ω̂r[a] = 0 (2.59a)

Ω̂r[b] = 0, (2.59b)

which are necessary to allow the no-slip condition to be satisfied at the cylinder

surface and the velocity field to be continuous across the outer boundary. The outer

boundary conditions for the axial and azimuthal components of vorticity would

ideally be set to zero to obtain a smooth transition to potential flow outside radius

b. However, the two components are related by equation 2.50 and cannot be set
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independently to zero. The minimum vector magnitude of each Fourier coefficient

of vorticity at the outer boundary is given by the condition

Ω̂p[b] =
mkzb(b − 1)

m2 + k2
zb

2

∂Ω̂r

∂r
[b]. (2.59c)

The remaining boundary condition is

Ω̂p[a] = cm,k[t], (2.59d)

where c is specified such that the fluid at the cylinder surface satisfies the no-slip

condition. The value of c is determined at each time-step and for each Fourier

mode-number by use of the procedure described below.

As a pre-processing step, equation 2.55 is solved with the right-hand-side set

to zero. The boundary conditions imposed are those given above with Ω̂p[a] set

to the inhomogeneous value c = 1. The vorticity solution is denoted by Ω̂i and

the corresponding velocity field is denoted by Ûi. The pre-processed solutions are

retained for use during the simulation. Only the non-zero components need to be

stored, and additional memory may be saved by use of the fact that the solutions

for Fourier modes (m, k) and (−m, k) are identical once sign changes are taken into

consideration.

For each step of the flow simulation, equation 2.55 is solved with the right-hand-

side calculated from the simulated flow fields. The boundary conditions imposed

are those given by equations 2.59a–d with Ω̂p[a] set to the homogeneous value c = 0.

The vorticity solution and the corresponding velocity field are denoted respectively

by Ω̂h and Ûh.

The linearity of equation 2.55 allows the solution at each time-step, with the

boundary conditions given by equations 2.59a–d, to be expressed as

Ω̂ = Ω̂h + cm,k Ω̂i (2.60a)

and the corresponding velocity as

Û = Ûh + cm,k Ûi. (2.60b)

The coefficient c is determined so that the no-slip condition is satisfied for a single

velocity component, Ûθ for example. The boundary condition for Ω̂r implies that

Ûz also vanishes at the cylinder surface. Special treatment is required in the case of
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mode m = 0, for which Ω̂r is independent of Ûz. Rearrangement of equation 2.60b

gives the required values of c:

cm,k =

⎧⎨
⎩−Ûhθ[a]/Ûiθ[a] m �= 0

−Ûhz[a]/Ûiz[a] m = 0.
(2.61)

2.4.5 Azimuthal-Axial-Mean Vorticity

For the mean flow, which corresponds to Fourier mode-numbers m = 0 and k = 0,

the formulation of the vorticity transport equation given by equation 2.51 is not

useful because equation 2.50 is singular. However, the components of the viscous

term are not coupled, and solution of the vorticity transport equation is straight-

forward.

The divergence-free vorticity field satisfies equation 2.7, which reduces to

1

r

∂
(
rΩ̂r0,0

)
∂r

= 0. (2.62)

The only solution that satisfies homogeneous boundary conditions is

Ω̂r0,0
= 0. (2.63)

The remaining vorticity components are advanced in time by solution of equation

2.55 with

Ĥθ0,0
= ν

(
− 1

r2
Ω̂θ

)
+ X̂θ

Ĥz0,0
= X̂z.

(2.64)

The boundary conditions have the form

∂Ω̂z0,0

∂r
[a] = 0 (2.65a)

Ω̂z0,0
[b] = 0 (2.65b)

Ω̂θ0,0
[a] = c0,0[t] (2.65c)

Ω̂θ0,0
[b] = 0. (2.65d)
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The inner boundary condition for Ω̂z (equation 2.65a) is derived from the mean

azimuthal component of the Navier-Stokes equation (2.10) at the cylinder surface:

ν∇2Ûθ0,0
[a] = 0

∴
∂

∂r

(
1

r

∂(rÛθ0,0
)

∂r

)
[a] = 0

∴
∂

∂r

(
Ω̂z0,0

)
[a] = 0.

(2.66)

The value of the inner boundary condition for Ω̂θ (equation 2.65c) that eliminates

the slip velocity is

c0,0 = − Ûhz[a]

Ûiz[a]
, (2.67)

where Ûh and Ûi are determined in a similar fashion to that described in section

2.4.4.

2.5 Velocity Calculation

2.5.1 Background

While vorticity is the primary variable of the flow simulation, the velocity field is

used at each time-step to compute the non-linear term and the boundary condition

for vorticity. The present section concerns the method used to calculate the velocity

field from a given vorticity field.

In principle, the velocity field may be calculated from the vorticity by means

of the Biot-Savart law [see, for example, Cottet and Koumoutsakos, 2000]. The

integrand is singular, and the singularity requires careful treatment if accurate

results are to be expected from a numerical integration scheme. Possible approaches

include the desingularisation method of Hou, Lowengrub, and Shelley [1993] or

the use of an adaptive quadrature rule. Direct evaluation of the integral requires

O(N2) operations for N grid points. In comparison, the method presented here,

which involves numerical solution of differential equations for each Fourier mode,

requires O(N) operations. Hierarchical methods allow the Biot-Savart integral to

be computed in O(N) operations [see, for example, Anderson, 1992], but accuracy

is compromised for increased speed.

The Biot-Savart integral gives the velocity field for flow without solid boundaries.

Surface boundary conditions are imposed by use of vortex sheets. The present

method takes a comparable two-stage approach, in which an initial velocity field
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is computed with arbitrary boundary conditions which are corrected in a separate

operation.

2.5.2 Velocity Decomposition

As explained in section 2.1, the present flow is considered to consist of two regions.

Region R1 contains a vorticity field Ω, while region R2 is free of vorticity.

For the calculation of velocity, the velocity fields in the two flow regions are

further decomposed into the forms

U1 = V∞ + V1 + W

U2 = V∞ + V2,
(2.68)

where V1 and V2 are potential flows and V∞ is the free-stream velocity. The field

W satisfies the relationship

∇× W = Ω (2.69)

and arbitrary boundary conditions.

Once a solution for W is known, the potential flows V may be determined so

that the total velocity fields U satisfy physically meaningful boundary conditions.

The procedures used to determine the fields W and V are developed in the following

discussion.

2.5.3 Boundary Conditions

The conditions that should be satisfied at the boundaries of each flow region by the

total velocity U defined by equation 2.68 are described below.

1. The radial component of velocity at radius a is zero, since flow through the

cylinder surface is not possible:

V∞r + V1r[a] + Wr[a] = 0. (2.70a)

2. All components of velocity should be continuous across the boundary at radius

b between regions R1 and R2:

V1r[b] + Wr[b] = V2r[b], (2.70b)

V1θ[b] + Wθ[b] = V2θ[b], (2.70c)

V1z[b] + Wz[b] = V2z[b]. (2.70d)
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3. All components of velocity should approach the free-stream velocity V∞ as

distance from the cylinder approaches infinity:

lim
r→∞

V2r[r] = 0, (2.70e)

lim
r→∞

V2θ[r] = 0, (2.70f)

lim
r→∞

V2z[r] = 0. (2.70g)

The no-slip condition, which requires that the tangential velocity components

are zero at the cylinder surface, has been omitted from the above list. In general, it

is not possible to set both the normal and tangential components of surface velocity

to zero unless appropriate constraints are imposed on the vorticity field. In the

present work, the boundary conditions for vorticity are chosen at each time-step

so that the no-slip condition is satisfied explicitly. It is therefore unnecessary to

impose the no-slip condition as part of the velocity calculation except where the

listed conditions are insufficient to produce a unique solution.

2.5.4 Free-Stream Velocity

The free-stream velocity vector V∞ is oriented as shown in figure 2.1. The Cartesian

components of the free-stream velocity are

V∞X = V∞ sin β

V∞Y = 0

V∞z = V∞ cos β,

(2.71)

where V∞ is the free-stream velocity magnitude and β is the yaw angle between

the free-stream velocity vector and the cylinder axis. The corresponding cylindrical

components are

V∞r = V∞X cos θ =
V∞X

2
(exp[iθ] + exp[−iθ])

V∞θ = −V∞X sin θ =
iV∞X

2
(exp[iθ] − exp[−iθ])

V∞z = V∞ cos β.

(2.72)
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Therefore, all Fourier coefficients of the free-stream velocity are zero except for

V̂∞r±1,0
=

V∞ sin β

2

V̂∞θ±1,0
= ±iV∞ sin β

2

V̂∞z0,0
= V∞ cos β.

(2.73)

2.5.5 Vortical Velocity

The definition of vorticity (equation 2.5) and the continuity equation (2.8) may be

manipulated to obtain a velocity field W that corresponds to a given vorticity field

Ω. The boundary conditions imposed on W are arbitrary and may be specified in

any convenient manner.

The Fourier coefficients of the vorticity components in cylindrical coordinates,

derived from equations 2.6 and 2.25, are given by

Ω̂r =
im

r
Ŵz − ikzŴθ (2.74a)

Ω̂θ = ikzŴr − ∂Ŵz

∂r
(2.74b)

Ω̂z =
1

r

∂
(
rŴθ

)
∂r

− im

r
Ŵr. (2.74c)

The continuity equation in cylindrical components (equation 2.9) is expressed for

each Fourier mode-number by

1

r

∂
(
rŴr

)
∂r

+
im

r
Ŵθ + ikzŴz = 0. (2.75)

The details of the solution procedure for Ŵ depend on the Fourier mode-number,

as described below.

Azimuthal-Axial-Mean Mode

For Fourier mode-numbers m = 0 and k = 0, equation 2.74b may be rearranged and

integrated with respect to r to produce

Ŵz0,0
= −

∫
Ω̂θ dr. (2.76)
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The integration constant is arbitrary, and has been set to zero for convenience.

Similarly, equations 2.74c and 2.75 may be manipulated to isolate

Ŵθ0,0
=

1

r

∫
rΩ̂z dr (2.77)

and

Ŵr0,0
= 0. (2.78)

Azimuthal-Mean Modes

In the case of Fourier mode-numbers m = 0 and k �= 0, differentiation of equation

2.75 with respect to r and substitution from equation 2.74b gives

r2
∂2Ŵr0,k

∂r2
+ r

∂Ŵr0,k

∂r
− Ŵr0,k

− k2
zr

2Ŵr0,k
= ikzr

2Ω̂θ, (2.79)

which may be solved for Ŵr. The remaining components of velocity follow by

rearrangement of equations 2.74a and 2.75:

Ŵθ0,k
=

i

kz

Ω̂r (2.80)

Ŵz0,k
=

i

kz

(
Ŵr

r
+

∂Ŵr

∂r

)
. (2.81)

Higher-Order Azimuthal Modes

When the azimuthal Fourier mode-number m is non-zero, equations 2.74a and 2.74c

may be rearranged to isolate Ŵr and Ŵz:

Ŵr =
i

m

(
rΩ̂z − Ŵθ − r

∂Ŵθ

∂r

)
(2.82)

Ŵz =
1

m

(
kzrŴθ − irΩ̂r

)
. (2.83)

Substitution into equation 2.75 yields

r2 ∂2Ŵθ

∂r2
+ 3r

∂Ŵθ

∂r
+ (1 − m2)Ŵθ − k2

zr
2Ŵθ = 2rΩ̂z + r2 ∂Ω̂z

∂r
− ikzr

2Ω̂r. (2.84)

The solution Ŵθ may be used to calculate the remaining components via equations

2.82 and 2.83.
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2.5.6 General Solutions for Potential Flow

For a velocity field V expressed as a Fourier series in cylindrical coordinates (equa-

tion 2.25), the relation V = ∇Φ in the form of equation 2.23 implies that the

velocity potential Φ has the form

Φ[r, θ, z, t] =
∑
m

∑
kz

Φ̂[r, t] exp[imθ] exp[ikzz] + cθθ + czz + c0, (2.85)

where the terms cθθ and czz allow for mean flow in the azimuthal and axial directions.

The corresponding Fourier coefficients of the velocity components are

V̂r =
∂Φ̂

∂r

V̂θ =

⎧⎨
⎩cθ/r m = k = 0

imΦ̂/r otherwise

V̂z =

⎧⎨
⎩cz m = k = 0

ikzΦ̂ otherwise.

(2.86)

The velocity potential satisfies the Laplace equation in cylindrical coordinates

(equation 2.24), which is expressed for each Fourier mode-number as

∂2Φ̂

∂r2
+

1

r

∂Φ̂

∂r
− m2

r2
Φ̂ − k2

zΦ̂ = 0. (2.87)

General solutions for the Fourier coefficients Φ̂ are derived here. These forms are

used later, in section 2.5.7, to derive expressions for the potential flow fields V1 and

V2 of equation 2.68 such that the overall velocity field is consistent with the vorticity

field and the boundary conditions of section 2.5.3.

Azimuthal-Axial-Mean Mode

For Fourier mode-numbers m = 0 and k = 0, the Laplace equation (2.87) reduces

to
∂

∂r

(
r
∂Φ̂0,0

∂r

)
= 0. (2.88)

Double integration with respect to r gives

Φ̂0,0 = cr ln r. (2.89)
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Axial-Mean Modes

For Fourier mode-numbers m �= 0 and k = 0, the Laplace equation (2.87) becomes

an Euler-Cauchy equation,

r2 ∂2

∂r2
Φ̂m,0 + r

∂

∂r
Φ̂m,0 − m2Φ̂m,0 = 0. (2.90)

The corresponding solution has the form

Φ̂m,0 = c1r
−|m| + c2r

|m|. (2.91)

Higher-Order Axial Modes

For the remaining Fourier mode-numbers with k �= 0, introduction of the variable

s = |kz|r into the Laplace equation (2.87) yields the modified Bessel equation,

s2 ∂2

∂s2
Φ̂ + s

∂

∂s
Φ̂ − (

m2 + s2
)
Φ̂ = 0. (2.92)

Two linearly independent solutions are I|m|[s] and K|m|[s], which are respectively

the modified Bessel functions of the first and second kind, both of integer order |m|.
The general solution is given by the linear combination

Φ̂ = c1K|m|

[|kz|r
]
+ c2I|m|

[|kz|r
]
. (2.93)

The behaviour of the modified Bessel functions is illustrated in figure 2.2.
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Figure 2.2: Modified Bessel functions In[x] (red curves) and Kn[x] (blue curves) for
positive x and integer n. Black curves show asymptotic behaviour for small x and
n = 5. Green curves show asymptotic behaviour for large x.

2.5.7 Particular Solutions for Potential Flow

The general solutions derived in the previous section involve unknown coefficients.

The values of the coefficients are determined here by imposition of the boundary

conditions described in section 2.5.3.

Azimuthal-Axial-Mean Mode

For Fourier mode-numbers m = 0 and k = 0, the potential flow velocity given by

equations 2.86 and 2.89 has the form

V̂1r0,0
= c1r/r, V̂1θ0,0

= c1θ/r, V̂1z0,0
= c1z,

V̂2r0,0
= c2r/r, V̂2θ0,0

= c2θ/r, V̂2z0,0
= c2z,

(2.94)

where the coefficients c may take different values on the two regions R1 and R2.
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Equations 2.73, 2.78 and 2.94 reduce the boundary conditions of equation 2.70

to the following:

c1r = 0, (2.95a)

c1r = c2r, (2.95b)

c1θ/b + Ŵθ0,0
[b] = c2θ/b, (2.95c)

c1z + Ŵz0,0
[b] = c2z, (2.95d)

lim
r→∞

c2r/r = 0, (2.95e)

lim
r→∞

c2θ/r = 0, (2.95f)

c2z = 0. (2.95g)

The left-hand-sides of equations 2.95e–f approach zero, therefore these equations

are redundant. The remaining five equations involve six unknowns, so the no-slip

condition is invoked to give the additional equation

c1θ/a + Ŵθ0,0
[a] = 0. (2.95h)

The coefficients obtained by solution of the above equations correspond to the

potential flow velocity given by

V̂1r0,0
= 0,

V̂1θ0,0
= −aŴθ[a]/r,

V̂1z0,0
= −Ŵz[b],

V̂2r0,0
= 0,

V̂2θ0,0
= bŴθ[b]/r − aŴθ[a]/r,

V̂2z0,0
= 0.

(2.96)

Axial-Mean Modes

The unknown velocity potentials on regions R1 and R2 for Fourier mode-numbers

m �= 0 and k = 0 are

Φ̂1m,0
= c11r

−|m| + c12r
|m|

Φ̂2m,0
= c21r

−|m| + c22r
|m|.

(2.97)
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Equations 2.73, 2.83, 2.86 and 2.97 allow the boundary conditions of equation

2.70 to be expressed as

−|m|a−|m|−1c11 + |m|a|m|−1c12 + Ŵrm,0
[a] = −V̂∞rm,0

, (2.98a)

−|m|b−|m|−1c11 + |m|b|m|−1c12 + Ŵrm,0
[b] = −|m|b−|m|−1c21 + |m|b|m|−1c22, (2.98b)

imb−|m|−1c11 + imb|m|−1c12 + Ŵθm,0
[b] = imb−|m|−1c21 + imb|m|−1c22, (2.98c)

Ω̂rm,0
[b] = 0, (2.98d)

lim
r→∞

r|m|−1c22 = 0, (2.98e)

lim
r→∞

r|m|−1c22 = 0, (2.98f)

0 = 0. (2.98g)

The left-hand-side of equation 2.98d reduces to zero, due to the boundary conditions

imposed on the vorticity field (equation 2.59b). Equations 2.98e–f can only be

satisfied by c22 = 0. Equations 2.98d–g are therefore redundant, so the boundary

conditions reduce to three equations in the three unknown coefficients c11, c12 and

c21. The velocity potentials corresponding to the solutions for these coefficients are

Φ̂1m,0
[r] =

(
Ŵr[a] + V̂∞r

){ a

|m|
(a

r

)|m|
}

+

Ŵr[b]

{
− b

2|m|

((
a2

br

)|m|

+
(r

b

)|m|
)}

+

(
i sgn[m] Ŵθ[b]

){ b

2|m|

((
a2

br

)|m|

+
(r

b

)|m|
)}

(2.99)

and

Φ̂2m,0
[r] =

(
Ŵr[a] + V̂∞r

){ a

|m|
(a

r

)|m|
}

+

Ŵr[b]

{
− b

2|m|

((
a2

br

)|m|

+

(
b

r

)|m|
)}

+

(
i sgn[m] Ŵθ[b]

){ b

2|m|

((
a2

br

)|m|

−
(

b

r

)|m|
)}

, (2.100)

where

sgn[x] =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 x > 0

0 x = 0

−1 x < 0.

(2.101)
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The velocity field V̂1 is evaluated, by use of V = ∇Φ in the form of equation

2.86, throughout region R1 at each time-step of the simulation. To minimise the

computational workload, the quantities inside braces in the expression for Φ̂1 may be

evaluated during a pre-processing step at radial grid points and the corresponding

Chebyshev coefficients retained for use during the simulation. A considerable saving

in the storage requirements can be made by noting that all of the pre-processed data

are real and independent of the signs of mode-numbers m and k.

Higher-Order Axial Modes

The unknown velocity potentials on regions R1 and R2 for Fourier mode-numbers

k �= 0 are

Φ̂1m,k
= c11K[r] + c12I[r]

Φ̂2m,k
= c21K[r] + c22I[r],

(2.102)

where use has been made of the abbreviations

K[r] = K|m|

[|kz|r
]

I[r] = I|m|

[|kz|r
]
.

(2.103)

The derivatives of the modified Bessel functions may be expressed as

K′[r] =
∂K[r]

∂r
= |kz|K ′

|m|

[|kz|r
]

I ′[r] =
∂I[r]

∂r
= |kz|I ′

|m|

[|kz|r
]
,

(2.104)

where

K ′
n[x] =

dKn[x]

dx
= −1

2
(Kn−1[x] + Kn+1[x])

I ′
n[x] =

dIn[x]

dx
=

1

2
(In−1[x] + In+1[x]) .

(2.105)
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Equations 2.73, 2.86, 2.102 and 2.104 allow the boundary conditions of equation

2.70 to be expressed as

K′[a]c11 + I ′[a]c12 + Ŵr[a] = 0, (2.106a)

K′[b]c11 + I ′[b]c12 + Ŵr[b] = K′[b]c21 + I ′[b]c22, (2.106b)

(im/b) (K[b]c11 + I[b]c12) + Ŵθ[b] = (im/b) (K[b]c21 + I[b]c22) , (2.106c)

ikz (K[b]c11 + I[b]c12) + Ŵz[b] = ikz (K[b]c21 + I[b]c22) , (2.106d)

lim
r→∞

I ′[r]c22 = 0, (2.106e)

lim
r→∞

I[r]c22 = 0, (2.106f)

lim
r→∞

I[r]c22 = 0. (2.106g)

If the azimuthal Fourier mode-number is m = 0, equation 2.106c reduces to 0 = 0,

because Ŵθ[b] = (i/kz)Ω̂r[b] (equation 2.80) and the vorticity boundary conditions

ensure that Ω̂r[b] = 0 (equation 2.59b). For mode-numbers m �= 0, multiplication of

equation 2.106c by kzb/m yields equation 2.106d, because equations 2.83 and 2.59b

give (kzb/m)Ŵθ[b] = Ŵz[b]. Equation 2.106c is therefore redundant. Equations

2.106e–g can only be satisfied by c22 = 0, so these equations are also redundant.

The boundary conditions therefore reduce to the three equations 2.106a, 2.106b

and 2.106d, which may be solved for the three coefficients c11, c12 and c21. These

coefficients correspond to the velocity potentials given by

Φ̂1[r] = Ŵr[a]

{
− K[r]

K′[a]

}
+
(
b Ŵr[b]

){ K[b]

K′[a]
I ′[a]K[r] −K[b]I[r]

}
+

(
i sgn[kz] b Ŵz[b]

){K′[b]

K′[a]

I ′[a]K[r]

|kz| − K′[b]I[r]

|kz|
}

(2.107)

and

Φ̂2[r] = Ŵr[a]

{
− K[r]

K′[a]

}
+
(
b Ŵr[b]

){ K[b]

K′[a]
I ′[a]K[r] − I[b]K[r]

}
+

(
i sgn[kz] b Ŵz[b]

){K′[b]

K′[a]

I ′[a]K[r]

|kz| − I ′[b]K[r]

|kz|
}

. (2.108)

The potential flow velocity is evaluated throughout region R1 at each time-step

of the simulation. The computational considerations discussed earlier in relation to

the axial-mean modes also apply here.
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A summary of the velocity calculation procedure is given, as part of an overall

summary of the simulation procedure, at the end of the chapter.

2.6 Pressure Calculation

Because the vorticity transport equation involves only the velocity and vorticity

fields, the pressure field is not an essential part of the solution. The pressure field

may be calculated for arbitrary time-steps of the solution, either as part of the

solution procedure or as a post-processing operation.

The Poisson equation for pressure is obtained from the divergence of the Navier-

Stokes equation (2.10),
∇2P

ρ
= −∇ · (U · ∇U ) . (2.109)

The Fourier series expansion for pressure, in a form analogous to equation 2.25,

allows the above equation to be expressed separately for each Fourier mode-number.

In cylindrical coordinates, the equation for the Fourier coefficients of pressure,

denoted by P̂ , is

1

ρ

∂2P̂

∂r2
+

1

ρr

∂P̂

∂r
− 1

ρr2

(
m2 + k2

zr
2
)
P̂ = λ̂p[r], (2.110)

where λ̂p denotes the Fourier coefficients of the pressure-source corresponding to the

right-hand-side of equation 2.109. The pressure-source is expressed in cylindrical

coordinates as

λp = −2
∂Uz

∂r

∂Ur

∂z
−
(

∂Ur

∂r

)2

− 2

r

∂Uθ

∂r

(
∂Ur

∂θ
− Uθ

)

− 1

r2

(
∂Uθ

∂θ
+ Ur

)2

− 2

r

∂Uz

∂θ

∂Uθ

∂z
−
(

∂Uz

∂z

)2

. (2.111)

Because of the non-linear relationship between λp and the velocity field, it is difficult

to calculate the Fourier coefficients of λp directly from the Fourier coefficients of

velocity. It is more efficient to evaluate λp on a spatial grid and then to determine

the Fourier coefficients λ̂p by use of the discrete Fourier transform (equation 2.30

with velocity replaced by pressure).
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Boundary conditions for pressure are derived from the radial component of the

Navier-Stokes equation. At the cylinder surface, all components of velocity vanish

and the Navier-Stokes equation becomes

∇P

ρ
= ν∇2

U . (2.112)

Further manipulation yields the inner boundary condition for pressure,

1

ρ

∂P̂

∂r
[a] = ν

∂2Ûr

∂r2
[a]. (2.113)

Outside the outer boundary of the computational domain, the assumption of poten-

tial flow reduces the Navier-Stokes equation in the form of equation 2.13 to

∇PT

ρ
= −∂U

∂t
. (2.114)

The total pressure at the outer boundary is given by integration of the gradient from

infinity:
1

ρ

(
P̂T [b] − P̂T [∞]

)
= −

∫ b

∞

∂Ûr

∂t
[r] dr = −∂Φ̂2

∂t
[b]. (2.115)

The corresponding boundary condition for static pressure is

1

ρ

(
P̂ [b] − P̂ [∞]

)
= −∂Φ̂2

∂t
[b] − 1

ρ
Q̂[b] +

1

ρ
Q̂[∞]. (2.116)

The Q̂ are Fourier coefficients of the dynamic pressure

Q =
1

2
ρ‖U‖2, (2.117)

which is most efficiently evaluated in the space domain. The velocity potential Φ̂2

is calculated via the formulae presented in section 2.5.7. The time derivative may

be approximated by use of finite differences across simulation time-steps.

2.7 Numerical Methods

2.7.1 Galerkin Method

The Galerkin method [see, for example, Boyd, 1989] allows linear differential equa-

tions to be expressed in matrix form when the solution is expanded as a finite series.

For the current study, the Galerkin method is used to solve the algebraic, differential
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and integral equations that arise when the flow equations are expressed in terms of

Chebyshev-Fourier modes.

Consider the one-dimensional equation

L1u[x] = L2f [x], x ∈ [xa, xb], (2.118)

where L1 and L2 are linear differential operators, xa and xb are the endpoints of

the problem domain, and f is a known function. A series approximation for the

unknown u is

u[x] ≈
N−1∑
n=0

ũnψn[x], (2.119)

where the ψn are differentiable basis functions defined over the interval [xa, xb]. A

similar expansion can be written for function f .

The residual for equation 2.118 is defined as

e[x] = L1u − L2f, (2.120)

which expresses the amount by which an approximate solution u is in error. The

Galerkin method attempts to minimise the residual by enforcing the conditions

((e, ψm)) = 0, m = 0, 1, . . . , N − 1. (2.121)

The form on the left-hand-side, known as the inner product, is defined as

((u, v)) =

∫ xb

xa

uvw dx, (2.122)

where w is a suitable weight function. If the basis functions are taken from a

complete set, the residual may be expressed as

e[x] =
∞∑

n=0

ẽnψn[x]. (2.123)

Substitution of the above expression into equation 2.121 yields

∞∑
n=0

ẽn ((ψn, ψm)) = 0, m = 0, 1, . . . , N − 1. (2.124)
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If the basis functions are orthogonal, then, by definition,

((ψn, ψm)) =

⎧⎨
⎩0 n �= m

cn n = m,
(2.125)

where the value cn may depend on n. Consequently equation 2.124 reduces to

ẽn = 0, n = 0, 1, . . . , N − 1. (2.126)

Thus the Galerkin method — with basis functions that form a complete, orthogonal

set — forces the first N series coefficients of the residual to zero. The larger the

value N , the greater the accuracy of the solution.

The Galerkin method applied to equation 2.118 yields

((L1u, ψm)) = ((L2f, ψm)) , m = 0, 1, . . . , N − 1. (2.127)

Substitution of the series for u and f gives the system of equations

N−1∑
n=0

ũn ((L1ψn, ψm)) =
N−1∑
n=0

f̃n ((L2ψn, ψm)) , m = 0, 1, . . . , N − 1. (2.128)

The inner product terms may be precomputed and stored in matrix form, so that

the series coefficients ũn may be determined by use of standard matrix solution

techniques.

When Chebyshev polynomials are chosen as the basis functions, the elements of

the Galerkin matrices have the form

((LTn, Tm)) =

∫ π

0

{L cos[nζ]
}

cos[mζ] dζ, (2.129)

where the inner product is given by equation 2.38. The integral may be calculated

numerically with great precision by a variety of methods including rapid, frequency

domain techniques that employ the FFT.

For the equations considered in the current study, all non-zero elements of the

Galerkin matrices lie within a band centred on the main diagonal. The width of the

band is independent of the number of polynomials N used for the Chebyshev series.

This structure is significant because there exist algorithms for the efficient solution

and storage of banded systems of equations. For example, solution of a system by

back-substitution of LU factors (considered in the following section) requires O(N2)
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operations and memory locations for full matrices compared with O(N) for banded

matrices.

2.7.2 Faddeev-Faddeeva Factorisation

Boundary conditions may be imposed on a Galerkin matrix system by replacement of

equations. For the example of equation 2.128, a single boundary condition replaces

the equation for m = (N−1), a second boundary condition replaces the equation for

m = (N −2), and so on. When the initial Galerkin matrix is banded, the imposition

of boundary conditions disrupts the banded structure. However, factorisation and

solution of the partially banded matrix system may be performed efficiently by use

of the boundary bordering method of Faddeev and Faddeeva [1963]. A variation

of the method that is compatible with standard LAPACK routines [see Anderson

et al., 1999] is described below.

A partially banded matrix equation Ax = b, which is to be solved for x, may be

partitioned as (
A11 A12

A21 A22

)(
x1

x2

)
=

(
b1

b2

)
, (2.130)

where submatrix A11 is banded and the other submatrices are full. If the overall

dimension of the A matrix is N × N and the number of non-banded rows is s, the

submatrix sizes are
A11 ≡ (N − s) × (N − s)

A12 ≡ (N − s) × s

A21 ≡ s × (N − s)

A22 ≡ s × s

x1, b1 ≡ (N − s) × 1

x2, b2 ≡ s × 1.

(2.131)

The Faddeev-Faddeeva factorisation expresses the LU decomposition of the par-

titioned matrix A as(
L11 0

L21 L22

)(
U11 U12

0 U22

)
=

(
A11 A12

A21 A22

)
, (2.132)

where like-numbered submatrices have the same size. Although it is possible to

determine all of the submatrices in the factorisation, the following sequence of
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operations is sufficient as a preparatory step in the solution of a matrix equation in

the form of equation 2.130:

L11U11 = A11 (2.133a)

L11U11B12 = A12 (2.133b)

L22U22 = A22 − A21B12. (2.133c)

The submatrices L11 and U11 are determined by LU decomposition of A11. The

auxiliary matrix B12 = U−1
11 U12 is obtained by solution of equation 2.133b. Lastly,

submatrices L22 and U22 are given by LU decomposition of the right-hand-side of

equation 2.133c.

Since A11 is banded, the factors L11 and U11 are also banded, and the LU

decomposition can be computed using O(N) operations and memory locations. The

remaining submatrices are full, but the overall workload and storage required to

compute them is also O(N), assuming that s is independent of N . For the purposes

of the current study, the LU factors can be determined as a pre-processing step,

since the corresponding matrix equations do not change during the simulation.

The accuracy of the factorisation is compromised if the whole A matrix or the

submatrices A11 or A22 are ill-conditioned. Row and column reordering of A can

improve the condition number of a submatrix without affecting the condition number

of the whole matrix. The condition number of the whole matrix can be improved

by scaling rows or columns.

The solutions x1 and x2 of matrix equation 2.130 are obtained via the following

operations:

L11U11y = b1 (2.134a)

L22U22x2 = b2 − A21y (2.134b)

x1 = y − B12x2. (2.134c)

The intermediate solution y of equation 2.134a is used to determine the right-hand-

side of equation 2.134b, which is solved for x2. Then x1 follows from equation 2.134c.

The equations which involve the banded submatrices L11 and U11 can be solved

by back-substitution using O(N) operations and memory locations. The remaining

submatrices of the LU factors are full, but the workload and storage required to

perform the associated arithmetic is also O(N).
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2.7.3 Bessel Function Calculation

The rapid variation of the modified Bessel functions Kn[x] and In[x] with x and n

is shown in figure 2.2. The limits of floating point arithmetic can be exceeded for

moderate values of x and n. Direct evaluation of the modified Bessel functions in

the velocity potentials given by equations 2.107 and 2.108 is found to be impractical

when either the number of Fourier modes, or the size of the simulation domain

relative to the cylinder radius, becomes large. An alternative is to evaluate terms

of the form

rm,n[xm, xn] =
Km[xm]

Kn[xn]
(2.135)

and

pm,n[xm, xn] = Im[xm]Kn[xn], (2.136)

where the difference between orders m and n is small.

Calculation of the ratio term rm,n starts with evaluation of sequences ρj[xm] and

ρj[xn], where

ρj[x] =
Kj[x]

Kj−1[x]
. (2.137)

The sequences may be generated via the recurrence relation

ρj+1[x] =
2j

x
+

1

ρj[x]
, (2.138)

where the starting value ρ1 is determined by direct evaluation of the Bessel functions.

The ratio term is found by use of the recurrence relation

r(m−i),(n−i)[xm, xn] = r(m−i−1),(n−i−1)[xm, xn] × ρm−i[xm]/ρn−i[xn],

i = (k − 1), . . . , 0, k = min[m, n]. (2.139)

Calculation of the product term pm,n involves evaluation of the sequences ρj[xn]

and �j[xm], given respectively by equation 2.137 and

�j[x] =
Ij[x]

Ij−1[x]
. (2.140)

The latter sequence is generated via the recurrence relation

1

�j−1[x]
= �j[x] +

2(j − 1)

x
, (2.141)
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which must be computed downward for stability. The starting value may be com-

puted by use of the technique developed by Gautschi and Slavik [1978]. The product

term is found by using the recurrence relation

p(m−i),(n−i)[xm, xn] = p(m−i−1),(n−i−1)[xm, xn] × �m−i[xm] × ρn−i[xn],

i = (k − 1), . . . , 0, k = min[m, n]. (2.142)

In the recurrence relations for the ratio and product terms, the starting values

r(m−k),(n−k) and p(m−k),(n−k) are obtained by direct evaluation of the modified Bessel

functions. Negative integer order may be accommodated if necessary by use of the

relationships

Kn[x] = K−n[x]

In[x] = I−n[x].
(2.143)

2.8 Summary

A simulation methodology has been developed for the present investigation of axial

and near-axial flow along cylinders. The procedure employed for solution of the

governing Navier-Stokes equations is similar to that used by Neves [1992], but here

different boundary conditions are adopted. The computational domain extends from

the surface of the cylinder to a finite outer radius. The flow is inherently periodic in

the azimuthal direction, and periodic boundary conditions are imposed on a finite

length in the axial direction. Flow variables are represented by Fourier series in the

azimuthal and axial directions and by Chebyshev series mapped non-uniformly to the

radial direction. At the cylinder surface, no-slip boundary conditions are imposed.

In order to make possible the inclusion of large-scale ejection and cross-flow events

such as those observed experimentally, the outer boundary condition is imposed on

vorticity rather than requiring the radial velocity component to be zero. The radial

component of vorticity is set to zero and the remaining vorticity components are

determined so that the resultant vector magnitude is minimised. Vorticity, which

is confined to the computational domain, becomes the primary simulation variable,

whose evolution is governed by the vorticity transport equation. The velocity field is

assumed to be continuous throughout space, with the external potential flow tending

to the free-stream at infinity. The velocity field inside the computational domain is

determined from the vorticity field at each time-step.

The sequence of major operations in the simulation procedure is as follows:
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1. Specify simulation parameters, including radius Reynolds number and free-

stream yaw angle, grid geometry and resolution (section 2.3), and time-step

size (equation 2.56).

2. Pre-calculate frequently used matrices and formulae:

(a) Generate Galerkin matrices for velocity calculation (section 2.5.5) and

time integration (equation 2.55). Evaluate invariant parts of the expres-

sions for velocity potential Φ̂1 (equations 2.99 and 2.107).

(b) If it is desired that the pressure field is to be calculated as part of

the simulation, generate the Galerkin matrices for equation 2.110 and

evaluate the invariant parts of equations 2.100 and 2.108 at radius b.

(c) Calculate the vorticity field Ω̂i and the corresponding velocity field Ûi

used for enforcement of the no-slip condition at the cylinder surface

(sections 2.4.4 and 2.4.5).

3. Initialise the vorticity field (denoted by Ω̂h in the following steps), possibly

with data from a previous simulation.

4. Calculate the velocity field Ûh on region R1 (a ≤ r ≤ b):

(a) Solve the equations in section 2.5.5 for a velocity field Ŵ whose curl is

the vorticity field Ω̂h; any convenient boundary conditions may be used.

(b) Calculate the potential flow velocity V̂1 by use of equations 2.86, 2.96,

2.99 and 2.107.

(c) Determine the overall velocity field Ûh by addition of Ŵ , V̂1 and V̂∞

(equation 2.68). This sets the wall-normal velocity to zero and the

velocity at infinity to the free-stream velocity, while ensuring that the

velocity is continuous across the outer boundary of the computational

domain.

5. Enforce the no-slip condition at the cylinder surface:

(a) Determine the factors cm,k given by equations 2.61 and 2.67.

(b) Calculate the vorticity field Ω̂ given by addition of Ω̂h and cm,kΩ̂i (equa-

tion 2.60a).

(c) The corresponding velocity field Û is given by addition of Ûh and cm,kÛi

(equation 2.60b).

6. If required, calculate the pressure field (section 2.6).
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7. If required, export flow fields to a data storage system.

8. Advance the vorticity field to the next time-step:

(a) Calculate the Chebyshev-Fourier coefficients of the non-linear term (sec-

tion 2.4.3). The cross-product of velocity and vorticity is evaluated on a

grid in the space domain.

(b) Solve equation 2.55 for the vorticity field Ω̂h, imposing the boundary

conditions of equation 2.59 or 2.65 with cm,k = 0.

9. Repeat from step 4 as often as required.

Practical issues associated with implementation of the simulation procedure are

addressed in the next chapter.



Chapter 3

Computational Considerations

3.1 Code Development and Verification

The simulation procedure described in the previous chapter has been implemented

using the Fortran 95 programming language, with support for parallel execution

provided by use of the Message Passing Interface [Message Passing Interface Forum,

1995]. The LAPACK library [Anderson et al., 1999] is used for matrix operations, the

FFTW library [Frigo and Johnson, 2005] is used for Fourier and cosine transforms,

and the NetCDF library [Rew et al., 2005] is used for file operations. Modified Bessel

functions are evaluated by means of recurrence relations (see section 2.7.3) which are

initialised using routines from the SLATEC Common Mathematical Library [Fong

et al., 1993]. The program has been executed on a variety of server clusters and a

shared-memory supercomputer.

The computational resources necessary for direct numerical simulation (DNS) of

turbulent flow are immense. Even though the present code has been designed and

tuned for high-performance, the most ambitious simulation considered here, which

involved 256×384×1280 mesh points and a total of 1.8×105 time-steps, consumed

approximately 85 gigabytes of memory and required a running time of 16 days

on 96 parallel processors (1.3 GHz IntelR© ItaniumR© 2) of an SGIR© Altix R© 3000

supercomputer. Such requirements suggest that DNS, which forgoes the use of

turbulence models, is perhaps not yet suitable for routine use in engineering design,

although as argued by Moin and Krishnan [1998], DNS is particularly effective when

used as a tool for turbulence research.

Post-processing of the NetCDF datasets produced by the present simulations has

been performed on an ordinary workstation. The post-processing routines have been

written for MATLABR©, which provides access to a comprehensive set of numerical

M. J. Woods, Ph.D. thesis, 2006 47
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and graphical operations and is available for a variety of operating systems and

processors.

Extensive testing of the simulation code at the level of individual procedures

and modules has been conducted using a set of test programs developed specifically

for the task. For example, the results of the velocity calculation procedure can be

checked to ensure that the curl of velocity corresponds to the vorticity and that the

required boundary conditions are satisfied. Neves [1992] uses Taylor-Couette flow,

for which experimental and computational data are readily available, as a test of

his complete simulation code. However, a similar test of the present code would

be of questionable value, because considerable program modifications are required

to install the appropriate vorticity boundary conditions. The most relevant test

cases are those for which the program is primarily designed — external flow over a

cylinder.

The simulation code has been applied to an increasingly challenging series of

flows and the results validated against the available reference data. The progressive

development and validation of the simulation procedure is evident in a series of

publications resulting from the present work [Woods and Bull, 2003, 2006, 2004],

which are included in the appendix. In the main body of this thesis, the simulation

results for cylinders in a variety of free-stream flow conditions are presented and

discussed. Wherever practical, the results are assessed with respect to independent

experimental and computational data.

3.2 Specification of Flow Parameters

The computational procedure used for the present study ensures that simulations

of axial flow along a cylinder reach a statistically-steady state after a sufficient

number of time-steps. The flow equations solved are expressed in non-dimensional

form with respect to the free-stream velocity magnitude V∞ and the cylinder radius

a. The statistically-steady state is determined by two non-dimensional parameters,

the radius ratio of the computational domain, b/a, and the radius Reynolds number,

Rea = aV∞/ν, where ν is the kinematic viscosity of the fluid.

The statistically-steady state is independent of initial conditions. However, the

initial state of a simulation affects the amount of computational effort required to

reach statistical steadiness. Where possible, it is desirable to initialise a simulation

with a flow field from a similar, previously completed simulation. In the few cases

for which suitable simulated data were not available, the present calculations were
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initialised using an assumed mean-flow profile and superimposed random distur-

bances.

The specified outer radius b of the computational domain affects the boundary

layer thickness δ, which is generally defined as the wall-normal distance at which

the mean velocity equals 0.99V∞. For chosen values of Rea and b/a, the time-

varying velocity field produced by the calculation may be averaged to determine the

wall-normal distribution of mean axial velocity Uz. The mean velocity distribution

yields a value for δ/a; it also leads to non-dimensional values of the wall-shear-stress

τw = ρν dUz/dr[a] and friction velocity uτ =
√

τw/ρ, where ρ is the density of the

fluid. The ratio ν/uτ is a wall unit of length; the boundary layer thickness in wall

units is denoted by δ+ and is equal to δuτ/ν. Similarly, the cylinder radius in wall

units is a+ = auτ/ν.

The flow parameters selected for the present simulations are intended to allow

the separate effects of a+, δ+ and their ratio δ/a to be identified. Consequently, there

are several series of simulations where one of these parameters is held approximately

constant while the others are varied. Over successive simulations, flow parameters

have been advanced towards those of the cylinder experiments of Luxton et al.

[1984] and Berera [2004] (see also Berera and Bull [2001]) and the plane-channel

simulations of Kim et al. [1987] and Moser, Kim, and Mansour [1999]. The flows

considered in direct numerical simulations by Neves [1992] (see also Neves et al.

[1994], Neves and Moin [1994]) have also been simulated by the present procedure

to allow detailed validation of the present results and to investigate the effects of

the vorticity boundary conditions.

3.3 Geometrical and Temporal Parameters

Mesh geometry parameters for the axial-flow simulations are listed in table 3.1.

The mesh resolution in wall units (ν/uτ ) for each simulation is given in table 3.2.

The simulation procedure accepts length parameters that are non-dimensional with

respect to the cylinder radius a, so the conversion to wall units is achieved by

multiplication of the length parameters by the values of a+ taken from table 4.1 in

the next chapter.

The axial length Lz of the computational domain is required to contain the largest

significant turbulence structures. These structures can be expected to become larger

as the width (b − a) of the computational domain increases. For the plane-channel

simulations of Moser et al. [1999], domain lengths in the range 2π to 4π channel half-

widths are found to be sufficient. The cylinder simulations of Neves [1992] employ
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Rea b/a Nr NΩ Nθ Nz η Lz/a Lz/(b − a)

311 12 96 80 128 384 3.00 207 18.8
311 21 128 112 192 384 3.00 207 10.4
311 31 160 144 288 384 3.00 207 6.9
311 41 210 192 256 384 5.83 207 5.2
492 12 160 160 192 576 ∞ 207 18.8
674 6 96 80 128 320 3.00 94.2 18.8
674 12 160 144 256 768 3.00 94.2 18.8
1300 4 96 80 128 320 3.00 56.5 18.8
1300 6 168 168 256 840 ∞ 113.0 22.6
2600 2.5 96 80 256 320 3.00 28.3 18.9
2600 4 128 112 256 640 3.00 56.5 18.8
2600 6 180 164 256 1024 5.83 94.2 18.8
3300 7.3 256 240 384 1280 5.83 94.2 15.0
5200 1.75 96 80 512 320 3.00 14.1 18.8
10400 1.4 96 80 1024 320 3.00 7.54 18.9
20800 1.2 96 80 2048 320 3.00 3.77 18.9

Table 3.1: Grid geometry parameters

Rea b/a a+ ∆r+
i ∆r+

max ∆ro/∆ri a+∆θ b+∆θ ∆z+

311 12 21.9 0.093 5.26 4.00 1.07 12.88 11.78
311 21 21.5 0.085 6.71 4.00 0.70 14.78 11.59
311 31 21.5 0.077 7.84 4.00 0.47 14.55 11.60
311 41 21.0 0.080 7.08 2.00 0.52 21.15 11.33
492 12 31.5 0.067 3.40 1.00 1.03 12.35 11.31
674 6 42.7 0.082 4.66 4.00 2.09 12.57 12.56
674 12 40.8 0.053 5.44 4.00 1.00 12.00 10.98
1300 4 76.0 0.088 4.98 4.00 3.73 14.91 13.41
1300 6 74.3 0.065 3.47 1.00 1.82 10.94 10.00
2600 2.5 146 0.085 4.79 4.00 3.59 8.97 12.93
2600 4 140 0.083 6.55 4.00 3.43 13.73 12.35
2600 6 131 0.085 6.48 2.00 3.23 19.35 12.09
3300 7.3 163 0.062 6.92 2.00 2.67 19.47 12.00
5200 1.75 287 0.083 4.71 4.00 3.52 6.17 12.65
10400 1.4 564 0.087 4.93 4.00 3.46 4.85 13.30
20800 1.2 1130 0.087 4.92 4.00 3.45 4.14 13.26

Table 3.2: Grid resolution in mean-flow wall units.
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domain lengths of 4π(b− a) and 6π(b− a). The domain length used for the present

simulations is intended to be set to approximately 6π(b − a), although some flow

cases employ reduced values as dictated by the computational resources available at

the appropriate times. The adequacy of the domain length is judged, in section 3.4,

by analysis of the streamwise correlation functions of the calculated flows.

The number of grid points in the azimuthal and axial directions is denoted respec-

tively by Nθ and Nz. The Chebyshev series representation for the radial distribution

of vorticity uses NΩ coefficients. The number Nr of Chebyshev coefficients used to

represent quantities that are derived from the vorticity field, such as velocity and

(in turn) pressure, is typically made larger than NΩ to improve the accuracy with

which the derived quantities are calculated. Initial values for NΩ, Nr, Nθ and Nz

are estimated by extrapolation from previous simulations, with the complication

that any values chosen are required by the Fast Fourier Transform software to be

expressible as products of small prime numbers. The grid resolution parameters are

assessed by examination of spatial spectra of the calculated flow fields, as discussed

in section 3.4.

The Chebyshev-Fourier decomposition of the flow uses the same number of

coefficients as there are spatial grid points. Thus the number of spatial grid points is

the minimum necessary to transform the flow fields between the Chebyshev-Fourier

and space domains. The number of Chebyshev-Fourier coefficients required to

represent the non-linear term of the vorticity transport equation without truncation

is greater than the number used for either the velocity or vorticity fields (see section

2.4.3). However, in the present simulations, the non-linear term is evaluated using

the same number of spatial grid points and Chebyshev-Fourier coefficients as are used

for the velocity field. The coefficients of the non-linear term that are neglected at

high mode-numbers cause so-called aliasing errors in the remaining coefficients at low

mode-numbers. The high spatial resolutions used for the present study ensure that

the absolute values of the neglected coefficients are small, therefore the significant

computational effort that would be required to eliminate the aliasing errors from

the non-linear term is not considered justified.

The shape parameter η controls the mapping of Chebyshev grid points to the

radial direction (equation 2.34). To explain the effect of η on the radial grid, it is

useful to consider the values of ∆rmax, ∆ri and ∆ro, which denote respectively the

maximum, innermost and outermost radial spacing between adjacent grid points.

When η = ∞, the radial spacing of the grid increases from minima at the innermost

and outermost edges of the grid, with ∆ri = ∆ro, to a maximum ∆rmax at the

radial mid-point of the grid. As η is decreased from ∞ towards 1, a given value of
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the innermost spacing ∆ri is maintained by simultaneously decreasing the number

of grid points, which is NΩ for the vorticity field. The reduction of both η and

NΩ increases the outermost spacing ∆ro, which typically increases the maximum

stable value of the simulation time-step (see equation 2.56) and thereby reduces

computational effort. The acceptable ranges of NΩ and η are constrained by the

need to limit the size of the maximum spacing ∆rmax. Values η ≈ ∞, 5.83, 3.00 have

been used for the present simulations; corresponding ratios of the outermost to the

innermost radial grid spacing are ∆ro/∆ri ≈ 1, 2, 4. Values of NΩ and η are assigned

to the simulations so that the grid spacing in wall units has a typical minimum of

∆r+
i ≈ 0.08 and a typical maximum of ∆r+

max ≈ 7.

The azimuthal grid spacing is proportional to radial position. Acceptable max-

imum values of the azimuthal grid spacing ∆θ = 2π/Nθ are found to be the lesser

of ∆θ ≈ 4/a+ and ∆θ ≈ 20/b+. The axial grid spacing is uniform in the axial di-

rection, with a typical value of ∆z+ = a+(Lz/a)/Nz ≈ 12. The size of the smallest

turbulent eddies is of the order of the Kolmogorov length-scale, which is defined by

LK =

(
ν3

ε

)1/4

, (3.1)

where ε denotes the rate of energy dissipation by viscosity per unit volume of

fluid evaluated from the simulation data (see section 4.4). For all of the present

simulations, the grid spacing throughout the computational domain is found to be

less than 3LK in the azimuthal direction and less than 9LK in the axial direction.

The simulation procedure accepts temporal parameters normalised by the time-

scale a/V∞. Other time-scales may be derived from combinations of the flow quanti-

ties a, δ, V∞, uτ and ν; the shortest time-scale is ν/u2
τ and the longest is δ/uτ . The

different time-scales may be obtained from a/V∞ by use of the mean-flow parameters

listed in table 4.1 in the next chapter.

Where appropriate, the simulation data reported in this thesis are averaged in

the azimuthal and axial directions and also in time, with the temporal averaging

parameters given in table 3.3. The number of temporal samples NT spans a temporal

record of duration LT . For the majority of flow cases, LT is several times greater

than the time-scale δ/uτ . In the small number of flow cases where LT < δ/uτ , the

calculated statistics appear to be consistent with neighbouring flow cases; extension

of these time records would reduce uncertainty in the corresponding statistics.

The temporal parameters used to obtain sampled time-series for a subset of the

flow cases are listed in table 3.4. The sample period ∆ts is set so that the highest

frequency represented without ambiguity (the Nyquist frequency 0.5/∆ts) is close
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Rea b/a NT LT V∞/a LT uτ/δ LT u2
τ/ν

311 12 10 900 8.09 1383
311 21 7 600 2.96 892
311 31 15 1750 6.33 2606
311 41 7 525 1.29 746
492 12 20 95 0.77 191
674 6 11 313 5.30 846
674 12 10 675 5.27 1663
1300 4 4 112 2.81 497
1300 6 10 31 0.49 132
2600 2.5 3 40 1.91 329
2600 4 5 80 1.87 602
2600 6 3 25 0.32 166
3300 7.3 8 70 0.70 564
5200 1.75 3 15 1.44 238
10400 1.4 5 7 1.21 214
20800 1.2 5 4 1.38 243

Table 3.3: Temporal averaging intervals

Rea 311 311 674 3300
b/a 12 31 12 7.3

Nt 320 768 640 1750
Ni 19 12 12 1
NT 3200 4992 4160 1750

∆tsV∞/a 0.3000 0.3750 0.1875 0.0400
∆tsuτ/δ 2.70×10−3 1.36×10−3 1.47×10−3 4.02×10−4

∆tsu
2
τ/ν 0.461 0.558 0.462 0.322

LtV∞/a 96 288 120 70
Ltuτ/δ 0.863 1.044 0.939 0.703
Ltu

2
τ/ν 148 429 296 563

LT V∞/a 960 1872 780 70
LT uτ/δ 8.63 6.79 6.10 0.70
LT u2

τ/ν 1475 2787 1922 563

Table 3.4: Temporal resolution of time-series
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to 1/(ν/u2
τ ), therefore ∆tsu

2
τ/ν ≈ 0.5. Power spectra and correlation functions

are computed on temporal intervals of duration Lt = Nt∆ts, where the number of

samples Nt is required by the Fast Fourier Transform software to be expressible

as a product of small prime numbers. The duration of the intervals is specified so

that the lowest resolvable frequency 1/Lt is close to 1/(δ/uτ ), therefore Ltuτ/δ ≈ 1.

Where practical, the calculated statistics are averaged across a number of temporal

intervals that overlap one another by 0.5Lt. The overlapping intervals correspond

to a temporal record containing NT = Nt(Ni +1)/2 unique samples, where Ni is the

number of intervals. The duration of the temporal record is LT = NT ∆ts.

3.4 Mesh Validation

Mesh resolution is typically verified in computational studies by comparison of

results calculated at different levels of mesh refinement. However, such an approach

is not attractive for DNS because of the very large computational workload involved.

For a pseudo-spectral method such as that employed here, examination of the Fourier

coefficients gives a good indication of the adequacy of mesh resolution. In particular,

the coefficients are required to decay to a small value at high spatial wave-numbers.

In the case of turbulent flow, a smoothly decaying wave-number spectrum reflects

the cascade of energy from large to small scales of turbulence. Deviation from

smooth decay at high wave-numbers may possibly indicate that the grid resolution

is insufficient.

Azimuthal and axial wave-numbers, denoted respectively by kθ and kz, are

defined by equations 2.26 and 2.27. The azimuthal and axial spectra for the axial

component of velocity Uz are defined respectively by

Euz
[kθ] = cθ

∣∣∣∣∣
Nθ−1∑
n=0

Uz[n∆θ] exp
[−ikθrn∆θ

]∣∣∣∣∣
2

(3.2)

and

Euz
[kz] = cz

∣∣∣∣∣
Nz−1∑
n=0

Uz[n∆z] exp
[−ikzn∆z

]∣∣∣∣∣
2

, (3.3)

where ∆θ and ∆z denote the spatial grid spacing. The overbar denotes averaging

in the azimuthal or axial direction and over the temporal record. The scale factors
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cθ and cz are set so that when Euz
is plotted against wave-number, the area under

the single-sided spectrum equals the mean-square value of Uz, that is

∫
kθ≥0

Euz
[kθ] dkθ =

∫
kz≥0

Euz
[kz] dkz = U2

z . (3.4)

Azimuthal spectra of the axial velocity component are shown in figure 3.1.

Normalisation with respect to δ is achieved by use of the mean-flow parameters listed

in table 4.1 in the next chapter. Results are shown for two different wall-normal

positions: near the wall at the grid points closest to y+ = 10, and near the outer

edge of the boundary layer at the grid points closest to y/δ = 1. The spectra decay

by five or more orders of magnitude over the range of azimuthal wave-numbers in

each simulation. The presence of upwardly curved “hooks” at the high wave-number

ends of some of the spectra suggests that a slight increase in grid resolution may be

necessary. However, the size of the hooks is greatly emphasised by the logarithmic

scale, and it is considered that an increase in azimuthal resolution would not produce

a worthwhile improvement in the quality of the simulation results.

Axial spectra of the axial velocity component near the inner and outer edges of

the boundary layer are shown in figure 3.2. Near the high wave-number limits of

the simulations, the spectra decay smoothly to levels that are five or more orders

of magnitude smaller than the maxima. The axial grid resolution is therefore

considered to be sufficient.

The axial length Lz of the computational domain is intended to be significantly

larger than the largest turbulence structures. The two-point correlation function

gives an indication of the typical length of turbulence structures in a given direction.

For the axial velocity component, which is composed of fluctuations uz relative to

the mean Uz, the two-point correlation as a function of axial separation ∆z is defined

by

Ruz
[∆z] = uz[z] uz[z + ∆z] / u2

z. (3.5)

The overbar indicates the average value calculated over the azimuthal and axial

directions and over the temporal record. Normalisation of the correlation function

by the mean-square value of uz ensures that the maximum value of Ruz
is unity

when ∆z is zero.

Axial correlations for the present simulations are shown in figure 3.3. Near the

wall (figure 3.3a), the turbulence is essentially uncorrelated for separations larger

than half of the domain length. Near the outer edge of the boundary layer (figure

3.3b), where larger turbulent eddies are found, the domain half-length of all flow

cases is adequate to allow the correlation function to decay to less than 20% of
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the maximum value. Use of data from a longer temporal record may possibly

yield correlation functions for the outer flow that decay more completely without

alteration of the axial domain lengths. However, the domain lengths used for the

present simulations are considered sufficient to allow detailed comparison of the

calculated results with those of previous DNS studies.

3.5 Statistical Steadiness

The velocity field U consists of turbulence fluctuations u superimposed on the

spatial- and temporal-mean flow U . Mean and fluctuating contributions to other

quantities are denoted similarly.

The present simulations of axial flow over a cylinder reach a statistically-steady

state after a sufficient number of time-steps. At the statistically-steady state, there

is no variation of the mean flow in time or in the azimuthal and axial directions.

Under such conditions, the incompressible Navier-Stokes equation for the mean axial

velocity component (the Reynolds-average of equation 2.11c) reduces to

1

ρ

dP

dz
=

1

r

d

dr

(
νr

dUz

dr
− ruruz

)
. (3.6)

At the statistically-steady state, the radial variation of the combined Reynolds and

viscous shear-stress is required to balance the axial component of the mean pressure-

gradient.

Multiplication of equation 3.6 by r and integration with respect to r from a to

a given radius R yields

1

ρ

dP

dz

(
R2 − a2

2

)
= ν

(
R

dUz

dr
[R] − a

dUz

dr
[a]

)
− (R uruz[R] − a uruz[a]) , (3.7)

where the axial component of the mean pressure-gradient is required to be inde-

pendent of radius so that the radial component of the mean pressure-gradient is

independent of axial position. Evaluation of equation 3.7 at R = b and use of the

velocity boundary conditions allows the pressure-gradient to be expressed as

1

ρ

dP

dz
= −

(
2

b2 − a2

){
aν

dUz

dr
[a] + b uruz[b]

}
. (3.8)

The first term inside braces involves ν dUz/dr[a], which is equal to the wall-shear-

stress τw divided by the fluid density ρ. The second term involves the Reynolds

shear-stress at the outer mesh boundary, which is not formally zero but is typically
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Figure 3.4: Axial pressure-gradient at the statistically-steady state. Symbols are for
present simulations; (dP/dz)(b − a)/τw = −2a/(b + a) = −2/(2 + (b − a)/a).

very small compared with τw/ρ. The axial pressure-gradient corresponding to each

simulation is shown in figure 3.4.

Replacement of the pressure-gradient in equation 3.7 leads to an expression for

the total shear-stress τ :

τ [r]

ρ
= −uruz[r] + ν

dUz

dr
[r]

=
(a

r

)(b2 − r2

b2 − a2

)
ν
dUz

dr
[a] −

(
b

r

)(
r2 − a2

b2 − a2

)
uruz[b].

(3.9)

The radial distribution of total shear-stress is thus expressed analytically in terms

of boundary values of the simulation statistics.

An interesting geometrical interpretation of the total shear-stress distribution

emerges when equation 3.9, with uruz[b] assumed negligible, is rearranged as follows:

τ

τw

≈
(

π(a + h)2 − π(a + y)2

2π(a + y)

)/(
π(a + h)2 − π(a + 0)2

2π(a + 0)

)

=
Ac[y, h]/Lc[y]

Ac[0, h]/Lc[0]
.

(3.10)
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In the above expression, h is the radial width (b− a) of the computational domain,

y is a given wall-normal position, Lc[y] is the circumference of a circle of radius

a + y, and Ac[y, h] is the area of the annular region between radial positions a + y

and a + h. Thus the total shear-stress at y is proportional to the ratio of the

cross-sectional area of the boundary layer outside y to the total cross-sectional area

of the boundary layer, with both areas normalised by their corresponding inner

circumferential lengths.

A simulation is considered to have reached statistical steadiness when the calcu-

lated total shear-stress profile matches the analytical profile given by equation 3.9.

The close agreement of calculated values of τ with the analytically-derived profiles

for the simulations listed in tables 3.1–3.4 is shown in figure 3.5. Further evidence

that the present simulations have reached a statistically-steady state is provided

by analysis of the turbulence kinetic energy budget, which is considered later in

section 4.4.

3.6 Summary

The simulation procedure described in chapter 2 has been implemented as a com-

puter program for parallel execution on multiple processors.

Simulations of the turbulent boundary layer on a cylinder in axial flow reach

a statistically-steady state that depends on the radius Reynolds number, Rea =

aV∞/ν, and the ratio of the outer grid radius to the cylinder radius, b/a. The

temporal, azimuthal and axial average of the calculated velocity field yields values

for the boundary layer thickness, in the form δ/a, and the friction velocity, in the

form uτ/V∞.

Grid geometry and temporal parameters are given in section 3.3 for a series of

axial-flow simulations that are intended to allow the separate effects of the mean-flow

parameters a+ = auτ/ν, δ+ = δuτ/ν and δ/a to be identified. Suitable values of the

grid geometry and temporal parameters are initially estimated by extrapolation from

successful simulations. The spatial spectra and axial correlations of the calculated

flow fields are examined in section 3.4 to verify that mesh resolution and domain

length are adequate.

In the statistically-steady state, the effect of the applied boundary conditions is

equivalent to that produced by a streamwise pressure-gradient; the streamwise and

temporal development of the mean flow are suppressed. An analytical expression

for the streamwise pressure-gradient is derived in section 3.5. The corresponding
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expression for the total shear-stress is used to verify that the simulations achieve

statistical steadiness.



Chapter 4

Velocity Statistics

Simulations of axial flow over cylinders have been advanced to the statistically-

steady state using the method described in chapter 2. The grid geometry and

resolution parameters used for the simulations are listed in tables 3.1 and 3.2. A

temporal record of the turbulent flow fields at the statistically-steady state has been

obtained for each of the simulations, in accordance with the temporal parameters

listed in tables 3.3 and 3.4.

The recorded flow fields have been analysed to obtain a variety of velocity

statistics. The statistics are presented here in conjunction with appropriate reference

data for planar and axisymmetric boundary layers. The trends in the data are

examined to determine the effects of transverse wall curvature on the velocity field.

Attention is first given to the mean velocity profiles and the parameters derived from

them. Attention is then focused on the turbulence statistics, including the Reynolds

shear-stress, the intensity and higher-order moments of the velocity fluctuations, and

the root-mean-square fluctuations of vorticity. The scaling relations applicable to

the velocity statistics are of particular interest. The main findings are summarised

at the end of the chapter.

4.1 Mean Velocity

The velocity fields calculated for a given flow by the present simulation procedure

may be averaged in the azimuthal and axial directions and over the temporal record

to obtain the mean velocity Uz as a function of the wall-normal position y = r−a. A

number of parameters used for similarity scaling of boundary layer flow are derived

from the mean velocity profile. Two fundamental parameters are the boundary layer

M. J. Woods, Ph.D. thesis, 2006 63
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Rea b/a δ/a Reδ uτ/V∞ Cf a+ δ+

311 12.00 7.82 2430 0.0703 9.88×10−3 21.9 171
311 21.00 14.0 4360 0.0691 9.56×10−3 21.5 302
311 31.00 19.1 5950 0.0692 9.58×10−3 21.5 411
311 41.00 27.6 8570 0.0676 9.14×10−3 21.0 580
492 12.00 7.85 3860 0.0639 8.18×10−3 31.5 247
674 6.00 3.74 2520 0.0633 8.02×10−3 42.7 159
674 12.00 7.74 5220 0.0605 7.31×10−3 40.8 315

1300 4.00 2.33 3030 0.0584 6.83×10−3 76.0 177
1300 6.00 3.63 4720 0.0572 6.53×10−3 74.3 270
2600 2.50 1.18 3070 0.0562 6.32×10−3 146 173
2600 4.00 2.30 5970 0.0538 5.79×10−3 140 321
2600 6.00 4.01 10400 0.0505 5.11×10−3 131 527
3300 7.30 4.92 16200 0.0494 4.88×10−3 163 802
5200 1.75 0.574 2990 0.0552 6.10×10−3 287 165

10400 1.40 0.313 3260 0.0543 5.89×10−3 564 177
20800 1.20 0.157 3270 0.0541 5.85×10−3 1130 177

Table 4.1: Mean-flow parameters for present simulations.

thickness δ, defined as the wall-normal distance at which the mean velocity equals

0.99V∞, and the wall-shear-stress τw, defined by

τw

ρ
= ν

dUz

dy
[y = 0]. (4.1)

Another important parameter is the friction velocity uτ , which is related to the

wall-shear-stress by

ρu2
τ = τw. (4.2)

The mean-flow parameters given by the present simulations are listed in table

4.1. The simulations are identified by the radius Reynolds number,

Rea = aV∞/ν, (4.3)

and the ratio b/a, where b denotes the outer radial limit of the computational domain

and a is the cylinder radius. The calculated values of boundary layer thickness

and friction velocity are listed in the non-dimensional forms δ/a and uτ/V∞. The

remaining quantities in the table follow from Rea, δ/a and uτ/V∞. The Reynolds

number Reδ is given by

Reδ =
δV∞

ν
= Rea

δ

a
, (4.4)
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and the skin friction coefficient Cf is given by

Cf =
τw

1
2
ρV 2

∞

= 2

(
uτ

V∞

)2

. (4.5)

The superscript ‘+’ in the quantities a+ and δ+ denotes scaling with respect to

parameters that are associated with the near-wall flow. To produce a length-scale,

the parameters uτ and ν are combined to give the wall unit ν/uτ . The cylinder

radius and boundary layer thickness in wall units are given by

a+ =
auτ

ν
= Rea

uτ

V∞

, (4.6)

δ+ =
δuτ

ν
= Reδ

uτ

V∞

. (4.7)

The boundary layer thickness in wall units (δ+) has the form of a Reynolds number,

and it is denoted by some authors as Reτ .

Mean-flow parameters from various sources, for comparison with the present

data, are listed in table 4.2. Data for cylinders are taken from the experiments

of Berera [2004], Luxton et al. [1984], Snarski and Lueptow [1995] and Willmarth

et al. [1976] as well as the simulations of Neves [1992]. Flat-plate data are those from

the experiments of Farabee and Casarella [1991] and Schewe [1983] and the plane-

channel simulations of Kim et al. [1987] and Moser et al. [1999]. For the numerical

investigations, the symbol h is used to denote the plane-channel half-width or the

radial width (b−a) of the computational domain. The simulation parameters listed

in the table have been adjusted for consistency with the present definition of δ,

values of which have been estimated from published mean velocity profiles.

Numerical values of the mean-flow parameters for the present simulations are in

good agreement with those of comparable reference data. The simulations of Neves

[1992] for Rea = 311, 674 and b/a = 12, 6 give, respectively, uτ/V∞ = 0.0699, 0.0635;

the present simulation procedure yields uτ/V∞ = 0.0703, 0.0633 for the same flow

cases. The experiment of Luxton et al. [1984] for Rea = 325 and δ/a = 39.1

corresponds to uτ/V∞ = 0.0742; the present simulation with Rea = 311 and δ/a =

27.6 produces uτ/V∞ = 0.0676. The experiment of Berera [2004] at Rea = 3160

with δ/a = 4.8 gives uτ/V∞ = 0.0505; in an independent experiment, Snarski and

Lueptow [1995] obtain the values Rea = 3642, δ/a = 5.04 and uτ/V∞ = 0.0486;

the corresponding results from the present work are Rea = 3300, δ/a = 4.92 and

uτ/V∞ = 0.0494.
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Reference Rea δ/a δ/h Reδ uτ/V∞ Cf a+ δ+

Berera [2004] 3280 3.2 - 10500 0.0534 5.70×10−3 175 560
3160 4.8 15200 0.0505 5.10×10−3 160 767
3460 6.6 22800 0.0490 4.80×10−3 169 1120
3310 9.4 31100 0.0485 4.70×10−3 160 1510
3260 11.5 37500 0.0485 4.70×10−3 158 1820

Farabee and
Casarella [1991]

∞ 0 - 29000 0.0403 3.25×10−3 ∞ 1170
53000 0.0379 2.87×10−3 2010

Kim et al. [1987] ∞ 0 0.82 2710 0.0545 5.95×10−3 ∞ 148
Luxton et al.
[1984]

140 41.6 - 5820 0.0922 1.70×10−2 12.9 536
325 39.1 12700 0.0742 1.10×10−2 24.1 943
455 26.9 12200 0.0707 1.00×10−2 32.2 865
620 26.7 16600 0.0645 8.32×10−3 40.0 1070
785 26.0 20400 0.0604 7.30×10−3 47.4 1230

Moser et al.
[1999]

∞ 0 0.84 2730 0.0546 5.97×10−3 ∞ 149
0.83 6560 0.0497 4.93×10−3 326
0.84 10500 0.0470 4.42×10−3 495

Neves [1992] 311 9.23 0.84 2870 0.0699 9.78×10−3 21.7 201
674 4.20 0.84 2830 0.0635 8.07×10−3 42.8 180

Schewe [1983] ∞ 0 - 12500 0.0444 3.94×10−3 ∞ 556
Snarski and
Lueptow [1995]

3642 5.04 - 18400 0.0486 4.72×10−3 177 892

Willmarth et al.
[1976]

736 37.5 - 27600 0.0626 7.83×10−3 46.1 1730
1439 27.0 38900 0.0579 6.71×10−3 83.4 2250
4330 16.0 69300 0.0458 4.19×10−3 198 3170
9494 9.45 89700 0.0409 3.35×10−3 389 3670

23100 4.64 107000 0.0386 2.98×10−3 891 4130
74260 1.76 131000 0.0365 2.66×10−3 2710 4770

Table 4.2: Mean-flow parameters for reference data.

Experimental results for boundary layers are presented by some authors in non-

dimensional form with respect to the displacement thickness δ∗ or the momentum

thickness θ∗. These integral thickness parameters are often less difficult to obtain

from measurements of the mean velocity profile than the parameters δ and τw. The

integral thickness parameters for axisymmetric boundary layers are defined by

(δ∗ + a)2 − a2 = 2

∫ a+δ

a

(
1 − Uz

V∞

)
r dr, (4.8)

(θ∗ + a)2 − a2 = 2

∫ a+δ

a

Uz

V∞

(
1 − Uz

V∞

)
r dr. (4.9)

These definitions reduce to those for a flat plate in the limit as δ/a approaches zero.
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Rea δ/a Reδ δ∗/δ θ∗/δ δ∗/θ∗

311 7.82 2430 0.190 0.159 1.19
311 14.0 4360 0.184 0.167 1.10
311 19.1 5950 0.179 0.166 1.08
311 27.6 8570 0.182 0.172 1.06
492 7.85 3860 0.182 0.158 1.16
674 3.74 2520 0.189 0.147 1.29
674 7.74 5220 0.176 0.154 1.14

1300 2.33 3030 0.180 0.135 1.34
1300 3.63 4720 0.178 0.145 1.23
2600 1.18 3070 0.175 0.123 1.43
2600 2.30 5970 0.168 0.133 1.26
2600 4.01 10400 0.180 0.153 1.18
3300 4.92 16200 0.172 0.151 1.14
5200 0.574 2990 0.174 0.116 1.51

10400 0.313 3260 0.167 0.110 1.53
20800 0.157 3270 0.168 0.109 1.55

Table 4.3: Integral thickness parameters for present simulations.

Boundary layer integral thickness parameters for the present simulations and

reference data are given in tables 4.3 and 4.4. The shape factors δ∗/θ∗ for the

present simulations are in quantitative agreement with those of the corresponding

reference data. The simulations of Neves [1992] for Rea = 311, 674 and b/a =

12, 6 give, respectively, δ∗/θ∗ = 1.15, 1.25; the present simulation procedure yields

δ∗/θ∗ = 1.19, 1.29 for the same flow cases. The experiment of Luxton et al. [1984]

at Rea = 325 with δ/a = 39.1 corresponds to δ∗/θ∗ = 1.10; the present simulation

at Rea = 311 with δ/a = 27.6 produces δ∗/θ∗ = 1.06. The experiment of Berera

[2004] at Rea = 3160 with δ/a = 4.8 gives δ∗/θ∗ = 1.19; the experiment of Snarski

and Lueptow [1995] at Rea = 3642 with δ/a = 5.04 yields δ∗/θ∗ = 1.14; the

corresponding result from the present simulation at Rea = 3300 with δ/a = 4.92 is

δ∗/θ∗ = 1.14.

Profiles of the mean velocity for boundary layers on flat plates have well-

established functional forms in three distinct regions of the flow. In the innermost

region, known as the viscous sublayer due to the predominant effects of viscosity,

the mean velocity profile is given by the law of the wall,

U+
z = y+, y+ � 5, (4.10)
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Reference Rea δ/a Reδ δ∗/δ θ∗/δ δ∗/θ∗

Berera [2004] 3280 3.2 10500 0.136 0.110 1.23
3160 4.8 15200 0.140 0.118 1.19
3460 6.6 22800 0.144 0.126 1.14
3310 9.4 31100 0.146 0.132 1.11
3260 11.5 37500 0.146 0.135 1.08

Farabee and Casarella [1991] ∞ 0 29000 0.161 0.117 1.38
53000 0.154 0.113 1.36

Kim et al. [1987] ∞ 0 2710 0.171 0.106 1.62
Luxton et al. [1984] 140 41.6 5820 0.187 0.182 1.03

325 39.1 12700 0.188 0.170 1.10
455 26.9 12200 0.186 0.182 1.02
620 26.7 16600 0.183 0.181 1.01
785 26.0 20400 0.184 0.181 1.01

Moser et al. [1999] ∞ 0 2730 0.171 0.105 1.63
6560 0.154 0.106 1.46

10500 0.145 0.104 1.40
Neves [1992] 311 9.23 2870 0.181 0.156 1.15

674 4.20 2830 0.183 0.146 1.25
Schewe [1983] ∞ 0 12500 0.153 0.110 1.39
Snarski and Lueptow [1995] 3642 5.04 18400 0.178 0.156 1.14
Willmarth et al. [1976] 736 37.5 27600 0.185 0.158 1.17

1439 27.0 38900 0.146 0.139 1.05
4330 16.0 69300 0.178 0.153 1.16
9494 9.45 89700 0.203 0.161 1.27

23100 4.64 107000 0.147 0.133 1.11
74260 1.76 131000 0.157 0.135 1.17

Table 4.4: Integral thickness parameters for reference data.

where U+
z = Uz/uτ and y+ = yuτ/ν. In the outermost region, the mean velocity

profile is given by the velocity-defect law,

(V∞ − Uz)/uτ = f [y/δ], (4.11)

where f is an empirically determined function. In the intermediate region, the inner

and outer scaling laws overlap, and the resulting velocity profile is given by the

logarithmic law,

U+
z = 2.5 ln[y+] + 5.1, y+ � 70. (4.12)

In the region 5 � y+ � 70, known as the buffer layer, the mean velocity profile

varies smoothly between the law of the wall and the logarithmic law. The velocity

profile departs gradually from the logarithmic law for y/δ � 0.3.
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Figure 4.1: Mean velocity profiles in flat-plate wall units. Planar profile: law
of the wall, U+

z = y+, and log law, U+
z = 2.5 ln[y+] + 5.1. Moser et al. [1999]:

δ+ ≈ 149; δ+ ≈ 326; δ+ ≈ 495. Neves [1992]: a+ = 21.7,
δ/a ≈ 9.23, δ+ ≈ 201; a+ = 42.8, δ/a ≈ 4.20, δ+ ≈ 180. Present simulations:

a+ δ/a δ+ Line a+ δ/a δ+ Line a+ δ/a δ+ Line a+ δ/a δ+ Line

21.9 7.82 171 31.5 7.85 247 74.3 3.63 270 163 4.92 802
21.5 14.0 302 42.7 3.74 159 146 1.18 173 287 0.574 165
21.5 19.1 411 40.8 7.74 315 140 2.30 321 564 0.313 177
21.0 27.6 580 76.0 2.33 177 131 4.01 527 1130 0.157 177

Mean velocity profiles resulting from the present simulations (as listed in table

4.1) are shown in figure 4.1 with U+
z plotted as a function of y+. Also shown are

the profiles given by the axisymmetric boundary layer simulations of Neves [1992]

and the plane-channel simulations of Moser et al. [1999]. As may be expected, the

law of the wall (equation 4.10) and the logarithmic law (equation 4.12) are a good

fit to the plane-channel profiles. The present results for nearly-planar flows with

δ/a � 0.5 are consistent with the plane-channel results. The validity of the present

results for large δ/a is indicated by the good agreement of the present profiles with

those obtained by Neves [1992] for a+ ≈ 22 and 43 and δ/a ≈ 8 and 4, respectively.

The profiles of mean velocity appear to cluster into groups with similar a+. A

recognisable logarithmic region exists for all of the flows considered. As a+ decreases,

the slope of the profiles in the logarithmic region decreases below that of the planar

case. Furthermore, the profiles depart from the planar profile at decreasing values of
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y+, so that the viscous sublayer is noticeably affected when a+ is sufficiently small.

The boundary layer thickness characterised by δ/a appears to have a secondary

influence on the velocity profiles. For a given value of a+, increasing δ/a shifts the

velocity profile slightly downwards in the logarithmic region, while the corresponding

increase in δ+ causes the profile to extend to larger values of y+ so that the maximum

value of U+
z increases.

Various laws of the wall have been proposed that incorporate the effects of trans-

verse curvature [see, for example, Richmond, 1957, Rao, 1967, Denli and Landweber,

1979]. The approach of Rao [1967] is based on similar reasoning to that leading to

the law of the wall for planar flow. In the axisymmetric viscous sublayer, inertial

effects and Reynolds stresses may be neglected and, in the absence of a significant

streamwise pressure-gradient, the Reynolds-average of the Navier-Stokes equation

for the axial velocity component (equation 2.11c) reduces to

1

r

∂

∂r

(
νr

∂Uz

∂r

)
= 0. (4.13)

Integration outwards from the surface leads to

νr
∂Uz

∂r
= a

τw

ρ
= au2

τ ⇒ ∂U+
z

∂r+
=

a+

r+
. (4.14)

Integration a second time yields the law of the wall for axisymmetric flow:

U+
z = a+ ln[1 + y+/a+]. (4.15)

Comparison with the relation for the planar viscous sublayer (equation 4.10) suggests

that a+ ln[1+y+/a+] should replace y+ as the wall variable for cylindrical boundary

layers. The new wall variable has the expected property that the flat-plate variable

y+ is recovered as a+ tends to infinity.

Velocity profiles in the axisymmetric wall units of Rao [1967] are shown for the

present simulations in figure 4.2. The collapse is considerably better than that

achieved with flat-plate wall units (figure 4.1). The law of the wall for axisymmetric

flow,

U+
z = 2.5 ln

[
a+ ln[1 + y+/a+]

]
+ 5.1, (4.16)

is a good fit to the simulated profiles inside the viscous sublayer. In the logarithmic

region, all profiles appear to have a similar slope. The profiles collapse to a common

curve except those with a+ ≈ 20. For these flows, the lack of collapse may indicate

that the outer layer is not fully turbulent.
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Figure 4.2: Mean velocity profiles in axisymmetric wall units [Rao, 1967]. Analytical
profiles for axisymmetric flow: law of the wall, U+

z = a+ ln[1 + y+/a+], and
logarithmic law, U+

z = 2.5 ln
[
a+ ln[1 + y+/a+]

]
+ 5.1. Present simulations:

a+ δ/a δ+ Line a+ δ/a δ+ Line a+ δ/a δ+ Line a+ δ/a δ+ Line

21.9 7.82 171 31.5 7.85 247 74.3 3.63 270 163 4.92 802
21.5 14.0 302 42.7 3.74 159 146 1.18 173 287 0.574 165
21.5 19.1 411 40.8 7.74 315 140 2.30 321 564 0.313 177
21.0 27.6 580 76.0 2.33 177 131 4.01 527 1130 0.157 177

It is interesting to note that the values of U+
z at y = δ for the velocity profiles

in figure 4.2 lie close to the profile corresponding to the logarithmic law for axi-

symmetric flow (equation 4.16). This observation is expressed mathematically as

follows:

U+
z [y = δ] ≈ V∞/uτ ≈ 2.5 ln

[
a+ ln[1 + δ/a]

]
+ 5.1. (4.17)

The above expression may, in principle, be used to obtain an estimate of the value

of V∞/uτ for a given set of flow conditions. Substitution of a+ = Reauτ/V∞ into the

above expression and collection of all terms involving V∞/uτ into the left-hand-side

yields

V∞/uτ + 2.5 ln [V∞/uτ ] ≈ 2.5 ln
[
Rea ln[1 + δ/a]

]
+ 5.1. (4.18)

The slow variation of ln[V∞/uτ ] relative to V∞/uτ suggests the more convenient

empirical formula

V∞/uτ ≈ A ln
[
Rea ln[1 + δ/a]

]
+ B, (4.19)
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Figure 4.3: Ratio V∞/uτ as a function of both Rea and δ/a for the present sim-
ulations and the reference data in table 4.2. Line of best fit: V∞/uτ =
2.97 ln

[
Rea ln[1 + δ/a]

]− 5.82. Values of Rea for present simulations: 311, 492,
674, 1300, 2600, 3300, 5200, 10400, 20800. Reference simulations:

Neves [1992], Rea = 311, 674; Moser et al. [1999], Rea = ∞. Cylinder ex-
periments: Berera [2004], Rea ≈ 3300; Luxton et al. [1984], Rea = 140–785;

Snarski and Lueptow [1995], Rea = 3642; Willmarth et al. [1976], Rea = 736–
74260. Flat-plate measurements (Rea = ∞): Schewe [1983]; Farabee and
Casarella [1991].

where A and B are constants. The values of V∞/uτ for the present simulations and

the reference data in table 4.2 are shown in figure 4.3 as a function of Rea ln[1+δ/a],

which reduces to Reδ in the limit of δ/a → 0. The line-of-best-fit through the data

(in a least-squares sense) is equivalent to equation 4.19 with the constants A = 2.97

and B = −5.82. With these constants, equation 4.19 may be used to estimate

V∞/uτ , along with other wall-parameters such as a+ = Reauτ/V∞ and the skin

friction coefficient Cf = 2(uτ/V∞)2, for given values of the outer-flow parameters

Rea and δ/a.

The data points in figure 4.3 corresponding to experiments at low values of Rea,

including the measurements of Luxton et al. [1984] and some of the measurements

of Willmarth et al. [1976], show a slightly different trend from that of the present

simulation results. The slight discrepancy may be due to errors in the measured

values of the wall-shear-stress (and hence uτ ) on the very thin cylinders used in the
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Figure 4.4: Velocity-defect profiles for cylinder and plane-channel simulations.
Moser et al. [1999]: δ+ ≈ 149; δ+ ≈ 326; δ+ ≈ 495. Neves [1992]:

δ/a ≈ 9.23, δ+ ≈ 201; δ/a ≈ 4.20, δ+ ≈ 180. Present data:

a+ δ/a δ+ Line a+ δ/a δ+ Line a+ δ/a δ+ Line a+ δ/a δ+ Line

21.9 7.82 171 31.5 7.85 247 74.3 3.63 270 163 4.92 802
21.5 14.0 302 42.7 3.74 159 146 1.18 173 287 0.574 165
21.5 19.1 411 40.8 7.74 315 140 2.30 321 564 0.313 177
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experiments. This explanation is supported by the comments of Willmarth et al.

[1976, p. 47], who suggest that the accuracy of their wall-shear-stress measurements

is probably only ±10–15%. The wall-shear-stress data reported by Luxton et al.

[1984] have a similar level of accuracy, because their data are estimates based on

the measurements of Willmarth et al. [1976].

To examine the effects of transverse curvature on the outer part of the boundary

layer, velocity profiles in the form suggested by the velocity-defect law (equation

4.11), that is (V∞ − Uz)/uτ as a function of y/δ, are shown in figure 4.4. The

data included in the figure are taken from the present simulations, the cylinder

simulations of Neves [1992] and the plane-channel simulations of Moser et al. [1999].

The results for plane-channel flow indicate that the velocity-defect profiles are nearly

independent of δ+ when the value of δ+ is greater than approximately 326. For small

values of δ/a, the profiles for cylinders are similar to the plane-channel profiles. As

δ/a increases, the slope of the cylinder profiles becomes less negative near y/δ = 1,
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where the value of the velocity-defect is 0.01V∞/uτ by definition. The trend is

consistent with the experimental observations and dimensional analysis of Willmarth

et al. [1976]. Denli and Landweber [1979] formulate a velocity-defect law for thick,

axisymmetric boundary layers, based on the idea that the outer flow is similar to

an axisymmetric wake. The empirical constants in their formula are tuned to fit a

limited number of experimental measurements, but the resulting velocity-defect law

does not provide a reliable fit to the present data. It appears that further work may

be necessary before a general scaling relation is devised for the mean velocity profile

in the outer part of axisymmetric boundary layers.

4.2 Reynolds Shear-Stress

Reynolds shear-stresses in wall coordinates for the present simulations are shown in

conjunction with reference data in figure 4.5. The current calculations are in close

agreement with the corresponding simulations of Neves [1992]. The present profile

for a+ = 1130 and δ+ = 177 (δ/a = 0.157) is placed, as expected, between the

plane-channel profiles of Moser et al. [1999] for δ+ = 149 and 326.

The location of the peak Reynolds shear-stress moves outwards from the wall

as the peak value increases. The peak location moves from y+ ≈ 20 to y+ ≈ 40

as the peak value varies from 0.35u2
τ to 0.85u2

τ . For flows with large a+, the peak

value of the Reynolds shear-stress appears to increase towards u2
τ as δ+ increases.

For example, in the plane-channel flows (a+ = ∞), the peak values are, respectively,

−uruz/u
2
τ ≈ 0.72, 0.84, 0.87 when δ+ ≈ 149, 326, 495. On the other hand, when a+

is small (about 40 or less), the peak value is little affected by δ+.

For flow over cylinders at a given δ+, the peak value of the Reynolds shear-

stress increases towards the plane-channel result as a+ is increased. For example,

when δ+ ≈ 170, the peak value increases from ∼ 0.35u2
τ to the plane-channel value

∼ 0.75u2
τ as a+ varies from 22 to ∞.

The shear-stress data are re-plotted in figure 4.6a with the wall-normal distance

scaled as a proportion of h, which denotes the radial width (b− a) of the cylindrical

domain or the plane-channel half-width. The plane-channel profiles collapse to a

common line in the outer portion of the domain. The profiles for the present

calculations depart further from the planar case as δ/a (or b/a) increases. The

Reynolds shear-stress is substantially reduced in the outer part of the layer when

δ/a is large.

Outside the viscous sublayer, the Reynolds shear-stress makes the dominant

contribution to the total shear-stress at the statistically-steady state. The total
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Figure 4.5: Reynolds shear-stress in wall units. Line-styles for present simulations
are shown in the legend below. Moser et al. [1999]: δ+ ≈ 149; δ+ ≈ 326;

δ+ ≈ 495. Neves [1992]: a+ = 21.7, δ+ ≈ 201; a+ = 42.8, δ+ ≈ 180.
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shear-stress has the analytical form given by equation 3.9, which may be rewritten

as

τ |cyl ≈ ρu2
τ

(a

r

)(b + r

b + a

)(
1 − y

h

)
(4.20)

since the Reynolds stress at the outer boundary is generally negligible. The corre-

sponding expression for a plane-channel is

τ |plane = ρu2
τ

(
1 − y

h

)
. (4.21)
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Figure 4.6: Reynolds shear-stress as functions of y/h scaled with (a) uτ and (b) uτc.
Moser et al. [1999]: δ+ ≈ 149; δ+ ≈ 326; δ+ ≈ 495. Present data:
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21.5 19.1 411 40.8 7.74 315 140 2.30 321 564 0.313 177
21.0 27.6 580 76.0 2.33 177 131 4.01 527 1130 0.157 177
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Comparison of these two expressions led Neves [1992] to propose a new velocity-scale

for transversely curved boundary layers, which in the present notation is given by

u2
τc[r] = u2

τ

(a

r

)(b + r

b + a

)
,

u2
τc[y] = u2

τ

(
a

a + y

)(
b + a + y

b + a

)
.

(4.22)

The value of uτc decreases from uτ at the cylinder wall to uτ

√
2/(b/a + 1) at r = b.

In the limit as b/a approaches unity (δ/a → 0), uτc is equivalent to the planar

velocity-scale uτ throughout the boundary layer.

The cylinder velocity-scale uτc depends explicitly on the ratio b/a, as is made

clear when equation 4.22 is written in the form

u2
τc[y/h, b/a] = u2

τ

(
1

1 + (y/h)(b/a − 1)

)(
b/a + 1 + (y/h)(b/a − 1)

b/a + 1

)
. (4.23)

Near the cylinder wall, the definition of uτc reduces to

u2
τc[y] ≈ u2

τ

(
a

a + y

)
= u2

τ

(
a+

a+ + y+

)
, y � b + a. (4.24)

Thus, the near-wall values of uτc differ significantly from uτ when a+ is small.

Reynolds stresses normalised by uτc for the present simulations and the plane-

channel calculations of Moser et al. [1999] are shown in figure 4.6b. As may be

expected from the definition of uτc, the profiles collapse to a common line away

from the wall. In fact, the profiles for flows with similar δ+ collapse throughout the

boundary layer, independently of transverse curvature.

4.3 Turbulence Intensities

Root-mean-square (RMS) values of the velocity fluctuations for the current sim-

ulations are shown in figure 4.7 along with suitable reference data. The present

calculations are in good agreement with the simulations of Neves [1992] and con-

sistent with the plane-channel simulations of Moser et al. [1999]. The present data

for Rea = 311 and 674 are in good agreement, near the wall, with the experimental

results of Luxton et al. [1984]. Further from the wall, the experimental data depart

from the calculated profiles due to the differing values of δ/a.

The profiles of RMS velocity fluctuations increase to maximum values u′
max at

short distances y+
max from the wall. In a given flow, the maxima u′

max,z, u′
max,r and



78 Chapter 4 Velocity Statistics

(a)

0 50 100 150 200 250
0

0.5

1

1.5

2

2.5

3
u
′ z
/u

τ

(b)

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

u
′ r
/u

τ

(c)

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4

y+

u
′ θ
/u

τ

a+ δ/a δ+ Line

21.9 7.82 171
21.5 14.0 302
21.5 19.1 411
21.0 27.6 580
31.5 7.85 247
42.7 3.74 159
40.8 7.74 315
76.0 2.33 177
74.3 3.63 270
146 1.18 173
140 2.30 321
131 4.01 527
163 4.92 802
287 0.574 165
564 0.313 177
1130 0.157 177

Figure 4.7: RMS velocity fluctuations in wall units. Velocity components: (a) axial,
(b) radial, (c) azimuthal. Line-styles for present simulations are defined in the
legend. Moser et al. [1999]: δ+ ≈ 149; δ+ ≈ 326; δ+ ≈ 495. Neves
[1992]: a+ = 21.7, δ+ ≈ 201; a+ = 42.8, δ+ ≈ 180. Luxton et al. [1984]:

a+ = 24.1, δ+ = 943; a+ = 40.0, δ+ = 1070.
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u′
max,θ for the three velocity components are typically different from one another, as

are the corresponding wall-normal distances y+
max,z, y+

max,r and y+
max,θ. For each vector

component, the distance y+
max increases as the corresponding u′

max increases. Over

the range of flows considered in figure 4.7, the maximum RMS velocity values and the

corresponding locations vary as follows: u′
max,z/uτ ≈ 2.1 → 2.8, y+

max,z ≈ 13 → 15;

u′
max,r/uτ ≈ 0.4 → 1.0, y+

max,r ≈ 50 → 80; u′
max,θ/uτ ≈ 0.6 → 1.4, y+

max,θ ≈ 30 → 40.

The results for the plane-channel simulations of Moser et al. [1999] suggest that

the peak turbulence intensity increases towards a limiting value as δ+ increases. The

limiting values suggested by the simulation results are u′
z/uτ � 3.0, u′

r/uτ � 1.1

and u′
θ/uτ � 1.5. The results of the present cylinder simulations suggest that the

peak value of the turbulence intensity becomes less sensitive to changes in δ+ as a+

decreases.

For flow over cylinders, the peak value of each component of the turbulence

intensity approaches the plane-channel result for a given δ+ as a+ is increased. For

example, when δ+ ≈ 170 and a+ varies from 22 to ∞, the approximate peak values

of u′
z, u

′
r, u

′
θ (normalised by uτ ) respectively increase from 2.1, 0.45, 0.65 to the plane-

channel values 2.7, 0.85, 1.1. The relative variation of these peak values, that is the

change relative to the final value, is larger for the radial and azimuthal components

than for the more energetic axial component.

The turbulence intensities shown in figure 4.8 are normalised by the velocity-

scale uτc defined by equation 4.22. When plotted as functions of y/h, the profiles

for each velocity component collapse to a common curve away from the wall. For

the axial velocity component (figure 4.8a), but not the radial or azimuthal com-

ponents, the profiles for flows with similar δ+ collapse throughout the boundary

layer, independently of transverse curvature. The present simulations differ from

those of Moser et al. [1999] near y = h. The plane-channel statistics are symmetri-

cal about the channel half-width, whereas the present turbulence intensities decay

rapidly near the outer limit of the computational domain. As intended in the design

of the present computational procedure, the turbulence intensities, including the

radial component, are non-zero at the outer boundary.

Profiles of the RMS axial (streamwise) velocity fluctuations normalised by uτc

have approximately the same peak value (2.7–2.8) for all of the flows shown in figure

4.8a. In fact, the same profiles plotted as functions of y+ (not shown) collapse quite

well for y+ � 30, which includes the peak at y+ ≈ 15. Consequently, the intensities
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Figure 4.8: RMS velocity fluctuations as functions of y/h scaled with uτc. Velocity
components: (a) axial, (b) radial, (c) azimuthal. Line-styles for present simulations
are defined in the legend. Moser et al. [1999]: δ+ ≈ 149; δ+ ≈ 326;

δ+ ≈ 495.
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of the near-wall axial velocity fluctuations for cylindrical and planar boundary layers

are related by the following expression:

u2
z|cyl

u2
z|plane

≈ u2
τc

u2
τ

≈ 2πa+

2π(a+ + y+)
, y+ � 30 � (b+ + a+). (4.25)

The mean-square value of the axial (streamwise) velocity fluctuations at a small dis-

tance y+ from a cylinder is reduced, relative to the corresponding value for planar

flow, as the spanwise distance around the cylinder at radius a++y+ increases relative

to the cylinder circumference. The mean-square values of the radial (wall-normal)

and azimuthal (spanwise) velocity fluctuations are also reduced in cylindrical bound-

ary layers compared with planar flow, but not by the same proportion as the axial

(streamwise) fluctuations.

4.4 Turbulence Kinetic Energy Budget

For flow in cylindrical geometry, the turbulence kinetic energy per unit volume is

defined as

q =
1

2
ρ
(
u2

r + u2
θ + u2

z

)
. (4.26)

The transport equation for the turbulence kinetic energy, as derived by Neves [1992,

appendix A] for flow with azimuthal and axial homogeneity, is expressed in the

present notation as follows:
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1

ρ

∂q

∂t
= ← total rate of change

− uzur
∂Uz

∂r
← production rate

− 1

ρ

[
ur

∂p

∂r
+

uθ

r

∂p

∂θ
+ uz

∂p

∂z

]
← velocity pressure-gradient term

− 1

ρr

∂

∂r
(r qur) ← turbulent transport rate

+
ν

ρr

∂

∂r

(
r
∂q

∂r

)
← viscous diffusion rate

− ν

{[(
∂ur

∂r

)2

+

(
∂uθ

∂r

)2

+

(
∂uz

∂r

)2
]

+
1

r2

[(
∂ur

∂θ
− uθ

)2

+

(
∂uθ

∂θ
+ ur

)2

+

(
∂uz

∂θ

)2
]

+

[(
∂ur

∂z

)2

+

(
∂uθ

∂z

)2

+

(
∂uz

∂z

)2
]}

. ← viscous dissipation rate

(4.27)

Profiles of the terms on the right-hand-side of equation 4.27 for the present

calculations∗ are shown, as functions of y+ and normalised by τw and u2
τ/ν, in

figures 4.9, 4.10 and 4.11a. The results of Neves [1992] are shown for reference, and

they agree well with the present results for flows with a+ ≈ 22 and 43. The plane-

channel results calculated by Moser et al. [1999] are also shown to allow the effects

of transverse curvature to be distinguished from any dependence on the Reynolds

number δ+.

At the near-wall positions shown in the figures (y+ ≤ 80), the profiles for planar

flow tend towards a common curve as δ+ increases. Similarly, the near-wall profiles

for axisymmetric flows with a given value of a+ tend towards a common curve as δ+

increases.

As may be expected, the profiles for axisymmetric flows with large a+ and small

δ/a are similar to the plane-channel results. For example, there is good agreement

between the plane-channel results for δ+ = 149 and the present results for δ+ = 177

∗Flow cases Rea = 492, b/a = 12 and Rea = 1300, b/a = 6 are omitted because the format of
their data-files, created using an early version of the simulation code, is not compatible with the
post-processing code used to calculate the turbulence kinetic energy balance.
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Figure 4.9: Terms of turbulence kinetic energy budget: (a) production and (b) ve-
locity pressure-gradient. Moser et al. [1999]: δ+ ≈ 149; δ+ ≈ 326;

δ+ ≈ 495. Neves [1992]: a+ = 21.7, δ+ ≈ 201; a+ = 42.8, δ+ ≈ 180.
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21.0 27.6 580 76.0 2.33 177 131 4.01 527 1130 0.157 177
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Figure 4.10: Terms of turbulence kinetic energy budget: (a) turbulent transport
and (b) viscous diffusion. Moser et al. [1999]: δ+ ≈ 149; δ+ ≈ 326;

δ+ ≈ 495. Neves [1992]: a+ = 21.7, δ+ ≈ 201; a+ = 42.8, δ+ ≈ 180.
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21.0 27.6 580 76.0 2.33 177 131 4.01 527 1130 0.157 177
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Figure 4.11: Terms of turbulence kinetic energy budget: (a) viscous dissipation and
(b) total rate of change (present data only). Moser et al. [1999]: δ+ ≈ 149;

δ+ ≈ 326; δ+ ≈ 495. Neves [1992]: a+ = 21.7, δ+ ≈ 201;
a+ = 42.8, δ+ ≈ 180.
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with a+ = 1130 and δ/a = 0.157. The magnitude of the profiles for the axisymmetric

flows decreases as a+ decreases and δ/a increases. This trend is also found in the

profiles of Reynolds shear-stress and turbulence intensity (plotted in wall units), as

discussed earlier in sections 4.2 and 4.3. However, unlike those other quantities, the

profiles for each term of the turbulence kinetic energy budget do not collapse with

normalisation based on the velocity-scale uτc defined by equation 4.22.

All of the displayed results are obtained from simulations that are considered to

have reached a statistically-steady state, for which the total-rate-of-change term of

equation 4.27 is expected to be zero. The value of this term, calculated by addition

of the terms on the right-hand-side of the equation, is shown as a function of y+ in

figure 4.11b. For all of the present simulations, the absolute value of the total-rate-

of-change term is smaller than 2.5% of the peak value of the production-rate term

(figure 4.9a). The non-zero value of the total-rate-of-change term indicates that

the simulation results do not correspond exactly to a statistically-steady state. The

statistical steadiness of the simulation results is, however, considered to be adequate

for present purposes, as discussed previously in section 3.5.

4.5 Higher-Order Moments

The axisymmetric boundary layer experiments of Luxton et al. [1984] at low cylinder

Reynolds numbers reveal velocity fluctuations similar in character to those shown

in figure 4.12. The signals exhibit negative spikes that are large and infrequent

compared with positive fluctuations about the mean. The negative spikes indicate

the passage past the measurement point of low-speed fluid originating from regions

close to the cylinder surface. The increased intensity of these so-called “low-speed

spots” in relation to planar boundary layers led Luxton et al. to surmise that the

turbulence generation mechanism in boundary layers with large δ/a is enhanced by

the motion of large-scale turbulence structures across the cylinder. Such cross-flows

become less probable as δ/a decreases and they can never occur in a planar layer.

The intensity and frequency of low-speed spots can be determined by examina-

tion of the probability density function (PDF). Rather than attempting the direct

comparison of PDFs for different flows, it is expedient instead to compare skewness

and flatness statistics. These are shown for each velocity component of the present

simulations and a selection of reference flows in figures 4.13 and 4.14. The skewness

and flatness profiles given by the present simulations are in reasonable agreement

with the experiments of Luxton et al. [1984] and the simulations of Neves [1992].
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Figure 4.12: Example time-series of axial velocity fluctuations at y+ = 100 from
three of the present simulations.

The present results for nearly-planar flow with δ/a � 0.5 and δ+ ≈ 170 are, as

expected, similar to the plane-channel result of Moser et al. [1999] for δ+ ≈ 149.

The PDF of the velocity fluctuations has a mean of zero, by definition. The nor-

mal distribution has skewness of 0 and flatness of 3. Negative skewness corresponds

to a PDF that has a heavier tail on the negative than on the positive side, indicat-

ing the increased likelihood of large negative velocity fluctuations compared with

positive fluctuations of the same magnitude. Flatness greater than 3 corresponds to

a PDF that has a sharper peak and heavier tails than a normal distribution with

the same variance, indicating that both very small fluctuations and very large fluc-

tuations about the mean are more common than they are in normally distributed

velocity data.

Away from the wall, the azimuthal velocity component has skewness of ∼ 0 and

flatness of ∼ 3. For the axial and radial velocity components, there are significant

variations of the skewness and flatness values between the different flows. These

variations are described in the following paragraphs for the wall-normal position

y+ ≈ 100.
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Figure 4.13: Skewness profiles of velocity fluctuations. Velocity components: (a) ax-
ial, (b) radial, (c) azimuthal. Line-styles for present simulations are defined in the
legend. Moser et al. [1999]: δ+ ≈ 149; δ+ ≈ 326; δ+ ≈ 495. Neves
[1992]: a+ = 21.7, δ+ ≈ 201; a+ = 42.8, δ+ ≈ 180. Luxton et al. [1984]:

a+ = 24.1, δ+ = 943; a+ = 40.0, δ+ = 1070.
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Figure 4.14: Flatness profiles of velocity fluctuations. Velocity components: (a) ax-
ial, (b) radial, (c) azimuthal. Line-styles for present simulations are defined in the
legend. Moser et al. [1999]: δ+ ≈ 149; δ+ ≈ 326; δ+ ≈ 495. Neves
[1992]: a+ = 21.7, δ+ ≈ 201; a+ = 42.8, δ+ ≈ 180. Luxton et al. [1984]:

a+ = 24.1, δ+ = 943; a+ = 40.0, δ+ = 1070.
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For flows with similar δ+ (for example, the flows with δ+ ≈ 170, denoted by solid

lines), small values of a+ (� 40) are associated with skewness values that are more

negative for uz and more positive for ur compared with the corresponding values for

planar or nearly-planar flow (large a+). For the same selection of flows, the flatness

values for both uz and ur are more positive for flows with small a+.

For flows with a given value of a+ (for example, the flows with a+ ≈ 22,

denoted by thin blue lines), small values of δ+ (or δ/a) are associated with skewness

values that are more negative for uz and more positive for ur compared with the

corresponding values for flows with large δ+. For the same selection of flows, the

flatness values for both uz and ur are more positive for flows with small δ+. Thus,

the changes caused by decreasing δ+ (or δ/a) are generally in the same direction as

the changes caused by decreasing a+ (discussed in the previous paragraph).

In the turbulence enhancement mechanism proposed by Luxton et al. [1984], the

increase in size of the largest turbulent eddies caused by increasing δ/a is expected

to increase the likelihood of large-scale fluid motion across the cylinder. These

cross-flows are expected to sweep low-speed fluid outwards from the inner layer.

Therefore, as δ/a increases, the skewness of the axial velocity fluctuations outside

the wall region is expected to become more negative. However, the present results for

y+ ≈ 100 indicate that for a given value of a+, the skewness is typically less negative

when δ/a is large than when δ/a is small. Therefore the turbulence enhancement

mechanism proposed by Luxton et al. [1984] does not appear to be fully consistent

with the present data. A tentative explanation for the observed changes in skewness

and flatness is given in the remainder of this section.

The proposed explanation begins with the observation that the dominant contri-

bution to the Reynolds shear-stress for y+ � 12 is made by flow structures that have

uz < 0 and ur > 0, as found by Kim et al. [1987] for planar flow and Neves [1992] for

axisymmetric flow (see also section 4.6 of this thesis). Because the velocity signal

at y+ ≈ 100 contains the signatures of these structures, it is reasonable to suppose

that the observed differences in skewness and flatness of the velocity fields between

different flows are due to changes in the signatures of these structures.

The effect of decreasing the boundary layer thickness δ+ is considered first.

Because the size of the largest turbulent eddies is of a similar order to δ while

the size of the smallest turbulent eddies is of a similar order to ν/uτ , reduction of

δ+ = δ/(ν/uτ ) narrows the range of turbulence scales in the flow. The decreased

range of turbulence scales can be expected to result in less efficient mixing of the

fluid by turbulence. With reduced mixing of the fluid, coherent flow structures may

retain their identities over longer temporal and spatial intervals. The signatures of
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flow structures, particularly the predominant structures with uz < 0 and ur > 0, are

likely to become more distinct as the efficiency of turbulent mixing decreases. Thus

the skewness of axial velocity fluctuations is expected to be more negative and that

of radial fluctuations to be more positive for flows with small δ+ than those with

large δ+ (assuming similar values of a+). Because the signatures of the structures

are likely to be sharper and less “noisy” in flows with small δ+ than in flows with

large δ+ (assuming similar values of a+), the flatness values of both uz and ur are

expected to be more positive when δ+ is small. These expectations are consistent

with the observed behaviour of the skewness and flatness profiles at y+ ≈ 100.

The effect of decreasing the value of a+ is now considered. The instantaneous

flow fields presented by Neves [1992], as well as those of the present study shown

later in section 6.1, suggest that the number of coherent flow structures distributed

around the cylinder tends to decrease as a+ decreases. The smaller the number

of structures present in a region of the flow, the less complicated the interactions

between the structures can be, so that structures can be expected to retain their

identities over longer temporal and spatial intervals. The velocity signatures of the

structures, particularly of the predominant structures with uz < 0 and ur > 0,

are likely to become more distinct as the number of structures in a region of fluid

decreases. Thus the effects of decreasing a+ are expected to be similar to those of

decreasing δ+ discussed in the previous paragraph. The skewness of axial velocity

fluctuations is expected to be more negative and that of radial fluctuations to be

more positive for flows with small a+ than those with large a+ (assuming similar

values of δ+). Because the signatures of the structures are likely to be sharper and

less “noisy” in flows with small a+ than in flows with large a+ (assuming similar

values of δ+), the flatness values of both uz and ur are expected to be more positive

when a+ is small. These expectations are consistent with the observed behaviour of

the skewness and flatness profiles at y+ ≈ 100.

It is noted in closing this section that turbulence enhancement due to large-scale

cross-flows, of the kind proposed by Luxton et al. [1984], is not ruled out by the

above explanation. However, the skewness and flatness results obtained from the

present simulations suggest that large-scale cross-flows do not play a major role in

the generation or transport of turbulence in axisymmetric boundary layers.
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Quadrant Sign[uz] Sign[ur] Description of Event

1 + + Outward motion of high-speed fluid

2 − + Outward motion of low-speed fluid — “burst”

3 − − Inward motion of low-speed fluid

4 + − Inward motion of high-speed fluid — “sweep”

Table 4.5: Quadrants of the Reynolds shear-stress.

4.6 Quadrant Analysis

Quadrant analysis provides information on the significance of various events in the

production of Reynolds stress. The quadrants are identified by the signs of uz and

ur, as shown in table 4.5.

The relative contribution of events from each quadrant to the total Reynolds

shear-stress is shown in figure 4.15. The dominance of the fourth quadrant events

for y+ � 12 and the second quadrant events for y+ � 12 has been noted in previous

studies, including the plane-channel simulations of Kim et al. [1987] and the cylinder

simulations of Neves [1992]. The results of the present calculations for a range of

a+, δ+ and δ/a (δ+/a+) values indicate that the partition of the Reynolds stress is

only slightly affected by transverse surface curvature, and then only when a+ is very

small.

Figure 4.16 shows the partition of Reynolds stress events both by quadrant and

intensity threshold at three different wall-normal positions. For a threshold of zero,

the contribution of each quadrant corresponds to that shown in figure 4.15 at a

given value of y+. There is little difference between the results for the range of flows

considered.

The quadrant analyses suggest that the generation of Reynolds shear-stress in

transversely curved boundary layers involves the same fundamental processes in

similar proportions to those found in planar boundary layers.

4.7 Vorticity Fluctuations

The cylindrical components of the vorticity vector are related to the velocity field by

equation 2.6. The intensity of the vorticity fluctuations for the present simulations

and those of Neves [1992] and Moser et al. [1999] are shown, normalised by u2
τ/ν

and as functions of y+, in figure 4.17. There is good agreement between the results

of the different investigations for similar flow cases.



Section 4.7 Vorticity Fluctuations 93

10
0

10
1

10
2

10
3

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

y+

(u
z
u

r
) q

u
a
d
r
a
n
t
/u

z
u

r

Quadrant 1

Quadrant 2

Quadrant 3

Quadrant 4

Figure 4.15: Fraction of mean Reynolds shear-stress contributed by each quadrant
as a function of y+. Moser et al. [1999]: δ+ ≈ 495. Present data:

a+ δ/a δ+ Line a+ δ/a δ+ Line a+ δ/a δ+ Line a+ δ/a δ+ Line

21.9 7.82 171 31.5 7.85 247 74.3 3.63 270 163 4.92 802
21.5 14.0 302 42.7 3.74 159 146 1.18 173 287 0.574 165
21.5 19.1 411 40.8 7.74 315 140 2.30 321 564 0.313 177
21.0 27.6 580 76.0 2.33 177 131 4.01 527 1130 0.157 177

Near the wall, the profiles of the three vector components of vorticity for each

individual flow are significantly different from one another, reflecting the geometry

of the instantaneous flow structures that occur in the wall region. The maximum

intensity of the azimuthal and axial components occurs at the wall, where the radial

component goes to zero to satisfy the no-slip condition. The axial component has

a local minimum at y+ ≈ 5 and a local maximum at y+ ≈ 20. The azimuthal

component decreases rapidly away from the wall until y+ ≈ 10, where there is a

marked decrease in the rate of decay. The maximum of the radial component occurs

at y+ ≈ 13 for plane channel flow, decreasing to y+ ≈ 10 when a+ is small.

In the neighbourhood of the wall (y+ � 40), the RMS vorticity profiles for flows

with similar a+ are little affected by the value of δ+ (or δ/a). On the other hand, the

profiles are strongly affected by the value of a+. When a+ is small, the profiles for

each vorticity component are greatly reduced compared with plane-channel profiles;
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Figure 4.16: Fraction of mean Reynolds shear-stress contributed by each quadrant
as a function of threshold at (a) y+ = 5, (b) y+ = 14, (c) y+ = 50. Threshold values
are normalised by u′

ru
′
z. Line-styles for present simulations are defined in the legend.
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Figure 4.17: RMS vorticity fluctuations in wall units. Vorticity components: (a) ax-
ial, (b) radial, (c) azimuthal. Line-styles for present simulations are defined in the
legend. Moser et al. [1999]: δ+ ≈ 149; δ+ ≈ 326; δ+ ≈ 495. Neves
[1992]: a+ = 21.7, δ+ ≈ 201; a+ = 42.8, δ+ ≈ 180.
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the profiles for flow over cylinders become more similar to the plane-channel results

as a+ increases.

The RMS vorticity profiles are re-plotted in figure 4.18 as functions of y/h, where

h denotes the radial width (b−a) of the cylindrical domain or the plane-channel half-

width. Results for some of the present simulations are omitted for clarity. Profiles

for the plane-channel simulations do not collapse to a common curve away from the

wall, unlike the corresponding profiles for RMS velocity (figure 4.8). In fact, the

RMS vorticity at a given y/h location decreases as δ+ increases. For flow at a given

value of δ+, the RMS vorticity profile is shifted downwards as transverse curvature of

the boundary layer increases, that is as δ/a increases (and a+ decreases). The RMS

vorticity profiles for cylinders do not collapse with scaling based on uτc (equation

4.22), not even for flows with similar δ+. A satisfactory scaling relation for the RMS

vorticity in the outer boundary layer has yet to be found.

For a chosen flow at a given y/h location in the outer part of the boundary layer,

the fluctuation intensities of the three vorticity components are similar. In fact,

when the RMS vorticity profiles for the three vector components of a given flow are

plotted on a single set of axes (not shown), the profiles tend towards a common

curve with increasing y/h.

The RMS vorticity profiles for the present simulations (in figure 4.18) decay

smoothly in the outer part of the boundary layer, except in the immediate vicinity of

the outer domain boundary. The computational method forces the radial component

of vorticity to vanish at the outer boundary. Consequently, there is a local, sharp

increase in the fluctuation intensity of the azimuthal and axial vorticity components

so that the vorticity field remains divergence-free. In comparison, the profiles

for the cylinder simulations of Neves [1992] indicate that the fluctuation intensity

of the azimuthal and axial vorticity components decays rapidly towards zero as

y/h approaches unity. There is no correspondingly rapid variation in the RMS

vorticity profile for the radial vorticity component. Unlike the vorticity boundary

conditions used for the present simulations, the velocity boundary conditions used

by Neves appear not to produce significant distortion of the vorticity field near

the outer boundary. However, the velocity boundary condition Ur[b] = 0, which

confines the flow within the domain boundaries, hinders the motion of large-scale

structures either in the wall-normal direction or across the cylinder. Regardless of

the details of the chosen boundary conditions, some form of distortion is unavoidable

in simulations of the statistically-steady state in a truncated domain.
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Figure 4.18: RMS vorticity fluctuations normalised by u2
τ/ν as functions of y/h.

Vorticity components: (a) axial, (b) radial, (c) azimuthal. Line-styles for reference
data and a selection of the present simulations are defined in the legend.
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4.8 Summary and Conclusions

Quantities derived from the calculated velocity fields of cylinder and plane-channel

simulations have been examined to determine the effects of changing Rea (or a+),

Reδ (or δ+) and δ/a.

Mean velocity profiles in wall units, with Uz/uτ plotted as functions of y+, appear

to cluster into groups with similar values of a+. As a+ decreases, the profiles depart

from the planar profile at decreasing values of y+, and the slope of the profiles

in the logarithmic region decreases below that corresponding to planar flow. The

calculated profiles nearly collapse to a common curve when they are scaled using

the axisymmetric wall units of Rao [1967] (Uz/uτ versus a+ ln[1 + y+/a+]). In

velocity-defect form, with (V∞−Uz)/uτ plotted against y/δ, the profiles are strongly

dependent on δ/a in the outer part of the boundary layer. As δ/a increases, the slope

of the cylinder profiles becomes less negative near y/δ = 1, where the value of the

velocity-defect is 0.01V∞/uτ by definition. A generally applicable scaling relation

for the mean velocity profile in the outer part of axisymmetric boundary layers is

yet to be found.

The values of U+
z at y = δ for velocity profiles plotted in the axisymmetric

wall units of Rao [1967] lie close to the profile corresponding to the logarithmic

law for axisymmetric flow (equation 4.16). This observation leads to the empirical

expression V∞/uτ ≈ 2.97 ln
[
Rea ln[1 + δ/a]

]− 5.82, which may be used to estimate

wall-parameters such as a+ and the skin friction coefficient Cf for given values of

the outer-flow parameters Rea and δ/a.

Profiles of the Reynolds shear-stress normalised by u2
τ , for flow over cylinders at a

given δ+, have a peak value that increases towards the corresponding plane-channel

result as a+ increases. For flows where a+ is large, the peak Reynolds shear-stress

increases towards u2
τ as δ+ increases. Profiles of the Reynolds shear-stress normalised

by u2
τc, where uτc is the velocity-scale proposed by Neves [1992] (equation 4.22),

collapse to a common curve away from the wall when plotted as functions of y/h,

where h denotes either the radial width (b− a) of the computational domain or the

plane-channel half-width. The collapse extends all the way to the wall for flows with

similar δ+, indicating that the velocity-scale uτc successfully accounts for the effects

of transverse curvature on the distribution of the Reynolds shear-stress.

The peak values of RMS velocity profiles normalised by uτ appear to increase

as δ+ increases. The limiting values suggested by the data for plane-channels are

u′
z/uτ � 3.0, u′

r/uτ � 1.1 and u′
θ/uτ � 1.5. For flow over cylinders at a given value of

δ+, the peak value of each component of the turbulence intensity increases towards
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the corresponding plane-channel result as a+ is increased. When normalised by uτc

and plotted as functions of y/h, the RMS velocity profiles collapse to a common

curve away from the wall, reflecting the behaviour of the Reynolds shear-stress.

For the axial velocity component, but not the radial or azimuthal components,

the RMS velocity profiles (in the form u′/uτc vs y/h) for flows with similar δ+

collapse throughout the boundary layer, including near the wall. In fact, the mean-

square value of the axial (streamwise) velocity fluctuations at a small distance y+

(� 30) from a cylinder is reduced, relative to the corresponding value for planar flow,

as the spanwise distance around the cylinder at radius a+ + y+ increases relative

to the cylinder circumference (see equation 4.25). The mean-square values of the

radial (wall-normal) and azimuthal (spanwise) velocity fluctuations are also reduced

in cylindrical boundary layers compared with planar flow, but not by the same

proportion as the axial (streamwise) fluctuations.

Terms of the transport equation for turbulence kinetic energy, when normalised

by τw and u2
τ/ν and plotted as functions of y+, are strongly affected by the value

of a+; as a+ decreases, the absolute value of the profiles decreases at a given y+.

This trend is consistent with the results for Reynolds shear-stress and turbulence

intensity, although the terms of the turbulence kinetic energy budget do not scale

with uτc. The total-rate-of-change term of the budget is very small in relation to

the production-rate term, confirming that the results of the present simulations

correspond very nearly to a statistically-steady state.

Away from the wall, the skewness and flatness values of the axial and radial veloc-

ity components exhibit significant variations between the different flows considered

in the present simulations. The turbulence enhancement mechanism proposed by

Luxton et al. [1984], based on the idea that low-speed fluid may be swept into the

outer flow by motion across the cylinder of large-scale turbulence structures, does

not appear to be fully consistent with the observed trends. A possible explanation

for the observed trends is proposed which focuses on the interaction and mixing of

coherent structures in the flow. The less effective the mixing is, the more distinct

the velocity signatures of the structures are likely to be. It is argued that changes in

the quality of the velocity signatures of the individual structures combine to produce

the observed differences in skewness and flatness values between different flows.

Quadrant analyses of the velocity fluctuations indicate that the fraction of the

Reynolds shear-stress contributed by each quadrant is similar for all of the present

cylinder simulations and the plane-channel calculations of Moser et al. [1999]. The

results suggest that the processes responsible for generation of the Reynolds shear-
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stress in boundary layers on cylinders are not fundamentally different from those in

planar boundary layers.

Profiles of RMS vorticity fluctuations for the three vorticity components in a

given flow are greatly different from one another near the cylinder surface, but they

tend towards a common curve away from the wall. At a given value of δ+, the

intensity of the vorticity fluctuations, normalised by u2
τ/ν, decreases throughout

the boundary layer as a+ decreases. None of the scaling relations considered in

the present study, for either planar or axisymmetric flow, successfully collapses the

RMS vorticity profiles to a common curve in the inner or outer boundary layer; a

satisfactory scaling relation for the RMS vorticity has yet to be identified.

Scaling relations based on the velocity-scale uτc successfully account for the

effects of transverse boundary layer curvature on several different velocity statistics

computed from the results of the present simulations. The velocity-scale, in the

form given by equation 4.23, is a function of y/h with explicit dependence on the

ratio b/a. The value of uτc decreases from uτ at the cylinder wall to uτ

√
2/(b/a + 1)

at y = h. When b/a ≈ 1, uτc is similar to the friction velocity uτ throughout the

boundary layer. Near the cylinder wall, that is for y � b+a, u2
τc/u

2
τ ≈ a+/(a++y+),

so that uτc differs significantly from uτ when a+ is small. These properties of the

velocity-scale uτc support the idea that, when a+ is large, transverse curvature effects

associated with non-zero values of δ/a (b/a > 1) are significant only in the outer

boundary layer, and when a+ is small, both the inner and outer portions of the

boundary layer are affected by curvature.

Profiles of velocity statistics plotted in wall units for the plane-channel simula-

tions of Moser et al. [1999] exhibit a dependence on the value of δ+ even at positions

y+ that are close to the solid wall. However, the results suggest that for large values

of δ+, the near-wall velocity statistics are little affected by further increases in δ+.

In other words, the observed influence of δ+ on the near-wall velocity statistics is

significant only at low Reynolds numbers. For the present simulations of flow over

cylinders, the effects of transverse boundary layer curvature and δ+ are combined

in a complicated fashion. It is reasonable to suppose that when δ+ is large, the

near-wall velocity statistics (in wall units) will be affected only by curvature, and

then only when a+ is small (and δ/a therefore very large).

The velocity statistics obtained for two flow cases by Neves [1992], with boundary

conditions imposed on velocity, have been compared with the statistics produced by

the present simulation procedure, which imposes boundary conditions on vorticity.

The effects of the different boundary conditions are most noticeable near the outer

boundary of the computational domain; there appears to be no significant effect on
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the velocity statistics near the cylinder wall. While it is possible to argue that the

present boundary conditions are more realistic than those used by Neves, there is no

suggestion in the velocity statistics that the velocity boundary conditions suppress

any of the essential physical processes at work near the cylinder wall. Regardless

of the choice of boundary conditions, some form of distortion is unavoidable in

simulations of the statistically-steady state in a truncated domain.
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Chapter 5

Pressure Statistics

The simulation procedure described in chapter 2 solves the vorticity transport

equation for the vorticity and velocity fields on a cylindrical mesh at each time-step.

The pressure field is not an essential part of the solution; it is calculated as a post-

processing step or at intervals during the simulation using the method described in

section 2.6. For each of the axial-flow simulations discussed in the previous chapter,

a temporal record of the turbulent pressure fields at the statistically-steady state

has been obtained, in accordance with the temporal parameters listed in tables 3.3

and 3.4.

A variety of statistics calculated from the recorded pressure fields are presented

here in conjunction with appropriate reference data for planar and axisymmetric

boundary layers. The statistics are analysed to determine the effects of transverse

wall curvature on the pressure field. The initial focus is directed towards profiles

of the intensity and higher-order moments of the pressure fluctuations. Attention

is then given to the radial distribution of the intensity of pressure-source fluctua-

tions, along with the properties of the Green’s function that relates the strength

of pressure-sources to the pressure they generate at the cylinder wall. The focus is

subsequently shifted to the wall-pressure statistics, including spatial and temporal

spectra, the convection velocity of pressure-producing eddies, and the root-mean-

square wall-pressure. Of particular interest are the scaling relations applicable to

the temporal spectra of wall-pressure. The main findings are summarised at the end

of the chapter.

5.1 Moments about the Mean

Profiles of the root-mean-square (RMS) pressure fluctuations for the present sim-

ulations are shown, normalised by the wall-shear-stress, in figure 5.1a as functions

M. J. Woods, Ph.D. thesis, 2006 103
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of y+. Data are also shown for the cylinder simulations of Neves [1992], and the

plane-channel simulations of Moser et al. [1999]. The reference data are in good

agreement with the present results for similar flow cases.

The peak value of the RMS pressure fluctuations occurs at y+ ≈ 30 for all flows

considered. For flow over cylinders at a given δ+, the peak value increases towards

the plane-channel result as a+ is increased. For example, when δ+ ≈ 170, the peak

value of the RMS pressure increases (approximately) from 0.7τw to the plane-channel

value 2.0τw as a+ varies from 22 to ∞. For the same δ+ and range of a+ values, the

wall-pressure increases (approximately) from 0.6τw to 1.7τw.

The RMS pressure profiles for the plane-channel simulations are shifted upwards

throughout the boundary layer as δ+ increases. For example, the peak values of the

profiles are, respectively, p′/τw ≈ 1.9, 2.5, 2.7 for δ+ ≈ 149, 326, 495. The velocity

statistics for plane-channel flow, such as the Reynolds shear-stress (section 4.2) and

RMS velocity fluctuations (section 4.3), have peak values that appear to approach

a limiting value with increasing δ+. The same is not necessarily true of the RMS

pressure, because the pressure at a given point is the sum of contributions from

pressure-sources located throughout the boundary layer (see section 5.2). It is

reasonable to suppose that the RMS pressure at points near the wall continues

to increase with δ+ as the number and size of the pressure-sources supported by the

boundary layer increases. The experimental measurements of wall-pressure discussed

in section 5.7 suggest that the RMS wall-pressure increases logarithmically with δ+.

The RMS pressure profiles are re-plotted in figure 5.1b as functions of y/h,

where h is either the radial domain width (b − a) or the plane-channel half-width.

In the outer part of the boundary layer, the profiles for plane-channels collapse to

a common curve. Similarly, the profiles for cylinders are in good agreement in the

outer boundary layer for flows with close values of δ/a. In fact, the profiles for all of

the flows nearly collapse to a common curve, away from the wall, when normalised

by ρu2
τc (not shown) instead of τw (ρu2

τ ).

The skewness and flatness of pressure fluctuations across the boundary layer

are shown in figure 5.2. Some of the differences between the profiles for different

flows have the character of random fluctuations, suggesting that the temporal and

spatial extent of the data record may be marginal for the calculation of higher-

order moments. Nevertheless, there are consistent trends in the data. For boundary

layers on cylinders with large a+, the skewness and flatness profiles are similar to

the profiles for the plane-channel flows. On the other hand, for flow along cylinders

with small a+ (� 40), the skewness is typically more negative and the flatness is

typically more positive than is the case for the plane-channel flows. These trends
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Figure 5.1: Profiles of RMS pressure fluctuations (p′/τw) as functions of (a) y+ and
(b) y/h. Moser et al. [1999]: δ+ ≈ 149; δ+ ≈ 326; δ+ ≈ 495. Neves
[1992]: a+ = 21.7, δ+ ≈ 201; a+ = 42.8, δ+ ≈ 180. Present data:

a+ δ/a δ+ Line a+ δ/a δ+ Line a+ δ/a δ+ Line a+ δ/a δ+ Line

21.9 7.82 171 31.5 7.85 247 74.3 3.63 270 163 4.92 802
21.5 14.0 302 42.7 3.74 159 146 1.18 173 287 0.574 165
21.5 19.1 411 40.8 7.74 315 140 2.30 321 564 0.313 177
21.0 27.6 580 76.0 2.33 177 131 4.01 527 1130 0.157 177
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Figure 5.2: (a) Skewness and (b) flatness profiles of pressure fluctuations. Moser et
al. [1999]: δ+ ≈ 149; δ+ ≈ 326; δ+ ≈ 495. Present data:

a+ δ/a δ+ Line a+ δ/a δ+ Line a+ δ/a δ+ Line a+ δ/a δ+ Line

21.9 7.82 171 31.5 7.85 247 74.3 3.63 270 163 4.92 802
21.5 14.0 302 42.7 3.74 159 146 1.18 173 287 0.574 165
21.5 19.1 411 40.8 7.74 315 140 2.30 321 564 0.313 177
21.0 27.6 580 76.0 2.33 177 131 4.01 527 1130 0.157 177
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are similar to those that apply to the axial component of the velocity field away

from the wall. The process underlying these trends is discussed in section 4.5.

5.2 Green’s Function Analysis

The Fourier coefficients of the pressure field, denoted by P̂ , are obtained from the

velocity field by solution of equation 2.110. Expressed in non-dimensional form with

respect to the cylinder radius a and the free-stream velocity V∞, equation 2.110

becomes

(r/a)2 ∂2
(
P̂ /(ρV 2

∞)
)

∂(r/a)2
+ (r/a)

∂
(
P̂ /(ρV 2

∞)
)

∂(r/a)
−

(
m2 + (kza)2(r/a)2

)(
P̂ /(ρV 2

∞)
)

= (r/a)2(λ̂pa
2/V 2

∞), (5.1)

where λ̂p denotes the Fourier coefficients of the pressure-source field defined by

equation 2.111. The corresponding boundary condition at the cylinder wall, where

r/a = 1, is given by equation 2.113, which has the non-dimensional form

∂
(
P̂ /(ρV 2

∞)
)

∂(r/a)
[1] =

1

Rea

∂2(Ûr/V∞)

∂(r/a)2
[1]. (5.2)

The pressure is defined relative to the free-stream pressure, so that the boundary

condition at infinity is given by

P̂ /(ρV 2
∞)[∞] = 0. (5.3)

The Green’s function Ĝ[r/a, rs/a] is defined as the solution of equation 5.1 with

the right-hand-side set to the Dirac delta function δ[r/a−rs/a], where the evaluation

point is r/a and the source location is rs/a. The boundary conditions imposed on

the solution are those given by equations 5.2 and 5.3 with the right-hand-sides set

to zero. The solution of equation 5.1 with the original right-hand-side may then be

expressed as

P̂ /(ρV 2
∞)[r/a] =

∫ b/a

1

Ĝ[r/a, rs/a]
{

(rs/a)2(λ̂pa
2/V 2

∞)[rs/a]
}

d(rs/a) +

boundary condition terms. (5.4)
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Figure 5.3: Wall-pressure
(
P̂ /(ρV 2

∞)[1] = Ĝ[1, rs/a](rs/a)2
)

due to a point source

of unit strength
(
λ̂pa

2/V 2
∞ = δ[1 − rs/a]

)
as a function of source position (rs/a).

The azimuthal Fourier mode-number is m = 1 and the axial wave-number range is
akz = 1, 2, . . . , 6; the corresponding Green’s function is given by equation 5.5.

The Green’s function may be determined by use of the method described by

Stakgold [1998, §3.2]. For axial wave-numbers kz �= 0, the Green’s function evaluated

at the cylinder wall (r/a = 1 ≤ rs/a) is

Ĝ[1, rs/a] =
1

|kza|(rs/a)

K|m|

[|kza|(rs/a)
]

K ′
|m|

[|kza|
] , (5.5)

where K|m| is the modified Bessel function of the second kind of integer order |m|
(see figure 2.2) and K ′

|m| is its derivative.

Figure 5.3 shows the wall-pressure, P̂ /(ρV 2
∞)[1] = Ĝ[1, rs/a](rs/a)2, due to a

point source of unit strength, λ̂pa
2/V 2

∞ = δ[1− rs/a], for a range of source positions

(rs/a) and axial wave-numbers (kz). The wall-pressure decreases with increasing ax-

ial wave-number. Similar behaviour can be demonstrated for increasing azimuthal

wave-number. Thus turbulent eddies that are large in the streamwise or spanwise

directions can be expected to make the dominant contribution to the wall-pressure

(assuming that the wave-number spectrum of pressure-sources is a uniform or decay-

ing function of wave-number). The other important observation is that wall-pressure

decreases rapidly as the pressure-source is moved to larger values of rs/a. Thus it



Section 5.3 Pressure-Source Fluctuations 109

is expected that the proportion of the wall-pressure contributed by the outer part

of the boundary layer will decrease as the cylinder radius a decreases relative to the

boundary layer thickness δ (assuming that for all values of a, the same distribution

of pressure-sources is mapped to the radial interval rs/a = [1, 1 + δ/a]).

5.3 Pressure-Source Fluctuations

The pressure-source in the Poisson equation for pressure (equation 2.109) is ex-

pressed in cylindrical coordinates by equation 2.111. The azimuthal and axial ho-

mogeneity of the mean flow produced by the present simulations allows the pressure-

source to be written in terms of mean and fluctuating velocity components as follows:

λp = −2
dUz

dr

∂ur

∂z
−
(

∂ur

∂r

)2

− 2

r

∂uθ

∂r

(
∂ur

∂θ
− uθ

)

− 2
∂uz

∂r

∂ur

∂z
− 1

r2

(
∂uθ

∂θ
+ ur

)2

− 2

r

∂uz

∂θ

∂uθ

∂z
−
(

∂uz

∂z

)2

. (5.6)

Profiles of the RMS fluctuations of λp, in the form λ′
p normalised by u4

τ/ν
2 versus

y/h, are shown for a representative selection of the present simulations in figure 5.4.

The RMS fluctuations are shown separately for each individual term of the above

expression and for the total pressure-source.

The first term of the pressure-source represents the contribution of the linear

interaction between the mean shear and the velocity fluctuations. The remaining

terms represent non-linear interactions within the turbulent velocity field. As found

by Kim et al. [1987] and Neves [1992], the linear term is not the dominant con-

tributor to the pressure-source fluctuations. The dominant term near the wall is

in fact the third term of equation 5.6, (2/r)(∂uθ/∂r)(∂ur/∂θ − uθ), which involves

velocity derivatives associated with axial (streamwise) vorticity. The peak intensity

of the linear term is as low as 1/2 that of the dominant term and 2/5 the peak

intensity of the total pressure-source. Away from the wall, the intensity profiles of

the pressure-source terms for a given flow tend towards two separate curves. The

upper (dominant) curve corresponds to the third, fourth and sixth terms of equation

5.6: (2/r)(∂uθ/∂r)(∂ur/∂θ − uθ), 2(∂uz/∂r)(∂ur/∂z) and (2/r)(∂uz/∂θ)(∂uθ/∂z).

These terms involve velocity derivatives that are associated, respectively, with ax-

ial, azimuthal and radial vorticity fluctuations; their similar intensity in the outer

boundary layer reflects the RMS fluctuations of the three vorticity components (fig-

ure 4.17).
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Figure 5.4: RMS fluctuations of pressure-source terms for four of the present simu-
lations. Line-styles for the pressure-source terms are defined in the legend.
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Profiles of the RMS fluctuations of the total pressure-source are shown for the

present simulations∗† as functions of y+ in figure 5.5a. The peak intensity of the

pressure-source fluctuations occurs in the vicinity of y+ = 20 for all of the flows

considered. For flow at small values of a+ (≈ 20, 40), the peak intensity does not

appear to be greatly affected by the value of δ+ (or δ/a). However, in flows with

large a+ (� 130), including planar boundary layers (not shown), there is reason to

expect that the peak intensity of the pressure-source fluctuations increases towards

a limiting value with increasing δ+. This is because the pressure-source terms at a

given point are directly related to local fluctuations in the velocity field. Presumably,

the behaviour of the velocity statistics, including the finite limiting values of the peak

Reynolds shear-stress (section 4.2) and RMS velocity (section 4.3), is reflected in

the RMS pressure-source fluctuations.

In flows with similar values of δ+, the intensity of the pressure-source fluctuations

increases towards the planar result (δ/a → 0) as the value of a+ increases. For

example, when δ+ ≈ 170, the peak value of the RMS pressure-source profiles

(normalised by u4
τ/ν

2) increases from 0.006 to 0.030 as a+ increases from 21.9 to

1130 and δ/a decreases from 7.82 to 0.157.

The same profiles are re-plotted as functions of y/h in figure 5.5b. Away from the

wall, at a given y/h, the intensity of the pressure-source fluctuations for flows with

similar values of δ+ tends to decrease as δ/a increases. For example, when δ+ ≈ 170,

the value of λ′
pν

2/u4
τ at y/h = 0.5 decreases from 9.9×10−3 to 1.4×10−3 as δ/a

increases from 0.157 to 7.82. However, the profiles in the outer boundary layer do

not appear to depend solely on the value of δ/a. For flows with similar values of δ/a,

the intensity of the pressure-source fluctuations at a given position y/h decreases as

δ+ increases. For example, in the respective flows with similar δ/a = 3.74, 4.01, 4.92

and increasing δ+ = 159, 527, 802, the corresponding, decreasing values of λ′
pν

2/u4
τ

at y/h = 0.5 are 3.4 × 10−3, 1.4 × 10−3, 0.75 × 10−3. A similar trend is observed

for flows with δ/a ≈ 2.3, and the trend is expected to apply to other values of δ/a

including that for planar flow.

A successful scaling relationship for the profiles of pressure-source fluctuation

intensity has not been determined. Any such relationship is required to account

for the effects of Reynolds number (δ+) and boundary layer curvature (a+, δ/a).

The replacement of uτ by uτc in figures 5.5a,b does not collapse the profiles to a

∗Flow cases Rea = 492, b/a = 12 and Rea = 1300, b/a = 6 are omitted because the format of
their data-files, created using an early version of the simulation code, is not compatible with the
post-processing code used to calculate the pressure-source profiles.

†Pressure-source profiles for the plane-channel simulations of Moser et al. [1999] are not
currently available, as confirmed by private communication with R. D. Moser.
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Figure 5.5: RMS fluctuations of total pressure-source for the present simulations as
functions of (a) y+ and (b) y/h. Legend:

a+ δ/a δ+ Line a+ δ/a δ+ Line a+ δ/a δ+ Line a+ δ/a δ+ Line

21.9 7.82 171 - - - - - - - - 163 4.92 802
21.5 14.0 302 42.7 3.74 159 146 1.18 173 287 0.574 165
21.5 19.1 411 40.8 7.74 315 140 2.30 321 564 0.313 177
21.0 27.6 580 76.0 2.33 177 131 4.01 527 1130 0.157 177
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common curve, not even for flows with similar values of δ+. Clearly, the scaling of

the pressure-source fluctuations is considerably more complicated than the scaling of

velocity statistics such as the Reynolds shear-stress or RMS velocity. Nevertheless,

determination of the scaling relationship for λ′
p may be a worthwhile subject for

future investigation, because the knowledge may enhance our understanding of the

trends in the wall-pressure statistics, which are presented in the following sections.

5.4 Spatial Spectra of Wall-Pressure

The azimuthal (spanwise) and axial (streamwise) spectra for wall-pressure fluctua-

tions pw are defined respectively by

Ep[kθ] = cθ

∣∣∣∣∣
Nθ−1∑
n=0

pw[an∆θ] exp
[−ikθan∆θ

]∣∣∣∣∣
2

(5.7)

and

Ep[kz] = cz

∣∣∣∣∣
Nz−1∑
n=0

pw[n∆z] exp
[−ikzn∆z

]∣∣∣∣∣
2

, (5.8)

where the grid geometry parameters Nθ, Nz, ∆θ and ∆z are listed for the present

simulations in tables 3.1 and 3.2. Azimuthal and axial wave-numbers are defined by

equations 2.26 and 2.27. The overbar denotes averaging in the azimuthal or axial

direction and over the temporal record. The scale factors cθ and cz are set so that

when Ep is plotted against positive wave-number, the area under the single-sided

spectrum equals the mean-square value of pw, that is

∫
kθ>0

Ep[kθ] dkθ =

∫
kz>0

Ep[kz] dkz = p2
w. (5.9)

Wall-pressure spectra as functions of the spanwise (azimuthal) and streamwise

(axial) spatial wave-numbers are presented in figure 5.6. The spectra are non-dimen-

sionalised with respect to τw and h (which is comparable with δ). The present

simulations are in good agreement with the cylinder calculations of Neves [1992]

and the plane-channel results of Moser et al. [1999].

The spanwise spectra collapse in the high wave-number range for flows with

similar δ+, independently of δ/a. As δ+ increases, the spectra are extended in

the direction of increasing wave-number. For sufficiently large δ+, the plane-channel

spectra collapse to a common curve in the low wave-number range. As δ/a increases,
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and the corresponding a+ decreases, the spectra in the low wave-number range are

reduced.

The streamwise spectra in the low wave-number range are similar for flows with

similar δ/a. As δ/a increases, the spectral level is reduced. In the high wave-number

range, there is dependence on both δ+ and δ/a. Increasing δ+ extends the spectra in

the direction of increasing wave-number, and increasing δ/a has the opposite effect.

Investigation of the scaling relationship between the streamwise spectra in the

high wave-number range led Neves [1992] to propose a modified length-scale, which

in the current notation is

hf = h

√
1 +

h

2a
. (5.10)

When h is replaced by hf in the spectral plot, the cylinder simulations of Neves and

the plane-channel simulation of Kim et al. [1987] are found to collapse in the high

wave-number range. However, all of these cases involve similar values of δ+. For

other values of δ+, the spectra do not exhibit similarity.

The scaling properties of streamwise wall-pressure spectra are similar to those

of temporal spectra, because the two types of spectra are related by the convection

velocity, which is discussed in the section 5.6. The temporal spectra are examined

in the following section.

5.5 Temporal Spectra of Wall-Pressure

Definitions

The temporal spectrum ϕp of wall-pressure fluctuations pw is defined as a function

of angular frequency ω by

ϕp[ω] = ct

∣∣∣∣∣
Nt−1∑
n=0

pw[n∆ts + t0] fw[n∆ts] exp
[−iωn∆ts

]∣∣∣∣∣
2

, (5.11)

where fw is the Hanning window function:

fw[t] =
1

2
− 1

2
cos

[
2πt

Lt

]
. (5.12)

The temporal parameters are ∆ts, the sampling period, Nt, the number of samples

in an interval, Lt, the duration of an interval, and t0, the start time of an interval.

For the present simulations, values of the temporal parameters are listed in table

3.4. The overbar denotes averaging over a number of temporal intervals and over
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Frequency Range Frequency Limits Spectral Form

Low-frequency ωδ∗/V∞ ≤ 0.03 ϕpV∞/(δ∗Q2
∞) = c1(ωδ∗/V∞)2

Mid-frequency 5 ≤ ωδ/uτ ≤ 100 ϕpuτ/(δτ 2
w) = f2[ωδ/uτ ]

Universal 100 ≤ ωδ/uτ ≤ 0.3δ+ ωϕp/τ
2
w = c3

High-frequency ω+ = ων/u2
τ ≥ 0.3 ϕ+

p = ϕpu
2
τ/(ντ 2

w) = f4[ω
+]

Table 5.1: Frequency ranges and spectral forms for wall-pressure in planar boundary
layers. Q∞ = 1

2
ρV∞, c1 and c3 are constants, and f2 and f4 represent functions.

the azimuthal and axial directions. The scale factor ct is set so that when ϕp is

plotted against ω, the area under the single-sided spectrum equals the mean-square

value of pw, that is ∫
ω>0

ϕp[ω] dω = p2
w. (5.13)

Flat-Plate Spectral Scaling

The turbulent boundary layer on a flat plate has been extensively investigated.

Analyses of experimental measurements of surface-pressure fluctuations [see, for

example, Farabee and Casarella, 1991, Bull, 1996] have identified four frequency

ranges with different forms of spectral scaling. These ranges and forms are listed in

table 5.1.

The spectral scaling and frequency ranges for flat-plate flow make an obvious

point of reference for the examination of axisymmetric boundary layers.

Low-Frequency Range

The length of the temporal intervals used for calculation of the temporal spectra

is such that the lowest spectral frequency (other than ω = 0) is ωδ∗/V∞ ≈ 0.07,

which exceeds the upper limit of the flat-plate low-frequency range. In principle, it

is possible to extend the time records so that the low-frequency range is properly

resolved. However, the accuracy of the computed flow at low wave-numbers, and

hence low frequencies, is limited by the streamwise length of the computational

domain. The computational requirements for extension of the domain lengths are

well beyond the resources available for the present work. Consequently, comparison

of axisymmetric and flat-plate flow similarity in the low-frequency range cannot

usefully be made.
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Mid-Frequency Range

Temporal wall-pressure spectra for the present calculations and appropriate refer-

ence data are plotted in flat-plate mid-frequency form in figure 5.7a. Unlike the

flat-plate measurements and plane channel simulation, the spectra for cylinders do

not exhibit similarity.

The analysis of the Green’s function in section 5.2 suggests that contributions

to the wall-pressure from the outer boundary layer can be expected to become less

significant as δ/a increases. Therefore the boundary layer thickness δ is unlikely

to be the most appropriate length-scale for this frequency range. In fact, the data

collapse quite well when the cylinder radius a is used as the length-scale instead

of δ. However, in the limiting case of very small δ/a, when the cylinder becomes

effectively a flat plate with a = ∞, the radius of curvature ceases to be a useful

length-scale and must be replaced by δ. A possible composite length-scale Lp that

meets the limiting requirements at the extremes of very large and very small δ/a

can be defined as

Lp =
δ

1 + cδ/a
, (5.14)

where c is an empirical constant. Similarity of the results of the present calculations

is not very sensitive to the value of c; it is quite close for values of c from about 0.25

to 1. A value of c = 0.4 has been chosen as this seems to give the most satisfactory

agreement with flat-plate data. This value of c differs slightly from the value c = 0.25

chosen by Woods and Bull [2004], whose temporal spectra were derived from wave-

number spectra by application of Taylor’s hypothesis (as explained later in section

5.6). In the planar limit as δ/a → 0, Lp → δ. As δ/a increases, the ratio Lp/δ

decreases; at the same time, Lp/a increases towards a limiting value of Lp/a = 2.5.

For δ/a ≥ 2.5, Lp is biased towards the cylinder radius (Lp ≤ δ/2).

The spectral data in modified mid-frequency form, where δ is replaced by Lp =

δ/(1 + 0.4δ/a), are shown in figure 5.7b. In this form there is similarity, with

ϕpuτ/(Lpτ
2
w) approximately constant over the lower part of the frequency range,

down to ωLp/uτ ≈ 5. The upper-limit is Reynolds number dependent and given

by ωLp/uτ ≈ 0.4L+
p (where L+

p = Lpuτ/ν). The range can therefore be tentatively

taken as 5 ≤ ωLp/uτ ≤ 0.4L+
p . Other cylinder data are consistent with this range,

including the numerical simulations of Neves [1992] and the experimental results of

Berera [2004] (which are in good agreement with Snarski and Lueptow [1995]).

The frequency range for similarity of the cylinder spectra contrasts with the flat-

plate mid-frequency range of 5 ≤ ωδ/uτ ≤ 100 proposed by Farabee and Casarella

[1991]. The plane-channel spectrum of Kim et al. [1987] suggests that the upper
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limit of the flat-plate range may need to be reduced when the Reynolds number δ+

is small. The dependency of the upper limit of the frequency range on the Reynolds

number is a reflection of the fact that the overall RMS pressure fluctuation is also

dependent on the Reynolds number, as shown later in section 5.7.

High-Frequency Range

The temporal wall-pressure spectra examined previously are plotted in figure 5.8a in

the flat-plate high-frequency form, ϕ+
p = ϕpu

2
τ/(ντ 2

w) as a function of ω+ = ων/u2
τ .

For flows with similar values of the cylinder Reynolds number Rea (or a+), the

spectra show close similarity that is almost independent of the value of δ/a. For all

values of a+ considered, the similarity occurs for ω+ greater than approximately 0.4,

a value near to that for high-frequency similarity in the flat-plate case. However,

the similarity curve is not the same for all a+, the spectral levels increasing with a+.

The spectral curves for the various cylinder Reynolds numbers have similar forms

that can be brought together if the horizontal and vertical scales are multiplied by

a function that depends primarily on a+. Such a function is devised empirically by

Woods and Bull [2004], although there does not appear to be any physical basis

for the chosen function. The need for such a function suggests that uτ and the

corresponding τw are not the appropriate velocity- and stress-scales for transversely

curved boundary layers. A plausible substitute for the velocity-scale may be derived

from uτc, which is defined by equation 4.22. It is expected that the high-frequency

wall-pressure fluctuations are dominated by contributions from sources near the wall,

where uτc may be expressed in the form

u2
τc ≈ u2

τ

(
a

a + y

)
, y � b + a. (5.15)

Evaluation of uτc at the location of the maximum RMS fluctuation of the total

pressure-source, which occurs at y+ ≈ 20 in figure 5.5a, yields the proposed velocity-

scale Up:

U2
p = u2

τ

(
1

1 + 20/a+

)
. (5.16)

For small a+, Up < uτ , and in the planar limit as a+ → ∞, Up = uτ .

The wall-pressure spectra in modified high-frequency form, where uτ and τw are

replaced respectively by Up and ρU2
p , are shown in figure 5.8b. In this form there

is similarity over the approximate frequency range ων/U2
p ≥ 0.4. The results of the

present simulations are in good agreement with the simulations of Kim et al. [1987]

and Neves [1992] and the experiments of Farabee and Casarella [1991]. The present
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data are also consistent with the experiments of Schewe [1983] and Berera [2004],

although their measurements yield high-frequency spectral levels that are slightly

higher than those of the other investigations considered here.

Universal Frequency Range

The flat-plate universal range represents an overlap of the mid-frequency and high-

frequency ranges. Such an overlap implies that, in this range, the spectral density

is independent of any length- or velocity-scale, which in turn implies that ϕpω =

constant or ϕp ∝ ω−1. For the present simulations, the character of the variation

of the spectral density with increasing frequency — a transition from a constant

value to a rapidly falling value — inevitably means that over some part of the

frequency range the spectral density will vary inversely with the frequency. The

frequency range over which this form of variation occurs is in fact very small,

and there is certainly no extended region of overlap similar to that found in high-

Reynolds-number measurements on flat plates. For the low Reynolds numbers under

consideration, the upper limit of the mid-frequency range and the lower limit of the

high-frequency range can therefore be taken as coincident. The upper limit of the

low-frequency range can then be defined by ων/U2
p ≤ 0.4.

The frequency ranges and similarity scaling relations for temporal spectra of axi-

symmetric boundary layers are summarised at the end of the chapter.

5.6 Convection Velocity

In experimental investigations of turbulent flow, quantitative measurements are

typically obtained using probes at discrete spatial positions in the flow. Temporal

variations of flow quantities are therefore readily examined, whereas study of spatial

variations requires the comparison of signals from several probes distributed over the

region of interest. Taylor’s hypothesis allows spatial variations to be estimated from

temporal measurements, or vice-versa, through the idea that “frozen” structures are

convected with the mean flow at some proportion of the free-stream velocity.

Typical definitions of the convection velocity involve either the two-dimensional

space-time correlation or its Fourier transform, the frequency-wave-number spec-

trum. The convection velocity is related to the location of the maximum, along

either axis, of the correlation or spectrum. The resulting velocity is a function of

streamwise separation, time delay, wave-number or frequency. Neves [1992] found

that the convection velocity is roughly constant over most of the range of each of
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the possible independent variables. The magnitude of the convection velocity varies

slightly depending on the chosen definition.

The convection velocity Uc may be used to convert the spatial spectrum Ep and

streamwise wave-number kz to an estimated temporal spectrum ϕ∗
p and frequency

ω∗ as follows:

ϕ∗
p =

Ep

Uc

ω∗ = kzUc.

(5.17)

For present purposes, Uc is considered to be independent of frequency. The value

of Uc is determined so that the temporal spectrum ϕ∗
p estimated from the spatial

spectrum Ep is the closest possible match to the temporal spectrum ϕp calculated

from time-series data. Specifically, the convection velocity is defined to be the value

of Uc that minimises the mean absolute value of
(
ϕp[ωi] − ϕ∗

p[ωi]
)
. The mean is

computed across the set of discrete frequencies ωi at which the temporal spectrum

ϕp is calculated, excluding those frequencies that lie outside the range of ω∗. The

values ϕ∗
p[ωi] are interpolated between the discrete frequencies ω∗

i corresponding to

the discrete wave-numbers kzi
at which the spatial spectrum Ep is calculated.

The convection velocities and estimated spectra corresponding to the above

definitions are shown for a selection of simulated flows in figure 5.9. Also shown

are the temporal spectra calculated directly from wall-pressure time-series. The

treatment of Uc as independent of frequency appears to be justified by the good

agreement between estimated and calculated spectra at all frequencies. For the

range of flows considered, Uc/V∞ varies from 0.608 to 0.839 and Uc/uτ varies from

11.1 to 13.0. The convection velocities correspond to the mean-flow velocities at

wall-normal positions ranging from 18.2 to 23.8 axisymmetric wall units (in the

form proposed by Rao [1967]). These positions are close to the inner limit of the

logarithmic region of the mean velocity profiles in figure 4.2. Thus, for the flows

considered here, it appears that the dominant contribution to the wall-pressure is

made by pressure-sources that are located in the buffer region of the boundary layer.

5.7 Root-Mean-Square Wall-Pressure

Calculated and experimental values of the RMS fluctuations of wall-pressure, ex-

pressed in the form p′/τw, are plotted against δ+ in figure 5.10. The sources of data

are summarised in the legend attached to the figure.

The RMS wall-pressures computed by Moser et al. [1999] are consistently lower

than those of Spalart [1988]. Moser et al. used a variant of the plane-channel sim-
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Figure 5.9: Estimated temporal spectra of wall-pressure obtained from spatial spec-
tra using Taylor’s hypothesis. Estimated spectra (solid lines) are compared with
calculated temporal spectra (dashed lines) for present simulations and reference
data. Flow cases and the corresponding line colours are listed in the legend below.
Also given for each flow case are the convection velocity Uc and the wall-normal po-
sition yc (in the axisymmetric wall units of Rao [1967]) where the mean-flow velocity
equals Uc.

Reference a+ δ/a δ+ Uc/V∞ Uc/uτ a+ ln[1 + y+
c /a+] Colour

Present study 21.9 7.82 171 0.815 11.6 19.4
21.5 19.1 411 0.768 11.1 18.2
40.8 7.74 315 0.726 12.0 19.3
163 4.92 802 0.608 12.3 20.3

Kim et al. [1987] ∞ 0 148 0.633 13.0 23.8

Neves [1992] 21.7 9.23 201 0.705 12.2 21.0
42.8 4.20 180 0.839 11.5 18.7
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Figure 5.10: RMS wall-pressure fluctuations as a function of δ+ for present simula-
tions and reference data. Legend:

Reference Description a+ δ/a δ+ Symbol

Present study Cylinder 21.0–21.9 7.82–27.6 171–580
simulation 40.8–42.7 3.74–7.74 159–315

74.3–76.0 2.33–3.63 177–270
131–146 1.18–4.01 173–527

163 4.92 802
564 0.313 177
1130 0.157 177

Berera [2004] Pin-hole sensor 158–175 3.2–11.5 560–1820

Bull and Thomas
[1976]

Pin-hole sensor ∞ 0 1700–3450
Flush sensor

Farabee and
Casarella [1991]

Pin-hole sensor ∞ 0 1170–2010
Equation 5.18

Moser et al.
[1999]

Plane-channel ∞ 0 149–495
simulation

Neves [1992] Cylinder 21.7 9.23 201
simulation 42.8 4.20 180

Schewe [1983] Flush sensor ∞ 0 556

Snarski and
Lueptow [1995]

Pin-hole sensor 177 5.04 892

Spalart [1988] Flat plate ∞ 0 140–500
simulation
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ulation code of Kim et al. [1987] which, as in the present calculations, effectively

imposes a streamwise pressure-gradient on the statistically-steady state. The nu-

merical scheme devised by Spalart accounts for the streamwise development of the

mean flow so that the pressure-gradient is eliminated. The difference between these

two sets of simulations can therefore be attributed to the presence or otherwise of a

streamwise pressure-gradient. Spalart’s wall-pressure result at δ+ = 500 is in good

agreement with the flat-plate measurement of Schewe [1983] at δ+ = 556.

Farabee and Casarella [1991] derive an empirical formula for the RMS wall-

pressure in flat-plate flow by integration of measured pressure spectra using the

scaling relationship appropriate for each frequency range. The predictions of their

formula, which in the present notation is

(
p′

τw

)2

=

⎧⎨
⎩6.5 (δ+ ≤ 333),

6.5 + 1.86 ln(δ+/333) (δ+ > 333),
(5.18)

are shown as a solid black line in the figure. The formula is consistent with the

measurements of Farabee and Casarella, as one would expect, and also with the

measurement by Schewe [1983] and, to a lesser extent, with the pin-hole sensor

results of Bull and Thomas [1976]. For small δ+, however, the predictions deviate

from the results obtained by Spalart [1988]. The discrepancy would possibly be

eliminated by revision of the frequency limits assigned to each region of the wall-

pressure spectra.

Bull and Thomas [1976] investigate the effects of pin-holes on wall-pressure

measurements. Their measured values of RMS wall-pressure depend strongly on the

type of sensors used, be they flush with the surface or mounted behind pin-holes.

The values obtained with flush-mounted sensors appear rather low compared with

other experimental data, including the measurement by Schewe [1983] which also

used a flush sensor. The trend followed by the simulation results of Spalart [1988]

also suggests that the flush-sensor results of Bull and Thomas [1976] are too low.

It is unlikely that the difference between flush-sensor and pin-hole measurements

would be entirely removed by use of smaller sensors, because the smallest sensors

used by Bull and Thomas (d+ ≈ 45) are only about twice the size of that used by

Schewe (d+ = 19). The effect of pin-holes on wall-pressure measurements seems not

to have been conclusively established.

The RMS wall-pressures calculated by the present simulations are in good agree-

ment with the simulations of Neves [1992] at a+ ≈ 21 and 42. The present simula-

tions for a+ ≥ 564 with δ+ = 177 are consistent with the plane-channel simulation
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of Moser et al. [1999] at δ+ = 149. The present result for a+ = 163 with δ/a = 4.9

(δ+ = 802) is consistent with the measurements by Berera [2004] and Snarski and

Lueptow [1995] for similar a+ and δ/a.

For cylinder data, the values of p′/τw as a function of δ+ follow separate curves

for each value of a+, as indicated by the grey curves in the figure (5.10). At a given

value of δ+, the RMS wall-pressure increases towards the plane-channel result as a+

increases (and δ/a decreases); the RMS wall-pressure is substantially reduced when

a+ is small (and δ/a is large). The upward slope of the pressure curves at a given

δ+ appears to be greater for flow with large a+ (and small δ/a) than for flow with

small a+ (and large δ/a). The slope of a given pressure curve (for flow at a given

value of a+) decreases with increasing δ+, and therefore with increasing δ/a, as is

consistent with the idea that the proportion of the wall-pressure contributed by the

outer portion of the boundary layer is reduced as δ/a increases.

The significant changes in RMS wall-pressure caused by transverse curvature of

the boundary layer indicate that δ (in the form δ+) is not the appropriate length-

scale to use for the scaling of p′/τw when δ/a is non-zero. A possible alternative

length-scale is defined by equation 5.14: Lp = δ/(1 + 0.4δ/a). The data from figure

5.10 are re-plotted as functions of L+
p = Lpuτ/ν in figure 5.11. For cylinder data,

the functional form of the relationship between p′/τw and log[L+
p ] appears to be a

straight line, which also passes through the plane-channel results of Moser et al.

[1999] and the flat-plate measurements of Farabee and Casarella [1991]. The line-

of-best-fit to the cylinder data and the above-mentioned planar results is given by

p′/τw = 1.61 log[L+
p ] − 2.04, which is shown as a grey line in the figure. The line-

of-best-fit has a greater slope than the empirical formula of Farabee and Casarella

[1991], which is plotted as a black line in the figure. It is not clear which of the

two lines is the more reliable over the range 100 � L+
p � 3000, because there is

considerable scatter in the available results for planar flow.

The fact that the RMS wall-pressure scales quite well with the length-scale Lp

is not without precedent. The same length-scale is used successfully to scale the

temporal spectra of wall-pressure in the mid-frequency range. This frequency range

contributes a significant proportion of the RMS wall-pressure, which is therefore

closely related to the length-scale Lp.

The definition of Lp encapsulates the idea that the fraction of the boundary layer

that contributes to the wall-pressure is reduced as δ/a increases. Specifically, Lp = δ

when δ/a = 0, and the fraction Lp/δ decreases monotonically as δ/a increases. For

δ/a > 2.5, Lp is less than half of δ. Thus, for the majority of the cylinder flows
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Figure 5.11: RMS wall-pressure fluctuations versus L+
p = δ+/(1+0.4δ/a) for present

simulations and reference data. p′/τw = 1.61 log[L+
p ] − 2.04. Other symbols:

Reference Description a+ δ/a δ+ Symbol

Present study Cylinder 21.0–21.9 7.82–27.6 171–580
simulation 40.8–42.7 3.74–7.74 159–315

74.3–76.0 2.33–3.63 177–270
131–146 1.18–4.01 173–527

163 4.92 802
564 0.313 177
1130 0.157 177

Berera [2004] Pin-hole sensor 158–175 3.2–11.5 560–1820

Bull and Thomas
[1976]

Pin-hole sensor ∞ 0 1700–3450
Flush sensor

Farabee and
Casarella [1991]

Pin-hole sensor ∞ 0 1170–2010
Equation 5.18

Moser et al.
[1999]

Plane-channel ∞ 0 149–495
simulation

Neves [1992] Cylinder 21.7 9.23 201
simulation 42.8 4.20 180

Schewe [1983] Flush sensor ∞ 0 556

Snarski and
Lueptow [1995]

Pin-hole sensor 177 5.04 892

Spalart [1988] Flat plate ∞ 0 140–500
simulation
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considered here, the bulk of the wall-pressure is generated by a small fraction of the

boundary layer near the cylinder wall.

For planar flow at moderate to large values of δ+, it is reasonably well established

that the RMS wall-pressure is related to δ+ by a function of the form p′/τw =

c1 log[δ+] + c2, where c1 and c2 are constants. The slope of the function, that

is d(p′/τw)/dδ+, is equal to c1/δ
+, which decreases as δ+ increases. A tentative

explanation for the decreasing slope is as follows. When δ+ is increased by a small

increment ∆δ+, additional pressure-sources are supported near the outer edge of the

boundary layer; the intensity of pressure-source fluctuations in the inner boundary

layer is little affected. The additional pressure-sources contribute to an increase in

the RMS wall-pressure of ∆(p′/τw). For a given value of ∆δ+, the corresponding

value of ∆(p′/τw) decreases as the additional pressure-sources become more distant

from the wall. Consequently, the ratio ∆(p′/τw)/∆δ+ (≈ d(p′/τw)/dδ+) decreases

as δ+ increases, because the additional pressure-sources are located near y+ = δ+.

5.8 Summary and Conclusions

The main findings arising from analysis of the pressure statistics for turbulent

boundary layers on cylinders in axial flow are summarised here.

Profiles of RMS pressure, in the form p′/τw versus y+, are strongly dependent,

near the wall, on the value of a+. The profiles are quite similar to plane-channel

results when a+ is large, and they are reduced substantially when a+ is small. For

flows with large values of a+, the peak value of the RMS pressure profile increases

with increasing δ+; there is no evidence for an upper limit to the near-wall RMS

pressure as δ+ tends to infinity. The RMS pressure profiles plotted as functions of

y/h show a strong dependence on b/a (and hence δ/a); the profiles nearly collapse

to a common curve outside the buffer region when normalised by ρu2
τc (instead of

τw = ρu2
τ ). Skewness and flatness statistics for the pressure fluctuations are strongly

dependent on a+. As a+ decreases, the skewness becomes more negative and the

flatness more positive, reflecting the trends in the axial component of velocity.

Analysis of the Green’s function that corresponds to the Poisson equation for

pressure gives insights concerning the proportion of the wall-pressure contributed by

different regions or structures within the flow. The form of the Green’s function in

the present cylindrical geometry suggests that turbulent eddies with large streamwise

or spanwise dimensions can be expected to make the dominant contribution to the

wall-pressure. Also, for a given pressure-source distribution over the radial interval
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rs/a = [1, 1 + δ/a], the wall-pressure contributed by the outer part of the boundary

layer can be expected to decrease as δ/a is made larger.

The pressure at a given spatial location is generated by the combined influence

of infinitesimal pressure-sources that are distributed throughout the boundary layer.

The strength of these pressure-sources is a continuous function of spatial position,

which can be expressed as a sum of products of spatial derivatives of the instanta-

neous velocity field. The results of the present simulations have been examined to

compare the RMS fluctuation intensity of the different pressure-source terms. Near

the cylinder wall, the dominant term is found to be (2/r)(∂uθ/∂r)(∂ur/∂θ − uθ), in

accordance with the results of Neves [1992]. Away from the wall, the dominant terms

are (2/r)(∂uθ/∂r)(∂ur/∂θ − uθ), 2(∂uz/∂r)(∂ur/∂z) and (2/r)(∂uz/∂θ)(∂uθ/∂z),

which have roughly equal fluctuation intensities.

The RMS fluctuations of the total pressure-source field, with all terms taken

into account, are at a maximum in the vicinity of y+ = 20 for all of the present

simulations. The effects of transverse surface curvature on the pressure-source

field appear qualitatively similar to those affecting the underlying velocity field.

For axisymmetric flow at a given value of δ+, the intensity of the pressure-source

fluctuations is similar to that for planar flow when δ/a is small and a+ is large;

the fluctuation intensity decreases throughout the boundary layer when a+ becomes

small. For flows with large values of a+, the pressure-source fluctuation intensity

at a given position y+ increases as δ+ increases. However, the intensity is likely to

approach an upper limit at large values of δ+, as appears to be the case for the

velocity statistics. The combined effects of Reynolds number (δ+) and curvature

(a+, δ/a) are sufficiently complex that a satisfactory scaling relation for the intensity

of the pressure-source fluctuations has yet to be identified.

Temporal wall-pressure spectra for flow over cylinders exhibit characteristic fre-

quency ranges that are counterparts of the frequency ranges identified for flow over

flat plates. The cylinder ranges show considerably more complicated similarity scal-

ing relations than the flat-plate ranges, as a result of the effects of curvature on

the flow. Empirical forms for the spectral scaling in the mid-frequency and high-

frequency ranges have been determined from the present simulations. These ranges

and forms are listed in table 5.2. For the low Reynolds numbers (δ+) under consid-

eration, there is no extended universal range similar to that found in measurements

at high Reynolds numbers; the upper limit of the mid-frequency range and the lower

limit of the high-frequency range are therefore taken as coincident. The scaling re-

lations are consistent with available experimental data for cylinders in axial flow,
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Frequency Range Frequency Limits Spectral Form

Mid-frequency 5 ≤ ωLp/uτ , ων/U2
p ≤ 0.4 ϕpuτ/(Lpτ

2
w) = f2

[
ωLp/uτ

]
High-frequency ων/U2

p ≥ 0.4 ϕp/(νρ2U2
p ) = f4

[
ων/U2

p

]
Table 5.2: Frequency ranges and spectral forms for wall-pressure in transversely
curved boundary layers. f2 and f4 represent functions. The curvature-adjusted
length- and velocity-scales are Lp = δ/(1 + 0.4δ/a) and Up = uτ/

√
1 + 20/a+.

and asymptotically approach the flat-plate relations as the radius of the cylinder

increases.

The scaling relations for the temporal spectra of wall-pressure on cylinders are

based on the corresponding relations for flat-plate flow. In the mid-frequency range,

the flat-plate length-scale δ is replaced by Lp = δ/(1+0.4δ/a). In the high-frequency

range, the flat-plate velocity-scale uτ is replaced by Up = uτ/
√

1 + 20/a+ and the

stress-scale τw = ρu2
τ is replaced by ρU2

p . The length-scale Lp encapsulates the

idea that the effective thickness of the boundary layer is reduced by curvature,

because the outer portion of the boundary layer contributes less to the wall-pressure

as δ/a increases. In the planar limit of δ/a = 0, Lp is equal to δ, and as δ/a

increases, the ratio Lp/δ decreases. For δ/a ≥ 2.5, Lp is biased towards the cylinder

radius (Lp ≤ δ/2). The velocity-scale Up is approximately equal to uτc (equation

4.22) evaluated at y+ = 20, which is the approximate location of the maximum

fluctuation intensity of the pressure-source field (figure 5.5a). Pressure-sources near

this position are presumed to make the dominant contribution to the wall-pressure

in the high-frequency range of the spectrum. For planar flow (a+ = ∞), Up is equal

to uτ , and as a+ decreases, the ratio Up/uτ decreases. The value of Up is greater

than 90% of uτ for all flows except those with a+ < 85.

Approximate temporal spectra may be derived from spatial spectra, and vice-

versa, by use of the idea that “frozen” flow fields are convected downstream with

a velocity Uc. In the present investigation, values of Uc have been determined for

a number of simulated flows such that the temporal spectra estimated from spatial

spectra are the closest possible match to the temporal spectra calculated from time-

series data. The estimated and calculated temporal spectra are in good agreement

at all frequencies in all of the flows considered, despite the treatment of Uc as

independent of frequency. The values of Uc obtained vary from 0.608/V∞ (11.1uτ )

to 0.839/V∞ (13.0uτ ). These convection velocities suggest that in flows with small

δ+ or large δ/a, the dominant contribution to the wall-pressure is made by pressure-

sources in the buffer region of the boundary layer.
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The RMS wall-pressure p′ on cylinders, when normalised by the wall-shear-

stress τw, is strongly dependent on the length-scale Lp. The empirical formula

p′/τw = 1.61 log[L+
p ] − 2.04 is a good fit to the available cylinder data and also to

the plane-channel results of Moser et al. [1999] and the flat-plate measurements of

Farabee and Casarella [1991]. The present formula differs from that obtained by

Farabee and Casarella [1991] based on planar results, but it is not clear which of

the two formulae is the more reliable (over the range 100 � L+
p � 3000) due to

the considerable scatter in the available data. The scatter is probably caused by

systematic differences between experiments (and calculations), including differences

in streamwise pressure-gradients, sensor resolution and sensor mounting techniques

(pin-hole versus flush). Additional measurements and calculations to isolate or

eliminate the effects of these systematic differences would be a worthy subject for

future work.
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