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ABSTRACT 

Airborne hyperspectral imagery has the potential to overcome the spectral and spatial 

resolution limitations of multispectral satellite imagery for monitoring salinity at both 

regional and farm scales. In particular, saline areas that have good cover of salt tolerant 

plants are difficult to map with multispectral satellite imagery. Hyperspectral imagery 

may provide a more reliable salinity mapping method because of its potential to 

discriminate halophytic plant cover from non-halophytes.  

HyMap and CASI airborne imagery (at 3m ground resolution) and Hyperion satellite 

imagery (at 30 resolution) were acquired over a 140 sq km dryland agricultural area in 

South Australia, which exhibits severe symptoms of salinity, including extensive 

patches of the perennial halophytic shrub samphire (Halosarcia pergranulata), sea 

barley grass (Hordeum marinum) and salt encrusted pans. The HyMap and Hyperion 

imagery were acquired in the dry season (March and February respectively) to 

maximise soil and perennial vegetation mapping.  The optimum time of year to map sea 

barley grass, an annual species, was investigated through spectral discrimination 

analysis. 

Multiple reflectance spectra were collected of sea barley grass and other annual grasses 

with an ASD Fieldspec Pro spectrometer during the September spring flush and in 

November during late senescence. Comparing spectra of different species in November 

attempted to capture the spectral differences between the late senescing sea barley grass 

and other annual grasses. Broad NIR and SWIR regions were identified where sea 

barley grass differs significantly from other species in November during late 

senescence. The sea barley grass was therefore shown to have the potential to be 

discriminated and mapped with hyperspectral imagery at this time and as a result the 

CASI survey was commission for November. Other salinity symptoms were 

characterised by collecting single field and laboratory spectra for comparison to image 

derived spectra in order to provide certainty about the landscape components that were 

to be mapped.  

Endmembers spectra associated with saltpans and samphire patches were extracted from 

the imagery using automated endmember generation procedures or selected regions of 

interest and used in subsequent partial unmixing. Spectral subsets were evaluated for 

their ability to optimise salinity maps. The saltpan spectra contained absorption features 

consistent with montmorillonite and gypsum. A single gypsum endmember from one 
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image strip successfully mapped saltpans across multiple images strips using the 1750 

nm absorption feature as the input to matched filter unmixing. The individual spectra of 

green and red samphire are dominated by photosynthetic vegetation characteristics. The 

spectra of green samphire, often seen with red tips, exhibit peaks in both green and red 

wavebands whereas the red samphire spectra only contain a significant reflectance peak 

in the visible red wavelength region.  

For samphire, Mixture Tuned Matched Filtering using image spectra, containing all 

wavelength regions, from known samphire patches produced the most satisfactory 

mapping. Output salinity maps were validated at over 100 random sites. The HyMap 

salinity maps produced the most accurate results compared to CASI and Hyperion.  

HyMap successfully mapped highly saline areas with a good cover of samphire 

vegetation at Point Sturt without the use of multitemporal imagery or ancillary data such 

as topography or PIRSA soil attribute maps. CASI and Hyperion successfully mapped 

saltpan, however, their samphire maps showed a poor agreement with field data. These 

results suggest that perennial vegetation mapping requires all three visible, NIR and 

SWIR wavelength regions because the SWIR region contains important spectral 

properties related to halophytic adaptations. Furthermore, the unconvincing results of 

the CASI sea barley grass maps suggests that the optimal sensor for mapping both soil 

and vegetation salinity symptoms are airborne sensors with high spatial and spectral 

resolution, that incorporate the 450 to 1450 nm wavelength range, such as HyMap.  

This study has demonstrated that readily available software and image analysis 

techniques are capable of mapping indicators of varying levels of salinity. With the 

ability to map symptoms across multiple image strips, airborne hyperspectral imagery 

has the potential for mapping larger areas covering sizeable dryland agriculture 

catchments, closer in extent to single satellite images. This study has illustrated the 

advantage of the hyperspectral imagery over traditional soil mapping based on aerial 

photography interpretation such as the NLWRA Salinity 2000 and the PIRSA soil 

landscape unit maps. The HyMap salinity maps not only improved mapping of saline 

areas covered with samphire but also provided salinity maps that varied spatially within 

saline polygons.  
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