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Abstract

This thesis examines the flow of very viscous Newtonian fluids driven by gravity. It is

written with concern for specific applications in the optics industry, with emphasis

on the slumping of molten glass into a mould, as in the manufacture of optical

components, which are in turn used to manufacture ophthalmic lenses. This process

is known as thermal replication. However, the work has more general applicability,

and disc viscometry, used to determine the viscosity of very viscous fluids, is also

considered. In addition, one chapter of the thesis is devoted to the flow of dripping

honey, as another example of a very viscous flow to which the model can be applied.

The Stokes creeping-flow equations are used to model the very viscous flows

of interest. The main solution method is finite elements, and a purpose-written

computer program has been developed to solve the creeping-flow equations by this

method. The present program is restricted to solving for either two-dimensional or

axisymmetric flows but is extendible to three dimensions. In addition, semi-analytic

series and asymptotic methods are used for some small portions of the work.

The optical applications of this work demand consideration of the topic of com-

puting surface curvature, and therefore second derivatives, from inexact and discrete

numerical and experimental data. For this purpose, fitting of B-splines by a least-

squares method to coordinate data defining the surface has been used.

Much of the work assumes isothermal conditions, but in the context of the

accuracy required in optical component manufacture it is also possible that non-

isothermal effects will be important. Consequently, this restriction is eventually

x



Abstract xi

relaxed and some consideration given to non-isothermal conditions.

In order to validate the creeping-flow model and finite-element program, com-

parisons of numerical simulations with experimental results are performed. A pre-

liminary assessment of the importance of non-isothermal conditions to the thermal-

replication process is also made by comparing isothermal and non-isothermal simu-

lations with experimental results. The isothermal model is found to best match the

experimental data.
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