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Abstract 
 

Modelling of stream macroinvertebrate communities has been widely accepted as an 
interesting and powerful tool to support water quality assessment and management. 
Stream Decision Support Framework (SDSF) offers an alternative approach to the 
current statistical models as Australian River Assessment Scheme (AusRivAs) for the 
derivation of scientific basis to support management applications regarding fresh 
water systems. Implementation of Artificial Neural Networks (ANNs) offers a 
possibility to overcome constraints of the statistical methods in dealing with high non-
linearity of stream data.  
This thesis includes several case studies illustrating application of Self Organising 
Map (SOM) and Multilayer Perceptron (MLP) neural networks to various tasks 
involving analysis, assessment and prediction of stream macroinvertebrates in three 
Australian states. The data for this study have been provided by the Queensland 
Department of Natural Resources (NR&M), EPA Victoria and the Department of 
Land and Water Conservation, New South Wales (NSW).  
 
SDSF approach utilises predictive models for both ‘referential’ and ‘dirty-water’ 
approaches. Applicability and high accuracy of ANN models for the purpose of 
prediction both occurrence of individual taxa and taxonomic richness of stream 
macroinvertebrates have been demonstrated using data from Victoria and NSW.  
A comprehensive analysis of salinity sensitivity of stream macroinvertebrate has been 
demonstrated using both types of ANNs plus statistical methods, and pressure specific 
Salinity Index was suggested as a measurement of changes within macroinvertebrate 
communities in response to the secondary salinisation. Scenario analysis of the 
combined effect of increasing salinity and nutrient load demonstrated predictability 
and ecological meaningfulness of the Salinity Index. 
 
Application of SOM has been demonstrated using the data from Queensland and 
Victoria in order to analyse natural variability of macroinvertebrate communities 
between reference sites. SOM component planes provided a valuable insight into the  
relationships between abiotic variables (as water quality and geoclimatic factors) and 
distribution of taxa and trophic structure of macroinvertebrate communities. Potential 
of SOM as data exploration tool has been also demonstrated for the analysis of the 
output of scenario simulation in order to understand the difference in response to 
salinisation in different sites.  
 
Flexibility and potential of SDSF have been illustrated by using the combination of 
SOM and MLP, and combination of ANNs with statistical methods. Application of 
both SOM and Canonical Correspondence Analysis allowed the extraction of 
additional information and provided convenient visualisation of the relationships 
between water quality factors and the structure of macroinvertebrate communities.  
 
In general, SDSF provides convenient, flexible and accurate approach for the analysis, 
assessment and prediction of stream biota. In addition to the freedom from the 
limitations inherent to the traditional statistical methods it allows many more options 
than currently used modelling frameworks, namely: highly accurate predictions using 
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both ‘referential’ and ‘dirty-water’ approaches, sensitivity analysis, scenario analysis 
and pattern exploration using SOM.  
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Chapter 1  
 
General Introduction 

 

Since European settlement, anthropogenic effects on Australian rivers have been 
considerable. Sewage, detergents and agricultural runoff have altered nutrient 
balances, mine wastes have caused heavy metal pollution, acidification and 
sedimentation, while land clearing and deforestation have caused sedimentation and 
secondary salinisation (Smith et al., 1999). To address concerns about declining 
conditions in Australian rivers and stream a number of different assessment schemes 
and protocols have been designed with Australian River Assessment Scheme 
(AusRivAs) being currently most widely used (Schofield and Davies, 1996). Even 
though the application of AusRivAs achieved some valuable success, some 
constraints appeared to have caused confounded assessment of biological impairment.  

AusRivAs is based on a referential approach, which assesses habitat conditions in a 
river by predicting the macroinvertebrate families expected to occur in the absence of 
environmental stress, such as pollution or habitat degradation (Coysh et al., 2000). 
Predictions are derived from a set of environmental measurements (only variables not 
affected by human activity) used to characterise the sites. A predicted 
macroinvertebrate assemblage is compared with the actual assemblage, and the ratio 
of observed/expected (O/E) families is used as a measure of ecological habitat 
conditions (Parsons and Norris, 1996; Marchant et al., 1999; Smith et al., 1999). 

Macroinvertebrate communities are influenced by a number of physical, chemical and 
biological factors. It is impossible to predict or analyse the effect of potential 
anthropogenic disturbances on the stream biota using only the referential approach as 
it utilises only predictor variables potentially unaffected by humans. ‘Dirty-water’ 
approach allows prediction of the possible consequences from various impacts by 
utilising distribution of macroinvertebrates and habitat characteristics from both 
reference and potentially impacted sites.  ‘Dirty- water’ models utilise a wider range 
of input variables, including those that can be altered by anthropogenic impacts.  This 
type of models can be used for two purposes: sensitivity analysis and scenario 
analysis. The principle behind scenario and sensitivity analysis is the same: trained 
models are simulated while variables in question are altered, and simulated output is 
analysed. However, the specific methodology and application of the sensitivity and 
scenario analyses can differ depending on the task. 

Ecological data usually consist of many species and environmental variables, which 
vary and covary in nonlinear fashion (Lek and Guegan, 2000). Thus, nonlinear 
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modeling methods such as Artificial Neural Networks (ANNs) should be preferred for 
dealing with such data (Blayo and Demartines, 1991). Implementation of Artificial 
Neural Networks (ANN) instead of statistical methods offers a possibility to 
overcome constraints of the statistical methods in dealing with high non-linearity of 
stream data.  

Two types of ANN have been widely applied for the ecological problems: Self 
Organising Map (SOM) for the classification and ordination and Multilayer 
Perceptron (MLP) for the predictions. A number of ecological case studies have 
shown that SOMs are an efficient classification tool (Chon et al.,1996; Park et al., 
2001; Park et al., 2003; Brosse et al., 2001; Giraudel and Lek, 2001; Cereghino et al., 
2000). MLPs were successfully applied to predict the occurrence of stream 
macroinvertebrates from the environmental variables (Walley and Fontama, 1998; 
Schleiter et al., 1999; Pudmenzky et al., 1998; Huong et al., 2001), fish distribution 
(Joy and Death, 2004) and species richness (Cereghino et al., 2003).  

This study explores the potential of ANNs application to a number of ecological 
problems in an intergrated manner described by the Stream Decision Support 
Framework (SDSF). SDSF offers an alternative approach to that of AusRivAs and 
other methods to provide scientific understanding of freshwater streams to support the 
management decisions regarding the sustainable use of fresh water systems. Using 
stream datasets from three Australian states we demonstrated the usefulness of the 
SDSF for assessments of biological conditions using referential approach, prediction 
of taxonomic richness and scenario analysis, finding similar patterns in 
macroinvertebrate communities and relating them to the environmental variables, 
derivation of pressure-specific ecological index using results of ANNs based 
sensitivity analysis and addressed practical questions posed by aquatic ecologists from 
the Queensland Department of Natural Resource and Mines (NR&M).  

 

Organisation of the Thesis  

 

Chapter 2 introduces principles of ecological assessment using stream 
macroinvertebrates and principles of ANNs modeling and application to the 
ecological problems. 

Chapter 3 describes three datasets available for the study. Practical implementation 
of SOM and MLP in the scope of this study is explained.  

Chapter 4 demonstrated the applicability and potential practical use of SOM using 
several case studies: grouping macroinvertebrate assemblages into similar spatial 
clusters and explaining the patterns found by the environmental variables using the 
datasets from Queensland (QLD), Victoria and New South Wales (NSW) (4.1-4.2), 
and analyzing the changes within the trophic structure of macroinvertebrate 
communities in response to water quality parameters (4.3). 

Chapter 5 presents the results of several case studies using predictive ANN models: 
implementation of the referential approach using dataset from Victoria (5.1), 
prediction of taxonomic richness using ‘dirty-water’ models (5.2) and prediction of 
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SOM defined clusters (5.4). It also contains answers to the questions formulated by 
the scientists of the Laboratory of Aquatic Ecosystem Health, NR&M, regarding the 
optimisation of the modeling design in respect to the cost efficiency of environmental 
monitoring. It discusses temporal and spatial implications for the building of accurate 
predictive models and compares variety of models using different number of 
predictive variables (5.3). 

Chapter 6 explores sensitivity analysis with MLP. First part contains the results of 
the investigation into a stability and quantitative applicability of the sensitivity 
analysis. The second part contains a comprehensive study of salinity sensitivity of 
QLD stream macroinvertebrates using sensitivity analysis and variety of the other 
methods as SOM and Canonical Correspondence Analysis, and proposes Salinity 
Index as measurement of changes within communities in response to the changes in 
salinity.  

Chapter 7 presents results of the scenario analysis using MLP. The changes in the 
Salinity Index and the percentage of sensitive taxa were simulated in response to the 
increase in conductivity and combined increase in conductivity and nutrients 
concentration using data from Central Queensland. Untraditional application of SOM 
for the analysis of simulated outputs is demonstrated. 

Chapter 8 contains general discussion of the results and possible directions for the 
future research.  

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 4

 

 
Chapter 2  
 
Literature review 
  
 

2.1 Bioassessment of freshwater systems by aquatic 
macroinvertebrates 
 

Stream and river ecosystems experience great pressure by human activities such as 
population growth and economic development. Protection and maintenance of high 
quality stream water has become an increasingly important issue in recent years.  

Water quality can be measured by different parameters such as biological oxygen 
demand, suspended sediments and bacterial counts. However, these parameters only 
reveal the quality of the water at the time of sampling, and their further relevance has 
to be inferred by extrapolation from limited data (Hellawell, 1986). These 
measurements may be efficient for regulating effluent discharges and protecting 
humans, they are not very useful for a large-scale management of catchments or for 
assessing the state of the river ecosystems (Norris et al., 1999). Biological monitoring, 
on the other hand, generally is considered to provide a more integrated appraisal of 
water and overall environmental quality (Hynes, 1960). In numerous cases the 
parameters like community structure and taxonomic richness have been proved to be 
the most sensitive indicators for quickly and adequately detecting alterations in 
aquatic ecosystem (Cairns and Pratt, 1993).    

Biological assessments are less time consuming than other methods as a single series 
of samples represents the sum effects of the prevailing conditions. In addition, animal 
and plant communities are little affected by a temporary amelioration or a transient 
deterioration of the effluent (Mason, 1996). Bioassessment can reveal long-term 
effects on ecosystems after the cause of the impact has passed and is itself 
undetectable. Such assessment provides both numeric and narrative descriptions of 
resource condition (Karr, 1998). Cairns and Pratt (1993) considered the role of the 
bioassay as a diagnostic tool for the restoration of desirable ecosystem conditions and 
as a predictive tool for preventing environmental impact.  

Much emphasis is being placed on rapid biological assessment, particularly using 
indices such as the Index of Biological Integrity (IBI, Karr, 1981), Ephemeroptera 
Plecoptera Trichoptera (EPT), Biological Monitoring Working Party (BMWP) 
(Hawkes, 1998), bentic IBI (Kerans and Karr, 1994), SIGNAL (Chessman, 2003), 
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AusRivAs (Simpson et al., 1997), and River Invertebrate Prediction And 
Classification Scheme (RIVPACS; Wright, 1995). 

Amongst aquatic animals that can be used in bioassessment, macroinvertebrates 
proved to be a superior indicator for the quality of freshwater streams (Rosenberg and 
Resh, 1993). Macroinvertebrates in streams have relatively long life cycle, exposing 
them to pollutants over a long period of time and integrating the effect of short-term 
pollution episodes. From the practical point of view they can be relatively easy 
sampled and identified. 

Freshwater macroinvertebrates are ubiquitous; even the most polluted or 
environmentally extreme stream habitats usually contain some representatives of this 
diverse and ecologically important group of organisms. Macroinvertebrates play 
important roles within the stream community as a fundamental link in the food web 
between organic matter resources (leaf litter, algae, detritus) and fish (Hynes, 1970; 
Allan, 1995).  

The responses of aquatic macroinvertebrate communities to environmental 
disturbances have been incorporated into methods of bioassessment and biotic indices 
for the bioassessment of aquatic ecosystems. Commonly observed responses to 
antropogenic stress include increased abundance of certain species on the one hand 
but general loss of diversity, especially when affected by pesticide load or organic 
enrichment (Cranton et al., 1996) on the other hand. However, the intermediate 
disturbance hypothesis, as modified for streams, predicts that the biotic diversity will 
be highest in communities subjected to intermediate levels of disturbance. At low 
levels of disturbance, competitive interactions will result in lower diversity because of 
exclusion of species. High disturbance also will result in lower diversity because of 
exclusion of poor colonists or long –lived species (Ward and Stanford, 1983). 

 
2.2 Facilitating the bioassessment of freshwater 
streams by computer modelling  
 
2.2.1 Prediction of stream conditions  
 
Stream modeling based on ecological knowledge and sufficient stream monitoring 
data can substantially facilitate and further improve assessment of stream habitats 
(Huong et al., 2001). This chapter provides an overview and comparison of different 
modeling methods and approaches available for the prediction of stream biota. 
  
2.2.1.1 Statistical approach 

Ecological research requires statistical analysis or even more complex numerical 
analysis to draw generalities and to detect and highlight patterns or trends in complex 
data set consisting of many variables. The most commonly used statistical methods 
are Analysis of Variances (ANOVA), multiple regression (MR), Discriminant 
Function Analysis (DFA) and time series analysis. They are all very powerful tools 
for developing predictive models and associating physical, chemical and biological 
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data together. However, these methods of statistical analysis often have stringent 
requirements of data, such as replicated collection of data, normal data distribution or 
high frequency of data collection.  

Some requirements are difficult to meet, so that simplified assumptions must be used 
to apply these methods. These assumptions and data requirements usually restrict the 
capability of statistical methods to cope with the non-linearity and complexity of 
water ecosystems. Statistical methods tend to minimize non-linearity in the processes. 
They are simple to implement if the relationships with variables are linear. If they are 
non-linear, transformation into linear becomes a major limitation of statistical 
methods in working with non-linear relationship of variables in the aquatic system 
(Lek et al., 1996; Paruelo et al., 1997).  

Modelling has been widely accepted as an interesting and powerful tool to support 
river quality assessment and management. The River Invertebrate Prediction and 
Classification System (RIVPACS) based on the statistical modelling was one of the 
first and the best known systems in this context. RIVPACS was developed to classify 
macroinvertebrate community types and to predict the fauna expected to occur in 
different types of watercourses, based on a small number of environmental variables. 
The statistical techniques used for RIVPACS are TWINSPAN classification of the 
reference sites based on their macroinvertebrate assemblages, followed by multiple 
discriminant analysis (MDA) of the resulting groups of sites using a limited number 
of environmental variables. Prediction of the fauna at a test site was achieved through 
MDA, leading to the calculation of probabilities of capture of individual taxa based on 
the prediction of group membership for the test site (Moss et al., 1987).  The 
prediction is essentially a static‘target’ of the fauna to be expected at a site with well 
defined environmental features, in the absence of environmental stress. 

In Australia, a similar predictive model called Australian River Assessment Scheme - 
AusRivAS was developed to use aquatic macroinvertebrates to assess the habitat 
condition of Australian rivers and streams (Schofield and Davies, 1996). AusRivAS 
models are based on RIVPACS, which also assess habitat conditions in a river by 
predicting the macroinvertebrate families expected to occur in the absence of 
environmental stress, such as pollution or habitat degradation (Coysh et al., 2000). 
Predictions are derived from a set of environmental measurements used to 
characterise the sites. A predicted macroinvertebrate assemblage is compared with the 
actual assemblage, and the ratio of observed/expected (O/E) families is used as a 
measure of ecological habitat conditions (Parsons and Norris, 1996; Marchant et al., 
1999; Smith et al., 1999). There are two major differences between AusRivAS and 
RIVPACS. Firstly, macroinvertebrates are only identified to the family level in 
AusRivAS. Secondly, major aquatic habitats (channel, riffle etc) are sampled and 
processed separately in AusRivAS (Smith et al., 1999). The rationale behind habitat – 
specific sampling is that each habitat has a distinct macroinvertebrate community and 
within a given region, differences among habitats are greater than differences between 
sites. Unless comparisons between sites are based on the same habitats, they may be 
confounded by the occurrence of different habitats at each site (Parson and Norris, 
1996). 

The modelling approach for AusRivAS was similar to that of RIVPACS. Model 
building occurred in five steps. First, reference sites were classified into groups with 
similar macroinvertebrate communities using an agglomerative hierarchical fusion 
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technique, Unweighted Pair-Group arithMetic Averaging (UPGMA). Second, once 
the optimal classification was chosen, stepwise discriminant function analysis (DFA) 
was used to identify which environmental variables discriminated best between 
groups in the classification. Third, the DISCRIM procedure in the SAS statistical 
package was used to incorporate predictor variables into a discriminant function and 
assign sites to groups identified in the classification. Fourth, the probability of each 
family occurring at each site was calculated by multiplying the probability of a site 
belonging to a classification group by the probability of the occurrence of family in 
that group and then summing the products to give the number of families expected 
(E). Fifth, using a preliminary model, O/E ratios of reference sites were calculated. 
The O/E score itself was used as a measure of impact at disturbed sites, with lower 
scores indicating greater disturbance (Simpson et al., 1997; Smith et al., 1999; Coysh 
et al., 2000).  

The AusRivAS model had been applied to study the effect of habitat- specific 
sampling on the biological stream assessment for the Australian Capital Territory 
(Parson and Norris, 1996), to classify macroinvertebrate communities across drainage 
basins in Victoria (Marchant et al., 1999), and to assess ecological conditions of rivers 
in Western Australia (Smith et al., 1999). Even though the applications achieved some 
valuable success, some constraints appeared to have caused confounded assessment of 
biological impairment. Although statistics can be used to validate metric choices and 
predictions while building multimetric indices, excessive dependence on the outcome 
of statistical tests can obscure meaningful biological patterns. A narrow focus on 
probability values (P-value) rather than on biological consequences limits the value of 
biological assessment. Dependence on narrow statistical approaches overlooks the 
fact that a statistically significant result (small P-value) may not indicate a large 
important effect, as researchers often assume; similarly, a statistically insignificant 
effect (large P- value) may well be of biological significance (Karr, 1999).  

An investigation of the RIVPACS classification based on statistical methods revealed 
that the composition of a few of the classification groups was less than optimal and 
could adversely affect the performance of parts of the prediction system (Wright et al, 
1991). Moreover, the RIVPACS and AusRivAS statistical approach may be more 
difficult to apply to sites where environmental conditions are extreme or highly 
unpredictable. As a consequence it may be difficult for statistical methods to cope 
with substantial year by year variations of the biota (Wright, 1995).  

These constraints are caused by the assumptions and limited implementation of 
statistical methods in dealing with the high non-linearity of stream data. As new 
computational techniques are becoming widely available, a number of alternative 
ordination and classification procedures are now being examined to determine 
whether a new procedure can deliver more reliable predictions (Wright, 1995).  

Chessman (1999) pointed out that classification in RIVPACS and AusRivAs is an 
unnecessary step that could be avoided. Where the invertebrate fauna shows a 
continuum of variation rather than a discrete occurrence of community types, the use 
of cluster analysis seems particularly dubious since the groups defined after cluster 
analysis will be artificial and rather arbitrary. Chessman (1999) also suggested that the 
use of abundance instead of taxa absence-presence might prove more useful where 
pollution results in reduced abundances rather than the total elimination of sensitive 
taxa. He proposed an alternative to the RIVPACS method that predicts abundance and 
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does not require site classificaiton. Macroinvertebrate indices generated by the new 
method showed a greater distinction between human-disturbed and undisturbed test 
sites, and a similar or higher degree of correlation with physical and chemical 
indicators of human disturbance.  

 
2.2.1.2 Artificial neural networks with supervised learning 
 

Modelling freshwater quality is extremely difficult, as the interrelations between 
various influences are not well known. Highly complex and heterogeneous nature of 
ecological data requires methods, which could overcome the limitations and 
inflexibility of statistical methods.  

ANNs are non-linear mapping structures based on the function of the human brain. 
They are considered universal and highly flexible approximators for any data and are 
powerful tools for ecological modelling, especially with high non-linearity occasions 
when the data relationships are unknown (Lek and Guegan, 2000). They do not 
require assumptions about mathematical relationships between state variables and the 
nature of the distribution of data. All neural networks have in common the ability to 
learn from data. ANNs can identify and learn correlations between input data and 
corresponding target values. After training, ANNs are able to predict the output of 
new independent input data.  

The natural neuron has four main structural elements: dendrites, synapses, cell body 
and axon (Figure 2.1). Dendrites receive the signals at the contact regions with other 
cells called synapses. Organelles in the body of the cell produce all the necessary 
chemicals for the continuous working of the neuron. The output signals are 
transmitted by the axon, of which each cell has at most one (Rojas, 1996).  

 

 

Figure 2.1. Scheme of the biological neuron (Rojas, 1996). 

 

An artificial neuron for computing will have input channels, a cell body and an output 
channel. In ANNs, the computational or processing element is called a neuron (node 
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or unit). Like a real neuron, the neuron in ANN has many inputs, but only a single 
output which can pass an information to other neurons in the network. Figure 2.2 
shows the structure of an abstract neuron with n inputs. Each input channel i can 
transmit a real value x. The function f computed in the body of the abstract neuron can 
be selected arbitrarily. Usually, the input channels have an associated weight, which 
means that the incoming information xi is multiplied by the corresponding weight wi. 
The transmitted information is integrated at the neuron (usually just by adding the 
different signals) and the function is then evaluated. 

 

Figure 2.2. Artificial neuron (Rojas, 1996). 

 

There are three basic attributes that characterize the models of Artificial Neural 
Networks: models of the processing elements (neurons), models of synaptic 
interconnections, and the training or learning rules for updating the connecting 
weights.  

Processing Elements 

The information processing of a PE consists of two parts: input and output. 
Associated with the input of a PE is an integration function f. The function combines 
information, activation, or evidence from an external source or other PEs into a net 
input to the PE. The simplest case is a linear function of the input xj to the PE: 

 

 

Where θi  is a certain threshold, wij represents the strength of the synapse connecting 
neuron j (source) to neuron i (destination). 

One of the most commonly used functions is hyperbolic tangent (tanh) function: 

tanh z = ez – e-z/ez + e-z  , 

where e is the base of the natural algorithm. 
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Connections 

 

Architecture defines the network’s structure, that is not only the number of processing 
elements but also their interconnectivity. Each PE is connected to other PEs or to 
itself; both delay and lag-free connections are allowed (Lin and Lee, 1996). There are 
five basic types of connection geometries. 

In the single-layer feedforward network, a PE is combined with other PEs to make a 
layer of these nodes. Inputs can be connected to these nodes with various weights, 
resulting in a series of outputs, one per node. Several layers can be interconnected to 
form multilayer feedforward network. Input layer receives inputs and typically 
performs no function other than buffering of the input signals. The outputs of the 
network are generated from the output layer. Any layer between the input and output 
layers is called a hidden layer because it is internal to the network and has no direct 
contact with the external environment. There may be no or several hidden layers in an 
ANN. The two mentioned types are feedforward networks because no PE output is an 
input to a node in the same layer or in a preceding layer. 

The outputs can be directed back as inputs to same- or preceding-layer nodes, in this 
case, the network is a feedback network. If PE output is directed back as input to PEs 
in the same layer, the network is lateral feedback. Feedback networks that have closed 
loops are called recurrent network. A single node with feedback to itself is the 
simplest recurrent neural network. 

In a single-layer network with a feedback connection PE output can be directed back 
to the PE itself, to other PEs, or to both. In a multilayer recurrent network, a PE output 
can be directed back to the nodes in the preceding layer. A PE output can be also 
directed back to the PE itself and to the other PEs in the same layer. 

 

Learning Rules 

 

ANNs may be broadly classified according to whether they learn in a supervised or 
unsupervised way (Bishop, 1995).  

Supervised learning denotes a method in which some input vectors are collected and 
presented to the network. The output computed by the network is observed as the 
deviation from the expected answer that is measured. The weights are corrected 
according to the magnitude of the error in the way defined by the learning algorithm. 
This kind of learning is also called learning with a teacher, since a control process 
knows the correct answer for the set of selected input vectors (Rojas, 1996).  

Unsupervised learning is used when the exact numerical output a network should 
produce is unknown. It is mostly used for classification or clustering problems.  

 



 11

Multilayer Perceptron  

 

The most common type of supervised learning is the back propagation algorithm 
(Rumelhart et al., 1986), mostly executed with multilayer feed-forward neuronal 
networks or multilayer perceptron (MLP). 

Backpropagation (BP) algorithm is preferred in ecological modelling, especially in 
water quality modelling. The architecture of the BP network is a layered feed forward 
neural network, in which the non-linear elements (neurons) are located in the hidden 
layer. The neurons feed a non-linear function by the sum of their inputs coming either 
from input nodes by feed forward or from output nodes by feedback. Neural networks 
determine the weighted connectance between the input and output nodes by these 
neurons (Recknagel et al., 1997; Recknagel et al., 1998; Lek et al., 1999). 

Backpropagation is an algorithm based on a relatively simple concept: if the network 
gives the wrong answer, then the weights are corrected so that the error lessens, so 
future reponses of the network are more likely to be correct (Lek et al, 2000).  The 
neurons in a backpropagation network are connected in layers, with units in layer k 
passing their activations only to neurons in the layer k+1. In solving a problem, 
activation passes from the input units, through one or more internal layers of neurons 
(hidden layer) and ultimately passes to the output layer and the environment. Figure 
2.3 shows the scheme of the multilayer perceptron used for prediction of stream 
macroinvertebrate taxa from environmental variables (Huong et al., 2001). 

A brief algorithm of backpropagation in neural networks is following (from Lek and 
Guegan, 1999): 
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Figure 2.3. Multilayer perceptron model for the prediction of stream 
macroinvertebrates from environmental variables (Huong et al., 2001). 

 

The error for a neuron in the layer directly below the output layer is a function of the 
errors on all the units that use its output. In general, the error for a neuron at layer n is 
a function of the errors of all neurons at layer n+1 that use its outputs. In a BP 
network, activation moves backward in a similar fashion (Luger and Stubblefield, 
1992). Once BP has computed the error for each neuron in the network, the individual 
units may learn by applying the delta rule, the amount of learning is represented as the 
difference (delta) between the desired and computed outputs.  

Application of predictive ANN in freshwater ecology 

In a review of computer-aided research in biodiversity, Edwards and Morse (1995) 
underlined that ANNs have an important potential. There have been a number of 
studies (Walley and Fontama, 1998; Schleiter et al., 1999; Chon et al., 2000) that 
showed that ANN performed better than more classical modelling methods. 

Walley and Fontama (1998) firstly reported a successful application of ANN in 
prediction of macroinvertebrate taxa in unpolluted river sites and compared with the 
performance of RIVPACS. The objectives of predictions were average score per 
taxon (ASPT) and number of families presents (NFAM). Models were based on the 
standard backpropagation networks. The results showed that the ASPT model 
achieved a significantly higher level of performance in independent test data than the 
NFAM model. Results of their study demonstrated the ability of ANN in training with 
values of biological indices and understanding the relationship between environmental 
variables and biotic indices that is often a very complicated and non-linear problem. It 
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was concluded from study that the neural networks performed marginally better than 
RIVPACS. They also discussed further improvement to the performance of neural 
network by extending the environmental data to include relevant catchment 
characteristics.  

Schleiter et al. (1999) went one step further to model the population dynamics of 
macroinvertebrates in German streams using ANN. They tested the suitability of 
ANN for system analysis and impact assessment: (1) in temporal dynamics of water 
quality; (2) in bioindication of chemical and hydromorphological properties using 
benthic macroinvertebrates; (3) and long-term population dynamics of aquatic insects. 
The satisfactory results of the study showed that ANN can meaningfully be used in 
the analysis of effect-relation of species, including the identification and assessment 
of complex impact factors, and also for forecasting system behaviour which have 
specific, very complex and non-linear features. However, they admitted that as ANNs 
learn from examples, their quality depends heavily on the representativeness and 
compatibility of the database.  

Chon et al. (2000a) applied Artificial Neural network to classify and predict 
multivariate stream data even in a short period using benthic communities. This study 
demonstrated that temporal ANNs could be utilized to forecast and analyze short-
period changes in multivariate data sets. The recurrent neural network appeared to be 
effective in patterning development of benthic communities in streams responding in 
a diverse manner to a wide range of pollution. The study also showed the advantage 
of specific forecasting for an individual taxon is that it could assist to characterise 
community changes. 

Pudmenzky et al. (1998) developed preliminary ANN models for predicting the 
distribution of macroinvertebrates in the Queensland stream system based on 
environmental variables. The network was trained with both categorical and 
continuous attribute input data. The ANN proved promising in predicting the taxa, 
which had the most even equal distribution of presence/absence (probability of 
occurrence around 0.5). As work had been done with a shareware version of the 
software package, only a subset of the data could be investigated. However, this is the 
first work done in applying ANN to biological assessment of habitat condition in 
Australia. Further research is highly recommended to investigate the possibility of 
ANN as computational alternative to AusRivAS in supporting bioassessment of 
habitat condition. 

Maier and Dandy (1996) used ANN as a viable means of forecasting salinity in the 
River Murray (South Australia) 14 days in advance. The results obtained had less than 
7% average absolute percentage error. It was concluded that, ANN models appear to 
be useful tool for forecasting salinity in rivers. 

Recknagel et al. (1997) applied ANNs to the task of modelling and prediction of algal 
blooms and to identification of the variables that play a major role in algal growth. In 
their study, major ecological factors of all chemical physical and biological 
categories, which could clearly define the environmental conditions of the aquatic 
system, were included as input variables and five dominating phytoplankton species 
were used as output variables. The resulting predictions on succession indicate the 
ability of ANNs to fit the complexity and non-linearity of complicated ecological 
phenomena. If an expanded database is available, not only a specific aim can be 
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investigated but also cost-benefit strategies for management can be addressed 
applying ANN to scenario and sensitivity analysis.  

ANN had been applied very successfully to eutrophication processes. Research has 
been done in Italy (Scardi, 1996), Japan (Yabukana et al., 1997), and Turkey (Karul et 
al., 2000). Models used physical and chemical parameters and also biological 
variables as inputs to predict the behaviour of chlorophyll – a  and other typical 
eutrophication indicator. The studies showed that nonlinear relationships in the 
eutrophication phenomenon could be modeled reasonably well. The ANN model can 
also estimate an extreme value that lies outside the boundaries of the training set. 
Conclusions were made that ANN models can be used to estimate the densities of 
certain species as functions of environmental parameters. 

Wen and Lee (1998) applied ANN to the problem of optimising water quality 
management in a river basin. Their study focused on the objectives of environmental 
quality, treatment cost of wastewater and the assimilative capacity of a river to 
provide a solution to water quality management problems. The results of their work 
show that using the backpropagation algorithm and feed forward neural network, a 
multi objective programming model can simulate the decision makers’ preferences 
and successfully overcome the disadvantages of unknown preferences of decision 
makers. 

Recknagel and Wilson (2000) discussed the potential of ANN models in working with 
aquatic ecosystems. They compared presentations of 6 prototypes of inductive and 
deductive models for phytoplankton including a regression model; time series model; 
deterministic models for functional algal group succession and algal population; 
heuristic model; and ANN. The result of comparisons showed that only ANN 
provides an ability to predict both timing and magnitudes of species dynamics and 
species succession in the lake. ANN models can support both prediction and 
elucidation of ecosystem behavior with the potential to provide new insight into 
mechanisms of systems from the results. 

Maier et al. (1998) used ANNs for modelling the incidence of cyanobacteria in rivers 
by forecasting the occurrence of a species group of Anabaena in the River Murray, 
Australia. ANNs provided a good forecast of both the incidence and magnitude of a 
growth peak of cyanobacteria within the limit required for water quality monitoring. 
The models also defined predominant variables in determining the onset and duration 
of cyanobacteria growth. 

Lek-Ang et al. (1999) developed predictive modelling of Collembolan diversity and 
abundance on a riparian microhabitat scale. Biological variables that were retained to 
describe its structure in this model included abundance of dominant species, species 
richness and biological indices. In the input layer, the main environmental variables 
were considered. 80% samples were chosen randomly for the training process and the 
remaining 20% were used for model validation. The resulting habitat profiles 
illustrated the complex influence of each variable on the biological parameters of the 
assemblage and also the non-linear relationship between dependent and independent 
variables. The study gave satisfactory results over practically the whole range of 
values of dependent variables, which showed ANNs potential to predict biodiversity 
and structural characteristics of species assemblages. 
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Gozlan et al (1999) applied ANN with the aim to predict the abundance of six fish 
species in the river Garonne with back propagation as learning algorithm. The ANN 
was successful in predicting the abundance of 0+ fishes on a microhabitat scale, 
indicating that technique merits more frequent use in ecology and biodiversity studies. 
The explanatory part of the analysis, coupled with the predictive power of ANN, 
should facilitate the ecologically oriented management of aquatic ecosystems, 
providing that the duration of the study is extended.  

 

Interpreting variable importance and Sensitivity analysis 

 

Although a number of studies shown ANNs having higher predictive power compared 
to traditional statistical approaches, neural networks often called ‘black boxes’ 
because it is difficult to extract explanation of the relative influence of the 
independent variables in the prediction process. Fortunately, recent studies have 
provided a variety of methods for quantifying and interpreting the contributions of the 
variables in the neural networks (Olden and Jackson, 2002; Gevrey et al., 2003; Olden 
et al., 2004).  

A variety of methods are available for the estimation of the contribution of predictor 
variables in relationship to the output. For example, Partial Derivative method (PaD) 
provides a profile of the output variations for small changes of each input variable and 
classification of the relative contributions of each variable to the network output. 
‘Stepwise’ method is based on the classical stepwise approach that consists of adding 
or rejecting step by step one input variable and noting the effect on the output results 
(Gevrey et al., 2003). ‘Profile’ method proposed by Lek (Lek et al., 1995) studies 
each input variable successively when the others are blocked at fixed values. In the 
neural network, the connection weights between neurons are the linkages between the 
input and the output of the network, and therefore are the link between the problem 
and the solution (Olden and Jackson, 2002). Garson algorithm or ‘Weights’ method 
includes partitioning the connection weights to determine the relative importance of 
the various inputs.  

Even though a variety of methods are available in order to make ‘black-box’ ANN 
more transparent, the ‘Profile’ method is the most relevant for the ecological 
applications as it is the only technique that provides two elements of information on 
the contribution of the variables (Dedecker et al. in press). On the other hand this 
method presented the order of contribution of the different environmental variables, 
on the other hand gave direct interpretation of the effect of river characteristics on the 
abundance or occurrence of particular taxa by plotting the simulated output against 
changes in the particular variable. The other methods are merely able to classify the 
variables by order of their importance, in other words, to reveal their contribution to 
the output. In spite of their different ways of computation, difference in sensitivity and 
stability of the methods were rather small (Gevrey et al., 2003; Dedecker et al., in 
press). 
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Scenario analysis 

Scenario planning is a systematic method for thinking creatively about possible 
complex and uncertain futures (Peterson et al., 2003). The central idea of scenario 
planning is to consider a variety of possible futures that include many of the important 
uncertainties in the system rather than to focus on the accurate prediction of single 
outcome. In many ecological situations uncertainty is substantial and irreducible and 
arises from the problems of ecological predictions. Scenarios describe futures that 
could be rather than futures that will be. A set of scenarios should usefully expand and 
challenge current thinking about the system (Peterson et al., 2003).  

‘Dirty-water’ models, which include variables potentially affected by the human 
activity can be used for the scenario analysis. Accuracy and flexibility of the neural 
networks makes them extremely attractive tool for the simulation of the potential 
futures. I am aware of only few studies involving scenario analysis with ANNs in the 
relationship to freshwater ecology.  

Poff et al. (1996) used an artificial neural network to evaluate the hydrological 
responses of two streams in the northeastern US having different hydroclimatologies 
to hypothetical changes in precipitation and thermal regimes associated with climate 
change. Four scenarios of climate change were used to evaluate stream response to 
climate change: +25% precipitation, -25% precipitation, 2x the coefficient of variation 
in precipitation regime and +3C temperature. Responses were expressed in 
hydrological terms of ecological relevance, including flow variability, baseflow 
conditions, and frequency and predictability of floods. ANN were used to generate 
synthetic daily hydrograph with high goodness of fit (r2 >0.8). Increased average 
precipitation induced elevated runoff and more frequent high flow events, while 
decreasing precipitation had the opposite effect. Elevated temperatures reduced 
average runoff. In general, the rainfall-dominated stream exhibited greater relative 
response to climate change scenarios than did the snowmelt stream. The fact that 
ANN does not rely on mechanistic response can be however viewed as advantage 
because it does not require that assumptions be made about specific indirect effects 
that may result from scenarios of climate change. Because this technique is not 
mechanistic it does not require extensive parameter estimation – a modeling process 
that may result in large propagation of errors. 

The limitation of the ANN models (in comparison with process-based or deterministic 
models) is that their expertise is limited by the data available for training, thus 
simulation of scenarios using data range beyond the models’ range as extreme events 
can be difficult. However, it is possible to add virtual datasets based on the expert 
opinion in order to be able to simulate response of the biota to ‘extreme’ events. For 
example, Dedecker et al. (in press) built and trained MLP model using presence 
absence data, collected over 2 years in Zwalm river basin in Flanders, Belgium.  
Fifteen structural, physical and chemical environmental variables were used as 
predictors. Model training methodologies were elaborated to generate appropriate 
models to simulate ‘extreme’ scenarios concerning flow control and water quality 
management. A virtual data set based on ecological expert knowledge was created to 
introduce ‘extreme’ value to the model. The obtained results indicated that the 
presence/absence of Asellidae in the ‘extreme’ validation set was predicted 
significantly better when the number of extreme examples in the training set 
increased. However, the overall predictive power of the ANN models decreased when 
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a relatively large virtual data set were applied. Three case studies have shown that 
ANN models are in general quite robust with a rather high predictive reliability. The 
reliability of the models has to be assessed via simulations made by ecological experts 
who can deliver knowledge that is often not included in the database used for the 
model induction. 

 
2.2.2 Ordination and clustering of stream conditions  
 

People wish to know how human activity influences the fascinating diversity of 
biological communities. Yet this very diversity creates problems for the statistical 
analysis of ecological observations: it implies a large number of species and a large 
inherent variability. A set of community samples and associated environmental 
measurements typically yields an enormous amount of noisy data, which is difficult to 
interpret (terBraak and Verdonschot, 1995). In order to find a solutions when dealing 
with this kind of data, ecologists have employed a number of methods of multivariate 
analysis including, clustering and ordination (Gauch, 1989) and newer techniques 
such as artificial neural networks (Legendre and Legendre, 1998). 

Understanding patterns in communities within ecosystem is a first necessary step 
towards effective management of the ecosystem. Development of methods for 
patterning spatial and temporal changes in biological communities has been an 
important issue in ecosystem management. Traditionally, a variety of multivariate 
statistical methods have been used for patterning biological communities. In the 
context of this chapter we will consider the most commonly used statistical methods 
such as Principle Component Analysis and Canonical Correspondence Analysis and 
neural based Self Organising Maps.  

 
2.2.2.1 Multivariate statistical approach 
 

Data for the complete assemblages involving the abundances of all component species 
can contain as many dimensions to these data as there are species of sites (Gauch, 
1989). Such a large number of dimensions are almost impossible for the human mind 
to comprehend. A reduction of dimensionality sometimes is necessary in order to 
conduct further data analysis and modeling. Unconstrained ordination is a tool 
commonly employed to examine data structure and to reduce the dimensionality. 
Principle Component Analysis (PCA) and Correspondence Analysis (CA) are both 
commonly used eigen based ordination methods.  

A non-zero vector C is called an eigenvector of a square matrix A if and only if 
there exists a number (real or complex) λ such that AC= λ C.  If such a number λ 
exists, it is called an eigenvalue of A (http://www.sosmath.com).  

Both PCA and CA perform an eigen analysis on a matrix of distances, with distance 
being the spatial distance between the objects (sites) in ordination space.  PCA the 
oldest ordination method, uses Euclidean distance in the analysis, while CA uses Chi-
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Squared distance (Legendre and Legendre, 1998). As a result the biplot of an 
ordination of either PCA or CA preserves the respective distance among the sites or 
species.  

The arch and horseshoe effects relate to a commonly seen property in biplots created 
from PCA and CA. They refer to the representation of sites along an arch or 
horseshoe shape, which misconstrues the distance among sites. These effects result 
because each axis in the ordination may not be independent from that preceding it. 
That is, the axes are correlated in some way (Legendre and Legendre, 1998). This can 
lead to incorrect interpretation of the biplot and should be kept in mind when using 
these techniques.  

An alternative to eigen analysis based approaches is Non-Metric Multidimensional 
Scaling (NMDS). Where PCA and CA perform the eigen analyses on a matrix of 
distance in ordination space, NMDS performs the analyses directly on a matrix of 
ecological dissimilarity (Gauch, 1989). Considering the rank order of dissimilarities 
among variables (species) avoids the assumption of linearity and replaces it with the 
less constraining assumption of monotonicity, where the relationship is assumed to 
either increase or decrease with no consideration of the nature of this relationship (i.e. 
there is no constraint on whether this relationship is linear, logarithmic or 
exponential)(Digby and Kemptop, 1987; Gauch, 1989). 

In the methods considered so far, the distribution of biota is not directly related to the 
environmental conditions, rather, the gradients in distribution of biota can be later 
related to environmental variables (Okland, 1996). Recently, there has been an 
increasing trend to move from using multivariate techniques only for pattern 
recognition to identifying relationships between the assemblage and its environment 
(De’ath, 2002).  

Canonical Correspondence Analysis (CCA) is a constrained ordination method that 
combines the multivariate setting of CA and multiple regression. CCA maximises the 
fit of sites and /or species to a set of environmental (explanatory) variables.  

Each species occurrence is confined to a limited range, its niche. Species tend to 
separate their niches, partly so to minimise the competition. If the separation is strong, 
successive species replacements occur along the environmental gradient. The 
composition of biotic communities thus changes along the environmental gradient 
according to unimodal function. Some species may prefer extreme environmental 
conditions or their optima may fall outside the environmental region actually sampled 
in a particular study so that their observed response function is not unimodal but 
monotonic decreasing or increasing. CCA extracts the “best” synthetic gradients from 
field data on biological communities and environmental features: it forms a linear 
combination of environmental variables that maximally separates the niches of the 
species. Niche separation is expressed as weighted variance of species centroids on a 
standardized gradient, the species centroids being the weighted average of gradient 
values of the sites at which the species occurs. The first synthetic gradient is termed 
the first ordination axis. The achieved maximum amount of niche separation is given 
by the eigenvalue of the ordination axis. Subsequent ordination axes are also linear 
combinations of the environmental variables that maximally separate the niches, but 
subject to the constraint that there are uncorrelated with the axis or axes extracted 
previously (terBraak and Verdonshot, 1995).  
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The primary result of a CCA is an ordination diagram, i.e. a graph with a coordinate 
system formed by ordination axes. The coordinates of the site points are the values 
(termed scores) of the sites on the two best synthetic gradients. Each species point in 
the diagram is at the centroid (weighted average) of the site points in which it occurs. 
The species points thus indicate the relative location of the two-dimensional niches of 
the species in the ordination diagram. The arrow for a quantitative variable runs from 
the origin (center) of the diagram to an arrowhead, the coordinates of which are the 
correlations of the variable with the axes. The arrow points in the direction of 
maximum change in variable and the arrow length is proportional to the maximum 
rate of change. In the perpendicular direction the variable does not change in value. 
Informally, the length of an environmental arrow indicates the importance of the 
variable (terBraak and Verdonshot, 1995).  

Each eigenvalue of CCA can be converted to a percentage variance accounted for by 
dividing the eigenvalue (x100) by the total inertia of the abundance data, inertial 
being a measure of weighted variance that is closely related to the chi-square statistic. 
For ecological data the percentage explained inertia is typically low (<10%). This is 
nothing to worry about, it is an inherent feature of data with a strong presence-absence 
aspect (terBraak and Verdonshot, 1995). 

Decision criteria include the magnitude of the eigenvalues themselves (as a rule of 
thumb, eigenvalues >0.3 indicate strong gradients), the statistical significance as 
judged by Monte Carlo permutation tests and, even more importantly the ecological 
interpretability (terBraak and Verdonshot, 1995).  

Partial CCA 

Often it may be known that certain environmental factors dominate the composition 
of a species assemblage. In this case it may be of interest to consider the effect of 
other environmental variables having removed the effect of this overarching 
environmental factor or factors (terBraak and Verdonshot, 1995).This is done through 
partial CCA. Partial CCA removes the effect of one set of explanatory variables, 
covariables, before conducting standard CCA on the residual variation using another 
set of explanatory variables (Legendre and Legendre, 1998). It is an extremely useful 
tool, which allows the user to identify important environmental variables that may be 
hidden by dominant environmental gradients. Further, it has been adapted by 
ecologists to identify spatial and temporal dependencies that exist in a multivariate 
dataset (Borcard et al., 1992).  

Partial CCA has been widely used throughout the ecological literature since its 
introduction across a wide range of taxa including benthic macroinvertebrates in the 
littoral zone of lakes (Johnson and Goedkoop, 2002), the macroibenthos in estuaries 
(Ysebaert et al., 2003), as well as freshwater fish (Godinho et al., 2000). 

 
2.2.2.2 Artificial neural networks with unsupervised learning: Self 
Organising Maps 
 

Even though, very useful and widely applied for a number of ecological studies, 
statistical methods as PCA and CCA still capable of describing linear relationships 
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only and require the data meeting the assumption of the normal distribution. The 
models based on unsupervised learning methodology, particularly Kohonen Self-
Organising Maps (Kohonen, 1995) recently have become widely used tool for 
clustering multivariate biological data as they allow to overcome limitations of 
statistical methods and allow the analysis of data containing complex non-linear 
relationships (Lek et al., 2000).  

SOM identifies patterns in data, clusters them into a predefined number of classes, 
and orders the classes in a two-dimensional output space such that near neighbors in 
data space are near neighbors in output space. Clustering and ordering are integrated 
into one process using a similarity metric based on Euclidean distances and a 
neighborhood function which ensures that near neighbors in the output space 
represent similar patterns (Walley and O’Connor, 2001).  

This method allows to group objects together on the basis of their perceived closeness 
in n-dimensional hyperspace. The Kohonen network includes two types of units: an 
input layer and an output layer (Figure 2.4). The input unit is simply a flow-through 
layer for the input vectors (Lek et al., 2000). In the output layer the model typically 
consists of a two-dimensional network of neurons arranged on a grid laid out in a 
lattice. Lattice could be  

 
 

Figure 2.4. Structure of the Kohonen's network (Chon et al., 1996). 

 

different geometrical form but hexagonal is usually preferred as it does not favor 
horizontal or vertical directions. Each neuron is connected to its nearest neighbors on 
the grid. The neurons store sets of weights. For an input x, each neuron j (weight: wj) 
calculates its activation level, defined as: 

||wj – x||=    (wij-xi)2 

which is the Euclidean distance between the points represented by the weight vector 
and the input in n-dimensional space. A node whose weight vector closely matches 
the input vector will have a small activation level, and a node whose weight vector is 
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very different from the input vector will have a large activation level. The node in the 
network with the smallest activation level is deemed to be the winner for the current 
input vector.  

The winning node and some the node around it then allowed adjusting their weight 
vectors to match the current input vector more closely. The units allowed to adjust 
their weights, are called neighborhood of the winner. The size of the neighborhood is 
decreased linearly after each training epoch, until it includes only the winner itself. 
Input patterns, which allow the same node to win are then judged to be in the same 
cell on the final map output (Lek et al., 2000).  

A brief algorithm of SOM is following (from Lek and Guegan, 1999): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Aside from convenient visualisation and ability to deal with non-linearities SOM is 
attractive for biologists by its way of working with missing data and outliers. 
Statistical methods like PCA are particularly sensitive to these two problems and 
input data often has to be pruned before processing. SOM discards data with too many 
missing components during the training process and then maps it on the finished map. 
When outliers are present, SOM positions each in its place in one unit of the map, and 
only the weights of that neuron and its nearest neighbors are affected. There is no 
effect on the other neurons and outliers are easily detected in by observation of 
scattered data in an area of the map (Lek et al., 2000). 



 23

The analysis using visualization of component planes is comparable to PCA, but more 
directly describes the discriminatory power of the input variables in the mapping 
procedure (Kohonen, 2001). A clear distribution gradient of a variable represents a 
high contribution to the classification of input vectors. When there are strong 
relationships between input and output variables, the component planes show clear 
gradients and similar patterns of their distribution on the trained SOM map. 
According to the distribution gradients of the environmental variables on the SOM 
map, influence of environmental variables on the classification of the sampling sites 
as well on biotic variables as diversity indices could be assessed effectively (Park et 
al., 2003).  

Applications of SOM in freshwater ecology 

In the last couple of years SOMs were extensively used for finding patterns and 
classification of ecological communities. SOMs were successfully applied to the 
genetic analysis of French trout population (Giraudel et al., 2000) in order to separate 
wild trout from domestic (born in hatcheries). Kohonen’s map with Fuzzy Clustering 
Algorithm showed superior results in comparison with ANN based on supervised 
learning.  

Walley and O’Connor (2001) have built a river pollution diagnostic system based on 
non-neural algorithm inspired by SOM, which is presently being tested by 
Environmental Protection Agency. It based on existing information on occurrence and 
abundance of macroinvertebrate taxa in England and Wales organised in 250 color 
coded clusters. The clusters have been arranged to form a hexagonal output ‘map’ 
such that clusters that are close together represent similar sets of river samples. 

The user could see all the available information on cluster by clicking on it. The 
report provides information on classes, stress types, site characteristics, water 
chemistry averages, etc for the samples in the cluster. A list of reference numbers for 
the samples within the cluster is given at the bottom of the screen. Information on new 
sites could be loaded from file or manually, each new site will be allocated to the 
existing cluster. The system is also linked to GIS, which allows users easily to see the 
location of the site considered.  

Spatial analysis of stream invertebrate distribution in the drainage basin had been 
studied (Cereghino et al., 2000). The study provided a stream classification based on 
characteristic EPTC (Ephemeroptera, Plecoptera, Trichoptera, Coleoptera) insect 
assemblages at species level. The main interest of their results is that the stability of 
these theoretical assemblages may be used to refine representative and/or reference 
sites for biological surveillance, as a change in species composition within a given 
region can be considered as a biological indicator of environmental changes. 

Obach et al. (2001) used SOM for visualisation of data, outliers detection, hypothesis 
generation and detection basic pattern in annual abundance of aquatic insects in small 
stream in central Germany. Species groups with similar ecological requirements were 
distinguished. Furthermore, they applied radial basic function neural networks 
combined with a SOM (RBFSOM) and successfully predicted the annual abundance 
of selected species from environmental variables.  



 24

Park et al. (2001) applied SOM for patterning and prediction of exergy (single 
measurement to express the information level of communities) of benthic 
macroinvertebrate communities in streams. The trained mapping was able to 
characterize the development trend of exergy at different groups of sample sites in 
different time period. Park et al (2003) implemented SOM as a part of 
counterpropagation neural network (CPN) in order to pattern aquatic 
macroinvertebrate communities. Sampling sites were classified into 5 groups 
relatively the pollution status and habitat type using 34 environmental variables, 
Specie Richness of macroinvertebrates and Shannon diversity. They also used 
component planes to visualize environmental variables and diversity indices and 
evaluate the relationships between variables.  

Chon et al. (2001) used SOM in combination with Adaptive Resonance Theory 
network (ART) for analysis of patterns of temporal variation in community dynamics 
of benthic macroinvertebrates collected in the Suyong River in Korea. The sampled 
data for each month was initially trained by ART, the weights of which preserved 
conformational characteristics among communities during the process of the training. 
Subsequently these weights were rearranged sequentially from 2 to 5 months, and 
were provided as input to the Kohonen network to reveal temporal variations in 
communities. The network was then able to extract the features of community 
dynamics in a reduced dimension covering the specified input period. Authors 
concluded that neural networks can be successfully used for comprehensive 
understanding of data features in community dynamics in the spatio-temporal domain.  

Some other machine learning methods 

Genetic algorithm (GA) 

Genetic algorithms are a part of evolutionary computing, which is a rapidly growing 
area of artificial intelligence. The Genetic Algorithm is a model of machine learning, 
which derives its behavior from a metaphor of the processes of evolution in nature. 
This is done by the creation within a machine algorithm of a population of individuals 
represented by chromosomes, in essence a set of character strings that are analogous 
to the base-4 chromosomes that we see in our own DNA. The individuals in the 
population then go through a process of evolution. 

First, pairs of individuals of the current population are selected to mate with each 
other to form an offspring, which then form the next generation. Selection is based on 
the survival-of-the-fittest strategy, but the key idea is to select the better individuals of 
the populations, as in tournament selection where the participants compete with each 
other to remain in the population (Jain and Martin, 1999). The most commonly used 
strategy to select pairs of individuals is the method of roulette-wheel selection, in 
which every string is assigned a slot in simulated wheel sized in proportion to the 
string’s relative fitness. This ensures that highly fit strings have a greater probability 
to be selected to form the next generation through crossover and mutation. After 
selection of the pairs of parent strings, the crossover operator which involves the 
swapping of genetic material between the pairs is applied to each of these pairs. The 
two individuals (children) resulting from each crossover will be subjected to the 
mutation operator in the final step to forming the new generation. The mutation 
operator alters one or more bit values at randomly selected locations in randomly 
selected strings. Mutation takes place with a certain probability, which, in accordance 
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with its biological equivalent, typically occurs with a very low probability. The 
mutation operator enhances the ability of GA to find a near optimal solution to a given 
problem by maintaining a sufficient level of genetic variety in the population, which 
is needed to make sure that the entire solution space is used in the search for the best 
solution (Jain and Martin, 1999).   

Idea of evolutionary computing was introduced in the 1960s by I. Rechenberg (cited 
by Jain and Martin, 1999) in his work "Evolution strategies" (Evolutionsstrategie in 
original). His idea was then developed by other researchers. Genetic Algorithms 
(GAs) were invented by John Holland and developed by him and his students and 
colleagues. This lead to Holland's book "Adaptation in Natural and Artificial 
Systems" published in 1975 (Jain and Martin, 1999).  

In 1992 John Koza has used genetic algorithm to evolve programs to perform certain 
tasks. He called his method "genetic programming" (GP). LISP programs were used, 
because programs in this language can be expressed in the form of a "parse tree", 
which is the object the GA works on (Jain and Martin, 1999). 

Genetic algorithms are used for a number of different application areas. They are most 
appropriate for optimization type problems and have been applied successfully in a 
number of automation applications including job shop scheduling, proportional 
integral derivative (PID) control loops, and the automated design of fuzzy logic 
controllers and ANNs.  

As a relatively new application GA was used for ecological research in very few 
cases. Bobbin and Recknagel (2001) applied it to the construction of rule-based model 
for the prediction and explanation of algal blooms in the Japanese Lake Kasumigaura. 
Different models have been evolved for two common groups of blue-green algae. The 
models show that there is a difference in the environmental preferences of the two 
groups, and that this difference could be learned. Learned patterns are represented 
explicitly as classification rules, which allow their underlying hypothesis to be 
examined.  

Whigham (2000) has applied genetic programming for induction of spatial models for 
the prediction of habitat types and population distribution of Australian greater glider.  

d'Heygere et al. (2001) applied evolutionary algorithms to select input variable 
combinations of classification tree models predicting benthic macroinvertebrate 
communities in watercourses of Flanders (Belgium). Different sets of input variables 
result in different CCIs and a manual selection of the most convenient model based on 
trial and error is very labour intensive. Selection of variables by genetic algorithm 
eased the choice of input variable combinations of the classification tree models 
drastically.  

Both ANNs and evolutionary algorithm are novel approaches and there has not been 
many comparisons of their performance and applicability to particular ecological 
problems. Recknagel et al. (2002) compared potentials and achievements or artificial 
neural networks and genetic algorithms in terms of forecasting and understanding of 
algal blooms in Lake Kasumigaura (Japan). Examples presented in this paper showed 
that models explicitly synthesized by genetic algorithms not only perform better in 
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seven-day-ahead prediction of algal blooms than artificial neural networks models, 
but provide more transparency for explanation as well.  

 
2.3 Comparison of ANN with other methods 
 

Maier and Dandy (1996) compared ANNs to statistical ARMA (Auto Regressive 
Moving Average) class of models widely used for modeling water resources time 
series in terms of advantages and disadvantages. They found that ANNs are more 
flexible in working with complex non-linear system and in providing long term 
forecasting. Similar comparisons between ANNs and other classes of statistical 
modeling provided by Lek et al. (1996) and Paruelo and Tomasel (1997) also 
emphasized the flexibility of ANNs. 

Ball et al. (2000) compared performance of ANNs with a range of statistical methods 
like Linear Regression, Multiple Regression, Principle Component Analysis and 
Combination of PCA with Least Squares Regression (LSR). It was shown that ANN 
models produced the best performance. The conventional statistical techniques 
produced a poor performance when modeling the data and were unable to produce 
accurate prediction on unseen data. The best non-ANN method of modeling was 
achieved by combining PCA with LSR. Jeong and Joo (submitted) have also 
compared Multiple Linear Regression and MLP for the prediction of phytoplankton 
dynamic in a regulated Nakdong River. MLP model has shown higher time-series 
predictability than Multiple Linear Regression model.  

Brosse et al. (2001) made a comparison between PCA (Principle Component 
Analysis) and Kohonen networks capabilities to analyze the spatial occupancy of 
several European freshwater fish species in the littoral zone of a large French lake. 
Both methods provided insight on the major trends in fish spatial occupancy. 
However, a more detailed analysis showed that only SOM was able to reliably 
visualize the entire fish assemblage in two-dimensional space, when PCA provided 
irrelevant ecological information for some species. These drawbacks were afforded to 
data heterogeneity, scarce species being poorly represented on the PCA plane. The 
author concluded that SOM constitute a more reliable data representation method than 
PCA when complex ecological data sets are used.  

Giraudel and Lek (2001) compared performance of SOM with that of some statistical 
methods like Polar Ordination, Principle Component Analysis, Correspondence 
analysis and Non-metric multidimensional scaling. It has been pointed that 
comparison of SOM and statistical method is not easy when non-linear algebra is 
involved in the computation, formal proofs are almost impossible and an experimental 
approach is the only way. SOM doesn't have problems like horseshoe effect (PCA) or 
arc effect (CoA), although it is not possible to control the direction of the gradients 
with SOM. As advantage, new samples can be added on the Kohonen's map without 
affecting the ordination. For each statistical ordination method, the distance or the 
similarity distance have to be chosen, unlike almost all conventional methods, SOM 
allows a large choice, requiring an adaptation of the learning equation. Authors 
concluded that SOM seems fully usable in ecology, it can perfectly complete classical 
techniques for exploring data and for achieving community ordination. SOMs provide 
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a visual way to find structures in ecological communities and can be recommended to 
be used in an exploratory approach in which unexpected structures might be found.  

Chon et al. (1996) applied SOM to clustering and patternizing benthic 
macroinvertebrates collected in the Korean river Suyong. The grouping resulting from 
learning by the Kohonen network was comparable to the classification by 
conventional clustering methods. Through patternizing, the network showed a 
possibility of producing easily comprehensible low dimensional maps under the total 
configuration of community groups in a target ecosystem. Changes in spatio-temporal 
community patterns may also be traced through the recognition process. 

Paruelo and Tomasel (1997) compared results of prediction of functional 
characteristics of ecosystems by ANN and regression models. They tested the 
predictive power of ANNs and RMs using simulated data for six functional traits 
derived from the seasonal course of the normalized difference vegetation index 
(NDVI). For the six traits analyzed, the ANNs were able to make better predictions 
than RMs. The correlation between observed and predicted values of each of the six 
traits considered was higher for ANNs than for PMs. ANNs showed clear advantages 
to capture inertial effects. The ANN used was able to use previous year information 
on climate to estimate current year NDVI much better than the RM that used the same 
input information.  

Huong et al. (2001) compared performance of multi-layered perceptron models for 37 
macroinvertebrate taxa based on 896 stream data sets from the Queensland stream 
system with that of AusRivAs. The ANN model validation by means of 167 
independent data sets revealed 73% as lowest rate and 82% as average rate of correct 
ANN predictions of stream site habitats. The increase of correct predictions was 30%, 
if ANNs and the statistical stream model AusRivAS were compared based on the 
same data sets.  

Olden and Jackson (2002) provided a comprehensive comparison of traditional and 
alternative techniques for predicting species distributions using logistic regression 
analysis, linear discriminant analysis, classification trees and artificial neural networks 
to model: 1) the presence/absence of 27 fish species as a function of habitat conditions 
in 286 temperate lakes located in south-central Ontario, Canada and 2) simulated data 
sets exhibiting deterministic, linear and non-linear species response curves. On 
average, neural networks outperformed the other modelling approaches, although all 
approaches predicted species presence/absence with moderate to excellent success. 
When simulated non-linear data was used classification trees and neural networks 
greatly outperformed traditional approaches, whereas all approaches exhibited similar 
correct classification rates when modelling simulated linear data.  

The only case where ANN did not outperformed statistical models was reported by 
Manel et al. (1999). The authors assessed the occurrence of a common river bird, the 
Plumbeous Redstart Rhyacornis fuliginosus, along 180 independent streams in the 
Indian and Nepali Himalaya. They compared the performance of multiple 
discriminant analysis (MDA), logistic regression (LR) and artificial neural network 
(ANN) in predicting this species presence or absence from 32 environmental 
variables. Model performance was assessed from two methods of data partitioning. In 
'leave-one-out' approach, LR correctly predicted more cases (82%) than MDA (73%) 
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or ANN (69%). It was concluded that ANN does not yet have major advantages over 
conventional multivariate methods for assessing bird distribution.  

The number of studies which reported better performance of ANNs in comparison 
with traditional statistical methods is surprising taking into consideration that 
performance of neural network could be confounded by a number of factors. ANN 
models are highly dependent on quality of data used for learning. Choice of the model 
configuration, transfer function, number of processing element, connections and 
learning rules can also significantly affect its performance.  ANNs have shown a great 
potential to become a highly reliable modelling tool for the ecological and 
environmental research, however, in order to be able to use ANNs' full capability 
ecologists need to understand the main principles of their organisation and 
performance.  

 
2.4 Aims and hypotheses of the thesis 
 

This study was aimed to address the main questions faced by practicing 
environmental biologists when attempting to analyze, assess and predict conditions of 
freshwater biota in Australia. This thesis does not go deep into many technical issues 
relating to the architecture and optimization of ANNs, but instead addresses the 
potential and applicability of various ANNs to the practical ecological problems as 
natural variability versus changes due to the anthropogenic impact, assessment and 
prediction of the changes in stream biota in response to changes in environmental 
variables, trade-off between complexity and accuracy of the predictive model, etc.  

I intentionally utilized the most commonly used and easily understandable types of 
the neural networks which performances have widely been estimated, namely Multy-
Layered Perceptron and Self Organising Maps in order for my research to be 
accessible and easy understandable for not only ecological modelers but for as many 
practicing ecologist as possible. When designing my research I aimed for the 
ecological relevance and practicality first, and then for the technical accuracy and 
robustness. My primary goal was to illustrate the applicability and flexibility of ANN 
using the widest variety of ecological problems practically possible for me to consider 
in the duration of my candidature. In particular I addressed the following questions: 

• Huong et al. (2002) studied the applicability of ANN models for Queensland 
Streams. Are these models based on the referential approach applicable to the 
other geographical regions of Australia? Does the accuracy of the predictions 
depend on the rarity of taxa? 

• Is it possible to directly predict taxonomic richness of freshwater biota using 
‘dirty-water’ models? 

• What is the potential of SOM to provide an explanation into the natural 
variability in macroinvertebrate communities? 

• What is the potential of SOM for the understanding of the relationship 
between abiotic and biotic variables? 
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• What is the potential of combining two different types of ANNs as MLP and 
SOM: is it possible to predict SOM defined clusters using MLP? 

• What is the potential of combining SOM with statistical techniques as CCA: is 
it possible to provide an additional insight and more convenient visualization 
of the relationships between trophic structure of macroinvertebrate 
communities and water quality variables using combination of these methods? 

• What is the potential of application of SOM to the outputs of predictive 
models in order to provide clearer understanding of resulting patterns? 

• How predictable and stable the results of sensitivity analysis when applied to 
the real ecological data? 

• What is the potential of sensitivity analysis for the determination of sensitivity 
of macroinvertebrate taxa to the salinity of water? 

• Can predictive ANNs be used for the simulation of the effect of secondary 
salinisation on macroinvertebrate communities using the real data? 

•  How does the accuracy of the model relate to the number of predictor 
variables?  

• Which predictive models are more accurate: generic or local?  

• To what extent does the temporal variability affect the accuracy of predictive 
models?  

• To what extent the variability between habitats affects the accuracy of 
predictive models? 
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Chapter 3 
 
Material and Methods  
 
 

This chapter provides a general overview of the data and methods, however, specific 
data sets and modelling approach used for each case study are described in each 
relevant chapter.  

 
3.1 Data  
 

Queensland (QLD) data 

The main dataset used for the current study was provided by the Queensland 
Department of Natural Resources and Mines (NR&M). The dataset contains 
information about habitat characteristics of 896 reference and 1159 test sites, 5416 
samples in total (Figure 3.1). Reference sites are those considered to be in a near 
pristine conditions (see Conrick and Cockayne, 2000). The data was collected in 
spring and autumn from 1994 to 2002 at 5 different habitats: riffle, edge, rocky pools, 
sandy bottom and macrophytes. I used riffle and edge habitats subsets for most of the 
case studies. Riffle subset contains 1333 samples and edge subset 2442 samples.  
Different sets of variables describing geoclimatic features and water quality were used 
for different case studies with maximal number of 50 variables (Table 3.1).  

The sites were sampled according to standard AusRivAs rapid assessment protocols 
(Conrick and Cockayne, 2000) and processed by experienced NR&M staff. This 
involves sampling 10 m of habitat using a standard 250 μm dip net with live picking 
in the field and identification of samples in the laboratory. The dataset contains 
occurrence patterns (presence-absence) of 168 macroinvertebrate taxa mostly 
identified to family level.  
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Figure 3.1. Map of the sampling sites in QLD dataset.  
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Table 3.1. Variables contained in dataset from QLD with minimum, maximum and 
mean values. 
 
Variable Abbreviation Units Type Mean Min Max 

Habitat Habitat 
Edge or 
Riffle 

categorical 
   

Season Season 
Autumn 
or spring 

categorical 
   

Position of site in the 
catchment in relation 
to watershed.  

0-2 Reach  categorical 

 0 2 
Latitude  Latitude  Decimal continuous -21.96 -29.01 -11.15 
Longitude  Longitude  Decimal continuous 148.25 138.11 153.51 
Altitude  Altitude  m continuous 168.01 1.00 950.00 
Distance From Source DFS km continuous 104.74 0.56 1198.80 
Stream order Stream Order  categorical  1 9 
Depth at habitat Depth  m continuous 0.29 0.00 2.00 
Width at habitat  Width  m continuous 16.36 0.30 2000.00 
Mean Depth over the 
sampled area Mean Depth  

m continuous 
0.46 0.05 16.00 

Mean Channel Width  
Mean Channel 
Width 

m continuous 
70.68 2.00 2500.00 

Instantaneous 
Discharge  

Instantaneous 
Discharge  

cumec continuous 
2.33 0.00 1850.00 

Slope  Slope  km/m continuous 0.00 0.00 0.10 
Soil type number Soil Type Number  categorical  2 38 
Vegetation type 
number 

Vegetation Type 
Number 

 categorical 
 2 22 

Mean phi Mean phi  continuous -1.35 -13.00 7.00 
Assessment of the site 
from 0 being poor to 4 
indicating excellent 
habitat conditions. See 
Conrick & Cockayne 
(2000). 

0-4 . Habitats  categorical 

 1.00 6.00 
Number of substrate 
categories at the site 

0-8.substrate 
categories 

 categorical 
 1.00 7.00 

Percentage of bedrock 
in the substrate Bedrock  

% continuous 
4.87 0.00 100.00 

Percentage of boulder 
in the substrate Boulder 

% continuous 
4.28 0.00 95.00 

Percentage of cobble in 
substrate Cobble  

% continuous 
14.10 0.00 100.00 

Percentage of gravel in 
the substrate Gravel  

% continuous 
10.78 0.00 95.00 

Percentage of pebble in 
substrate  Pebble  

% continuous 
9.99 0.00 100.00 

Percentage of sand in 
the substrate Sand  

% continuous 
30.03 0.00 100.00 

Percentage of Silt/Clay 
in substrate Silt/Clay  

% continuous 
25.96 0.00 100.00 

Detrital cover  Detrital cover  % continuous 20.80 0.00 100.00 

Mean annual rainfall  
Mean annual 
rainfall  

mm continuous 
1361.13 165.00 4500.00 

Percentage rainfall in 
wet season 

Percentage rainfall 
in wet season 

% continuous 
76.11 51.90 110.14 
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Continuation of Table 3.1.  
 
Variable Abbreviation Units Type Mean Min Max 

Range in dry season 
monthly means 

Range in dry 
season monthly 
means 

 continuous 

57.16 3.00 304.00 

Range in wet season 
monthly means 

Range in wet 
season monthly 
means 

 continuous 

189.11 17.00 1384.00 
Ratio of mean dry 
season rainfall to mean 
wet season monthly 
rainfall 

Ratio of mean dry 
season rainfall to 
mean wet season 
monthly rainfall 

 continuous 

4.21 1.24 26.40 
Maximum velocity at 
sampled area Velocity - max 

m/s continuous 
0.29 0.00 4.00 

Mean daily maximum 
temperature 

Mean daily max 
temp  

oC continuous 
27.74 20.30 33.90 

Mean daily minimum 
temperature  

Mean daily min 
temp  

oC continuous 
16.07 8.20 24.20 

Electrical Conductivity 
adjusted for 
temperature Conductivity  

µS/cm continuous 

334.98 6.00 12000.00 

Alkalinity  Alkalinity  
mg/L 
CaCO3 

continuous 
85.32 0.00 999.00 

pH pH  continuous 7.46 4.14 10.00 

Total hardness  Total Hardness  
mg/L 
CaCO3 

continuous 
90.89 1.90 3750.00 

Turbidity (NTU) Turbidity (NTU)  continuous 31.18 0.00 1922.00 
Total nitrogen  Total N  mg/L as N continuous 0.57 0.04 35.02 
Total phosphorus Total P mg/L as P continuous 0.06 0.00 4.50 
Water temperature  Water Temp °C continuous 22.19 5.10 38.40 
Concentration of 
bicarbonate HCO3-  

mg/L continuous 
96.31 0.00 1158.00 

Concentration of 
potassium K+  

mg/L continuous 
2.70 0.08 76.00 

Concentration of 
carbonate CO3--  

mg/L continuous 
0.76 0.00 35.50 

Concentration of 
calcium Ca++  

mg/L continuous 
17.01 0.10 686.40 

Magnesium 
concentration Mg++  

mg/L continuous 
12.45 0.10 1705.00 

Concentration of 
sulfate SO4--  

mg/L continuous 
9.69 0.00 3568.00 

 
 

Victoria data 

The dataset from the state of Victoria has been provided by Leon Metzeling, Victorian 
EPA. It contains abundances of 128 macroinvertebrate families sampled at 407 stream 
sites (Figure 3.2) between March 1990 and November 1998. The sampling sites were 
chosen in order to represent the main types of rivers in each of the 25 drainage basins 
defined by the Australian Water Resources Council (AWRC). Most sites were 
sampled on four occasions in spring and autumn over the two consecutive years and 
seasonal habitat data for single sites were combined (Marchant et al., 1999). 
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At each site, two habitats were sampled separately: the main-channel (often a riffle) 
and the bank or edge of the channel. In order to simplify clustering, only the database 
including edge habitats was used for this study. A sample consisted of a 
macroinvertebrate collection over a 10m transect for each habitat using a D-frame 
hand net (0.25 mm mesh), followed by 30 minutes picking of live specimens. 
Macroinvertebrates were preserved in 70% ethanol and identified to family level. 
Specimens of Oligochaeta, Hydracarina, and Nematoda were not identified further 
(Marchant et al., 1999).  

Only environmental variables presumably not affected by human activity (natural 
variables) were used for this study. The variables Distance from source, Slope, 
Altitude, Catchment area, Width, Alkalinity, Macrophyte taxa and Macrophyte 
abundance category were log-transformed (Table 3.2).  

 

 

 

 

Figure 3.2. Locations of sampling sites in Victoria data set. 
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Table 3.2. List of variables in Victoria data set with minimum, maximum and mean 
values. 
 

Variable     Abbreviation Units Type Mean Min Max 

Alkalinity (L)               LALK mg/L continuous 1.44 0.39 2.69 
Catchment area (L)        LAREA km continuous 2.35 -0.52 4.13 
Vegetation category       VEGCAT  categorical  1 4 
Number of macrophyte taxa 
(L)      

LMACTAXA  continuous 0.51 0 1.14 

Slope(L)             LSLOPE km/m continuous 0.7 -0.79 2.51 
Distance from source (L)        LDFS  continuous 1.41 -1 2.73 
Longitude         LONG Decimal continuous  141.2412 149.6898
Latitude       LAT Decimal continuous  -39.1167 -35.9295 
Macrophyte category (L)      LMACCAT  categorical  0 0.69 
Shade        SHADE  categorical  0 5 
Reach phi      REACHPHI  continuous -1.99 -8.41 8.75 
Altitude(L)       LALTITUDE m continuous 2.28 1 3.2 
Width (L)           LWIDTH m continuous 0.88 -0.52 2 
Substrate heregeneity    SUBHETERO   2.65 0 5 
Percentage of Pebble        PEBBLE % continuous 11.77 0 80 
Percentage of Cobble        COBBLE % continuous 20.3 0 80 
Percentage of Boulder       BOULDER % continuous 12.28 0 80 
Percentage of Bedrock       BEDROCK % continuous 6.61 0 99 
Percentage of Gravel        GRAVEL % continuous 9.71 0 70 

 

New South Wales (NSW) data 

The database from NSW has been provided by Bruce Chessman from NSW 
Department of Land and Water Conservation and was the result of a Multi-Attribute 
River Assessment (MARA) survey of 122 sites on unregulated streams in 12 sub-
catchments within four catchments (Figure 3.3). It contains 22 variables (Table 3.3) 
describing: 

• Physical settings and diversity (geographical position, altitude, slope, distance 
from source, rainfall, substrate heterogeneity, etc.) 

• Biological variables (diversity of macroinvertebrates, diversity of 
macrophytes, diversity of native fishes)  

• Risk factors (flow, water temperature, phosphorus, nitrogen, oxygen, organic 
matter, etc.) 
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Sampling of macroinvertebrates has been conducted using standard methods (see 
description of Queensland data). More detailed description of NSW data can be found 
in Chessman (2002).  

 

Figure 3.3. Locations of the sampling sites in NSW data set. 
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Table 3.3. List of biotic and abiotic variables available in NSW dataset with minimal, 
maximal and mean values. 
 
Variable Abbreviation Units Type MEAN MIN MAX 
Site elevation  Elev m  continuous 268.16 5.00 780.00 
Site slope  Slope m/km continuous 8.52 0.10 88.89 
Site discharge  Flow m3/s continuous 0.28 0.00 6.13 
Average of maximum and 
minimum stream width per quadrat  

Width m continuous 7.27 0.22 44.38 

Average of maximum stream depth 
per quadrat  

Depth m continuous 0.72 0.01 3.19 

Number of diatom species per site DiatomSp  continuous 38.31 6.00 78.00 
Number of native aquatic 
macrophyte species per site 

MacrNaSp  continuous 11.17 2.00 29.00 

Number of native 
macroinvertebrate families per site 

InveNaFa  continuous 31.12 13.00 59.00 

Number of native fish species per 
site 

FishNaSp  continuous 2.17 0.00 9.00 

Macroinvertebrate family biotic 
index (SIGNAL 1995 version) 
(range 1-10) 

SIGNAL95  continuous 5.42 4.35 7.02 

Number of native fish individuals 
per hour of electrofishing 

FishNNPH  continuous 201.16 0.00 1630.00 

Water temperature at 0.2 m  TempSur oC continuous 20.14 6.40 38.00 
Turbidity at 0.2 m  Turb NTU continuous 12.30 0.40 64.70 
Electrical conductivity at 0.2 m  EC uS/cm continuous 370.45 33.00 2330.00 
pH at 0.2 m pH  continuous 7.42 4.42 8.70 
Ammoniacal nitrogen at 0.2 m  NH3 mg/L continuous 0.06 0.01 1.60 
Oxidised (nitrate plus nitrite) 
nitrogen at 0.2 m  

NOx mg/L continuous 0.05 0.01 1.00 

Filterable phosphorus at 0.2 m  FiltP mg/L continuous 0.03 0.00 0.85 
Bank erosion score (range 0-100) Erosion  categorical 8.37 0.00 96.43 
Number of alien fish individuals 
per hour of electrofishing 

FishANPH  continuous 273.12 0.00 4736.67 

Stock damage score (range 0-100) Stock  categorical 13.64 0.00 78.13 
Catchment area above site  CatArea km continuous 231.75 1.00 1815.75 

 

3.2 Data preprocessing and modelling 
 

All data were preprocessed before modeling. Missing data were substituted for the 
average of variable in the relevant subset. Data manipulation and detailed analysis for 
each case study described in each relevant chapter. I used the following software for 
the supervised models: Matlab 5.3 with Neural Networks toolbox and Neural 
Solutions 4.0. Self Organising Maps were built and visualised using the SOM 
Toolbox for Matlab 5.3, developed at the Laboratory of Computer and Information 
Science (CIS) at Helsinki University of Technology and MOPED 1.11 (Modelling 
Patterns in Environmental Data, by NIWA). Supporting statistical analysis was 
conducted using STATISTICA 6.0 and various functions in Matlab 5.3. Canonical 
Correspondence Analysis was conducted using CANOCO 4.5 software package. 
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3.2.1 Unsupervised neural networks: Self Organising Maps 
 
SOM is an excellent tool in the visualisation of high dimensional data. As such it is 
most suitable for data understanding phase of the knowledge discovery process, 
although it can be also used for data preparation, modelling and classification as well 
(Vesanto et al., 2000). A number of techniques are available for the visualisation of 
SOM. Based on the purpose, they can be divided into three groups: visualisation of 
components, visualization of cluster structure and shape and visualisation of data on 
the map.   
 
Component planes 

 
Each component plane shows the values of one variable in each map unit. The 
component plane can be thought of as a slice of the map: it consists of the values of a 
single vector component in all map units. Coupled with the clustering information, the 
component planes show the values of the variables in each cluster. By comparing 
component planes with each other, correlations are revealed as similar patterns in 
identical positions of the component planes: whenever the values of one variable 
change, the other variables change too. Component planes are very convenient when 
one has to visualize a lot of information at once. Based on overall view it is easy to 
select interesting component combinations for further investigation (Vesanto et al., 
2000). 
 

Clustering and visualization of cluster structure 

 
The first and most well known type of SOM visualisation is a Unified distance matrix 
(U-matrix) (Vesanto et al., 2000). U-matrix visualizes distances between 
neighbouring map units, and helps to see the cluster structure of the map: high values 
of the U-matrix indicate a cluster borders, uniform areas of low values indicate 
clusters themselves. It is possible to make decisions about the number of clusters 
using U-matrix alone, however, when using extensive dataset and U-matrix with a 
large number of cells it is often difficult to draw clear borders between clusters based 
on U-matrix only.  
 
A widely adopted definition of optimal clustering is a partitioning that minimizes 
distances within and maximises distances between clusters. In practice, most 
clustering methods do not produce a single clustering, but offer several with different 
number of clusters. To select the best among them, each can be evaluated using some 
kind of validity index. There is a multitude of different validity indices, when using 
SOM toolbox Davies-Bouldin Validity Index (Davies and Bouldin, 1979) was 
implemented and when using MOPED optimal clustering was chosen with the help of 
Silhouett index (Rousseeuw, 1987).  

Davies-Bouldin Validity Index  

This index is a function of the ratio of the sum of within-cluster scatter to between-
cluster separation 
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 , 
 

where - number of clusters, - average distance of all objects from the cluster to 

their cluster centre, - distance between clusters centres. Hence the ratio is 
small if the clusters are compact and far from each other. Consequently, Davies-
Bouldin index will have a small value for a good clustering (Davies and Bouldin, 
1979). 

Silhouette Validation Method  

The Silhouette validation technique calculates the silhouette width for each sample, 
average silhouette width for each cluster and overall average silhouette width for a 
total data set. Using this approach each cluster could be represented by so-called 
silhouette, which is based on the comparison of its tightness and separation. The 
average silhouette width could be applied for evaluation of clustering validity and also 
could be used to decide how good is the number of selected clusters. 
 
To construct the silhouettes S(i) the following formula is used: 

 

, 
 

where a(i) –average dissimilarity of i-object to all other objects in the same cluster; 
b(i) – minimum of average dissimilarity of i-object to all objects in other cluster (in 
the closest cluster).    

It is followed from the formula that . If silhouette value is close to 1, it 
means that sample is “well-clustered” and it was assigned to a very appropriate 
cluster. If silhouette value is about zero, it means that that sample could be assign to 
another closest cluster as well, and the sample lies equally far away from both 
clusters. If silhouette value is close to –1, it means that sample is “misclassified” and 
is merely somewhere in between the clusters. The overall average silhouette width for 
the entire plot is simply the average of the S(i) for all objects in the whole dataset. 

The largest overall average silhouette indicates the best clustering (number of cluster). 
Therefore, the number of cluster with maximum overall average silhouette width is 
taken as the optimal number of the clusters. (Rousseeuw, 1987; 
http://www.cs.tcd.ie/Nadia.Bolshakova/validation_algorithms.html). 

 
K-means clustering 
 
There is a huge number of different kinds of clustering algorithms available. The two 
main ways to cluster data are hierarchical and partitive approaches. The example of 
hierarchical way of clustering is a dendrogramm, which does not provide a unique 
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clustering, rather a partitioning can be achieved by cutting the dendrogramm at certain 
levels. Partitive clustering algorithms divide a data set into a number of clusters, 
typically by trying to minimize some criterion or energy function. If a number of 
clusters is unknown, the partitive algorithm can be repeated for a set of different 
values, typically from 2 to √ n, where n is the number of samples in the data set. The 
most commonly used partitive algorithm is the k-means (MacQueen, 1967). In simple 
form k-means algorithm consists of following steps: 

1. Place K points into the space represented by the objects that are being 
clustered. These points represent initial group centroids. 

2. Assign each object to the group that has the closest centroid. 
3. When all objects have been assigned, recalculate the positions of the K 

centroids. 
4. Repeat Steps 2 and 3 until the centroids no longer move. This produces a 

separation of the objects into groups from which the metric to be minimized 
can be calculated 

 
For this study I used k-means clustering algorithm in order to groups SOM cells 
together on the base of their similarity.  
 
In some studies I used Mahalonobis distance to evaluate dissimilarity between 
clusters. Mahalanobis distance is a measure of distance between two points in the 
space defined by two or more correlated variables. For example, if there are two 
variables that are uncorrelated, then we could plot points (cases) in a standard two-
dimensional scatterplot; the Mahalanobis distances between the points would then be 
identical to the Euclidean distance; the distance as, for example, measured by a ruler. 
If there are three uncorrelated variables, we could also simply use a ruler (in a 3-D 
plot) to determine the distances between points. If there are more than 3 variables, we 
cannot represent the distances in a plot any more. Also, when the variables are 
correlated, then the axes in the plots can be thought of as being non-orthogonal that is, 
they would not be positioned in right angles to each other. In those cases, the simple 
Euclidean distance is not an appropriate measure, while the Mahalanobis distance will 
adequately account for the correlations. For each group in our sample, we can 
determine the location of the point that represents the means for all variables in the 
multivariate space defined by the variables in the model. These points are called 
group centroids. For each case we can then compute the Mahalanobis distances (of the 
respective case) from each of the group centroids (MOPED – Modelling Patterns in 
Environmental Data, http://www.niwa.com.au/pubs/moped).  
 
 
Visualisation of data on the map   
 
In some cases is it necessary to visualise location of a particular subset of data (certain 
catchment for example) on general SOM. This can be achieved using ‘hit’ histograms, 
which show in graphic form the distribution of the best matching units for a given 
data set (Vesanto et al., 2000). Multiple histograms may be drawn and these are 
identified by different colors and /or markers. This makes it possible to compare 
different data sets by the distribution of their ‘hits’ on a map. See Figure 6.3 for the 
example of hit diagrams.  
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Quality of SOM  

 
There are two measurements of SOM quality: average quantization error and 
topographic error. Average quantization error is simply the average distance 
(weighted with mask) from each data vector to its best matching unit (BMU). 
Topographic error gives the percentage of data vectors for which the BMU and the 
second BMU are not neighbouring map units. In practice, large quantization errors are 
observed when using non-normalized data due to the wide range of values in 
environmental variables, after normalization quantization error is usually small (less 
than 1).  
 

Data analysis using SOM 

 
The following logical sequence in SOM implementation was applied with variations 
according to the purpose of particular case study.  
 
1) Data preprocessing and normalization. ‘Range’ normalization has been usually 
applied, scaling data between 0 and 1 using the following formula (Vesanto et al., 
2000): v’(i) = (v(i) – min(v)/(max(v) – min(v)) 
 
‘log’ transformation has also been used for some studies: v’(i) = ln(v-min(v) +1). 
 
2) SOM built using default settings provided by SOM toolbox. 
 
3) SOM U-matrix and component planes visualised. 
 
4) Several  k-means partitioning tried and evaluated using Davies-Bouldin (or 
Silhouette) index. The clustering with the smallest index (largest in case of Silhouette) 
is selected (Vesanto and Alhoniemi, 2000). 
 
5) SOM with resulting k-mean clustering is visualised and cluster number for each 
data unit is exported and used for further analysis or GIS visualisation.  
 
 
3.2.2 Supervised Neural Networks: Multilayer Perceptron 
and Feedforward networks 
 
  
Slightly different architecture of ANNs were used for the different case studies, in 
general I used generalized feedforward networks, which are a generalization of MLP 
such that connections can jump over one or more layers. In theory, a MLP can solve 
any problem that a generalized feedforward network can. In practice, however, 
generalized feedforward networks often solve the problem much more efficiently 
(NeuroDimensions, 1999).  
 
When building an MLP model the decision has to be taken on: 



 42

- number of hidden layers and number of neurons in hidden layers 
- transfer function 
- step size, momentum coefficient 
- number of iterations 
 
I used MLP with one hidden layer for all studies except the scenario analysis (Chapter 
7). In theory, one hidden layer is sufficient to approximate any function (Sovan Lek, 
personal communication), but in practice the predictive ANN with multiple hidden 
layers (as modular ANN, see Chapter 7) can offer some advantages in some cases.  
 
Houng (2001) conducted optimisation study using the QLD data and I used a 
momentum and step size suggested by her, namely: learning rate for hidden layer and 
for output layer 0.1 and 1 respectively, and momentum coefficient 0.9. Different 
number of neurons in hidden layer was used for the different case studies, depending 
on the number of input neurons (the more input neurons the more hidden neurons), the 
optimum number was decided by trial and error in each case.  
 
Maier and Dandy (1998) have shown that hyperbolic tangent transfer (‘tahn’, between 
–1 and 1) produces better performance in terms of root mean square errors (RMSE) 
between actual and predicted output, and learn quicker than linear or bipolar sigmoid 
(between 0 and 1). Hyperbolic tangent transfer function was used in all case studies 
here:   
tanh z = ez – e-z/ez + e-z  , 
where e is the the base of the natural algorithm. 
 
Optimum number of iterations or epochs was determined using ‘cross-validation’ set, 
typically 10% of data. The aim of the training of a neural network is to minimize the 
output error with the respect to the known desired output. This error is defined as 
mean square error between the network outputs and the actual outputs. Cross-
validation is executed in concurrence with the training of the network. Every so often, 
the network weights are frozen, the cross-validation data is fed through the network, 
and the results are reported. If error from the cross-validation set is getting larger than 
the error from the training set, this is the sign that the network has begun to overtrain 
and training should be stopped to ensure maximum generalization of the model. See 
Principe et al. (2000) for more on cross-validation and training.   
 
Models used in all case studies were validated using randomly selected independent 
testing or validation set (typically 30% of data). A comparison between the actual and 
predicted values was made in order to evaluate performance of the network. The 
validation results are represented as percentage of correct predictions in case of 
presence-absence outputs and as Product-Momentum Correlation Coefficient in case 
of continuous outputs (as taxonomic richness, Salinity Index, etc.). In case of 
presence-absence predictions continuous output of the network was translated into ‘0’ 
(absent) and ‘1’(present) by using cut-off value of ‘0.5’. In other words, if output is 
equal or more than 0.5- taxon was counted as present, if output is less than 0.5 – taxon 
is absent.  
 
It was shown by Manel et al. (2001) that percentage of correct predictions as 
widespread measure of predictive accuracy is affected systematically by the 
prevalence (i.e. the frequency of occurrence) of the target organism, and reliance of 
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this measure using raw data can be misleading. For example, in case with rare taxon 
which is absent in 96% or cases and present in 4% of cases, ANN can guess all 
outputs as ‘0’ and be erroneously estimated as highly accurate with 96% of correct 
predictions. In order to avoid the problem with overrepresented ‘0’ or ‘1’, I equalized 
the testing or validation data by duplicating the data points so the dataset contains 
50% of ‘0’ and 50% of ‘1’ values. In this case we can be sure that percentage of 
correct predictions is indeed indicative for the true accuracy of the network, as in the 
cases where network simply ‘guessing’ all outputs as ‘1’ or ‘0’, the total accuracy will 
never be higher than 50%. 
 
In general, the following logical sequence was used for the majority of case studies: 
 
1) Preprocess the data, normalize and randomise if necessary. 
2) Build a variety of networks with a different number of hidden neurons, train with 
cross-validation and test on validation set. 
3) Select the optimum performing architecture, build, train with cross-validation and 
test on validation set several networks of this architecture (typically 10 models). 
4) Select the model with best performance using validation set. 
5) Use the best performing model for simulation, sensitivity or scenario analysis.  
 
 
3.3 Structure and functioning of the Stream Decision 
Support Framework 
 

Figure 3.4 illustrates the principal structure and the corresponding functionality of the 
SDSF. The stream databases are structured into physical, biological and risk or water 
quality variables. The unsupervised ANN models (SOM) can be used for spatial 
ordination, clustering and diagnosis of stream sites. The supervised ANN models 
allow the prediction of the occurrence of aquatic macroinvertebrates depending on 
stream habitat and water quality conditions. In addition they can be used in order to 
elucidate the relationships between physical and biological variables by means of 
sensitivity analysis and conducting scenario analysis on potential impacts or 
restoration measures. Combination of techniques as SOM and MLP and neural 
networks with statistical methods provides an additional power and an opportunity to 
extract more information from the data available.  
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Classification Models based on 
SOM 
 
Functionality: 
 
Pattern exploration 
Diagnostic system

Predictive models based on Multi-Layered Perceptron 
neural net architecture 
 
Functionality: 
 
 

Databases 
 
1.Physical settings  
2.Risk factors 
3.Biological variables 

Taxa specific prediction from various sets of predictor 
variables

Sensitivity analysis 

‘Dirty-water’ models 
and scenario analysis 

Impact assessment using 
‘Clean-water’ approach 

Combination of predictive and classification 
ANN models with each other and statistical 
methods  
 
Functionality: 
 
Explanation of the patterns 
Analysis of outputs 

 
 

Figure 3.4. Structure of the Stream Decision Support Framework (SDSF). 
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Chapter 4  
 
Ordination, clustering and correlation 
hunting using Self Organising Maps 
(SOM) 
 
 
4.1 Exploring natural variability with SOM using 
referential datasets from Victoria and Queensland 
 
 

Recognizing the existence of natural geographical variations in species distribution is 
an important consideration in the development of biomonitoring programmes, 
particularly at large spatial scales (Karr, 1991). Australia is a continent of diverse 
ecosystems with a variety of environmental conditions. To be able to detect changes 
in ecological characteristics caused by anthropogenic impacts it is necessary first to 
distinguish those changes from the natural variability inherent to the particular aquatic 
ecosystems. Some of the streams can show natural impoverishment due to the variety 
of reasons, which should not be confused with an impoverishment caused by the 
human induced stresses. When using the referential approach it is particularly 
important to be able to recognise systems with similar habitat characteristics and 
macroinvertebrate communities in order to be able to compare those systems in 
reference and potential impacted conditions. In AusRivAs UPGMA (see Chapter 2) 
procedure is used to cluster sites together on the basis of the faunal similarity. Self 
Organising Map neural networks provide an alternative approach to the clustering 
sites on the basis of their similarity plus it offers an interesting method to visualise 
distribution of both biotic and environmental variable on the same spatial scale using 
so-called component planes (see Chapter 3 for the description).  

This study demonstrates the use of both component planes and clustering using two 
datasets from Victoria (pooled abundance data) and Queensland (presence-absence 
data) collected only from the sites assessed as reference or minimally impacted sites. 
The selection of reference sites was based on the Monitoring River Health Initiative 
method outlined in the River Bioassessment Manual (Davies, 1994). It is very 
difficult to find completely undisturbed streams in Australia and it is possible that 
reference sites can be under some kind of anthropogenic influence, however, their 
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faunal characteristics considered to be as natural as it is possible under modern 
conditions. With this assumption I used these datasets in order to gain an 
understanding of the broad spatial patterns in macroinvertebrate communities and try 
to identify the most important environmental variables structuring these communities 
in the conditions maximally close to the natural. Methodologically this task can be 
addressed in a variety of ways. Giraudel and Lek (2002) suggested a method allowing 
determining the most relevant variables for structuring the obtained map using a 
Structuring Index. However, according to this method we must use all variables in 
question as an input for the SOM to determine their contribution to the general 
clustering. In our case, we are mainly interested in the variability between 
macroinvertebrate communities. If we to use occurrence pattern of macroinvertebrates 
and environmental variables as an input, resulted clustering will reflect variability in 
the environmental variables as well as variability in macroinvertebrate communities. 
In this chapter I suggest use of statistical procedures as ANOVA and Mahalonobis 
distance and descriminant analysis as well as SOM. This approach combines 
flexibility and interesting visualisations of SOM with qualitative expression of 
statistical methods (‘p’ values, etc.). I used a slightly different combination and 
succession of the methods for Victoria and Queensland data in order to demonstrate 
the flexibility and potential of the Stream Decision Support Framework.  

The main hypotheses to be tested in this study are: 

1)  Using SOM it is possible to identify sites similar on the base of the taxonomic 
composition of macroinvertebrate communities and isolate them into the clusters.  

2)  These clusters are similar to the bioregions previously described for Victoria and 
Queensland.  

3)  SOM component planes provide valuable information in order to characterize 
those clusters by the environmental factors.  

4)  SOM component planes provide valuable information on the relationships between 
abiotic and biotic variables.  

 
 4.1.1 Victoria dataset 
 

Method 

The abundance pattern of 128 macroinvertebrate taxa collected from 407 sites in the 
edge habitat was examined using SOM. Resulting map was partitioned further by k-
means algorithm into a minimum optimum number of clusters using SOM toolbox for 
Matlab (see Chapter 3 for k-means partitioning). Data were not normalized for this 
part of the analysis. Clusters were analysed using ANOVA, mean values of the 
environmental variables in each cluster and Mahalonobis distance between clusters. In 
order to investigate relationships between variables and discovered patterns using 
component planes we built the second SOM with 19 environmental variables (see 
Table 4.2 for the description of variables) as an input, all data normalized between 1 



 47

and 0. Data subsets corresponding to the clusters discovered earlier was visualised 
using hit diagrams (see Chapter 3 for the description).  

Result 

The first SOM built for the purpose of finding similar pattern in macroinvertebrate 
communities has the following characteristics: map size 9x11 cells, topographic error: 
0.02, quantisation error: 1.09.  

The U-matrix of the resulting SOM is shown on Figure 4.1(a) and the six clusters or 
groups resulting from partitioning by k-means algorithm on Figure 4.1(b). The six 
clusters or groups roughly corresponding to the five ecological zones defined by the 
EPA Victoria (Metzeling et al., 2001), (Figure 4.2). Group 1 corresponds to Forest A 
and Highlands, Group 2 to Cleared Hills and Coastal Plains, Groups 3 and 4 to Forest 
B, Group 5 to Highlands and Group 6 to Murray and Western Plains.  

 

 

Figure 4.1. SOM outputs: a) U-matrix, b) Partitioning into 6 clusters by the K-means 
algorithm. 

 

 

   
a b
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Figure 4.2. a) Distribution of macroinvertebrate groups resulting from SOM (sites 
belonging to the same group have the same marker), b) biological regions in Victoria 
based on benthic macroinvertebrates (Metzeling et al., 2001). 
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a) 

 

b) 

Figure 4.3. a) SOM hit diagram showing distribution of 6 groups (clusters) on SOM 
grid, b) SOM component planes for the environmental variables (see Table 3.2 for 
abbreviations), all data normalized between 0 and 1, darker shades correspond to 
higher values. 

 

Group 1 

Group 2 

Group 3 

Group 4 

Group 5 

Group 6 



 50

The second SOM built for the purpose of viewing the component planes was sized 
12x16, topographic error:  0.02, quantisation error: 0.58. 
 
Figure 4.3(a) shows a distribution of 6 groups or clusters on SOM grid (see Chapter 3 
for more on hit diagrams). Clusters appear to be well separated from each other 
without overlap between them.  Figure 4.3(b) shows 19 SOM component planes for 
all environmental variables (see Table 4.2 for abbreviations). Alkalinity is particularly 
low at the area corresponding to the group 1, and particularly high at the groups 6 and 
3. Number of macrophyte taxa is comparatively low at the groups 1 and 2, and 
comparatively high at all other groups. Distribution of macrophyte category amongst 
clusters is quite patchy, but distinctively different in the group 1 and 6. Distribution of 
values for vegetation category does not follow horizontal gradient characteristic for 
distribution of clusters at first sight, but it might be an important variable to 
distinguish between groups 1 and 6, and to some extent between groups 3 and 4.  
 
Groups 1 and 6 clearly differ in relation to slope, with high values for this variable at 
the group 1 and low values at the group 6. Group 1 is also can be characterized by 
relatively high altitude, although for other groups altitude does not seem to be falling 
into any distinctive pattern. Other variables do not appear to have any distinctive 
pattern corresponding to the distribution of clusters (groups) and will not be 
considered here.  
 
Table 4.1 shows mean values of the continuos environmental variables in each of 6 
SOM defined clusters. Using discriminant analysis we have been able to predict 
correctly 60.0% (244 of 407 sites) of group membership using environmental settings 
as independent variables with 20.9% of near misses. Practically all variable were 
significant (P<0.05) in discriminating between clusters (Table 4.2) with Alkalinity 
having the largest F value. The Mahalonobis distance (Table 4.3) was the largest 
between cluster 1 and cluster 6. This is not surprising as the cluster 1 corresponds to 
the forest and highland ecosystems and cluster 6 to Murray and Western plains (see 
Figure 4.2).             
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Table 4.1. Mean values of the continuous environmental variables in each of 6 SOM 
defined clusters, total abundance of macroivertebrate and number of 
macroinvertebrate families are added for comparison. (L) – the variable was provided 
log-transformed. 
 
Cluster           1       2       3       4       5       6 
N of sites in cluster             75      79      54      45      74      80 
Latitude -37.52 -37.46 -37.33 -37.37 -37.59 -37.30 
Longitude         146.25 145.71 146.50 147.03 146.13 143.80 
Reach phi    -3.10  -2.69  -2.43  -4.89  -1.65   1.39 
Substrate 
heterogeneity    

  2.68   2.49   2.94   3.33   2.71   2.12 

Shade          3.06   2.38   1.75   1.56   2.37   1.85 
Distance from source 
(L)        

  0.89   1.30   1.76   1.45   1.38   1.76 

Slope(L)         1.18   0.71   0.47   0.80   0.76   0.32 
Altitude(L)      2.63   2.20   2.07   2.38   2.29   2.13 
Catchment area (L)          1.51   2.15   2.91   2.54   2.35   2.84 
Width (L)         0.61   0.82   1.16   1.07   0.88   0.93 
Bedrock (%)        4.95   9.25   4.39  12.84   3.12   6.80 
Boulder (%)       13.81  11.55  11.88  19.17  12.33   7.90 
Cobble (%)        26.70  22.50  21.05  22.98  20.69   9.73 
Pebble (%)        12.07  12.20  13.20  17.68  12.79   5.84 
Gravel (%)        11.47  10.64  10.02  11.50   9.25   6.33 
Alkalinity (L)          0.96   1.27   1.74   1.36   1.30   2.05 
Number of 
macrophyte taxa (L)     

  0.25   0.45   0.65   0.62   0.54   0.63 

Total abundance    260.44 413.19 1026.35 661.75 617.12 788.82 
Number of 
macroinvertebrate 
families         

 25.18  24.93  30.31  33.17  29.48  26.82 
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Table 4.2. Description of environmental variables and results of univariate analysis 
between 6 SOM defined clusters. 
  
Variable     Abbreviation Mean Min Max      F       P 
Alkalinity (L)               LALK 1.44 0.39 2.69   89.2   0.000 
Catchment area (L)        LAREA 2.35 -0.52 4.13   40.5   0.000 
Vegetation category       VEGCAT  1 4   40.4   0.000 
Number of 
macrophyte taxa (L)      

LMACTAXA 0.51 0 1.14   38.5   0.000 

Slope(L)             LSLOPE 0.7 -0.79 2.51   34.8   0.000 
Distance from source 
(L)        

LDFS 1.41 -1 2.73   33.5   0.000 

Longitude         LONG  141.24 149.68   28.3   0.000 
Macrophyte category 
(L)      

LMACCAT  0 0.69   20.9   0.000 

Shade        SHADE  0 5   20.4   0.000 
Reach phi      REACHPHI -1.99 -8.41 8.75   20.1   0.000 
Altitude(L)       LALTITUDE 2.28 1 3.2   18.8   0.000 
Width (L)           LWIDTH 0.88 -0.52 2   18.7   0.000 
Substrate heregeneity    SUBHETERO 2.65 0 5   11.7   0.000 
Pebble (%)       PEBBLE 11.77 0 80   10.4   0.000 
Cobble (%)       COBBLE 20.3 0 80   10.0   0.000 
Boulder (%)      BOULDER 12.28 0 80    5.2   0.000 
Becrock (%)      BEDROCK 6.61 0 99    4.5   0.001 
Gravel (%)       GRAVEL 9.71 0 70    3.3   0.006 
Latitude       LAT  -39.1167 -35.9295    2.1   0.070 

 

 
Table 4.3. Mahalonobis distances between 6 SOM defined clusters (environmental 
settings used as independent variables).  
 

               2         3         4         5         6 
1           2.21    3.71    2.95    2.12    4.37 
2                      2.07    2.17    1.35    2.86 
3                                 2.15    1.97    2.20 
4                                            1.70    3.46 
5                                                       2.94 
 
 
4.1.2 Queensland dataset 
 

Method 

 In order to explore distribution patterns of macroinvertebrate communities in 
Queensland streams I built a SOM using 69 most commonly occurring 
macroinvertebrate taxa (taxa occurring at more than 5% of sites) from the riffle 
habitat. A set of 28 physico-chemical variables was used to explain patterns in 
macroinvertebrate occurrence (see Table 3.1 for the data description). In comparison 
with previous study (Victoria dataset) I used slightly different approach, as 
Queensland dataset contains many more environmental variables than the one from 
Victoria. Also, I wanted to explore a variety of approaches to the solution of similar 
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problems. First I built SOM using only presence-absence of macroinvertebrate taxa. 
Then the discriminate analysis has been applied twice using two sets of variables 1) 
physico-chemical variables, 2) biotic variables (occurrence pattern of 
macroinvertebrate taxa, taxonomic richness and PET richness). The first ten variables 
discriminating the best between clusters (10 environmental variables and 10 biotic 
variables) were used to build a second SOM in order to compare component planes 
and visualise the major gradients in both abiotic and biotic factors.  
 

Results 

 

Figure 4.4 shows the resulting SOM U-matrix and its partitioning into 12 kmean 
clusters using standard procedure provided by SOM toolbox for Matlab (see Chapter 
3). Table 4.4 shows mean values of the physico-chemical variables for each cluster. It 
was possible to correctly predict 40.8% (311 of 763) of cluster membership with 
21.0% of near misses (160 of 763) using discriminant analysis.  All environmental 
variables with the exception of depth were significant in discriminating between 
clusters (Table 4.5). Similarly, the majority of macroinvertebrate taxa (with the 
exception of 5 out of 70) were significant (p<0.05) in discriminating between clusters.  

 

 
 

a)          b) 

 

Figure 4.4. a)U-matrix and, b) k-means partitioning into 12 clusters, QLD reference 
sites, macroinvertebrates only. 

 
Mahalonobis distance was the largest (more than 3) between clusters 1 and 2, 2 and 5, 
1 and 12, 5 and 12, 7 and 12. Figure 4.5 shows spatial distribution of all clusters in 
groups of 4 (it would make it too difficult to read if all 12 clusters were shown on one 
plot). There is only a partial correspondence to the QLD bioregions (Figure 4.6) with 
the majority of the clusters spread over two or more bioregions. As rainfall variables 
(Table 4.5) were among the most important in discriminating between clusters we 
expect that the distribution of clusters should to some extent follow the rainfall 
pattern. This becomes apparent when distribution of clusters is compared with rainfall 
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distribution throughout the state (Figure 4.7). For example, clusters 2, 3, 8, 9 (Figure 
4.5) are found in the areas with high annual rainfall, cluster 7 is mostly found 
particularly in areas with high mean wet season monthly rainfall and clusters 8 and 12 
in the areas with high mean dry season monthly rainfall. Clusters 1, 5, 6 and 11 are 
mostly found in inland areas with comparatively low mean annual rainfall. Clusters of 
sites located in the areas with low rainfall are very different (Mahalonobis distance, 
Table 4.6) from those located in the areas with high rainfall, for example sites within 
cluster 2 (mean annual rainfall 2518.68 mm) and sites within cluster 1 (mean annual 
rainfall 966.93 mm).  
 
The second important factor discriminating between the clusters is distance from 
source. Importance of distance from source and stream order has been explained by 
River Continuum Concept (RCC) (Vannote et al., 1980), which relates sources of 
energy inputs into the aquatic system to the river/stream inhabitants. In other words, 
changes in available resources along the stream continuum from headwater to lowland 
are reflected by faunal composition. The applicability of RCC in Australia is 
discussed further in Chapter 4.1.3. Slope is naturally related to distance from source 
as headwater streams will be mostly found in hilly areas. For example, sites within 
clusters 2 and 12 are characterized by small distance from source and relatively high 
slope, when sites located in clusters 1 and 5 are characterized by the opposite, high 
distance from source and low slope (see Table 4.4).  
 
Latitude and longitude reflect a variety of factors including historical aspect of the 
development of a site’s fauna. Some macroinvertebrates (as insects) are not confined 
to particular stream and can migrate between unconnected streams and rivers, 
however many others cannot (as crustaceans, mites and so on). Geographical position 
and history of each site are naturally important factors contributing into the structure 
of macroinvertebrate communities. 
 
Flow (measured as maximal velocity) is obviously an important factor affecting 
structure of macroinvertebrate communities. Many taxa have particular flow 
preferences and adaptations enabling them to survival in particular flow conditions.  
 
Water quality variables are next in order of importance in discriminating between 
SOM clusters (Table 4.5). Even though reference sites suppose to be unaffected by 
human activity and have generally good water quality, there is still significant natural 
variability between site in relation to parameters like water temperature, pH, turbidity 
and conductivity.  
 
Substrate composition variables are obviously of local importance and although still 
significant in discrimination between clusters are positioned in the end of the list 
(Table 4.5) as well as temporal variables (Year and Season).  
 
The second SOM built in order to visualize the most important environmental 
gradients in comparison with biotic variables contributing the most to the 
discrimination between clusters has the following characteristics: size 14x10 cells, 
final quantization error: 0.56 and final topographic error:  0.03. Figure 4.8 shows 20 
component planes for environmental and biotic variables providing the best 
discrimination between SOM defined clusters.  
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Rainfall, geographical position and distance from source are three most prominent 
gradients.  Water temperature gradient appears to be related to both geographical 
position and distance from source. This is naturally explainable by changes in water 
temperature from cooler south to the warmer north and changes along the river 
continuum as sites downstream are generally wider and less shaded by riparian 
vegetation. Distribution of Velocity and Total Nitrogen show irregular pattern with 
velocity to some extent positively correlated with rainfall variables.  
 

Not surprisingly distribution of taxonomic richness and PET richness appear to be 
patchy and irregular with so many different gradients affecting macroinvertebrate 
communities. Interestingly, the highest taxonomic richness is found in the sites 
positioned in the middle of the map corresponding to the areas with medium values of 
abovementioned environmental gradients. It appears that extremes in any of the 
environmental factors are reducing taxonomic richness. However, the highest values 
of PET richness are shifted towards areas with higher rainfall and flow.  
 

When we consider component planes for the distribution of individual taxa as well, it 
becomes clear that taxa discriminating best between clusters have either limited 
geographical distribution or strong preferences towards one or more environmental 
factors. This tendency is evident from abrupt changes (very dark and very light 
shades) in frequency of occurrence in different areas. For example Baetidae seems to 
be limited to sites located not far from source and characterized by medium to high 
maximal velocity. Hydrometridae, on the contrary was found mostly downstream, but 
velocity does not appear to be a limiting factor.  
 
 
 
 



Table 4.4.  Mean values of abiotic variables in each of 12 SOM defined clusters. 
 
Cluster                                1       2       3       4       5       6       7       8       9       10      11      12      
Number of samples in a 
cluster                                  

     77      51      69      68     103      87      71      46      56      38      63      34 

Season                                   1.54   1.33   1.49   1.39   1.41   1.43   1.28   1.56   1.42   1.44   1.33   1.52 
Habitat Depth (m)                 0.32   0.33   0.33   0.32   0.35   0.38   0.32   0.30   0.31   0.30   0.33   0.31 
Max Velocity (m/s)               0.02   0.20   0.08   0.30   0.07   0.10   0.15   0.07   0.14   0.05   0.05   0.13 
Bedrock (%)                          5.19   3.23   1.44   0.73   4.80   3.39   2.95   4.45   5.26   3.42   5.39  14.55 
Boulder (%)                          1.36   9.02   2.53   0.95   3.08   3.33   0.88   5.54   3.83   0.78   1.42   5.29 
Cobble (%)                            1.94  11.56   5.21   3.67   2.20   5.02   2.43  11.41  12.14   2.10   1.66   7.94 
Pebble (%)                            2.01   5.68   4.20   3.52   4.02   5.51   2.09  11.52   7.58   6.18   1.03   6.02 
Gravel (%)                            8.44   6.37  12.24  10.66   7.57   6.14  10.28  11.08   8.66   7.36   6.66  10.00 
Sand (%)                              45.97  43.13  39.27  59.85  46.69  48.11  59.29  34.23  40.53  44.07  36.98  31.17 
Silt/Clay (%)                        35.06  20.98  35.07  20.58  31.60  28.47  22.04  21.73  21.96  36.05  46.82  25.00 
Mean phi                               0.69  -1.57   0.67  -0.10   0.22  -0.07  -0.10  -1.66  -1.42   0.88   1.69  -2.14 
Latitude  -19.42 -18.45 -20.67 -17.33 -17.83 -22.20 -17.18 -22.96 -19.06 -20.83 -22.83 -23.78 
Longitude  145.61 146.56 147.62 145.09 144.10 148.32 144.76 149.21 146.69 147.95 147.01 150.16 
Altitude (m)                        219.75 148.58 185.24 290.40 154.90 161.31 168.22 284.37 217.67 168.31 229.09 385.88 
Slope (m/m)                          0.00   0.02   0.00   0.00   0.00   0.01   0.00   0.01   0.01   0.00   0.00   0.01 
Distance From Source 
(km)               

152.16  18.92  78.64  90.07 211.99  67.47 145.39  36.82  34.63  40.43 116.99  11.63 

Mean annual rainfall 
(mm)               

966.93 2518.68 1231.06 1414.46 996.95 1414.44 1235.54 1497.97 1792.10 1201.06 956.69 1505.61 

Water Temp (°C)                 25.05  21.15  22.93  24.23  26.20  22.00  26.4  19.73  21.90  23.58  21.10  18.75 
Conductivity (µS/cm)         334.00 120.62 362.51 107.07 273.50 314.86 169.32 158.11 183.96 393.30 264.87 145.24 
Dissolved oxygen (mg/L)     7.47   7.91   7.50   7.62   7.31   7.28   7.60   8.46   8.01   8.19   6.96   7.65 
pH                                       7.76   6.97   7.64   7.20   7.67   6.93   7.36   7.31   7.27   7.49   7.35   7.17 
Turbidity (NTU)                  43.85   2.89   4.11  16.62  21.96  63.65  19.51   3.69   3.55   6.75 136.22   7.16 
Alkalinity (mg/L CaCO3)   110.38  34.44 130.29  31.24 102.29  50.58  85.28  39.98  47.79  97.89  77.71  66.78 
Total Nitrogen (mg/L as 
N)                     

  0.61   0.19   0.31   0.20   0.46   0.55   0.34   0.30   0.22   0.44   1.29   0.31 

Total Phosphorus (mg/L 
as P)                     

  0.05   0.01   0.02   0.01   0.03   0.06   0.02   0.02   0.01   0.02   0.11   0.02 

Mean wet season 
monthly rainfall   

134.09 341.45 163.74 200.24 143.69 182.39 179.69 190.59 245.79 162.62 120.82 185.01 

Mean dry season monthly 
rainfall     

 28.48  76.36  39.15  34.42  27.01  54.28  30.85  57.17  52.16  37.01  38.63  64.74 
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Table 4.5. Univariate analysis of variance between 12 SOM defined clusters using 
environmental variables as predictors. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Table 4.6. Mahalanobis distance between groups using set of environmental variables 
as predictors.  
 
         2     3     4     5     6     7     8     9    10    11     12 
1      3.08  1.50  2.38  1.09  2.10  1.51  2.39  2.18  1.78  1.76  3.02 
2            2.59  2.48  3.25  2.07  2.80  2.31  1.63  2.88  2.87  2.39 
3                  2.02  1.92  1.99  1.71  2.02  1.62  1.49  2.09  2.64 
4                        2.46  2.32  1.64  2.39  1.81  2.39  2.65  2.73 
5                              2.51  1.39  2.84  2.55  2.23  2.27  3.43 
6                                    2.14  1.81  1.74  1.99  1.50  2.10 
7                                          2.55  2.05  1.87  2.29  3.13 
8                                                1.52  2.09  2.36  1.56 
9                                                      1.95  2.34  2.22 
10                                                           2.21  2.88 
11                                                                 2.66 

 
 
 
 
 
 
 
 

Variable                                     F       P 
Mean dry season monthly rainfall    24.3   0.000 
Distance From Source (km)                 22.4   0.000 
Longitude    22.0   0.000 
Latitude    22.0   0.000 
Mean annual rainfall (mm)                 21.9   0.000 
Slope (m/m)                               20.2   0.000 
Mean wet season monthly rainfall    18.6   0.000 
Max Velocity (m/s)                    18.0   0.000 
Water Temp (°C)                           16.8   0.000 
Total Nitrogen (mg/L as N)                       13.4   0.000 
Total Phosphorus (mg/L as P)                       10.3   0.000 
pH                                        10.1   0.000 
Turbidity (NTU)                           10.0   0.000 
Cobble (%)                                 8.9   0.000 
Conductivity (µS/cm)                       8.4   0.000 
Alkalinity (mg/L CaCO3)                    8.3   0.000 
Altitude (m)                               6.4   0.000 
Pebble (%)                                 5.7   0.000 
Mean phi                                   5.4   0.000 
Boulder (%)                                5.0   0.000 
Sand (%)                                   4.7   0.000 
Silt/Clay (%)                              4.4   0.000 
Dissolved oxygen (mg/L)                                  3.3   0.000 
Bedrock (%)                                2.2   0.015 
Gravel (%)                                 2.0   0.024 
Habitat depth (m)                                1.5   0.131 
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Figure 4.6. Bioregions of Queensland based on aquatic macroinvertebrates, defined by 
NR&M (in preparation).
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Figure 4.5. Distribution of 12 SOM defined clusters (clusters are shown in groups of 4 for readability), reference sites, only macroinvertebrates. 
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c) 
 

Figure 4.7. Distribution of rainfall pattern in QLD: a) mean annual rainfall, b) mean 
dry season rainfall, c) mean wet season rainfall. 



61   

 
Table 4.7. Results of the univariate analysis of variables between SOM defined 
clusters, macroinvertebrate taxa (only first 20 are shown).  
 
Variable                           F       P 
Taxonomic Richness    119.6   0.000 
Hydrometridae           51.2   0.000 
Baetidae                36.8   0.000 
Isostictidae            31.4   0.000 
Helicopsychidae         30.4   0.000 
Psephenidae             29.6   0.000 
Elmidae                 27.6   0.000 
PET Richness                27.1   0.000 
Ostracoda               24.1   0.000 
Cladocera               24.0   0.000 
Ancylidae               22.3   0.000 
Corduliidae             22.1   0.000 
Notonectidae            21.4   0.000 
Naucoridae              20.4   0.000 
Ptilodactylidae         20.4   0.000 
Hydropsychidae          19.2   0.000 
Caenidae                17.2   0.000 
Aeshnidae               16.2   0.000 
Pleidae                 16.2   0.000 
s-f Chironominae        16.0   0.000 
 
 

Discussion and Conclusion 

 
In this chapter I investigated natural variability within macroinvertebrate communities 
using two datasets from Victoria and Queensland using SOM as clustering and 
visualisation tool. Component planes have been used to investigate the major 
environmental gradients affecting macroinvertebrate communities in two states. 
Slightly different approaches in combining statistical methods and SOM were used for 
each dataset. Both approaches provided interesting insights into the relationships 
between environmental factors and structure of macroinvertebrate communities.  

Clusters discovered by SOM were meaningful and easily explainable (hypothesis 1). 
Hypothesis 2 is accepted in case of Victorian data as clusters of sites with similar 
macroinvertebrate assemblages discovered by SOM were largely in accordance with 
previously defined bioregions of state of Victoria (Metzeling et al., 2001). SOM 
component planes provided easy and highly visual way to assess relationship between 
variables and define the ones, which are likely to be of importance in shaping 
macroinvertebrate assemblages within each group (hypotheses 3 and 4). Discriminant 
analysis has been used to provide further, more quantitative insight into the relative 
importance of environmental factors for structuring the macroinvertebrate 
communities.  

In the case of Queensland dataset SOM model of occurrence pattern of 69 
macroinvertebrate taxa produced largely meaningful and explainable clustering. 
However, the pattern discovered only vaguely resembled biological regions defined 
by NR&M, so in case of Queensland data hypothesis 2 is not true. This can be 
explained by differences in the methods and data used to define the bioregions. I used 
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only riffle habitat and only common taxa when bioregions were outlined using data 
from all habitats and all taxa sampled, plus bioregions were identified using statistical 
clustering techniques (unpublished results). Still, SOM identified changes in 
community composition from south to north and from coastal areas to inland, the 
major directions in the distribution of bioregions.   

 
 

Figure 4.8. SOM component planes of the first 10 abiotic and first 10 biotic variables 
best discriminating between SOM defined clusters (all variables normalized between 
1 and 0). 

 
 
Three main environmental gradients have been identified using ANOVA and 
comparison of SOM component planes namely: geographical location, rainfall pattern 
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and distance from source. Water quality, temporal variables and substrate composition 
appear to be less important but still significant in discriminating between types of 
macroinvertebrate communities defines as SOM clusters. The structure of 
macroinvertebrate community is affected by all those gradients, which in combination 
can produce infinite number of possible environmental conditions. However, we need 
to keep in mind that the environmental variables provide explanation only to a certain 
degree. Biotic interactions such as competition and predation are the other significant 
factors structuring macroinvertebrate communities. Bun and Davies (2000) showed 
that an assumption that changes in macroinvertebrate communities are always 
reflection of changes in environmental factors overrides importance of biological 
processes and can lead to erroneous conclusions about causes of these changes. For 
example, Power (1990) showed that in the presence of predatory fish, smaller 
predators were reduced, tube-weaving chironomids larvae proliferated, and the 
benthic substrate was reduced to a midge-infested residue. Predation effect of this 
kind can be a major cause of spatial and temporal variation in stream community 
structure. Biomonitoring models based entirely on abiotic variables would be unable 
to predict such marked changes in the nature of the stream. Predator-caused shift in 
the community structure can be mistakenly attributed to some form of anthropogenic 
disturbance. Modelling biotic interactions within macroinvertebrate communities can 
be an interesting direction for the future research.  
 
 
4.2 Exploring relationships between environmental 
variables and diversity of stream biota in four NSW 
catchments 
 

Introduction 

 
When an ecologist is presented with a new dataset for the analysis the first logical step 
is to have a general view of the possible major relationships between variables. 
Traditionally this is done using scatter plots, box-plots, various correlations and 
spatial distributions on GIS maps. SOM component planes are an interesting and 
underutilised method for visualising relationships between variables. It provides an 
opportunity to see the possible correlations, no matter whether linear or non-linear and 
occurring on broad or local scale. It also allows visualising spatial and temporal 
gradients using the very simple and quick procedure of building SOM and choosing 
the option of viewing the input variables as component planes, which is provided by 
the majority of software packages implementing SOM.  
 
Traditionally, component planes are visualised using hexagonal or square cells 
coloured in accordance with the mean value of the variable in question in each cell.  
The cells are arranged in two-dimensional grid resulting in variable coloration of the 
whole grid in accordance with the spatial or temporal pattern. The information 
reflected by the colour can be quantified as mean value within cell, however, this is 
not particularly useful in the initial stage of the data analysis where we are mostly 
interested in broad general patterns, identifying areas containing extreme values or 
risk values, areas or high biodiversity values, etc. Visual information provided by 
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colouring patterns of component planes is often enough to identify possible 
relationships, which could be further explored using a variety of methods.  
 
This chapter aims to demonstrate the use of the SOM component planes on dataset 
provided by Bruce Chessman (Land and Water Conservation, NSW) and collected in 
four catchment of NSW as a part of MARA survey (see Chapter 3 for the data 
description). Even though, NSW data is somewhat limited in term that occurrence 
pattern or abundance of individual taxa was not provided, it is still very interesting as 
it contains biotic variables reflecting not only taxonomical richness of 
macroinvertebrate communities but also richness of native fish, macrophytes and 
diatoms, plus a range of environmental variables including water chemistry. This 
provides an interesting opportunity to use SOM component planes to gain an insight 
into relationships between both environmental factors and biotic variables.  
 
The main hypotheses for this study are:  
 
1)  SOM component planes is a very useful tool for the initial analysis of data 
containing a number of biotic and abiotic variables. 
 
2)  It is possible to make certain assumptions about the environmental status of certain 
areas and suggest hypotheses for the further testing using the SOM component planes 
only.  
 
3)  SOM component planes allow detecting both linear and non-linear relationships 
between variables. 
 

Material and methods 

 
I used a total of 22 variables (Table 4.8), both biotic and abiotic to demonstrate use of 
SOM component planes for understanding complex and often non-linear relationships 
in ecological datasets. In this case we are not interested in clustering but visualising 
component planes as an initial stage of the data analysis. For this purpose I used 22 
variable as an input for SOM. Standard procedure with default parameters offered by 
SOM toolbox for Matlab was used to build, train and estimate the quality of SOM. All 
data was normalised prior the analysis using “log” transformation.  
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Table 4.8.  Description of the variables from NSW dataset.  
 
Variable Abbreviation MIN MAX MEAN
Site elevation (m ASL) Elev 5.00 780.00 268.16 
Site slope (m/km) Slope 0.10 88.89 8.52 
Site discharge (m3/s) Flow 0.00 6.13 0.28 
Average of maximum and minimum stream width 
per quadrat (m) 

Width 0.22 44.38 7.27 

Average of maximum stream depth per quadrat 
(m) 

Depth 0.01 3.19 0.72 

Number of diatom species per site DiatomSp 6.00 78.00 38.31 
Number of native aquatic macrophyte species per 
site 

MacrNaSp 2.00 29.00 11.17 

Number of native macroinvertebrate families per 
site 

InveNaFa 13.00 59.00 31.12 

Number of native fish species per site FishNaSp 0.00 9.00 2.17 
Macroinvertebrate family biotic index (SIGNAL 
1995 version) (range 1-10) 

SIGNAL95 4.35 7.02 5.42 

Number of native fish individuals per hour of 
electrofishing 

FishNNPH 0.00 1630.00 201.16 

Water temperature at 0.2 m (C) TempSur 6.40 38.00 20.14 
Turbidity at 0.2 m (NTU) Turb 0.40 64.70 12.30 
Electrical conductivity at 0.2 m (uS/cm) EC 33.00 2330.00 370.45 
pH at 0.2 m pH 4.42 8.70 7.42 
Ammoniacal nitrogen at 0.2 m (mg/L) NH3 0.01 1.60 0.06 
Oxidised (nitrate plus nitrite) nitrogen at 0.2 m 
(mg/L) 

NOx 0.01 1.00 0.05 

Filterable phosphorus at 0.2 m (mg/L) FiltP 0.00 0.85 0.03 
Bank erosion score (range 0-100) Erosion 0.00 96.43 8.37 
Number of alien fish individuals per hour of 
electrofishing 

FishANPH 0.00 4736.67 273.12 

Stock damage score (range 0-100) Stock 0.00 78.13 13.64 
Catchment area above site (km) CatArea 1.00 1815.75 231.75 
 

Results 

 
The parameters of the resulted SOM were: map size 9x 6, final quantization error: 
0.54, final topographic error:  0.017. Figure 4.9 shows hit diagram showing location  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.9. Hit diagram, hits for four catchments shown in different color. 

Adelong 

Wollombi
Bega 

Castlereagh 
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of the catchment specific subsets on the general SOM. It is obvious that all four 
subcatchments are quite different from each other with very little overlap between 
them. 
 
Figure 4.10 shows component planes for the physical properties: elevation, slope, 
flow, width, depth, catchment area above the site and risk factors as: conductivity, pH, 
NO3, stock damage score, NOx, phosphorus, erosion score, turbidity and water 
temperature at the surface. Castlereagh and to some extent Adelong catchment are 
characterised by higher elevations than the other two catchments. Width and depth are 
generally high in Bega and Wollombi, with some deep and wide sites located in 
Castlereagh.  Some sites in Bega and Castlereagh have relatively high flow, when in 
Wollombi flow is mostly uniformly low.  
 
When we look further at the risk factors (Figure 4.10) and biotic variables (Figure 
4.11) it becomes clear which areas are most likely experiencing some kind of 
anthropogenic impact. To provide some comparison between the information 
extracted only from study of component planes by a researcher totally unfamiliar with 
an area and reality we inserted short description of each subcatchment taken from 
“Assessing the conservation value and health of New South Wales rivers. The PBH 
(Pressure-Biota-Habitat)” report prepared by Bruce Chessman, Land and Water 
Conservation, NSW, 2002.  
 

Castlereagh 

 
Component planes: 
 
Most of the subcatchment is characterised by relatively high elevation with some 
slopy sites. Flow is generally low. Sites are generally not wide, depth is variable. The 
potential problems with water quality indicated by very high phosphorus, erosion at 
places and turbidity in some parts. Conductivity is highly variable indicating potential 
problems with salinisation at some places, pH mostly high. Temperature is generally 
not too high, indicating that at least some parts of the catchment have a good riparian 
vegatation cover. Variable, and generally not high number of native 
macroinvertebrate species which seems to be decreasing along the gradient of 
increasing turbidity, which is variable throughout the catchment. SIGNAL95 index 
vary (seems to be decreasing in areas with high turbidity as well). Very low number 
of native fish species, but fish abundance is high in some places. Generally not too 
high abundance of introduced fish. The area is most likely quite heterogeneous with 
some sites in good condition and some are significantly degraded. The most likely 
problems are water extraction, salinity, turbidity, nutrients (phosphorus) and erosion. 
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Figure 4.10. SOM component planes for the natural settings and risk factors in NSW 
dataset. 

 

Figure 4.10. SOM component planes for the natural settings and risk factors in 
NSW dataset.  
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Figure 4.11. SOM component planes for the biotic variables in NSW dataset. 

 
From Chessman, (2002): 
 
“The Castlereagh River rises on Westons Mountain in the east of the Warrumbungle 
Range at the elevation of about 900 m. Most of the Castlereagh subcatchment has 
been cleared for grazing of sheep and cattle, but substantial areas of native forest 
remains, especially in the west. The Castlereagh River is impounded approximately 9 
km downstream of its source by Timor Dam. Castleagh river above Binnaway was 
classified as having a high level of both water extraction and environmental stress. 
Riparian vegetation was rated in the medium stress category and both channel 
stability an in-stream structures in the high stress category.” 
 

Adelong 

 
Component planes: 
 
The subcatchment is characterised by medium to high elevation, mostly low flow but 
some streams can be wide and many are comparatively deep. Generally low 
conductivity and high pH, high level of nutrients, NH3 and NOx almost everywhere 
and phosphorus at some places. Erosion and turbidity are probably not a major 
concern. Mostly low water temperature indicating a good riparian vegetation cover. 
Number of macroinvertebrate species, native fish species and abundance of native 
species are low to medium, but uniformly low abundance of introduced fish species. 
Surprisingly high diversity of diatom species.  
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From Chessman, (2002): 
 
“Most of the Adelong subcatchment has been cleared for grazing of sheep and cattle, 
but extensive radiata pine forests and scattered orchards lie in the south. In the 
Stressed River assessment Adelong was characterised by high level of water 
extraction and a medium level of environmental stress. Poor environmental ratings 
were given for a bank stability index, the level of development, percent of the sub-
catchment with non-conservation uses, a tree shortfall index and total phosphorus 
level in Adelong Creek. Good ratings were given for riparian vegetation cover, width, 
stream bed condition and salinity and very good ratings for lack of overcropping and 
for stream pH.”  
 

Bega 

 
Component planes.  
 
The area with high variability regarding to both geomorphological and water quality 
factors. Low elevation, variable flow, very high to very low. Some sites are very wide 
and deep. Some sites are characterised by high conductivity but mostly conductivity is 
low to medium. Low pH indicates possible acidification problems. Many sites 
sustained heavy stock damage. Mostly high level of NOx, but phosphorus is low, so 
the turbidity. Heavy erosion at places. It is likely that not many sites have a good 
riparian vegetation cover as water temperature is medium to high, exceeded only by 
sites at Wollombi subcatchment. Medium to high number of macroinvertebrate 
species and diatoms, same for the number of macrophyte species, however SIGNAL 
is mostly low to medium. Very high diversity and abundance of native fish species at 
some sites, and very low abundance of introduced species.  Most likely problems are 
water extraction, acidification, nutrients, stock damage and clearance of riparian 
vegetaion, however, et least some parts of the subcatchment are in good condition as 
high diversity and high abundance of native fish are observed.  
 
From Chessman, (2002). 
 
“About half of the Bega River catchment is forested, with the remainder cleared for 
grazing. Two tributaries are impounded. Water extraction was considered from low to 
high in various parts of the sub catchment, leading to unresolved management 
classification. The various parts of the subcatchment is variable in regards to other 
risk factors with many of them experiencing degradation of riparian vegetation and 
bank and bed instability, however, high species diversity and threatened fish species 
have been found throughout the subcatchment.” 
 

Wollombi 

Component planes 
 
Flow and conductivity are two most obvious risk factors in Wollombi subcatchment. 
Elevated nutrients are found only at some sites, however, there are many sites with 
high turbidity and erosion is also high at some places. Very high water temperature 
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indicating that most of the subcatchment is most likely cleared of the riparian 
vegetation. Very low diversity of native macroinvertebrates and diatoms, variable 
diversity of native fish, averaging to medium, high at some sites. Very high 
abundance of introduced species, and uniformly low abundance of native species.  
This all indicates that this subcatchment is probably experiencing the highest 
degradation in comparison with previous three with major problems as water 
extraction, clearance of riparian vegetation, sedimentation (turbidity) and possibly 
secondary salinisation.  
   
From Chessman, (2002). 
 
“Wollombi Creek characterised by a high level of both water extraction and 
environmental stress. The primary environmental stress factors listed were bank 
instability, degradation and sedimentation of the stream bed and macroinvertebrates in 
poor condition, however high diversity of fish species is found there contributing to 
conservation value of the subcatchment.”  
 
The exercise above shows that is it possible to characterise geographical areas just by 
using SOM component planes and make an initial assumptions which can be further 
tested. It is also possible to detect possible correlations between variable and suggest 
the causal relationships. For example, we can see from the component planes that 
number of native fish species and elevation appear to be in negative relationship, and 
this relationship appears to be linear. The Product –Momentum correlation between 
these two variables is: R=-0.56, p <0.05, and has been observed that diversity of 
native species in NSW is negatively correlated with altitude and tends to be the 
highest in the lowland streams (Chessman, 2002).  
 
Number of native macroinvertebrates appears to be low at the areas with high 
turbidity, high water temperature and high abundance of introduced fishes. R between 
turbidity and macroinvertebrate diversity is –0.35 , p<0.05, between water 
temperature and macroinvertebrate diversity is –0.28, p<0.28. We can assume that in 
case with water temperature relationship is likely to be unimodal as the highest 
diversity of macroinvertebrates is found in the areas of medium water temperature and 
decreasing towards extemes. Indeed, the scatterplot shown on Figure 4.12 confirmes 
this trend. In case of turbidity relationship is likely to be non-linear (logarithmic), as 
diversity of macroinvertebrates decreasing not uniformly along the turbidity trend. If 
we examine scatterplot (Figure 4.12) we can see that there is an obvious non-linear 
relationship between these two variables. 

 

Discussion and conclusion 

 
The aim of this study was to demonstrate use of SOM component planes for the 
analysis of datasets containing a number of biotic and abiotic variables. Component 
planes provide quick and simple method for evaluation of the geographic distribution, 
possible gradients and correlations in the data (hypothesis 1). It has been shown that it 
is possible to quickly characterise the distribution and the extent of anthropogenic 
impact in various areas with reasonable accuracy and define possible direction for the 
further data analysis (hypothesis 2). It is also possible to detect possible non-linear 
relationships between variables and suggest the nature of the relationship (as linear, 
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unimodal, etc.), which has been demonstrated using example of fish diversity and 
elevation (hypothesis 3), macroinvertebrate diversity versus turbidity and water 
temperature. 
 

 

Figure 4.12. Scatterplots for the number of macroinvertebrate families versus water 
temperature and turbidity. 

 
Use of component planes provides flexible, highly visual and easily understandable 
approach for the data mining and exploration. Closer look at the component planes for 
NSW dataset is likely to provide much more information than has been described 
here. For example SOM built for each subcatchment would provide more spatial 
resolution, and possibility to detect gradients on a finer scale, but for the purpose of 
this study we consider it not necessary. 
 
 
4.3 Exploring the effect of water quality on trophic 
structure of the macroinvertebrate communities using 
SOM in combination with Canonical Correspondence 
Analysis (CCA) 
 

Introduction 

 
An understanding of the ecological processes within streams and rivers is an 
important prerequisite for the development of management strategies and guidelines. 
Analysis of the trophic structure based on functional feeding groups (FFG) is 
commonly used to assess the health and integrity of aquatic ecosystems. FFG include 
taxa of the same feeding type, using similar sources of energy and matter. There are 
different partitioning systems and approaches to the division of macroinvertebrates 
into functional feeding groups with the 5 main categories most commonly recognising 
(Cummins, 1973; Chessman, 1986): 

- Shredders feed on living or decomposing plant tissues, including wood, which 
they chew or gouge; 
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- Collectors feed on a fine particulate organic matter by filtering particles from 
suspension or fine detritus from sediment; 

- Scraper or grazers feed on attached algae and diatoms by grazing solid surfaces;  

- Predators feed on cells of living animal tissues by engulfing and eating the whole 
or parts of animals or piercing prey and sucking body fluids; 

- Filterers strain the water column for fine organic matter such as micro-algae and 
some tiny fragments of plant and animal material.  

Invertebrate functional group analysis is known to be sensitive to natural geomorphic 
features and anthropogenic disturbances that occur along a river continuum (Vannote 
et al., 1980; Cummins, 1973). 

The River Continuum Concept (RCC) relates the sources of energy inputs into the 
aquatic system with the aquatic biota that inhabit that system. In the headwaters of a 
catchment, streams are often heavily shaded and light is low, photosynthesis is 
restricted and energy derives from high inputs of materials such as leaves, woods etc., 
shredders tend to predominate, because they can break up large matter into finer 
particles. Downstream from the headwaters of a catchment, collectors are often found 
to dominate community structure as they are able to filter the fine particles generated 
upstream and themselves add particles (faeces for example) to the current. Where the 
waterway becomes broader, with increased available light allowing photosynthesis in 
the middle reaches, algae, diatoms and macrophytes develop and serve as food for 
grazers. Predators tend only to track the localized abundance of food resources 
(Vannote et al., 1980).  

Although a valuable theoretical model, the RCC was developed for northern 
hemisphere and does not seem to apply to many Australian streams (Boulton and 
Brock, 1999). One of the reasons for this is that the leaf litter is relatively tough and 
shredders are rare. Stream flow is highly variable and regimes of flooding and 
disturbance appear to be more important in structuring riverine communities. Lake et 
al. (1986) suggest that in Australia, patterns in feeding group representation are likely 
to be more complicated than the RCC suggests. 

When in good condition communities of macroinvertebrates are known to have high 
diversity and stable dynamic of proportional distribution of FFG for the given natural 
conditions. Disturbances caused by anthropogenic influences as contamination, 
suspended solids, nutrients load often result in a decrease in diversity within 
macroinvertebrate assemblages and changes in the structure of communities including 
changes in the proportional composition of trophic groups. Widely recognised 
changes in FFG associated with human activities include reduction in shredders with 
loss of riparian habitat, and consequent reduction in autochthonous inputs. Another 
possible change reflecting anthropogenic impact is an increase in grazers with 
increased periphyton (algae and diatom) resulting from enhanced light and nutrients 
entry. 

I am aware of only one application of SOM to investigate the spatial distribution of 
macroinvertebrate functional groups. Cereghino (in press) used SOM to model 
differences in macroinvertebrate functional structure among microhabitat types in 
low-ordered streams in Southwest France. Water depth, current velocity, substratum, 
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and particulate organic matter were used to characterize the microhabitats of 
macroinvertebrates partitioned into functional feeding groups (FFGs) based on the 
nature of the food typically ingested and the feeding behaviour. Four clusters was 
identified on the SOM map (k-means algorithm) according to eight habitat variables, 
this classification being chiefly related to depth and mean current velocity, and to the 
size of the mineral particles. Similarly, four subsets were derived from the SOM 
according to the proportions of the various FFGs. Gathering-collectors and predators 
dominated in deeper areas, with cobbles and pebbles subjected to high current 
velocities. Shredders, filtering-collectors, and grazer-scrapers dominated in sandy to 
stony areas, at low depth and current velocity. Correlation coefficients between 
observed and predicted values of each FFG were highly significant. The percentage of 
gathering-collectors was negatively correlated with the percentage of all other FFGs, 
for both observed and predicted data. Significant relationships were also obtained 
between shredders and grazer-scrapers, and between predators and grazer-scrapers for 
predicted data only. On a local scale, different areas were the template for different 
ecological functions. Energy and habitat use by FFGs may be regulated by the 
patchiness of the habitat mosaics, and, subsequently the microdistribution of FFGs 
can be related to habitat template theory. 

The current study aims to explore the relationships between trophic structure of 
macroinvertebrate communities and water quality factors as temperature, dissolved 
oxygen, turbidity, conductivity, pH and nutrient concentrations using Self Organising 
Map (SOM) neural networks as described by Kohonen (1995). In order to provide 
more insight into possible structuring forces for the assemblages with different trophic 
structure we used a combination of SOM and Canonical Correspondence Analysis 
(CCA).   
 
CCA is a popular method for relating environmental gradients to species distribution. 
It was introduced by ter Braak in 1995 as an extension of commonly used Canonical 
Analysis (see Chapter 2 for more on CCA). Output from CCA algorithm includes axis 
scores for sampling units and species and vectors representing the correlations 
between the environmental variables and principal axes can also be included on these 
plots, creating a biplot (Quinn and Keough, 2002). Traditionally sampling units or 
species as centroids of all sampling units where the species has occurred are 
visualised in biplot with vectors representing gradients in environmental variables. 
However, trying to analyse large datasets this way can be very complex and 
visualising all sites will produce very busy and ultimately not informative plots. One 
possible solution to this problem is to reduce dimensionality of the data prior to 
application of CCA by clustering sites in similar groups and use these groups instead 
of sites as an input to CCA. In this chapter I explore this option by clustering sites on 
the basis of their similarity in regards to trophic structure using SOM and then apply 
CCA to the resulting clusters in order to explore the input of various environmental 
factors into structuring of these clusters.  
 
The main hypotheses for this study are: 
 
1) RCC is not applicable for the Queensland stream systems. 
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2) Water quality variables affect trophic structure of macroinvertebrate communities. 
Different proportions of FFG are likely to be found in the areas with different water 
quality.  
 
3) Using SOM it is possible to identify typical FFG structures and explain them using 
environmental variables. 
 
4) SOM component planes are useful tool for the understanding relationships between 
FFG and water quality variables. 
 
5) It is possible to extract additional information by using combination of SOM and 
CCA.  
 

Data and methods 

NR&M dataset was used for this study, including two habitats: riffle (1333 samples) 
and edge (2442 samples). Only common taxa found in more than 5% of sites were 
used (69 taxa in total).  

Each taxon (mostly family level) was assigned a number of functional feeding group 
(as described by Chessman, (1986)). Five functional groups were used: collector, 
grazer, predator, filterer and shredder.  Some taxa (like Leptophlebiidae) include 
species with membership to more than one functional group and were considered as 
Leptophlebiidae 1, Leptophlebiidae 2, etc. The resulted total number of 
taxa/functional group considered for the analysis was 77. We calculated the 
percentage of taxa belonging to each functional group relative to the total number of 
taxa present in each sample. The eight water quality variables and seven geoclimatic 
variables were used for the analysis. 
 
The first SOM was built in order to find possible correlations between the functional 
groups themselves and water quality variables using component planes. Component 
planes show the value of one variable in each map unit.  For this purpose we used 
both percentage values of 5 functional groups and 8 water quality variables as an 
input. The second SOM was built specifically for the purpose of clustering data 
matrix containing percentage values of FFGs in order to find similar spatial patterns 
and relate them to the water quality variables. For this purpose we only used FFGs as 
an input. SOM was partitioned into a minimal optimum number of clusters using k-
means partitioning algorithm implemented in SOM toolbox for Matlab. The resulting 
clusters were then analysed using Mahalonobis distances between groups and box and 
whiskers plots.  

For the first SOM, data was log-transformed to avoid dominance of large values of 
conductivity and turbidity. We did not transform data for the second SOM as all 
values were expressed as percentage values between 0 and 100. 

In order to provide more insight into the relationship between trophic structure and 
water quality we applied CCA to the data matrix containing SOM defined clusters and 
environmental variables. Significance of axis and each variable has been evaluated 
using Monte Carlo test (999 permutations) and only significant variables (p < 0.05) 
were used for the final model.  



75   

 

Results 

 
Succession of FFGs along the stream order gradient in reference and test conditions.  
 
Figure 4.13 shows box plots for the distribution of proportional FFG along stream 
order gradient for reference and test sites in the riffle habitat. In general, under the 
close to natural conditions in Queensland proportion of collectors and predators 
steadily increase downstream. Proportion of grazers slightly increases in mid-order 
streams and decreases further down and proportion of shredders decreases along the 
gradient which in general terms agrees with RCC. Filterers appear to become slightly 
more common in lowlands but this trend is not very pronounced. These trends become 
much less obvious when the wide range of sites in different conditions is considered. 
Shredders appear to be following the natural pattern to a certain extent and percentage 
of collectors slightly increases downstream, otherwise there is no distinctive pattern 
evident. This suggests that water quality is a contributing factor into the changes in 
the natural succession of FFG along the stream order gradient.   
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a) 

b) 
 

Figure 4.13. Riffle habitat, box and whiskers plots for median, range (20-80%) and 
non-outlier minimum and maximum of trophic groups in different stream order 
categories a) reference sites, b) test sites.  

 
 
 
 
 
 

 Collector
 Grazer
 Shredder
 Predator
 Filterer1 2 3 4 5 6 7 8 9

Stream Order

0

10

20

30

40

50

60
%

 Collector
 Grazer
 Shredder
 Predator
 Filterer1 2 3 4 5 6 7 8 9

Stream Order

0

10

20

30

40

50

60

%



77   

a) 
 

b) 
 

Figure 4.14. Edge habitat, box and whiskers plots for median, range (20-80%) and 
non-outlier minimum and maximum of trophic groups in different stream order 
categories: a) reference sites, b) test sites. 

 
In case of the edge habitat there is slight decrease in the proportion of grazers and 
shredders along the stream order gradient and uneven increase in collectors and 
predators in reference sites, but much less pronounced than at the riffle habitat. In 
case of test sites succession of FFG does not appear to follow any particular trend 
(Figure 4.14). 
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Using SOM component planes for visualisation of the relationship between water 
quality variables and feeding functional groups  

 
Riffle  
 
The specifications of the SOM built and accepted for this task were: size 17x11, final 
quantisation error: 0.25, final topographic error:  0.07. 
Figure 4.15 shows component planes for 5 trophic groups and eight water quality 
variables. Darker shades represent higher values. The component planes for collectors 
and predators show increases in the proportion of both groups from the top to the 
bottom of the map, although, this trend is not so clear in the case of collectors with a 
patch of medium values in the top right corner. The component planes for grazers and 
shredders show the opposite trend with proportional values decreasing from top to 
bottom, whereas the filterers do not seem to follow this trend.  
 
The component planes for turbidity, nutrients and water temperature show increases 
in value from the top to bottom, corresponding to increases in the proportional values 
of collectors and predators. Not surprisingly dissolved oxygen (DO) follows the 
opposite trend decreasing from top to bottom, although there are still some patches 
with high DO corresponding to areas with high water temperature. Conductivity, 
alkalinity and pH show a trend of uneven increase to the right but do not resemble a 
trend in any of the functional groups or other water quality variables.  
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Figure 4.15. SOM component planes for the proportional values of functional feeding 
groups and water quality variables: water temperature (WTEM), conductivity 
(COND), dissolved oxygen (DO), alkalinity (ALK), turbidity (TURB), total nitrogen 
(N) and total phosphorus (P), see Table 1 for units.  

 
Edge 
 
The dataset for the edge habitat contained 2442 samples, many more then the dataset 
for the riffle habitat and it was quite challenging to build an SOM, which would 
clearly reflect pattern in this highly heterogeneous data set. SOM map accepted for 
this task was sized 20x13, final quantization error: 1.16, final topographic error:  0.07. 
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WTEM COND DO ALK 

pH TURB N P 
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In comparison with riffle habitat patterns in distribution of FFG in relation to water 
quality variables reflected by SOM component planes for the edge (Figure 4.16) look 
more scattered and unclear. However, middle part of the right side of the planes for 
turbidity, nutrients and dissolved oxygen deserve particular attention. This areas with 
the highest concentration of sites with high turbidity and nutrients also have the high 
proportion of collectors and predators and low proportion of grazers and shredders, it 
also have comparatively low dissolved oxygen. The similar pattern was reflected by 
SOM component planes for the riffle habitat.   
 

 
Figure 4.16. SOM component planes for proportional values of feeding functional 
groups and water quality variables, edge habitat. 
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Using SOM for clustering  

 
Riffle 
 
Resulting SOM sized 17x11 (final quantisation error: 6.32, final topographic error:  
0.08) was partitioned into 7 clusters. Box and whiskers plots for the median 
percentage of FFGs in each cluster are shown in Figure 4.17. The mean values for 
each of the FFGs and all the variables for each of the seven resulting clusters are 
shown in Table 4.9. 
 
Cluster 6 has the largest proportion of collectors and generally low proportion of all 
the other groups. Cluster 7 has a large proportion of collectors and the largest 
proportion of predators with lowest proportion of grazers and shredders. Cluster 5 has 
the largest proportion of grazers and the lowest proportion of predators in comparison 
with other clusters. Cluster 1 has the largest proportion of shredders and a large 
proportion of grazers. Cluster 4 is characterised by a relatively high proportion of 
filterers with a large proportion of predators present. Clusters 6 and 7 are generally 
characterised by a much larger distance from stream source than all the other clusters 
and are associated with greater turbidity. These two clusters are also characterised by 
lower rainfall (cluster 7 is lower then cluster 6). Cluster 7 also has the highest water 
temperature and the highest alkalinity and cluster 6 the highest values for both 
nitrogen and phosphorus. Conversely, Cluster 1 is characterised by the highest 
rainfall, lowest distance from source and lowest turbidity.  Clusters 2 and 5 have 
similar characteristic with some variability and most likely include sites in high 
rainfall areas with good/moderate water quality. Clusters 3 and 4 include a variety of 
sites with different conditions in between and are not easy to characterise according to 
either water quality or the natural settings.  
 
Table 4.9. Mean values of FFG and water quality variables for 7 SOM defined 
clusters, riffle habitat.  
 
Cluster number                        1 2 3 4 5 6 7 
Number of samples in a 
cluster                              204 234 206 125 170 129 265 
Collector     20.16  20.31  28.35  22.80  27.57  35.60  27.31 
Grazer        20.68  18.47  15.49  14.66  22.81  16.57  10.32 
Shredder      15.03  10.85  10.05  10.05  12.74   8.28   5.95 
Predator      28.59  35.08  32.07  38.37  21.28  22.63  42.42 
Filterer      10.17   4.82  10.17  19.69  13.85   4.81   6.83 
Depth                    0.19   0.18   0.18   0.17   0.19   0.18   0.16 
Velocity           0.65   0.63   0.60   0.63   0.73   0.63   0.58 
Mean phi                      -5.3  -5.17  -5.27  -4.87  -5.92  -5.58  -4.36 
Altitude                 181.79 164.42 162.03 177.12 167.05 179.27 174.08 
Slope                     0.01   0.0   0.00   0.00   0.00   0.00   0.00 
Distance From Source      36.43  55.03  74.15  72.01  63.12 120.20 147.23 
Mean annual rainfall    1979.75 1560.96 1402.86 1390.23 1730.54 1266.81 1000.73 
Water Temperature               20.68  21.99  22.86  22.17  20.62  21.68  23.23 
Conductivity          227.60 306.40 314.32 335.04 285.50 386.51 307.45 
Dissolved oxygen                      8.026   8.054   7.787   7.680   7.86   8.04   7.49 
pH                             7.34   7.48   7.48   7.48   7.44   7.60   7.49 
Turbidity                4.50   6.18   6.51   8.17   9.3  15.74  34.93 
Alkalinity       64.63  71.25  85.72  82.21  72.34  89.60 110.76 
Total N            0.35   0.40   0.43   0.34   0.49   0.85   0.44 
Total P           0.03   0.04   0.0   0.02   0.03   0.09   0.05 
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Figure 4.17. Box and whiskers plots for median values of FFG and turbidity. Box – 
20-80%, whiskers – minimum and maximum.  
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Table 4.10 shows results of univariate 
analysis between groups using only 
FFG.  Predators and collectors 
distinguish the most between groups, 
although all FFG significantly 
distinguish between groups. 
Mahalonobis distance between groups 
(Table 4.11) using FFG only was the 
greatest between groups 1, 4, 5 and 
groups 6 and 7, and group 6 and 7 
between themselves.   
  
Table 4.10. Univariate analysis of 
variance between groups using FFG 
only. 
 
 

 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 

Figure 4.18. Spatial position of sites within clusters 1, 5, 6 and 7. 

 
 
 
Table 4.11. Mahalanobis distance between groups using FFG only. 
 
Cluster                  2     3       4   5        6         7 
1               2.11     2.23    2.65    1.99    3.58    4.31 
2                     1.80    2.87    3.58    3.34    2.59 
3                            2.28   2.73    2.23    2.54 
4                                        3.38    4.37    3.47 
5                                              3.15    5.24 
6                                                                  3.80 
 
 
 

Similarly to the case with FFG, Mahalonobis distance between clusters based on 
water quality variables (Table 4.12) was the largest between groups 1, 5 and 7. 

Variable        F       P 
Predator     397.4   0.000 
Collector   178.0   0.000 
Filterer     160.5   0.000 
Grazer       143.4   0.000 
Shredder     85.3   0.000 

Cluster 6
Cluster 7

Cluster 1
Cluster5
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Table 4.12. Mahalanobis distance between groups using combination of natural 
settings and water quality variables. 
 

 Cluster              2        3         4         5        6         7   
1                    0.80    1.01    1.03    0.78    1.26    1.75 
2                               0.46    0.50    0.82    0.92    1.32 
3                                          0.46    0.95    0.79    1.05 
4                                                     1.00    0.88    1.00 
5                                                                0.96    1.68 
6                                                                           1.15 
 
Figure 4.18 shows spatial distributions of sites belonging to the two most distinctive 
groups of clusters: 1, 5 and 6, 7. Clusters 1 and 5 are located mostly along the 
coastline in the areas characterised by high rainfall, comparatively low temperatures 
and high relief. Sites belonging to Clusters 6 and 7 are more widely distributed with 
many located further inland in the flatter areas, characterised by lower rainfall and 
higher average temperatures.   
 
Figure 4.19 demonstrates the effect of turbidity on proportional distribution of 
collectors along the stream order gradient. All sites used for these plots had relatively 
ordinary nutrients concentrations (total N <0.71 and P<0.05 mg/L). The plots show 
clear increase in median percentage values of collectors, particularly in mid order 
streams.  

 

Figure 4.19. Box plots demonstrating changes in the percentage of collectors along 
stream order gradient in different turbidity conditions a) turbidity <5 NTU, b) 
turbidity >10NTU, c) turbidity >20 NTU. Box – 20-80%, whiskers – minimum and 
maximum.  

 
Edge 
 
Resulted SOM map 20x13 (final quantization error: 6.32, final topographic error:  
0.08) was partitioned into 12 clusters. Box plots for median values of proportional 
values of FFG are shown at Figure 4.20.  Trophic groups are in exactly the same order 
regarding their discriminating ability as for the riffle habitat, with predators and 
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collectors being the groups responsible for the most of the difference between clusters 
(Table 4.13).  
 
Mahalonobis distances between clusters using FFG only and both natural settings and 
water quality variables are shown at Table 4.14 and Table 4.15 respectively. In 
general clusters 10, 11, 12 and to some extent cluster 8 are being the most different 
from the rest of the clusters both using FFG and all variables. Mean values of FFG 
and all variables for each of the seven resulted clusters are shown in Table 4.16. 
Cluster 12 is dominated by collectors, with low proportion of predators, grazers and 
shredders. Cluster 11 has moderate proportion of collectors but second high 
proportion of predators and the lowest proportions of grazers and shredders. Both 
clusters 11 and 12 are characterised by the high values for turbidity, nutrients and 
water temperature, largest distance from source and relatively low mean annual 
rainfall. Cluster 8 is dominated by predators with very low proportion of collectors, 
and low to medium proportions of other FFG. It is characterised by high conductivity 
and relatively high nutrients values. Cluster 1 is being very different from clusters 10, 
11 and 12 and characterised by lowest proportion of collectors and highest proportion 
of both grazers and shredders. It is also characterised by high rainfall, low distance 
from source and low turbidity. Other clusters include sites with variable 
characteristics regarding both FFGs, natural settings and water quality characteristics. 
Similarly to the case with riffle habitat, proportion of filterer doesn’t seem to follow 
any easily defined pattern.  
 
Table 4.13. Univariate analysis of variance between clusters using FFG only, edge. 
 
Variable        F       P 
Predator     844.0   0.000 
Collector   339.8   0.000 
Filterer      261.5   0.000 
Grazer       255.9   0.000 
Shredder     92.3   0.000 





Table 4.14. Mahalanobis distance between 12 SOM defined clusters using FFG, edge habitat. 
 
               2       3       4       5       6       7       8       9      10      11      12 
1           2.40    3.79    3.51    3.15    3.82    3.57    4.94    3.95    4.38    5.61    5.84 
2                   3.94    2.44    2.21    2.66    2.10    4.55    2.52    2.12    3.86    3.64 
3                           2.38    5.51    3.56    4.32    8.19    5.97    5.61    7.35    5.12 
4                                   3.71    3.27    2.11    6.63    4.67    3.59    5.13    3.15 
5                                           4.82    1.99    3.04    3.25    2.49    2.61    4.67 
6                                                   4.31    6.76    3.37    3.73    6.01    4.04 
7                                                           4.96    4.07    2.49    3.23    3.23 
8                                                                   3.96    4.30    3.52    7.06 
9                                                                           2.30    3.91    4.81 
10                                                                                  2.33    2.95 
11                                                                                          4.37 
 
 
 

Table 4.15. Mahalanobis distance between 12 SOM defined clusters using physical settings and water quality variables, edge habitat. 
 
               2       3       4       5       6       7       8       9      10      11      12 
1           0.73    0.87    0.83    0.74    0.83    0.87    0.96    0.93    1.35    1.57    1.59 
2                   1.00    0.52    0.44    0.66    0.49    0.76    0.66    0.98    1.31    1.23 
3                           0.79    1.07    0.94    1.06    1.28    1.20    1.51    1.79    1.56 
4                                   0.56    0.72    0.57    0.97    0.72    1.05    1.39    1.20 
5                                           0.64    0.41    0.65    0.40    0.79    1.11    1.15 
6                                                   0.64    0.95    0.83    1.06    1.29    1.23 
7                                                           0.83    0.43    0.74    1.07    1.06 
8                                                                   0.72    0.97    1.29    1.28 
9                                                                           0.68    1.03    1.09 
10                                                                                  0.77    0.84 
11                                                                                          0.81 
 
 
 
 
 
 
 
 
 



 

Table 4.16. Mean values of FFG and water quality variables for 12 SOM defined clusters, edge habitat.  
 
Name                         1 2 3 4 5 6 7 8 9 10 11 12 
Number of samples in each 

cluster 
150 237 239 322 369 131 264 127 163 153 168 118 

Collector     14.54  23.51  24.96  27.91  19.56  28.06  25.69  13.33  22.97  28.68  26.99  38.26 
Grazer        15.35  10.48  18.86  13.53   9.52  12.33  10.00   6.14   9.75   6.64   3.53   4.82 
Shredder      18.07  13.40  15.60  11.79  10.93  13.63  10.41  12.38   8.63   7.89   6.23   8.47 
Predator      46.03  46.89  33.18  39.89  53.77  39.90  47.47  64.19  53.29  51.48  58.51  41.93 
Water Temperature                21.42  22.22  20.75  21.42  22.26  21.78  23.21  22.89  23.06  23.74  23.47  22.42 
Conductivity          346.5 379.28 357.01 352.34 377.51 266.51 300.99 553.13 414.52 279.30 234.01 289.97 
Dissolved oxygen                     7.31   7.63   8.03   7.93   7.32   7.32   7.45   7.40   7.21   7.13   7.10   7.65 
pH                             7.26   7.43   7.41   7.49   7.45   7.44   7.55   7.35   7.51   7.44   7.52   7.55 
Turbidity                11.95  12.71  15.84  19.69  28.41  30.14  35.93  38.02  44.90  70.97 131.51 137.27 
Alkalinity       95.24  93.80  78.02  83.50  92.68  63.93  92.75  81.60 107.08  79.97  78.60  73.11 
Total N             0.49   0.49   0.48   0.62   0.56   0.45   0.57   0.66   0.70   1.00   0.78   0.98 
Total P            0.03   0.04   0.06   0.05   0.06   0.05   0.06   0.09   0.08   0.13   0.12   0.18 
Depth                 0.3   0.35   0.35   0.33   0.34   0.35   0.33   0.34   0.31   0.35   0.37   0.37 
Maximal         0.13   0.08   0.19   0.14   0.10   0.11   0.10   0.06   0.09   0.06   0.04   0.08 
Bedrock                     4.16   3.58   3.76   2.74   3.72   2.78   2.36   2.83   2.48   3.61   4.55   1.75 
Boulder                     3.36   1.73   5.24   2.03   1.26   3.22   2.44   1.89   1.52   1.28   0.83   1.06 
Cobble                      8.56   5.71  12.85   6.91   3.74   6.54   5.87   2.37   4.61   2.36   2.28   3.39 
Pebble                      5.56   4.1   8.97   5.35   4.52   5.72   4.84   4.99   5.21   3.91   1.39   2.39 
Gravel                      8.23  10.1  11.78   8.50   7.65   9.65   8.50   8.46   7.45   7.50   4.23   8.37 
Sand                       37.7  40.52  29.91  37.65  40.50  39.96  39.71  38.07  36.07  35.49  39.30  34.76 
Silt/Clay                  32.33  34.09  27.45  36.78  38.58  32.17  36.25  41.37  42.63  45.82  47.39  48.24 
Mean phi                      -0.11   0.42  -1.09   0.63   0.96   0.13   0.68   1.28   1.34   1.66   1.89   2.08 
Altitude                  117.22 177.04 162.77 203.49 153.06 156.11 175.82 117.64 151.60 180.21 155.86 205.57 
Slope                     0.00   0.00   0.00   0.00   0.00   0.01   0.00   0.00   0.00   0.00   0.00   0.00 
Distance From Source      47.71  91.10  79.71 104.20 113.01 110.86 118.79  85.52 141.95 164.82 200.42 199.74 
Mean annual rainfall     1617.87 1411.52 1518.42 1355.62 1280.08 1447.41 1277.86 1342.92 1176.869 1016.440 959.235 1081.803 
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Figure 4.20. Box plots for median values of proportion of collectors and predators 
FFG in each of 12 SOM defined clusters, edge habitat. Box – 20-80%, whiskers – 
minimum and maximum.  

 

Using a combination of SOM and CCA 

 
Riffle  
 

First two axes explained cumulative 4.7 percentage variance between trophic clusters 
and 86 % of cluster-environmental relation. Significance of all axis was evaluated by 
Monte Carlo test (999 unrestricted permutations). All axis were significant (p<0.05). 
Table 4.17 shows cumulative variance explained, F value and significance of water 
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quality and geoclimatic variables tested. Only significant variables (p<0.05) were 
used for the final model.  

Figure 4.21 shows the resulting CCA bi-plot with SOM defined clusters in relation to 
the 9 significant variables. CCA provides a convenient visualisation of the 
relationships which were already mostly evident from the analysis of the mean values  
 

Figure 4.21. Bi-plot resulted from CCA with SOM defined clusters and eight 
environmental variables. Pie charts show mean percentages of each FFG within a 
cluster.   

 
Table 4.17.  Multivariate effects (in order of model selection) of CCA using SOM 
defined clusters as “species”.  
 
 

Variable                     Cumulative variance explained      F       P 
Mean annual rainfall     0.13   29.19   0.002
Distance From Source     0.18   11.62   0.002
Water Temperature               0.22    9.19   0.002
Season                       0.26    9.66   0.002
Mean phi                     0.28    4.26   0.002
Turbidity               0.29   3.31   0.006
Total N           0.31    3.49   0.004
Slope                   0.32   2.72   0.01 
DO                    0.33    2.23   0.026
pH                           0.34    1.7   0.11 
Alkalinity       0.35    2.07   0.06 
Conductivity          0.35    1.67   0.13 
Maximal velocity       0.36    1.66   0.14 
Depth                   0.37    1.2   0.29 
Total P           0.37    0.89   0.5 
Altitude                  0.37    0.67   0.66 
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within each of the SOM defined clusters. In general, assemblages located at the right 
hand side (clusters 1, 2 and 5) are characterised by a higher proportion of grazers and 
shredders and clusters 1 and 5 in particular are characterised by the lowest combined 
proportion of predators and collectors. These assemblages are associated with high 
rainfall and high dissolved oxygen, low water temperature, turbidity and conductivity. 
 
Clusters 6 and 7, on the contrary, are characterised by the highest combined 
proportion of collectors and predators and located on the left side associated with 
generally decreasing water quality along the gradient of increasing distance from 
source.  Clusters 3, 4 and 2 are located close to each other and closer to the middle 
section of the plot.  
 
Edge 

First two axes explained cumulative 2.1 percentage variance between trophic clusters 
and 72 % of cluster-environmental relation. All axis were significant (p<0.05) as 
evaluated by Monte Carlo test (999 unrestricted permutations). Table 4.18 shows 
cumulative variance explained, F value and significance of water quality and geo-
climatic variables tested. Only significant variables (p<0.05) were used for the final 
model. Similarly to the riffle habitat, turbidity, distance from source and mean annual 
rainfall are the variable best discriminating between clusters. Maximal water velocity 
is more important in distinguishing between groups in case of edge habitat than riffle 
because edge habitat data set includes sites with no flow, when riffle habitat requires 
some flow by definition 

Figure 4.22 shows CCA biplot for FFG clusters and significant variables, both water 
quality and geoclimatic. The overall picture is similar to that discovered in the case of 
riffle variable with the exception that conductivity and velocity are significant and 
included in the model. In generall, clusters located far from the center on the right 
hand side (10, 11, 12) are dominated by collectors or predators and have low 
proportion of grazers and shredders. Clusters 1 and 3 located directly opposite and 
characterised by relatively high proportions of grazers and shredders. The other 
clusters are located in between those two extremes and characterised by various 
combinations of FFG. The cluster 8 stands aside from the rest and associated with 
water temperature and conductivity gradient. It is strongly dominated by predators.  
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Figure 4.22. Bi-plot resulted from CCA with SOM defined clusters and environmental 
variables. 

 
 
Table 4.18. Multivariate effects (in order of model selection) of CCA using SOM 
defined clusters as “species”, edge habitat. 
 

Variable                     Cumulative variance explained      F       P 

 Turbidity     0.08 18.82 0.002 
 Max Velocity      0.12 8.36 0.002 
 Water Temperature     0.15 7.36 0.002 
 Season       0.18 6.63 0.002 
 Mean phi      0.21 4.83 0.002 
 Altitude      0.23 4.7 0.002 
 Distance from source  0.24 4.08 0.002 
 Dissolved oxigen         0.26 3.96 0.002 
 Conductivity      0.27 2.2 0.02 
 Total P        0.28 2.19 0.02 
 Rainfall       0.29 2.14 0.018 
 Alkalinity      0.3 1.94 0.03 
 Depth         0.31 1.68 0.08 
 pH          0.32 1.39 0.15 
 Slope         0.32 1.11 0.3 
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Discussion and conclusions 

 
This study explored broad patterns of proportional changes in trophic structure of  
macroinvertebrate communities in relation to water quality and geo-climatic variables. 
Self Organising Maps built both for the purpose of comparison between gradient 
changes in proportion of different FFGs and clustering FFGs into similar groups 
produced interesting and mostly logically explainable results (hypothesis 3). Results 
were broadly similar for both riffle and edge habitats, however there were some 
difference. In the case of riffle, distance from source and mean annual rainfall appear 
to be the most important geo-climatic variables for the discrimination between 
clusters of FFG. The importance of distance from source is naturally explained by the 
river continuum concept. It appears that in a case of riffle habitat in Queensland 
succession of FFG along stream order gradient to some extent follows the 
assumptions of RCC when stream conditions are close to natural (hypothesis 1 is not 
true in this case). However, this trend was practically undetectable when a variety of 
streams experiencing some kind of antropogenic impact has been analysed.  
 
In the case of edge habitat we could not observe any detectable changes in FFG along 
the river continuum neither in reference nor in test sites. One of the possible 
explanations it that edge habitat dataset includes many more sites from inland areas 
with low rainfall and intermittent flow, when riffle habitat by definition requires 
flowing water. The effect of flow might be masking natural gradients along the river 
continuum as ephemeral streams would be dominated by highly resilient fauna 
adapted to the surviving extended no flow periods despite of the site’s stream order. 
This in fact is confirmed by the fact that water velocity has more significance variable 
discriminating between FFG clusters in the case of edge habitats than in riffle habitat. 
The difference in faunal composition between intermittent flow streams and stream 
flowing most of the time is likely to be stronger in comparison with difference 
between communities sampled in streams flowing most of the time (in case of riffle 
habitat).  

Season when the site was sampled appears to be important in both riffle and edge 
habitat cases. As sites were sampled only in spring and autumn we assume that the 
difference is the previous season, which in the case of Queensland is wet season 
(summer) or dry season (winter). The effect of season can be explained by the 
influence of the previous season, in other words whether system is coming from wet 
or dry season. However, it is difficult to make any definite conclusions about the 
effect of seasonality on the trophic structure, this effect might be quite different 
depending on the geographic position of the site (as seasonal effect might be very 
different in wet tropic and in dry inland areas), plus high irregularity of seasonal 
rainfall in many areas can make it difficult to discriminate the effects with high 
confidence. This might be an interesting area for the future research.  

As turbidity, water temperature and nutrients have been found the most important 
water quality variables affecting trophic structure of macroinvertebrate communities 
for both riffle and edge habitats (hypothesis 2 is true), is it very logical to explain the 
difference in FFG succession between reference and test sites in the case of riffle 
habitat by effect of these variables in particular. Overseas studies shown that nutrient 
and sediment load as a result of land use practices overrides natural feature. In Lapwai 
Creek, an agriculturally impaired stream in Northern Idaho, functional groups of 
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macroinvertebrates were similar among sites despite expectations of differences along 
a river continuum, and the assemblage composition was markedly different from that 
found in less-impaired stream (Delong and Brusven, 1998). Despite substantial 
variation in terrain and the extent of riparian vegetation, the relative homogeneity of 
the macroinvertebrate assemblages of these sites was interpreted, via increasing 
sedimentation and the dominance of periphyton as an energy source, as evidence of 
the overwhelming effect of agricultural land use.  

Increase in water temperature is one of the result of degradation or clearance of 
riparian vegetation. It should mean increased light penetration and more favourable 
conditions in growth of algae and result in an increase in the proportion of grazers. In 
fact, whether this assumption is true is highly dependent on particular local conditions 
as substrate composition, turbidity, availability of nutrients, etc. Clearance of the 
riparian vegetation is also a factor contributing to the sedimentation and nutrients 
load. In our case we could not detect increase in the proportion of grazers associated 
with increase in water temperature. This can be explained by the fact that the FFG 
clusters associated with high water temperature also were characterised by high 
turbidity, which makes it difficult to make any definitive conclusions about effect of 
water temperature on trophic structure.  
 
Clearance of the riparian vegetation can also result in the reduction of leaf litter and 
subsequent reduction in proportion of shredders. This was confirmed by our results. 
The clusters associated with high water temperature were also characterised by 
relatively low proportion of shredders.  
 
The effect of turbidity on trophic structure is the easiest to explain. Turbidity prevents 
light penetration into the water column and slows growth of water plants and algae 
decreasing primary production and food quality (Allan, 2004). This shifts primary 
autotrophic pathways of energy transfer to heterotrophic ones with the subsequent 
change in the trophic structure of macroinvertebrate communities. Excess deposition 
of sediments also slows down break down of leaf litter by smothering leaves and 
reducing availability of oxygen to the leaf surface. This is likely to reduce the number 
of oxygen loving microbes and shredders macroinvertebrates, impairs substrate 
suitability for periphyton and biofilm production and reduces stream depth 
heterogeneity leading to decrease in pool species. Our results shown that turbidity 
causes reduction in the proportion of grazers and shredders and increase in the 
proportion of collectors and to some extent predators. This effect is most likely visible 
in mid-order streams were turbidity is naturally low. It confirmed by our results, when 
we compare succession of the FFG along the river continuum for reference and test 
sites, the natural pattern of succession becomes indistinct as turbidity and other water 
quality factors as water temperature and nutrients become artificially elevated.  
 
Effect of nutrients is increase in autotrophic biomass and production, accelerated litter 
breakdown rates and may cause decrease in dissolved oxygen and shift from sensitive 
species to more tolerant, often non-native species (Allan, 2004). Our results have 
shown that increase in nutrients (total nitrogen and total phosphorus) is associated 
with increase in proportion of predators and collectors at the expense of the other 
groups. We could not detect any pronounced increase in grazers which might be 
explained that grazers in the case of Queensland is generally more sensitive to a 
variety of stress than collectors and predators, or that the many sites with elevated 
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nutrients were also characterised by high turbidity as well (which is true in the case of 
edge habitat).  
 
It is not easy to make any assumptions about effect of conductivity on trophic 
structure of macroinvertebrate assemblages as clusters with high conductivity were 
also characterised with elevated nitrogen and phosphorus and comparatively high 
water temperatures. Cluster 8 (edge habitat) had the highest mean conductivity and 
was characterised by the highest proportion of predators and relatively low proportion 
of collectors. This might reflect complex pattern of replacement of salinity sensitive 
taxa by salinity tolerant. There is a possibility that the high conductivity might have 
different effect depending whether it associated with natural conditions (specific types 
of soil) or secondary salinisation also associated with variety of other factors as input 
of nutrients and sediments through degraded riparian vegetation.  
 
Our results have shown that Self Organising Maps and combination of SOM and 
CCA are useful methods for the analysis of patterns in trophic structure of 
macroinvertebrate communities (hypothesis 4 is true). It provided simultaneous 
reduction of data dimensionality and the visualisation of relationships between 
different types of assemblages and environmental variables. The aim of this study was 
to demonstrate use of the methods in order to reveal patterns in trophic structure of 
macroinvertebrate communities and their relation to both geo-climatic and water 
quality factors. Our results reveal a number of interesting relationships, which 
certainly can be further, investigated and improve our understanding of Australian 
freshwater ecosystems. In general, it was shown that trophic structure is affected by a 
number of both natural geo-climatic characteristics and water quality parameters. 
Increase in water temperature, turbidity and elevated nutrients can affect natural 
succession of FFG along the stream order gradients. In particular, elevated proportion 
of collectors and predators at the expense of the other trophic groups can be expected 
at the sites experiencing some kind of anthropogenic impact.  
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Chapter 5   
 
Predicting macroinvertebrate taxa and 
macroinvertebrate communities in 
freshwater streams by MLP 
 
 
5.1 Using the clean-water (or referential) approach 
and Victorian dataset 
 
Introduction 

 
The central idea of the referential approach is to study the relationship between habitat 
conditions and biota in near pristine sites and then apply this relationship to predict 
the fauna at impacted sites as if they were unimpacted (Reynoldson et al., 1997). 
RIVPAC and AusRivAs, the two most widely used assessment systems in Australia 
and UK are based on referential approach using a combination of statistical methods. 
Huong (2001) conducted an extensive study comparing the performance of the 
predictive neural network models with AusRivAs using the same dataset from NR&M 
(Queensland). The results of this study showed the ANN were able to predict the 
occurrence of stream macroinvertebrates with high accuracy and their performance 
was superior to that of AusRivAs (Huoung et al., 2001). In order to further investigate 
applicability of ANNs to the prediction of the occurrence of stream macroinvertebrate 
in Australia in accordance with referential approach I used the dataset provided by 
Victorian EPA. The main distinction of this data from the one from NR&M is limited 
number of predictor variables and the fact that macroinvertebrate occurrence data 
have been pooled together from the autumn and spring sampling events.  
 
The main hypothesis for this study is: 

ANN models can be used to predict occurrence of macroinvertebrates according to the 
referential approach in Victoria streams.  

Methods 

I used 21 variables for physical and biological habitat properties as inputs and binary 
data for the occurrence of 15 macroinvertebrate taxa as an output. The 15 output taxa 
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were randomly chosen in order to validate the models’ accuracy for common and rare 
taxa, where 5 taxa were considered to be very common (present at more than 70% of 
sites), 5 taxa to be common (present at about 50% of sites) and 5 taxa uncommon 
(present at less than 30% of all sites). The accuracy of the ANNs predictions was 
estimated as the percentage of correct predictions in testing dataset, using randomly 
chosen 30% of data not used for training.  

It was shown by Manel et al. (2001) that percentage of correct predictions as 
widespread measure of predictive accuracy is affected systematically by the 
prevalence (i.e. the frequency of occurrence) of the target organism, and reliance of 
this measure using raw can be misleading. In order to avoid the problem with 
overrepresented 0 or 1, I equalized the data by duplicating the data points so the 
dataset contains 50% of ‘0’ and 50% of ‘1’ values (see Chapter 3).  The models have 
been developed using the Neuro Solutions 4 software. The cross-validation technique 
with 10% of data has been used to determine the optimum architecture of the ANN 
and prevent overtraining.   

Results 

 
The average accuracy of all models estimated using a testing subset was 77.7%. 
Average accuracy for very common taxa was 75.6%, for common 75.9% and for 
uncommon 81.6%. In general the majority of the models were accurate, approaching 
or higher than 70% of correct predictions (Table 5.1).   
 
Table 5.1. Percent of correct predictions of occurrence of macroinvertebrates in 
streams of Victoria (testing set). 
 
 Taxa % correct 

predictions 
Very 
common 

Oligochaeta 68.44 

 Acarina 83.11 
 Dytiscidae 74.22 
 Elmidae 79.56 
 Tipulidae 72.88 
Common Psephenidae 75.56 
 Scirtidae sp 69.33 
 Ceratopogonidae 67.55 
 Coloburiscidae 84.44 
 Physidae 82.67 
Uncommon Gordiidae 87.56 
 Dugesiidae 78.22 
 Ancylidae 74.22 
 Ceinidae 92.00 

 Gyrinidae 76.00 
 

Discussion and conclusion 
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Huong et al. (2001) compared performance of multi-layered perceptron models for 37 
macroinvertebrate taxa based on 896 stream data sets from the Queensland stream 
system with that of AusRivAs. The ANN model validation by means of 167 
independent data sets revealed 73% as lowest rate and 82% as average rate of correct 
ANN predictions of stream site habitats. The average rate of correct predictions was 
slightly higher than the one resulted from our study using Victorian dataset (77.7%), 
however this difference is marginal, and might be accounted to the fact that we used 
equalized data in terms of number of 1 and 0, when Huong et al. (2001) used the raw 
data, which could influence the measurements of the accuracy. 
 
 I selected three types of taxa with different frequency of occurrence (very common, 
common and uncommon) in order to test whether ANN is able to deal with prevalence 
of presence or absence data points in the dataset. The models developed with very 
common and uncommon taxa were as accurate as those developed for the common 
taxa.  In general, ANNs developed for this study predicted the occurrence of stream 
macroinvertebrates in Victoria almost as well as those previously developed for the 
Queensland streams using NR&M data.  
 
5.2  Using the dirty-water approach and NSW 
dataset 
 

Introduction 

 
Biotic communities in streams are influenced by a large number of environmental 
factors such as the geological history of the area, environmental stability, ecosystem 
productivity, habitat heterogeneity, competition and predation (Compin and 
Cereghino, 2003). The taxonomic richness is an integrative descriptor of the biotic 
community is also strongly influenced by anthropogenic disturbances, which may lead 
to losses of taxa (Brittain and Saltveit, 1989). Therefore, taxonomic richness is often 
used as a biological indicator of disturbance. Park et al. (2003) used 
counterpropagation neural network to predict species richness and Shannon diversity 
index of benthic macroinvertebrate communities using 34 environmental variables. 
The model showed a high accuracy of the prediction (r >0.9 and 0.67 for learning and 
testing process, respectively).  
 
However, the sensitivity of taxonomic diversity in a given geographical region must 
be assessed with respect to its biotic and abiotic specificity. Dirty-water models are 
particularly interesting in this respect as they utilise a wide range of input variables, 
including those potentially altered by anthropogenic impacts. The most important 
application of the dirty-water approach is the simulation of various scenarios in order 
to predict the ecological consequences of altering input variables.  
 
In this study I attempted the prediction of two biotic indices: Number of 
Macroinvertebrate Families and Number of Native Macrophyte Species with dirty-
water models using relatively small dataset from NSW. Traditionally, models like 
RIVPACs and AusRivAs use taxa specific predictions. In Australia, there is a large 
number of even relatively common taxa, which often makes the process of taxa-
specific modelling slow and very complex. In some cases it might be advantages to be 
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able to quickly run multiple scenarios of anthropogenic impact or remediation using 
small number of biological indices as taxonomic richness, Shannon index, PET 
richness, etc. as an output, given sufficient accuracy of the predictive models.  
 
The main hypothesis for this study is: 
 
SOM component planes is a convenient tool for the detection of the relationships 
between abiotic and biotic variables. 
 

Methods 

I used a combined set of 20 physical, chemical and biological predictor variables 
(Table 5.2). The Number of Macroinvertebrate Families and Number of Native 
Macrophyte Species were used as outputs variables. A number of models were built 
and the best performing models were selected. The architecture of both models used 
for the prediction of Number of Macroinvertebrate Families and Number of Native 
Macrophyte Species was the same: 20 neurons in input layes, 6 neurons in hidden 
layer and 1 neuron in output layer, with ‘tahn’ transfer function. Because of the small 
size of the database we could not spare a subset for cross-validation purposes. Instead, 
models were trained using Bayesian regularisation (Foresee and Hagan, 1997). The 
accuracy of the ANN predictions was estimated as the correlation between actual and 
predicted output using randomly selected 30% of the dataset as validation subset, 
which was not used for training.   
 
Table 5.2. The list of predictor variables used for the development of dirty-water 
models.  
 
Variable MIN MAX MEAN
Site elevation  5.00 780.00 268.16 
Site slope  0.10 88.89 8.52 
Site discharge  0.00 6.13 0.28 
Average of maximum and minimum stream width per quadrat  0.22 44.38 7.27 
Average of maximum stream depth per quadrat  0.01 3.19 0.72 
Water temperature at 0.2 m  6.40 38.00 20.14 
Turbidity at 0.2 m  0.40 64.70 12.30 
Electrical conductivity at 0.2 m  33.00 2330.00 370.45 
pH at 0.2 m 4.42 8.70 7.42 
Ammoniacal nitrogen at 0.2 m  0.01 1.60 0.06 
Oxidised (nitrate plus nitrite) nitrogen at 0.2 m  0.01 1.00 0.05 
Filterable phosphorus at 0.2 m  0.00 0.85 0.03 
Bank erosion score (range 0-100) 0.00 96.43 8.37 
Catchment area above site  1.00 1815.75 231.75 
 
 
 

Results 

 
The correlation between predicted and actual output on the validation set was 0.7 for 
the Number of Macroinvertebrate Families and 0.79 for the Number of Native 
Macrophyte Species (Figure 5.1). 
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Figure 5.1. Predicted output versus actual output for the validation set (30% of the 
database not used for training) for: a) number of native macrophytes species, b) 
number of families of stream macroinvertebrates from NSW. 

 

Discussion and conclusion 

 
In this chapter I tested the applicability of ANNs for modelling taxonomical diversity 
of macroinvertebrates and macrophytes in NSW streams by using the ‘dirty-water’ 
approach. This was more challenging in comparison with the previous study because 
of: a) the limited size of the dataset, and b) variables being modelled were overall 
taxonomic richness rather than single taxa occurrence.  
 
Even though there were only 122 samples of the NSW streams system available, 
results of the predictive modelling of two biological variables for the ‘dirty-water’ 
approach demonstrated that supervised ANNs can cope with relatively small datasets 
from the diverse range of geographical locations and habitats. 
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The development of ‘dirty-water’ models leads to ‘what if’ or scenario analysis. It 
will allow not only to review known impacts of the past but also to predict potential 
impacts emerging from urban development and global changes on Australian stream 
ecosystems. Extensive databases (like the database from NR&M) collected over many 
years over vast areas are most likely to contain the information on various conditions 
including extreme events. When ANN has learned the respective pattern from such 
data, it should be possible to model it in a range of different geographical locations 
and conditions. In a similar approach Dedecker et al. (2003) have assessed sensitivity 
and robustness of predictive neural network ecosystem models for the simulation of 
different management scenarios using small dataset (120 samples). Three case studies 
have shown that ANN models are in general quite robust with a rather high predictive 
reliability. Scenario analysis including the combined effect of salinisation and 
nutrients on the structure of macroinvertebrate communities is described in Chapter 7. 
 
 
5.3 Optimisation of the modelling design in respect 
to the cost efficiency of environmental monitoring.  
 
This chapter contains several small studies designed to answer specific practical 
questions formulated by the staff of NR&M. These questions mainly concern the 
practical efficiency and cost in relation to the design of field survey and the utilisation 
of available data.  
 
5.3.1 How many predictor variables is enough? 
 
The relationships between variables in ecology are almost always very complicated 
and highly non-linear (Gevrey et al., 2003). The accuracy of predictive models is 
highly dependent on the availability of variables explaining the observed patterns in 
biota distribution. The choice of the predictor variables is of particular importance, as 
some variables might be more important than others. Inclusion of many unimportant 
predictors can make the models slow, cumbersome and even less accurate. Huong et 
al. (2001) showed that exclusion of redundant inputs could improve the performance 
of the ANN models. However, finding the optimum number of predictor variables for 
each taxa-specific model can be a very lengthy and complex process. Using the same 
number of predictor variables for all individual models appears to be a more practical 
solution, however it is unclear how much accuracy can be lost and what is the 
minimum optimum number of variables needed. In order to answer this question I 
designed a following study.  
 

 

 

Methods 

 
In order to investigate the relationship between the number of predictor variables and 
accuracy of the model I prepared 4 sets of variables (Table 5.3) starting from full set 
of 50 variables used in previous studies (Huong et al., 2001) and reducing a number of 
variable on logical basic in relation to the cost of field sampling and measurements. 



 101

Since we are trying to come up with a definite number of variables optimum for all 
the taxa specific models, we can not use sensitivity analysis for each models as 
conducted by Huong et al. (2001), and had to use previous knowledge or 
considerations of cost when deciding on which variable to exclude. For example, for 
the minimal reduction set I excluded some of the variables describing rainfall pattern, 
some water quality variables as total hardness, which is correlated with conductivity. 
For the maximal reduction subset I excluded variables describing substrate 
composition and the concentrations of ions and cations. For the extreme reduction set 
I excluded all rainfall variables as the influence of rainfall can be still partially 
explained by the altitude and conductivity. I also excluded nutrients as they are to 
some extent correlated with water temperature. The infinite combination of variables 
is possible, but this study is only intended to provide some insight into the loss of 
accuracy from excluding a variety of parameters, and the combinations of variables 
were chosen arbitrarily.  
 
I selected 5 taxa generally considered to be sensitive to a variety of anthropogenic 
stresses (taxa with high SIGNAL score, see Chessman, (2003)), as accuracy of the 
model is more important for the prediction of sensitive taxa than opportunistic in 
order to be able to detect the anthropogenic impact. I build 5 taxa specific models for 
the occurrence of Leptophlebiidae, Gomphidae, Calamoceratidae, Philopotamidae and 
Helicopsychidae, using 4 sets of predictor variables (totally 20 models). Statewide 
data collected from all 5 habitats were used, 30% of data were used for the validation 
purposes and 10% of data were used to control overtraining or as cross-validation 
subset. The number of neurons in the input layer was respective to the number of 
predictor variables, ten neurons was used in a hidden layer in all models.  
 
In order to avoid confounding by the effect of prevalence of presence or absence (see 
Chapter 3) the validation subset was equalised by duplicating values until the number 
of ‘1’ and ‘0’ was equal. Percentage of correct predictions resulted from the 
simulation on validation subset was used as the measurement of accuracy.  
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Table 5.3. Subsets of predictor variables used to investigate the relationship between 
the number of predictor variables and accuracy of the model.  
 
 
Full set (50 variables) 

 
Minimal Reduction (38 
varibles) 

 
Maximal Reduction (19 va  

ables) 

 
Extreme Reduction (9 
variables) 

Habitat Habitat Habitat Habitat 
Season Season Season Season 
Width (m) Width (m) Depth (m) Latitude  
Depth (m) Depth (m) Velocity - max (m/s) Longitude  
Velocity - max (m/s) Velocity - max (m/s) Mean phi Altitude (m) 
Bedrock (%) Bedrock (%) Latitude  Water Temp (°C) 
Boulder (%) Boulder (%) Longitude  Conductivity (µS/cm) 
Cobble (%) Cobble (%) Altitude (m) DO (mg/L) 
Pebble (%) Pebble (%) Stream Order pH 
Gravel (%) Gravel (%) Slope (m/m)  
Sand (%) Sand (%) Distance From Source (km)  
Silt/Clay (%) Silt/Clay (%) Ratio of a / b  
Detrital cover (%) Detrital cover (%) Water Temp (°C)  
Mean phi Mean phi Conductivity (µS/cm)  
Latitude  Latitude  DO (mg/L)  
Longitude  Longitude  pH  
Altitude (m) Altitude (m) Turbidity (NTU)  
Stream Order Stream Order Total N (mg/L as N)  
Slope (km/m) Slope (km/m) Total P (mg/L as P)  
Distance From Source (km) Distance From Source (km)   
0-2 Reach 0-2 Reach   
Ratio of a/b Ratio of a / b   
Range in wet season monthly 
means  

Mean annual rainfall (mm)   

Range in dry season monthly 
means  

Soil Type Number   

Percentage rainfall in wet season Vegetation Type Number   
Mean annual rainfall (mm) Water Temp (°C)   
Mean daily max temp (oC) Conductivity (µS/cm)   
Mean daily min temp (oC) DO (mg/L)   
Soil Type Number pH   
Vegetation Type Number Turbidity (NTU)   
Water Temp (°C) Alkalinity (mg/L CaCO3)   
Conductivity (µS/cm) Total N (mg/L as N)   
DO (mg/L) Total P (mg/L as P)   
pH K+ (mg/L)   
Turbidity (NTU) CO3-- (mg/L)   
Alkalinity (mg/L CaCO3) SO4-- (mg/L)   
Total Hardness (mg/L CaCO3) 0-4. Habitats   
Total N (mg/L as N) 0-8. substrate categories   
Total P (mg/L as P)    
K+ (mg/L)    
Ca++ (mg/L)    
Mg++ (mg/L)    
HCO3- (mg/L)    
CO3-- (mg/L)    
SO4-- (mg/L)    
0-4. Habitats    
0-8. substrate categories    
Mean Channel Width (m)    
Mean Depth (m)    
Instantaneous Discharge (cumec)    
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Results 

 
On average, the models built using full set of predictor variables (50) had the highest 
predictive accuracy, however, the decrease in accuracy for the reduced subsets was 
not very big and even models with extremely reduced set of input variables were still 
quite accurate approaching or exceeding threshold of 70% of correct predictions. The 
highest decrease in predictive power with the reduction of number of input variables 
was observed for Leptophlebiidae, from 75.31 % for full set to 69.24 % for the 
extreme reduction subset. This can be explained by the fact that many environmental 
variables are correlated to some degree and the exclusion of many variables has little 
effect as far as the essential factors are kept. Exclusion of the variables describing 
substrate composition as percentage of boulder, gravel, sand, etc. appear to have very 
little effect in particular, as the difference between the predictive accuracy of minimal 
and maximal reduction subsets is very small and the performance of the model for 
Gomphidae has actually improved.  
 
Table 5.4. Comparative accuracy (% of correct predictions) of taxa specific models 
trained using different sets of predictor variables. 

 

Discussion and conclusion 

 
Our results showed that it is possible to build accurate ANN models using very 
limited sets of the predictor variables. Use of many variables does improve the 
predictive accuracy but the rate of improvement is not very high. Use of medium 
sized sets of predictor variables (19-38) might be the most practical solution.  
 
5.3.2 Generic models versus local models 
 
Consideration of the modelling accuracy and practicality are always an important 
aspect in environmental decision-making. When trying to come up with standardised 
framework, the possible trade-offs between accuracy, complexity and practicality 
have to be considered. It is much easier and faster to train one state-wide generic 
model and use it for the subsequent predictions on a local or state-wide scale when 
necessary, however, Australian and the state of Queensland’s aquatic ecosystems in 
particular are characterised by extremely diverse conditions and natural variability can 

 
Taxa 

Full set 
(50 var) 

Minimal 
Reduction (38 
var) 

Maximal 
Reduction (19 
var) 

Extreme 
reduction (9 
var) 

Leptophlebiidae 75.31 72.86 72.71 69.24 
Gomphidae 70.28 67.89 69.45 67.39 
Calamoceratidae 72.18 70.22 69.07 67.59 
Philopotamidae 86.15 85.34 85.31 82.94 
Helicopsychidae 84.57 81.61 75.48 72.62 
Average 77.70 75.58 74.40 71.96 
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play a significant role. I am not aware of any studies attempting to understand the loss 
of accuracy when comparing models built using local or wide scale data. It is also 
unclear to what degree ANNs can cope with the natural variability on the state-wide 
scale. To address the question whether local models are more accurate then generic 
ones and whether the models trained on the data from one bioregion (within state of 
Queensland) can be applied to the neighbouring bioregions I designed the following 
study.  

 

Methods 

 
In order to investigate the degree to which natural variability can affect the predictive 
accuracy of ANN models I used data provided by NR&M from three geographic 
scales:  
 
1) Statewide data: only riffle habitat was used in order to reduce the local variability 
between different habitats. 
 
2) Bioregion scale subsets. I used three bioregions defined by the Aquatic Ecosystem 
Health Unit, NR&M, namely: Central, South-Eastern Queensland (SEQ) and Wet 
tropics and Cape (WT&Cape). See Figure 4.6 for the map of QLD bioregions. 
 
3) Catchment level subsets. I used 2 catchments: Brisbane and Mitchell, these were 
the catchments with the largest number of observations.  
 
I built 5 taxa specific models using state-wide data, data from three bioregions and 
data from two catchments. I chose taxa generally sensitive to the variety of 
anthropogenic impacts as it is more important to get accurate models for these taxa 
than for the opportunistic taxa.  
 
I used 50 predictor variables (see Table 5.3, full set for the list of variables) for all 
models with 10 neurons in hidden layer and 1 neuron in output layer for each taxon. 
All data subsets were split on training (70%) and validation subsets (30%). Cross-
validation (10% of all data) was only used in the initial stages in order to determine 
the optimum architecture and the number of training epochs when overtraining does 
not occur. All the results reported are based on simulations using validation set, 30% 
of all data not used for training. Validation data has been equalized in order to avoid 
the effect of prevalence of ‘1’ or ‘0’.  
 
To address the question whether bioregion specific models can be used for the 
neighbouring geographic regions, the models developed for the previous three 
bioregions were tested on neighbouring bioregions (Central and SEQ, WT&Cape and 
Western).  
 

Results 

 
Table 5.5 shows the accuracy of the models developed using data on the different 
geographical scales in comparison with the accuracy of the generic model. Accuracy 
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of the generic model varied from taxon to taxon, ranging from 65.21% for 
Calamoceratidae to 89.46% for Philopotamidae, being 77.16% on average.  
 
Models developed and tested on the same bioregion were slightly more accurate on 
average, but some taxon-specific models were less accurate than the generic ones, for 
example, Leptophlebiidae models for the Cental bioregion and SEQ were significantly 
less accurate that the generic model. The same stands for Gomphidae in WT&Cape. 
This can be explained by uneven geographical distribution of these particular taxa. It 
is possible that the taxon was not present often enough in these bioregions for the 
model to derive a predictable pattern. However, bioregional models for 
Calamoceratidae, Philopotamidae and Helicopsychidae were more accurate than 
generic models when trained and tested on the data from the same bioregion.  
 
When tested on the geographical area different to that on which they were trained, 
bioregional models were generally less accurate than the generic models, with the 
average percent of correct predictions ranging from 57.03 % to 67.66%. However, 
Leptophlebiidae and Philopotamidae models developed for the Central bioregion were 
still very accurate when tested on the data from SEQ (97.61% and 84.56% 
respectively), however, the models trained on data from SEQ and tested on Cental 
were not accurate at all with the exception of Philopotamidae (73.83% of correct 
predictions).  
 
 
Table 5.5. Comparative accuracy of the generic models and models trained and tested 
on data subset from different geographical regions, expressed as percent of correct 
predictions.   
 

Trained on: 
 

Tested on: 
 

Leptophl
ebiidae 

Gomph
idae 

Calamoc
eratidae 

Philopota
midae 

Helicops
ychidae 
 

Average 

State-wide State-wide 79.75 66.89 65.21 89.46 84.5 77.16 
Central Central 55.26 68.29 91.89 95.57 95.59 81.32 
SEQ SEQ 67.83 70.87 89.19 82.49 93.02 80.68 
WT&Cape WT&Cape 80.42 56.69 88.89 93.29 91.32 82.12 
Mitchell 
catchment 

Mitchell 
catchment 

62.5 68.83 94.34 92.52 94.34 82.74 

Brisbane 
catchment 

Brisbane 
catchment 

86.96 70.37 77.5 93.88 95 84.74 

Central SEQ 97.61 55.95 52.85 84.56 47.32 67.66 
SEQ Central 54.98 54.41 56.28 73.89 57.91 59.49 
WT&Cape  Western 70.91 29.09 66.67 47.37 71.13 57.03 
 
 
Catchment specific models were the most accurate on average, more accurate than 
generic and slightly more accurate than bioregional models. Only one taxon specific 
model (Leptophlebiidae) was less accurate than the generic model (62.5% and 79.75% 
respectively).  
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Discussion and conclusion 

 
On average, bioregional models perform better in comparison with generic models 
when tested on the data from the same bioregion, however improvement in the 
performance is not consistent from taxon to taxon. Depending on the amount of data 
and specific distributional pattern, bioregional models can be actually less accurate 
than the generic ones. Not surprisingly, bioregional models perform poorly when 
applied to the data from the different bioregion, however, exceptions are possible 
depending on the distribution of specific taxa.  In general, catchment models are even 
more accurate, however exceptions are possible again.  
 
Even though local models are more accurate than generic, the rate of improvement is 
not very high (about 3 to 7%). Depending on the task at hand, and the available 
dataset, both approaches (generic and localised) can be used successfully. Generic 
models can be used in the cases where not much data available from the region of 
interest, when in cases where, for example, very accurate model is needed for the 
scenario analysis on the catchments scale and data are available, it would be better to 
train and utilise bioregional or catchment model.  
 
5.3.3  Matter of time 
 

Temporal variability is an inherent feature of freshwater systems. In many parts of 
Australia rainfall and daily temperature pattern vary from year to year. The area 
covered by state of Queensland has two relatively pronounced seasons: wet summer 
and dry winter. Sampling of macroinvertebrates is conducted in autumn and spring. It 
is generally accepted that there is no significant seasonal difference in 
macroinvertebrate communities in relation to autumn and spring (Jon Marshall, 
NR&M, personal communication). To investigate the possible effect of temporal and 
seasonal variability on the predictive accuracy of ANN models I designed the 
following study.  

Methods 

 
To address question whether models developed for the data collected in one season 
can still be applicable for the data collected in the other season, I developed 5 taxa 
specific models for the same taxa used in the previous chapter using three subsets of 
data:  
 
1) All data from riffle habitat, all years, both seasons mixed. 
2) Only data collected in the season 1(autumn). 
3) Only data collected in the season 2 (spring). 
 
Full set (50 predictor variables) was used. All models had 50-10-1 architecture with 
‘tahn’transfer function. The models were trained using three abovementioned subsets. 
The models trained on the data with mixed seasons was tested on randomly selected 
30% of the data. Models trained on data collected in season 1 were tested on season 2 
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and vice versa. All validation data were equalized to 50-50% ratio to account for the 
effect of prevalence of ‘1’ or ‘0’ values.  
 
To address question whether models developed for the data collected in one year can 
still be applicable for the data collected in the subsequent years, I developed 5 taxa 
specific models (full set, riffle habitat) using only data collected in 1994 and then 
tested the model on: 1) 30% of data collected in 1994 but not used for training, 2) all 
subsequent years from 1995 to 2001.  All validation data were equalized to 50/50 
ratio. 
 

Results 

 
All models tested on the season different from the one they were trained on had 
inferior performance comparatively to the models trained on the data with mixed 
seasons (Table 5.6). However, more than half of the models trained and tested on 
different seasons were still quite accurate achieving the 70% threshold of the correct 
predictions.  
 
Table 5.6. Comparative accuracy of the season specific and mixed-seasons models (% 
of correct predictions).  
 
Taxa              Mixed seasons  Trained on season 1 

Tested on season 2    
Trained on season 2 
Tested on season 1 

Leptophlebiidae  75.31  71.13 73.10 
Gomphidae 70.28  67.35  64.02  
Calamoceratidae 72.19 59.57 65.52 
Philopotamidae 86.16 85.02 79.65 
Helicopsychidae 84.58 75.03 75.28 
Average 77.70  71.62 71.52 
 
  
Figure 5.2 demonstrates the accuracy of the models built using only data collected in 
1994 when tested on validation subset from 1994 and all data collected in each 
subsequent year from 1995 to 2001. It is obvious that predictive accuracy of the 1994 
models is not depended on the year used for the testing. In case of Gomphidae 
accuracy of the 1994 model was even higher when tested on 2000. It appears that on 
average the models were slightly less accurate when tested on the data from 1996 and 
1997 in comparison with all the other years.  
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Figure 5.2. Accuracy of the year 1994 model when tested on data collected during 
other years. 

 

Discussion and conclusions 

 
In this chapter I tried to answer the question on how temporal variability and namely 
seasonal and annual changes affect the accuracy of the predictive ANN models. My 
results have shown that seasonal variations appear to be more important than annual, 
however, ANN models are still capable of achieving high rate of correct prediction 
when trained on one season and tested on the other. Use of season specific models or 
inclusion of descriptive variable for the season in which data was collection is likely 
to improve the accuracy of prediction.  
 
A model developed at earlier years can be used for the subsequent years given that the 
data was sampled over the same geographical region. However, it is possible that 
some dramatic changes (as flood or draught) in certain year can produce drastically 
different habitat conditions and the models developed for the years with different 
conditions can be less applicable. In this respect, models trained on data collected 
over several years can be capable of better generalisation.  
 
5.3.4 Habitat issue 
 
Macroinvertebrates occupy a variety of habitats in stream and have different 
adaptations for the specific conditions. According to the AusRivAs approach, models 
were developed separately for several habitats as riffle, edge, pool, etc. as it has been 
found that significantly different macroinvertebrate communities inhabit different 
habitats (Humphries et al., 1996), and within a given region, the differences among 
habitats are greater than differences between sites. Unless comparisons between sites 
are based on the same habitats, they may be confounded by the occurrence of different 
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habitats at each site (Parsons and Norris, 1996). Therefore, we can expect that models 
developed for one habitat will perform poorly when tested on another habitat. 
However, in theory there might be a situation when the decision must be taken but 
there is no exact match between the model available and simulation data. In order to 
test the assumption that models developed for one habitat are not applicable for 
another, I designed a following study.  
 

Method 

 
For this study I used two subsets of data, one collected from the riffle habitat and the 
other collected from the edge habitat. These two habitats are most often used for the 
assessment and prediction of macroinvertebrate communities and contain the largest 
number of data points in the data available. The goal of this study was to determine 
whether the model built on data collected from one habitat can be applicable for the 
simulations using data collected from the other habitat. I used the same 5 taxa as in 
previous studies and same architecture of ANNs, namely 50-10-1 architecture with 
‘tahn’transfer function. 10% of data were used as cross-validation subset to control 
overtraining and 30% of data were used for the validation of the models. All 
validation data were equalized to 50/50 ratio of presence and absence values.  
 

Results 

 
On average, models developed for each habitat had similar accuracy when tested on 
the subset from the same habitat as that for which they were built (75.59% and 
77.16% for edge and riffle habitats respectively). When tested on the data from the 
habitat different to which they were built all models showed inferior performance. On 
average, reduction in the accuracy was 9.39%. However, models for Helicopsychidae 
were still capable of achieving 70% threshold of correct predictions when tested on 
the data set from the different habitat.  
 
 
Table 5.7. Comparative accuracy (% of correct predictions) of the models trained and 
tested on the data from the same habitat versus models trained on one habitat and 
tested on another.  
 
Taxa Trained: Edge    

Tested:  Edge 
 

Trained: Riffle 
Tested: Riffle 

Trained: Riffle 
Tested: Edge 

Trained: Edge 
Tested:  Riffle

Leptophlebiidae 75.31 79.75 67.8 76.07 
Gomphidae 70.28 66.89 65.2 65.35 
Calamoceratidae 72.18 65.21 62.76 54.74 
Philopotamidae 86.15 89.45 64.49 60.6 
Helicopsychidae 84.58 84.49 76.84 75.99 
Average 75.59 77.16 67.42 66.55 
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Discussion and conclusions 

 
Macroinvertebrate communities collected from the different stream habitats have 
different characteristics. This fact was known previously and our research confirmed 
that this needs to be taken into consideration when building predictive ANN models. 
When models developed for one habitat are tested on another, accuracy decreases for 
about 10% in comparison when the models are trained and tested on the data from the 
same habitat. Habitat specific models are more accurate when simulated on the data 
from the same habitat, however, in some cases relatively accurate predictions are still 
possible using data from the different habitat.  
 
 
5.4 Prediction of SOM defined groups: case study 
for the comparison of the evolutionary algorithms 
and supervised neural networks.  
 

Even though ANN have clearly demonstrated their potential for ecological 
applications in terms of classification and prediction they store learned models in a 
highly distributed manner by means of connection weights, which bear little 
resemblance to human understanding of rules or concepts. By contrast, GA can be 
used for knowledge discovery by deriving predictive models or rule sets, which can 
easily be understood (Recknagel, 2001).  Recknagel et al.  (2002) compared 
applications of ANN and GA in terms of forecasting and understanding of algal 
blooms in Lake Kasumigaura (Japan). It was demonstrated that models explicitly 
synthesized by GA not only performed better in seven-days-ahead predictions of algal 
blooms than ANN models, but provided more transparency for explanation as well.  

This study demonstrates and compares the use of both ANN and GA for the 
prediction of macroinvertebrate spatial assemblages in the stream system of Victoria. 
Both ANN and GA are applied in order to demonstrate prediction and explanation of 
patterns in spatial distribution of macroinvertebrate communities discovered by SOM 
(previously described in Chapter 4.1.2). The predictive and explanatory performance 
of both ANN and GA are also compared.  

The main hypotheses for this study are: 

1) It is possible to predict SOM defined clusters using MLP models. 

2) GA based models are more accurate than MLP based models.  

Methods 

The stream database for this study was provided by the Victorian Environment 
Protection Authority, Australia.  It contained abundances of 128 macroinvertebrate 
families sampled at 407 stream sites (only reference sites) between March 1990 and 
November 1998. Only the dataset collected in the edge habitats was used for this 
study. MLP and GA were applied in order to predict and explain occurrences of 
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macroinvertebrate assemblages based on 19 environmental variables utilising all 
environmental and macroinvertebrate data of the 407 stream sites.  

The conceptual framework for this study is shown on Figure 5.3. The underlying GA 
was designed and implemented in C++ by Jason Bobbin (Department of Science, 
Defence and Technology (DSTO), Adelaide).  

Prediction of the assemblage types by ANN 

In order to predict the types of macroinvertebrate assemblages by means of a MLP a 
25 x 407 data matrix was created. It considered the 19 environmental variables as 
inputs and the 6 spatial groups derived from SOM (see Chapter 4.1.2) for each of the 
sites as outputs. All these data were normalized into the range between 0 and 1. The 
MLP contained 19 neurons in the input layer, 10 neurons in the hidden layer and 6 
neurons in the output layer. The sigmoid function was used as transfer. 

The dataset was randomly subdivided into training subset (65% of the data), cross-
validation subset (10%) and testing subset (25%). The accuracy of MLP reported in 
this paper is obtained from the simulation on the testing subset, which was not used 
for training purposes. The optimum training error was achieved by 1500 iterations. 
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Figure 5.3. Conceptual framework for the study involving prediction and explanation 
of SOM defined groups using MLP and GA.   

 

Prediction of the assemblage types by GA 

 

A genetic algorithm GA consists of a population of individuals where each individual 
represents a model. Individuals are modified by mutation and crossover and the best 
individuals are selected to form a new population. Each new population is called a 
generation. In the context of the present paper a GA is used to evolve associations 
between physical and chemical properties of streams (attributes) and spatial clusters 
derived from partitioning of SOM U-matrix (outputs) based on similarities of 
macroinvertebrate assemblages. Attributes are associated with outputs by means of a 
classifier or rule.  

 
Rules are combined to the rule sets by using a ripple-down structure shown in Figure 
5.4. When a rule is true any consecutive horizontal rule is immediately tested. If a rule 
is not true then the consecutive vertical rule is tested. Horizontal arrows in Figure 5.4 
represent exceptions to the rule to their left, and vertical arrows point to the rule to be 
tested if the current rule is not true. The last rule found to be true has its action 
implemented. If no true rule is found then the evolved default action is performed. 
Rule D in Figure 2 would have its action performed if and only if rule A is true, rule B 

 
6 spatial clusters with similar 
macroinvertebrate assemblages 
 

Comparison 

Clustering of 407 sites on the base 
of similarity of macroinvertebrate 
assemblages 
 
Method: SOM, k-means clustering 
of SOM U-matrix 

Prediction of spatial clusters from 
19 environmental variables 
 
 
Method: MLP 

Prediction of spatial clusters from 
19 environmental variables 
 
 
Method: GA 
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is not true and rule D is true. The approach used by the GA facilitates gradual 
evolution of the model by allowing mutation processes to slightly modify the model 
behaviour with exceptions to current rules. Information contained in the rules is  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.4. Structure of an evolved rule tree. 
 
 
represented symbolically, where the symbols are associated with values in a 
parameter vector that is co-evolved alongside the rulesets. Each individual in the 
population is a complete ruleset. During each generation the structure of the ruleset is 
evolved by means of discrete operators (addition, subtraction and modification of the 
rules), and the parameters which define the values on the rules are modified by means 
of a self adaptive evolutionary algorithm (Schwefel, 1995; Baeck, 1996). 

 

Results 

The average percentage of correct predictions by the ANN of the six assemblage 
groups of macroinvertebrates as discovered by the SOM was 88.56 % while the 
average percentage of correct predictions by GA was 77.1 %.  The mean squared error 
(MSE) and the percentage of correct predictions (PCP) for each group by the MLP 
and the GA is shown in Table 5.8.  

Table 5.8. Mean square error (MSE) and percentage of correct predictions (PCP) by 
applications of ANN and GA for each of 6 groups.  
 
 Group 1 

 
Group 2  Group 3 Group 4 Group 5 Group 6 

MSE (ANN) 0.07 0.13 0.05 0.15 0.11 0.03 

    PCP (ANN) % 91.17 82.35 94.11 83.33 84.31 96.07 

  PCP (GA) % 93.42 96.97 84.44 89.47 53.17 80.90 

 

 

Rule A Rule B Rule C

Rule E 

Rule F Rule G

Rule D

If Not 

Except If 
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All the values considered by GA ruleset fall into the minimum and maximum range 
within SOM cluster (Table 5.9, only group 1 is considered here). However, taking into 
the consideration that group 1 is heterogeneous and spatially scattered (see. Figure 
4.2) the range and averaged values for the predictor variables can give only very 
approximate and rough idea about the combinations of variables contributing to the 
occurrence of this particular macroinvertebrate assemblage. On the contrary, rules 
resulted from GA application give more detailed and directional description of the 
physical variables, allowing for the spatial heterogeneity. For example, average value 
of variable Latitude is –37.52. In the ruleset it takes two directions: Latitude IS NOT 
between -38.2 and -37.4 (Latitude >-38.25) and Latitude is between -37.4 and  -36.4.  
This is the case for the other variables as well. Vegetation category has average value 
of 3.52, in the ruleset its two directions are Vegetation Category >2.07 and Vegetation 
Category < 2.07. The same stands for Shade and Alkalinity. Variables Altitude and 
Macrophyte category have only one direction each and in agreement with averaged 
values for the cluster.  
 

Discussion and conclusions 

In this study two machine learning methods have been applied and compared: Multy-
Layer Perceptron neural network and Genetic Algorithm. Traditionally in ecological 
applications neural network models are used for the prediction of taxa occurrence or 
abundance from a set of environmental variables. In this study we explored the 
question if it is possible to predict occurrence of the unit larger than separate taxon, in 
our case defined pattern in abundance and co-occurrence of all taxa recorded. Even 
though, separating these patterns as distinct clusters or groups might be artificial it 
appears that both MLP and GA are well capable of predicting these groups from the 
set of environmental variables.  

Contrary to the previous finding of Recknagel et al. (2002) showing that in time-series 
case predictive power of GA was higher than that of ANN, in our case ANN 
outperformed GA on approximately 10% (hypothesis 2 is not true), although both 
methods were able to meet commonly acceptable 70% threshold of correct predictions 
(hypothesis 1 is true).  

The sites used for the analysis were reference sites, presumably least affected by the 
agricultural practices or urban developments. We assume that in this case it should be 
easy to explain patterns in abundance and co-occuring of various macroinvertebrate 
families by a range of environmental variables. We tried to do this by examining 
simply data ranges within SOM clusters and GA rule set for the environmental 
variables likely to be important in distinguishing Group 1 from the other groups. In 
terms of explanatory power GA is commonly considered as offering more 
transparency by the generation of rules providing the directional explanation for 
environmental heterogeneity, while neural networks are thought to be ‘black’ or 
‘grey’ box technique.  

SOM component planes (see Chapter 4.1.2) provided easy and highly visual way to 
assess relationship between variables and suggest which ones are likely to be of 
importance in shaping macroinvertebrate assemblages within each group. Although, 
this approach can be criticized as to a certain extent qualitative and intuitive, we 
suggest that it still can be valuable when quick and visual assessment of data is 
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needed. GA rules provide a qualitative approach but are not easy to follow and 
understand, it might be useful where more in-depth assessment is needed.  

The prediction of defined macroinvertebrate assemblages instead of separate taxon 
can be used as an extension of the referential approach outlined in the introduction. If 
the type of macroinvertebrate assemblage predicted under particular environmental 
conditions do not match the one actually found, it might be then compared against 
other possible assemblages indicative for various stresses as increased salinity, 
turbidity, nutrient load, etc.   

In conclusion, this study demonstrated that ANN and GA provide different 
approaches to the defined problem and neither of them could be clearly favored in the 
context. Both methods were able to predict spatial groups of macroinvenvertebrates 
from environmental variables with high efficiency and provide an explanation from 
slightly different angles. We recommend the use of the both methods in combination 
for achieving the most accurate predictions and the highest explanatory power. 
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Table 5.9. Characterisation of the macroinvertebrate assemblage group 1 by means of 
environmental variables in term of descriptive statistics from SOM and rule set from 
GA.  
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SLOPE
ALTITUDE
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MEAN (MIN/MAX)
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-3.10 (-7.22 / 4.03 )
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IF 0.51 < CATCHMENT AREA < 1.02
OR IF MACROPHYTE CATEGORY < 0.13
                                       AND VEGETATION CATEGORY > 2.07
                                       AND ALTITUDE > 1.88

AND SHADE < 0.323 OR SHADE > 1.17
AND LATITUDE > -38.2 OR LAT <  -37.4

OR IF MACROPHYTE CATEGORY < 0.13
                                       AND VEGETATION CATEGORY < 2.07
                                       AND LATITUDE > -38.25

AND ALTITUDE > 1.88 AND ALKALINITY < 1.08
AND -37.4 < LATITUDE < -36.4

OR IF MACROPHYTE CATEGORY < 0.13
                                       AND VEGETATION CATEGORY > 2.07
                                       AND ALTITUDE  > 1.88

AND 0.323 > SHADE > 1.17 AND  -37.4  < LATITUDE< -36.4
AND 1.09 < ALKALINITY < 1.39

OR IF ALKALINITY > 1.087 AND VEGETATION CATEGORY > 2.07
                                      AND -3.38 < REACH PHI < -2.01
THAN ASSEMBLAGE 1 ELSE ASSEMBLAGES 2 TO 6
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Chapter 6 
 
Defining the relationships between 
water quality and macroinvertebrates 
using sensitivity analysis with MLP and  
SOM component planes 
 
6.1 Investigation into stability and quantitative 
applicability of the sensitivity analysis using 
supervised neural networks 
 
The sensitivity analysis with predictive ANNs is most commonly used for two 
purposes: 1) to study contribution of input variables in the network in order to 
determine the most important inputs and reduce the complexity of the network, 2) to 
study the response of biotic variables (as taxa distribution or changes in taxonomic 
richness) to the changes in environmental parameter (sensitivity curves).  
 
A variety of methods has been proposed and compared to study the contribution of the 
variables in ANN models. Gevrey et al. (2003) compared seven methods finding 
Partial Derivative method (see Chapter 2 for description) most useful followed by the 
‘Profile’ method. Dedecker et al. (in press) compared three methods including Partial 
Derivatives and ‘Profile’ and found that the difference in sensitivity and stability of 
the methods ware rather small. However, among all other methods, the ‘Profile’ 
method is the only technique that provides two elements of information on the 
contribution of the variables. This method presents the order of contribution of the 
different environmental variables, and gives direct interpretation of the effect of 
environmental variables as river characteristics on the occurrence of taxon. The other 
methods only able to classify the variables by the order of their importance, in other 
words, to reveal their contribution to the output (Dedecker et al., in press). 
 
Only very few studies have been conducted with the purpose to study variability of 
the sensitivity analysis. Olden et al. (2004) compared several methods for quantifying 
variable importance in ANNs as interpretation of connection weights, Garson’s 
algorithm, Partial derivatives, Input perturbation, etc. using Monte Carlo simulation 
experiments on simulated data. It has been shown that accuracy of the methods 
estimated as percentage of average similarity between true and estimated outputs 
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varied from 92% to less than 50%. Sensitivity analysis involving varying each input 
variable and keeping all other variables at fixed values among other methods was only 
successful at identifying the true importance of the two most influential variables out 
of 5. 
 
Sensitivity analysis using predictive neural networks has been previously used to 
investigate relationships between environmental variables and the occurrence of 
macroinvertebrates. A high correspondence between relationships discovered by 
sensitivity analysis and those previously know from the application of the other 
methods has been shown (Marshall et al., 2002; Huong et al., 2001, 2003).  
 
Sensitivity curves produced by plotting the predicted output against environmental 
gradient in question often used to study the response of biotic variables (as taxa 
occurrence or changes in taxonomic richness) to the changes in environmental 
parameter. It is an attractive method with a potential to identify taxa specifically 
sensitive to various anthropogenic stressors as organic pollution, salinity, turbidity, 
etc. However, the accuracy and consistency of sensitivity curves has not been 
consistently studies. It has been observed (Peter Noble, Civil and Environmental 
Engineering, University of Washington, USA, personal communication) that 
individual neural networks with the same architecture trained on the same dataset can 
produce very different sensitivity curves. Random nature of weights in ANN means 
that individual models have different sets of weights and indeed can vary in their 
sensitivity and predictive ability. Predictability and quantitative consistency of the 
sensitivity analysis using real ecological data is still unclear.  
 
In this chapter I applied ‘Profile’ method to investigate stability and quantitative 
applicability of the sensitivity analysis using supervised neural networks. Is it 
appropriate to use sensitivity analysis as a quantitative tool? How much variability is 
associated with random nature of weighting in the neural network? In order to answer 
this question I designed a following study. 
 

Data and Method 

In order to estimate the degree of variability associated with the sensitivity analysis, I 
built, trained and tested 10 models of the same architecture for 3 randomly chosen 
taxa with medium frequency of occurrence (40-50%). I utilised Brisbane catchment 
subset (150 samples), collected from the edge habitat with 18 predictor variables 
previously used for the Optimisation study (see Chapter 5.3). Standard default 
architecture was used (18 input nodes, 6 hidden nodes, 1 output node, tahn transfer, 
training with momentum), cross validation was applied only for the first run for each 
taxa to estimate optimum number of epochs before overtraining is likely to occur. For 
the subsequent runs I used 70% of data for training and 30% for testing. Sensitivity 
analysis was performed on training subset but accuracy of each model was estimated 
using testing subset. For this analysis I investigated sensitivity of three taxa 
(Cladocera, Gripopterigidae and Leptophlebiidae) to turbidity (NTU) and conductivity 
(μS cm-1) by changing mean value of the predictor variable by 10 standard deviations 
and calculating output 50 steps in each direction. The sensitivity analysis 
implemented in Neuro Solution 4.0 software package provides two main types of 
outputs: sensitivity curves and the estimation of the predictor importance expressed as 
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the percentage of change in the output in response to the changes in the particular 
input.  

 

Results 

Variability in sensitivity curves 

All individual models were reasonably accurate when simulated on testing subset 
(30% of data), with the average percentage of correct predictions 72.9%, and accuracy 
was largely consistent from model to model (Table 6.1) with relatively small standard 
deviation. 

Table 6.1. Estimation of mean accuracy and standard deviation of individual models. 
 
Taxa Mean accuracy over 10 runs (% correct 

predictions) 
Standard 
deviation  

Leptophlebiidae 66.95 3.94 
Gripopterigidae 80 3.73 
Cladocera 71.78 5.74 

 

However, there was a significant variability between curves produced by the 
individual models. As can be observed in Figure 6.1, both box (20-80%) and whisker 
(minimum and maximum values) spreads are very large on the majority of the plots 
with the exception of response of Leptophlebiidae to the conductivity.  

Traditionally outputs with value less than 0.5 are interpreted as absence and those 
higher or equal of 0.5 as presence. In this respect, the majority of the graphs does not 
make any sense quantitatively. Output value for Cladocera actually never reaches 0.5 
mark indicating that it is never present, which is not true in the reality. Minimum and 
maximum outputs of the individual models range from way below 0.5 to approaching 
1 in many cases. In this sense use of the sensitivity curves to determine conductivity 
or turbidity thresholds exceeding taxon-specific tolerance would be highly erroneous. 
However, median values of all outputs are consistently increasing or decreasing in all 
cases except for Cladocera against conductivity, where no any definite response can 
be observed. The same is true for the maximal and minimal values. It appears that 
individual models produced sensitivity curves of the same shape (decreasing or 
increasing along the turbidity/conductivity gradient), but the quantitative range of 
those curves was different in each particular case.  
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Figure 6.1. Box and whisker plots showing variability between individual models 
used for the sensitivity analysis of the relationship between three taxa and two water 
quality variables. Center – median value, box - 20-80%, whiskers – minimum and 
maximum values.  
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Variability in the importance of predictor variables 

As seen from the Table 6.2, the variability associated with the random nature of 
weighting in the neural network model is quite significant. In many cases standard 
deviation was almost as big as the mean value. Clearly, it would be highly misleading 
to base any conclusions about predictor importance on the single run of the individual 
model even though the overall accuracy of the model might be good.  

 

Table 6.2. Variability in the estimation of the predictor importance. 
 

Leptophlebiidae Gripopterigidae Cladocera Variable 

Mean St.dev Mean St.dev Mean St.dev 

Season 0.10 0.09 0.27 0.17 0.19 0.03 
Depth (m) 0.31 0.18 0.21 0.17 0.47 0.16 
Max Velocity (m/s) 0.25 0.21 0.18 0.13 0.32 0.11 
Mean phi 0.01 0.01 0.01 0.00 0.01 0.00 
Latitude  0.34 0.20 0.49 0.19 0.34 0.11 
Longitude  0.54 0.24 0.32 0.24 0.44 0.14 
Altitude (m) 0.00 0.00 0.00 0.00 0.00 0.00 
Stream Order 0.04 0.03 0.04 0.03 0.03 0.01 
Slope (km/m) 10.38 8.83 25.29 8.20 3.68 3.06 
Distance From Source (km) 0.00 0.00 0.00 0.00 0.00 0.00 
Ratio of a / b 0.18 0.16 0.92 0.34 0.14 0.04 
Water Temp (°C) 0.01 0.01 0.02 0.01 0.02 0.00 
Conductivity (µS/cm) 0.00 0.00 0.00 0.00 0.00 0.00 
DO (mg/L) 0.02 0.01 0.04 0.03 0.04 0.01 
pH 0.06 0.06 0.03 0.03 0.02 0.01 
Turbidity (NTU) 0.00 0.00 0.00 0.00 0.00 0.00 
Total N (mg/L as N) 0.10 0.07 0.02 0.01 0.03 0.02 
Total P (mg/L as P) 0.28 0.17 0.08 0.10 0.52 0.35 

 

Discussion and conclusion 

Estimation of the importance of each predictor variable has a potential to reduce the 
number of inputs therefore making the model simpler and more transparent. Huong et 
al. (2003) found an improvement in overall performance of the MLP models after the 
reduction of the number of inputs based on the output from the sensitivity analysis. 
However, it appears that the results from this approach can be highly variable and care 
should be taken with their interpretation. The degree of this variability might be 
associated with the nature of data used for training, and can differ from dataset to 
dataset.   

If we would attempt to estimate the conductivity threshold exceeding tolerance of 
Leptophlebiidae and causing it to disappear, some of the runs will show value of 
about 700 μS cm-1, however, according to the median value of 10 runs 
Leptophlebiidae remains present even at maximal conductivities used for the 
sensitivity analysis. In other words different runs might indicated the taxa present or 
absent at the same conductivity based on the variability of weighting used by each 
individual model, even though the accuracy of the all resulted models is comparable.  
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As indicated by the results above, the quantitative range of the sensitivity curve is 
affected by the particular set of weights in the trained network and can vary to a 
significant degree from one network to another, however, the general trend of the 
sensitivity curve (rising, falling, flat) essentially stays the same which indicates 
relative reliability of sensitivity analysis when the purpose is to detect a general 
qualitative trend of the taxa response to the changes in a particular condition.   

When sensitivity analysis is used to estimate response in numeric terms a number of 
runs should be used in order to account for the variability associated with the random 
nature of weighting in the neural network. Estimation of the predictor importance 
appears to be totally unreliable, at least using the method described and this particular 
software package. The main conclusion from this study is that care should be taken 
when using sensitivity analysis as quantitative method especially based on the output 
from a single model, however, when used qualitatively, sensitivity curves appear to be 
an interesting tool for the investigation of relationships between variables.  

 
6.2    Response of stream macroinvertebrates to the 
changes in salinity and the development of a Salinity 
Index 
 

Introduction 

In the past several decades increases in salinity due to the human disturbance to the 
natural hydrological cycle have caused increasing problems in Australia. The area 
estimated to be affected by dryland salinity in Queensland (QLD) is 48 000 ha and 
this figure could increase to 3.1 million hectares by the year 2050 (Gordon, 2002). A 
number of streams and wetlands have been affected by rising salinity leading to 
significant changes in flora and fauna (Hart et al., 1991). Secondary salinisation can 
affects aquatic systems in a multiple ways, including direct toxic effects, changed 
chemical processes and loss of habitat in the water, riparian zones and adjacent 
floodplains. Current understanding of the resilience of freshwater biota to these 
impacts is limited and more research is needed (James et al., 2003).  

Several authors have studied the occurrence of macroinvertebrate taxa in streams and 
rivers of southern and western parts of Australia  (Williams et al., 1991; Metzeling, 
1993, Kay et al., 2001; Bunn and Davies, 1992; Kefford, 1998). Different responses 
have been observed, but there is a general acceptance that freshwater ecosystems 
experience little ecological stress at the electric conductivity (EC) levels below 1500 
µS cm-1 (Hart et al., 1991). Marshall and Bailey (2004) conducted field experiments to 
examine the effect of short-term releases of saline wastewater on stream 
macroinvertebrate communities. Significant reduction in the abundance of some 
species (Ferrissia tasmanica, Baetis sp. 5) were observed at 1500 mg L-1 
(approximately 2205 µS cm-1). However, Kefford et al. (2003) showed that even 
though the majority of macroinvertebrates is highly tolerant under acute exposures, 
sublethal effects might occur at salinities as low as 480 µS cm-1. Therefore, it is 
possible that long-term progressive salinisation might affect macroinvertebrate 
communities indirectly and the effective EC concentrations might be lower than 
currently accepted. In this respect analysis of a field data collected on wide 
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geographical scale and over many years can provide an important insight into the 
effects of salinisation including all potential mechanisms by which salinity may 
impact on freshwater organisms.  

Statistical methods as correlations, multiple linear regression, generalised additive 
models, logistic regression, principle component analysis (PCA) and cluster analysis 
are commonly used to study species distribution along an environmental gradient. 
However, there are two potential problems associated with this approach. Firstly, it is 
often difficult to know for certain that observed changes in biota are caused by the 
factor in question as salinity gradient and not by a multitude of the other underlying 
factors. Secondly, our confidence in the results is often limited by the method’s 
inability to meet a number of assumptions, such as statistical distribution, 
independence of variables and linearity of the relationships.  

Use of machine learning methods as ANNs allows to overcome limitations of many 
traditional statistical methods such as data distributions or non-linearity. Sensitivity 
analysis with ANNs is a relatively new method for the estimation of complex non-
linear relationships between environmental factors and the taxa distribution.  It allows 
simulation of the changes in biota specific to a variable in question when all the other 
variables in the model are kept static. This means that we can have some confidence 
that predicted changes are caused by the factor in question (as conductivity) and not 
underlying natural or other anthropogenic gradients.  

Aquatic systems affected by the secondary salinisation often also experience poor 
water quality as higher concentration of nutrients, suspended particulate matter and 
toxicants (Hart et al., 2003). In this respect it might be advantageous to consider the 
effect of EC in combination with the other water quality factors. Canonical 
Correspondence Analysis (CCA) is one of the newer methods, which allows to 
describe and visualise relationships between multiple environmental variables and 
biota (ter Braak and Verdonschot, 1995). Partial CCA (ter Braak, 1988) is of 
particular interest to us as it permits to partial out the effect of covariables (as 
temporal and natural variability) and use residuals to examine variables of interest (as 
EC and other water quality variables). The method is also relatively robust in term of 
statistical distribution.  

The aim of this study was to investigate changes in macroinvertebrate communities 
associated with a conductivity gradient in streams and rivers. We are not aware of any 
similar study conducted in QLD. The analysis of state-wide data can provide an 
interesting broad scale insight into the differences between structures of 
macroinvertebrate communities under varied levels of stress from the secondary 
salinisation. This study utilises sensitivity analysis using ANNs to estimate 
conductivity tolerances of the specific macroinvertebrate taxa and to develop an index 
reflecting changes in macroinvertebrate communities as a result of changes in the 
conductivity level. Partial CCA is used to provide an additional insight into the effect 
of EC and the other water quality factors on the structure of the macroinvertebrate 
communities.  

Data 

The data used for the current study were collected each spring and autumn from 1994 
to 2002 from 1008 sites (Figure 6.2) by the NR&M. The data from two different 
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habitats were considered separately in order to reduce the effect of natural variability 
as much as possible, plus there is a geographical difference between subsets as many 
samples from the edge habitat were collected in western inland areas when the 
majority of samples from the riffle habitat were collected in the coastal regions. A 
salinity level was measured as EC (µS cm-1) adjusted for temperature. We used 
salinity categories given by Williams (1967), see Figure 6.2. 

The purpose of this study was to identify general trends using common 
macroinvertebrate taxa with state-wide distributions. We used taxa occurred at more 
than 5% of all samples. Several taxa with limited geographic distributions were 
excluded from the analysis in order to avoid confounding the results with their natural 
geographical distribution range. This left 57 taxa (mostly family level) from the edge 
habitat and 60 taxa from riffle habitat for the analysis.  

Methods 

I implemented a variety of methods in order to estimate the sensitivity of 
macroinvertebrates to various levels of EC: SOM component planes, frequency 
distribution along the conductivity gradient, sensitivity curves produced by Multi-
Layered Perceptron Neural Network and ordination by Canonical Correspondence 
Analysis. This approach has been adopted in order to 1) validate output of one method 
by the outputs from the other methods, 2) compare the potential of the methods 
themselves.   

The first questions I asked was: what is the relationship of conductivity with other 
abiotic and biotic variables? Which natural or water quality gradients are likely to 
have a gradient similar to that of the conductivity? To answer those questions I built 
an SOM neural network using combined set of 28 environmental variables (Table 6.3) 
plus biotic variables as taxonomic richness, PET richness and SIGNAL index. Using 
component planes I compared distribution of the biotic and abiotic variables in 
relation to each other.  

The next task was to detect changes within macroinvertebrate communities caused by 
the changes in conductivity, and ensure as much as possible that those changes are not 
caused by the factors other than EC. I implemented the following logical sequence to 
address this task: 

1) Identify EC sensitivity of each taxon using SOM component planes, MLP 
sensitivity curves and taxon’s frequency distribution along the EC gradient. 

2) Assign a score to each taxon according to its EC sensitivity. 

3) Calculated cumulative score (Salinity Index (SI)) as a measurement of the 
community sensitivity. 

4) Investigate the relationship of the SI with conductivity and the other variables, 
identify possible confounding factors and practical applicability of SI. 

 



 125

 
 
 
 
 
 
 
 
 
 
 
Figure 6.2. Distribution of conductivity values in Queensland dataset (ranges of 
conductivity taken from Williams (1967)).  

In order to visualize SOM component planes I used occurrence pattern of 
macroinvertebrate taxa and conductivity as an input for SOM. Taxa frequently 
occurring in the areas with high conductivity were labeled as very tolerant (vt), taxa 
frequently occurring in the areas with low conductivity as sensitive (s) and taxa 
without any distinctive pattern in relation to conductivity as tolerant (t). Two SOMs 
were built for each habitat, riffle and edge.  

To analyze the frequency of occurrence of macroinvertebrate families along EC 
gradient, I sorted the data by ascending conductivity and divided it into 25 equal sized 
bins without any regard to when and where the data were collected. Mean percentage 
of taxa occurrence in each bin was calculated and plotted as continuous frequency 
curves. According to the shape of the frequency curve, the trend of occurrence for 
each taxon was described as ‘increasing’ when the frequency of occurrence generally 
increased with increases in conductivity, ‘decreasing’ when the frequency of 
occurrence decreased with increases in conductivity or as ‘no visible trend’ for flat, 
irregular or unimodal shapes of the frequency curve. Even though, this simple 
analysis provides some insight into the salinity preferences of macroinvertebrate taxa, 
it may also reflect trends in underlying natural variability or trends in the other water 
quality parameters as well as salt tolerance. In order to ensure that there was no 
interference from the other variables, I used ‘Profile’ sensitivity analysis to 
qualitatively estimate taxa specific responses to changes in one variable while all the 
other variables were kept at their respective means.  

In order to estimate salinity tolerance of each macroinvertebrate taxon I built 117 
taxa-specific MLP models (57 for the edge habitat and 60 for riffle habitat) with the 

< 670 µS/cm-1 - fresh  
 
670 – 5500 µS/cm-1  - subsaline 
 
> 5500 µS/cm-1 - saline 
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following architecture: 25 neurons in the input layer associated with predictor 
variables, 6 neurons in the hidden layer and 1 neuron in the output. The variables used 
as predictors (only abiotic variables were used) are shown in Table 6.3. Data was 
range standardised between 0 and 1.  

‘Tahn’ was used as a transfer function and networks were trained using feed forward 
propagation with momentum (Principe et al., 2000). Optimum number of epochs 
during which overtraining does not occur was determined using cross-validation 
method with 10% of the data. Quality of each model was estimated using Mean 
Square Error (MSE) between predicted and actual output.  

Sensitivity analysis was performed using the following method. The mean value of 
conductivity was changed by 10 standard deviations and calculated 50 steps in each 
direction, while all other predictor variables were kept at their respective means. Each 
taxon specific model was simulated and continuous output for each taxon has been 
plotted against conductivity. Trends in probability of taxon occurrence with increase 
in conductivity was described as ‘increasing’, ‘decreasing’ or ‘no visible trend’ for 
flat, irregular or unimodal curves.  
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Table 6.3. List of abiotic variables used for the study with Product Moment 
correlation with conductivity. 
  
Variable Statistical 

correlation with 
conductivity  

Total taxonomic richness -0.06 
PET Richness -0.17 
SIGNAL score  
Depth (m) -0.14 
Velocity-max (m/s) -0.18 
Bedrock (%) 0.004 
Boulder (%) -0.04 
Cobble (%) -0.14 
Pebble (%) 0.02 
Gravel (%) 0.16 
Sand (%) 0.01 
Silt/Clay (%) 0.08 
Water Temperature (0C) -0.08 
DO (mg L-1) -0.03 
pH 0.28 
Turbidity (NTU) -0.02 
Alkalinity (mg L-1 CaCO3) 0.61 
Total Hardness (mg L-1 CaCO3) 0.91 
Total N (mg L-1 as N) 0.18 
Total P (mg L-1 as P) 0.16 
Latitude -0.33 
Longitude 0.29 
Altitude (m) -0.06 
Stream Order -0.03 
Slope (km/m) -0.12 
Distance From Source (km) 0.02 
Ratio of mean wet season monthly rainfall to mean dry 
season monthly rainfall 

-0.25 

Mean annual rainfall (mm) -0.32 

 
Salinity Sensitivity Score and Salinity Index 

All taxa were assigned the following Salinity Sensitivity Scores (SSS): ‘10’ for 
sensitive, ‘5’ for generally tolerant, and ‘1’ for very tolerant. I mainly used the outputs 
of sensitivity analysis as the method least affected by the interference of natural 
variability or other environmental factors. Outputs of frequency curves and SOM 
component planes were used for the comparison. The following rules were used to 
determine which score should be assigned (quantitative cut-off values are based on 
mean conductivities in given habitat dataset with the gap of 50 µS cm-1 to provide for 
some additional distance between sensitive and very tolerant taxa):  

Sensitive: IF shape of sensitivity curve = “Decreasing” and MEAN conductivity <= 
300 µS cm-1 (edge) 250 µS cm-1 (riffle) 
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Very tolerant: IF shape of sensitivity curve = “Increasing” and MEAN conductivity > 
350 µS cm-1 (edge) 300 µS cm-1 (riffle) 

Generally tolerant: All taxa which fell neither into sensitive nor very tolerant 
categories were assigned score “5”.  

These rules were used only as a general guide, in some cases exceptions were made. 
For example, we had to take into consideration maximal conductivity at which taxa 
occur as some taxa show increasing trend but were not found in high conductivities. 
We labelled taxa as generally tolerant in all cases where results were inconclusive or 
controversial. Using the SSS of all taxa in a sample we calculated a Salinity Index 
similar to a chloride contamination index (CCI) suggested by Williams et al. (2000). 

Salinity index (SI) =(ΣXi x SSSi)/N 

Where Xi =1 if taxon i was present, Xi=0 if absent 

SSSi = Salt Sensitivity Score of taxon i 

N= the total number of taxa in the sample 

SI can theoretically vary from a value of 1 when all the taxa in a sample are highly 
tolerant to a value of 10 with all taxa being sensitive. In practice we would expect 
opportunistic taxa present in both, unimpacted and impacted sites keeping the total 
score less then 10 and higher than 1. We used box and whisker plots to demonstrate 
changes in percentage of groups with different salinity preferences along the 
conductivity gradient. The data was sorted by ascending conductivity and split into 12 
equal sized bins with no consideration of the site location, year, etc. The number of 
the bins was chosen arbitrary. 
 
To test whether SI indeed reflects changes in macroinvertebrate communities mainly 
due to the changes in conductivity and not the effect of other wide spread stressors 
such as concentration of nutrients, we isolated a subset of data with otherwise good 
water quality: turbidity < 5 NTU, total nitrogen <0.375 mg L-1, total phosphorus<0.05 
mg L-1, pH between 6.5 and 9 and dissolved oxygen > 5 mg L-1. These values are 
taken from the water quality guidelines for the protection of aquatic ecosystems 
(Bloedel et al., 2000). This analysis excluded water quality parameters other than 
conductivity as potential cause of the observed changes in macroinvertebrate 
communities. However, it is still possible that these changes related to natural factors 
as rainfall, distance from source, flow, etc. In order to exclude this possibility we used 
partial CCA. 

 

Partial CCA  

Partial CCA was used to examine relationships of water quality variables to each 
other and macroinvertebrate communities, having excluded the influence of natural 
factors, flow and temporal variability. First we used CCA to determine which 
variables out of the set of 25 (see Table 6.3) were significant in structuring 
macroinvertebrate communities. Forward selection procedure (ter Braak and 
Verdonschot, 1995) with 999 Monte Carlo permutations was used to test the 
significance of each variable. Only variables with p<0.01 were used for the 
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subsequent analysis. The significant variables were divided into two sets: 1) 
covariables describing temporal, spatial and natural variability (as season, year, 
rainfall, distance from source, etc.), 2) water quality variables as EC, water 
temperature, pH, turbidity, etc.). Using partial CCA we excluded temporal and natural 
variability and built two separate biplots for each habitat reflecting only the effect of 
water quality variables.  

Results  

Analysis of relationships between salinity and environmental variables using SOM 
component planes.  

Figure 6.3(a) shows a component plane (riffle habitat) for conductivity with values 
expressed as different shades of gray, the darker shade the higher the conductivity 
values. The second subplot (b) shows “hits” diagram, with sites  

 

 

 

 

 

 

 

 

Figure 6.3.  a) SOM component plane for conductivity (µS/cm), b) SOM grid with 
hits divided according to the classification by Williams (1967). 

divided into three categories according to the classification given by Williams (1967), 
where waters with conductivities less than 670 µS cm-1   are considered as fresh, 670-
5500 µS cm-1 as subsaline, and more than 5500 µS cm-1 as saline. Hits diagrams are 
used to show in graphic form the distribution of the best matching units for a given 
data set (Vesanto et al., 2000). The more best matching units for the given subset 
located in the cell the bigger the marker (see Chapter 3 on ‘hit’ diagrams). The 
number of ‘hits’ is expressed as size of the diamond inside each cell. The area of the 
SOM containing the highest number of ‘hits’ from streams falling into the subsaline 
and saline categories is outlined with broken line.  

Figure 6.4 shows selected component planes with variables, which appear to have 
some relationship with EC (Product Moment correlation for all variables is shown in 
Table 6.3).  Mean annual rainfall and ratio of wet season monthly rainfall to dry 
season monthly rainfall have some negative correlation trend in relation to 
conductivity according to SOM planes (Figure 6.4), with statistical correlation values 
–0.33 and –0.25 respectively. Out of all variables describing topography and location 
of the site (Distance from Source, Stream order, Altitude, Slope) only Slope appears 
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to have some negative correlation with conductivity (see Figure 6.4). pH and 
alkalinity were positively correlated with conductivity, and total Nitrogen and 
Phosphorus showed some positive correlation trend as well but not for all sites with 
high salinity.  

Variables describing biological diversity and ecological state (total taxonomic 
richness, PET richness and SIGNAL score) all showed diminishing values towards 
increasing salinity, although this relationship is not straightforward (Figure 6.4). In 
the case of total taxonomic richness the statistical correlation value was insignificant. 
SOM component plane for total taxonomical richness shows that even though  

 

 

 

 

 

 

 

 

 

 

 
 

 
Figure 6.4. Selected SOM component planes for: a) variables positively correlated to 
conductivity values, b) variables negatively correlated to the conductivity values 
(normalized data, darker shades indicate higher values, broken outline indicates high 
conductivity corresponding to subsaline and saline categories by Williams (1967)). 

the taxonomical richness is the highest at the sites with low salinity it is not necessary 
the lowest in the areas with high salinity, in other words, macroinvertebrate 
communities with average taxonomic richness can be found under conditions of both, 
high and low salinity. Scatterplots of taxonomic richness versus EC for both habitats 
confirms this observation (Figure 6.5).  

 

b)

a) 

pH Alkalinity Total P Total N 

Total Richness SIGNAL Slope Rainfall 
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Figure 6.5. Scatterplot of the taxonomic richness versus conductivity for: a) edge and, 
b) riffle habitats.  

 
Exploring EC sensitivity of macroinvertebrate taxa in relation to conductivity.  

Using SOM component planes 

Selected component planes illustrating occurrence patterns of the different 
macroinvertebrates in relation to conductivity are shown on Figure 6.6 (riffle habitat). 
The taxa showing the most prominent negative trend towards rising conductivity were 
Aeshnidae, Gripopterigidae, Diphlebiidae, Gomphidae, Ptilodactilidae (Figure 6 (a)), 
they are marked as Sensitive (s) in Table 6.5. The other taxa showing similar trend 
and marked as (s) as well are: Corydalidae, Hydrobiosidae, Helocopsychidae and 
Tipulidae. Figure 6.6 (b) shows selected taxa with the opposite, positive occurrence 
pattern towards rising conductivity. Those taxa (Ostracoda, Dytiscidae, Gyrinidae, 
Corixidae, Veliidae, Hydrophylidae, Copepoda, Atyidae, Hibrobiidae, Chyronominae) 
are labelled as Very Tolerant (vt) in Tables 6.4 and 6.5. The rest of the taxa do not 
show any particular pattern or show mixed pattern and further labelled as ‘Generally 
Tolerant’ or ‘t’.  Taxa from the edge habitat have been analysed the similar way and 
only resulting labels are shown here (Table 6.4).  
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Figure 6.6. Selected SOM component planes for macroinvertebrate taxa, a) collected 
in mostly low salinity conditions (sensitive (s)), b) macroinvertebrate taxa collected in 
high salinities conditions (very tolerant (vt), darker shades indicate more frequent 
presence, broken outline indicates high conductivity corresponding to subsaline and 
saline categories by Williams (1967). 

 

Analysis of occurrence patterns of macroinvertebrate taxa in relation to conductivity 
using frequency plots 

Figure 6.7 shows selected plots for several taxa with typical decreasing frequency 
trend (potentially sensitive) and with typical increasing frequency trend (potentially 
very tolerant). Frequency trends for all taxa are indicated in Table 6.4 (edge habitat) 
and Table 6.5 (riffle habitat).  

 

 

 

 

 

 

Aeshnidae Gripopterigidae Diphlebiidae Gomphidae Ptilodactylidae 

Ostracoda Dytiscidae Gyrinidae Hydrophilida Corixidae 

a) 

b) 
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(a) 

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

Figure 6.7. Plots of (a) ‘decreasing’ and (b) ‘increasing’ trends of selected stream 
macroinvertebrates along the conductivity gradient, edge habitat. 

 

Sensitivity analysis with MLP 

Average percentage of correct predictions of the 117 MLP models (tested on 10% of 
all data not used for training) was 72.4% ranging from 50 to 89.8%.  

Figure 6.8 shows typical ‘decreasing’ and ‘increasing’ trends in the probability of taxa 
occurrence along the conductivity gradient. In few cases the curves were almost flat 
with slight tilt, those trends were described as ‘slightly decreasing’ or ‘slightly 
increasing’. Trends for each taxon are documented in Table 6.4 (edge habitat) and 
Table 6.5 (riffle habitat). We suggest that taxa showing ‘decreasing’ trend can be 
considered as sensitive as it shows preference towards lower conductivities. Taxa with 
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‘increasing’ trends have high tolerance to salinity as probability of their occurrence 
increases with increase in conductivity. Taxa with flat or unimodal curves are 
considered as opportunistic taxa with wide tolerance range or preferences around 
medium conductivity range.  

 
 

 

 

 

 

a) 

 

 

 

 

 

 

 

b) 

 

Figure 6.8. Typical sensitivity plots resulting from the sensitivity analysis of MLP for 
selected taxa, edge habitat. a) ‘Decreasing’ and, b) ‘increasing’ trends in the 
probability of occurrence of macroinvertebrate taxa along the conductivity gradient. 

 

Salinity Sensitivity Score and Salinity Index 

Because the analysis conducted was of semi-qualitative nature, in many cases it was 
difficult to be sure about which group the taxon should be assigned. In many cases the 
output of all methods clearly indicated that taxon is whether very tolerant of sensitive. 
However, when considering taxa with salinity preference not clearly expressed, output 
of the methods applied was different in many cases. In general, output of all three 
methods applied was highly similar in 61% of taxa, in some cases decisions taken 
about assigning a label were arbitrary and open to reconsideration if more data is 
available.  
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Twelve taxa were labelled as sensitive in the both datasets, 16 and 21 as very tolerant 
in edge and riffle respectively (see Tables 6.4 and 6.5). The generally tolerant taxa 
comprised the largest group in the both habitats, 29 in edge and 27 in riffle.  

As conductivity increases, sensitive taxa are being replaced by very tolerant (Fig. 6.9). 
This trend is obvious in both habitats but appears to be more prominent in riffles with 
higher proportions of sensitive taxa present under low conductivities. In riffles, 
relatively to the low conductivity category (22-99 µS cm-1) mean percent of sensitive 
taxa decreased from 33 to 16.7 and very tolerant increased from 9.4 to 32 in sites with 
EC between 800 and 1500 µS cm-1. 

 

 

 

 

 

 

a)  

 

 

 

 

 

 

 

 b) 

 

 

 

Figure 6.9. Percentage of sensitive and very tolerant taxa in 12 equal sized bins along 
the gradient of increasing conductivity, a) edge habitat, b) riffle habitat. Median 
values with boxes corresponding to 80th and 20th percentiles and horizontal bars to 
maximum and minimum. 
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SI calculated using all three tolerance groups ranged from 8 to 2.14 in riffle habitat 
and from 6.8 to 1 in the edge. Most of the sites with high SI had low conductivity, for 
example, out of 710 samples (edge habitat) with SI values between 5 and 7.3 only 9 
sites (1.2%) had conductivity higher than 1000 µS cm-1. However, sites with low SI 
not always were characterised by high conductivities. Out of 498 samples with SI 
between 2 and 4, 411 samples had conductivity less than 800 µS cm-1. More than half 
of these samples (216) had elevated concentration of nutrients (total nitrogen > 0.75 
mg L-1 or total phosphorus > 0.1 mg L-1) or turbidity higher then 50 NTU, which 
might explain the presence of mainly opportunistic taxa in these sites. However, we 
could not explain low SI (between 2 and 4) at 195 samples. It also has become 
apparent that many samples with SI too high or too low disproportionately to the 
conductivity level had also relatively low number of taxa present (less than 15), which 
might simply be not representative enough to characterize the community.   

In order to quantify the relationship between SI and EC a logarithmic trend has been 
fitted between these two variable. Prior to this step all samples with the number of 
taxa less than 15 were deleted to improve the fit of the model and reduce the amount 
of noise. SI calculated according to the fitted model (Fig. 6.10) was significantly 
(p<0.05) correlated with actual SI (R = 0.45 and 0.64, edge and riffle accordingly) and  

 
 
 
 
 
 
 
 

 
 
           a)                    
 
 
 
 
 
 
 
 
 
 
 
 
 
            
           b) 
 
 
 
 

Figure 6.10. Scatterplots of SI versus conductivity with fitted logarithmic trends, a) 
edge, y = -0.29Ln(x) + 6.03, b) riffle, y = -0.53Ln(x) + 8.36. 
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with EC (R = -0.71 and  -0.76 for edge and riffle). It is difficult to determine any 
threshold point as the change in community structure is gradual, however it is evident 
that the most quick and dramatic shift between groups with different salt tolerance 
occurs up to approximately 800-1000 µS cm-1, after that communities continue 
changing towards the dominance of salt tolerant taxa but at slower rate. For example, 
in riffle habitat, predicted SI was the highest (6.71) at 22 µS cm-1 and decreased by 
two units (4.71) at 1000µS cm-1, further decrease was less pronounced with the lowest 
value of 3.76 at 5600 µS cm-1.   

Subsets with good water quality sites used to validate that SI reflects changes due to 
EC and not other water quality factors included 745 samples from edge habitat and 
576 samples from riffle habitat. It needs to be mentioned that 80% of samples from 
edge habitat with conductivity higher than 800 µS cm-1 had also elevated nutrients as 
total nitrogen higher than 0.375 mg L-1, and 40% of those samples had total nitrogen 
higher than 0.75 mg L-1  (69% and 22% for the riffle habitat respectively). In other 
words we had to exclude a number of sites with high conductivities when using only 
sites with good water quality. It is apparent that SI still decreases with increase in EC 
even though that effect of other water quality factors has been ruled out, this trend is 
more pronounced in riffle habitat (Figure 6.11).  
 

 
a)                       b)          
 
 

Figure 6.11.  Salinity Index in 12 equal sized bins along increasing conductivity 
gradient for: a) edge and, b) riffle habitats, only sites with good water quality. 

 
Figure 6.12 shows scatter plots of Salinity Index versus major possible natural 
gradients and flow expressed as maximum water velocity (m/s). Salinity Index was 
not highly correlated with any of the variables considered (the highest R = 0.3 was 
with maximal water velocity and mean annual rainfall).  
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Figure 6.12. Scatterplots of SI versus flow (maximum water velocity), water 
temperature, habitat depth (HDepth), mean phi, mean annual rainfall, distance from 
source (DFS), altitude and longitude. 
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Partial CCA 

 
When all significant variables were used as an input, four axes of CCA accounted for 
6.7% in (riffle) and 5.6% (edge) of variability in taxa data and 62.8 % (riffle) and 
66.5% (edge) of taxa-environmental relation. When temporal and natural variability 
was partialled out, four axes of new CCA using only water quality variables 
accounted for 2% (riffle) and 1.3% (edge) of variability in taxa data and 80.9% (riffle) 
and 77.5% (edge) of taxa-environmental relation. Figure 6.13 clearly shows that 
variables conductivity, water temperature, total phosphorus and pH affect 
macroinvertebrate communities in a similar way. It appears that total phosphorus and 
EC are correlated stronger in the riffle subset. Alkalinity is not shown in the riffle 
biplot as it was found insignificant in the previous stages of the analysis. Starting 
point of each arrow represents mean value of the variable. Majority of the taxa 
labelled as very tolerant (T) are located along the gradient of increasing, higher than 
average EC and the taxa labelled as sensitive (S) are located mostly on the opposite 
side. This confirms that most of the taxa were labelled correctly, with slightly better 
accuracy in the case of riffle habitat (keeping in mind that CCA is a linear method). 
However, it is also evident that some confounding by the other water quality variables 
is possible.  

 

Discussion and conclusion 

The aim of this study was to investigate changes in macroinvertebrate communities 
associated with the changes in the conductivity level in streams and rivers using a 
variety of methods as simple frequency distribution, SOM component planes and 
sensitivity analysis with MLP. In many cases (61% of taxa) outputs of all three 
methods were largely agreeable with each other, however, because of the semi-
quantitative nature of these methods in some cases it was difficult to draw a line and 
make a decision about some taxa. For example, all three methods indicated that 
Copepoda is highly tolerant, it also was found at the highest conductivity in the 
dataset (12000 µS cm-1) and has relatively high mean conductivity (383 µS cm-1). In 
this case it was easy to label this taxon as very tolerant. Helicopsychidae was assessed 
as sensitive by all three methods and also was found in relatively low conductivities 
(232 µS cm-1). It was also easy to label this taxon as sensitive. Our assessment of 
these two taxa also agrees with previous findings (Hart et al., 1991).  

In other cases, as for Nepidae, the shape of frequency graph was unimodal, indicating 
preference of the medium salinity, according to component plane taxa is sensitive and 
according to sensitivity curve taxa is very tolerant. The decision for this taxon was 
taken on the basis of sensitivity curve and the fact that it was found in relatively high 
conductivity (5570 µS cm-1) and also had high mean conductivity (359 µS cm-1). 
According to previous findings (Hart et al., 1991; Kefford et al., 2003) Hemiptera are 
generally quite tolerant and this taxa was labeled as very tolerant.  

In the majority of the cases our assessment of taxa salt sensitivity was in agreement 
with previous findings, however in some cases there were disagreements. For 
example, Kefford et al. (2003) suggested that Australian freshwater mollusks appear 
to be salinity sensitive but in our case all three methods indicated Planorbidae to be 
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highly tolerant. It also was found in high salinities (11730 µS cm-1) and had high 
mean conductivity as well (512 µS cm-1). One possible explanation for this might be 
that some mollusks have coping mechanisms allowing them to deal with relatively 
high salinities. We also need to keep in mind that taxa indicated as tolerant here might 
not be so beyond the salinity range considered here.  

In general, it has been shown that steady substitute of salt sensitive taxa by 
opportunistic and salt tolerant ones does occur even with relatively slight increase in 
EC. The data analysis was intended to rule out other possible causes for the observed 
changes as natural variability, flow or other water quality parameters. Even though we 
have a reasonable confidence that described changes in macroinvertebrate 
communities caused by changes in conductivity as primary stressor, it is impossible to 
rule out all the possibilities. Partial CCA showed that increase in conductivity can also 
be associated with increase in water temperature and nutrients level, combination of 
these factors might have a compounding effect on the macroinvertebrate communities 
and currently poorly understood. This concern has also been expressed by other 
authors (James et al., 2003) and more research in this direction is needed.   

We have not observed any reduction in taxonomic richness within the limits of 
available data. Several other authors have found no change in richness along a salinity 
gradient although the community composition differed along that gradient (Williams 
et al., 1990; Metzeling, 1993; Kefford, 1998). Therefore, taxonomic richness might 
not be a sensitive enough indicator to detect the effect of secondary salinisation as 
sensitive species are simply replaced by more tolerant ones with overall number of 
species remaining the same.  

According to our results, the most dramatic shift between groups of different salinity 
tolerance occur at conductivity values of 800-1000 µS cm-1 and this shift seems to be 
more pronounced in riffle habitat. This threshold value is lower than the generally 
accepted value of 1500 µS cm-1, above which freshwater ecosystems are likely to 
experience salinity related stress (Hart et al., 1991). One possible explanation for this 
difference is that we used the state-wide dataset containing many samples from 
streams in very good condition and with very low conductivities (in range of 6-40 µS 
cm-1), this is particularly relevant in the case of riffle dataset. In other words changes 
in stream macroinvertebrate communities affected by secondary salinisation may be 
more obvious in comparison with stream systems in near pristine condition, while we 
might not observe any drastic changes when comparing systems already impacted to 
some degree by variety of anthropogenic stressors and dominated by opportunistic 
taxa with likewise. The possible warning resulting from this study is that comparing 
affected ecosystems with already disturbed ecosystems might lead to erroneous 
conclusion that the Australian freshwater fauna is highly tolerant to changes in 
salinity. Although the changes in freshwater biota might be initially subtle, this could 
lead to further instability of the ecosystem structure and function and compounding 
effects of other potential stressors. 
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a) 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

b) 

 

 

Figure 6.13. CCA biplots showing effect of water quality variables after the effect of 
natural and temporal variability was partialled out a) edge, b) riffle. S - sensitive taxa, 
T - very tolerant taxa, * - generally tolerant taxa, DO - dissolved oxygen (mg L-1), 
Total P – total phosphorus (mg L-1). 

 
The Salinity Index suggested as a measurement of changes in community structure 
was decreasing along the gradient of increasing conductivity. This pattern remained 
the same when SI and conductivity were plotted for the data subset containing stream 
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sites with otherwise good water quality, which confirms that SI indeed most likely 
reflects changes in community structure associated with the changes in conductivity. 
However, there were sites with low SI and low conductivity. One possible explanation 
for strange SI values is generally low number of taxa in the sample (lower than 15). SI 
appears to be less reliable when calculated for communities with low number of taxa. 
Another probably explanation is that sites with unexpectedly low SI might be under 
stress unaccounted for in the scope of this study (impoverished habitats, presents of 
toxicants, etc.). There is also a possibility that some low score taxa were assigned 
incorrectly. This may be the case as the distribution of conductivity values in the 
dataset was highly skewed towards lower values, with the majority of sites falling into 
the fresh water category. This means that some taxa graded as tolerant on the basis of 
this data might not be so if more data from the higher salinity range was available. For 
example, some molluscs (Thiaridae, Lymnaeidae, Planorbidae) and crustacean 
Parasticidae generally considered salinity sensitive (Hart et al., 1991) were scored as 
very tolerant in this study, which might only be true for the conductivity range 
considered in this study. However, we do not know which particular species were in 
those families, which makes it difficult to compare our results with the other studies 
considering sensitivities of species.  

 
The other possible factors causing discrepancies in the Salinity Index versus 
conductivity relationship could be: natural patterns in taxa distribution (we only used 
taxa with state-wide distribution, but we do not exclude that natural variability might 
be having an underlying effect), lag effect of previous exposure (stream had an inflow 
of fresh water prior the sampling event, but fauna was still recovering from a previous 
salinity level) and the effect of ionic composition. The last factor was not taken into 
consideration in this study. However, it has a potential to confound the results. 
McNeil & Cox. (in press) defined a series of water types in QLD based on proportions 
of cations and anions. The proportion of sodium chloride decreases westward from the 
coast.  The streams from inland catchments are often high in calcium bicarbonate, 
sulphate and other components. Different ionic composition of water with otherwise 
equal conductivities might affect freshwater biota in different ways. Bayly (1969) 
suggested that the monovalent ions (Na+ and K+) are more toxic than divalent ones 
(Ca2+). This means that higher proportions of sensitive taxa could be found in calcium 
bicarbonate dominated water than in sodium chloride dominated water under equal 
conductivities.  

 
Even though we observed similar changes in communities from both riffle and edge 
habitat, these changes are more pronounced in riffles. As it was mentioned before 
edge habitat data included many sites from western regions, including lots of streams 
with intermittent flow. It is possible that macroinvertebrates inhabiting these sites are 
better adapted to natural changes in salinity than those from riffles, as riffle habitat by 
definition requires some flow all the time. This difference deserves further research, 
which could give us more understanding on the mechanism of adaptations and natural 
resilience of freshwater biota.  

Our findings provide an interesting insight into broad scale salinity sensitivities of 
QLD stream macroivertebrates. Even though overall taxonomic richness does not 
change, structural changes in macroinvertebrate communities do occur with even 
slight increase in conductivity. However, since the analyses were based on coarse 
taxonomic resolution (mainly at the family level) care should be taken when applying 
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proposed sensitivity scores to the assessment of the risk posed by salinity. Increased 
taxonomic and geographical resolution combined with more data sampled in the 
higher conductivity streams (brackish-saline categories) and using abundance data 
instead of presence-absence are likely to improve the accuracy and precision of the 
Salinity Index.  

 
Table 6.4. Taxa specific conductivity ranges, trends shown by frequency plots and 
sensitivity analysis with ANN and Salinity Sensitivity Score, edge habitat. 
 

Taxa 

Mini
mum 
condu
ctivit
y  
(mS 
cm-1) 

Maxim
um 
conduc
tivity 
(mS 
cm-1) 

Mean 
conduct
ivity 
(mS 
cm-1) 

Mean 
frequency of 
occurrence 
along salinity 
gradient (25 
bins) 

Probability 
of occurrence 
with increase 
in salinity 
(ANN 
models) 

Sensitiv
ity by 
SOM 

Salinity 
Sensitivi
ty Score 
(1-very 
tolerant, 
5- 
tolerant, 
10 -
sensitive
) 

Acarina 6 11730 319.98 decr slightly decr s 5 
Aeshnidae 31 4500 426.68 slightly incr unimod t 5 
Ancylidae 30 2560 453.59 incr slightly decr t 5 
Atyidae 22 12000 369.38 incr slightly decr t 5 
Baetidae 6 11730 344.33 no vis.tr decr  t 5 
Caenidae 22 11730 332.39 no vis.tr decr t 5 
Calamoceratidae 6 5570 331.27 no vis.tr decr t 5 
Ceratopogonidae 20 11730 344.55 no vis.tr unimod t 5 
Cladocera 25 12000 385.05 incr unimod t 5 
Coenagrionidae 6 12000 383.71 incr incr vt 1 
Copepoda 20 12000 377.84 incr incr vt 1 
Corbiculidae 45 2150 449.46 incr decr t 5 
Corduliidae 23 2980 291.92 decr decr s 10 
Corixidae 20 11730 365.64 incr slightly decr vt 5 
Culicidae 20 11730 423.85 incr incr t 1 
Dugesiidae 6 2460 264.91 decr decr s 10 
Dytiscidae 6 12000 396.93 incr incr vt 1 
Ecnomidae 23 11730 331.92 no vis.tr slightly incr t 5 
Elmidae 22 3100 236.68 decr decr s 10 
Gerridae 25 5600 315.68 slightly decr decr t 5 
Gomphidae 6 12000 296.9 decr decr s 10 
Gyrinidae 6 5600 316.51 no vis.tr incr t 5 
Helicopsychidae 22 1387 232.26 decr decr s 10 
Hydraenidae 20 11730 455.97 incr incr vt 1 
Hydrometridae 20 5990 443.82 incr incr vt 1 
Hydrophilidae 6 6010 360.73 no vis.tr slightly incr t 5 
Hydropsychidae 6 2780 252.41 decr decr t 10 
Hydroptilidae 28 5990 292.47 decr decr t 10 
Isostictidae 28 5600 377.17 no vis.tr incr t 5 
Leptoceridae 6 11730 340.68 slightly decr decr t 5 
Leptophlebiidae 6 3910 289.84 decr decr t 10 
Libellulidae 6 11730 328.34 decr incr t 5 
 
Abbreviations: ‘incr’ – increasing, ‘decr’ – decreasing, ‘no. vis tr’ – no visible trend, 
‘unimod’ – unimodal, ‘s’ – sensitive, ‘t’ – tolerant, ‘vt’ – very tolerant 
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Continuation of Table 6.4. Taxa specific conductivity ranges, trends shown by 
frequency plots and sensitivity analysis with ANN and Salinity Sensitivity Score, 
edge habitat. 

 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Taxa 

Minim
um 
conduc
tivity  
(mS 
cm-1) 

Maximu
m 
conduct
ivity 
(mS 
cm-1) 

Mean 
conductivi
ty (mS 
cm-1) 

Mean 
frequency 
of 
occurrence 
along 
salinity 
gradient (25 
bins) 

Probability of 
occurrence 
with increase in 
salinity (ANN 
models) 

Sensitiv
ity by 
SOM 

Salinity 
Sensitivity 
Score (1-
very 
tolerant, 
5- 
tolerant, 
10 -
sensitive) 

Lymnaeidae 39 6010 558.99 incr no vis.tr vt 1 
Mesoveliidae 31 6010 402.37 incr incr vt 1 
Naucoridae 28 5990 492.26 incr incr t 1 
Nepidae 20 5570 359.48 unimodal incr s 1 
Notonectidae 30 6010 413.87 incr slightly decr t 5 
Oligochaeta 20 11730 378.67 incr slightly decr t 5 
Orthocladiinae 6 11730 330.63 no vis.tr decr t 5 
Ostracoda 6 6010 368.19 incr incr vt 1 
Palaemonidae 6 12000 321.47 decr decr t 5 
Parasticidae 33 12000 495.54 incr incr vt 1 
Planorbidae 37 11730 512.04 incr incr vt 1 
Pleidae 20 11730 398.44 incr no vis.tr t 5 
Protoneuridae 6 12000 375.42 no vis.tr no vis.tr vt 5 
Psephenidae 22 5600 393.76 no vis.tr decr t 5 
Pyralidae 22 3200 264.54 decr decr s 10 
Scirtidae 23 5600 367.29 no vis.tr incr t 1 
Simuliidae 6 2460 293.57 no vis.tr decr t 5 
Staphylinidae 29 5990 433.01 no vis.tr incr t 1 
Stratiomyidae 52 5570 569.25 incr decr vt 5 
Tabanidae 42 5990 420.93 incr incr t 1 
Tanypodinae 6 11730 352.31 no vis.tr slightly decr t 5 
Temnocephalidea 27 3040 280.85 no vis.tr decr s 10 
Thiaridae 30 12000 449.26 incr incr vt 1 
Tipulidae 6 2980 228.14 decr decr s 10 
Veliidae 20 8700 354.81 no vis.tr slightly decr t 5 
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Table 6.5. Taxa specific conductivity ranges, trends shown by frequency plots and 
sensitivity analysis with ANN and Salinity Sensitivity Score, riffle habitat. 
 

Taxa 

Mini
mum 
condu
ctivit
y  
(mS 
cm-1) 

Maximum 
conductivi
ty (mS 
cm-1) 

Mean 
conduct
ivity 
(mS 
cm-1) 

Mean 
frequency of 
occurrence 
along 
salinity 
gradient (25 
bins) 

Probability of 
occurrence 
with increase 
in salinity 
(ANN models) 

Sensitiv
ity by 
SOM 

Salinity 
Sensitiv
ity 
Score 
(1-very 
tolerant, 
5- 
tolerant, 
10 -
sensitiv
e) 

Acarina 26 4500 240.74 decr slightly decr s 5 
Aeshnidae 22 1574 141.57 decr slightly decr s 10 
Ancylidae 51 1389 357.04 incr incr s 1 
Atyidae 31 5600 378.71 incr slightly incr vt 1 
Baetidae 22 4500 273.2 decr decr t 5 
Caenidae 26 5600 325.14 incr incr vt 5 
Calamoceratidae 26 3200 292.44 decr slightly incr s 5 
Ceratopogonidae 22 4500 260.86 decr decr s 5 
Cladocera 45 1515 321.2 incr incr t 5 
Coenagrionidae 30 4500 479.42 incr incr vt 1 
Copepoda 37 4500 421.14 incr incr vt 1 
Corbiculidae 47 3200 472.16 incr incr vt 1 
Corduliidae 22 5600 319.29 no vis.tr incr t 5 
Corixidae 38 3200 383.92 incr incr vt 1 
Culicidae 60 4500 564.81 incr incr vt 1 
Dolichopodidae 40.4 5600 358.51 incr slightly incr t 1 
Dugesiidae 22 3200 248.96 decr decr s 10 
Dytiscidae 44 5600 489.3 incr incr vt 1 
Ecnomidae 27 5600 376.22 incr slightly incr vt 1 
Elmidae 22 5600 254.91 decr decr s 10 
Gerridae 42 4700 418.22 incr incr vt 1 
Gomphidae 22 5600 250.76 decr decr s 10 
Gyrinidae 44.4 5600 478.08 incr incr vt 1 
Helicopsychidae 22 1423 270.52 decr slightly decr s 5 
Hydraenidae 31.3 4700 503.67 incr incr vt 1 
Hydrobiosidae 26.6 1696 215.26 decr decr s 10 
Hydrometridae 175 1574 769 incr incr vt 1 
Hydrophilidae 22 5600 366.29 incr incr vt 1 
Hydropsychidae 22 5600 295.14 no vis.tr slightly decr t 5 
Hydroptilidae 26 4500 295.87 no vis.tr incr t 5 
Isostictidae 90 636 384.6 no vis.tr decr t 5 
Leptoceridae 22 5600 300.02 no vis.tr incr t 5 
Leptophlebiidae 22 5600 266.62 decr decr t 10 
Libellulidae 27 5600 294.43 no vis.tr incr t 5 
Lymnaeidae 70 2094 513.88 incr incr vt 1 
Mesoveliidae 43 1750 283.5 no vis.tr incr t 5 
 



 146

Continuation of Table 6.5. Taxa specific conductivity ranges, trends shown by 
frequency plots and sensitivity analysis with ANN and Salinity Sensitivity Score, 
riffle habitat. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Taxa 

Minimu
m 
conducti
vity  (mS 
cm-1) 

Maximu
m 
conduct
ivity 
(mS 
cm-1) 

Mean 
conductivi
ty (mS 
cm-1) 

Mean 
frequency 
of 
occurrence 
along 
salinity 
gradient (25 
bins) 

Probability 
of 
occurrence 
with 
increase in 
salinity 
(ANN 
models) 

Sensiti
vity by 
SOM 

Salinity 
Sensitivity 
Score (1-
very 
tolerant, 5- 
tolerant, 
10 -
sensitive) 

Naucoridae 39 2094 233.45 decr incr s 5 
Nepidae 108 757 305.14 no vis.tr incr s 5 
Notonectidae 40 1610 327.14 no vis.tr incr s 5 
Oligochaeta 26.6 5600 313.54 incr decr t 5 

Orthocladiinae 26 4500 286.9 no vis.tr 
slightly 
decr t 5 

Ostracoda 38 5600 420.03 incr incr vt 1 
Palaemonidae 22 4500 262.24 decr decr t 5 
Parasticidae 39 4500 402.02 incr decr t 5 
Philopotamidae 26 5600 238.26 decr decr s 10 
Planorbidae 52 4500 568.18 incr incr vt 1 
Pleidae 81 968 373.56 incr incr t 5 
Protoneuridae 40 1450 403.35 incr incr t 5 
Psephenidae 22 5600 283.46 decr incr s 5 
Pyralidae 26.6 3100 236.69 decr decr s 10 

Scirtidae 30 4700 246.34 decr 
slightly 
decr s 10 

Simuliidae 22 4700 304.14 no vis.tr decr t 5 
Staphylinidae 32 769 228.73 no vis.tr decr s 10 
Stratiomyidae 56 5600 828.59 incr incr vt 1 
Tabanidae 26 4700 298.49 incr slightly incr t 5 
Tanypodinae 22 5600 286.43 no vis.tr decr s 5 
Temnocephalidea 43 666 246.58 no vis.tr decr t 10 
Thiaridae 38 5600 483.59 incr incr vt 1 
Tipulidae 22 1951 218.03 decr decr s 10 
Veliidae 40 5600 362.51 incr incr vt 1 
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Chapter 7  
 
Scenario analysis based on the dirty-
water approach 
 
 
7.1  Predicting the effect of secondary salinisation on 
stream macroinvertebrate communities in Central 
Queensland.  
 
 
Introduction 

 
Wide spread secondary salinisation caused by the clearance of deep-rooted native 
vegetation is one of the major threats facing freshwater ecosystems in Australia. A 
number of streams and wetlands have already been affected by rising salinity leading 
to significant changes in flora and fauna. Macroinvertebrates in particular appear to be 
highly salt sensitive (Hart et al., 1991). There have been a number of studies on the 
effect of salinisation on macroinvertebrate taxa using both laboratory 
experimentations (Kefford et al., 2003; Kefford et al., 2004), field observations (Bunn 
and Davies, 1992; Kay et al., 2001; Kefford, 1998; Metzeling, 1993; Williams et al., 
1991) and mesocosm experiments (Marshall and Bailey, 2004). The majority of these 
studies were conducted in southern and western states of Australia and there is not 
much information available for Queensland streams.  
 
Secondary salinisation is a complex process and affects not only conductivity of 
stream water but other water quality parameters and stream habitats as well. It can be 
caused by the degradation of riparian vegetation that in turn provides less shade and 
increases water temperature. Increased nutrient and sediment loads in streams can also 
be a consequence of deteriorated riparian vegetation. Ground water flow can also 
contribute to changes in pH, alkalinity and ionic composition as well as to the 
enrichment of nutrients such as nitrate (NO3) originating from fertilisers (Brodie et 
al., 1984). There is currently little understanding about additive, synergistic or 
antagonistic effect of salinity and nutrients.  In a study of the biological effects of 
saline lake water disposal in the Lough Calvert drainage scheme in Southwest 
Victoria, Kefford (2000) found that the operation of the scheme changed the 
community structure and abundance of macroinvertebrates.  He noted that increased 
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salinity corresponded with increased nutrients and suspended solids having a 
compounding effect on macroinvertebrates communities. 

This study aims at testing the predictability of the Salinity Index and percentage of 
sensitive taxa (PST) defined in previous study (see Chapter 6) using localised datasets 
from Central Queensland, and to investigate possible changes in SI and PST in 
response to two scenarios: scenario 1 considering an increase in conductivity and 
related variables, and scenario 2 considering an increase in conductivity, related 
variables and nutrients (total nitrogen and total phosphorus). We used two types of 
ANNs. While modular feedfordward ANN (modified multi-layered perceptron) were 
used for the prediction, SOM were applied to analyse the results.   

The main hypotheses for this study are: 

1) Using ANN models it is possible to predict SI and PST based on ‘dirty-water’ 
approach. 

2) Simulated increase in conductivity affects the structure of macroinvertebrate 
communities. 

3) Combined stressors like conductivity and nutrients affect macroinvertebrate 
communities in a greated degree than conductivity or nutrients alone.  

Data and methods 

 
Fitzroy  and Burdekin are the two largest catchments in Central Queensland and were 
identified as priority catchments by the National Action Plan for Salinity and Water 
Quality (NAPSWQ).  

The data for this study was collected in Central Queensland in spring and autumn 
from 1994 to 2001 as a part of several surveys conducted by the Department of 
Natural Resources and Mines (NR&M). The dataset contains 209 samples collected 
from riffle habit only. In order to separate data into training and simulation subset we 
overlayed a GIS map with sample sites and salinity hazard maps for Burdekin and 
Fitzroy catchments provided by NR&M. Samples collected at the sites located in the 
areas of moderate to high salinity hazard were selected as the simulation set (36 
samples), the rest of the data was used for training (Figure 7.1). Samples from the 
same site collected in the different year or season were treated as separate sites.   
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Figure 7.1. Map of the Fitzroy and Burdekin catchments with sites marked 
accordingly to their location in different salinity hazard zones.  

 
 
The aim of the modelling process was to predict the effects of likely increases in 
conductivity by ANNs, which were trained with existing data. The measured 
conductivity ranged from 40 to 4700 μS cm-1. It was shown by Hart et al. (1991) that 
freshwater ecosystems can be affected when conductivity reaches 1500 μS cm-1. 
However, our previous findings (see Chapter 6) demonstrated significant changes in 
the SI by conductivity values between 800-1000 μS cm-1. Therefore, we assume that 
conductivities up to 4700 μS cm-1 are reasonable for the ANN modelling in order to 
reveal possible deleterious effects.  

By aiming to define a scenario for likely stream salinisation we have taken into 
consideration possible interactions between conductivity and other factors, such as 
temperature, nutrient load, turbidity, pH and dissolved oxygen. These interactions 



 150

have been analysed by using scatter plots and product moment correlation. In cases 
where such interactions were detected, linear or logarithmic trends have been fitted 
and related variables have been calculated in accordance to the conductivity level 
used for the simulation.  

A variety of ANN models with different architecture was built, trained and tested, 
including Multilayered Perceptron (MLP), Generalized Feed Forward network (a 
generalization of MLP were connections can jump over one or more layers) and 
Modular Feedforward neural network.  We found that for a given dataset Modular 
Feedforward neural network showed the best performance when tested on simulation 
subset, which was not used for training.  
 
Modular feedforward networks are a modification of commonly used Multi-Laeyered 
Perceptron neural networks (MLPs). These networks process their input using several 
parallel MLPs, and then recombine the results. This tends to create some structure 
within the topology, which will foster specialization of functions in each sub-module. 
In contrast to the MLPs, modular networks do not have full interconnectivity between 
their layers. Therefore, a smaller number of weights are required for the same size. 
This tends to speed up training times and reduce the number of required training 
exemplars (Principe et al. 2000).  
 
We used 29 input variables, including physico-geomorphological features and water 
quality variables (Table 7.1), 2 hidden layers with 6 neurons in each and tahn transfer 
function and 2 neurons in the output layer for the SI and the PST.  
The model was trained for 1500 iterations using only the training sub-set and 
validated using a simulation set from the moderate and high hazard salinity areas. To 
use as much data as possible we did not use cross-validation, instead the model was 
trained for a various number of iterations and simulated on both training and 
simulation sets. The models showing big discrepancies between the accuracy of 
prediction for training and validation sets were discarded as overtrained.  
  
Table 7.1. Input variables used for training of the predictive neural network.  
  
Variable (units)  
Season (categorical) Slope (km/m) 
Habitat depth (m) Distance from source (km) 
Maximal current velocity  (m/s) Mean wet season monthly rainfall (mm) 
Bedrock (%) Mean dry season monthly rainfall (mm) 
Boulder (%) Mean annual rainfall (mm) 
Cobble (%) Conductivity (µs/cm) 
Pebble (%) Water temp (°C) 
Gravel (%) Dissolved oxygen  (mg/L) 
Sand (%) pH 
Silt/clay (%) Alkalinity (mg/L CaCO3) 
Mean phi Turbidity (NTU) 
Latitude (decimal) Total nitrogen (mg/l as n) 
Longitude (decimal) Total phosphorus (mg/l as p) 
Altitude (m) 0-8. substrate categories  
Stream order (categorical)  
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The accepted model was simulated five times. First the model was simulated 
(Simulation 1) using actual data, then four more times with conductivity values 
increased in increments of 1000 μS cm-1 and related variables calculated in relation to 
the new conductivity values. In other words, conductivity was increased by 1000 μS 
cm-1 for simulation 2, by 2000  μS cm-1 for simulation 3 and so on. At the sites where 
conductivity was initially high, increases of conductivity by 3000 and 4000  μS cm-1 
resulted in the exceedance of maximal conductivity value in the model’s expertise 
(4700 μS cm-1) so these values were capped at the 4700 μS cm-1. The same capping 
by the maximal values in the dataset was performed for some sites with the high 
concentration of nutrients in case of Scenario 2. 
 
Two scenarios were defined: Scenario 1 with only increases in conductivity and 
directly related variables. Scenario 2 – with increases in conductivity, related 
variables and nutrients (total nitrogen and total phosphorus). The simulation dataset 
prepared for scenario 1 was used for scenario 2 plus total nitrogen was increased by 1 
mg L-1 for each conductivity increment (1000 μS cm-1), total phosphorus was 
calculated from an equation describing the relationship between total nitrogen and 
total phosphorus for the given area. In order to compare the combined effect of 
conductivity and nutrients and nutrients only we simulated the model once using only 
increase in nutrients (+ 4mg L-1 of total nitrogen and the calculated total phosphorus) 
keeping conductivity and related variables as actual values.  
 

Results 

 
Defining relationships between water quality variables 
 

Product moment correlations between all water quality variables are shown in Table 
7.2. The highest correlation was between conductivity and alkalinity (0.53) and total 
nitrogen and total phosphorus (0.46).  

Table 7.2. Product-Moment correlations between water quality variables in Central 
Queensland.  
 
 
 Conductiv

ity  
Water 
temperat
ure 

DO  pH Alkalinit
y  

Turbidity  Total N Total P 

Conductivity (μS cm-1) 1.00 -.01 -.03 .17* .53* -.15* .09 -.02 
Water temperature (°C)  1.00 -.11 .14* .03 -.05 .17* .03 
DO (mg/L)   1.00 .24* -.05 -.04 .05 -.01 
pH    1.00 .36* -.02 .02 -.06 
Alkalinity (mg/L CaCO3)     1.00 -.14* -.00 -.06 
Turbidity (ntu)      1.00 .19* .13 
Total N (mg/l as N) 
Total P (mg/l as P) 

      1.00 .46* 
1.00 

*significant (p <0.05) 
 
Given that conductivity is the sum of all the ions present in the solution, higher 
concentration of Ca and CO3 ions associated with increase in alkalinity will result in 
increased conductivity as well. Similarly for pH, increase in either Hydroxyl or 
Hydrogen ions will contribute to the increase in conductivity. 
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A scatter plot for conductivity and alkalinity with fitted logarithmic trendline  
(y = 88.602Ln(x) - 386.17, R2 = 0.57) is shown at Figure 7.2.  

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.2.  Scatterplot of alkalinity versus conductivity with fitted trendline. 

 
 
We used the above-mentioned trend to calculate changes in alkalinity with simulated 
increases in conductivity. A similar relationship was observed between pH and 
conductivity, r = 0.17, and a scatter plot with fitted logarithmic trend (y = 
0.2964Ln(x) + 6.0412, R2 = 0.15), is shown at Figure 7.3.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.3. Scatter plot of pH versus conductivity with fitted trendline.   

 
Turbidity was negatively correlated with conductivity, however, we could not fit any 
statistically sound trend to the scatter plot (Figure 7.4.) nor predict turbidity using 
ANN model. Generally, turbidity is the highest at conductivities between 100 μS cm-1 
and 500 μS cm-1, but it is almost never high when conductivity is higher than 1000 μS 
cm-1. This might be explained by the effect of coagulation and settling of suspended 
particles with a consequent clarification of the water column. Oliver et al. (1999) 
examined the effect of saline groundwater intrusion on water quality in Darling river 
(NSW, Australia) showing that increases in water column conductivity under low 
flow conditions caused major decreases in the turbidity of surface water. A 
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statistically significant inverse correlation between conductivity and turbidity was also 
observed in the Klein Modder and Modder Rivers (South Africa), where forty-six per 
cent of the variation in conductivity was associated with the variation in turbidity 
(Koning and Roos, 1999). 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7.4. Scatter plot of turbidity versus conductivity.  

 
The possible effects of an interaction between turbidity and conductivity are highly 
dependent on local conditions (such as particle size and current velocity) and may be 
very complex. Despite the complexities associated with this phenomenon, it was 
necessary to simplify it for the purpose of this study. As turbidity was observed to be 
below 30 NTU for all samples having a conductivity less than 1000 μS cm-1 (the 
value accepted as in increment for the simulation of increase in conductivity) 30 NTU 
was used as a maximum turbidity value for all samples having conductivity > 1000 
μS cm-1, with all the values below that being kept at their actual level.  
It is possible that a rise of groundwater can cause deterioration of riparian vegetation 
with subsequent effect of more light coming into the stream. This could cause an 
increase in water temperature, algal growth and other water quality parameters.  
However, in the content of this study we do not attempt to model interactions of 
conductivity and water temperature and keep water temperature at the observed values 
in all simulations.   
 
No correlation between nutrients and conductivity were found to be significant (Table 
2), however, there is a significant correlation between nutrients themselves. As we 
later attempt to model the combined effect of increased conductivity and nutrients 
values this relationship needs to be taken in consideration for the simulation process. 
Figure 7.5 shows a scatter plot with fitted linear trend  (y = 0.1251x - 0.01, R2 = 0.22) 
for total nitrogen and total phosphorus. For the subsequent simulations (Scenario 2) 
we used increases in total nitrogen up to 5.3 mg L-1 (maximum occurrence in the 
dataset for Central Queensland) with an increment of 1 mg L-1 , and phosphorus 
values calculated using abovementioned equation.  
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Figure 7.5. Scatter plot of total phosphorus versus total nitrogen with fitted trendline.  

 

Simulation results 

 
The correlation coefficient between the actual and predicted output for the simulation 
set was 0.75 for the Salinity Index and 0.68 for the Percent of Sensitive taxa (0.79 and 
0.77 respectively for the training set). Figure 7.6 shows scatter plots with fitted linear 
trends and R2 values for both variables.  
 
 
 
 
 
 
 
 
 
 
 
 
 
a)      b) 
 

Figure 7.6. Actual versus predicted a) Salinity Index, and b) Percent of sensitive taxa, 
simulation dataset. 

 
Figure 7.7 shows the range and the median of predicted outputs for SI and PST for 
both Scenario 1 and Scenario 2. It is obvious that the combined increases in the 
conductivity and nutrient concentrations had more effect on the macroinvertebrate 
communities than an increase in conductivity alone. For Scenario 1 the mean SI and 
PST decreased from 5.27 and 15.53 respectively in Simulation 1 (actual values for 
conductivity and related variables) to 4.68 and 9.94 in Simulation 5 (actual 
conductivity + 4000 μS cm-1). When effect of nutrients has been added the Simulation 
5 output for SI and PST was 4.32 and 7.14 respectively. Figure 7.8 shows 
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comparisons of the PST outputs for the Simulation 5 (+4000  μS cm-1), under 
Scenario 1 (Conductivity), Scenario 2 (Combined) and only increase in nutrients (+ 
4mg L-1 of total nitrogen, total phosphorus = 0.1251x (total nitrogen)- 0.01). 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7.7. Box plots for simulation results for Scenario 1 and Scenario 2, median 
values, box 20-80%, whiskers minimum and maximum. 

 
 
The lowest PST resulted from the combined impact of conductivity and nutrients. 
Nutrients only had the lowest impact on the percent of sensitive taxa.  
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Figure 7.8. Box plot for the PST outputs for the Simulation 5 (+ 4000  μS cm-1), for 
Scenario 1(Conductivity), Scenario 2 (Combined) and only increase in nutrients (+ 
4mg L-1 of total nitrogen, total phosphorus = 0.1251x (total nitrogen)- 0.01). 

 

Discussion and conclusions 

 
It was possible to predict the SI and PST defined in the previous study (see Chapter 6) 
with reasonable accuracy (hypothesis 1 is true). Although the SI was defined using 
state-wide data it was still predictable on a smaller geographical scale. The model 
responded well to the increases in conductivity and changes in alkalinity, pH and 
nutrient concentration. According to the results of this study increase in conductivity 
in Central Queensland streams will result in loss of sensitive taxa and changes in the 
structure of macroinvertebrate communities (hypothesis 2 is true).  
 
It has been shown that combined conductivity and nutrient concentrations may have a 
synergistic effect resulting in stronger impact on macroinvertebrate communities than 
single impacts of conductivity or nutrients alone (hypothesis 3 is true). This may also 
indicate that when the immediate effect of increased salinity appears as insignificant 
the indirect cumulative effects can still make the ecosystem vulnerable. 
 
 
7.2    Using methods in combination: analysing 
results of the  scenario analysis with Self Organising 
Maps (SOM). 
 

Introduction 

 
I have demonstrated the applicability and performance of SOM for the investigation 
of the natural variability in distribution of stream macroinvertebrates (Chapter 4) and 
elucidation of relationships between macroinvertebrate communities and 
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environmental variables (Chapter6). This study demonstrates applicability of SOM to 
the analysis of the results from the predictive modelling.  
 
The previous study shown that the increase in conductivity results in the loss of 
sensitive taxa. It is clearly evident from Figure 7.7 that the loss of sensitive taxa and 
changes in macroinvertebrate communities occur at the different rate in different 
streams, ranging from 0 to 11%. What causes this difference? What are the 
similarities between sites were the high or low loss of sensitive taxa is predicted? In 
order to answer this question I designed the following study. 
 

Methods 

 
In order to investigate how the differences in the rate of loss of sensitive taxa can be 
explained by the conditions in each particular site I calculated the difference between 
the first simulation (actual data as predictor variables) and each subsequent simulation 
using Scenario 1 output. A new data matrix with four variables for the differences 
between simulated outputs was prepared. For each site we calculated the difference  
(d) as: 
 
di = s1-si, 
 
Where, i – simulation number, s – simulation output.   
 
In order to group sites by similar pattern in PST change I partitioned this new matrix 
unto 4 clusters using a Self Organising Map (SOM) neural network. The optimum 
number of clusters was chosen using the Silhouette index (Rousseuw, 1987). 
Resulting clusters were further analysed using ANOVA. 
 

Results 

Resulted SOM (size 6x5, average SOM quantisation error = 2.307) was partitioned 
into 4 clusters with k-means algorithms using the Silhouette index (Rousseeuw, 1987) 
as an indicator of clustering quality. The Silhouette index for the resulting clustering 
was 0.79 indicating a strong structure.  

Figure 7.9 shows a box plot with median values (whiskers for maximum and 
minimum) of differences (d) between simulation outputs in the clusters 1 and 2 
(clusters 3 and 4 contained only few sites and not shown here). All the differences 
between simulations are noticeably larger in the first cluster than in the second, in 
other words, macroinvertebrate communities from the sites in cluster 1 show more 
pronounced response in all simulations than the communities from the cluster 2. 
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Figure 7.9. Box plot for the median values (box 80-20%, wiskers for maximum and 
minimum) of differences between simulation outputs in two SOM defined clusters.  

 
On average, cluster 2 was characterized by lower percentage of sensitive taxa present 
initially, higher concentration of total nitrogen, higher turbidity, lower pH and lower 
dissolved oxygen in comparison with cluster 1 (Table 7.3). Clusters 3 contained only 
one site, which was characterized by the lowest initial PST – 6.6%. Even though 
turbidity was low at this site, the total nitrogen and conductivity were relatively high, 
plus the site was characterized by high water temperature. Cluster 4 contained only 
few sites also characterized by low PST, high water temperature and high 
conductivity.  
 
 
Table 7.3. Mean values of the water quality variables and actual PST in four SOM 
defined clusters. 
 
Number of the cluster 1 2 3 4 
Number of sites in the cluster     14    18   1   3 
Water temp (°C)               21.87  21.58  23.10  23.33 
Dissolved oxygen  (mg L-1)       8.40   7.61   7.60   6.06 
Total N (mg L-1as N)            0.46   0.73   0.83   0.41 
Total P (mg L-1 as P)            0.04   0.06   0.03   0.01 
Conductivity (μS cm-1)         438.14 713.4 1391.00 734.66
pH                             8.18   7.46   8.10   7.75 
Alkalinity (mg L-1  CaCO3)     172.98 141.23 408.00 189.16
Turbidity (NTU)               29.21  62.15  11.90   4.66 
Actual PST                      21.63  15.54   6.66  13.22 
 

 
Total N, pH, and actual PST were significant in discriminating between clusters 1 and 
2 (Table 7.4). Only 1 and 3 sites were in clusters 3 and 4 respectively, and these 
clusters are not considered in the further analysis. Although the statistical difference 
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in conductivity between clusters is not significant, the mean values of conductivity for 
cluster 1 and 2 are quite different, 438.14  μS cm-1 and 713.4  μS cm-1 respectively.  
 
Table 7.4. Results of the univariate analysis of variance between clusters 1 and 2.  
 
Variable                        F       P 
pH                            9.4   0.00
Total N (mg L-1as N)           5.6   0.02
Actual PST                         4.0   0.05
Total P (mg L-1 as P)           2.0   0.17
Conductivity (μS cm-1)            1.9   0.18
Dissolved oxygen  (mg L-1)     1.3   0.26
Turbidity (NTU)               0.9   0.62
Alkalinity (mg L-1  CaCO3)     0.6   0.53
Water temp (°C)                 0.1   0.77
 
 

Discussion and conclusions 

 
The response of the macroinvertebrate communities to increased salinity appeared to 
be site specific. When the changes in PST were analysed with SOM all streams were 
clustered into two broad groups, one that included sites where macroinvertebrate 
communities responded rapidly to the increase in conductivity and the other that 
responded much slower and experienced less significant loss of sensitive taxa.  
 
The first group was characterised by initially larger PST, higher pH, lower nutrients 
and lower conductivities, even though the difference in conductivity between the 
groups was not statistically significant. This implies that the macroinvertebrate 
communities with a high number of sensitive taxa that usually occur at low 
conductivity and good water quality are likely to experience stronger changes when 
conductivity rises compared to the communities, which are already under some kind 
of stress and dominated by the opportunistic taxa. This may have some implications 
for the sustainable environmental management when decision is taken about the 
acceptable conductivity levels for the specific ecosystems. Further research is needed 
to understand the response of specific stream ecosystems to simulated impacts.  
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Chapter 8 
 

Discussion and the recommendations 
for further research 
 

This study was intended as an exploratory research into the applicability and the 
potential of two most well known types of neural network models for developing tools 
to assess and predict solutions for a range of ecological problems. It has been shown 
that extensive data collected over the years in accordance with AusRivAs protocols or 
for the other purposes can be utilized in a creative and flexible manner by the 
application of ANNs. When it comes to the assessment of biota, it was demonstrated 
that SDFS is capable of producing as much information as AusRivAs plus offers a 
potential in many more other aspects. The complimentary application of supervised 
and unsupervised ANNs within the SDSF proved to be a useful framework for the 
study of complex stream datasets. 

In SDSF it is possible to implement referential approach in a more straightforward 
way, without having to cluster sites as in AusRivAs. In this study we demonstrated 
good performance of statewide models (Victoria) for the prediction of occurrence of 
15 macroinvertertebrates, ranging from rare to very common. Even though these 
models have demonstrated high accuracy of prediction it is still possible to improve 
the accuracy by using models built for a smaller geographical area, as bioregion or 
catchments. Comparative accuracy of the models on the different spatial scale has 
been demonstrated using Queensland data. Similar comparisons conducted for the 
other states are likely to be beneficial in order to achieve the optimum performance 
and select the optimum spatial scale for the modeling. This can be a direction for the 
future research as we are not aware of many studies addressing this question in this 
time.  

Understanding natural variability within macroinvertebrate communities is very 
important step for the design of habitat assessment protocols. Application of the 
reference approach must consider the inclusion of the population of reference sites 
representing the full range of conditions that are expected to occur at all sites to be 
assessed (Reynoldson and Wright, 2000). However, comparison of reference sites 
inhabited by the macroinvertebrate communities naturally different from those of the 
test sites can lead to erroneous assessment. Robust clustering procedures are very 
important in this respect. In this study we demonstrated clustering of 
macroinvertebrate assemblages using SOM with two main purposes: defining 
naturally similar spatial groups and defining similar assemblages of trophic groups.  
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Even though, this study demonstrated application of SOM to understanding natural 
variability by clustering reference sites in Victoria and Queensland, this task is too 
large to be thoroughly addressed in the scope of the thesis. Particularly in Queensland 
where only preliminary research of natural variability on statewide scale has been 
conducted (Jon Marshall, NR&M, personal communication). There is much space for 
the future research in this direction. SOM can be used to understand variability on a 
smaller scales, as within bioregions and within catchments. Another approach worth 
researching is clustering sites on the base of geo-climatic similarities, similarities in 
the structure of habitats, landuse, etc. However, when using SDSF the clustering step 
is not necessary in order to use the referential approach. Statewide or bioregional 
models can be implemented in a straightforward manner and clustering can be use in 
order to investigate particular questions or gain a general understanding of the data on 
various spatial scales.  

This study has demonstrated the potential of MLP for the prediction of typified 
assemblages of macroinvertebrates instead of the separate taxa. This could 
significantly speed up the process of biological assessment, as fewer models would 
need to be built and tested.  Reference sites were clustered by the similarity of their 
macroinvertebrate communities using SOM and these clusters were predicted and 
related to the environmental variables using MLP and GA. Even though, MLP 
outperformed GA in this case, GA offered more transparency and explanation by 
generating rule-sets describing the conditions that each site has to meet in order to be 
classified into a certain cluster. Implementation of rule-based methods as GA and 
decision trees can offer an additional information to that provided by SOM and MLP. 
The computer scientists are constantly developing new algorithms directed at 
providing ANN models with more transparency. Much research has been dedicated to 
generating explanation structures and rule refinement in ANN (Towell and Shavlik, 
1993; Andrews and Geva, 1994), which, unfortunately, is not yet widely implemented 
in major ANNs software packages. Further research on the application of these 
algorithms to the ecological problems is likely to be helpful in order to provide the 
neural network models with more transparency and extract more information on the 
importance of environmental variable as structuring forces behind biotic communities.  

The question of variable importance has been briefly addressed by comparing output 
of the sensitivity analysis using catchment scale models for three taxa. Unfortunately, 
variability of the results was too high, and we do have any confidence in this method 
at this stage. Similar variability has been observed by the other authors (Olden and 
Jackson, 2002) and further research in this direction is much needed.  

Sensitivity curves, the other output from the sensitivity analysis also have been 
characterized by high variability and we do not recommend it as a quantitative tool at 
this stage. However, it has been shown that when analysed qualitatively, sensitivity 
curves can provide interesting information on the relationships between the 
distribution of macroinvertebrate communities and the environmental factors. The 
qualitative assessments of the sensitivity curves were largely in agreement with the 
outputs of the other methods as SOM component planes and frequency curves 
especially in the situation where strong relationships between taxa occurrence and 
particular environmental gradient have been observed.  

By implementing the referential approach in AusRivAs it is possible to assess the site 
as degraded but there is not much information available on the type of impact and 
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specific consequences for the stream biota. In this study an ambitious task of creating 
a pressure-specific index (Salinity Index) has been attempted. SI was suggested as 
measurement of the changes within macroinvertebrate communities due to the effect 
of salinisation. Even though the use of SI on wide practical basis is not recommended 
at this stage, performance of SI has been verified by various methods from testing it 
on the subsets with otherwise very good water quality to subjecting the resulted 
Salinity Scores to partial CCA designed to rule out the effect of temporal and 
geoclimatic variables. Potential of semi-qualitative methods as SOM component 
planes and sensitivity curves for the assessment of taxa sensitivities to the 
environmental stressors (as salinity) has been demonstrated, however, more research 
and particularly comparison with quantitative methods as logistic models and 
multivariate regression can help better understanding the difference between the 
potential of statistical methods and the machine-learning methods.   

Analysis of the changes within macroinvertebrate communities caused by the changes 
in salinity levels resulted in interesting and ecologically important observations. It has 
been shown that shift from the salt sensitive to the salt tolerant taxa occurs at the 
salinity levels much lower than currently accepted by the environmental authorities. 
Even though, no reduction in overall taxonomic richness has been observed, dramatic 
changes in the community structure were demonstrated at the conductivity levels 
around 800-1000 μS cm-1. This is much lower than currently accepted level of 1500 
μS cm-1 (Hart et al., 1991), below which the freshwater biota considered to be 
unaffected.  

The Salinity Sensitivity Scores assigned as a result of the analysis of sensitivity curves 
and mean/maximum conductivity values of each taxon were mainly in accordance 
with previous knowledge, however, some discrepancies were observed. For example, 
Kefford et al. (2003) based on the results of acute testing concluded that Australian 
mollusks are salt sensitive. According to our research the opposite was observed for 
some taxa like Planorbidae, which appears to be very tolerant to the salinisation. 
Recent results of the acute testing conducted by NR&M staff indicated that indeed 
some mollusks (as Hydrobiidae) are quite tolerant with LC50 > 20 000 μS cm-1 in 
comparison with other taxa as mayflies Leptophlebiidae with LC50 around 2 000-6 
000 μS cm-1 (Jason Dunlop, NR&M, personal communication). We hope that our 
results might urge the scientists and environmental managers working on salinity 
issues reconsider the current assumptions about salinity sensitivity of Australian 
macroinvertebrate. Certainly, more research is needed in this direction.   

Assessment and prediction using ‘dirty-water’ models including variables potentially 
affected by human activity is not implemented in AusRivAs and generally not often 
used in Australia. Huong et al. (2001) demonstrated high accuracy of the ‘dirty-water’ 
models for the prediction of occurrence pattern of stream macroinvertebrate using 
QLD data. This study demonstrated the high potential of the method for the prediction 
of taxonomic richness of stream macroinvertebrates and native macrophytes using 
relatively small dataset from the four catchments in NSW.  

The ultimate purpose of the ‘dirty-water’ models was demonstrated by the prediction 
of the Salinity Index suggested as a measurement of changes in macroinvertebrate 
communities due to the effect of salinisation. Two scenarios were simulated: gradual 
increase in conductivity (up to + 4000 μS cm-1) and combined increase in 



 163

conductivity and nutrients (total nitrogen). It has been shown that the increase in 
conductivity results in the loss of sensitive taxa (up to 11%), however this loss was 
even more profound when combination of stressors (conductivity and nutrients) has 
been simulated. James et al. (2003) indicated that little is known currently about the 
combined effect of conductivity and the other stressors, and indeed compounding of 
the effects is possible. We hope that the results of our research make an important 
contribution in this direction. It has been shown that scenario analysis using ANN 
models is an interesting and useful tool for the simulation of possible futures. For the 
future research, the following types of scenario analysis might be the most practically 
relevant in relation to the most common environmental problems faced by the 
Australian streams (as vegetation clearance, salinisation, sedimentation, agricultural 
run-off, water extraction, etc.): 

1) Effect of salinisation, turbidity and nutrients on taxonomic richness, PET richness 
and sensitive taxa. 

2) Effect of these factors in combination (as turbidity and nutrients). 

3) Effect of the reduction in flow by itself and in combination with water quality 
variables. 

4) Effect of water temperature increase (as a consequence of clearance of riparian 
vegetation) by itself and in combination with turbidity and nutrients.  

Further experiments in order to predict the measurements of ecosystem functioning as 
benthic metabolism (respiration, production, etc.) using ANNs can be also very 
interesting and important. This could lead to the scenario analysis for the prediction of 
changes in ecosystem functioning in response to the various anthropogenic stresses or 
restoration measures.  

In order to be able to conduct accurate and practically relevant scenario analysis it is 
important to realize the relationships between the predictor variables, so when 
changes in one variable is made, the variables somehow related should not be left 
unchanged, otherwise the simulation will be just a formal exercise and have little 
practical relevance. This thesis demonstrated the applicability of SOM component 
planes for the analysis of spatial distribution of biotic and abiotic variables and the 
relationships between them. It has been demonstrated using NSW data, that 
component planes allow comparison of many variables at ones and detection of both 
linear and non-linear relationships between them. We recommend wider use of SOM 
component planes when purpose is to get an initial understanding of data and its 
underlying structures. It was possible to make general assessments regarding 
conditions of habitats and biota in four NSW subcatchments just using SOM 
component planes, these assessments were largely in agreement with those conducted 
by the environmental authorities (Chessman, 2002). 

Use of both SOM component planes and clustering SOM with k-means algorithm 
revealed a number of interesting relationships between water quality and trophic 
structure of macroinvertebrate communities. In general, it was shown that trophic 
structure is affected by a number of both natural geoclimatic characteristics and water 
quality parameters. Increase in water temperature, turbidity and elevated nutrients can 
affect natural succession of FFG along the stream order gradients. In particular, 
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elevated proportion of collectors and predators at the expense of the other trophic 
groups can be expected at the sites experiencing some kind of anthropogenic impact. 
Some interesting results from this study certainly deserve further attention, namely: 
 
1) It appears that in a case of riffle habitat in Queensland succession of FFG along 
stream order gradient to some extent follows the assumptions of RCC when stream 
conditions are close to natural. In the case of edge habitat we could not observe any 
detectable changes in FFG along the river continuum neither in reference nor in test 
sites. One of the possible explanations is that edge habitat dataset includes many more 
sites from inland areas with low rainfall and intermittent flow, when riffle habitat by 
definition requires flowing water. The effect of flow might be masking natural 
gradients along the river continuum as ephemeral streams would be dominated by 
highly resilient fauna adapted to the surviving extended no flow periods despite of the 
site’s stream order. The question for the further research is: What is the difference 
between succession of FFG along the river continuum in sites with intermittent flow 
and sites with permanent flow? Effect of combination in flow disturbances and 
changes in water quality on trophic structure can be also analysed using scenario 
analysis.  
 
2) According to the results of CCA season appears to be important factor for the 
trophic structure of macroinvertebrate communities. As sites were sampled only in 
spring and autumn we assume that the difference is caused by the previous season, 
which in the case of Queensland is wet season (summer) or dry season (winter). 
However, we have not found any definitive difference in the pattern of FFG 
succession along the river continuum between two seasons. What is the effect of 
seasons on the trophic structure of macroinvertebrates in Australian streams? It has 
been observed (cited from Boulton and Brock, 1999) that community structure in 
Australia seems to be more related to small-scale, local variations in physical factors 
such as substrata and current velocity than to the large scale factors. Thus, patterns in 
feeding groups representation are more complicated than the river continuum concept 
suggests (Lake et al., 1986).  
 
The investigation of the relationships between trophic groups and water quality also 
demonstrated the potential of untraditional combination of methods, namely SOM and 
CCA. This approach provided simultaneous reduction of the data dimensionality and 
the visualisation of relationships between different types of assemblages and 
environmental variables. This particular combination can be especially useful in the 
situations where there is a need to analyse a data containing large number of species 
(as diatom communities). Thus, it is possible to cluster species into typical 
assemblages using SOM and then relate those assemblages to the environmental 
gradients using CCA.  
 
Flexibility and universality of SOM have also been demonstrated by analysing the 
outputs of scenario analysis in order to understand why the same increase in 
conductivity resulted in the different loss of sensitive taxa in different streams. It has 
been shown that communities already affected by some kind of anthropogenic activity 
and dominated by opportunistic taxa appear to be less affected by the salinisation in 
comparison with communities in close to the natural state. This observation is 
interesting in ecological terms and might have important implications in respect to 
environmental management.  
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Even though, it has been shown that macroinvertebrates are strongly and 
deterministically linked to the habitat features as substrate, discharge, hydraulics, 
riparian vegetation and water chemistry (Giller and Malmqvist, 1998), biotic 
interaction is another significant factor structuring macroinvertebrate communities. 
Bun and Davies (2000) showed that an assumption that changes in macroinvertebrate 
communities are always reflection of changes in environmental factors overrides 
importance of biological processes and can lead to erroneous conclusions about 
causes of these changes. For example, Power (1990) showed that in the presence of 
predatory fish, smaller predators were reduced, tube-weaving chironomids larvae 
proliferated, and the benthic substrate was reduced to a midge-infested residue. 
Predation effect of this kind can be a major cause of spatial and temporal variation in 
stream community structure. Biomonitoring models based entirely on abiotic 
variables would be unable to predict such marked changes in the nature of the stream. 
Predator-caused shift in the community structure can be mistakenly attributed to some 
form of anthropogenic disturbance. Modelling biotic interactions within 
macroinvertebrate communities and between fish and macroinvertebrate communities 
can be an interesting direction for the future research.  
 
Another important question, which was not addressed in this study but certainly could 
be researched in the future, is the assessment and prediction of physical and chemical 
conditions. For example, Habitat Predictive Modelling approach uses large-scale 
catchment features to predict local-scale physical habitat features (Davies et al., 
2000). The same logic and the statistical analysis are used as for the biological 
assessment in AusRivAs. Ratio of habitat features expected to occur at a test site (E) 
are compared against the habitat features that were actually observed at the site (O). 
The ratio of these values (O/E) indicates a continuum of physical habitat condition. 
Prediction of physical and chemical characteristics using ANNs is an interesting 
direction worth further researching.  

This study gave some answers to the practical questions asked by the practicing 
ecologists, namely: How the accuracy of the model related to the number of predictor 
variables? Which predictive models are more accurate: generic or local? What is the 
effect of temporal variability and variability between different habitats on the 
accuracy of predictive models?  

It has been shown that even though MLP performs slightly better with comprehensive 
set of predictors, it can cope with significant reduction of inputs. Reasonably accurate 
predictions were produced by the models with as few as 9 predictors. This 
corresponds well with previous findings, for example, Cereghino et al. (2003) 
developed an accurate model for the prediction of EPTC (Ephemeroptera, Plecoptera, 
Trichoptera, Coleoptera) richness using only 4 input variables. Local models were 
more accurate than generic but this accuracy was variable. Seasonal variations appear 
to be more important than annual, however, ANN models were still capable of 
achieving high rate of correct predictions when trained on one season and tested on 
another. These results can be an important step to the practical implementation of 
SDSF as a conceptual basis for the analysis, assessment and prediction of biological 
conditions in Australian streams.  
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From the Stream Decision Support Framework to the Stream Decisions Support 
System (SDSS).  

There is enough evidence available worldwide that ANNs is a useful and flexible tool 
for the assessment and prediction of biological conditions. In Europe, SOM and MLP 
have been used as a basis for the software tool PAEQANN (Predicting Aquatic 
Ecosystems Quality using Artificial Neural Networks). The PAEQANN is a research 
project supported by the European Commission under the Fifth Framework 
Programme and contributing to the implementation of the Key Action "Sustainable 
Management and Quality of Water" within the Energy, Environment and Sustainable 
Development. PAEQANN project assemble European scientists in the aim to provide 
predictive tools to define effective policies and to improve freshwater management 
and to apply techniques identifying problems in ecosystem functioning for a future 
restoration of its integrity. 

The PAEQANN’s aim is to set up robust and sensitive ecosystem evaluation 
procedures that will work across a large range of running water ecosystems 
throughout Europe, 

• Firstly to point out the cause and effect relationships between environmental 
conditions (physical, chemical, due to management actions) and certain 
relevant aquatic communities (diatoms, macroinvertebrates and fish). 

• And then, to predict biocenosis structure in disturbed ecosystems, taking into 
account al the relevant ecological variables 

• To test ecosystem sensitivity to disturbance.  
• To explore specific actions to be taken for restoration of ecosystem integrity 

(Bretin et al., 2003). 
 

PAEQANN provides a user interface where it is possible to select a country and 
organism for the assessment and modeling (Figure 8.1). It is possible then to conduct 
clustering of sites using SOM (Figure 8.2) or predict a taxa occurrence according to 
the referential approach and conduct sensitivity analysis using ‘PaD’ algorithm 
(Figure 8.3).  
 
SDSF can be developed into a SDSS in a similar way. SOM can be used for the 
patterning, analysis of the relationships between the variables using component 
planes. MLP can be used for the assessment using referential approach, sensitivity 
analysis and scenario analysis. The models developed in this study and by Huong 
(2001) can be used as an initial basis for this system which can be developed further 
to provide a basis for analysis, assessment and prediction of freshwater biota.  

 

 

 

 

 



 167

 

 

 

 

 

 

 

 

 

 

 

 

 

 

              Figure 8.1. PAEQANN interface. 

 
 
 
 
 
 
 
 

 

 

Figure 8.2. Ordination (using SOM) screenshot.  
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Figure 8.3. Prediction (using MLP) and sensitivity analysis screenshot.  

 
Summary 
 
 
Using SOM to explore the natural variability 
 

Victoria data 
 

• The clusters of sites with similar macroinvertebrate assemblages discovered by 
the SOM were largely in accordance with the previously defined bioregions of 
Victoria (Metzeling et al., 2001).  

 
• All but one environmental variables were significant discriminating between 

the clusters, with alkalinity having the highest F value. The most dissimilar 
clusters were highland ecosystems and Murray plains.    

 
• SOM component planes provided easy and highly visual way to assess 

relationship between variables.  
 

Queensland data 
  

• The patterns in distribution of macroinvertebrate communities discovered by 
the SOM vaguely resembled the biological regions defined by NR&M. Still, 
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SOM identified changes in community composition from south to north and 
from coastal areas to inland, which are the major directions in the distribution 
of bioregions.   

 
• Three main environmental gradients have been identified using ANOVA and 

comparison of SOM component planes, namely: geographical location, 
rainfall pattern and the distance from source. Water quality, temporal variables 
and substrate composition appear to be less important but still significant in 
discriminating between the SOM clusters.   

 
 Recommendation for the future research: 

SOM can be used to understand variability on a smaller scale, as within bioregions 
and within catchments. Clustering sites on the base of geo-climatic similarities, 
similarities in the structure of habitats, landuse, etc. can be helpful in order to identify 
regions with similar habitat characteristics. 

 
Using SOM for the exploration of relationships between biotic and abiotic variables 
in NSW 
 

• The SOM component planes provided quick and simple method for the 
evaluation of geographic distribution, possible gradients and correlations in 
the data.  

 
• The distribution and the extent of anthropogenic impact in various areas of 

NSW have been characterised with reasonable accuracy using SOM 
component planes only.   

 
• Detection of both linear (fishes and altitude) and non-linear relationships 

(macroinvertebrates, water temperature and turbidity) has been demonstrated 
using SOM component planes only.  

 
Recommendation for the future research: 

Closer look at the component planes for NSW dataset is likely to provide much more 
information than has been described here. SOM built for each subcatchment would 
provide more spatial resolution, and possibility to detect gradients on a finer scale. 

 

Using SOM to explore the effect of water quality on the trophic structure of 
macroinvertebrate communities 
 

• SOM produced meaningful clustering of macroinvertebrate communities 
based on the similarity of their trophic structure.  

 
• Succession of FFG along the stream order gradient follows the assumptions of 

RCC to some extent when stream conditions are close to natural, but this trend 
was practically undetectable in the streams experiencing some kind of 
anthropogenic stress.  
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• Turbidity, water temperature and nutrients are the most important water 

quality variables affecting trophic structure of macroinvertebrate communities. 
Increase in turbidity causes reduction in the proportion of grazers and 
shredders and increase in the proportion of collectors and to some extent 
predators. The increase in nutrients is also associated with increase in the 
proportion of collectors and predators at the expense of the other groups.   

 
• SOM component planes and CCA revealed largely similar relationships 

between FFG and water quality variables.  
 

• The combination of SOM and CCA allowed simultaneous identification of 
similar trophic assemblages and the visualisation of relationships between 
those assemblages and water quality variables.  

 
Recommendation for the future research: 

 
The difference between succession of FFG along the river continuum in the sites with 
intermittent flow and the sites with permanent flow. The seasonal effect on the trophic 
structure of macroinvertebrates in Australian streams. The combination in flow 
disturbances and changes in water quality in relation to the trophic structure of 
macroinvertebrate communities can be also analysed using scenario analysis.  
 
Predicting biotic variables by supervised ANNs 
 

Using referential approach and Victorian dataset 
 

• Good performance (average percentage of correct predictions 77.7%) of state-
wide models (Victoria) for the prediction of occurrence of 15 
macroinvertebrates, ranging from rare to very common has been demonstrated.  

 
 Using the dirty-water approach and NSW dataset 
 
• The taxonomic diversity of macroinvertebrate and macrophytes has been 

predicted with a reasonable accuracy (correlation between actual and predicted 
output 0.7 and 0.79 respectively).  

 
Recommendation for the future research: 

Even though these models have demonstrated high accuracy of prediction it is still 
possible to improve the accuracy by building models for a smaller geographical area, 
as bioregion or catchments. 

Optimisation of the modelling design 
 

• Even though MLP performs slightly better with comprehensive set of 
predictors, it can cope with significant reduction of inputs. Reasonably 
accurate predictions were produced by the models with as few as 9 predictors.  

 
• Local models were more accurate than generic but this accuracy was variable.  
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• Seasonal variations appear to be more important than annual, however, ANN 

models were still capable of achieving high rate of correct predictions when 
trained on one season and tested on the other.  

 
• Habitat specific models are more accurate when simulated using the data from 

the same habitat, however, relatively accurate predictions are still possible 
using data from the different habitat. 

 
Recommendation for the future research: 

These results can be an important step to the practical implementation of SDSF as a 
conceptual basis for the analysis, assessment and prediction of biological conditions 
in Australian streams and developing it into a Stream Decision Support System.  

Prediction of SOM defined groups with MLP and GA 
 

• It was possible to predict SOM defined groups using referential model with 
good accuracy. 

 
• MLP outperformed GA on approximately 10%, although both methods were 

able to meet the threshold of 70% of correct predictions.  
 

• GA rules provided more quantitative explanation. 
 

Recommendation for the future research: 
 
The prediction of defined macroinvertebrate assemblages instead of separate taxa can 
be used as an extension of the referential approach. If the type of macroinvertebrate 
assemblage predicted does not match the one actually found, it might be then 
compared with other assemblages indicative for various anthropogenic stresses. 
 
Stability and quantitative application of the sensitivity analysis 
 

• The question of variable importance has been briefly addressed by comparing 
output of the sensitivity analysis using catchment scale models for three taxa. 
Unfortunately, variability of the results was too high, and we do have any 
confidence in this method at this stage.  

 
• Sensitivity curves also have been characterized by high variability and we do 

not recommend them as a quantitative tool at this stage. However, when 
analysed qualitatively, they can provide interesting information on the 
relationships between the distribution of macroinvertebrate communities and 
the environmental factors.  

 
 

Sensitivity of the stream macroinvertebrates to the changes in salinity and the 
development of Salinity Index 
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• The qualitative assessments of the sensitivity curves were largely in agreement 
with the outputs of the other methods as SOM component planes and 
frequency curves, especially in the situations where strong relationships 
between taxa occurrence and the conductivity gradient have been observed.  

 
• The Salinity Sensitivity Scores assigned as a result of the analysis of 

sensitivity curves and mean/maximum conductivity values of each taxon were 
mainly in accordance with previous knowledge, however, some discrepancies 
were observed. 

 
• SI was suggested as measurement of the changes within macroinvertebrate 

communities due to the effect of salinisation. 
 

• The shift from the salt sensitive to the salt tolerant taxa occurs at the salinity 
levels much lower than currently accepted by the environmental authorities. 
Even though, no reduction in overall taxonomic richness has been observed, 
dramatic changes in the community structure were demonstrated at the 
conductivity levels around 800-1000 μS cm-1. This is much lower than 
currently accepted level of 1500 μS cm-1 (Hart et al., 1991), below which the 
freshwater biota considered to be unaffected.  

 
• The performance of SI has been verified by the various methods from testing it 

on the subsets with otherwise very good water quality to subjecting the 
resulted Salinity Scores to partial CCA designed to rule out the effect of 
temporal and geoclimatic variables. 

 
 

Recommendation for the future research: 
 

Potential of semi-qualitative methods as SOM component planes and sensitivity 
curves for the assessment of taxa sensitivities to the environmental stressors (as 
salinity) has been demonstrated, however, more research and particularly comparison 
with quantitative methods as logistic models and multivariate regression can help 
better understanding the difference between the potential of statistical methods and 
the machine-learning methods. Some discrepancies between our results and previous 
knowledge regarding salt sensitivity of some taxa (as Planorbidae) need to be 
researched further.    

Scenario analysis: predicting the effect of secondary salinisation in Central 
Queensland 
 

• The increase in conductivity results in the decrease of SI and the loss of 
sensitive taxa (up to 11%), however, this loss was even more profound when 
combination of stressors (conductivity and nutrients) has been simulated. 

 
• Flexibility and universality of SOM have been demonstrated by analysing the 

outputs of scenario analysis in order to understand why the same increase in 
conductivity resulted in the different loss of sensitive taxa in different streams. 
It has been shown that communities already affected by some kind of 
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anthropogenic activity and dominated by opportunistic taxa appear to be less 
affected by the salinisation in comparison with communities in close to the 
natural state.  

 
Recommendation for the future research: 

Little is known currently about the combined effect of conductivity and the other 
stressors. For the future research, the following types of scenario analysis might be the 
most practically relevant in relation to the most common environmental problems 
faced by the Australian streams (as vegetation clearance, salinisation, sedimentation, 
agricultural run-off, water extraction, etc.): 

1) Effect of salinisation, turbidity and nutrients on taxonomic richness, PET richness 
and sensitive taxa. 

2) Effect of these factors in combination (as turbidity and nutrients). 

3) Effect of the reduction in flow by itself and in combination with water quality 
variables. 

4) Effect of water temperature increase (as a consequence of clearance of riparian 
vegetation) by itself and in combination with turbidity and nutrients.  

Further experiments in order to predict the measurements of ecosystem functioning as 
benthic metabolism (respiration, production, etc.) using ANNs can be also very 
interesting and important. This could lead to the scenario analysis for the prediction of 
changes in ecosystem functioning in response to the various anthropogenic stresses or 
restoration measures.  
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