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Abstract

An autonomic detection coordinator is developed in this

paper, which constructs a multi-layered boundary to defend

against host-based intrusive anomalies by correlating sev-

eral observation-specific anomaly detectors. Two key ob-

servations facilitate the model formulation: First, different

anomaly detectors have different detection coverage and

blind spots; Second, diverse operating environments pro-

vide different kinds of information to reveal anomalies. Af-

ter formulating the cooperation between basic detectors as

a partially observable Markov decision process, a policy-

gradient reinforcement learning algorithm is applied to

search in an optimal cooperation manner, with the objec-

tive to achieve broader detection coverage and fewer false

alerts. Furthermore, the coordinator’s behavior can be ad-

justed easily by setting a reward signal to meet the diverse

demands of changing system situations. A preliminary ex-

periment is implemented, together with some comparative

studies, to demonstrate the coordinator’s performance in

terms of admitted criteria.

1 Introduction

Most existing anomaly detectors (AD) intend to char-

acterize a specific operating environment sufficiently well,

with an expected false alert rate to be determined a pri-

ori, and most of them attempt to detect individual instan-

tiations rather than classes of attacks, which limits their

broader application. Usually, the first stage in establish-

ing an anomaly detection model is to select the observ-

able subjects (e.g., system call traces, network packet logs,

command line strings), and construct the operating envi-

ronments to characterize system normality. Due to their

specific characteristics, different observations have differ-

ent capabilities for characterizing system normality, and

thus the constructed operating environment might limit their

ability to discover some hidden intrusive attempts. For ex-

ample, some attacks might be detected in system call stacks,

whilst escaping from system call traces, and these phenom-

ena also exist even for the same anomaly detection model.

In this paper, we pay more attention to the effects of ob-

servations than to the specific detection techniques them-

selves. To achieve better performance in terms of broader

detection coverage, higher detection accuracy, and fewer

false alerts, we intend to develop a model to combine sev-

eral observation-specific ADs with different properties. The

basic assumption to support our work is that various oper-

ating environment could provide different kinds of normal

and anomalous information for system characterization, and

thus different ADs could create a consensus on the identifi-

cation of anomalies, while intersecting their judgement on

false alerts.

Another motivation for combining different ADs is to an-

alyze and capture the “root-cause” of attack variants. It is

well known that an attack might have different behaviors,

and leave traces in various manners for the same system

vulnerability. The combination of different ADs is expected

to abstract specific or concrete behaviors sufficiently well

to detect families of attacks rather than individual instanti-

ations, thereby allowing for the detection of all the attack

variants that attempt to exploit the same weakness. With

those objectives in mind, we formulate several state-of-the-

art ADs as a multi-agent Partially Markov Decision Pro-

cess (POMDP). The proposed model, called an autonomic

detection coordinator (ADC), is expected to work in a dy-

namic manner to find an optimal combination to adapt to the

changing system situations with satisfactory performance

in terms of predefined evaluation metrics. Moreover, the

model could be easily extended to more complex situations,

such as a network with distributed ADs, sensor networks,

or wireless networks. Also, the probabilistic nature of the

model guarantees it will work in a tolerant manner. Even
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though one of the individual ADmight fail to work properly,

ADC can still collect enough intelligence from the other

ADs, and make a correct decision based on their consen-

sus. Therefore, adaptability, scalability, and dependability

enrich the functionality of ADC significantly, compared to

a single AD.

The paper is organized as follows: Section 2 reviews

some related work. In Section 3, we formulate our model

as a POMDP, and give a specific solution. In section 4, we

implement the experiments and discuss the results; further

issues are also discussed. A conclusion about our work is

given in the last section.

2 Related Work

Han et al. [9] combined multiple host-based detection

models using a decision tree to lower false alert rate with

good performance on the detection accuracy. However,

their detection models were established on the same layer

(i.e., audit events and some related parameters and at-

tributes), although the utilized information was different.

Moreover, the decision tree essentially is a static approach,

causing the model to be lack of adaptability, and the per-

formance would deteriorate dramatically with the increas-

ing number of elemental ADs. In addition, based on the

observation that the human experts always attempt to de-

sign “root-cause” signatures that “combine” different attack

characteristics in order to attain low false alarm rates and

high attack detection rates, Giacinto et al. [8] proposed an

approach to network intrusion detection by fusing multiple

classifiers. In this work, intrusion detection essentially was

formulated as a pattern recognition problem, and more ef-

forts were paid to the comparative studies on the fusion ap-

proaches rather than the intrusion detection problem itself,

specific analysis on the intrusion detection performance was

not the emphasis either.

In addition, many cooperative intrusion detection models

have been proposed to countermine distributed attacks by

leveraging the information collected from distributed hosts,

such as [15, 16], or to improve the accuracy of alarms by

correlating different kinds of observations of multiple het-

erogeneous sensors [10, 14]. In those models, local agents

or sensors are used to collect interesting events (from audit

data, network packets, etc.) or alarm reports, and the dis-

tributed architectures provide various communication meth-

ods to exchange the locally detection information. Com-

pared with the existing works, even though starting with

similar motivation, our work focuses more on the anomaly

detection model itself for correlating the anomaly reports

from independent anomaly surrogates, and searches an op-

timal correlation on the system state from learning instead

of relying on a predefined set of rules or events. The empha-

sis is on the the analysis of the model’s anticipated behavior

from a high level viewpoint, and the effects of the comple-

mentary correlation of different observations on revealing

more anomalies.

In general, we envision a framework in which several

levels of data analysis are used as the basis to be combined

to yield a single but effective system normality characteri-

zation. We envision further an approach in which anomaly

detection models are built on a fundamental understanding

of their operating environments, and have the adaptability to

respond to the diverse demands of various system situations.

The hope is that a collection of simple surrogates based on

specific observable subjects can cooperate and evolve into

generic models with broader anomaly detection coverage

and less false alerts.

3 Model Formulation

With the motivations presented in the section 1 and based

on an observation-centric analysis on four typical ADs, we

formulate our autonomic detection coordinator (ADC) as a

POMDP model. A policy-gradient reinforcement learning

algorithm is then used to search the optimal combination

strategy based on the formulation.

3.1 Selection of Basic ADs

The selection of the individual ADs mainly takes into ac-

count following considerations:

1.) the trade-off between the computational cost and detec-

tion performance,

2.) since we use a host with UNIX OS as the experimental

scenario, all the individual ADs are host-based, and work in

different environments, or take advantage of different prop-

erties of the same observation,

3.) the population of the ADs should not be too large for the

easy of control and analysis.

Minimum Cross Entropy (MCE) based on the occur-

rence frequencies of events is selected as one AD to operate

with shell command lines; One-order Markov Chain is se-

lected to be operated with Audit Events; Sequence, time-

delay, embedding AD (STIDE) and K-Nearest-Neighbor

(KNN) are selected as two elemental ADs to work with

the system calls of privilege programs, but the properties

they utilize are different. Table 1 shows the simple compar-

ison between those four selected ADs, while the detailed

description can be found in their respective references.

3.2 A General Formulation

Assume that each AD is an autonomous entity working

in its own environment with uncertain perceptions, actions,

and feedback, and each of them takes the action indepen-

dently according to its local parameterized policy. our in-
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Table 1. A Simple Comparison between Four Slected ADs

Anomaly Detectors Observation
Main Property

Detection Cost

Frequency Ordering

MCE [23] Shell Command Lines ( 2)

Markov Chains [21,22] Audit Events ( )

STIDE [7] Local Ordering of System calls ( ( + 1))

KNN [11] Frequency of System calls ( )

’ ’ is the predefined window size, ’ ’ is the number of unique event

tegrated detection model ADC attempts to combine those

independent entities in an optimal way, with the anticipated

behavior to suppress false alerts and achieve broader detec-

tion coverage. It is worth noting that our main concern is

the actions of independent ADs, rather than their inner de-

tection mechanisms. The independent AD decides whether

the ongoing activity is legal or malicious, and since each

of them only works in its own environment, the true sys-

tem state can only be indirectly observed through their re-

spective detection measurement, and they must maintain the

estimates of the true system state, therefore, the detection

problem is partially observable for the entire system. Fur-

thermore, the decision process is a Markov process, because

the next state of the system is dependent only upon the cur-

rent state and the previous decision. Thus, a partially ob-

servable Markov decision process is formulated here.

Formally, a POMDP contains several key parameters [1]:

• a finite state space of distinct states, = {1 2 }
of the system

• a control space of distinct actions, =
{1 2 } that are available to the detection policy

• an observation space of distinct observations, =
{1 2 }

• (possibly stochastic) reward ( ) R for each state

Specifically, the interactions between an independent

AD and its operating environment includes a sequence of

decision stages:

1. At time step (discrete), the system in a particular

state , and the underlying state emits an observation

to the AD according to a probability distribution

( ) over observation vectors.
2. The AD chooses an action using a randomized

policy, based on a probability distribution ( ) over ac-
tions, with known .

3. determines a stochastic matrix ( ) = [ ( )],
( ) is the probability of making a transition from state
to state under action .

4. In every system state, the AD receives a reward signal

, while its aim is to choose a policy so as to maximize the

long-term average of reward (E is the expectation operator),

:= lim E[
1 X

=1

] (1)

The above decision process shows that at each time step

the AD sees only the observations and the reward ( ),
while it has no knowledge of the underlying state space,

how the actions affect the evolution of states, how the re-

ward signals depend on the states, or even how the obser-

vations depend on the states. From another viewpoint, to

each randomized policy (·) and observation distribution
(·), the Markov chains for state transitions and are

generated as follows:

( ) ( ) ( )

In essence, all the above parameters can be organized

into a family of action-dependent matrices: × tran-

sition probability matrices , × observation proba-

bility matrices , × transition reward matrices .

( ) is essentially a · · known observation prob-

ability ( | 1), while ( ) is a · · action

probability ( | 1). In order to parameterize these
chains, we parameterize the policies, so that (·) becomes
a function ( ) of a set of parameters R as well

as the observation . The Markov chain corresponding

to has state transition matrix ( ) = ( ) given by
( ) = ( ) ( ) ( ). Therefore, equation

(8) can be achieved by the parameterized policy with :

( ) := lim E [
1 X

=1

] (2)

As the detection process of each AD can be formulated

as partially markov decision process, the ADC naturally can

be modeled as a multi-agent POMDP. In the coordinator,

several independent ADs with distinct operating environ-

ments are incorporated. Each of them sees a distinct ob-

servation vector, and has a distinct parameterized random-

ized policy that depends on its own set of parameters. If
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Figure 1. Architecture of the Autonomic Detection Coordinator

the collection of ADs is considered as a single AD, the in-

dividual observation vectors can be combined into a single

observation vector, and similarly for the parameter vectors

and action vectors, while the common goal of those ADs

is to maximize the average reward. Effectively, each AD

treats the other ADs as a part of the system, and updates its

own policy while remaining oblivious to the existence of the

other ADs. The only communication between these coop-

erating ADs is via the globally distributed reward signal, as

shown in Figure 1. More formally, for the elemental ADs,

the set of actions contains the cross product of all the ac-

tions available to each AD, that is, = { 1× 2×···× }.
Because the AD parameters are independent, each AD in-

dependently chooses actions that are combined to form the

meta-action. For stochastic policies, the overall action dis-

tribution is the joint distribution of actions for each agent,

( 1 2 | 1 2 1 2 )

3.3 A Specific Solution

In the formulated model, the policy of the ADC is af-

fected by a concatenation parameter , while our aim is to

find the parameter settings (the optimal control strategy) for

all the ADs that maximizes the expected long-term average

reward in equation (2). This is actually a kind of direct re-

inforcement learning problem, which is described in [4,5].

Briefly, the algorithm learns to adjust the parameters

of a randomized policy with observation , and chooses

actions according to ( ). It involves the computation
of a vector at time step , and it updates according to:

+1 = · +
( )

( )
(3)

where (0 1), ( ) is the probability of the action
under the current policy, and denotes the gradient with

respect to the parameters . The vector is an eligibility

trace of the same dimensionality as ; it is used to update the

parameters, and guides the policy to climb the gradient of

the average reward. Here, we intend to apply a multi-agent

variant of the OLPOMDP algorithm [3], which has been

applied to solve a routing problem by Tao et al [17], and a

multi-neurons learning problem in the brain by Bartlett et

al [2]. The OLPOMDP gives a simple way to compute an

appropriate direction to update the parameters:

= 1 +4 = + · · (4)

where the long-term average of the updates 4 lie in the

gradient direction ( ), is the sum of the rewards, and

is the suitable size of the steps taken in parameter space.

The key feature of the algorithm is that the only non-local

information each detector needs is a global reward signal;

detectors do not need to know any other information about

the system state in order to climb the gradient of the global

average reward.

Considering the specific characteristics of the host sys-

tem, two assumptions need to be addressed to support the

algorithm’s application:

Assumption 1 For every given , the system is ergodic

(aperiodic, irreducible), and converges to a unique steady

state 0 .

Specifically, although the system’s underlying states are un-

known, it will return to a steady state ultimately; that is, the

right-hand-side of equation (2) is independent of the sys-

tem starting state, and converges with probability 1 over all

possible reward sequences { }.

Assumption 2 For the POMDP-based ADC which is con-

trolled by multiple independent ADs, the updates of equa-

tions (3) and (4) for the coordinator are equivalent to those

that would be used by each AD.

That is, if we let denote the observation vector for AD

= 4, denote the action it takes, and denote its

parameter vector, the update equation (4) is equivalent to

the individual update equations,

= 1 + · · (5)
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where 1 2 · · · 0,
X
=0

= , and
X
=0

2 , while

the vectors R are updated according to

+1 = · +
( )

( )
(6)

where denotes the gradient with respect to the AD’s pa-

rameters .

In addition, to cast the independent AD in the POMDP

model, a formally definition is given as follows:

Definition 1 All the ADs have no knowledge about the ex-

act system states, in some sense, | | is infinite; the ob-
servation set ={Normal, Malicious}, and the action set
={Observe, Alert} according to the specific detection al-
gorithm.

Suppose an activity (local or remote) happens at time

step , some or all of the four ADs will receive different

observation streams independently in their own operating

environments; assume (·) is a general form of the ADs’ de-
cision rule, which partitions the infinite measurement space

into discretely different decision regions, with each region

corresponding to one of a finite number (according to

the definition 1, = 2) of possible output observations .

Given a measurement 0 R on a measurement stream ,

AD makes a decision with the decision rule parameterized

by a threshold value , as follows:

Definition 2 For every measurement stream , there is a de-

cision rule : R {0 1} of the form

( 0) =

½
0 0

1 0

where output “0” denotes the ‘Normal’ observation and

“1” the ‘Malicious’ observation. Corresponding actions

‘Observe’ and ‘Alert’ are taken according to the observa-

tion.

From the definition, for the ADs, there is a direct map-

ping from observations to actions:

{ } { }

therefore, the process from observation to action essentially

is deterministic. The parameter of ADC is a concatenation

of parameters ( = 1 2 3 4), and it is a row vector with
form = ( 1 2 3 4). Furthermore, it is worth not-
ing that is only the threshold that determines the distance

between normal activities and anomaly activities, while the

action of ADs are also affected by other inner parameters.

For instance, for STIDE, the window size of system call se-

quences , the locality frame count (LFC) can also be

adjusted to impact the observation. For MCE, the length of

command blocks is also an adjustable parameters (but ac-

tually according to the login session). While for the Markov

Chain detector, the length of sequences is regarded as the

parametric variables which affects the similarity between

two sequences. However, because most of those inner pa-

rameters are related to the training phase, we do not include

them into the concatenation parameter vector here.

The next consideration is to to derive the second term

of the right-hand side in equation (6) for every independent
AD. Since it is difficult to parameterize the underlying de-

tection schemes with , in order to make the ADs trainable

and save computational cost, we assume a general proba-

bilistic model for the behavior of AD. Specifically, if we

assume is the a prior detection probability of AD, the

probability of detecting anomalies among activities is:

( | ) =

µ ¶
(1 ) (7)

taking the distribution as the function of the expected num-

ber of successful detections, = , the equation be-

comes:

( | ) =

µ ¶
( ) (1 )

When , we have,

( ) = lim ( | )

= lim
( 1) · · · ( + 1)

!
(1 )

=
!

Obviously, ( ) is a Poisson distribution. Hence, for the
independent AD, its action generally obeys the following

rule (based on the fact that the number of anomalies is much

smaller than that of normal activities, we describe the model

of ( = 0) rather than ( = 1)).

(Observe without Alarms) = ( = 0) = ( )
(8)

where ( ) = , and ( ) [0 1), while (0 ) is
defined as:

=
( )

(9)

where is the threshold of th AD at time instant , while

( ) denotes the measurement distance between ongoing
observations and the normal patterns. Assumption 2

shows how to update the threshold in the direction that

maximally increases the long-term average of the reward.

From equation (9), we easily derive

=

0( )
( ) ( )

= 1
( )

if = 0

0( )
( )(1 ( ))

= ( )
( )(1 ( ))

otherwise

(10)
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To complete the picture we need to define a performance

measure for the detection result, which can be taken as a

reward signal to guide the improvement of the general de-

tection performance. As we know, in the anomaly detection

domain, some or all of following cases might happen:

• N , legal behavior is detected as normal

• N , legal behavior is detected as anomaly

• A , illegal behavior is detected as normal

• A , illegal behavior is detected as anomaly

Based on those four cases, a natural performance metric

can be defined as:

Definition 3 Assume that during a particular time period

, activities occurred, among those activities, N ,

N , A , and A , if we assign 1, 2, 3, and

4 to denote their respective weights, and = 1 · ,

= 2 · , = 3 · , = 4 · , a reward

signal can be defined as = · · , while 1, 2,

3 and 4 is defined according to various system situation

and security demands.

Due to the nature of anomaly detection, and the fact that

the number of normal activities is much larger than that of

anomalies, we usually set 1 3 4 2.

In essence, the anticipated behavior of our autonomic de-

tection coordinator is based on the consensus of meta-AD,

and thus we have another assumption,

Assumption 3 Given an ongoing activity happens in the

host at time step , logically, the POMDP-based ADC gets

the report as follows:

=
[
=1

(A ) =
\
=1

(N )

where is the report of AD about the detected anoma-

lies, while is the report about the false alerts.

Based on our specific assumptions and definitions, a
modified version of algorithm OLPOMDP [4] can be used
to describe the independent AD as follows:

AlgorithmModel of ADC meta-action

1: Given:

Coefficient [0 1),
Step size 0,

Initial system state 0,

Initial thresholds of independent ADs 0, i.e., in

concatenation vector .

2: begin

3: for discrete time instant = 1 2 · · · do
4: Get ongoing observations and their corresponding

measurement stream .

5: Generate action according to the specific detection

scheme and definition 2.

6: The coordinator broadcasts the reward signal .

7: Update +1 according to equation (6) and (10):

Figure 2. Experiment Procedure

8: if the previous actions is “Observe” (i.e., = 0)
9: +1 = · 1

( )
.

10: else

11: +1 = · + ( )

( )(1 ( ))
.

12: end if

13: Update +1 according to equation (5):

14: +1 = + · · +1.

15: end for

16: end

Note that in equation (6) is the sum of rewards that

have been received, and is a trace of the same dimen-

sionality as , with 0 = 0; [0 1) is a free parameter
to control both the bias and the variance of the estimates

produced by the algorithm. It has been shown that [2] pro-

vided the bias is sufficiently small, it will converge to a re-

gion of near-zero gradient, which thus can be extended to

the multi-detector environment, and the algorithm does not

need access to the underlying state and does not make use

of recurrent states.

4 Performance Verification

This section describes the evaluation of our proposed

ADC prototype, and the general evaluation procedure is

shown in figure 2. Specifically, the procedure mainly in-

cludes following steps:

Step 1. To train the individual ADs with training data set 1,

which only contains normal data, to get their initial param-

eters and create normal profiles in their respective operating

environments.

Step 2.To train the ADC with training data set 2 (only pure

normal data, or mixed with some known anomalies). This

step can be combined with step 1 if some satisfied data with

controllable property are available.

Step 3. After the ADC achieved a stable state through step

2, testing set (collected data with some artificial anomalies)

is used to evaluate its performance it terms of detection ac-

curacy and false alarms.
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Table 2. Statistics of the Data Source
Data Category\Source No. of Command Lines No. of Audit Events No. of Processes

Training Set (Normal) 5,600 62,100 640

Normal Data 5,640 70,780 690

Testing Set Masquerader 2127 850 272

Other Attacks no trail uncounted 35

4.1 Experiment Scenario and Data Collection

An intrusion instance is exemplified in the following

to show the operating scenario of our ADC. A keyboard

masquerader or remote interloper takes control of a termi-

nal/host, and then takes advantage of the legitimate user’s

privileges and access to system programs and data. The in-

truder may attempt to read or write access to private data,

acquire unauthorized system privileges (or even abuse of

legitimate privileges), and install some softwares such as

Trojan for further malicious behavior. For the sophisticated

intruder with knowledge of AD installed in target terminal,

he might take some seeming legal tricks to surpass the de-

tection coverage. In such activity, the intruder leaves trace

data, in various forms, to victim terminal, such as shell

command lines (especially for keyboard masquerader) with

corresponding audit events, privilege processes with system

calls, etc. The ADC is thus expected to detect those anoma-

lies during the malicious attacks based on the trace data.

To the best of our knowledge, there is no true trace data

in the open literature that meets our experimental demands.

Therefore, we have to collect, combine and formulate our

own experimental data with some particular considerations.

For the sake of simplicity, all the basic ADs we employe are

initialized with the parameters in their original literature; in

other words, the first step is omitted in our experiment. To

formulate training data set 2 and the testing data, we have

collected normal activities ourselves for four weeks using

the Solaris 8.0 operating system (SunOS release 5.0), mixed

with several known typical host-based attacks.

We usually use text editor (vi, ed, etc.), compiler(gcc,

cc, etc.), and some system programs(ps, lpr, sendmail etc.)

on our machine SunBlade 1500. Excluding wrong com-

mands and some noisy data, while keeping repeated ones,

we obtained a total of 132,886 records of BSM audit data

and 11,240 shell command lines (using the shell .history file

to log all truncated commands without additional informa-

tion), and these data were roughly averaged as part of pure

training set and as testing set. Note that during the collec-

tion of shell command lines, we also recorded the corre-

sponding audit events and executed processes in terms of

system calls, as BSM provides the monitor of the execution

of system calls by all processes launched by the user. How-

ever, considering the processes in user mode usually cannot

Table 3. Attacks List in the Experiments

Attack Category Attack Description # of Cases

Masquerader access to programs and data as an 850

imposter by controlling the keyboard commands

xlock heap buffer overflow vulnerability 2

Buffer Overflow eject buffer overflow vulnerability 3

lpset buffer overflow vulnerability 3

Exhausting Disk Space (with dd) 2

DoS Exhausting the Memory 1

Consumption of process table 2

harm the system security, we only recorded those processes

in kernel model that require services from system kernel. In

addition, it is well known that buffer overflow, S/W secu-

rity error, configuration error and DoS attacks are several

prevalent host-based attacks, so we injected several cases

of them (audit data that contain labelled attacks), including

8 cases of local buffer overflow and 5 cases of DoS, into

the testing data. Meanwhile, a small batch of another user’s

commands history (2127 audit events, 850 command lines,

and 272 processes) were also added into the testing set as

a masquerader trace data. Table 2 and table 3 shows the

experimental data we used in detail.

4.2 Experimental Results and Analysis

All the basic ADs’ initial parameters we used were di-

rectly derived from their original version (as shown in Table

4) without training. Thus, the parameter vector is a ma-

trix with size × , where is the number of elemental

ADs, is the number of controllable parameters, and the

Table 4 can be denoted as following in terms of 0, which is

the initial state of the coordinator. But in actual experiment,

we only adjust the first row of , i.e., = 1 = 4.

0 =

µ
0 45 0 80 0 60 0 72
30 10 6 0

¶
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Table 4. Parameters of Basic ADs
* ’L’ denotes Sequence Length, ’ ’ is the threshold

MCE Markov Chain STIDE KNN

30 10 6(LFC=20) variable

0.45 0.80 0.6 0.72
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Figure 3. Reward Signal During Training

4.2.1 Training Procedure

The goal of the training procedure is to achieve an optimal

control strategy of the ADC. As shown in table 2, all 5,600

command tokens were used to create a distribution-based

behavioral model for MCE. Corresponding audit events

and processes were also used to create normal profiles for

Markov Chains, STIDE, and KNN respectively. Since the

amount of the available data are limited, we used joint sets

to train ADC, in detail, half of training data were inter-

leaved with half of testing data (altogether 5,620 command

tokens, 66,400 audit events, and 660 processes) to train the

ADC. As every login session (i.e., from login to logout)

contains about 30 command tokens, for simplicity, we used

a constant window to partition command tokens, with cor-

responding audit events and system calls. Hence, a total

b562030 c = 187 commands blocks were available. Corre-
sponding audit events and system calls that executed by pro-

cesses were also extracted as input into respective ADs. The

baseline of the ADC detection measurement is command

blocks, which has no so exact mapping with their underly-

ing audit events and processes. Therefore, Markov Chain,

STIDE and KNN would generate a report sequence rather

than a single report at every decision step, based on their

respective detection measurement and parameters.

In this experiment, ADC makes decision at every com-

mand trace, and according to definition 3, sinceA andA
would never appear in the normal training set, for a pursued
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Figure 4. False Positive Rate on Testing Data

probabilistic policy, the long-term expected average reward

would be calculated based on the probabilities of two out-

come occurring: N and N . Hence is simplified as

, in addition, as the ADC gets reward signal at ev-

ery decision step, can be further simplified as 1 2.

Specifically, at each time step, for the observation trace, if

ADC takes action “Observe”, reward signal is assigned 0, if
the action is “Alarm”, reward signal is assigned 1. A total
reward signal is then calculated after one pass through the

sequence data concatenated by observation traces (the ideal

value should be 0). To simplify the consensus strategy, any

false alarm reported by any elemental AD would led to the

“Alarm” action of ADC, with penalty to all ADs.

Figure 3 depicts the ADC’s behavior during the train-

ing phase (with 500 training epochs, parameters =0.90 and

1 = 2 · · · = 10 3). The upper part of the figure shows

the changing of the number of false alarms in the training

phase, and the lower part of the figure shows the average

reward signal (to manifest the trend, ADC only considered

the past 10 passes, i.e., =10 in equation (2)). The fig-

ure shows clearly that the ADC had incrementally improved

performance during the training phase, as the reward signal

improves, on average, over time to an optimum. We found

that after the 462th pass, there was no false alarm triggered.

After being trained, the parameter vector of ADC is:

=

µ
0 42 0 84 0 69 0 79
30 10 6 0

¶

4.2.2 Testing of False Alarms

To evaluate the capability of the ADC to suppress false

alarms, we tested the trained ADC using the normal test-

ing set in table 2. The testing data was also divided into 188

commands traces (each trace contains 30 command tokens),

together with their underlying audit events and processes.
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Table 5. Comparison of masquerade detec-
tion results between MCE and ADC

Methods MCE ADC

# of normal command traces 188 188

# of anomalous Command traces 28 28

Traces size 30 30

Hits(%) 71.43 82.14

Misses(%) 28.57 17.86

F.P.(%) 11.17 9.57

Total Detected 21 23

Figure 4 shows the relationship between the average false

alarm rate (the number of false alerts over the number of

command traces) and the number of command traces used

for testing data. Since the ADC gives the report with the

pace of each command trace, we compared its performance

with that of MCE (with initial parameter), which also re-

ports once on every command trace.

The figure shows that the ADC triggered less false alerts

compared with MCE. ADC generated its first false alarm

at the 101th command trace (i.e., F.P.=0.99%, first 94 com-

mand traces has been used to train ADC, thereby no false

alarms were triggered until the 101th command trace). At

the 183th command trace, MCE has generated 11 alerts,

i.e., F.P.=6.01%, while the ADC only generated 4 alerts,

F.P.=2.19%. We found that at the 128th and 171th com-

mand traces, MCE did not report false alarm, while ADC

reported, which means that one of the other 3 ADs has made

wrong actions. Although the analysis of other three ADs are

helpful to insight into the story, we did not carry it out here,

because of the intractable data partition and the lack of a

compelling need to do. In addition, the parameter used by

the MCE was directly derived from the ADC rather than by

individual training, therefore, we can not rule out the pos-

sibility that the MCE might achieve better performance af-

ter being trained and parameterized carefully with another

training dataset.

4.2.3 Detection of Common Exploits

First, we evaluated the ADC’s masquerade detection perfor-

mance. 850 command tokens (with underlying 2127 audit

events and 272 processes) of another user were truncated

into 28 command traces (each login session also contains

30 command tokens or so), and injected at randomly se-

lected positions, without replacement, into the stream of

original 188 command traces (a more complicated case

is to inject the command traces into the command tokens

Table 6. Detection Performance Comparison
(‘B’ denotes Buffer overflow instance, ‘D’ denotes DoS instance)

Hits(%) F.P.(%) Detected Attacks Threshold

Markov Chain 84.62 4.35 8B+3D 0.88

STIDE 92.30 3.48 8B+4D 0.75

KNN 76.92 5.36 8B+2D 0.95

ADC 100.00 1.01 8B+5D

instead of command traces; in such a case, the bound-

aries between the traces might generate uncontrollable false

alarms). Meanwhile, the underlying audit events and pro-

cesses that have been executed by the ‘masquerader’ were

also injected into the respective normal observation traces.

The result is shown in Table 5, among total 216 command

traces (188 normal + 28 anomalous), MCE detected 20 out

of 28 anomalous command traces with a F.P. 11.17% by

regulating the threshold to 0.38. After this detection spot,

the F.P. raised sharply to 100% with a total 21 anomalous

command traces being detected. While the trained ADC

detected 23 anomalous command traces with a F.P. 9.57%.

Second, the trained ADC was used to detect the injected

attacks that shown in Table 3, and its performance was com-

pared with that of the individual ADs. In our work, detec-

tion accuracy is defined as the ratio of the detected attacks

to all the injected attacks (hidden in 35 intrusive processes).

false alert rate is the ratio of the misreports to all the nor-

mal processes (total 690). To simplify the experiment while

keeping the validity, we assumed that the false alerts would

not be generated by those normal traces that have been used

in the last experiment for testing false alerts, and the consen-

sus strategy hence was adjusted as: any ‘Alarm’ report from

any individual ADs would cause the ADC to take ‘Alarm’

action. The initial parameters used by the individual ADs

were directly derived from the ADC, while to investigate

the relationship between detection accuracy and F.P., we

had to adjust them individually. Table 6 shows the detec-

tion result of the ADC, and the best trad-off between the

detection accuracy and F.P. of the elemental ADs by adjust-

ing respective thresholds (a higher detection performance

would cause a dramatic increase of false alerts). Specifi-

cally, we have following observations:

• since the intrusive processes were injected into the normal
processes without corresponding command traces, MCE al-

ways took action ‘Observe’;

• the ADC detected all the injected attacks by combing the
reports from elemental ADs, while its false alert rate was

very low (i.e., 7 among 690 processes were misreported);

• all the ADs detected all the buffer overflow attacks, while
some DoS attacks were not discovered.
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5 Conclusion and Future Work

Based on the assumption that optimal combination of

several observation-specific ADs may broaden detection

coverage, suppress the false positive rate, and probably cap-

ture “root-cause” attacks, a POMDP model was formulated

and a policy-gradient reinforcement learning algorithm was

applied to tackle the delayed reward, partially observable,

multi-agent learning problem. In next stage, we intend to

collect more real trace data (and some artificial anomalies)

to enrich the experiments. Some additional problems, such

as computational cost, real-time response ability, and con-

sensus efficiency, also need careful consideration. Further-

more, we will extend our work to the computer networks,

to verify whether our ADC can detect distributed attacks

with ADs locating in several dominated hosts. Anomalies

in wireless networks or sensor networks are also expected

to be detected through the optimal cooperation of location-

centric ADs.
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