
An O(nh) Algorithm for Dual-Server Coordinated En-Route
Caching in Tree Networks

Shihong Xu1 and Hong Shen2

1 School of Information Science
Japan Advanced Institute of Science and Technology

1-1 Asahidai, Nomi, Ishikawa 923-1292 Japan
{s0520203}@jaist.ac.jp

2 School of Computer Science
The University of Adelaide

SA 5005, Australia

Abstract

Dual-server coordinated en-route caching is impor-
tant because of its basic features as multi-server en-route
caching. In this paper, multi-server coordinated en-route
caching is formulated as an optimization problem of mini-
mizing total access cost, including transmission cost for all
access demands and caching cost of all caches. We first
discuss an algorithm for single-server en-route caching in
tree networks and then show that this is a special case of
another algorithm for dual-server en-route caching in tree
networks whose time complexity is O(nh).

1. Introduction

A dual-server network is a special type of multi-server
network [21] where there are two servers in operation and a
user can access files from any server they have access rights
to. Dual-server networks can increase efficiency of trans-
mission, reduce latency and provide redundancy.

Dual-server en-route caching is important because of its
basic features as multi-server en-route caching. However,
traditional optimization methods for en-route caching are
mainly designed for networks with a single server and can’t
be directly applied to networks with more than one server.
In this paper, we first formulate multi-server coordinated
en-route caching as an optimization problem of minimizing
total access cost, including transmission cost and caching
cost, and then propose an algorithm for dual-server coor-
dinated en-route caching in tree networks. As the result,
we integrated two technologies, dual-server caching and en-
route caching, to provide a better caching solution for net-

work environments.
The rest of the paper is organized as follows. In sec-

tion 2, related work on caching is discussed. In section 3, a
formulation of the problem is proposed. Dynamic program-
ming based solutions are presented in section 4. Section 5
is the conclusion.

2. Related Work

As an important technology to enhance content delivery
and alleviate server load [5], [4], caching has attracted much
attention. Significant effort has been made on the topic of
optimizing cache performance [2], [22], [18], [3], cooper-
ation among several caches [11], [15], [8], [7], and cache
hierarchies [20], [17]. Recent studies have focused on the
benefits of cooperative caching for distributed systems and
large-scale systems [2], [12], [20]. In [23], web caching
problem in a hierarchy of collaborating proxy servers is
studied and a collaboration protocol is proposed to reduce
duplicate caching between a proxy and its parent or higher
level proxies in the hierarchy when making a caching deci-
sion. In [9], the authors examined three practical coopera-
tive placement algorithms for large-scale distributed caches
and showed that cooperative object placement could signifi-
cantly improve performance compared to local replacement
algorithms, particularly when the sizes of individual caches
are small compared to those of the objects.

Recent advances on web caching [6] have enabled the
development of a new caching architecture, called en-route
web caching [1], [16], [10], [13]. The problem studied
in [19] considered the coordinated en-route caching prob-
lem for linear topology, deciding the optimal locations for
placing copies of an object among the en-route caches. This

Proceedings of the Seventh International Conference on
Parallel and Distributed Computing,Applications and Technologies (PDCAT'06)
0-7695-2736-1/06 $20.00 © 2006

scheme, which optimizes the placement of objects on the
path from the client to the server, has been shown to per-
form significantly better than other schemes that either ob-
ject placement or replacement in individual caches only are
considered. Paper [14] studied optimal methods for un-
constrained and constrained en-route web caching in tree
networks, which extended the scope of optimization to a
tree rooted at the server and got better performance com-
pared with [19]. At the same time, [14] solved constrained
en-route web caching problem, including the constraints of
caching exactly K-copies and at most K-copies.

The multi-server cache location problem in linear arrays
has already been studied in [10]. However, our work fo-
cuses on dual-server coordinated en-route caching in tree
networks where object placement and replacement polices
are carried out in an coordinated fashion. We formulate
multi-server coordinated en-route caching as an optimiza-
tion problem of minimizing total transmission cost for all
demands and caching cost of all caches. Then we present
two algorithms, one for single-server en-route caching in
tree networks and the other for dual-server en-route caching
in tree networks.

3. Problem Formulation

First of all, we present a formulation of multi-server en-
route caching in general networks which adopts the method
in [10] to express the transmission cost of access demands.

We consider a network comprising n clients and m
servers, where a client can issue requests to each of the
servers. At each client there is a cache supporting coor-
dinated en-route caching [19]. If an object O is cached at
a client, requests for the object arriving at the client can
be satisfied by the cache; otherwise, the requests are for-
warded until they are satisfied by other caches or the server.
The sets of clients and servers are denoted respectively by
C = {ci, 1 ≤ i ≤ n} and S = {si, 1 ≤ i ≤ m}. Be-
cause cache space is limited (we assume it is always fully
occupied), we need to remove some objects already cached
before caching a new object at a client and this leads to miss
penalty when these removed objects are requested later. We
denote miss penalty of these objects by pc, c ∈ C and call it
caching cost of object O at client c.

A demand is a request for object O from a client to a
server and we denote by fc,s the frequency of a demand
from c to s. We use d(c, s), c ∈ C, s ∈ S to denote the sum
of distances between c and s and call d(c, s) · fc,s transmis-
sion cost of a demand from c to s.

We note that the formulation of en-route caching prob-
lem in [19] and [14] are described in a form of caching cost
and caching gain at individual nodes. However, we formu-
late the problem in a form of total cost of the entire network,
including transmission cost on all links and caching cost at

all caches. Suppose A is the set of clients that cache the
target object and v ∈ A is the nearest node that caches the
object on the path from c to s, then the transmission cost of
a demand from c to s is the product of the frequency and the
distance from the client to node v, which can be denoted by

min
v∈path[c,s]∩(A∪S)

d(c, v) · fc,s, (1)

where path[c, s] is the set of nodes on the path between
c and s. The total access cost in the network is the sum
of transmission cost of all demands and caching cost at all
caches defined as (2). Our objective is to place copies in
a subset A,A ⊆ C so that the total access cost(2) is mini-
mized.∑

c∈C,s∈S

min
v∈path[c,s]∩(A∪S)

d(c, v) · fc,s +
∑
c∈A

pc (2)

We define the problem of multi-server coordinated en-route
caching as follows:

A newtwork can be represented by an undirected graph
(V,E), where V = {c1, c2, ...cn, s1, s2, ...sm} is the set of
nodes comprising n clients and and m servers. Frequencies
for all demands are denoted by set F = {fc,s} : C × S →
R, caching cost at all clients are denoted by P = {pc} :
C → R. Our objective is to place copies in a subset A ⊆
C, so that the total access cost is minimized, which can be
formulated as follows

G(F,A∗) = min
A

G(F,A) =

min
A
{

∑
c∈C,s∈S

min
v∈path[c,s]∩(A∪S)

d(c, v) · fc,s +
∑
v∈A

pv}, (3)

where A is a feasible solution and A∗ is an optimal solution.
If only one server is contained in the network, the model

is for single-server problem which has already been solved
by [19] and [14] for linear array and tree networks respec-
tively. What we want to solve is the dual-server problem,
that is, two servers are contained in the network. However,
we can’t get a solution to dual-server problem by simply
composing the solutions of single-server problems one by
one. This is because the solutions of single-server problems
may contradict with each other. It’s possible that optimal lo-
cations to place the copies in dual-server context may differ
from the optimal locations in single-server context.

4. Dynamic Programming Solutions

Dual-server coordinated en-route caching is important
because it’s the basis of multi-server coordinated en-route
caching. However, in the paper we first discuss two al-
gorithms, one for dual-server en-route caching in linear
array and the other for single-server en-route caching in
tree networks before we concentrate on dual-server en-route
caching in tree networks.

Proceedings of the Seventh International Conference on
Parallel and Distributed Computing,Applications and Technologies (PDCAT'06)
0-7695-2736-1/06 $20.00 © 2006

4.1. Solution to Single-Server En-Route
Caching in Tree Networks

Before focusing on the dual-server problem in tree net-
works we solve the single-server problem first. This prob-
lem has been solved by [14] with a algorithm whose time
complexity is O(n2) for an n-node tree. In this paper we
present another algorithm whose time complexity is O(nh),
where h is the height of the tree.

We use a bottom-up dynamic programming approach en-
lightened by [10] to get a solution of a tree from the so-
lutions of it’s children. Let Tw denote the subtree rooted
at node w, C(w) denotes children set of node w, G(w, l)
means the total access cost to satisfy the requests issued by
the clients in Tw optimally, where l is the distance from
node w to the nearest cache on the path to the server. The
optimal solution corresponding to G(w, l) is denoted by
A(w, l).

Figure 1. definition of G(w, l)

When we consider the relation between G(w, l) for node
w and that for it’s children, we have the following theorem.

Theorem 1 For a tree Tr, we have G(F,A∗) =∑
wi∈C(r) G(wi, 1), where A∗ is an optimal solution to

Equation (2). For inner node w and distance l, we have

G(w, l) = min{Gwithout(w, l), Gcaching(w, l)}, (4)

A(w, l) =


∪wi∈C(w)A(wi, l + 1)
(Gwithout(w, l) ≤ Gcaching(w, l))
∪wi∈C(w)A(wi, 1) ∪ {w}
(Gwithout(w, l) > Gcaching(w, l)).

(5)

where Gwithout(w, l) =
∑

wi∈C(w) G(wi, l + 1) + l ·
fw is the minimum access cost in the case that the ob-
ject is not cached at node w and Gcaching(w, l) =∑

wi∈C(w) G(wi, 1)+pw is the minimum access cost in the
case that the object is cached at node w.

Proof.
First, all subtrees of the root node are independent of

each other and the distance from the root node to it’s
children is 1, so it’s easy to find out that G(F,A∗) =∑

wi∈C(r) G(wi, 1).
Then for inner node w:
(1) If w /∈ A∗, because Gwithout(w, l) is an optimal so-

lution, we have Gwithout(w, l) ≤
∑

wi∈C(w) G(wi, l+1)+
l · fw. On the other hand G(wi, l + 1), wi ∈ C(w) are also
optimal solutions, so we have

∑
wi∈C(w) G(wi, l + 1) ≤

Gwithout(w, l) − l · fw. From two inequations, we have
Gwithout(w, l) =

∑
wi∈C(w) G(wi, l + 1) + l · fwand

A(w, l) = ∪wi∈C(w)A(wi, l + 1).
(2) If w ∈ A∗, in a similar way we have

Gcaching(w, l) =
∑

wi∈C(w) G(wi, 1) + pw and A(w, l) =
∪wi∈C(w)A(wi, 1) ∪ {w}.

From (1)(2), we know Theorem 1 is correct.
Based on Theorem 1, we have dynamic programming

algorithm as follows which runs in bottom-up order.

Algorithm 1: EWC1
Step 1. Initialization:

A(w, l) = φ;
G(w, l) = l · fw, for all w and l, 1 ≤ l ≤ h;

Step 2. Running the algorithm in post-order traversal
for all non-leaf w, 1 ≤ l ≤ hw do

if
∑

wi∈C(w) G(wi, l + 1) + l · fw ≤∑
wi∈C(w) G(wi, 1) + pw then

G(w, l) =
∑

wi∈C(w) G(wi, l + 1) + l · fw

A(w, l) = ∪wi∈C(r)A(wi, l + 1)
else

G(w, l) =
∑

wi∈C(w) G(wi, 1) + pw

A(w, l) = ∪wi∈C(r)A(wi, 1) ∪ {w}
endif

endfor.

Complexity Time
What we should compute is all G(w, l), w ∈ C, 0 ≤

l ≤ hw and time complexity of the algorithm is O(nh). In
the worst case h = n and time complexity is O(n2) which
is same as the method in [14]. In the best case h = 1,
where each node is a leaf node except the root node r, time
complexity is O(n).

4.2. Solution to Dual-Server En-Route
Caching in Tree Networks

The method used in previous section can be extended
easily to solve multi-server case in O(nhm) time complex-
ity through computing all combination of G(w, l1, l2, ...lm),
where m is the number of servers. However, in this section,

Proceedings of the Seventh International Conference on
Parallel and Distributed Computing,Applications and Technologies (PDCAT'06)
0-7695-2736-1/06 $20.00 © 2006

we only focus on dual-server network and present an algo-
rithm whose time complexity is O(nh). If only one server is
contained in the network, the algorithm equals to EWC2;
if the tree degenerates to a line, the algorithm is equivalent
to EWC1.

Now, let us think about the location of a server in a tree
network. It’s certain that if a server is located in a tree, it
must be in a leaf node or root node. (If there is a server
located at an inner node, the tree can be decomposed so that
the inner node becomes a leaf node or the root node.) For
such a tree with two servers contained, we adjust the shape
of tree as follows so that some property can be achieved.

(1) We adjust the location of one server so that the node
becomes the root of the tree. We call the node root-server
node.

(2) For the other server, if it’s not the most left node, we
swap the node with his brother (the most left one). We swap
the upper nodes (parent, grandfather ...) of the server in the
same way until the server becomes the left-most node in the
tree. We call the server node leaf-server node.

In process(1), the height of the tree changes. Suppose h′

is the height of the tree before adjusting and h after adjust-
ing, then we have 0 < h ≤ 2h′. In both process (1) and (2),
the connectivity never changes and the network adjusted is
an isomorphic structure to the original network. We can get
the original network from the latter in the reversed process
of (1) and (2). We call the tree adjusted as a dual-server
tree.

Now, we consider the solution of dual-server en-route
caching in a weighted tree network from listing the differ-
ence between the single server case and two-server case as
follows:

(1) In the dual-server case, the root server has only one
child (otherwise the network can be further decomposed)
and the leaf server is located at the most left node in tree.

(2) In the dual-server case, a client can issue demands to
two servers.

Here, we denote root server by s and the leaf server by
s′. fw is the frequency of demand from node w to server
s, f ′w is the frequency of demand from node w to server
s′. G(w, l) means the optimal access cost to satisfy the re-
quests issued by the clients in Tw optimally, where l is the
distance from node w to the nearest cache on the path to root
server s and the corresponding optimal solution is A(w, l).
Let L(w, l) denote the distance from w to the nearest client
caching the object in the path to leaf server s′ as Figure()
shows.

Based on the analysis above, we have the following the-
orem.

Theorem 2 For a dual-server tree Tr defined before, in the
case that the object is cached at node w, we have L(w, l) =
0; otherwise in the case that the object is not cached at node

Figure 2. Definition of L(w, l)

Figure 3. An Example

w, we have

L(w, l) =


L(w′, l + 1) + 1
(w ∈ path[s, s′])
L(w′, l −D(w) + 1) + 1 + D(w)
(w /∈ path[s, s′] and l > D(w))
l(w /∈ path[s, s′] and l ≤ D(w))

(6)

, where D(w) is the distance between w and the nearest
node w∗ in path[s, s′](w∗ = w when w ∈ path[s, s′]). w′

is the child of w∗ in path[s, s′].

Proof. If node w is on the path[s, s′], the nearest client
caching the object from node w to leaf server s must be
on the path[s, s′] too; otherwise it can be on path[s, w∗] or
path[w∗, w], where w∗ = path[s, s′] ∩ path[w∗, w] is the
first node from w to s.

(1) if node w is on path[s, s′] and w′ is the child of w in
path[s, s′], we have L(w, l) = L(w′, l + 1) + 1.

(2) if node w is not on path[s, s′] and the nearest client
caching the object is in the path[s, w∗], then L(w, l) =

Proceedings of the Seventh International Conference on
Parallel and Distributed Computing,Applications and Technologies (PDCAT'06)
0-7695-2736-1/06 $20.00 © 2006

L(w∗, l − D(w)) + D(w). Because w∗ is in path[s, s′],
we have L(w∗, l −D(w)) = L(w′, l −D(w) + 1) + 1 ac-
cording to (1), where w′ is the child of w∗ in path[s, s′]. At
last, we have L(w, l) = L(w′, l−D(w) + 1) + 1 + D(w).

(3) if node w is not on the path[s, s′] and the nearest
client caching the object is on path[w∗, w], it’s easy to see
that L(w, l) = l

Now that we have already known the distances from w
to s and s′, we can give a theorem for the optimal solution
as follows.

Theorem 3 For a dual-server tree Tr defined before, we
have G(F,A∗) = G(w′, 1), where A∗ is an optimal solu-
tion to Equation (2), w′ is the child of root node r. For node
w and distance l, we have

G(w, l) = min{Gwithout(w, l), Gcaching(w, l)} (7)

A(w, l) =


∪wi∈C(w)A(wi, l + 1)
(Gwithout(w, l) ≤ Gcaching(w, l))
∪wi∈C(w)A(wi, 1) ∪ {w}
(Gwithout(w, l) > Gcaching(w, l))

(8)

where Gwithout(w, l) =
∑

wi∈C(w) G(wi, l + 1) + fw ·
l + f ′w · L(w, l) is the optimal access cost in the case that
the object is not cached at node w and Gcaching(w, l) =∑

wi∈C(w) G(wi, 1) + pw is the optimal access cost in the
case that the object is cached at node w.

Proof. Similar to Theorem(1) and is left out because of
space limitations.

Based on Theorem 3, we present a dynamic program-
ming algorithm which runs in post-order(left-right-root)
traversal.

Algorithm 2: EWC2
Step 1. Initialization:

Adjust the tree so that s′ is the most left node, s is the
root node and the height of tree is h. A(w, l) = φ;

G(s′, l) = 0, for each distance l, 1 ≤ l ≤ h;
L(s′, l) = 0, for each distance l, 1 ≤ l ≤ h ;

Step 2. Running the algorithm in post-order traversal
for all node w and distance l, 1 ≤ l ≤ hw do

if w ∈ path[s, s′] then
L(w, l) = L(w′, l + 1) + 1

else if w /∈ path[s, s′] and l > D(w) then
L(w, l) = L(w′, l −D(w) + 1) + 1 + D(w)

else if w /∈ path(s, s′) and l ≤ D(w) then
L(w, l) = l

endif;
M =

∑
wi∈C(w) G(wi, l + 1) + L(w, l)f ′w + lfw;

N =
∑

wi∈C(w) G(wi, 1) + pw;
if M ≤ N then

G(w, l) = M
A(w, l) = ∪wi∈C(w)A(wi, l + 1)

else
L(w, l) = 0
G(w, l) = N
A(w, l) = ∪wi∈C(w)A(wi, 1){w}

endif;
enddo.

Time Complexity
Computing G(w, l), where w ∈ C, 1 ≤ l ≤ h, results

in the time complexity of the algorithm to be O(nh). In
the case that only one server is contained in the tree, we
suppose L(w, l) = f ′w = 0 then this algorithm equals to
EWC2. In the case that the tree degenerates to a linear array,
we suppose l = i and L(w, l) = r−l−i then this algorithm
becomes EWC1.

Now, we give an example for dual-server coordinated en-
route caching to show the process how algorithm EWC3
works. Consider a tree network consisting of five client
wi, 1 ≤ i ≤ 5 and two servers s0, sn+1 as Figure ?? shows.
All demands from clients to servers are {f ′1 = f ′2 = f ′3 =
f ′4 = f ′5 = f ′6 = 1, f1 = f2 = f3 = f4 = f5 = f6 = 2},
caching cost at each client p1 = p2 = p3 = p4 = p5 =
p6 = 4. Running the algorithm EWC3, we can get an opti-
mal solution G(F,A∗) = 17, A∗ = {w2, c3}. The process
is as follows:

Table 1. D’(w, l)
l D’(5,l) D’(4,l) D’(3,l) D’(2,l) D’(1,l)
0 0 0 0 0 0
1 1 1 1 1 1/2
2 2 2 2/3 1
3 3/4 2

Table 2. G(w, l)
l G(5,l) G(4,l) G(3,l) G(2,l) G(1,l)
0 4 4 7* 7* 18
1 3* 3* 9 9 17*
2 6 6 15/17 13
3 9/10 8

5. Conclusions

Deploying multiple servers and en-route caching is an
important technology to improve the scalability of net-
works. However, previous work on en-route caching is
mostly devoted in single-server networking environment
and can’t be applied to networks with more than one server.

Proceedings of the Seventh International Conference on
Parallel and Distributed Computing,Applications and Technologies (PDCAT'06)
0-7695-2736-1/06 $20.00 © 2006

In this paper we formulate multi-server coordinated en-
roue caching as an optimization problem of minimizing to-
tal access cost and present several algorithms for different
cases. Our algorithm for dual-server en-route caching in
tree networks can also be used in dual-server linear array
and single-server tree networks.

Our method can be easily extended to the multi-servers
case, though the time complexity will then rise to exponen-
tial. However, we have reduced the complexity for the dual-
server case after some local optimization. It’s a challenging
task for us to optimize the multi-server case and reduce it’s
complexity to polynomial. Another challenging task for our
future research is to present an approximate method to solve
the problem with multiple servers efficiently and the prob-
lem in arbitrary topologies. The techniques of applying dy-
namic programming shown in the paper can serve as useful
tools for deriving such solutions in the general case.

References

[1] S. Bhattacharjee, K. L. Calvert, and E. W. Zegura. Self-
organizing wide-area network caches. In INFOCOM (2),
pages 600–608, 1998.

[2] A. Chankhunthod, P. B. Danzig, C. Neerdaels, M. F.
Schwartz, and K. J. Worrell. A hierarchical internet ob-
ject cache. In USENIX Annual Technical Conference, pages
153–164, 1996.

[3] E. Cohen, B. Krishnamurthy, and J. Rexford. Improving
end-to-end performance of the web using server volumes
and proxy filters. In SIGCOMM, pages 241–253, 1998.

[4] M. Dahlin, R. Wang, T. E. Anderson, and D. A. Patterson.
Cooperative caching: Using remote client memory to im-
prove file system performance. In Operating Systems Design
and Implementation, pages 267–280, 1994.

[5] P. B. Danzig, R. S. Hall, and M. F. Schwartz. A case for
caching file objects inside internetworks. In SIGCOMM,
pages 239–248, 1993.

[6] B. D. Davison. A web caching primer. IEEE Internet Com-
puting, 5(4):38–45, July/August 2001.

[7] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Sum-
mary cache: a scalable wide-area Web cache sharing proto-
col. IEEE/ACM Transactions on Networking, 8(3):281–293,
2000.

[8] S. Gadde, M. Rabinovich, and J. S. Chase. Reduce, reuse,
recycle: An approach to building large internet caches. In
Workshop on Hot Topics in Operating Systems, pages 93–
98, 1997.

[9] M. R. Korupolu, C. G. Plaxton, and R. Rajaraman. Place-
ment algorithms for hierarchical coorperative caching. In
Proc. 10th Ann. ACM-SIAM Symp. Discrete Algorithms,
pages 586–595, 1999.

[10] P. Krishnan, D. Raz, and Y. Shavitt. The cache location prob-
lem. IEEE/ACM Transactions on Networking, 8(5):568–
582, 2000.

[11] P. Krishnan and B. Sugla. Utility of co-operating Web
proxy caches. Computer Networks and ISDN Systems, 30(1–
7):195–203, 1998.

[12] A. Leff, J. L. Wolf, and P. S. Yu. Replication algorithms in
a remote caching architecture. IEEE Trans. Parallel Distrib.
Syst., 4(11):1185–1204, 1993.

[13] B. Li, X. Deng, M. J. Golin, and K. Sohraby. On the op-
timal placement of web proxies in the internet: The lin-
ear topology. In HPN ’98: Proceedings of the IFIP TC-6
Eigth International Conference on High Performance Net-
working, pages 485–495, Deventer, The Netherlands, The
Netherlands, 1998. Kluwer, B.V.

[14] K. Li, H. Shen, F. Y. L. Chin, and S. Q. Zheng. Optimal
methods for coordinated enroute web caching for tree net-
works. ACM Trans. Inter. Tech., 5(3):480–507, 2005.

[15] R. Malpani, J. Lorch, and D. Berger. Making world wide
web caching servers cooperate. Proceedings of the Fourth
International WWW Conference, pages 107–117, 1995.

[16] P. Rodriguez and S. Sibal. SPREAD: Scalable platform
for reliable and efficient automated distribution. Computer
Networks (Amsterdam, Netherlands: 1999), 33(1–6):33–49,
2000.

[17] P. Rodriguez, C. Spanner, and E. Biersack. Analysis of web
caching architectures: Hierarchical and distributed caching,
2001.

[18] J. Shim, P. Scheuermann, and R. Vingralek. Proxy cache
algorithms: Design, implementation, and performance.
Knowledge and Data Engineering, 11(4):549–562, 1999.

[19] X. Tang and S. T. Chanson. Coordinated en-route web
caching. IEEE Trans. Comput., 51(6):595–607, 2002.

[20] R. Tewari, M. Dahlin, H. M. Vin, and J. S. Kay. Design
considerations for distributed caching on the internet. In In-
ternational Conference on Distributed Computing Systems,
pages 273–284, 1999.

[21] S. Venkataraman, J. Naughton, and M. Livny. Remote load-
sensitive caching for multi-server database systems. In 14th
International Conference on Data Engineering (ICDE’98),
1998.

[22] S. Williams, M. Abrams, C. R. Standridge, G. Abdulla, and
E. A. Fox. Removal policies in network caches for World-
Wide Web documents. In Procedings of the ACM SIG-
COMM ’96 Conference, Stanford University, CA, 1996.

[23] P. S. Yu and E. A. MacNair. Performance study of a col-
laborative method for hierarchical caching in proxy servers.
Computer Networks and ISDN Systems, Vol. 30:215–224,
1998.

Proceedings of the Seventh International Conference on
Parallel and Distributed Computing,Applications and Technologies (PDCAT'06)
0-7695-2736-1/06 $20.00 © 2006

