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Robust Continuous-Time Smoothers Without
Two-Sided Stochastic Integrals
Vikram Krishnamurthy, Senior Member, IEEE,and Robert Elliott

Abstract—We consider the problem of fixed-interval smoothing
of a continuous-time partially observed nonlinear stochastic
dynamical system. Existing results for such smoothers require
the use of two-sided stochastic calculus. The main contribution
of this paper is to present a robust formulation of the smoothing
equations. Under this robust formulation, the smoothing equa-
tions are nonstochastic parabolic partial differential equations
(with random coefficients) and, hence, the technical machinery
associated with two sided stochastic calculus is not required.
Furthermore, the robust smoothed state estimates are locally
Lipschitz in the observations, which is useful for numerical
simulation. As examples, finite dimensional robust versions of the
Benes and hidden Markov model smoothers and smoothers for
piecewise linear dynamics are derived; these finite-dimensional
smoothers do not involve stochastic integrals.

Index Terms—Continuous time, hidden Markov models
(HMMs), maximum likelihood estimation, nonlinear smoothing,
piecewise linear models, stochastic differential equations.

I. INTRODUCTION

F ILTERING is another word for conditional mean estima-
tion of the state at time of a given dynamical stochastic

system, based on the available incomplete information (obser-
vations) until the same time. Fixed-interval smoothing refers
to the problem when given a trajectory of observations up to
some fixed time , one wishes to compute the conditional
mean estimate of the underlying state at timesin the interval

.
For continuous-time dynamical stochastic systems, the fil-

tered state density can be expressed as a stochastic partial dif-
ferential equation called the Duncan–Mortenson–Zakai (DMZ)
equation [2]. Derivation of the fixed-interval smoothed state
density is mathematically more formidable as it requires the use
of two sided stochastic calculus [19].

In this paper we deriverobust filters and smoothers for the
state of a continuous-time stochastic dynamical system by using
a gauge transformation, see for example [6], [8]. By robust we
mean that the resulting filtering and smoothing equations are
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locally Lipschitz continuous in the observations, i.e., the equa-
tions depend continuously on the observation path. Indeed, the
equations turn out to be nonstochastic parabolic partial differ-
ential equations whose coefficients depend on the observations.
Apart from not requiring the intricacies of two-sided stochastic
calculus, these robust equations are useful from a practical point
of view; their numerical solution via time discretization can be
performed without worrying about the Ito terms.

The idea of robust filtering, i.e., re-expressing the stochastic
differential equation as nonstochastic differential equation with
random coefficients has been used extensively in the context
of nonlinear filtering; see, for example, [6], [16], [8], [18], or
[2, Ch. 4]. More recently, in [14], versions of these robust fil-
ters, probabilistic interpretations and implicit and explicit dis-
cretization schemes were developed for continuous-time hidden
Markov models (HMMs).

The contributions of this paper are as follows.

1) It is shown in Section III that the smoothed state estimate
can be computed via robust forward and backward filters.
Each of these filters involve nonstochastic parabolic par-
tial differential equations.

2) Robust fixed interval smoothed estimates of functionals
of the state of the system are derived in Section III.
Again, the equations involve nonstochastic integrals.
These robust smoothers can be used in maximum
likelihood parameter estimation via the expectation
maximization (EM) algorithm. The EM algorithm (see
Section II-B) is a widely used numerical method for
computing the maximum likelihood parameter estimate
for partially observed stochastic dynamical systems;
see, for example, [23], [4], and [14]. Unlike this paper,
in [14] and [9], two-sided stochastic calculus involving
Skorohod and generalized Stratonovich integrals are
used to derive smoothers for computing estimates of the
functionals required in the EM algorithm for HMMs and
linear Gaussian state space models, respectively.

3) As examples of the robust smoothers for the state and
functionals of the state, we present state and maximum
likelihood parameter estimation for three classes of sto-
chastic dynamical systems: 1) Benes type nonlinear dy-
namical systems with non Gaussian initial conditions (see
Section IV), 2) HMM (see Section V), and 3) systems
with piecewise linear dynamics (see Section VI).

Instead of using fixed-interval smoothing for cases 1) and 2),
finite-dimensionalfilters have been derived in [12], [13], and
[14] to compute estimates of the functionals required in the EM
algorithm. However, the computational complexity of these fil-
ters are for some of the functionals (e.g., for the number
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of jumps in an HMM) at each time instant wheredenotes the
state dimension. In comparison, computing estimates of these
functionals via fixed-interval smoothers involves a complexity
of but requires storage memory of where is the
length of the observation data sequence. Approximate filtering
for piecewise linear systems via a bank on Kalman filters is pre-
sented in [20] and [21]. We extend these results to derive robust
smoothers for the state and functionals of the state required in
the EM algorithm, see Section VI for details.

II. M ODEL AND PROBLEM FORMULATION

A. Signal Model and Objectives

Consider the following continuous-time partially observed
nonlinear stochastic dynamical system defined on the measur-
able space (, ). Let { }, where denotes a com-
pact subset of , denote a family of parametrized probability
measures. Under , the state { } taking values in , and
the observation process {} taking values in , are de-
scribed by

(1)

(2)

Let denote a fixed real number. For , define the
right-continuous filtrations { }, { }, and { } with

(3)

In (1) and (2), { } and { } are independent standard
Brownian motions. Further, { } and { } are independent of

. (In Section V, we will consider the HMM case where is
a measurable finite state zero mean martingale process.

We make the following standard assumptions [2, pp. 114] for
all .

A1) and
are bounded Borel measurable functions

A2) is continuous and bounded
such that is a uniformly positive definite

matrix, i.e., for some real . This
ensures that the backward operator(defined in (15))
is uniformly elliptic. This condition can be somewhat
relaxed with replaced by its pseudoinverse ,
see Section IV-B.

A3) and are Lipschitz in , i.e.,

A4) The probability measures on with densities
( ) with respect to the Lebesgue mea-
sure are mutually absolutely continuous. We assume

and .
Then there exists a unique strong solution

to the state (1) (where
denotes the space of -valued con-

tinuous functions on [0, ]). Also
endowed with the sup-norm, i.e.,

.
We also assume throughout that for all , A5)

holds.
A5) , and are continuously differentiable with re-

spect to the parameter. The derivatives and
are measurable and bounded functions.

To introduce the gauge transformation we shall as-
sume A6).

A6) has continuous and bounded first and second
derivatives with respect to and bounded first deriva-
tive with respect to. The differentiability w.r.t. is not
required in the finite-state Markov case considered in
Section V.

In Section VI, the assumption of continuous first and second
derivatives is relaxed. In particular Section VI assumes that

is piecewise linear and continuous in. Tanaka’s for-
mula, which is roughly speaking an extension of Ito’s formula
to the nondifferentiable case, will be used.

Objectives : In this paper, we will derive robust filtering and
smoothing equations. By robust, we mean that the solution to
the resulting equations are locally Lipschitz continuous in the
observation . As mentioned in Section I, this is a useful prop-
erty from an implementation point of view. The aim of this paper
is threefold.

i) Derive robust fixed-interval smoothers for
that do not involve stochastic integrals.

ii) Derive robust fixed interval smoothers for functionals of
the form

(4)
where , ,

are Borel measurable and bounded functions.
is assumed once differentiable in. Our aim is to com-

pute the fixed-interval smoothed estimate ,
using robust forward and backward filters.

These smoothed estimates are required in computing the
maximum likelihood parameter estimate via the EM al-
gorithm; see Section II-B. The same problem is consid-
ered in [4] where two-sided stochastic calculus was used
to compute .

To motivate the robust smoothers presented below,
consider computing the smoothed estimate of the last
term in (4). One would have liked to have interchanged
the conditional expectation and the integral. However,
the resulting expression

is not an Ito integral since the integrand is not adapted
to the filtration . In [4], it is shown
that the above integral can be interpreted as a Skorohod
integral and requires the use of two-sided stochastic cal-
culus. The aforementioned integral is interpreted in [9]
as a generalized Stratonovich integral.
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In Section III, it will be demonstrated that by
expressing the filters in robust form, the smoothed
estimate can be computed using ordinary
(nonstochastic) integration. Thus, two-sided stochastic
calculus is not required. For example, Theorem 3.4 of
this paper shows that

Here, is a normalization factor and , [defined in
(17) and (19)] are robust forward and backward filtered
densities that evolve according to nonstochastic partial
differential equations.

iii) Using the robust smoothers in Step ii), we will address
the problem of computing the maximum likelihood pa-
rameter estimate (MLE) of given the observation his-
tory . The MLE is defined as follows: Suppose the
family of measures were absolutely continuous with
respect to a fixed probability measure. The log like-
lihood function for computing an estimate of the pa-
rameter based on the information available in is

, and the MLE is de-
fined by . Application of the EM
algorithm to the Benes type nonlinear dynamical systems
HMMs and piecewise linear systems are covered in Sec-
tion IV-B,Section V-B, and Section VI, respectively.

B. Motivation:The EM Algorithm

As previously mentioned, the EM algorithm serves as a pri-
mary motivation for deriving fixed-interval smoothers for the
state and functionals of the state of the form defined in
(4). The EM algorithm is an iterative numerical method for com-
puting the MLE. Let be the initial parameter estimate. Each
iteration of the EM algorithm consists of two steps.

Step 1) (E-step) Set and compute , where

.
Step 2) (M-step) Find .
The sequence generated {, } gives nondecreasing

values of with equality if and only if .
Under the assumptions A1)–A5), for all ,

the measures ( ) when restricted to [0,
] are mutually absolutely continuous on (, ) with

Radon–Nikodym derivative . It is shown in

[4] that where (5), as shown
at the bottom of the page, holds. It is clear from (5) that
computing in the E-step involves computing fixed
interval smoothed estimate of functionals of the state of the
form in (4).

C. Preliminaries

To simplify notation, reference to the parameterwill be
dropped until Section IV-B. We start with a reference proba-
bility space ( , , ) such that under

i) is -dimensional Brownian motion and {} is defined
by (1);

ii) { } is -dimensional Brownian motion, independent of
and , and having quadratic variation .

Consider the exponentials

(6)

For notational convenience, define . Then, from Ito’s
formula

(7)

and , where denotes expectation under. If we
define a measure in terms of by setting
then Girsanov’s theorem [11] implies that under, is a stan-
dard -dimensional Brownian motion if we define

, . That is, under ,
. Under , the process { } still satisfies (1). Consequently,

under the processes { } and { } satisfy the real world dy-
namics (1) and (2). However, is a more convenient measure
with which to work.

In the sequel, we assume that is an arbitrary
”test” function with compact support. For any ,

define the inner product

(8)

Filtering is concerned with computing .
Define the density function as

. The following result is standard [11].

(5)
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Lemma 2.1:The filtered estimate is given by

(9)

We will subsequently refer to as theforwardunnormalized
filtered density.

Fixed interval smoothing is concerned with computing con-
ditional mean estimates of the form , .
Consider the measure valued process

initialized by (10)

We will subsequently refer to as thebackwardfiltered
process.

Lemma 2.2:The fixed-interval smoothed estimate
is given by

(11)

Proof: By the smoothing property of conditional expecta-
tions

(12)

where denotes the sigma algebra generated by .
Now

by the Markovian property of the process and the fact that
under , is standard Brownian motion. Therefore

From [2, pp. 134] or [18, Lemma 3.10], it follows that

III. ROBUST FIXED INTERVAL SMOOTHING

Notation:

(13)

For convenience, we will use instead of , etc.

...
...

... (14)

For a vector field defined on
, define

Define the backward elliptic operator (infinitesimal gener-
ator) and its adjoint for any test function as

(15)

A. Robust Fixed Interval State Smoothers

We start with the following well-known DMZ equation,
which describes the evolution of the unnormalized filtered state
density; see, for example, [2] for a proof.

Theorem 3.1 (DMZ Equation):The unnormalized filtered
density satisfies the stochastic integral equation

(16)

The existence of a unique strong solution is guaranteed
under assumptions A1), A2), A3), A4), and A6), see [2,
Sec.4.6]. In Section VI, where A6) is violated because
piecewise linear in , a strong solution does not necessarily
exist.

Our aim is to derive arobustversion of the above DMZ fil-
tering equation by introducting the following gauge transforma-
tion. Define the robust forward filtered density

(17)

The followingresult is proved in [16].
Theorem 3.2 (Robust Forward Filter): satisfies the fol-

lowing nonstochastic parabolic partial differential equation:

(18)

Furthermore, the robust filtered state estimate
defines a locally Lipschitz version of

in that for any two observation trajectories ,
and for some constant depending on

and

Remark: Equation (18) follows straightforwardly from ap-
plying Ito’s formula to . In [16], (18) is established
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by integrating (defined in (6)) by parts. While both methods
yield the same formula (18), it is worthwhile noting that in
defined in (13), is merely a parameter, whereas in
defined in (6), is a stochastic process. Finally, [16] also shows
uniform continuity (robustness) in terms of an approximation
parameter.

Define now the robust backward filtered process as

(19)

The following theorem shows that one can derive the evolution
of directly from the forward robust density . In par-
ticular, one does not need to worry about the evolution of ,
which is governed by a backward stochastic partial differential
equation.

Theorem 3.3 (Robust Backward Filter and Fixed-Interval
Smoother): satisfies the nonstochastic backward parabolic
pde

(20)

The fixed interval smoothed estimate is computed as

(21)

Remarks:

1) Reference [18] also presents a similar result (in French).
However, the results in [18] are not exploited in com-
puting functionals of the state which is one of the main
aims of this paper. Existence and uniqueness ofholds
under A1), A2), A3), A4), and A6); see [2, Ch. 4.6.4].

2) Equation (20) can be derived by starting with the fol-
lowing backward Ito stochastic differential equation for

:

where and the last integral is a backward
stochastic integral. Then apply the backward Ito formula
of [2, pg.124] to (19). However, the following straightfor-
ward proof derives smoothers without recourse to back-
ward stochastic calculus.

Proof: Choose in (11). This yields
which means that is independent of time.

Now from (17) and (19), we have

meaning that is independent of time . Thus,
, a.s. However

a.s.

which means that satisfies the backward nonstochastic para-
bolic pde (20). Finally, Lemma 2.2 and (20) immediately yield
(21).

B. Robust Fixed-Interval Smoothers for Functionals
of the State

We consider robust fixed interval smoothing of defined in
(4). As mentioned in Section II-B, such computations arise in
the EM algorithm for MLE.

Define the measure valued process associated with
as

(22)

Define the robust measure valued processes

In terms of or its robust version , it follows
from a virtually identical proof to Lemma 2.2 (in-
stead of (12) we now have

) that
is computed as

(23)

where denotes the unnormalized robust fixed-in-
terval smoothed estimate.

Theorem 3.4 (Filtered and Robust Smoothed Estimate):See
(24)–(26), as shown at the bottom of the next page. Furthermore,

the robust smoothed state estimate defines a
locally Lipschitz version of in that for ,

and constant depending on and

Proof: Starting with (4) and (7), it follows that for any test
function
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Conditioning on under the measure (see [22, Lemma 3.2,
p. 261]), it follows that

(27)

Now, is a linear continuous functional on
and therefore is a measure. Withdenoting the associated

density, i.e., , it follows that

(28)

which implies that satisfies (24).
Applying Ito’s rule to with satisfying (24), it fol-

lows that the second equation shown at the bottom of the page
holds. Since the integrand of the last term is a finite
variation process, the integral can be expressed as an ordinary
(nonstochastic) integral using integration by parts as follows:

which to-
gether with (18) implies (25).

(24)

(25)

(26)
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To prove (26), define . From (25),
satisfies the nonstochastic pde

Also

(29)

Using (20), the following expressions hold:

because is the adjoint of . Substituting these expressions
into (29) yields

However, it can be shown that

by evaluating, for example, the right-hand side of the previous
equation. Therefore,
which yields (26).

Since and are locally Lipschitz, so is .

IV. EXAMPLE 1: ROBUST BENESSMOOTHERS

A. Robust Smoother for State

The signal model we consider is the following special case of
(1) and (2):

(30)

(31)

Here, in is no longer a function of . For convenience
assume is a scalar valued observation process (i.e., ).
Also, is assumed time-invariant for simplicity.

Assumption:We assume that in (30) satisfies the fol-
lowing condition [2, p. 199]. Suppose that there exists
in such that

(32)

Assume that satisfies the following Benes nonlinearity
condition [2, p. 198]:

(33)

where is an arbitrary symmetric matrix satisfying
, is an arbitrary vector and is an

arbitrary scalar.
Remark: Several examples of nonlinearities satis-

fying the aforementioned assumption are given in [2, p. 199].
For scalar valued processes ( ) examples include

and where
, are arbitrary constants; see also [7].

Robust Forward Benes Filter:When the nonlinearity
satisfies (33), then for initial density the explicit solution
of (18) is

(34)

where (35)–(36), as shown at the bottom of the page, hold. Here,
the terms , and are defined as (37), as shown at the
bottom of the page, and the matrix satisfies the
equation

(38)

(35)

(36)

(37)
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The statistics , and satisfy

(39)

(40)

(41)

Robust Backward Benes Filter:The explicit solution for (20)
is

(42)

where (43)–(44), as shown at the bottom of the page, hold. The
terms , and are defined as shown in (45) at the bottom
of the page, and the matrix satisfies the equation

(46)

The statistics , and satisfy

(47)

(48)

(49)

Remarks:

1) Verifying that the previous robust filter equations satisfy
(18) and (20) is straightforward but tedious and provides
little insight. In the Appendix, the forward and backward
robust Benes filter equations are derived starting from
their nonrobust versions.

2) The aforementioned expressions for and do not
involve stochastic integrals or any terms involving
outside of time integrals. As a result, computation of

and for non-Gaussian initial conditions is
straightforward. In Section VI, we will require
and .

3) For linear dynamics with initial distribution ,
simply set , , and .
Further, if , then the Kalman
filter follows with conditional mean state estimate

, and the Kalman state

covariance given by the
Riccati equation. For linear dynamics and Gaussian
initial conditions, the conditional mean fixed-interval
smoothed state estimate and associated covariance satisfy

(50)

(51)

B. Maximum Likelihood Parameter Estimation for Linear
System

Consider the linear Gaussian system (30), (31) with ,
Gaussian initial conditions and time invariant parameters (, ,

) in controller canonical form, i.e.,

Let denote the parameter vector.

(43)

(44)

(45)
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The EM algorithm outlined in Section II will be used to com-
pute the MLE of . It follows from (5), with replaced by
its pseudoinverse (see [4] for a justification of this), that

(52)

where does not involve .
To implement the M-step set, . This yields

(53)

(54)

In the following, we use (26) to compute the previous expres-
sions. For convenience, the subscriptis omitted.

Example 1: Consider computing
which is required in (53) and (54). For ,

define where
denotes the unit vector with 1 in theth position. Then

from (26) with , we have
. Therefore

where and are the smoothed state estimate and co-
variance defined in (50) and (51).

Example 2: Consider computing which is
required in (54). Define . Then from (26) with

and

and, hence

(55)

where

can be computed from the robust forward and backward Kalman
filters.

Remark: It is interesting to note that the robust smoothed
estimate (55) is identical to the generalized Stratonovich integral
used in [9].

Example 3: Consider computing which is
required in (53). Let . Then from (26) with

and it follows that

Substituting the expression (which follows after some tedious
algebra)

it follows (after a few more steps) that

V. EXAMPLE 2: ROBUST HMM SMOOTHERS

Let , be a continuous-time Markov chain defined
on ( , , ) with finite state–space { } where
denotes the unit -vector with 1 in theth position. Let denote
the transition rate matrix (infinitesimal generator), so that

for .
It is straightforward to show [11] that the semimartingale rep-

resentation of is

(56)

where is a zero mean -vector martingale under . Let
. Assume that is observed

via the scalar measurement processas

(57)

where is Brownian motion independent of . Equation (57)
denotes the observation trajectory of a continuous time HMM,
see [11] for applications of such models. Let

, denote the parameter vector of
the HMM.

A. Robust HMM Smoother

Assume is known. From (6), it follows that

Let denote a diagonal matrix. Analogous
to (16) it follows that the unnormalized filtered density

(note is a dimensional vector) is given by the
Zakai equation [11, p. 185]

(58)

This equation is the well-known Wonham filter or HMM filter
[11].
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For any two vectors , , let denote their scalar

product. With , in complete analogy to
Lemma 2.2 , the HMM smoothed-state estimate is computed as

(59)

In analogy to (13), define the diagonal exponential ma-
trices as

Define the robust forward and backward filtered state esti-
mates, respectively, as

Similar to Theorems 3.2 and 3.3, the following holds (proof
omitted to save space).

Theorem 5.1:(Robust HMM Smoother):The robust forward
and backward filters evolve as

(60)

(61)

The fixed-interval smoothed estimate is computed as

(62)

Remark: Equation (60) was derived in [6], where it was
shown that is a locally Lipschitz continuous function of
( ), and (60) can be used to define a version

of the conditional probability distribution which enjoys this
continuity property. An identical proof holds for the continuity
of (61)

B. Maximum Likelihood Parameter Estimation for HMM

By using the EM algorithm outlined in Section II-B to com-
pute the ML parameter estimate of, the following re-estima-
tion equations are obtained [14]:

(63)

(64)

Here, , , denotes the number of jumps from state
to state , denotes the duration time in stateand de-
notes the “level integral” from time 0 to . Note that by in-
terchanging conditional expectation and integral in the compu-
tation of the level integral , the resulting expres-
sion is not an Ito integral; it needs to
be interpreted as a Skorohod integral. In the following, robust
smoothers are developed for evaluating these quantities which
does not require two-sided Skorohod integrals.

Theorem 5.2:Robust smoothed estimates of, , and
are given as (65)–(67), shown at the bottom of the page. These
robust estimates are locally Lipschitz continuous in

Remarks :

1) The EM (63) for HMM parameter estimation read
(68)–(69), as shown at the bottom of the page. These
equations are the continuous-time counterpart of the

(65)

(66)

(67)

(68)

(69)
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discrete-time Baum–Welch equations, which are widely
used for discrete-time MLE of HMMs; see, for example,
[5]. The expressions (68) and (69) are apparently ob-
tained here for the first time. In comparison, the EM
equation for derived in [9] is

where the integral in the numerator is a generalized
Stratonovich integral. The EM equation derived in [14,
p.600] is

where the integral in the numerator is a two-sided
Skorohod integral. The derivation of and

in [14] uses two-sided stochastic calculus
of [19].

2) Euler discretization: We consider here numerical
discretization of the forward and backward HMM
filtering (60), (61). Consider a regular partition

with constant
time step . Let
denote the discrete-time sampled observations. Define
the discrete-time observation probability matrix

A first-order (Euler) explicit discretization of in (58)
yields: . Multiplying both
sides by yields

(70)

which is identical to the standard discrete-time HMM
filter. Similarly, a first-order discretization of in (61)
yields the backward recursion

(71)

which is identical to the standard discrete-time HMM
backward filter.

Note that providing is sufficiently small so that ( )
is a stochastic matrix, the robustified estimatesin (70) and

in (71) are guaranteed to be nonnegative. In contrast, a first
order discretization of the nonrobust equations can yield nega-
tive values for (58) and for a fixed . Similarly, the sum-
mation approximation to and in (66)
and (65), using (70) and (71), are guaranteed to be nonnegative.

Proof: Let denote either , or . In analogy to
(22), define the -dimensional vectors
and its robust version . Then (23) follows with

.

Consider first the case . A similar proof to (25) )see
also [14, eqs. (2.14) and (2.17)]) shows that

(72)
In analogy to the proof of Theorem 3.4, define thevector

so that . Then, using (68), it
follows that satisfies the nonstochastic ordinary differential
equation (ode)

Also similar to the proof of Theorem 3.4, it can be shown that

Therefore, yields (67).
Then, consider the case . Along the lines of (25),

it follows that

Then, using yields (66). The proof
for follows similarly and is omitted.

The Lipschitz continuity follows trivially from the Lipschitz
continuity of and .

VI. EXAMPLE 3: PIECEWISELINEAR SYSTEMS

In this section, we consider a partially observed system with
piecewise linear dynamics and observation equation. For such
systems, there is no finite-dimensional filter for computing the
optimal state estimate (see [1] for a nonstandard type filtering
formula in terms of Green’s functions). Unlike previous sections
of this paper, in general, the filtered density for such models
does not exist. Therefore, the Zakai equations will be considered
in weak form, i.e., distributional sense.

In [20] and [21], it is shown that the robust formulation of
the weak Zakai equation allows for the construction of a subop-
timal filter for computing state estimates of the piecewise linear
system. The approximate filter in [20] consists of a bank of
linear Kalman type filters with non-Gaussian initial conditions,
each filter operating on one of the piecewise linear segments.
In the same spirit as [20], we show how the robust formulation
can be used to construct approximate smoothers for the state and
functionals of the state for such piecewise linear systems. These
smoothers are used in the EM algorithm to compute the MLE
of the piecewise linear segments.

Signal Model and Parameter Estimation Problem:Consider
the following scalar piecewise linear dynamical model (1), (2),
where known

known (73)
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Here, , denotes a finite partition of , and
, are assumed to be known constants. Let ,

denote the boundary points (change points) of
. Let denote the pa-

rameter vector to be estimated. We assume that is contin-
uous in , so that at the boundary points

(74)

Under these conditions, it is well known [20] that (1) has a
unique weak solution.

Now, consider computing the MLE ofvia the EM algorithm.
From (5), we have

(75)

Then, the M-step which requires computation of
with continuity constraint (74) can be expressed as the following
equality constrained quadratic optimization problem:

Minimize subject to (76)

where , , are, respectively, , , and
-dimensional matrices with the equation shown at the

bottom of the next page holding true. The elements,
for and , are

(77)

Assuming is positive definite, the solution to the quadratic
program (76)[3, pp. 201—204] yields the EM parameter esti-
mate at iteration ( ) as

(78)

(Because the rows of are linearly independent for all
boundary points , hence, is invertible providing
is positive definite).

As described in Section II, computing (77) in the EM update
(78) motivates the need to derive smoothers for the stateand
functionals of the state defined in (4) with . To simplify
notation, in the sequel the subscriptwill be omitted in .

For any test function , define the filtered and
smoothed distributions

From (27), the Zakai equation in weak form (with ) is

(79)

Unlike the proof of Theorem 3.4, one cannot postulate the exis-
tence of the densities or .

Approximate Model:For any let denote the integer
part of . Let denote a fixed real number. Consider the
approximated version of the piecewise linear model (73) on (,

, ) with

(80)

, and
. Here, denotes the

space of functions from [0, ] into which are right continuous
and possess left limits at each point .

In the sequel, we will need to explicitly refer to the trajectories
of and . Let and
with elements and where

.
Since (1) with replaced with in (80) is a linear stochastic

differential equation on each interval with coeffi-
cients depending on , it has a unique strong solution. Similar
to (6) define

(81)

Since and satisfy the linear growth condition
for some constant , is a

martingale. Thus, as in Section II-C, define the measureby
. Define and as in (13) for the

model (80).
For any test function , define the following den-

sities and distributions:

(82)
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The aim of this section is to show the following.

i) The robust forward filtered density and backward
density of the approximate model (80) can be
computed by a bank of parallel Kalman type forward

and backward filters with non-Gaussian initial condi-
tions. Details are given in Section VI-A.

ii) As , ,
(i.e., pathwise) . That is, the smoothed dis-

...
...

.. .
. . .

...

...

. . .
. . .

. . .
. . .
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tribution for the approximate model (80) converges to the
smoothed distribution for the piecewise linear model (73).
The robust formulation is used in the convergence proof.
Details are given in Section VI-B.

A. Approximate Smoothing Algorithm

For each of the piecewise linear segments de-
fine

for

(83)

The smoothed estimate for the approximate
model (80) can be computed via the following algorithm.

Robust Forward Filter over ,
where :
Step 1. Re-initialize : At initalize
with non-Gaussian initial condition:

Step 2. Propagate : Run Kalman filters
for non Gaussian initial condition (see
Section IV-A ) on as

Step 3. Recombine : At time ,

Step 4. Set , go to Step 1.

The backward filter over is similar. Reini-
tialize at as ;
propagate according to (20); recombine at to obtain

, etc.

The smoothed-state estimate is computed as
. The estimates , of (77)

are computed using the generic formula
where is computed by (26). Finally, the

approximate EM update for the parameter estimate at
iteration ( ) is given by (78) with , replaced
by the estimates , . These are computed using
(26) with and ,
respectively

Expressions for the forward and backward Kalman filters
and are given in (34) and (42). Since there are no stochastic
integrals in (34), (42), and only appears within integrals over
time, the derivatives and are easily computed
from (34) and (42).

Proposition 6.1: The aforementioned algorithm computes
, and, hence, (defined in (82)) for the approximate

signal model (80).
Proof: Similar arguments to the proof of Lemma 2.2 for

yield

However, the first equation shown at the bottom of the page
holds. Therefore, is obtained by running
a bank of backward Kalman filters, each with non Gaussian
initial condition . Converting
to robust form as in (20) yields the backward equation in the
previous algorithm. Hence, at time, the second equation shown
at the bottom of the page holds, where is computed as in the
previous algorithm.
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B. Convergence of Approximate Smoother

It is convenient to introduce a double measure change. Define

Let denote the standard Wiener measure. Girsanov’s theorem
implies that

Theorem 6.2:As , the smoothed estimate
, a.s. for all

and .
To prove the aforementioned theorem, we work with

robust versions (i.e., Lipschitz continuous versions in
) of and ,

. In order to obtain these robust versions, we
need to integrate by parts the stochastic () integrals appearing
in (6) and (81); see the Remark following Theorem 3.2.
This, in turn, requires computation of the differentials of
and .

Lemma 6.3: As , , a.s. for
all

Proof: Note that the gradient of jumps across each
boundary point (see (73)). Thus, Ito’s formula does not
apply. Instead one needs to use Tanaka’s formula for semi-
martingales [15, Sec. 3.6] which yieldsa.s.

(84)

where and denotes the
local time at of the process . Thus, a.s.; see the first
equation shown at the bottom of the page.

Consider the evaluation of . It is easily shown that a.s.;
see the second equation shown at the bottom of the page, where

if ;
is the set of integers such that and the line

segment joining and intersects . Finally, from
Tanaka’s formula it follows that (see [20, p. 435])a.s. and

From the previous Lemma, it follows that ,
a.s. for all . Also , it can be shown [20] that

which implies that is uniformly integrable.
Hence, Theorem 6.2 follows.

Remarks: The numerical integration required for the
non-Gaussian initial condition at each can be per-
formed by sequential Monte Carlo methods (particle filters).
Using the aforementioned result and the methods in [17], one
can then show spatial convergence (as the number of particles
go to infinity the integration becomes exact) and temporal
convergence (as , the forward and backward estimates
converge weakly to the true estimates; see Theorem 6.2 ).
Finally, in the numerical implementation of the aforementioned
algorithms we found that working with the logarithms of the
normalization factors yielded better numerical behavior.

VII. CONCLUSION

In this paper, we have presented fixed-interval smoothers for
continuous-time stochastic dynamical systems. The main con-
tribution was to present these smoothers in robust form, that
is, in terms of nonstochastic partial differential equations with
random coefficients. The advantage of this robust formulation
is that one not need to work with the technically complicated
machinery of two-sided stochastic calculus. We are currently
examining extension of the methods in this paper to particle fil-
ters [10] and smoothers where state estimates are computed by
sequential Monte Carlo methods. Also, we are examining use
of the piecewise linear filtering in bearings-only target tracking
where a nonlinearity is approximated by piecewise
linear segments and then the bank of Kalman filters together
with sequential Monte Carlo methods is used.
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APPENDIX

VERIFICATION OFROBUSTBENESSMOOTHEREQUATIONS

Forward Filter: We start with the result from [2, Eq. 6.2.22]
which in strong form states that

where with denoting the Dirac delta function,
, the first equation shown at the bottom of

the page holds true, and satisfies [2, Eq. 6.2.20]. Then,
substituting , we have

(85)

where and , the
second equation shown at the bottom of the page holds. Then,
using the result [2, Th. 6.2.20, p. 200] that
where satisfies (38) and

(86)

we obtain (37) for where satisfies (39). We also obtain
(87)–(89), as shown at the bottom of the page. Integrating the
first term on the right-hand side of (89) by parts yields

Substituting (38) in the aforementioned equation, (89) yields

The first subterm in the normalization constant (88) can be
expressed as follows:

where, from (39) and (40)

The other subterm in the first term of is .
Ito calculus yields

where denotes quadratic variation. Thus

Substituting these expressions into (85), all the terms involving
(outside of time integrals) cancel out, and we obtain the robust

forward Benes filter (34).
Backward Filter: In complete analogy to the forward filter,

the backward Benes filter is of the form

We will derive expressions for (step 1) and (step 2)
as follows.

(87)

(88)

(89)
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Step 1) by definition is the explicit solution
to (20) with terminal condition

. It is shown as follows
that satisfies the first equation shown at the
bottom of the page. In particular, we will show that

(90)

where , , and are given by
the ordinary differential equations

(91)

(92)

(93)

Evaluating the right-hand side of (20), we have
(writing as for convenience)

Consequently, (20) reads

(94)

We need to find an explicit solution to the above
pde. In analogy to the solution of the forward robust
Benes filter, we can show that (90) is an explicit

solution to the aforementioned pde. To see this, we
first note that

Substituting these expressions into (94) yields

(95)

However, according to the assumption on the Benes
nonlinearity (33), the left-hand side of the previous
equation is . Equating co-
efficients of the terms in , and constants, yields
the above robust Benes backward filter (91), (92).

In analogy to the forward filter set
. Subsituting this into (91) and using

(92) yields (46).
Step 2) From [2, pp. 130—134], in complete analogy to

the forward Benes filter it follows that the second
equation shown at the bottom of the page holds,
where the first integral is a backward Ito integral,

. Substituting
yields

where
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For deterministic integrands, the forward and back-
ward Ito rules are identical. Hence, the first subterm
in is

Applying the backward Ito formula [2, p. 124] to the
second subterm of the first term yields

Substituting these expressions into (42), all the terms
involving (outside of time integrals) cancel out
and we obtain the robust backward Benes filter (42).
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