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Robust Continuous-Time Smoothers Without
Two-Sided Stochastic Integrals

Vikram Krishnamurthy Senior Member, IEEEgnd Robert Elliott

Abstract—We consider the problem of fixed-interval smoothing
of a continuous-time partially observed nonlinear stochastic
dynamical system. Existing results for such smoothers require
the use of two-sided stochastic calculus. The main contribution
of this paper is to present a robust formulation of the smoothing
equations. Under this robust formulation, the smoothing equa-

locally Lipschitz continuous in the observations, i.e., the equa-
tions depend continuously on the observation path. Indeed, the
equations turn out to be nonstochastic parabolic partial differ-
ential equations whose coefficients depend on the observations.
Apart from not requiring the intricacies of two-sided stochastic

tions are nonstochastic parabolic partial differential equations

calculus, these robust equations are useful from a practical point

(with random coefficients) and, hence, the technical machinery
associated with two sided stochastic calculus is not required.
Furthermore, the robust smoothed state estimates are locally
Lipschitz in the observations, which is useful for numerical
simulation. As examples, finite dimensional robust versions of the
Benes and hidden Markov model smoothers and smoothers for
piecewise linear dynamics are derived; these finite-dimensional
smoothers do not involve stochastic integrals.

Index Terms—Continuous time, hidden Markov models
(HMMs), maximum likelihood estimation, nonlinear smoothing,
piecewise linear models, stochastic differential equations.

of view; their numerical solution via time discretization can be
performed without worrying about the Ito terms.

The idea of robust filtering, i.e., re-expressing the stochastic
differential equation as nonstochastic differential equation with
random coefficients has been used extensively in the context
of nonlinear filtering; see, for example, [6], [16], [8], [18], or
[2, Ch. 4]. More recently, in [14], versions of these robust fil-
ters, probabilistic interpretations and implicit and explicit dis-
cretization schemes were developed for continuous-time hidden
Markov models (HMMs).

The contributions of this paper are as follows.

|. INTRODUCTION 1)

ILTERING is another word for conditional mean estima-

tion of the state at time of a given dynamical stochastic
system, based on the available incomplete information (obser-
vations) until the same time Fixed-interval smoothing refers
to the problem when given a trajectory of observations up to
some fixed timél" > 0, one wishes to compute the conditional
mean estimate of the underlying state at timasthe interval
0<t<T.

For continuous-time dynamical stochastic systems, the fil-
tered state density can be expressed as a stochastic partial dif-
ferential equation called the Duncan—Mortenson—Zakai (DMZ)
equation [2]. Derivation of the fixed-interval smoothed state
density is mathematically more formidable as it requires the use
of two sided stochastic calculus [19].

In this paper we deriveobustfilters and smoothers for the
state of a continuous-time stochastic dynamical system by using
a gauge transformation, see for example [6], [8]. By robust we

mean that the resulting filtering and smoothing equations are
3)

2)
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Itis shown in Section Il that the smoothed state estimate
can be computed via robust forward and backward filters.
Each of these filters involve nonstochastic parabolic par-
tial differential equations.

Robust fixed interval smoothed estimates of functionals
of the state of the system are derived in Section Il
Again, the equations involve nonstochastic integrals.
These robust smoothers can be used in maximum
likelihood parameter estimation via the expectation
maximization (EM) algorithm. The EM algorithm (see
Section [I-B) is a widely used numerical method for
computing the maximum likelihood parameter estimate
for partially observed stochastic dynamical systems;
see, for example, [23], [4], and [14]. Unlike this paper,
in [14] and [9], two-sided stochastic calculus involving
Skorohod and generalized Stratonovich integrals are
used to derive smoothers for computing estimates of the
functionals required in the EM algorithm for HMMs and
linear Gaussian state space models, respectively.

As examples of the robust smoothers for the state and
functionals of the state, we present state and maximum
likelihood parameter estimation for three classes of sto-
chastic dynamical systems: 1) Benes type nonlinear dy-
namical systems with non Gaussian initial conditions (see
Section V), 2) HMM (see Section V), and 3) systems
with piecewise linear dynamics (see Section VI).

qfnstead of using fixed-interval smoothing for cases 1) and 2),
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(EM] to compute estimates of the functionals required in the EM

algorithm. However, the computational complexity of these fil-
ters areD(m*) for some of the functionals (e.g., for the number

0018-9286/02$17.00 © 2002 IEEE



KRISHNAMURTHY AND ELLIOTT: ROBUST CONTINUOUS-TIME SMOOTHERS

of jumps in an HMM) at each time instant wheredenotes the
state dimension. In comparison, computing estimates of these
functionals via fixed-interval smoothers involves a complexity

of O(m?) but requires storage memory©f T') whereT is the

length of the observation data sequence. Approximate filtering
for piecewise linear systems via a bank on Kalman filters is pre- A5)
sented in [20] and [21]. We extend these results to derive robust
smoothers for the state and functionals of the state required in

the EM algorithm, see Section VI for details.

measures. UndeP,, the state §;} taking values inR™, and
the observation procesg{} taking values inR™, ¢ > 0 are de-
scribed by

LetT > 0 denote a fixed real number. Foe [0, T, define the
right-continuous filtrations £}, { G;}, and {);} with

In (1) and (2), {w:} and {1} are independent standardH _
Brownian motions. Further.§.} and { v} are independent of
xo. (In Section V, we will consider the HMM case whetg is
a F; measurable finite state zero mean martingale process.

We make the following standard assumptions [2, pp. 114] for
allg € 0.

Al) fy:R™ x [0, T] — R™ andhy : R™ x [0, T] — R"

II. MODEL AND PROBLEM FORMULATION

A. Signal Model and Objectives

Consider the following continuous-time partially observed
nonlinear stochastic dynamical system defined on the measur-
able space(t, F). Let {Fy : § € ©}, where © denotes a com-

d.’L't ng(a:t,t) dt + Ug({l?t, t)dwt,
dys =hg(x4,t) dt + dvy,

1)
)

zo ~ ()
o =0 € R".

A6)

1825

tinuous functions on [07). Also {y:,0 < ¢ < T} €
C(R™x0,T1) endowed with the sup-norm, i.gy|| =
SUPo<¢<T |ye|-

We also assume throughout that for@lE ©, A5)
holds.
fe, 09 andhy are continuously differentiable with re-
spect to the parametér The derivative® f, /96 and
Ohg /00 are measurable and bounded functions.

To introduce the gauge transformation we shall as-
sume A6).
hg(z, s) has continuous and bounded first and second
derivatives with respect to and bounded first deriva-
tive with respect ta. The differentiability w.r.tz is not
required in the finite-state Markov case considered in
Section V.

) - " In Section VI, the assumption of continuous first and second
pact subset oR”, denote a family of parametrized probabilityyerivatives is relaxed. In particular Section VI assumes that
hg(x) is piecewise linear and continuous din Tanaka'’s for-
mula,
to the nondifferentiable case, will be used.
Objectives : In this paper, we will derive robust filtering and

smoothing equations. By robust, we mean that the solution to
the resulting equations are locally Lipschitz continuous in the

which is roughly speaking an extension of Ito’s formula

observationy. As mentioned in Section I, this is a useful prop-

Fi=o(zs, 0 < s < 1) i)
gt :U{$S7ys : 0 S S S t} ")
Ve =0{ys : 0 < s <t} 3)

are bounded Borel measurable functions

A2) oy : R™ x [0, T] — R™*" is continuous and bounded

such thatQ = ogo} is a uniformly positive definite
m X m matrix, i.e.,QQ > «l for some reabe > 0. This
ensures that the backward operakofdefined in (15))

is uniformly elliptic. This condition can be somewhat
relaxed withQ~" replaced by its pseudoinver§g”,
see Section IV-B.

A3) fy andoy are Lipschitz inz, i.e.,

|fo(w1,t) — fo(wa,t)| <kg|lw1 — 2]
loo(z1,t) — o9(w2, 1) || <kolzy — @2l

A4) The probability measures o™ with densities

(78(-) : # € ©) with respect to the Lebesgue mea-
sure are mutually absolutely continuous. We assume
Jgm |2* 7 (2)dz < oo andmf € L2(R™).

Then there exists a unique strong solutian, 0 <
t < T} € C(R™ x [0,T]) to the state (1) (where
C(R™ x [0,T]) denotes the space Bf"-valued con-

erty from animplementation point of view. The aim of this paper
is threefold.

Derive robust fixed-interval smoothers f@&{z:|Vr}
that do not involve stochastic integrals.

Derive robust fixed interval smoothers for functionals of
the form

t t t
Hot [ atespdst [ Fndnt [ 2/,
0 0 0
4
wherea : R x R" — R, 5 : R™ x R" — R™, v :
R™ — R™ are Borel measurable and bounded functions.
[ is assumed once differentiableinOur aim is to com-
pute the fixed-interval smoothed estim&x H;|Vr},
t € [0,T] using robust forward and backward filters.
These smoothed estimates are required in computing the
maximum likelihood parameter estimate via the EM al-
gorithm; see Section 1I-B. The same problem is consid-
ered in [4] where two-sided stochastic calculus was used
to computeE{ H;|Yr}.

To motivate the robust smoothers presented below,
consider computing the smoothed estimate of the last
term in (4). One would have liked to have interchanged
the conditional expectation and the integral. However,
the resulting expression

t
" [ B,

is not an Ito integral since the integrand is not adapted
to the filtration{); : 0 < ¢ < T}. In [4], it is shown
that the above integral can be interpreted as a Skorohod
integral and requires the use of two-sided stochastic cal-
culus. The aforementioned integral is interpreted in [9]
as a generalized Stratonovich integral.
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In Section IlI, it will be demonstrated that byRadon-Nikodym derivative/\""édl’g/dl’é. It is shown in
expressing the filters in robust form, the smoothe th i 06
' at 9(6,6) = E;<logA where (5), as shown
estimateE{H;|Yr} can be computed using ordinar ] 6,6) 6198 |yT} . ©)
S . ; t the bottom of the page, holds. It is clear from (5) that
(nonstochastic) integration. Thus, two-sided stochastic : = . . 4
) . cpmputing Q(¢,0) in the E-step involves computing fixed
calculus is not required. For example, Theorem 3.4 ¢ . .
: interval smoothed estimate of functionals of the state of the
this paper shows that ;
form H, in (4).

t
of [Vt = g ln [ V@an@is c. preiminares
' t ' Lood To simplify notation, reference to the parametewill be
- / Ys / v (37)% [¢s(z)vs(z)] dz | . dropped until Section 1V-B. We start with a reference proba-
0 IR bility space (2, F, P) such that undeP

Here, K is a normalization factor angt, 7, [defined in i) w is r-dimensional Brownian motion ane:{} is defined
a7) g_nd (19)] are robust foryvard and backward_ flltere_d by (1):
densities that evolve according to nonstochastic partial jjy ¢ .1 is n-dimensional Brownian motion, independent of

__ differential equations. _ ) _ w andz, and having quadratic variatidy), = I.
iii) Using the robust smoothers in Step ii), we will address cgnsider the exponentials

the problem of computing the maximum likelihood pa-
rameter estimate (MLE) of given the observation his-

ta 1 to
— /(e _ / .
tory Yr. The MLE is defined as follows: Suppose thel\t1.1:=6XP (/t W (s, 5)dy. 2 / W (s, 5)h(zs, 5) ds)

1 ty

family of measured> were absolutely continuous with 1.t €[0,T]. (6)
respect to a fixed probability measuRg. The log like-

lihood function for computing an estimate of the paFor notational convenience, defidg = Aq . Then, from Ito’s
rameterf based on the information available 3 is formula

L(0) = log Eo{(dPs/dF) | Yr}, and the MLE is de- .

fined by# € arg maxycoL(6). Application of the EM A =1 +/ AB (24, 8)dys 7)
algorithm to the Benes type nonlinear dynamical systems 0

HMMs and piecewise linear systems are covered in Seg- = = . 5
. i . . ndE{A;} = 1, whereE denotes expectation undéx. If we
tion IV-B,Section V-B, and Section VI, respectively. (A} b

define a measur® in terms of P by setting(dP/dP)|gt = Ay
B. Motivation:The EM Algorithm then Gir_sanovis theorem [;1] imp!ies _that und_érz/t is a stan-
_ ) ) dardn-dimensional Brownian motion if we defink; = dy; —
As previously mentioned, the EM algorithm serves as a Pz, t)dt, vo = 0. That is, underP, dy, = h(zs,t)dt +
mary motivation for deriving fixed-interval smoothe_rs for the;l,/t_ UnderP, the process4;} still satisfies (1). Conéequently,
statex; and functionals of the state of the forfy defined in | ,nderp the processest;} and {y,} satisfy the real world dy-

(4). The EM algorithm is an iterative numerical method for congmics (1) and (2). HoweveP is a more convenient measure
puting the MLE. Letd, be the initial parameter estimate. Eackyith which to work.

iteration of the EM algo~rithmAconsists of two steps. In the sequel, we assume thate C2(R™) is an arbitrary
Step 1) (E-step) Set = ¢; and computeQ(-,f), where “test” function with compact support. For any(z), 6:(z) €
(8, é)éEé{log(dPe/dPé) | Yr}. L»([0,T] x R™) define the inner product
Step 2) (M-step) Fin@jﬂ € arg maxge@Q(H,@\j). N
The sequence generated;{j > 0} gives nondecreasing (72, 0¢)= /H Ve (2)0¢(x)d. 8)

values of£(¢,) with equality if and only if¢; . ; = 6;.

Under the assumptions A1)-A5), for all' > 0, Filtering is concerned with computingE{¢(z;)|V:}.
the measuresiy : 6 € ©) when restricted to [0, Define the density functiony(z) as [g.. ¢(z)q(z)dz =
T] are mutually absolutely continuous orQ2,( F) with E{A; ¢(z:)|):}. The following result is standard [11].

B T
oA = [ [fulaers) = fyae 9] @' (dr, = fy(o.5)ds)

T
_% /0 [fo(ws,8) = fy(we,8)] Q7 [folws, s) = f(ws,9)] ds
+ / [ho(s,8) — hy(zs,5)] [dys — hy(zs, s)ds]
Jo
1

-5 / (o (s, 5) = hg(e, 5)) [ho(ws, 5) — by, )] ds. 5)
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Lemma 2.1: The filtered estimat&{¢(z;)|):} is given by  For convenience, we will use instead ofe;(x), etc.

B{A, ¢(x:)|Vi} < o o 9 )
E{)(z v trvr/t V=le— —,. .., —
{d(ze)| V2 } E{\ ).} O0x1’ Oxa oz,
— me QS(Q’) qt(l)d.Z' _ <¢7 qt> . (9) ()a_wi U am?(‘;ﬂfm
Jgm @t(x)dx (1, a) V2 = : : : : (14)
We will subsequently refer tg () as theforwardunnormalized ﬁ e %

m

filtered density. i I
Fixed interval smoothing is concerned with computing cor=0r & vector fieldy(z) = [g1(«) ga(x) ... gm(x)]" defined on

ditional mean estimates of the fofBy{¢(z)|Vr}, t € [0, T]. R™, define

Consider the measure valued process dgr  0gs Igm

() =B {ArlVer e =a}},  1e0.T] O 5w T B
v(T) = Ty =Ty ¢, 4] . _r s
! e ' ) Define the backward elliptic operator (infinitesimal gener-
initialized byvr () = 1. (10)  at0r) [, and its adjoint.* for any test function) as
We will subsequently refer to,(z) as thebackwardfiltered 1 2 /
process. L(¢) =5 Tr[QV7¢] + f'V¢

Lemma 2.2:The fixed-interval smoothed estimate sy 1L 2 o
E{¢(z,)|Vr} is given by L(¢)—2Tr[V (Q¢)] — div[fe]. (15)

E{$(z)|Vr) :me ¢(x)qi(x)ve(x)d A. Robust Fixed Interval State Smoothers
Jpm ae(@)or(w)de We start with the following well-known DMZ equation,
_ (¢ar, vi) ) (11 which describes the evolution of the unnormalized filtered state
(at, ve) density; see, for example, [2] for a proof.

Theorem 3.1 (DMZ Equation)The unnormalized filtered

Proof: Byth hi f iti I - ) L . )
roof: By the smoothing property of conditional eXpemadensnyqt(x)satISerS the stochastic integral equation

tions

Blo()AYT) =B (Bl sV G} 10} o) =n@) + [ T o) ds+ [ W@

=B {g()\B{A 11V \/ G} | D1} g (") =mo(-)- (16)

(12) The existence of a unique strong solutigiiz) is guaranteed
) under assumptions Al), A2), A3), A4), and A6), see [2,
whereYr \/ G; denotes the sigma algebra generatedbyJ:.  gec.4.6]. In Section VI, where AB) is violated becatige, s)

Now piecewise linear inz, a strong solution does not necessarily
= - exist.
E{ArVr\/ G} =E{AurVr\/{o:}} = Our aim is to derive @obustversion of the above DMZ fil-
E{A¢ 7| Vi1 \/{wt}} =vg(w¢) tering equation by introducting the following gauge transforma-

tion. Define the robust forward filtered density
by the Markovian property of the proceds and the fact that

underP, y, is standard Brownian motion. Therefore (It(:ﬂ)éé qt (), do(w) = qo(x). (17)
E{p(x)Ar|Vr} = E{d(z) Aoy ()| Ve } . The followingresult is proved in [16].
Theorem 3.2 (Robust Forward Filter)g; satisfies the fol-
From [2, pp. 134] or [18, Lemma 3.10], it follows that lowing nonstochastic parabolic partial differential equation:
— 8(11‘(‘17) I = ~ _
E {¢(z)Apv(2)| Yy} = () g (@) vy () dax. 5 = el (aq), () =mo(). (18)
an

O Furthermore, the robust filtered state estimafghé
(e1qt, x)/{erqt, 1) defines a locally Lipschitz version of
Ill. ROBUSTFIXED INTERVAL SMOOTHING E{z,|);} in that for any two observation trajectorigs®,
(2) n .
ey " y'*) € C(R™ x [0,T]) and for some constaif depending on
Notation: Q@ = o(z¢,t)o’(z4,t) 1y and [y

t 1 t R R
i) = exp U W (w, s)dys — 5/ W (x,5)h(x, s)ds e (4 D) = Ea(y)] < Kly® = 5@
0 0

Remark: Equation (18) follows straightforwardly from ap-

A 1
- plying Ito’s formula tog; = &q:. In [16], (18) is established

a2 s YeeR” (13)
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by integrating\; (defined in (6)) by parts. While both methodawhich means that; satisfies the backward nonstochastic para-
yield the same formula (18), it is worthwhile noting thatein  bolic pde (20). Finally, Lemma 2.2 and (20) immediately yield
defined in (13),x € R™ is merely a parameter, whereasAp (21). O
definedin (6)z; is a stochastic process. Finally, [16] also shows

uniform continuity (robustness) in terms of an approximatioB. Robust Fixed-Interval Smoothers for Functionals
parameter. of the State

Define now the robust backward filtered process as We consider robust fixed interval smoothingféf defined in

A (4). As mentioned in Section 11-B, such computations arise in
vy(z)=€rvy (). (19)  the EM algorithm for MLE.

) . __Define the measure valued procesér) associated with,
The following theorem shows that one can derive the evoluti

of 4,(x) directly from the forward robust density(x). In par-

ticglar,_one does not need to worry about th_e evolgtiov_y()i), _ E{AH,(z) [V} = i, b). (22)
which is governed by a backward stochastic partial differential
equation. Define the robust measure valued processes
Theorem 3.3 (Robust Backward Filter and Fixed-Interval
Smoother): v, satisfies the nonstochastic backward parabolic Me(1) = ().
pde
B In terms of )\, or its robust version);, it follows
Ov(z) = —e, L(&1), or(z) = er. (20) from a virtually identical proof to Lemma 2.2 (in-
ot stead of (12) we now haveE{¢(z,)ArH:|Yr} =
The fixed interval smoothed estimate is computed as E {¢(z) A E{Ae 0| Y2V Ge} | Yr})  that  E{H;|Vr}
is computed as
JRW (j @ ( )dl’ <¢(jt' ’Dt> —
E{¢(z¢)|Yr} = = (21) : o
(Wa)Vr} = H=rs ( Sy By = Do - Qetd o
(qt, ve) (qr, vr) (G, vr)
Remarks:

1) Reference [18] also presents a similar result (in Frenchyhere zé(;\t,m denotes the unnormalized robust fixed-in-
However, the results in [18] are not exploited in comterval smoothed estimate.
puting functionals of the state which is one of the main Theorem 3.4 (Filtered and Robust Smoothed Estimagse
aims of this paper. Existence and uniqueness dfolds (24)—(26), as shown at the bottom of the next page. Furthermore,
under Al), A2), A3), Ad), and A6); see [2, Ch. 4.6.4]. the robust smoothed state estlméithAz,ﬂq,,v,) defines a

2) Equation (20) can be derived by starting with the folpcally Lipschitz version oE{H,|Yr} in that fory™®), y@ ¢
lowing backward Ito stochastic differential equation foU(Rn [0,7]) and constank depending ofjy(V || and||y® |
(N

T T \Hyr(y™) = Hyr(y®)] < K|ly™) = y@.

vy = Vp — / L(vs)ds — / hvsdys, vp =1 ) _ _

Jt Jt Proof: Starting with (4) and (7), it follows that for any test

function C?(R™
wherey; = y; — yr and the last integral is a backward ¢ € C°R™)

stochastic integral. Then apply the backward Ito formula t
of [2, pg.124] to (19). However, the following straightfor- ANep(xe)Hy =¢p(w0) Ho + / AsHL(p(xs))ds
ward proof derives smoothers without recourse to back- s
ward stochastic calculus. / AH, () o(zs, s)dw,
_ Proof: Choosep(z) = 1in (11). This yields(g, v;) = 0 Oz
E{Ar|Yr} which means thatg;, v;) is independent of time. +/ Asp(ws)a(ws, ys)ds
Now from (17) and (19), we have 0
t
(ge,ve) = (e, ve) = (T, €xve) = (e, Te) +/0 As(25)B(xs, ys)dws
t
meaning that(g,v;) is independent of timet. Thus, + / Aep(z)Y(2s, ys ) dys
d(q,v)/dt = 0, P a.s. However Jo
! / agb(il,’s)
d — 0(] _ _ Oy + o Asﬂ (xs-/ys)Q Oz ds
dt<qt’ t) <8t t)-l-((hy%) .
* — — — 87 A< s Hsh Ex) d s
:<€tL (ftqt)7 Ut) + (qt7 %} +/0 kqs(x ) (x S) Y
_ t
:<(jt-/ €L (Etﬁt)> + ((jt./ %> (P a.s) + /0 (b(xs)’y(a?mys)Ash(xs-/ S)ds
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Conditioning onY; under the measurg (see [22, Lemma 3.2, Now, E{A;¢(x;)H;|):} is a linear continuous functional on
p. 261]), it follows that C? and therefore is a measure. Withdenoting the associated
density, i.e.{¢, A\t) = E{A:¢(x¢)H|):}, it follows that

E{Ap(ze) He| Vi } :E{qﬁ(f?o)HoWo}

s Ar) =(¢, Ao L(¢), As)ds ,aqs)ds
) /OE{ASHSL(M))WS}CZS (6. ) =( Ao} + / (L(6), Ao)ds + / (9, 005)

t t
. + [0 8 radds+ [ 16, 20y,
+ [ Blade)aten p) D) ds ] o
0
. + (776, Qoadds+ [ (6, 1)
+ [ BB ) D 0 :
0 .
. + [ (6. vha)ds (28)
+ [ Bl ).y :
0
t ) () which implies that\, satisfies (24).
+ / E{Af (25, y5)Q— Vs }ds Applying Ito’s rule to), = ¢\, with )\, satisfying (24), it fol-
Ot lows that the second equation shown at the bottom of the page
+/ E{Asp(z)Hh(xs, 8)| Vs Yy, holds. Since the integrand(z)g,(z) of the last term is a finite
0

, variation process, the integral can be expressed as an ordinary
= tochastic) integral using integration by parts as follows:
+/ E{od(xs)v(xs, ys)Ash(xs, s)|Vs }ds. (n,ons - g : 2 :
0 {o(@a JAshizs, 5)|:} Jo 7' (@)2:(2)dys = +'(2)@(x)y — 7' (#) [, ysdgs which to-
(27) gether with (18) implies (25).

M(z) =do(z) + /0 "L O (a))ds

+ t [a(w,ys>qs<w> + B (5, 90) (5, a2 () — div [QB(a, g )as ()] + (), s)qsm] ds

+ B @)as(@) + (@, 5)Au()] dus (24)
M) =Hoto) + [ 6l (o) ds

[ ot 00800+ 80,0010 901.0) - 2utiv Qe et s

@R~ @) [ Vil ea s (25)

Zy :<H0(107'DO> + /01<O“Ajs + /Blf(js — €.div [Q/Bes(js] s 'Bs>d3

t

d

- / Ys 7 (V' @es Us)ds + (YTt V) Y1 (26)
Jo S

u(e) =Hoio(a) + [ &L (e ds
+ [ [au, ) 3a(2) + B (2, y2) (2, ) () — Eudiv [QB (e e Jesti(a)]| ds

4 / (@) () dys.



1830

~ Toprove (26), definét(x)éj\
&, satisfies the nonstochastic pde

35{;(:;) =& L*(eehe) + [oz(:v,yt)qt(x)+[)”(a:,yt)f(x.,t)qt(;g)

—&div [QB (w4, yt)etQt(a7>]:| — v (2)ys& L* (€:qr)-

Also

8<§t75t> o -
T TR 2y

=(&L* (et M), 0 )
+{aq + B fq: — &div [QBrerqt] , Ut)

- 0v
— (YeL*(err), ve)ye + (e, 8;)
o0vy

(V Gt E}Ut

8’Ut

+)

(29)

Using (20), the following expressions hold:

- 07 _

(At W> =M, —e:L(&70;)) = —(&L*(erMr), Ut)
' a, %) =(v'q¢, et L(€,0:)) = —(& L* (Y €+qr), Ut)

+(2)—7(2)q(z)y.. From (25),
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IV. EXAMPLE 1: ROBUST BENES SMOOTHERS
A. Robust Smoother for State
The signal model we consider is the following special case of
(1) and (2):

( (.11,’157 ) + Ftlﬁt) df' + crtdwt, (30)
dy; =Cxy dt + duy, 1o = 0. (32)
Here,o; in R™*" is no longer a function af. For convenience

assumey; is a scalar valued observation process (he= 1).
Also, C' € R**™ is assumed time-invariant for simplicity.
Assumption: We assume that(z, t) in (30) satisfies the fol-

lowing condition [2, p. 199]. Suppose that there exigts, t)
in C%Y(R™,R*) such that

Q:Vip(z,t) =g(z,t), zeR™. (32)
Assume that)(z, t) satisfies the following Benes nonlinearity
condition [2, p. 198]:

%—I— T (Q: V)

ot

d.ﬁlﬁ't Zo ~ 7‘-0(')

+ %(v’l/})/Qtv’l/J + iElFt/V’l/} =

1
§th x4+ + K5y (33)

whereI'; € R™*™ is an arbitrary symmetric matrix satisfying
I'y+C'C >0, us € R™ is an arbitrary vector and; € R is an
arbitrary scalar.

becausel* is the adjoint ofL. Substituting these expressions Remark: Several examples of nonlinearitiggz,¢) satis-

into (29) yields

(&, ve) =(H qo, Vo)

t

+ / (ags + B f@s — esdiv [QBs€5qs], Vs)ds
0
t

+ / (B L (v Gs€s) — €' L*(€5Ts), Us)ysds.
JO

However, it can be shown that

w( )~ _ d,
<€sL (VI(ISES) - 65’)/L (ESQS) s) = %<7lq57vs>

fying the aforementioned assumption are given in [2, p. 199].
For scalar valued processes (= n = 1) examples include
tan h(z) and(z + K1)/(z%/2 + K1z — (t/2 + K3)) where
K., K, are arbitrary constants; see also [7].

Robust Forward Benes FilterWhen the nonlinearity(z, t)
satisfies (33), then for initial density,(-) the explicit solution
of (18) is

o) =20) 777 [ exp(=(¢.0) (O 1o ) mo(O)

() =mo(-) (34)
where (35)—(36), as shown at the bottom of the page, hold. Here,
the terms7,(¢), S: and K; are defined as (37), as shown at the

by evaluating, for example, the right-hand side of the previowsttom of the page, and th&/ x M matrix ®, satisfies the

equation. Thereforez, = (A, %) = (&, %) + (& %:)y: equation
which yields (26). dd ,
Sinceg, andw, are locally Lipschitz, so is;. O o = =Dl + C°C))e, R =1 (38)
_ 1 = 1, _
3t(w,¢) =exp | Y(x,1) — 2% (B, = C'Ctz + T (O — 57}(4)2%(() (35)
1
5¢(¢) =K exp <—§C/5tC + C/Pt> . (36)
t
7 () =87 0, + 74, Sy = / (T + C'C)DPyds
J0
t t t
K, :exp<—/ i[f’SES]C'ysds ¢ [/ 2 4% / sts} c’
t
! Ts +C'ys) Bs(Ty + C'OVEG (T + Clyy) + Tr[E 0] + 26 + (75 + Clys) Bopts | ds 37)
2
0
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The statisticg’;, ¥, andp, satisfy
dit _ E_l ~ Cl F/ ~ Cl
PR Q(Te + C'ye) — Fy (Tt + C'ye) + pue

7o =0
= _ s, +0'0)s FY !
o (T + )X+ Q + FiXy + X4 F)
Yo =0

t t
pr = — / O FlC'yds — / O (T + C'C)Xs7sds
0 0

t
—/ D pods
Jo

po =0.

(39)

(40)

(41)
Robust Backward Benes FilteiThe explicit solution for (20)
is
(o) = [ exp(¢ 1) 5¢) e, ) de

or(z) =er(x) (42)

where (43)—(44), as shown at the bottom of the page, hold. The

termsl,(¢), S; andK, are defined as shown in (45) at the bottom
of the page, and th& x M matrix ®; satisfies the equation
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Remarks:

1) Verifying that the previous robust filter equations satisfy
(18) and (20) is straightforward but tedious and provides
little insight. In the Appendix, the forward and backward
robust Benes filter equations are derived starting from
their nonrobust versions.

2) The aforementioned expressions fgrand v; do not
involve stochastic integrals or any terms involvigg
outside of time integrals. As a result, computation of
dq; /dt anddv; /dt for non-Gaussian initial conditions is
straightforward. In Section VI, we will requirég; /dt
anddu,/dt.

3) For linear dynamics with initial distributionr(-),
simply sety(z,t) = 0,y = 0, ux = 0 andx; = 0.
Further, if 7o(-) ~ N(&o,X0), then the Kalman
fiIteAr follows with conditional mean state estimate
mi=E{x|):} = (7 + C'y:), and the Kalman state
covarianceEtéE{(xt — my)(z¢ — my)'} given by the
Riccati equation. For linear dynamics and Gaussian
initial conditions, the conditional mean fixed-interval
smoothed state estimate and associated covariance satisfy

myrEE{eVr} = (5 + 5 T (R4 k) (50)

dd _ _
dt Et|T:E{(l‘t - mt|T)($t - mt|T)l}
The statistics,, &, and, satisfy ST Y (51)
d—it ZE_IQ(L — Cl’yt) — Fl(it — Cl’yt) + Ut . . . . . .
dt t t B. Maximum Likelihood Parameter Estimation for Linear
lr =0 (47) System
) B B B B . . . .
¥ —5,(T; + C'O)Sy — Q + F,S, + S, F! Con§|dgr 'the Ilnea'r .Gau35|an_ sys'tem _(30), (31) wite 0,
dt Gaussian initial conditions and time invariant paramet&rs,
Yr =0 (48) () in controller canonical form, i.e.,
T
pr =C'yr — / PLFIC yds Fo| @ a2 - am:| o= [ 1 01%(m—1)
T ! T ~ In—tyx(m-1y 0 ]’ Om—-1)x1 0
- / & pigds — / (T, + C'C) Sl ds C=lci,... em]
t t
pr =0. (49) Letf =Jaq,..., am,cC1,---,Cn) denote the parameter vector.

1 - - 1 _
(x, () =exp <—1/)($,t) — 537/(2;1 +C'Ct)x +1,(O)x — ili(C)Et t(C)) (43)
_ 1 -
Q) =Kuexp(—=5¢'5:C + ). (44)
— — T — —
1:(¢) =%, "0+ 1y S; = / O (Ts + C'C)Pyds
t
T T S T
_— d . o 5 dYs - ,
K, _exp< /t dS[SZS]C ysds 5 /t Ya . ds—I—/t Yds| C
T — — ~ — ~ —
- / {(lS +C'ys) (T + C'CYSe(ly + Clyg) + Tr[S,T5] + 26, + (I + C'yS)IES/LS} ds) (45)
t
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The EM algorithm outlined in Section Il will be used to com- Example 3: Consider computin@{fot z.dz’|Yr} which is

pute the MLE off. It follows from (5), with @ ~* replaced by required in (53). Lef/i? = fO’ a,e;¢’;dz,. Then from (26) with
its pseudoinvers@# (see [4] for a justification of this), that o — v = 0andB(z;) = ejelz, it follows that

T T t
Q(h,6) :Eé{/ o F'Q# dxs—%/ o F' Q#F x, ds|Yr} zt:/ (zheie f(xs,5)qs, Vs)ds
0 0 0

T T ¢
+E; {/ 2!, " dy, — %/ 2, C' C x, ds|yT} - /0 (€xdiv [Qejeizsesds] , vs)ds.
0 0 b
n E@{R(é)lyT}- (52) Substituting the expression (which follows after some tedious
algebra)
whereR(6) does not involve). div [Qe;jeimsesds] = Qijesds + 7€, QAaes(Cys — C'Cays)

To impl he M- = 0. This yiel _
o implement the M-step se?Q/06 = 0. This yields +€quigeie;(_QMsx+Qfs)

-1
[a1,.. . am] = <E§ { /T v ds|Vr }) it follows (after a few more steps) that
J0

t
r E{/ :E'Seie;»deD)T} =
Jo

T
- QL]IL - / e;’Qe/[ims|T(Cys + 'Fs)ds
0

T -1
C =<E§ {/ :ng;ds|yT}> t _
Jo + / eiQ (C'Ct + My) (PS‘T + ms|Tm’S‘T) eids.
T 70
xEj {/ xsdys|yT} . (54)
70 V. EXAMPLE 2: RoBUSTHMM SMOOTHERS
In the following, we use (26) to compute the previous expres-Let z;, ¢ > 0 be a continuous-time Markov chain defined
sions. For convenience, the subscHps omitted. on (2, F, P) with finite state—spaceef, s, . . ., e,,} Wheree;

Example 1:Consider computing E{fot zsxtds|Yr} denotesthe uniti-vector with 1in theth position. Letd denote
which is required in (53) and (54). Fer € {1,2,...,M}, themxm transition rate matrix (infinitesimal generator), so that
j € {1,2,...,M} define H/ = [ cia.ale;ds where Y. a; =0forl < j<m.

e; denotes the unit vector with 1 in thigh position. Then  Itis straightforward to show [11] that the semimartingale rep-
from (26) with o(z,,ys) = eizszle;, f = v = 0 we have resentation of; is
z = j'(f(e;xsl”sejq}, vs)ds. Therefore

dzy = A'zdt + dwy, o ~ o (56)
T T . .
herew;, is aF; zero meann-vector martingale undep. Let
E Jald = Yoip 4+ mgpm’ . |d w ¢ t _
{/0 Toyds|Vr} / [ R C = (c1, c2y-..,cm) € RYX™ _ Assume thatr, is observed

. via the scalar measurement procgssas
wherem,r andX ;1 are the smoothed state estimate and co- proces

variance defined in (50) and (51). dyy = Cxydt + duy, 1o =0 (57)

Example 2: Consider computin@{fot zsdys|Yr} which is
required in (54). Defindd; = fot elzsdys. Then from (26) with
a=p0=0andy(zs) = elxs

wherer; is Brownian motion independent of,. Equation (57)
denotes the observation trajectory of a continuous time HMM,
see [11] for applications of such models. lfet= (a;;,ci,i €

t o4 {1,...,m}, j € {1,...,m}) denote the parameter vector of
z =€ [(xqt: Ve)Ys — / ys@(xfis; ’Us>d5} the HMM.
J0
and, hence A. Robust HMM Smoother

' t d Assumed is known. From (6), it follows that
E{H;|Yr} =¢; [mt|Tyt —/ Ys <d_ms|T> dS} (55) + L

0 5 Ay = exp </ Cxdy, — 3 / (st)zds> .
0 JO

d d/ - ~ ~ LetBédiag[C] denote a diagonakh x m matrix. Analogous
—mgr = — | [My + N,J Ml + 7] to (16) it follows that the unnormalized filtered density =
ds ds ! . . S
E{A:z:|):} (noteq, is an dimensional vector) is given by the

can be computed from the robust forward and backward Kalm&akai equation [11, p. 185]
filters. Y _

Remark: It is interesting to note that the robust smoothed dar = Aqdt + Bardye, o = mo- (58)
estimate (55) is identical to the generalized Stratonovich integfidiis equation is the well-known Wonham filter or HMM filter
used in [9]. [11].

where
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For any two vectors, 6 € R™, let(, 6) denote their scalar of the conditional probability distribution which enjoys this

product. WithvtéE{At,Tm,T \/ z;}, in complete analogy to continuity property. An identical proof holds for the continuity
Lemma 2.2 , the HMM smoothed-state estimate is computed@s(61)

i qe()vs(i)e; B. Maximum Likelihood Parameter Estimation for HMM

E{z:|Vr} = =1 (59) By using the EM algorithm outlined in Section II-B to com-
(e, ve) pute the ML parameter estimate @fthe following re-estima-

In analogy to (13), define the: x m diagonal exponential ma- tion equations are obtained [14]:

tricese; as .

t ' B (N}

(1) = exp(cyr — gc?t), 1=1,2,...,m aij :Wv i F ]

. 1 ~ i
e; =diag (e¢(1),...,e:(m)) = exp(By; — §BQt) ¢ :Ee {GiTD}T} (63)
= _ -1 EZ){JT|yT}
€¢ —Et . N T ' T
Define the robust forward and backward filtered state esti- V7' :/0 (zs_,ei){dzy, €5), Jr = /0 (zs,ei)ds

mates, respectively, as . T
G,LT :/ <LL’S7 6i>dys. (64)
0

Gt = €4, Ut = €Ut

Similar to Theorems 3.2 and 3.3, the following holds (prodﬂere,N“, 1 # 7, denotes the number of jumps from state

omitted to save space). to statej, .J& denotes the duration time in statand G%. de-
Theorem 5.1:(Robust HMM Smoother)he robust forward notes the “level integral” from time 0 t@'. Note that by in-
and backward filters evolve as terchanging conditional expectation and integral in the compu-
g _ ., _ B tation of the level integraE; {G'.|Vr}, the resulting expres-
— =aA'aq,  do=q (60)  gion (7 i i i
dt sion [ (E; {z, | Yr}, ei)dys isnotan lto integral; it needs to
dvy _ L be interpreted as a Skorohod integral. In the following, robust
dt et A&y, r = erl. 61)  smoothers are developed for evaluating these quantities which
The fixed-interval smoothed estimate is computed as does not require two-sided Skorohod integrals. ,
. Theorem 5.2:Robust smoothed estimatesgf N,?, andG.
I AOLAOE: are given as (65)—(67), shown at the bottom of the page. These
E{z|Yr} =21 —— ) (62) robustestimates are locally Lipschitz continuoug.in
(Gr, ) Remarks :
Remark: Equation (60) was derived in [6], where it was 1) The EM (63) for HMM parameter estimation read
shown thatg, is a locally Lipschitz continuous function of (68)—(69), as shown at the bottom of the page. These

(y(s),0 < s < t), and (60) can be used to define a version equations are the continuous-time counterpart of the

E; {Ji|Vr} = /0 4.(i)0,(i)ds (65)
B, {N/ |} = /0 j‘((j))aijvso)qs(i)da i#] (66)

E; {GiYr ) =au(i)o:(i)ys

: M
S [
j=1

0

ij —Qij i £ (68)
g =4 T G (i), (i) dt B
M . .
ar@or(yr = o v [0 Ba)n) - ;<G 6)a0)| d
1=1
C; = T _ - . (69)
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discrete-time Baum-Welch equations, which are widely Consider first the casH; = Gi. A similar proof to (25) )see
used for discrete-time MLE of HMMs; see, for examplealso [14, egs. (2.14) and (2.17)]) shows that
[5]. The expressions (68) and (69) are apparently ob- + +
tained here for the first time. In comparison, the EM\, :/ Es A e Nsds 4+ (G, e5)eiys — / ys(€s A'€5qs, €i)eids.
0

equation fore; derived in [9] is 72)
y In analogy to the proof of Theorem 3.4, define thevector
¢ = fU 0e(1)e(7) © dyy E2N, — (Gr, ei)eqys SO thatéy = Ao = 0. Then, using (68), it
]0 1 (i t( j)dt follows that¢; satisfies the nonstochastic ordinary differential

_ _ ) ~ equation (ode)
where the integral in the numerator is a generalized _

Stratonovich integral. The EM equation derived in [14, & _ aA'eh — yi(@ A ey, ei)e;, € =0.
p.600] is dt
Also similar to the proof of Theorem 3.4, it can be shown that
o= fo qe (i dyt +¢ fo qe (i)ve (i) dt - oy . ’
2 fo iy o == [ n g lan ] ds

where the integral in the numerator is a two- sidedherefore (X, o) = (&, vr) + (@, ¢ i){ei, )y yields (67).
Skorohod integral. The derivation & {N”DJT} and Then, consider the cadé, = N;”. Along the lines of (25),

E;{Gi|Yr} in [14] uses two-sided stochastic calculud! follows that

of [19]. ! ! & (1)

2) Euler discretization We consider here numerical M :/0 esAleshs d5+/ ()GJ“UmdS'
discretization of the forward and backward HMM '
fitering (60), (61). Consider a regular partitionThen, usings; = [; X,d, + [, v.dX, yields (66). The proof
0=ty <t < - <ty 1 <ty < - with constant for J; follows similarly and is omitted.
time stepA = t, — t,_1. Letz2 = (y., —ye, ,)/A The Lipschitz continuity follows trivially from the Lipschitz

denote the discrete-time sampled observations. Defiientinuity ofg; andv,. U

the discrete-time observation probability matrix
VI. EXAMPLE 3: RECEWISELINEAR SYSTEMS

B(zy) =diag(b1(z), - - bm(25)) In this section, we consider a partially observed system with
b (22 — VA A A piecewise linear dynamics and observation equation. For such
i(en) == exp(=5 (20 —i)7). systems, there is no finite-dimensional filter for computing the

optimal state estimate (see [1] for a nonstandard type filtering
A first-order (Euler) explicit discretization af; in (58) formulainterms of Green’s functions). Unlike previous sections

yields: ¢;,., = (I + A&, A’es,)q, - Multiplying both  of this paper, in general, the filtered density for such models
sides bye,, yields does not exist. Therefore, the Zakai equations will be considered
in weak form, i.e., distributional sense.
Gty = Bz )+ AA gy, (70) In [20] and [21], it is shown that the robust formulation of

the weak Zakai equation allows for the construction of a subop-
which is identical to the standard discrete-time HMMimal filter for computing state estimates of the piecewise linear
filter. Similarly, a first-order discretization af; in (61) system. The approximate filter in [20] consists of a bank of

yields the backward recursion linear Kalman type filters with non-Gaussian initial conditions,
each filter operating on one of the piecewise linear segments.
vy, = (I + AA)B(z n+1)fuf - (71) In the same spirit as [20], we show how the robust formulation

can be used to construct approximate smoothers for the state and
which is identical to the standard discrete-time HMMunctionals of the state for such piecewise linear systems. These
backward filter. smoothers are used in the EM algorithm to compute the MLE
Note that providing\ is sufficiently small so thatl(+ AA4) of the piecewise linear segments.
is a stochastic matrix, the robustified estimajgsin (70) and Signal Model and Parameter Estimation Probler@onsider
vy, in (71) are guaranteed to be nonnegative. In contrast, a fitge following scalar piecewise linear dynamical model (1), (2),
order discretization of the nonrobust equations can yield neg#erec(t) known

tive values fory,, (58) andv,,, for afixedA. Similarly, the sum- K
mation approximation t&;{ N,”|Vr} andE;{J;|Yr} in (66) Z[ 2y € Po)(apwy + by)
and (65), using (70) and (71) are guaranteed to be nonnegative. 1

Proof: Let H, denote either;, G or N,”. In analogy to K
(22), define then-dimensional vectors; = E{AH;X;|);} ZI xt € Py)(cpms + di)
and its robust version; = € \;. Then (23) follows withz; = k=1

(At, Dt). o(t) known. (73)
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Here, Py, k = 1,2,..., K denotes a finite partition dR, and From (27), the Zakai equation in weak form (with= 0) is
ar, by are assumed to be known constants. Bgte R, £ =

1,..., K — 1 denote the boundary points (change points) of 7o(pH,) =To($Ho)
Py,...,Pk.Letd = (c1,...,ck,ds,...,dg) denote the pa- ' ' ¢

rameter vector to be estimated. We assume/th@t) is contin- + / [Ts (L) + Ts(par) + Ts(dyh)] ds
uous inzx, so that at the boundary points 70

t
| + / (7o () + 7(HH )] dys. (79)
¢iBi+d;i=ci1Bi+diy1, 1=1,2,....K—-1. (74) 0

Under these conditions, it is well known [20] that (1) has Unlike the proof of Theorem 3.4, one cannot postulate the exis-
unique weak solution. tence of the densitieg or ;.

Now, consider computing the MLE éfvia the EM algorithm. Approximate Model:For anya € R let[a] denote the integer
From (5), we have part ofa. Let A > 0 denote a fixed real number. Consider the

approximated version of the piecewise linear model (73)tn (

T K F, PA) with
Q(e/ 5]) = E’g\j {/0 Z(Ckxs + dk)[(xs € Pk)dys .
k=1 {¢
RS 2 FA 1) =) I (wp/aa € Pr) (axme + by)
—5/ [Z(ckx +dp)I(x € Py) ds|yT} . (75) k=1
0 k=1 K
h2(x,t) = ZI (zt/a)a € Pr) (ckme +di)  (80)

>~
Il
-

Then, the M-step which requires computatiomefxy Q(6, 53-)
with continuity constraint (74) can be expressed as the followin

) ) : - _ 2 CR % [0,7T)) x [0,T] — D(R,[0,T]), andh® : C(R x
equality constrained quadratic optimization problem: [0,77) x [0, 7] — D(R, [0, T]). Here,D(R, [0, T]) denotes the

1 space of functions from [@] into R which are right continuous
Minimize 56240 -G, subject toRf = 0 (76) and possess left limits at each point [0, 7.
Inthe sequel, we will need to explicitly refer to the trajectories

whereA, G, R are, respectivel2 K x 2K, 2K x 1, and(K — ©Of z+ andy;. |_et1(21 = C(R x [(1),T]) anQZ =C(R X [0,77)
1) x 2K-dimensional matrices with the equation shown at tH#ith e|elmegt30t = $t(01)) € (22 andw; = y:(w) € Q° where
bottom of the next page holding true. The elememg@, Gg) w= (W, wi) €0 =0 x Q% N o _
fori = 0,1,2andk = 1,2,..., K, are Since (1) withf replaced withf < in (80) is a linear stochastic

differential equation on each intenal\, (i+1)A) with coeffi-

4 T cients depending am; A, it has a unique strong solution. Similar

A;(;) =E; {/ 2 I(x, € Pk)ds|yT} to (6) define
g Jo

) T A

G, =%, { [ st e Pk)dysm} o oan Mawle) L e
7o —e ([ 03— 5 [ 02 0)as)
Jt t
AssumingA is positive definite, the solution to the quadratic t1,ts €[0, T ' ' (81)

program (76)[3, pp. 201—204] yields the EM parameter esti-

m iterationf + 1 . . . .
ate atiteration + 1) as Sincef* andh satisfy the linear growth conditigif (=, ) +

h2(z,t)] < ¢(1 + |z¢]) for some constant € R, A* is a

martingale. Thus, as in Section II-C, define the meagtfteby

_ _ dP2/dP?|g, = A2, Definee (r) andes () as in (13) for the
(Because thd — 1 rows of i are linearly independent for all o4l (80).

boundary pointg3;, hence, RA~' R’ is invertible providing4 For any test functios € C2(R™), define the following den-

is positive definite). _ _ sities and distributions:
As described in Section Il, computing (77) in the EM update

(78) motivates the need to derive smoothers for the staésd AL BAAA B A

functionals of the stat#, defined in (4) with3 = 0. To simplify Awf () _FA{AZ¢(xt)|yt} = (¢, as >A

notation, in the sequel the subscripwill be omitted inE,. Ty (pHy) =EZ{A Hep(z4)| Ve } = (b, A7)
For any test functionp € C?(R™), define the filtered and vA(z) =EA {AtA,TD)LT \/{mt _ x}}

)

smoothed distributions A N R
Tyr(¢H:) =E{A7 Hed(2:)|Vr} = (¢, 21)

ﬁt(ﬁth) :E{At¢($t)Ht|yt} (ItA(l’) :EtA(ItA(x): S‘tA = EtA/\tA
Tyr(¢Hy) =E{Ap¢(ze)Hi|Vr}. o =t (x), 2 = (A0, (82)

601 =[[-A'R(RA'R)'RIA'G.  (78)
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The aim of this section is to show the following. and backward filters with non-Gaussian initial condi-
i) The robust forward filtered densi* () and backward tions. Details are given in Section VI-A.
density 52 (z) of the approximate model (80) can be i) As A — 0, T (pH,)(w?) — Tyr(¢H,)(w?), Yw? €
computed by a bank d parallel Kalman type forward Q? (i.e., pathwise)vt > 0. That is, the smoothed dis-

2 1
AP AW

Ag2) Agl)

Agl) Ago)

Agl) Ago)

By —D; 1 -1

Br—1 Br—1 1 _IJ
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tribution for the approximate model (80) converges to the The smoothed-state estimate is computeags; |V} =
smoothed distribution for the piecewise linear model (73)¢¢2, 52 /(72, 52). The estimatesAkA@, GkA“) of (77)
The robust formulation is used in the convergence proafre computed using the generic formug®{H,|Vr} =
Details are given in Section VI-B. z* /(g o) where z* is computed by (26). Finally, the
approxmate EM update for the parameter estintgte, at
iteration (j + 1) is given by (78) withA,®, G;, replaced
For each of the piecewise linear segménts 1,..., K de- by the estimate%kA(i)’ GkA(i)‘ These are computed using

A. Approximate Smoothing Algorithm

fine ) (26) with a(z,y) = 2 I(z € Py) and(z) = 2'I(z € Py),
ek (2) =exp |cr(x)yr — 50%(3:)1& respectively ]
€ k() Zq’:(l_) forz € R™ Apt M/O (z'I(x € Pp)qs, 05 )ds
Ly(9) =5 THQV?9] + a4V G2 = sty e € Pujaf, 7R
Li(9) :%Tr [VQ<Q¢)] — diviaxzd]. (83) - /T ysd%@il(w € Py)gs, 52 ds| .
0

The smoothed estimatB*{¢(z;)|Yr} for the approximate
model (80) can be computed via the following algorithm. Expressions for the forward and backward Kalman filtgts
andu? are given in (34) and (42). Since there are no stochastic

Robust Forward Filter over t € [iA, (i + 1)A), integralsin (34), (42), ang, only appears within integrals over

where i=0,1,...,[T/A]: time, the derivativegg~ /ds anddv> /ds are easily computed

Step 1. Re-initialize : At t = A initalize from (34) and (42).

with non-Gaussian initial condition: Proposition 6.1: The aforementioned algorithm computes
G, =A@ eP), k=12 K g>, v2 and, hencez? (defined in (82)) for the approximate

signal model (80).

Step 2. Propagate : Run X Kalman filters Proof: Similar arguments to the proof of Lemma 2.2 for

for non Gaussian initial condition (see . . .
1A (141 ield

Section IV-A ) on t € [iA, (i +1)A) as N € [iA, (i + 1)A]y
9g; 3 (x) ES {AGrd(w)|Vr} =

o = &Ly (ci)- EA{AA b(z,)EA {AA Ve \/{ }}|y }
T €T :
Step 3. Recombine : At time t=(i+1)A, v o

However, the first equation shown at the bottom of the page

z+1)A Z QZ+1A k( holds. Thereforey = ZK_I v,(f,im is obtained by running
a bank ofK backward Kalman filters, each with non Gaussian
Step 4. Set  i:=i+1, go to Step 1. initial condnmnfﬁ%ﬁk = 73 41)a (7)1 (z € Py). Converting

The backward filter over € (iA, (i + 1)A] is similar. Reini- to robust form as in (20) yields the backward equation in the
tialize att = (i + 1)A as*(:j:)i = UAL+1)A( x)I(z € P); previous algorithm. Hence, at timgthe second equation shown
propagate accordmg to (éO) recombmetai: iA to obtain atthe bottom of the page holds, whefeis computed as in the

vix(2), etc. previous algorithm. O

EX{AR 1 Vr, \/{a: = 2}} EA{ PCARIUN o A(i+1)A7T|YT V{412 lVr \/{wt}}}
=E { t,(i+1)AY( z+1)A(fE(z+1)A)|yT \/{$t}}

K
Z E® { t (i+1)AI( (i+1A € Pr)v (z—l—l)A( (z+1)A)|yT \/{xt}}

Jj=1

EX{AG1d(2)|Vr} =E2 {AG, v (z0)p(2)| Ve }
=E* {A$a v7 (@) EMALN b (x0)min Hoe }

—ZEA {AGav™ (w)(win € PR)EX AL p(wi)|wia € Pr}|Yo,}

:<¢Qt ) Ut >
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B. Convergence of Approximate Smoother segment joiningr(;_1)a andz; intersectsB;. Finally, from
Itis convenient to introduce a double measure change. Def@@nakaézformula it follows that (see [20, p. 433} a.s. and
€
T 1 T v
1y _ - 2
Nr(w) =exp V fla e, [ () dS] > wal@)(i(wja) - Aegopa))(wia — o)
JEJT(Ait)
Ayl g A 1t A 2 t
NP e | [ 1w e = 5 [0 as|. = [ wMe, = BOALE 2)
0
Let P denote the standard Wiener measure. Girsanov’s theorem ]
implies that ~ From the previous Lemma, it follows thAtt N& — A7 Nr,

- P a.s. forallw? € Q2. AlsoVw?, it can be shown [20] that
(myr, Hip)(w?) =E{ArNr H,(z:)|Yr}

(mitr, Hi) (0?) =E{AR N Hi(w)| Vr}. E{(NF ()27 (,0%) | S eow?) VA >0

Theorem 6.2:.As A — 0, the smoothed estimate,,p;c implies that A2(-,w?)N& is uniformly integrable.

(mir Hep) (w?) = (myr, Hig)(w?), P as. forallt € [0,T]  Hence, Theorem 6.2 follows.
andw?® € Q7. Remarks: The numerical integration required for the
To prove the aforementioned theorem, we work Wwithon-Gaussian initial condition at ea¢h= iA can be per-
robust versions (i.e., Lipschitz continuous versions ifyrmed by sequential Monte Carlo methods (particle filters).
w?) of (myr, Hip)(w?) and (mpp, Hid)(w?), w> € Q%  Using the aforementioned result and the methods in [17], one
= C(R x [0,T7]). In order to obtain these robust versions, wgan then show spatial convergence (as the number of particles
need to integrate by parts the stochastig (ntegrals appearing go to infinity the integration becomes exact) and temporal
in A,(6) andA*(81); see the Remark following Theorem 3.2¢onvergence (ad — 0, the forward and backward estimates
This, in turn, requires computation of the differentials¢fs) converge weakly to the true estimates; see Theorem 6.2 ).

andh?(z, s). R _ Finally, in the numerical implementation of the aforementioned
Lemma 6.3: AsA — 0, A7 (-,w?) — Ar(-,w?), Pas.for algorithms we found that working with the logarithms of the
all w? € ? normalization factors yielded better numerical behavior.

Proof: Note that the gradient of jumps across each
boundary pointB, (see (73)). Thus, Ito’s formula does not

apply. Instead one needs to use Tanaka’'s formula for semi- VII. CONCLUSION
martingales [15, Sec. 3.6] which yieldsa.s. In this paper, we have presented fixed-interval smoothers for
, continuous-time stochastic dynamical systems. The main con-
h(z¢) = h(wo) +/ Vh(zs)d, tribution was to present these smoothers in robust form, that
is, in terms of nonstochastic partial differential equations with
4= Z/ Br)dLE () (84) random coefficients. The advar)tage of this .robust forml_JIation
is that one not need to work with the technically complicated
machinery of two-sided stochastic calculus. We are currently
whereVh(z) = le I(z, € Pr)cr and LB+ (z) denotes the examining extension of the methods in this paper to particle fil-
local time atB,, of the process:;. Thus, P a.s.; see the first ters [10] and smoothers where state estimates are computed by
equation shown at the bottom of the page. ~ sequential Monte Carlo methods. Also, we are examining use

Consider the evaluation df2. It is easily shown thaP a.s.; of the piecewise linear filtering in bearings-only target tracking
see the second equation shown at the bottom of the page, whehere atan™*(-) nonlinearity is approximated by piecewise
VhA(z,s) = Zfﬂ I(x;a € Pr)ek if iA < s < (i 4+ 1)A; linear segments and then the bank of Kalman filters together
J(A;1,t) is the set of integers such thatjA < ¢ and the line with sequential Monte Carlo methods is used.

At:exp{yth(x) /ygwl z)da, — - Z/ yoI (2 = Br)dLP* (& )—%/Ot(h(a:s))zds}.

t K-1 .
1
AP = exp{ythA(g;,t)—/ ysVh™ (x,5)da, — Z Z yia (Ai(zja) — Ai(z—1ya)) (xjA_w)_§/ |hA(a;./3)|2ds}
0 0

k=1 jeJ(Ai,t)
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APPENDIX The first subterm in the normalization constdfit (88) can be

VERIFICATION OF ROBUST BENES SMOOTHER EQUATIONS expressed as follows:

Forward Filter: We start with the result from [2, Eq. 6.2.22] L, , s td ,
which in strong form states that /0 725 Cldys = 15 Cyr — /0 s [7s%s] C'ysds
@ (7) = (27r)7m/2/ exp(—=1(¢,0)) 5:(¢) Ge(w,¢) mo(¢) dC  where, from (39) and (40)

R'rn

where with§(-) denoting the Dirac delta functiogy(z,¢) = 9 [.5,] = —%4(T + C'0) Sy
exp(¢(z,0))d(z — ¢), the first equation shown at the bottom ofds
the page holds true, and,(¢) satisfies [2, Eq. 6.2.20]. Then, +F%47 — QC"yy — S F'Clyy + Ly pua.

substitutingz. = €., we have The other subterm in the first term &f, is C' [; SyysdysC".

@(x) = (2m)~™/? /D;m exp(—(¢,0)) 5:(¢) Ge(z,¢) mo(¢) d¢  Ito calculus yields

t t
D) =mo() B [ 5y dy, =27 —/ Ysd(Xsys) — [Xy, yle
wherer,(¢) = X, 'm,(¢) — C'y; anddo(z, ¢) = qo(z,¢), the Jo 0
second equation shown at the bottom of the page holds. Then, v2 /t d¥s o4 /t S udir — /t S ds
using the result [2, Th. 6.2.20, p. 200] thai(¢) = ®.¢ + ot ds s ss@s :
where®, satisfies (38) and

d’rht = [(Ft - tht)ﬁzt - Ztut]dt+2t02(dyt - C’fhtdt) (86)

ot ot ot
we obtain (37) forr, where7; satisfies (39). We also obtain / Y ysds = % (Etyf —/ 4%, yids —/ Esds> )
0 0

where[-, -]; denotes quadratic variation. Thus

(87)—(89), as shown at the bottom of the page. Integrating the “0 ds
first term on the right-hand side of (89) by parts yields Substituting these expressions into (85), all the terms involving
t , , tdo 1y (outside of time integrals) cancel out, and we obtain the robust
/ P, Cdys = ©,C7ys — /0 ds Ysds. forward Benes filter (34).

Substituting (38) in the aforementioned equation, (89) yields Backward Filter: In complete analogy to the forward filter,
the backward Benes filter is of the form

, =0,C'y, — | ®.LFCly.ds i
=00~ [ 0ROy w(@) = [ (¢ T)5Qin(e, O vr(z) = er)

t t
— @' (T, 'O Feds — LT . . . .
/0 oI+ GO Tods /0 sttsds We will derive expressions fai;(x, () (step 1) ands; (step 2)
po =0. as follows.

i, Q) =exp (00,0) = 50 = m( Q'S o =m0

—en { / ()0 dy, — L / Q. + O CmQ) + 2 Qe+ TS+ 2] ds |

Gu(2,¢) = exp (1/1(:17./ £ — %x'(Et_l _ OO + () — %(@(c) F ) Sa(7(0) + C'yt)> .

5(Q) =Ko exp(— 5¢SiC + (') ®7)
K; =exp < / t(FS + C'ys)' 8. C' dys
0

1 st
-3 / [(fs + Oy )N (T + C'CYS4 (75 + C'ys) + Tr[BeT] + 265 + (75 + C'ys)'zsus] ds) (88)
0

t t
by :/ @.C" dy, — / <I>’S(F+C’O)msds—/ O piods. (89)
0 0 0
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Step 1) o;(x,¢) by definition is the explicit solution
to (20) with terminal conditionor(z,() =
exp(—(z,T))6(z,()er. It is shown as follows
thatv,(x, ¢) satisfies the first equation shown at the
bottom of the page. In particular, we will show that

io,0) = exp (~0(e.0) - ga' N + o +G ) (00

whereN, = &; 1+ C'Ct, Ny, I, and(, are given by
the ordinary differential equations

% —(N, — C'Ct)Q(N, — C'Ct) — T,
_ F!(N, - C'Ct) — (N, - C'Ct)F,  (91)
dl, _ _
d—tt =py + (Ny — C'CHQ(ly — C'yy)
— F/(ly = C'yy) (92)
d¢, 1 - _
% =kt — i(lt - C'yt)'Q(lt - Clyt)
1 _
+ §Tr [Q(N; — C'CH)] . (93)

Evaluating the right-hand side of (20), we have
(writing v(z, ¢) asv for convenience)

V& =& [C'Cxt — Cyy]
eV [60y] = [C'Cat — Cyy) 4 + Vi
etV (@] =i, [C'Cat — Cyy] [C'Ct — Oy’
+[C'Cat — Cys) V'0y + 9:tC'C
+ Vi, [C'Cat — Cy] + V4.

Consequently, (20) reads

v

o1 = — fl [O/C.Tt — Cyt] ’l’}t — f’Vﬁ

1
— 50[C"Cat — Cy] Q[C'Cxt — Cyy]
—[C'Cat — Cyy) QV5 — %atho’

1 N
-5 Tr [VZ5Q)] . (94)

We need to find an explicit solution to the above

pde. In analogy to the solution of the forward robust

Benes filter, we can show that (90) is an explicit

1
T2
+
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solution to the aforementioned pde. To see this, we
first note that

Vi =0 [~V — No +1]
V2 =0 [~V — No +1] [~V — Nz + 1]’

+ 9[-V = N]
06 _ [ dé 1 AN dl
ot a2t @t Tt
Substituting these expressions into (94) yields
7] 1 1
- [a_qf + §Tr (Qq V%/;) + §(V1/;)’QN1/J + x’Ft’W/;}
dN dl’ d¢
l_ _ S ' nll ! _
x dtai e i ' F] [C'Cat — Cyy)
' F{Nyx — o' FJl;

1
-5 [C'Cat — Cy)' Q[C'Cxt — Cyy]
+ [C'Cat — Cy) QNz — [C'Cat — Cyy] Qr — %tOQC’
1, 1 1
- §$/NtQNt$ + .Z'INtht - 512Qlt + §TI' [NtQ]
(95)

However, according to the assumption on the Benes
nonlinearity (33), the left-hand side of the previous
equation is—[1/2z'T'yx + 't + k). EQuating co-
efficients of the terms in2, z and constants, yields
the above robust Benes backward filter (91), (92).
In analogy to the forward filter set;(¢) =

DI N I;. Subsituting this into (91) and using
(92) yields (46).

Step 2) From [2, pp. 130—134], in complete analogy to
the forward Benes filter it follows that the second
equation shown at the bottom of the page holds,

where the first integral is a backward Ito integral,

m(¢) =5,(1(¢) — C'y,). Substitutingl,(¢) =

S10,.¢ + 1, yields
- = 1, -
5:(¢) = K¢ eXP(—ECIStC +¢'py)
where
~ T ~ _
K, :exp(/ (Is — C'ys)'2sC'dys
t

T
; / [(z; — C'yy)' S (T + C'C)VEy (I — Clys)
t

+ TI‘[ESP] + 2K + (is - Cl?]s),isﬂs] dS)

Ot(w, () = exp (—1/1(35715) - %xl(it_l +C'Ct)z + 1 (Q)x — %(L(C) = C'y)'Se(1:(C) — C'%)) .

T
(0 =esp{ [ (00~ 5

[T [m;(é)(rs + C'O)ma () + 2L (O pas + Tr[ST] + 24 ds}
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pe =07C'yr — B,C"y;
T T
—/ O F.C'ysds — / O psds
t t

T
- / O (I, + C'C)S.luds

Jt

(11]

(12]

[13]
pr =0.
For deterministic integrands, the forward and back-14;
War:d Ito rules are identical. Hence, the first subterm
in K, is [15]

T
/ I'8,C"dy, = lp2rClyp — 1,5,.C'y, [16]
Jt

P IOWAY [17]
—/ d(d—sls)C'ysds.
+ s

Applying the backward Ito formula [2, p. 124] to the
second subterm of the first term yields

(18]
(19]

T
_ C - =
C/ Yysdy,C' = Bl [ETZ/% — Syt 20
t

T /
+ / <25
t [22]

Substituting these expressions into (42), all the termg,g
involving y: (outside of time integrals) cancel out
and we obtain the robust backward Benes filter (42).

3 d3s (21]

ds

1/3) ds| C'.
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